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Abstract of the Dissertation

Run-Time Deep Virtual Machine Introspection and Its Applications
by
Jennia Hizver
Doctor of Philosophy
in

Computer Science

Stony Brook University

2013

Virtual Machine Introspection (VMI) is a new and portant technique developed specifically
for virtualized environments. VMI provides the dtyil to perform virtual machine (VM)
monitoring by gathering VM run-time states from tigpervisor and analyzing those states to
obtain information about a running operating sys{@8) without installing an agent inside the
VM. The agentless VMI approach has enabled theldpreent of applications that combine the
best of two worlds: efficient centralization andieetive monitoring.

VMI's primary drawback is the semantic gap problérhe semantic gap refers to the difficulty
in interpreting low level run-time OS states obg&airthrough VMI into a high level model of the
OS's state. We approached the problem throughréiagi@n of the real-time kernel data structure
monitoring (RTKDSM) system. The RTKDSM system leages the rich OS analysis
capabilities of Volatility, an open source forerssiamework, to simplify and automate analysis
of VM run-time states of Windows and Linux OSeseTRTKDSM system is designed as an
extensible software framework, which can be extdrgle writing Volatility plugins to perform
new VM analysis tasks. In addition, the RTKDSM systis built to perform real-time
monitoring of the extracted OS states in guest \fdldetect changes made to these states. This
feature is especially important for effective s@gumonitoring of VMs. To improve the
efficiency of the RTKDSM framework, we reduce theedhead of monitoring changes to guest
OS states.

The RTKDSM system is capable of supporting a widege of VMI applications due to the
RTKDSM framework’s flexibility and extensibility. éveraging the RTKDSM framework, VMI
developers can easily create new VMI applicatiohs. demonstrate the practicality and
effectiveness of the RTKDSM framework, we built gdrnovel applications on top of the



framework: (1) an inter-VM data flow tracking todqR) a VM lock down tool to restrict the
execution environment to running only approved agglications, and (3) a tool for detection of

malicious attacks that manipulate privileges ofning processes. These systems are expected to
contribute to enhanced system monitoring in virtaakthine environments.
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1 Introduction

1.1 Motivation and Challenges

Cloud computing ushers in an era of consolidatédrimation technology infrastructure
that is elastic, available, and scalable. Virtualan is a critical building block in this evolutio
enabling multiplexing of the underlying computiregsources. With the growth of virtualization,
re-design of traditional agent-based monitoringntexdogies is underway by moving monitoring
functionalities out of virtual machines (VMs) toleigate responsibilities to automated services in
the cloud using the virtual machine introspectidfM() technology. The cloud computing
industry has witnessed a growing adoption of thel¢hnology for building a wide range of
agentless tools including intrusion detection systevirtual firewalls, malware analysis, and live
memory forensics [1-3]. In the agentless approaskrs can focus on using their VMs without
the burden of monitoring VM operations. Furtherma@ch approach de-couples the monitoring
system from the monolithic OS and eliminates thedn®r homogeneous environments where

every VM runs a common monitoring suite.

VMI was first introduced to describe the operatmithe Livewire intrusion detection
system [4], which was placed in a special managéeradh isolated from the other VMs to
observe their execution. Using the VMI approack, ttanagement VM reconstructs the internal
state of the monitored VMs through low level inf@tion, such as memory pages. Access to this
information is possible because the hypervisor aiclwthe management VM runs has complete
access to all memory in the monitored VMs and eadrit as needed. Given a VM’s entire

physical memory, it is possible for a VMI applicatiin the management VM to access the
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contents of the monitored VM’s kernel and user-spaemory and to extract the memory-
resident critical OS data structures. From theda dtauctures, the VMI application can then

infer exactly what the OS is doing.

While enabling the implementation of centralizecerstess monitoring architectures,
VMI has to overcome the so-called semantic gapraviging efficient monitoring of VMs.
Since native OS application programming interfa@eBIs) are not available to VMI, the low
semantic level in which data are captured by theehyisor makes it difficult to render the OS
high-level semantic views needed to make decisi@mgen the low level VM views, the first
step in overcoming the semantic gap is to gathfarnmation about the state of the OS by
locating and examining the internal data structtines the in-guest APIs use. This step generally
requires tedious, prolonged, and error-prone effrtaccurately translate the acquired low level
views to the OS structures in the VM. The procssparticularly challenging in closed source
OSes such as Windows, where details of data stegtmmust be obtained using reverse
engineering. Even for systems where the OS souoce ¢s available, reconstructing data
structures can be an overwhelming task. Moreoviee, time and efforts spent reverse-
engineering the internals of one OS version maybeapplicable to future versions. The lack of
automated VMI frameworks that aggregate the undeglgata structure knowledge of multiple
OS flavors and versions to eliminate reverse-emging efforts presently poses a significant

challenge for developers of VMI applications.

This work contributes toward the goal of providirmutomated frameworks for

development of VMI applications.



1.2 Dissertation Contributions

1.2.1Real-Time Kernel Data Structure Monitoring System

In Chapter 2, we present the real-time kernel ddtacture monitoring (RTKDSM)
system that allows developers of VMI applicatioogpéerform real-time analysis and monitoring
of OS data structures in a VM memory. We demoresthatiw applying the vast data structure
knowledge in an existing open source computer &osnplatform enables the development of
VMI tools to proceed more rapidly and with signéfit reduction in effort. Our system does not
require VMI application developers to know the vensof the guest OS in advance, since it is
determined on the fly by the framework, nor doesetjuire access to the OS source code,

making it also suitable for real-world productioreeution environments.

The RTKDSM system is able to identify at run-tioha structures of interest in memory
of monitored VMs and to react to changes in thoata dtructures. Responding to changes
effectively in real-time requires the system tocteto a potentially large volume of events
impacting system performance. As VMI developers magd to track changes to rapidly
changing data structures or to a large number tf dauctures, we introduce a performance

optimization technique to reduce the monitoringrbead.

To demonstrate the applicability of the RTKDSMtsys, we developed three agentless
monitoring systems: payment card data flow trackow (vCardTrek), cloud-based application
whitelisting solution (CLAW), and access token npamation detection tool (ATOM) (Figure
1.1). These systems are expected to contributenb@areed monitoring in cloud computing

centers.
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[vCardTrek” CLAW ” ATOM ]
1 t t

RTKDSM System

Figure 1.1 The RTKDSM system provides the undegyinterfaces for the development of
vCardTrek, CLAW, and ATOM.

1.2.2 Payment Card Data Flow Tracking Tool

Credit and debit card payment processing systeraskay elements in financial
transactions. Negligence in securing these systeales them vulnerable to hacking attacks,
which may lead to significant monetary losses fasthb merchants and the financial
organizations. To reduce this risk, mandatory sgcuwompliance regulations, such as the
Payment Card Industry Data Security Standard (PE€$)Dwere developed and adopted by the
industry. A key pre-requisite of the PCI DSS comaptie process is the ability to identify the
components of the payment systems directly involwvétl the card data (i.e. process, transmit,
or store). However, existing data flow tracking Ipo@annot fully automate the process of
identifying system components that interact witrdodata, because they either can not examine

encrypted communications or they use an instrunientdased approach and thus require a



priori detailed knowledge of the payment card pssaggy systems.

In Chapter 3, we describe the implementation avaluation of a novel tool called
vCardTrek to identify the card data flow in commakgpayment card processing systems
running on virtualized servers. vCardTrek performsal-time monitoring of network
communications between virtual machines and inspédo¢ memory of the communicating
processes for unencrypted card data. Our implerientaan accurately identify the system
components involved in card data flow even when tmnmunications among system
components are encrypted. Effectiveness of thi$ aemonstrated through its successful
discovery of the card data flow of several opend alosed-source payment card processing

applications.

1.2.3 Cloud-Based Application Whitelisting

In Chapter 4, we present a cloud-based applicatibitelisting system called CLAW,
which leverages the centralized monitoring capgbdi the VMI technology to guarantee that
only application binaries in a pre-approved set allewed to run in each VM under its
management. By applying the RTKDSM system, CLAW fqrens its security policy
enforcement without installing any agents inside thonitored VMs. We describe the key
techniques in the design and implementation of CLAWI compare them with previous

hypervisor-based application whitelisting systems.

1.2.4 Access Token Manipulation Detection Tool

The direct kernel object manipulation (DKOM) teaiure is used by hackers to
manipulate OS-critical data structures without tlse of application programming interfaces

(APIs). Rootkits often use this technique to hideirt presence by manipulating data structures
5



of running processes. In a similar DKOM attack,lamilaccess token manipulation, rootkits
escalate process privileges by overwriting the cmalis process’s privileges with those of a

more privileged account.

In Chapter 5, we present the design, implementatiad evaluation of an access token
manipulation detection tool called ATOM. ATOM pemfios real-time monitoring of the running
processes’ access tokens storing process privikgess able to detect attacks on access tokens
for privilege escalation purposes. A key designigies of ATOM was to apply the RTKDSM
system to monitor the access tokens’ states. Bfawtss of the tool was demonstrated through

its successful discovery of real world access takenipulation attacks.



2 Real-Time Kernel Data Structure Monitoring System

2.1 Introduction

VMI systems fall into one of the two categoridsoge that are semantically aware and
those that are semantically unaware. Semantic a&@asecapability indicates whether a VMI
system seeks to extract different OS charactesigticcarry out its operations. For instance, a
semantically aware VMI system may parse VM memorkuild a list of running processes and
to obtain process-specific information. Semantjcathaware VMI systems are largely unaware

of the OS semantics associated with the VMs theyage.

In this study, we present a real-time kernel @g#tacture monitoring (RTKDSM) system
for use by semantically aware VMI applications. TREKDSM system that has the ability to
automatically identify OS kernel data structured aantinuously track all changes that occur to
the data structures marked as structures of intéesemantically aware VMI systems. The
RTKDSM system is designed as a modular componetaise for integration into VMI tools to
ensure continuous monitoring of critical data. V@énimplemented a working prototype of the

RTKDSM system for the Xen hypervisor.
2.2 Related Work

2.2.1 Semantically Aware Systems

The availability of VMI firstly triggered the devagbment of security monitoring systems,
which were mainly divided into passive and activenitoring systems. Passive monitoring
systems were only able to inspect a VM and reporatack instead of preventing it [3-6].

Conversely, active monitoring systems interposeé\ants of interest within the monitored VM
7



and prevented malicious acts instead of relyingnane detection [2, 7, 8]. While some of these
VMI systems were entirely agentless, others bridgad of the semantic gap by placing

components inside the monitored VM.

Livewire, the first host-based intrusion detectisystem, monitored VMs to gather
information and detect attacks from within the ntored VM by acquiring semantic awareness

through analysis of kernel dumps [4].

Another semantically aware system, Lares, insdritmtnal “hooks” into the monitored
VM that activated an external monitoring controloapexecution [2]. The monitor interrupted
execution and passed control to a security mecimands deliver understanding of the OS’s

semantics.

VMwatcher demonstrated how VMI could be used fosgpze out-of-VM anti-virus
monitoring [3]. VMwatcher reconstructed OS statesm a snapshot a VM memory. The
authors presented a detailed description of howQBestates were reconstructed that clearly
highlighted both the need for expert knowledgehaf ©S to implement a VMI system and the

fragility of the approach to changes of the OS.

VMwall application-level firewall executed outsiadd the VM and intercepted network
connections to and from the hosted VMs [1]. It #&xplVMI to correlate each flow to
sending/receiving processes through extractionrofgss and socket data structures, and used

predefined policies to decide whether a conneciauld be allowed.

2.2.2 Semantically Unaware Systems

AntFarm was specifically designed to monitor a Vilismory management unit (MMU)



to infer information about the VM’s processes arfd [9]. AntFarm was semantically unaware

of the monitored system but built up such awarepgss time.

LycosID system used cross-view validation techrsgte compare running processes
visible from high and low abstraction layers [8heTsystem then patched running code to enable
reliable identification of hidden processes. Noadetl implementation information about the

monitored OS, such as versions and patch levdlsedfarget OS, was required.

Manitou, a VMI system designed to detect malwaoemgared known instruction-page
hashes with memory-page hashes at runtime [7p Hhatch was found, the instruction page was
considered corrupted and marked as non-executaiohglarly, Patagonix, a system that ensured
no binary code could be covertly executed on thaitaed system, used the processor MMU to
receive notifications whenever binary code was eteztand identified the code using the binary
format specification [10]. Unrecognized code, wieetmalicious or in a form that could not be
understood, was reported by the system. The Patagpproach was OS-agnostic so long as an
executable file format could be understood by thenitor and the executed code could be

identified.

2.2.3VMI Frameworks For Semantically Aware Systems

Several research studies have attempted to devefopmeworks to make it easier for

researchers to experiment with the many uses of Without focusing on low-level details.

XenAccess framework was developed as a monitoifangrly for the Xen hypervisor [6].
The purpose of this library was to provide memong aisk monitoring capabilities for both
open source and closed source OSes. XenAccessylileguired the kernel symbol and address

information associated with the guest OS to perfonemory mapping and conversions. The
9



symbol information was sensitive to the guest O8 waas not very portable. XenAccess was
only able to generate a list of running processes laaded modules. XenAccess was later
extended to create the LibVMI library to providerespection functions for reading and writing

memory in multiple virtualization platforms [11].

Hay and Nance created the VIX tools to performerigic analysis of VMs running on
Xen [12, 13]. The VIX tools were designed to alleanforensic investigator to perform live
analysis of a VM system. VIX consisted of a librafycommon functions and a suite of tools
which mimicked the behavior of common Unix commadmm utilities, such as ps, Ismod,
netstat, Isof, who, and top. Using VIX, unobtruslixe system analysis was performed on the

target VM without changing the system state dutiveggdata acquisition process.

A whole-system binary code extractor, called Vigopgenerated out-of-box code for use
in VMI [14]. Using Virtuoso, developers could creafMI programs to monitor VMs running a

variety of different OSes.

In another study, a novel technique called prooegtanting was proposed to narrow the
semantic gap by implanting a process into the mogit VM and executing it under the cover of
an existing running process to bridge the semagdje between the VMI application and the
monitored VM [15]. With the protection and coordioa from the hypervisor, the implanted
process ran with a degree of stealthiness anddegitacefully without leaving negative impact
on the VM. The downside of this approach was that eeliance on functionality on the
monitored VM ran the risk of deception by malwaregent in that VM, as if the implanted

process were running as a process on the VM itself.

Table 2.1 summarizes the existing VMI frameworkd aoampares the RTKDSM system

10



with the described VMI frameworks.

Table 2.1 VMI frameworks summary.

System Detection  of Exposed to the Built on the Existing Forensic
Changes Monitored OS Framework

RTKDSM System Synchronous No Yes

XenAccess Asynchronous No No

VIX Asynchronous No No

Virtuoso Asynchronous No No

Process Implanting Synchronous Yes No

2.2.4Real-Time Data Structure Monitoring Systems

A number of studies have developed out-of-VM réalkt data structure monitors to

detect integrity violations. Table 2.2 comparesRI&KDSM system to these monitors.

Petroni et al. [16] proposed a framework for detectttacks against dynamic kernel
data structures using a coprocessor-based exteia@tor. The monitoring system periodically
compared actual observed dynamic kernel data stegtin the snapshots of kernel memory
with specifications of correct kernel data strueturand reported any semantic integrity
violations against the kernel's dynamic data. Tlaadstructure extractions were performed
asynchronously with the monitored system’s executibhe asynchronous nature of this
processing rendered this approach vulnerable tardindata attacks launched and withdrawn
between snapshot periods. On the contrary, themsydeveloped in this study is able to extract
and analyze the data structures synchronously,coreng the limitation of the coprocessor-

based approach.
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Table 2.2 Real-time data structure monitoring systsummary.

System Detection | Monitoring Exposed to | Supports closed Supports HVM
Mode monitored OS | source OSes
RTKDSM Synchronous Passive No Yes Yes
Petroni et al. | Asynchronous Passive No Yes No
Sentry Synchronous Active Yes No No
Rhee et al. Synchronous Active No Yes No

In another related study, Srivastava et al. [18ettlgped Sentry, a VM-based system that
prevented illegitimate changes to critical kernatadstructures. Sentry’s memory protection
required modifications to the monitored OS to idfgribcations of dynamically-allocated kernel
data objects. Code instrumentations were introdueétlin the monitored OS’s kernel to
activate and deactivate protections on kernel obunstruction and destruction. The
instrumentation passed the physical page frame auifit=N) of the newly allocated memory
page holding a kernel data structure requiringqutidn to the hypervisor. When the memory
protection module in the hypervisor received a esfjiio add protection for the monitored VM’s
page, it added the PFN to a list of protected pagesremoved the page’s write permission
causing page faults on all attempted kernel obgdtdrations. Sentry allowed only those
alterations invoked by legitimate kernel functiatyal Sentry assumed that existing techniques
could protect the core kernel code’s integrity,aspattacker would not be able to remove the
instrumentation. The system required the OS sococke in order to partition a structure into
secure and insecure parts. This kind of protectias difficult to design for a closed source
operating system such as Windows. Compared Seh&#\R TKDSM system offers an advantage
of not requiring modifications to the monitored OS.

12



Rhee et al. [17] proposed a solution to preventadyino rootkit attacks on kernel data
structures using QEMU emulator as an external roanlthe system monitored the execution of
the OS at the instruction level within QEMU. At tume, the system identified data structures in
memory and intercepted all writes to their addrasgjes. The system relied on writing a policy
that described how the monitor should identify daga structure in a raw memory as well as the
characteristics of an attack against the datatstreicOnly limited details were given regarding
the data structures extraction mechanisms uselebgyistem. The methodology described in the
study was only portable to VM monitors that suppdrinemory interposition to translate guest
instructions into host instructions. Unlike in tREFKDSM system, such methodology could not
be extended to support commercial hypervisorsdithhot support memory interposition, such

as Xen and VMWare ESX.

2.3 Background

2.3.1 Xen Hypervisor

The RTKDSM architecture is designed and implemenisidg the popular open-source
Xen hypervisor [19, 20] capable of supporting npléitypes of guest OSes, including Windows
and Linux. This section gives an overview of Xem aescribes concepts used in our prototype

implementation.

The Xen hypervisor is the lowest and most privitegeftware layer, which is added to a
single physical machine to abstract the underhfagdware by creating multiple interfaces to
VMs. To present a VM with the illusion that it ismming on the bare hardware, the hypervisor

dynamically partitions and shares the availablespmt®y resources such as CPU, memory,
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network connections, and I/O devices among muligplecurrently running VMs. The operating

system and software applications are executedmoftthe VMs.

The first VM, which boots automatically after theXhypervisor is loaded, is called the
Dom0 domain. The DomO domain is typically a modifieersion of UNIX operating system. By
default, DomO is granted special privileges for aging and controlling other VMs including
access to the raw memory of other VMs known as Damoichains. DomUs may either be
unmodified closed-source OSes, if the host procesapports x86 virtualization (hardware
assisted virtualization) or modified OSes with saledrivers that support Xen features (para-
virtualization). Hardware assisted virtualizatigmpeoach uses help from hardware capabilities
developed by Intel (VT-x hardware) and AMD (AMD-Vatdware). This technology made
virtualization of closed-source OSes possible with@quiring modifications to the guest OS.
Para-virtualization is the technique whereby theenyisor and the OS running in a VM
communicate through hypercalls. This technique irequmodifications to the guest OS to

introduce the hypercalls.

This study focuses on Hardware Virtual Machines KV which utilize hardware

assisted virtualization technology.

2.3.2Dirty Page Tracking

To perform real-time monitoring of kernel data stures, the RTKDSM system builds

on top of the existing log dirty mode technique &melshadow paging technique.

2.3.2.1 Shadow Paging Technique

In the shadow paging technique, Xen maintains tersiens of page tables for each VM:

14



guest OS page tables controlled by the guest OSshadow page tables controlled by the
hypervisor. The guest OS translates virtual adeésegso physical addressekthe VM via its
guest page tables. The real page tables, expogbe tardware MMU, are shadow page tables
maintained by the hypervisor. The structure of shagage table is the same as the guest page
table. To avoid an extra level of indirection oregvmemory access, the shadow page tables
map directly from the guest virtual addresses theohardware machine addresses. Each shadow
entry is created on-demand according to the gusge pable entry. The hypervisor detects all
modifications to the guest page tables and ensbetshe shadow page table entries being used
by the hardware for translations correspond to éhot the guest OS environment. This is
commonly done by write protecting the guest padietaand trapping any access to the page
table pointer by a guest VM. When an entry is dddechanged in a guest page table, Xen
translates the physical address into its correspgnehachine address, performs any necessary
adjustments, and then updates the correspondirtpwhpage table. This process is called page

table entry (PTE) propagation.

2.3.2.2 Log Dirty Mode

The Xen’s log dirty mode capability was originathgsigned for live VM migration to
track dirty memory pages between consecutive mggrabunds. VM live migration employs an
iterative copy mechanism to ease performance dagosd during migration. In the first
iteration, all the VM pages are transferred to tlesignated host without pausing the VM.
Subsequent iterations copy only those pages didignhg the previous transfer phase. To do so,
the hypervisor enables the log dirty mode of thadskv page tables to record dirty pages. The
principle of the log dirty mode is as follows. Iaity, all the shadow entries are marked as read-

only, regardless of the permission of its assodigigest entries. When the guest OS attempts to
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modify a memory page, a shadow page write-faultiecand is intercepted by the hypervisor. If
the write is permitted by its associated guestyetiie hypervisor grants write permission to the
shadow entry and marks the page as a dirty onadingly. Subsequent write accesses to this

page do not incur any shadow page faults in theentiround.

2.3.3Forensic Memory Analysis

The field of memory analysis first became populaithiw the digital forensics
community. Forensic monitoring and analysis occafter a system is known to have been
attacked. Instead of detecting or preventing aackitthe goals in this case are to learn more
about what happened during the attack. Memory $mapsf a running system are taken and
analyzed post-intrusion to determine details altloitactivities happening on the machine at the

time of the snapshot.

The memory analysis has evolved from a basic tecanisuch as string matching, to
more complex methods, such as list traversal [6,22] and signature-based scanning [23-26].
The list traversal method works by looking at haodled locations and offset values to identify
the well-known key data structures and using tlusga structures to derive other data structures
by traversing linked lists. Often, for a given versof an OS or application software these hard-
coded locations and offset values are consisterdiff@rent machines and at different times.
Finding the appropriate values in the first plageidally involves reverse engineering, source
code analysis, or vendor-provided debugging symbOtmversely, signature-based scanning
involves a linear scan of physical memory looking & constant pattern of bytes using known
signatures. For instance, some Windows data stextare tagged with a four byte ASCII

identifier as well as size information and therefaran be easily found in memory using
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signature-based scanning.

2.3.3.1 Volatility Framework

The runtime state information accessed using th&FP8M system is memory as it

stores current OS states of the system in OS tlatetiwres. Our system utilizes the open-source

Python-based Volatility forensic memory analysaniework for extraction and analysis of such

data structures in the monitored VM memory [22].lafility supports the following operating

systems and versions:

« Windows

o

32-bit Windows XP Service Pack 2 and 3

32-bit Windows 2003 Server Service Pack 0, 1, 2
32-bit Windows Vista Service Pack 0, 1, 2

32-bit Windows 2008 Server Service Pack 1, 2
32-bit Windows 7 Service Pack 0, 1

64-bit Windows XP Service Pack 1 and 2

64-bit Windows 2003 Server Service Pack 1 and 2
64-bit Windows Vista Service Pack 0, 1, 2

64-bit Windows 2008 Server Service Pack 1 and 2
64-bit Windows 2008 R2 Server Service Pack 0 and 1
64-bit Windows 7 Service Pack 0 and 1

Image Identification
Processes and DLLs
Process Memory

Kernel Memory and Objects

17



o Networking

o Registry

o Malware/Rootkits

o Win32k / GUI Memory
o File Formats

o File System

o Miscellaneous

o 32-bit Linux kernels 2.6.11 to 3.5

o 64-bit Linux kernels 2.6.11 to 3.5

o OpenSuSE, Ubuntu, Debian, CentOS, Fedora, Mandtea,

« Mac OSX

o 32-bit 10.5.x Leopard

o 32-bit 10.6.x Snow Leopard

o 64-bit 10.6.x Snow Leopard

o 32-bit 10.7.x Lion

o 64-bit 10.7.x Lion

o 64-bit 10.8.x Mountain Lion

Volatility is a modular framework in which most tife functionality is implemented by

pluginsperforming a certain function, such as identifyafist of running processes. Plugins are
declared as Python classes by extending base Mglafiasses. When using Volatility as a
library, it can be extended by new plugins fromhivitone’s code without embedding them into

the library itself. Volatility currently includesver 100 known plug-ins divided info the

following major groups:

« Windows
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o Image Identification
o Processes and DLLs
o Process Memory
o Kernel Memory and Objects
o Networking
o Registry
o Malware/Rootkits
o Win32k / GUI Memory
o File Formats
o File System
o Miscellaneous
* Linux/Mac OSX/ Android
o Processes
o Process Memory
o Kernel Memory and Objects
o Networking
o Malware/Rootkits
o System Information
o Miscellaneous

Volatility provides support for a variety of proses architectures through the use of
address spacefAS) intended to abstract the handling of différeremory images and formats
and to facilitate random access to a memory image jplugin. A valid AS for a given memory
image is derived by Volatility automatically. Therdred AS is used to satisfy a read request by
a plugin. Exactly how the read request is satisifsegiot important to the plugin code, so long as

the read request is satisfied. Volatility suppdints following ASes:

« FileAddressSpace - direct file AS
19



- Legacy Intel x86 AS
o I|A32PagedMemoryPae
o |A32PagedMemory
- Standard Intel x86 AS
o JKIA32PagedMemoryPae
o JKIA32PagedMemory
+ AMDG64PagedMemory - AMD 64-bit AS
« WindowsCrashDumpSpace32 - this AS supports windomsh Dump format (x86)
« WindowsCrashDumpSpace64 - this AS supports windomsh Dump format (x64)
« WindowsHiberFileSpace32 - this AS supports windbiternation files (x86 and x64)
- EWFAddressSpace - this AS supports expert witriedsH) files
« FirewireAddressSpace - this AS supports direct mgraocess over firewire
« LimeAddressSpace - this AS supports LIME (Linux MegnExtractor)
« MachOAddressSpace - this AS supports 32- and 6Kkt OSX memory dumps
- ArmAddressSpace - this AS supports memory dumps 88-bit ARM

« VirtualBoxCoreDumpEIf64 - this AS supports memoopntps from VirtualBox virtual
machines

« VMware Snapshot - this AS supports VMware savettstad VMware snapshot files

Once an AS is loaded, most plugins begin accestatgy structuresopjectd within the
AS. Objects are declared as Python classes bydirtethe base object classes. Any time that
data are needed from an AS, it will usually be ased through an object. Examples of objects
include EPROCESS and ETHREAD objects correspondnghe process and thread in
Windows OS. Volatility’s object manager parses otgausingprofiles, which are collections of

data structure definitions (member fields and dfseelating to a certain OS.
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Concrete examples of an object, a profile, ancugiplare given in Table 2.3. Tipeofile
defines the _MYOBJECT data structure, which is Oytes long and has only one field, Id, at
the offset OxO within the data structure. The cgponding object is declared as the
_MYOBJECT class. This class has one member fungeitD, which returns the value of the
field 1d. The MyPluginplugin defines thecalculatefunction that carries out the main operation
against a memory image being analyzed. This funcixuires a valid address space and yields
Ids for all _MYOBJECT objects carved from the addrespace. The plugin assumes there is
already a Volatility API imported as myobjects.listproduce all _MYOBJECT objects. These
results are processed by the plugm@sder function rendering the output in a text form. The

renderfunction accepts the object Ids (data) yieldedh®calculatefunction.

Table 2.3 Examples of a Volatility profile, a Vdlay object, and a Volatility plugin.

PROFILE OBJECT PLUGIN
' MYOBJECT' : [ 0x4, { import volatility.obj as obj import volatility.plugins.common as common
Id : [ Ox0, ['unsigned import volatility.utils as utils

longT],
}

class _MYOBJECT(0bj.CType)| import volatility.obj as obj
def getID(self): import volatility.win32.myobjects as myobjects
return self.ld
class MyPlugin(common.AbstractWindowsCommand):
def calculate(self):
address_space = utils.load_as(self._config)
for myobject in myobjects.list(address_space)
yield myobject.getID()
def render_text(self, outfd, data):
for id in data:

outfd.write("Id: {O}\n".format(ID))
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2.3.3.2 Data Structure Classification

We classify OS kernel data structures into two $ype

1)

2)

Global data structures created at the systemlin#igon time and located at fixed offsets.

Typically, there are small numbers of global ddatactures of particular types per an OS
instance. Examples include the System Service ipgscrTable (SSDT), Kernel
Debugger Block (KDBG) and Kernel Processor ConRelgion (KPCR) structures in
Windows OS. We further classify these data strestunto static and dynamic. Static
global data structures do not change at run-tinedd values within dynamic global data

structures may be updated by the system duringrigime.

Dynamically created data structures generated byststem post-initialization at run-

time.

Numbers of such data structures per OS instancewitigly very during the system run-
time. Examples include: EPROCESS (process), ETHRE#Iead), TOKEN (process
access token), ADDRESS OBJECT (socket), TCPT_OBJHECdnnection), and

FILE_OBJECT (file) in Windows OS. Dynamically credt data structures may be
derived from the global data structures. For ingtanthe KDBG and KPCR data
structures contain the memory addresses of a targder of kernel variables. Examples
include PsLoadedModuleList (points to the list afrently loaded kernel modules) and
PsActiveProcessHead (pointer to the start of thredls list of EPROCESS structures).
For those data structures that can not be derivedmatically from the global data

structures, Volatility scanners may be used totifleanlinked structures at run-time.
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2.4 Design and Implementation

2.4.1 Assumptions and Requirements

The development of the RTKDSM system was drivemhigyfollowing requirements:

1) The system did not require any modifications to thenitored OS and no additional

2)

software needed to be installed in the monitored VM

The system imposed minimal performance overhead cpetated seamlessly in the

background with the monitored VM running at fullesgal.

The following assumptions were made when develofliegystem:

1)

2)

The Trusted Computing Base (TCB) for our systentuihed the hypervisor and all of the

software in the monitoring VM.

Kernel data structures of the introspected OS camdd to known semantic and syntactic

data structure layouts even in a compromised state.

This assumption is common to most current VMI-basadtions. It is fairly difficult for

an attacker to modify the layout of these datactimes as such modifications would
require updating all code in the system that ukemtor, otherwise, the affected OS
would no longer function properly. These updatesild@lso be challenging to perform
and to hide. Although Bahram et al. [27] demonsttaihe feasibility of semantic and
syntactic data structure manipulation attacks tavert introspection, this type of attacks
could be defeated using data structure invaridetemce and enforcement tools [28] and

by generating robust signatures for kernel datectires [29].
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3) Kernel data structures of interest were assumée tmemory-resident at the time of scan
and, once identified, were never moved (paged) &atmphysical memory and the page
file. While the kernel might keep some data in plaged memory whose contents might
be swapped into a file, the most critical and festjly accessed kernel objects, such as
those used in this study, were known to be perntgnkept in the non-paged memory.
So, the rest of this study referred to the non-gagemory and non-paged kernel data

structures only.

2.4.2Design

The RTKDSM system is composed of two agents: theospection agent and the
monitoring agent. The introspection agent gathexs analyzes kernel data structures in the
monitored VM. The monitoring agent is hosted in bypervisor. Its purpose is to detect write

attempts to the monitored kernel data structurggi(g 2.1).

MONITORING VM MONITORED VM
VMI-Based
Monitor
SR E
Introspection Agent 2 data
| - structure
PFN2
PENN //7/

]
//

5 .
Hypervisor

Monitoring Agent

Figure 2.1 Logical layout and workflow of the syste
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The RTKDSM system is designed to operate in two esod(l) data structure
identification and analysis and (2) data structomenitoring. The identification and analysis
mode may be used by VMI monitors to request the BIKI system to identify locations of
data structures and to return values of speciid$i within data structures. The VMI monitor is
responsible for deducing the semantic meaning efréurned values. The monitoring mode is
used by VMI monitors to request the RTKDSM systenmionitor data structures for changes in
real-time. The VMI request has the following formafmode, data_structure type,
data_structure_offset, field_namel, field_name2.field namel Examples of data structure
types (lata_structure_typeinclude: EPROCESS (process), TOKEN (token), aitHEEAD
(thread) in Windows OS. Examples of field namégld_nameg include: ImageFileName
(EPROCESS), UserAndGroupCount (TOKEN), and CreateT(ETHREAD). The RTKDSM
system provides VMI application developers with-poafigured lists of supported data structure
types and field names for each data structure typese lists are derived from the Volatility

profiles.

The overall algorithmic outline of the RTKDSM congas the following high-level

steps:

1) Upon a request from a VMI monitor (Step 1 of Fig@d), the introspection agent
searches the physical memory of the monitored VMuie 2.1, Step 2) to locate data
structures specified in the request. If the idé&dtfon mode is used, the introspection
agent extracts the memory offsets of the identifiieda structures or values of the
requested fields and returns the results to the Wdhitor (Step 8 of Figure 2.1).

Examples of VMI requests in the identification madelude:
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(identification, EPROCESS, 0x0, *) request instauthe introspection agent to
identify all EPROCESS data structures and retunesnbemory locations of the

identified data structures to the VMI monitor.

(identification, EPROCESS, 0x0, ‘ImageFileName’)quest instructs the
introspection agent to identify all EPROCESS ddtactures and returns the

names of the corresponding processes.

(identification, EPROCESS, 0x000fabcd, ‘ImageFileidd instructs the
introspection agent to return the name of the m®cghose EPROCESS data

structure is located at the 0x000fabcd offset.

If the monitoring mode is requested, the introspecagent extracts the monitored VM’s

physical page frame numbers (PFN) of those memageg where the monitored data

fields reside including their address ranges wittiie page (Step 3 of Figure 2.1).

Examples of VMI requests in the monitoring moddude:

(monitoring, EPROCESS, 0x000fabcd, ‘ImageFileNanmesjructs the RTKDSM

system to calculate the offset of the ImageFileN&igld within the EPROCESS
data structure located at the 0x000fabcd offsétutate the corresponding PEN,
and to monitor the ImageFileName field for chanigeeal-time. When a change

in the field is detected, the new value is returteethe VMI monitor.

(monitoring, EPROCESS, 0x000fabcd, ) instructe tRTKDSM system to
calculate the PFN (or multiple PFNs if the dataciure crosses page boundaries)

for the entire EPROCESS data structure locatetieaDk000fabcd offset and to
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2)

3)

1)

monitor the entire data structure in real-time. Whechange in the data structure

is detected, the VMI monitor is notified of the dga.

The introspection agent stores the calculated Rifldsthe address ranges in a list, called
the monitored list. The monitored list is deliveredthe monitoring agent (Step 4 of
Figure 2.1). The monitoring agent continuously nbansi data structures in real-time by

intercepting all memory writes to the pages inrttanitored list (Step 5 of Figure 2.1).

On intercepting a write on a page, if the writenishin one of the monitored address
ranges, the monitoring agent allows the write ojp@mato proceed and notifies the
introspection agent of the corresponding PFN (8tepFigure 2.1) for real-time analysis
of the updated page (Figure 2.1, Step 7). If thenorg page hosts a data structure known
to cross page boundaries and to reside on multigdes, the analysis involves the entire
set of PFNs comprising the data structure. Subselyu¢he VMI monitor is notified of
the new state of the data structure (Figure 2.8p<$S8) and is responsible for deducing
the semantic meaning of the returned values. Ifnthte is not within any of the known
monitored memory ranges, the monitoring agent aldme write operation to proceed

without notifying the introspection agent.

2.4.3Implementation

We implemented a prototype RTKDSM architecture gighre Xen hypervisor and HVM

Windows-and Linux-based VMs. In our implementatitme introspection agent is deployed in
the DomO domain. The monitoring agent is implemenitethe Xen hypervisor. The RTKDSM

system implementation involves the following steps:

Request from a VMI MonitorA VMI monitor requests the RTKDSM system to either
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identify data structures (in the identification nepabr to perform real-time monitoring of

a data structure (in the monitoring mode) (Step Rigure 2.2).

VMI MONITORING VM MONITORED VM

Monitor

[ E

XenAccess 2 libxc

3a 2
VM Memory
/ > <
RTKDSM 3b PAGE

. 8
Plugln N

*lPAGE
PFN1 ’|PAGE
Event Channel PFN2
A PFNn Introspection Agent
4b
—# Monitoring Agent
7 PFN1 5
PFN2
Event Channel PFNn 6

Hypervisor

Figure 2.2 System implementation.

2) Memory mappingTo analyze the memory of a running VM, we firaivha to access the
VM’s memory. As the Volatility framework does noave built-in mechanisms to map
the memory of a running VM, we configured the RTKSystem to access the VM
memory using the XenAccess API [6] (Step 2 of FegRr2). XenAccess is a DomO0 user-
space library built upon the low-level APIs prowidéy Xen to facilitate VM state

introspection. The Xen distribution provides a Xeantrol library (libxc) for a DomO
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3)

process to act on the VMs, including pausing a V&uming a paused VM, reading a
VM’s physical memory page, modifying a VM’'s phydicanemory page, etc.
Specifically, libxc provides a xc_map_foreign_raf)geinction that is designed to map
the physical memory space of a target VM into a Dgarocess’s virtual address space so
that the latter can easily manipulate the targets/physical memory. XenAccess uses
this API function to map the physical memory pagésthe VM. Specifically, we
leverage the PyXaFS file system, which is parthef XenAccess tool suite, to map
physical memory pages of a VM inside DomO0. PyXakfoses the memory of a VM as
a regular file and allows the introspection agenteiad a live VM’'s memory as if it were
a normal file. PyXaFS is designed for integratiothwhe Volatility framework as an

address space.

Data Structure SearciTo allow the RTKDSM system perform its data stiwe searches,
we extended the Volatility framework with two newgins called rtkdsm.py (real time
kernel data structure monitoring plugin) for Windo®S and rtkdsm_linux.py for Linux
OS. The rtkdsm.py and rtkdsm_linux.py plugins mélithe existing Volatility list
traversal and signature-based scanning algoritlemextraction of data structures. In the
current implementation, the plugins’ functionalitg limited to identification and
monitoring of only those data structures that aseduin the vCardTrek, CLAW, and
ATOM studies but can be easily extended to suppibetr data structures documented in
the Volatility profiles. The plugins are written iRython, and when used in the
monitoring mode, can directly access a memory age a data structure within the
memory page by supplying the data structure typkeodiset. The rtkdsm plugins are also

used to calculate offsets and lengths of datadiéh@t require monitoring. Data fields’
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4)

offsets and lengths within the data structure aterdhined using the Volatility profiles.
For instance, a VMI monitor may issue a requestntmitor the ImageFileName field
storing the process name. This field is definedMolatility profile as 16 bytes long and

located at the 0x174 offset from the top of the EXEIESS data structure.

Given the VM’s physical memory mapped using PyXaRl% introspection agent
searches the mapped pages for target data strei¢tiep 3a of Figure 2.2) or analyzes a
particular data structure at a known offset (Stepo8 Figure 2.2). This live system
analysis is unobtrusive to the target VM and dostschange the system state during the
data acquisition process. In the monitoring mobe,data structure and fields offsets are
converted to PFNs (Step 4a of Figure 2.2), whighdmlivered to the monitoring agent

for real-time monitoring.

Monitoring: The monitored PFN list is mapped for shared acdesm the hypervisor

context between the introspection agent and thdtororg agent (Step 4b of Figure 2.2).
We added a new hypercall to the hypervisor to &igdpis sharing. The list is stored
using a page-level bitmap. The bitmap maintains bitefor each page of physical
memory assigned to the monitored VM. The monito@ggnt manages the bitmap by

setting the appropriate bits for the monitored PFNs

All writes to the memory pages corresponding teéhim the PFN list are intercepted by
the monitoring agent. This is achieved by markihg pages as read-only (Step 5 of
Figure 2.2) and configuring the hypervisor to reuag page faults caused by writes to
these read-only pages (Step 6 of Figure 2.2). @aae the amount of code modifications

in the hypervisor for implementing this mechanismg, developed an extension to the
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Xen’s log dirty mode to support continuous trackofgnodifications to memory pages.
Specifically, we leveraged the shadow paging inftesure to configure the hypervisor
to intercept writes to monitored memory pages. kinlihe log dirty mode where all
shadow entries are destroyed on its activation,destroyed only those shadow page
table entries that corresponded to the PFNs of mepages with the identified data
structures. When the monitored VM attempted to s&£c@ page without an existing
shadow entry, a shadow page fault occurred, andithdow entry was re-constructed. In
Xen, the PTE propagation logic is implemented m tsh_propagate function (defined in
xen/arch/x86/mm/shadow/multi.c) — the “heart” ofetlshadow paging code, which
constructs the shadow PTEs from the correspondigtgentries. In the_sh_propagate
function, we intercepted the propagation of entbesnveen the guest page tables and
shadow page tables, and then write-protected dasignframes of the guest OS’s
physical memory by setting the shadow PTEs witll+@ay bit if the physical memory
page referenced by the PTE was marked as contamuohgfa structure in the PFN list.
The shadow PTE flags were otherwise identical éoathginal guest PTE flags. By doing
so, all the shadow entries corresponding to theitmi@u pages were effectively marked

as read-only.

When set on a page, the read-only bit caused theepsor to trap into the hypervisor
whenever a write was detected on the page andféraosntrol to the _sh_page_fault
function, the Xen’s page fault handling routinen the log dirty mode, such writes
resulted in the page marked dirty and write perioiss being granted to the accessed
page, so as to avoid traps on subsequent writesurliimplementation, if the write was

within a monitored address range on the page, Voavedl the write in a three-step
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procedure:

Marked the page as writable and re-executed tharfgunstruction as if no fault

occurred.

Set the trap flag, commonly used by single-steppi@iguggers for the guest OS,
to cause a debug exception after the writing imsion was executed. We trapped
this exception in the hypervisor and then re-setpthge to read-only restoring the

protected state.

If the write was within the monitored range, weified the introspection agent of
the write (Step 7 of Figure 2.2) via an event clehrestablished between the
introspection and the monitoring agents at the rbegg of the monitoring.
Notifications were delivered via two types of memqgrages created by the
hypervisor and shared with DomO: a descriptor pafet KByte to notify
availability of data to the introspection agent andata page of 4 KByte to share

the details of the updated page including the ofi$¢he write and the PFN.

5) Repeat AnalysidJpon receiving a notification from the monitoriagent, only the page

6)

(or a set of pages if the data structure was kntawepan multiple pages) where the

modification occurred was re-analyzed by the imextion agent (Step 8 of Figure 2.2).

The rtkdsm plugins extracted the new value of thkl fwhere the change had occurred

and returned it to the calling VMI monitor (Step®Figure 2.2).

Modifications to the monitored lisThe monitored PFN list was designed to be madiifie

at run-time by adding new or deleting existing strEach time an update was made to

the monitored list, the system forced propagatibmew PTE mappings in the shadow
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page cache.

2.4 .4 Limitations

An inherent limitation of the RTKDSM system is ifgerformance penalty in the
monitoring mode. While the OS inside the monitox#d accesses and manipulates data at the
granularity of machine words, the RTKDSM systeneioépts writes only at the page level. This
is because the commodity x86 processors do not affeechanism for generating faults upon
access to specific byte-level memory addressesn Eveugh the RTKDSM system is able
distinguish between monitored and non-monitoredreskis within a single page, page faults
will still occur and introduce performance cost ferites to all other addresses that do not

contain target data on the page.

Consequently, the RTKDSM implementation resultswio types of page faults. First,
when the shadow entry does not exist, both readaaite access generate a shadow page fault.
Second, when an attempt is made to modify a pageigh an existing shadow entry without a
write permission, a shadow page fault occurs. Téeod type is the predominant source of
overhead in the RTKDSM system and is likely to eaassignificant performance impact on the
guest OS by VMI monitors relying on monitoring ofage number of dynamic data structures
that are constantly written to. In the worst casery write to every kernel data structure may be
monitored resulting in the costs being extremeghhiSo it is important to provide a mechanism

to reduce the number of page faults of the secgpel t

We extended the RTKDSM design of the monitoringnade operate in two modes: 1)
the “always-on” mode that continuously monitors ¥id kernel data structures; 2) the “periodic

polling” mode that performs periodic checks aftempie-defined period of time T. In the
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“periodic polling” approach, the monitoring agentearcepts a write to a monitored page and
enables the write flag on the page for a specipedod of time T. Once T elapses, the

introspection agent re-analyzes the page, and tretoning agent enables the read-only flag on
the page. As the next write is intercepted, anode¢ection round comprising the above steps is

repeated.

Although the “periodic polling” mode prevents thgpkrvisor from accounting for
potentially unrelated and/or spurious modificatiassrelevant, reducing the frequency of checks
introduces the possibility of evasion when usedvMI security systems. A malicious data
structure modification can go undetected if it ascbhetween two consecutive checks. This is
especially possible when the polling interval issdictable. To prevent adversaries from
exploiting the periodic nature of the polling modee support randomization of the timing
parameter T using intervals pulled from a uniforistribution in the interval (T6t, T+ot), with
ot < T. As the security provided to a system is elpgelated to the frequency of checks, the
“always-on” mode vs. “periodic polling” mode shoulé considered in each individual instance
with the following consideration in mind: the “alys&on” provides increased security, while the
“periodic polling” mode reduces performance ovethekhe greater the period of time between
checks, the more time an attacker has to execsiplaisticated attack and to avoid detection by

removing the traces of the intrusion between sulesgicchecks.

Another limitation of the RTKDSM system is its inly to detect inconsistencies in OS
data structures undergoing updating, for instaaceulti-word field might be updated in parts

but the system would try to analyze each updaterbefpdating of the entire field is completed.
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2.5 Evaluation

2.5.1 Experimental Setup

Our testbed consisted of a virtualized server tisad Xen version 3.3 as the hypervisor
and Ubuntu 9.04 (Linux kernel 2.6.26) as the kefaelDomO. The host system had Duo CPU
P8600 processor running two cores at 2.4GHz and 2GBystem memory. The RTKDSM
system was installed in the DomO domain. In addjtithe virtualized server hosted 2 VMs
running a default installation of Windows XP OS lwihe 1IS web server, MSSQL database
server, Internet Explorer, and MS Office instal@deach of the machines and 2 VMs running a
default installation of Ubuntu Jaunty (Linux kerr2e6.28) with the Apache web server, MySQL
database server, and Firefox installed on eaclefntachines (Figure 2.3). These VMs were

configured with 512Mb RAM.

File Edit View Terminal Help
test@test-laptop:~$ sudo xm list

Name ID  Mem VCPUs State Time(s)
Domain-© g 2949 2 F===== 1623.8
winl 19 512 1 -b---- 13.6
win2 16 512 1 -b---- 14.8

test@test-laptop:~%

Figure 2.3 Windows OS test environment

2.5.2 Spurious Page Fault Experiments

We conducted experiments to estimate the probgplmfitspurious updates, i.e. updates
that might occur outside of monitored kernel datacsures. Specifically, we recorded page
faults caused by real-time monitoring of the datactures listed in Table 2.4 over the period of

one minute in idle Windows and Linux VMs. In theMlows VM, the experiments included: (1)
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monitoring of the PsActiveProcessHead structurgn@nitoring of the TCBTable structure, (3)
monitoring of 50 EPROCESS structures, (4) moniwriof 50 ETHREAD structures, (5)
monitoring of 50 TOKEN structures, and (6) monitgriof 50 PEB_LDR_DATA structures. In
the Linux VM, the experiments included: (1) monitgr of the init_task structure, (2)
monitoring of 50 task_struct structures, and (3nnwring of 50 files_struct structures. Prior to
each experiment, the test VMs were rebooted brgndhe environment into a known and
reproducible state. The script shown in Figure a6 then executed to invoke 50 processes

inside the test VM.

@echo off
for AL %% in (1,1,100 do
start CIWWINDDwShsystem3dhcalc. exe

Figure 2.4 A sample Windows OS command script voke 10 processes.

In the Windows VM, the RTKDSM system located theéA\&s/eProcessHead structure,
the TCBTable structure, and enumerated all EPROCEBEBPHREAD, TOKEN, and
PEB_LDR_DATA data structures corresponding to thecesses invoked by the script. The
PsActiveProcessHead, TCBTable, EPROCESS, ETHREADKHN, and PEB_LDR_DATA
data structures were then monitored for updatesahtime using the RTKDSM system. In the
Linux VM, the RTKDSM system located the init_tagkusture and enumerated all task_struct
and files_struct data structures correspondingh processes invoked by the script. The
init_task, task_struct, and files_struct data $tmes were then monitored for updates in real-
time using the RTKDSM system. Table 2.5, Table Z#&bhle 2.7, Table 2.8, Table 2.9, Table

2.10, and Table 2.11 show the results of theseramrpats.
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Table 2.4 Data structures used in the experiments.

(O] Data Structure Description
PsActiveProcessHead Points to the first and theHBROCESS (see below) data structure.
TCBTable Transmission Control Block Table listswatk connections.
EPROCESS Represents a running process.
Windows OS
ETHREAD Represents a running thread.
TOKEN Represents authorization information for aning process.
PEB _LDR_DATA Represent a list of loaded modules.
init_task Points to the first and the last taskuctt{see below) data structure.
Represents a running task. This structure alsestbe process
Linux OS task_struct authorization information similar to TOKEN in Winds OS and threag

related information similar to ETHREAD in WindowsSO

files_struct

Represents a list of files used byacess.

Table 2.5 Page faults on pages containing the ReRubcessHead, TCBTable, and init_task

structures in the idle Windows VM #1 and Linux VML#ecorded during 1 minute.

Data Structure

Inside the structure  Outside thectire

PsActiveProcessHead 0 11258
TCBTable 0 1812
init_task 0 5634
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Table 2.6 Page faults on pages containing EPROC&S&Stures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded dutimginute.

Process Number of page faults
number Inside the EPROCESS structure Outside the EPROGES&ure
6 0 26
7 0 18
14 0 54
15 0 1828
20 0 28
23 36 290
25 0 149
31 0 49
32 0 37
34 0 65
35 0 6
37 0 6
38 0 91
41 0 59
42 0 76
46 0 34
47 0 11
50 0 51
All other processes 0 0
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Table 2.7 Page faults on pages containing ETHREAMDcwires for the 50 calc.exe test
processes in the idle Windows VM #1 recorded dutimginute.

Process Number of page faults

number Inside the ETHREAD structure  Outside the ETHREAicture
3 5,304 0
11 5,698 5
14 0 214
17 0 43
19 5,465 0
26 5,338 0
27 5,347 0
31 5,317 4
39 5,569 0
47 0 1028

All other processes$ 0 0

Table 2.8 Page faults on pages containing TOKEOECBIres for the 50 calc.exe test processes in
the idle Windows VM #1 recorded during 1 minute.

Process Number of page faults

number Inside the TOKEN structure  Outside the TOKEN stnoet

4 0 16

11 0 34

49 0 28
All other processes 0 0
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Table 2.9 Page faults on pages containing PEB_LD®R Astructures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded dutimginute.

Process Number of page faults

number Inside the PEB_LDR_DATA structure  Outside the PEBRL DATA structure

All processes 0 0

Table 2.10 Page faults on pages containing taslctsstructures for the 50 gcalctool test
processes in the idle Linux VM #1 recorded duringifute.

Process Number of page faults
number Inside the task_stuct structure Outside the taskctsstructure)
15 0 178
16 0 24
18 0 226
30 0 75
All other processes$ 0 0
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Table 2.11 Page faults on pages containing filegciststructures for the 50 gcalctool test
processes in the idle Linux VM #1 recorded duringifiute.

Process Number of page faults
number Inside the files_stuct structute Outside the filgguct structure
1 0 16
4 0 44
21 0 186
34 0 52
37 0 242
46 0 36
All other processes 0 0

Although updates to the PsActiveProcessHead, TCRTamit_task, EPROCESS,
task_struct, and files_struct data structures vigfrequent, the pages hosting these structures
contained varieties of other unrelated data strestuwhich experienced frequent updates.
Several ETHREAD data structures changed quite kap&hding to a large number of page
faults on the corresponding pages. Updates outsidine ETHREAD data structures were
infrequent. Updates to the pages containing the E®Knd PEB_LDR_DATA data structures

were rare.

2.5.3 Performance Experiments

We used a combination of micro/synthetic and apgibn benchmarks to understand the
direct computational overhead introduced by the RBKI system on the test VMs. In Windows

OS, we used the PCMark05 benchmark [30] to meah@rempact of the running RTKDSM
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system on the VM’'s CPU, memory, and hard drive.LInux OS, we used the NBench
benchmark [31] to measure the impact of the runRmgDSM system on the VM’s CPU, FPU,
and system memory speed. We also ran the ApachePH3éformance benchmark as an
application benchmark for both the Windows OS amtukx OS [32]. This benchmark heavily
relied on both threading and 1/O operations. Addidlly, we ran the file compressing
application (gzip) in Linux OS to evaluate the peniance incurred by extensive I/O operations

based on the time required to compress a 20 MB file

2.5.3.1 “Always-On” Mode

We assessed the performance of the RTKDSM systetheirfalways-on” monitoring
mode. In Windows VMs, the experiments included:rfnitoring of the PsActiveProcessHead
structure, (2) monitoring of the TCBTable structu@ monitoring of EPROCESS structures of
10, 25, and 50 processes, (4) monitoring of ETHREAMDctures of 10, 25, and 50 threads, (5)
monitoring of TOKEN structures of 10, 25, and 50ogasses, and (6) monitoring of
PEB_LDR_DATA structures of 10, 25, and 50 processesLinux VMs, the experiments
included: (1) monitoring of the init_task structu(2) monitoring of task_struct structures of 10,
25, and 50 processes, and (3) monitoring of fileacs structures of 10, 25, and 50 processes.
Prior to each experiment, the test VMs were relmbbtenging the environment into a known and
reproducible state. The script shown in Figure ®as then executed to invoke a required

number of processes inside a test VM.

The performance overhead was first measured wiky bmunning VM and then with 2
VMs running concurrently for each OS. Each benchnvaas run 3 times against one test VM

for each OS. Table 2.12 and Table 2.13 show theageeresults of running the PCMark05 and
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Apache benchmarks in Windows OS. Table 2.14 andeT2li5 show the average results of
running the NBench, gzip, and Apache benchmarktsnox OS. In the Apache benchmark, the
average process time per request was used for cmmpa The results shown have been
calculated with respect to the speed of the Xetesysith the RTKDSM system enabled with

zero pages monitored.

The performance results demonstrated the perforenamerhead generally increased as
the number of monitored structures increased. Aalthtly, the performance overhead also
increased as the number of monitored VMs grew withie host. The performance was also
affected by the type of a benchmark used in therxgnts. Particularly, the Apache benchmark
had a significant impact on the performance duspuarious page faults resulting from running
this benchmark. However, the outputs generatech®RITKDSM system would be sufficiently
fast for use in systems that either monitored datactures in memory regions, which did not
incur many page faults, such as those hosting TOEBRHNPEB_LDR_DATA data structures or
systems that could tolerate reduced performancen$bance, in a VM replay for live forensic

analysis of running VMs [33]
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Table 2.12 Performance in the “always-on” mode gitie PCMark05 benchmark in Windows OS.

5 % # of EPROCESS # of TOKEN # of ETHREAD # of PEB_LDR_DATA
T =
5 m
# of o 8 8 structures structures structures structures
Benchmark £ 0 “—
Wws | € § >
5 2 £ monitored per VM monitored per VM monitored per VM monitored per VM
= ) e
P =
~ 2
10 25 50 10 25 50 10 25 50 10 25 5
CPU 1 1.1% 0.9% 1.2%| 1.1% 1.6%| 0.7% | 0.9% | 1.0% | 1.2%| 1.3%| 1.7% <0.2%| <0.2% | <0.2%
2 2.0% 1.7% 2.3%| 2.7% 3.1%| 1.3% | 2.1% | 2.5% | 2.2%| 2.6%| 3.3% <0.2% | <0.2% | <0.2%
Memory 1 0.1% 0.1% 0.2%| 0.2% 0.3%| 0.2% | 0.2% | 0.3% | 0.2%| 0.3%| 0.3% <0.2% | <0.2% | <0.2%
2 0.6% 0.5% 1.0%| 1.2% 1.5%| 0.8% | 1.0% | 1.3% | 0.9%| 1.0%| 1.5% <0.2% | <0.2% | <0.2%
HDD 1 3.5% 2.8% 6.7%| 6.8% 8.7%| 3.6% | 4.3% | 4.9% | 8.7%| 9.1%| 11.99 <0.2% | <0.2% | <0.2%
2 5.3% 4.5% 7.2%| 13.1% 13.69 5.7% | 8.5% | 9.2% | 9.7%| 14.7% 15.19 <0.2% | <0.2% | <0.2%
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Table 2.13 Performance in the “always-on” mode gighe Apache benchmark in Windows OS.

S 2 # of EPROCESS # of TOKEN # of ETHREAD # of PEB_LDR_DATA
o ©
Number of 5 5| 5
# of o> § 8 structures structures structures structures
requests / £ 0 “—
ws | £ & | 5
concurrency 5 =2 £ monitored per VM monitored per VM monitored per VM monitored per VM
= 2 S
(%) c
2
10 25 50 10 25 50 10 25 50 10 25 5(
1000/5 1 8.7% 3.3% <0.5%| 45.1% 50.29% <0.5% | 0.4% | 0.6% | 13.7%| 46.2% 106.19 <0.5% | <0.5% | <0.5%
2 12.2% 5.9% <0.5%| 56.9% 78.9% <0.5% | 2.1% | 2.4% | 15.9%| 56.3% 131.89 <0.5% | <0.5% | <0.5%
1000/10 1 8.0% 2.8% <0.5%| 41.6% 48.3% <0.5% | 0.3% | 0.5% | 12.3%| 42.2% 99.8% <0.5% | <0.5% | <0.5%
2 11.5% 5.2% <0.5%| 51.6% 66.7% <0.5% | 1.7% | 2.1% | 15.3%| 53.4% 124.69 <0.5% | <0.5% | <0.5%
5000/5 1 10.3% 4.4% <0.5%| 62.5% 78.4% <0.5% | 0.4% | 0.6% | 32.0%| 63.1% 121.39 <0.5% | <0.5% | <0.5%
2 13.9% 6.9% <0.5%| 64.8% 75.3% <0.5% | 2.3% | 2.6% | 37.5%| 76.7% | 141.4%| <0.5% | <0.5% | <0.5%
5000/10 1 10.1% 4.1% <0.5%| 61.4% 71.69% <0.5% | 0.4% | 0.6% | 28.1%| 60.4% 116.89 <0.5% | <0.5% | <0.5%
2 13.6% 6.5% <0.5%| 63.8% 75.1% <0.5% | 2.1% | 2.3% | 33.9%| 72.6% 132.79 <0.5% | <0.5% | <0.5%
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Table 2.14 Performance in the “always-on” mode gigime NBench & gzip benchmarks in
Linux OS.

# of task_struct #of files_struct

Monitoring of structures monitored structures monitored
Benchmark # of VMg
init_task per VM per VM

10 25 50 10 25 50
NBench Memory Index 1 0.2% 0.1%| 0.294 0.29 0.1% | 0.1% | 0.2%
2 0.4% 0.3%| 0.5% 0.59 0.2% | 0.3% | 0.5%
NBench Integer Index 1 0.7% 0.5%| 0.9% 1.19 0.5% | 0.6% | 0.9%
2 1.2% 0.9%| 1.3% 1.6% 1.0% | 1.1% | 1.4%
NBench Floating-Point 1 0.7% 0.4%| 0.5% 0.5% 0.3% | 0.5% | 0.6%
2 1.1% 0.7%| 0.7% 0.89 0.5% | 0.8% | 0.8%
gzip 1 2.7% 1.9%| 2.3% 2.69 1.8% | 2.4% | 2.8%
2 3.8% 2.9%| 3.7% 3.99 3.1% | 3.5% | 3.5%
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Table 2.15 Performance in the “always-on” mode gisie Apache benchmark in Linux OS.

# of task_struct # of files_struct
Monitoring of
# of requests / concurrendy  # of VMis structures monitored structures monitored
init_task
per VM per VM

10 25 50 10 25 50

1000/5 1 6.5% <0.5%| 23.2% 25.49 <0.5% | 14.4% | 22.1%
2 8.3% <0.5%| 28.3% 30.79 <0.5% | 17.3% | 26.7%

1000/10 1 5.9% <0.5%| 21.7% 24.29 <0.5% | 13.6.7%| 20.7%
2 7.9% <0.5%| 26.6% 29.89 <0.5% | 17.1% | 24.2%

5000/5 1 7.4% <0.5%| 27.4% 30.69 <0.5%| 21.5% | 32.4%
2 8.9% <0.5%| 34.1% 38.29 <0.5% | 29.1% | 39.2%

5000/10 1 7.0% <0.5%| 27.2% 29.29 <0.5%| 20.8% | 31.3%
2 8.7% <0.5%| 33.9% 36.29 <0.5% | 28.9% | 38.8%

2.5.3.2 “Periodic Polling” Mode

We assessed the performance of the RTKDSM systenthen “periodic polling”
monitoring mode using the Apache HTTP benchmarly.oAk this benchmark was shown to
cause significant performance deteriorations in“di&ays-on” monitoring mode, switching to

the “periodic polling” monitoring mode was expectedmprove the performance.

In the Windows VMs, the experiments included: (1)omtoring of the
PsActiveProcessHead structure, (2) monitoring ef TICBTable structure, (3) monitoring of
EPROCESS structures of 10, 25, and 50 processemdditoring of ETHREAD structures of

10, 25, and 50 threads, and (5) monitoring of TOK&ENctures of 10, 25, and 50 processes. In
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the Linux VMs, the experiments included: (1) monig of the init_task structure; (2)

monitoring of task_struct structures of 10, 25, &f@ processes, and (3) monitoring of
files_struct structures of 10, 25, and 50 proced8aer to each experiment, the test VMs were
rebooted bringing the environment into a known agproducible state. The script shown in

Figure 2.4 was then executed to invoke a requitedber of processes inside a test VM.

In each experiment, the benchmark was run 3 tingesnat one test VM per each OS.
The average process time per request was usedrgparison. Table 2.16, Table 2.17, Table
2.18, Table 2.19, Table 2.20, and Table 2.21 shwwvalverage results of running the Apache
benchmarks in Windows OS and Linux OS with the nignparameter T set to 50 msec, 10 msec,
and 5 msec. The results shown have been calculatiedespect to the speed of the Xen system

with the RTKDSM system enabled with zero pages hooed.

The performance results demonstrated the “periqdilting” approach significantly
decreased the performance overhead observed ifalivays-on” mode. The recorded write
bursts involving spurious updates caused by thecA@eéenchmark to the monitored pages
lasted in the 1 to 15 msec range. Hence, the ingmnewt in the performance was due to a
significantly reduced number of page fault intetaaps that excluded page faults caused by such

write bursts.
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Table 2.16 Performance in the “periodic polling” sedor the PsActiveProcessHead, TCBTable, andtask data structures.

PsActiveProcessHead TCBTable init_task
Number of requests / concurrengy

T=50 T=10 T=5 T=50 T=10 T=5 T=50 T=10 T=5

msec msec msec msec msec msec msec msec msec
1000/5 <0.5% 1.3% 2.7% <0.5% <0.5% <1.0%| <0.5% 1.1% 2.2%
1000/10 <0.5% 1.2% 2.5% <0.5% <0.5% <1.0%| <0.5% 0.9% 2.1%
5000/5 <0.5% 1.8% 3.5% <0.5% <0.5% <1.0%| <0.5% 1.5% 3.2%
5000/10 <0.5% 1.5% 3.3% <0.5% <0.5% <1.0%| <0.5% 1.3% 3.0%

Table 2.17 Performance in the “periodic polling” siedor the EPROCESS data structure.

# of EPROCESS structures# of EPROCESS structures# of EPROCESS structures,
Number of requests / concurrengy T=50 msec T=10 msec T=5msec
10 25 50 10 25 50 10 25 50
1000/5 <0.5% | 3.1% | 3.8% <0.5% 4.1% 5.2% <0.5% | 7.3% | 9.7%
1000/10 <0.5% | 2.5% | 2.9% <0.5% 2.9% 3.4%| <0.5% | 6.4% | 8.1%
5000/5 <0.5% | 3.4% | 4.2% <0.5% 4.4% 5.3% <0.5% | 7.9% | 10.1%
5000/10 <0.5% | 2.8% | 3.3% <0.5% 3.1% 3.8%| <0.5% | 6.5% | 8.8%
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Table 2.18 Performance in the “periodic polling” sedor the ETHREAD data structure.

# of ETHREAD structures, T=50 mse

¢ # of ETHREADustures, T=10 mse

-
9

# of ETHREAD structures, T=5an

Number of requests / concurrency
10 25 50 10 25 50 10 25 50
1000/5 <0.5% 3.5% 5.1% 1.5% 5.2% 8.1% 2.8% 8.1% 15.6%
1000/10 <0.5% 3.2% 4.8% 1.5% 4.9% 7.7% 2.7% 7.9% 15.2%
5000/5 <0.5% 3.8% 5.7% 2.1% 5.9% 8.4% 3.9% 9.3% 17.3%
5000/10 <0.5% 3.4% 5.6% 1.9% 5.8% 8.1% 3.6% 8.8% 16.9%

Table 2.19 Performance in the “periodic polling” sedor the TOKEN data structure.

# of TOKEN structures, T=50 msec # of TOKEN struety T=10 mse¢ # of TOKEN structures, T=5 msegc
Number of requests / concurrengy
10 25 50 10 25 50 10 25 50
1000/5 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%
1000/10 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%
5000/5 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%
5000/10 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%
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Table 2.20 Performance in the “periodic polling” aedor the task_struct data structure.

Number of requests / concurrengy

# of task_struct structures, T=50 ms

ec # of taskcsstructures, T=10 mse

c# of task_struct structures, T=5 ms

ec

10 25 50 10 25 50 10 25 50
1000/5 <0.5% 1.3% 1.5% <0.5% 3.2% 3.9% <0.5% 5.8% 6.9%
1000/10 <0.5% 1.3% 1.3% <0.5% 3.1% 3.4% <0.5% 5.7% 6.7%
5000/5 <0.5% 1.5% 2.1% <0.5% 3.9% 4.4% <0.5% 6.3% 8.8%
5000/10 <0.5% 1.3% 1.9% <0.5% 3.5% 4.3% <0.5% 6.0% 8.5%

Table 2.21 Performance in the “periodic polling” sedor the files_struct data structure.

Number of requests / concurrengy

# of files_struct structures, T=50 ms

ec # of fisuct structures, T=10 ms¢

2c# of files_struct structures, T=5 ms

10 25 50 10 25 50 10 25 50
1000/5 <0.5% 1.1% 1.3% <0.5% 2.8% 3.4% <0.5% 4.7% 6.4%
1000/10 <0.5% 0.9% 1.2% <0.5% 2.7% 3.3% <0.5% 4.7% 6.3%
5000/5 <0.5% 1.1% 1.6% <0.5% 3.6% 4.2% <0.5% 5.2% 7.9%
5000/10 <0.5% 1.0% 1.4% <0.5% 3.5% 3.9% <0.5% 4.8% 7.5%

51



2.6 Summary

We presented the design and implementation of RTHPDS& real-time kernel data
structure monitoring system, capable of automadyidadentifying OS data structures supported
by the open source Volatility forensic framework memory of a running VM and tracking
updates to the identified data structures in nea¢t To demonstrate the applicability of the
RTKDSM system under real-life conditions, we btiitee systems described in Chapters 3, 4,
and 5 correspondingly: (1) payment card data floweking tool (vCardTrek), (2) cloud-based
application whitelisting system (CLAW), and (3) ass token manipulation attack detection tool
(ATOM). By demonstrating the applications of theKIOSM system, we hoped to promote the

creation of new VMI tools through the techniquesatided in the following chapters.
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3 Automated Discovery of Credit Card Data Flow for PG DSS

Compliance

3.1 Introduction

Among organizations increasingly targeted by ongaigber security attacks are retail
businesses. These businesses make high-valuestéogdinancially motivated cyber attackers
because of the valuable credit and debit card ds¢al in payment transactions. In the recent
years, hackers have exploited weaknesses in paytashfprocessing systems to steal sensitive

customer card data [34].

To reduce security vulnerabilities in payment gardcessing systems, the Payment Card
Industry Security Standards Council developed aldased the Payment Card Industry Data
Security Standard (PCI-DSS) [35]. All merchantst thi@re, process, or transmit card data are
required to comply with the PCI-DSS security regoients to ensure that not only the payment
processing infrastructure, but the data it camaiesbetter protected from unauthorized exposure.
Noncompliant entities receive monthly fines andrgually may lose their ability to process card

payments.

The key pre-requisite for PClI DSS compliance isdbestruction of the card data flow
diagram for a payment processing network that dsceprd charges and provides card
processing service. Merchants must determine migcisow card data flow through their
payment processing systems from their inceptiomtvaystems they traverse, and where they

reside. A card data flow could start from a cargpsvat a store, or a card number input by a user
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into an E-commerce web site, and consists of &irmediate stops in a merchant’s IT network
at which the card information is examined or preees This discovery process and the resulting
card data flow diagram help merchants understandhwiT equipments in the organization

interact with the card data so as to implementstaurity of these IT equipments according to

the PCI DSS compliance requirements.

In practice, this pre-requisite poses a challermemerchants. As the payment card
processing infrastructure is implemented and latexintained, it often deviates from the
originally documented design. Without consisterdcking and auditing of changes, such
deviations in many cases remain undocumented. Todayknown tool exists that could
automatically discover the card data flow of a riistted payment card processing system in
heterogeneous computing environments. The onlylabltai solution to this problem today is
manual card data flow reconstruction based on asitipom data loss prevention (DLP) tools and
system design documents. DLP tools work by seagchatwork packets and data stored on disk
for clear text card numbers. Although highly effeetwhen dealing with unencrypted data, the
DLP tools are largely powerless when card data earerypted in transit and on storage.
Likewise, manual review of system design documentm extremely labor-intensive and time-
consuming effort. The required information is oftéfficult to extract because it is spread across
a variety of IT elements and applications. Themfdyuilding the card data flow for a given
payment card processing infrastructure is constlarelaunting task that at this point requires

significant manual efforts.

We developed an automated tool called vCardTrekldapof building the card data flow
in a distributed payment card processing systertedam virtualized physical servers. We focus

on virtualized servers because virtualization tebbgy is quickly rising to predominate in
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merchants’ data centers, and many payment careegsig systems start to run inside virtual
machines [36-38]. A key design decision of the dJaek tool is to apply the RTKDSM system

to track card data flows.

To the best of our knowledge, vCardTrek is thet fiisown tool to leverage VMI to
automatically discover the card data flow of dmited applications running in virtualized
environments. We have implemented a working pr@etyor the Xen hypervisors. Our
implementation does not require modifications te Hypervisor, VMs, guest OS, or payment
card processing system components themselves. We demonstrated the effectiveness of
vCardTrek by applying it to 3 commercial paymentdcprocessing systems and successfully
building the card data flow path for each of th&kle expect the availability of vCardTrek could
significantly decrease the efforts and costs intmgehe security regulations stipulated in the

PCI DSS standard.

3.2 Related Work

Previous research efforts approached the autonddtal flow tracking problem from
different angles, including a process-wide flowckiag, cross-process flow tracking, and cross-
host flow tracking using fine-grained dynamic taamialysis (DTA). In DTA, data of interest are
marked as tainted, and the taint propagation isitei@u along with the data. The DTA data
flow tracking mechanisms lead to increased leveladhil, but either require a priori knowledge
of the applications and hosts participating in infation exchange so they can be properly
instrumented or incur significant performance oeeauds that make such approaches unsuitable
for interactive distributed network applications production environments. Although our

approach is more coarse-grained than the DTA metlaodl thus leads to a reduced level of
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detail in the produced data flow, it removes thechéor application-specific instrumentations

and the associated performance penalties.

Several studies have explored the problem of datatracking in cross-host distributed
systems. These can be roughly divided into dyndmmary instrumentation (DBI) and emulator-
based implementations both using the DTA technididike these studies, we consider the
most generic black-box approach that can be eastigrated into production environments,
where no previous knowledge of the components qiaating in the data flow is provided, and
only passive non-intrusive (i.e. require no mogifion of the monitored system) monitoring

instruments with low performance impact are used.

3.2.1 Dynamic Binary Instrumentation Systems

The data flow tracking tool described in [39] isilbwpon a DBI framework and is
designed to track information flow between procsesstich may be located in different host
systems. In this implementation, hosts and prosepaéticipating in the information flow are
manually identified, and a DBI tool is then attadhie each of the identified processes to track
information flow within the process boundary. Adllitally, a flow manager is placed in each
participating host to relay taint information beemeinteracting processes and to handle cross-

host communications and data flow concatenations.

In another related study [40], a single process DBiework is extended to perform
cross-process and cross-host transfer of taintrimdton by intercepting and instrumenting the
system calls used for cross-process as well ascfoss-host communication. As these
implementations require prior knowledge of the bkoand the processes involved in the

information flow, these tools can not be utilizeat data flow tracking where systems and
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processes participating in the data flow are unknavpriori.

3.2.2 Emulator-Based Systems

Several DTA studies explored the use of emulatorspérform fine-grained taint
propagation and tracking between processes ands hioswirtualized networks. In these
implementations, the typical approach is to inseatrhardware emulators, such as QEMU [41],
with taint tracking instructions and monitor thentapropagation at the hardware level [42].
Taint tracking data structures are used to keapt &atus flags of every byte in the system
including physical memory, CPU registers, and degtate. The emulator propagates taint flags

whenever their corresponding values in hardwarena@ved in an operation.

In a related study, Data Flow Tomography [43] boit QEMU emulator implements
fine-grained data flow analysis system to track sisdialize data flow on a networked set of
virtual machines each running on a separate phylsasi. The Data Flow Tomography method
uses full instruction emulation and is inherentlgatly weight both in memory and time.
Hardware emulation is extremely slow and incursi§icant performance overheads making this
approach unsuitable for interactive network applices in production environment. To be a
useful tool in the life cycle of a system, methedl be needed to speed up the analysis. While
data flow tracking within a single machine is rgrproblematic, the scalability of the approach
as the number of nodes increases beyond two igimgra question. This method also requires

QEMU installation on every machine involved in thega flow.

Some research has been done to explore more sffitieans for dynamic taint analysis.
Zhanget. al.[44] implementedNeon, an extension of the [42] approach developegrévent

data leaks. Neon focuses on taint propagation a@pplications, systems, and networks. Neon
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implementation is based on the Xen hypervisor cosdbwith demand emulation via QEMU, in
which a running system dynamically switches betwéetnalized and emulated execution, and
emulation is only used when tainted data is beaggssed by the CPU. This implementation
leads to increased performance compared to usimgp@essor emulator alone [43]. However,
because propagating taint requires the invocatio@BMU, the Neon implementation incurs
significant execution time overhead due to tag essmg from the emulator and thus does not

significantly improve performance.

3.3 Design and Implementation

3.3.1Payment Card Processing System

vCardTrek is designed for a payment card processysiem consisting of multiple
distributed application components all running ostidct VMs as separate processes and
communicating with one another using synchronogsests. A payment request using a credit
or debit card number is sent to the entry compoimetite system, e.g. a card swipe at a point-of-
sale terminal at a store. Each application compbfogwards the request to the next component
along the card processing path and blocks untittteesponding response is received. Once the
payment card processing system verifies that antirgguest’s card information is accurate and
sufficient funds are available in the account, thguest is granted permission to proceed with
the purchase. Additional processing steps withenntferchant’s network may be triggered after a
payment request is authorized, such as submisgipayment data to storage, marketing data

collection, payment reconciliation and settlemeat e
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3.3.2 Assumptions

Two assumptions were made when developing the tool:

1)

2)

Each card data handling component processes egstan a synchronous fashion, i.e.,

it reacts to an input request immediately and amegjueue it for later processing.

When applying vCardTrek to a network to discover ¢hrd data flow, the network is in a
“quiescent” state in the sense that only one tagiment transaction is running through
the payment system and a false positive caused Wyiple concurrent requests is

unlikely.

3.3.3Requirements

The vCardTrek development is driven by the follogviequirements, which are derived

from analyzing card data flows in real-world protio environments:

1)

2)

The tool does not require any modifications to thgest OS or the application
components of the target payment card processiagersly and no additional software

needs to be installed on the VMs on which the payragstem runs.

The tool does not make any assumptions on thenateperations of the target payment
application system being tracked other than thieviehg: (a) the target application runs
on a virtualized environment, and (b) credit andideard numbers are transiently stored

in memory in a particular form.

3.3.4 System Overview

To identify the trajectory of the card data flowpayment request is sent to the entry
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point of a payment card processing system, anddiCek is employed to determine the set of
VMs and the corresponding processes exchangingonetpackets as a result of this request

(Step 1 of Figure 3.1).

VM1 VM 2 VM3
2

/—2\ /—2\
Entry Memor / Memor Memor
=y
Memor Memor
2 2

Memor

2

Hypervisor

Figure 3.1 (1) Inter-VM network communications &ecked by vCardTrek, and (2) the memory
of the interacting processes is inspected for datd.

Because network communications among payment systeoesses may be encrypted, it
is not always possible to detect card data fronera®pted network packets. Therefore,
vCardTrek searches the memory spaces of the conosating processes for the card data as they
travel from the entry-point process to other caathchandling processes along the way (Step 2 of
Figure 3.1). Even though card data may be encrypteohg their IPC transmissions, they are
decrypted and operated on during their processing,therefore the clear text version of card
data can be traced in the interacting processegsiane Once the processes whose memory

contains card data are found the machines invalvéite card data flow are readily identified.
The card data flow trajectories from multiple VMssad over several physical hosts can
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be further concatenated to determine how card fleta among networked hosts within the

organization (Figure 3.2).

Physical Host 1 Physical Host 2

VM1

|2

Process 1A
Memor

Process 1B

Memor! Memor!

Hypervisor Hypervisor

3 3

[Card Data Flow Diagram]

Figure 3.2 Card data flow concatenation from midtjgghysical hosts.

3.3.5Main Components

We implemented the card data flow tracking tool foe Xen hypervisor and fully-
virtualized (HVM) Windows-based VMs (payment canegessing systems predominantly run
Windows OS). In our implementation, we deploy vQask in DomO and run the components
of the payment card processing system in DomUsu(Eig.3). The vCardTrek algorithmic

outline comprises the following high-level steps:

(1) vCardTrek traces inter-VM TCP connections starfirggn the entry-point VM that

receives the test input request;

(2) vCardTrek searches the memory space of communicatiacesses bound to the
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intercepted TCP connections for the card numbed asea test input at the entry-

point VM;

(3) The card data flow path is reconstructed basedi®mnesults from (1) and (2).

MONITORING VM MONITORED MONITORED
VM1 VM2

|
vCardTrek /
Memory ‘%—" Process1 |d Tce »| Process2
Search &
Card Data Memo"V Memory

|
Reconstruction |
|
|
|

y

Network
Connection

Interception | 2. |  rrkpsm %::____———-—'_.—-.—?
& Process “ Introspection Socket & Socket &
Identification Agent |
y | Process Process
|
1
1
Hypervisor

Figure 3.3 (1-2-3) Network connections are intetedpand the processes participating in the
network connections are determined; (4-5) the mgrabthe identified processes is searched for
card data, and the card data flow is reconstructed.

3.3.5.1 Tracing of Inter-VM Communications

vCardTrek makes use of the packet filtering telolablesto intercept all packets sent to
or from VMs. Ebtables is an open source utilitytthigers packets at an Ethernet bridge [45]. As
of the Linux kernel 2.6, the ability to perform dige mode filtering using ebtables is natively
included in the kernel and supported by defaulroligh command line arguments, ebtables is

instructed to pass intercepted packets to vCardlisghg netlink sockets. Tracing of inter-VM
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communications begins with the entry-point processl continues recursively on each

intercepted network connection.

When vCardTrek receives a packet from ebtablesp($tef Figure 3.3), it parses the
packet to extract its source and destination MA@reskses and port numbers (src MAC, src port,
dst MAC, dst port) from the packet header. Theasrd dst MACs are then resolved to the VM
IDs using XenStore. In Xen, XenStore stores infdromabout each VM during its execution
including the VM IDs and the corresponding MAC agkires. vCardTrek initiates a VMI request
to the RTKDSM introspection agent (Step 2 of FigBr8) to extract all open sockets for the
source and destination VMs so it can identify thecpsses bound to the source and destination
sockets (Step 3 of Figure 3.3). vCardTrek invokdsl Yequests in a multi-threaded fashion and
never blocks on these requests allowing the RTKOBMbspection agent to perform the VM
analysis in parallel using separate threads. Thengry of the data structures accessed by

vCardTrek is provided in Table 3.1.

Table 3.1 The data structures accessed by vCardTrek

Operating System Versign Data Structures

_ADDRESS_OBJECT' - socket
Windows XP
_TCPT_OBJECT — TCP connection
Windows 2003
_EPROCESS - process

Windows Vista _TCP_LISTENER - socket
Windows 2008 _TCP_ENDPOINT — TCP connection
Windows 7 _EPROCESS - process
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vCardTrek maintains a table of all the (src MAC¢ gort, dst MAC, dst port)
connections being currently analyzed to avoid sguedundant requests while a VMI request
processing is in progress. Upon completion of tiMl Vequest, the corresponding connection

record is removed from this connection table.

3.3.5.2 Searching the Process Memory

vCardTrek identifies the portions of the VMs’ memapace that belong to the identified
processes, so that it can focus on those portiolys and searches these memory portions for the
test card number used in the test transaction (StepFigure 3.3). vCardTrek starts with the

entry-point process and continues recursively ah éatercepted network connection.

The memory search is conducted using the follovpatgerns. Payment card numbers are
sequences of 13 to 16 digits. The card issuerdstified by a few digits at the start of these
sequences. For instance, Visa card numbers hawngihl of 16 and a prefix value of 4.
MasterCard numbers have a length of 16 and a pvafixe of 51-55. Discover card numbers
have a length of 16 and a prefix value of 6011alyn American Express numbers have a length
of 15 and a prefix value of 34 or 37. Thereforading these card numbers in memory can be
accomplished by searching for ASCII strings thattamathe following regular expression:
((4\d{3})|(5[1-5]\d{2})|(6011))-?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}. However, sequences of 13
to 16 digits with proper prefix values are not afwa&ard numbers. Each potential card number
obtained by the above search procedure has tortiefwerified using the Luhn algorithm [46],
which is a simple checksum formula that is commardgd to validate the integrity of a wide

variety of identification numbers.

When vCardTrek does not find the test card numbeat process’s memory, there are
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three possible explanations. First, the process doe receive the test card data at all. Second,
the process receives an encrypted version of Hteted data, but does not decrypt it. Third, the
process receives the test card data either in td&tior in encrypted form, but vCardTrek scans
the process at an inopportune time, e.g. beforeddoeyption of an encrypted card number or

after the clear text card number is overwritten.

To increase the probability of card detection, WJaek scans each communicating
process multiple times. The first scan examinesyeweemory page in the process. If the card
number is not found in the first scan, vCardTrelscans the memory. Each subsequent scan
only inspects those memory pages that are modgiilece the last scan. We exploit the Xen’s
dirty page tracking capability to identify modifiedages between consecutive scans. This
incremental scanning approach significantly de@sathe card number search overhead in
subsequent scans. If no card number is found aftepecified number of scans of a given

process, vCardTrek assumes the process is nat icatial data flow.

Just because no card number is found in a proaEssrbt mean that the process cannot
be part of a card data flow. For example, the @eaan receive an encrypted card number and
pass it on to the next process without decryptingTherefore, vCardTrek has to scan all
communicating processes regardless of whether ¢ndirsy process contains the test card

number.

3.3.5.3 Card Data Flow Reconstruction

To build the card data flow, the processes whoseang contains the test card data and
the communication connectivity among them are coebiinto a graph. When two processes of

a payment card processing system communicate, énerhiree possible state combinations after
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searching their memory pages, as shown in FigutéAB. (1) The test card data found in the
memory of both processes, (2-3) the test cardfdatad in the memory of either process but not

both, and (4) the test card data is found in thenorg of neither process.

Similarly, when vCardTrek scans a process’s meniorg VM that serves as a card

receiver and as a card sender, there are threélgostate combinations, as shown in Figure

3.4(B).
A VM1l Vivi2
(=YY ag===y)
Process A 1 ProcessB
Process A 2 Process B
Process A 3 ProcessB
Process A 4 ProcessB
B VM

by

Figure 3.4 (A) 4 possible states of two inter-VMhoaunicating processes (grey rectangle - the
card number found in process memory, white receangho card number found in process
memory. The arrow indicates the direction of comioecinitiation, not traffic flow); (B) 4
possible states of processes within a VM at packetiving time and at packet sending (the
same process may serve as the receiving and sgnaiogss).

3.4 Evaluation

In this section, we describe experiments demomsgraistributed card data flow tracking

using vCardTrek. We tested the tool on three payma@m processing systems: two e-commerce
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shopping carts and a point-of-sale system (Tal@ 3.

Table 3.2 Evaluation suites and testing results.

System Name

AbleCommerce

System

osCommerce

System

CreditLine

System

Software Description

Commercial shopping ¢
system used by > 10,00

stores worldwide [47]

aHE-commerce  manageme
Osoftware program [48] use

by >12,000 online shops

nClient-server
ddesigned as point-of-sal

system [49]

application

o)

Language/Platform

ASP.NET/MSSQL

PHP/MySQL

Windowesautable

DomU Client

Internet Explorer browser

Internet Expr browser

Client application

DomuU Server

IS 5.1 web server wi

tHIS 5.1 web server runnin

g Server application

.NET framework v3.5 PHP v5.3.3
DomuU DB MSSQL'05 Express Server MySQL 5.1.52 N/A
Encryption in Transit SSL SSL N/A

Results The test card number washe test card number wasThe test card number wa
found in Client and Serverfound in Client, Server, andfound Client and Serve
DomUs. DB DomuUs. DomUs.
Average Time to
9 7 8

Identify the Flow, sec
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3.4.1 Card Data Flow Tracking Across Multiple VMs Hostedon the Same Physical Host

3.4.1.1 Experimental Setup

Our testbed consisted of a virtualized server tisad Xen version 3.3 as the hypervisor
and Ubuntu 9.04 (Linux kernel 2.6.26) as the kefaelDomO. vCardTrek was installed in the
Dom0. In addition, the virtualized server hosteceéhDomU domains (DomU Client, DomU
Server, DomU DB) running Windows XP. The paymentigarocessing systems were installed
in these three domains as outlined in Table 3.2veme running simultaneously to mimic the

real-world production environments with multiplexgees running on the communicating hosts.

3.4.1.2 Experiments

When conducting our experiment, we selected sevterals for purchase and submitted
credit card information at checkout. Following fieyment card processing requests, vCardTrek
determined the set of machines exchanging packistified the processes involved in these
communications, and inspected the processes’ merfmrythe card number used in the
transaction, while allowing the applications to throughout the analysis. The testing results are

presented in Figure 3.5.

Additionally, we also captured network packets exwed between machines to
determine if an accurate card data flow could bit by only inspecting the contents of the
sniffed packets without applying vCardTrek. As extpd, we could not detect the test card
number in the sniffed packets due to the SSL enicnyonfigured on these communications

(Figure 3.6, Figure 3.7, and Figure 3.8).
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Figure 3.5 Processes involved in card data floved@tine flow at the top, osCommerce flow in
the middle, and AbleCommerce flow at the bottom).

DomU Client DomU Server DomU DB DomU Client DomU Server DomU DB

SSL SSL
Card Card
SSL
Input Input SSL

Figure 3.6 AbleCommerce Card Data Flow (machinesdoto participate in the card data flow
are shown in grey) (left) using vCardTrek; (righsing a packet sniffer.

DomU Client DomU Server DomU DB DomU Client DomU Server DomU DB

SSL SSL
Card ssL Card ssL
Input Input

Figure 3.7 osCommerce Card Data Flow (machinesdfdomparticipate in the card data flow are
shown in grey) (left) using vCardTrek; (right) ugia packet sniffer.
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DomU Client DomU Server DomU Client DomU Server

Card Card
Input Input
Remote IP Remote IP

Figure 3.8 CreditLine Card Data Flow (machines tbam participate in the card data flow are
shown in grey) (left) using vCardTrek; (right) ugia packet sniffer.

In some cases, vCardTrek was also able to idemtiher card related information
including the card expiration date, CVV number, dhd cardholder's name within the same

memory segment as the corresponding card numlsdroan in Figure 3.9.

00CA7910 00 00 00 00 00 00 00 00 ©0 00 00 00 00 00 oo oo ... ... .. .. .....
ooCA7920 00 00 00O OO 0O 0O OO OO OO0 OO OO0 00 00 00 00 OO0 ... ... .........
0ocCA7930 00 00 00 00 00 00 00 00 ©0 00 00 00 00 a0 oo oo ... ... .. ..., ..
0oCA7940 00 00 00 00 00 00 0O OO0 00 00 00 00 00 00 a0 oo ... ... .. .......
ONCA7950 | #4 35 35 36 31 35 36 33 37 32 38 33 33 37 39 38 BESSA1G5A37ZH33798
0ocCA7960 00 00 00 00 30 34 31 32 00 00 00 00 34 35 30 2E ... .0412....450.
0OCA7970 30 30 00 00 00 00 0O OO0 00 00 00 00 00 00 oo oo ao..............
0OCA79830 00 00 00 00 00 00 0O OO0 00 00 00 00 00 0o 0o 00 ... .. .......
00CA79%0 00 00 00 00 00 00 00 00  ©0 00 00 00 00 00 a0 oo ... ... .. .. .....
DOCA79A0 00 43 56 56 32 20 47 4F 4F 44 20 4D 41 54 43 48 . CWVZ GOOD MATCH
0OCA79EO0 00 00 00 00 00 00 00 00 ©0 00 00 00 00 00 oo oo ... .. .......
0OCA79C0O 33 35 34 00 00 00 00 00 00 00 00 00 00 00 0o o0 354.............
0OCA79D0 00 00 00O OO0 00 0O 0O OO OO0 00 00 00 00 00 00 OO0 ... ... .........
0OCA79ED 00 00 00 00 00 00 00 00 ©0 00 00 00 00 00 oo oo ... ... .. .......
DOCA79FO0 00 00 00 44 6F 6E 20 44 6F 6E 65 73 00 00 00 00 ...Jon Jones. ...
0OCA7A00 00 00 00 00 00 00 0O OO 00 00 00 00 00 00 00 00 ... ... .....

Figure 3.9 Detailed information uncovered abouteat tcard, including the card number
(4556156372833798), the card expiration date (Q4i2¢ CVV number (354), and the
cardholder’s name (Jon Jones) were identified withe process memory.

When running the tests, we observed the timingstlaaghortions of memory from which

card data were extracted and classified the caadeddraction instances into four categories:

1) Transient/Stack: The card data were uncovered fxa@tack region while the associated

transaction was being processed.
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2) Persistent/Stack: The card data were uncovered &@tack region after the associated

transaction was completed.

3) Transient/Heap: The card data were uncovered frdraag region while the associated

transaction was being processed.

4) Persistent/Heap: The card data were uncovered &draap region after the associated

transaction was completed.

The successful card data extractions vCardTrek alds to perform against the test
payment card processing systems fell into catedt)y (3) and (4). Category (2) was rare
because memory words allocated on the stack weoenatically freed and possibly overwritten
when they were no longer needed. In contrast, mgmords allocated from the global heap had
a much longer life time, because application prograeeded to explicitly free them when they
were no longer needed, but application progranayatid so. As a result, card data stored on
the heap existed for at least the duration of #s®aated transaction, which typically took up a
few seconds to complete, and in many cases coutinoeexist even after the associated

transaction is completed.

3.4.2 Card Data Flow Tracking Across Multiple VMs Hosted on Multiple Physical Hosts

All communications in the first experiment occurtveen VMs running on top of the
same hypervisor, while in the real world the preessin a payment card processing system are
more likely to reside in multiple VMs spread oveultiple physical hosts. In the following
experiment, we demonstrate the capability of vCeelTto work equally effective in a multi-

physical-host setting.
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3.4.2.1 Experimental Setup

Our testbed consisted of three virtualized sernthet used Xen version 3.3 as the
hypervisor and Ubuntu 9.04 (Linux kernel 2.6.26)the kernel for Dom0. vCardTrek was
installed in the DomO on each physical host. Edgfsigal host was running one DomU domain.
The first virtualized server hosted DomU Cliente thecond virtualized server hosted DomU
Server, and the third virtualized server hosted DdDB all running Windows XP. The payment
card processing systems were installed in these ttlomains as outlined in Table 3.2 and were
running simultaneously to mimic the real-world pmotion environment with multiple services

running on the communicating hosts.

3.4.2.2 Experiments

When conducting our experiment, we selected sevterals for purchase and submitted
credit card information at checkout. Following fieyment card processing requests, vCardTrek
determined the set of machines exchanging packistified the processes involved in these
communications, and inspected the processes’ merfmrythe card number used in the
transaction, while allowing the applications to mimnoughout the analysis. The card data flow
trajectories from the three VMs spread over thiegsigal hosts were then concatenated to build

the card data flow. The testing results are preskeint Figure 3.10.
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Figure 3.10 Card data flow across multiple VMs bdstn multiple physical hosts.

3.5 Limitations

The test environments used to date have been useflémonstrating the vCardTrek
effectiveness but they are rather simplistic andndb display many of the characteristics of
large-scale deployments. Although we tested thierent settings, they all involved just four
processes distributed across three VMs interaatiragmost identical fashion. Unlike the simple
test scenarios described in this work where thebaurof factors influencing the correctness of
the data flow reconstruction is minimal, the tadktlee card flow identification becomes
increasingly more complex in real-world producti@etups. For instance, if two VMs
communicate for reasons not related to paymentfttata such as periodic updates, heartbeats,
replications, backups, other services running enciimmunicating hosts, and so on, then these
connections may be mixed up with those for cardadptocessing. These additional
communications could significantly increase the kimad of the card data flow tracking tool.
Moreover, network delays may also critically afféae ability to track a card number within a

process.
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More complex environments may introduce a race itiomd that may affect the
effectiveness of the system: the target processckwmay be running on a different physical
machine) may have completed its processing (atl of just the part that involves the card data
in its unencrypted form) before vCardTrek on thhygical machine manages to analyze the
process' memory. Additionally, we have also assuthatithe system is in a “quiescent” state
where only one simulated transaction takes pla@etahe. This assumption is quite restricting
from a practical point of view, given that in a guation setting it would be quite difficult to

ensure that there are no other ongoing transactions

Finally, it is possible that a card number can badhked by processes in an encrypted
form and is never decrypted during its processasg,evealed by some of our experiments. This

issue will affect the accuracy of the derived diev diagram vCardTrek produces.

3.6 Summary

This study presented the vCardTrek tool that autmaléy tracked card data flow of
payment card processing applications running inralized environment and identified the
system components involved in card data procesSing.primary use of this tool is to ensure
compliance with Payment Card Industry Data Sec@tgndard (PCI DSS) that has been widely
adopted by commercial and financial institutionsekey features of vCardTrek include: 1) the
ability to discover the card data flow of a distribd payment card processing system; 2)
independence of applications and platforms; andh8) ability to deal with communication
protocols that encrypt messages. We have demaesbtitae vCardTrek effectiveness by testing it
with three different commercial applications, ar@davdTrek successfully identified the correct
card data flow for each tested application.
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4 Cloud-Based Application Whitelisting

4.1 Introduction

A cloud service that has proven commercially sigarit, especially in the private cloud
space, is virtual desktop infrastructure (VDI), ahigives each end user a dedicated virtual
machine (VM) as her desktop computer and managese tiYMs in a centralized manner. By
virtue of the centralized management architectt¥®] makes more efficient use of the
underlying computing resources and enforces higatlsecurity policies on these desktop VMs

consistently and persistently.

As desktop computing is being virtualized, proteictof desktop VMs also evolves from
an agent-based approach, which installs the sgagént inside every VM to be protected, to an
agentless approach, which deploys the securitytamervery physical machine on which the
VMs to be protected run. The agentless approa¢honly greatly simplifies security agent
maintenance and upgrade, but also effectively ddittle agents from being attacked if the VMs

are compromised [4].

A standard way for an attacker to take control gicim user machine is to (1) hijack an
existing application running on the machine, anjl t{en download and execute additional
malicious helper programs to actually perform damgggcts, such as stealing information or
mounting attacks against other machines. Attackemdorm the hijacking step by taking
advantage of vulnerabilities in applications, ebgiffer or integer overflow. Many solutions [50-
52] have been proposed to deter such vulneralgkploiting hijack attacks, but see limited

commercial adoption. In contrast, mainstream aintisv(AV) products are designed to stop the
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“download and execute” step by creating a blackbétknown malicious programs and
preventing an unknown program module from beingléohinto an active address space if it
matches any entry in the blacklist. This blacktigtiapproach is losing steam because new
malware samples are programmatically generated &xisting ones and as a result it is difficult
if not impossible for AV companies to keep theiadklists up to date. Blacklisting is effective
when there are fewer malicious programs than bepiggrams. Today, because the number of
malicious programs is much larger than the numbeenign programs, and the gap is widening,
whitelisting, which prevents an unknown program moidedfrom being loaded into an active
address space if it is not in a whitelist of knogood programs, seems to be a more promising
approach to keeping malicious helper programslowddition to defending against malware, an
application whitelisting system could also be useg@revent illegal, pirate or personal software

from running on corporate VMs assigned to employees

This study describes the design and implementatbra cloud-based application
whitelisting system called CLAW, which checks arextable file or a library module against a
whitelist before it is loaded into the address spaifca user process, and aborts the program load
operation if the executable file or library modidenot in the whitelist. Moreover, CLAW runs
outside the VM on which the user process runs, mertbrms this check without installing any
agent inside the VM. We have successfully implemeénd CLAW prototype on the Xen
hypervisor and targeted it at Windows and Linux VMke run-time performance overhead of

out-of-VM application whitelisting is shown to bader 10% in this prototype.

4.2 Background

The design goal of CLAW is to detect when an exaalet file or library module is to be
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loaded into a user process in a VM and check iettexutable file or library module is in a white
list. To motivate the design of CLAW, we start waldescription of how the Windows OS and
Linux OS load code into a user process’s addreasespVe also describe Windows and Linux
data structures that are relevant to the designraptementation of CLAW. It is mandatory to
reconstruct these data structures in order to &xtatad analyze code regions in the process

address space without having access to the ARteitise VM.

4.2.1 Code Regions

Code regions in the address space of running peseare classified into the following
three categories, summarized in Table 4.1, accgrtbnthe type of sources used to populate

them:

Table 4.1 Code source types in memory.

Source Code Introduced Using
1) a benign on-disk binary
Binary File
2) a malicious on-disk binary
1) native system calls
Private
2) system call hooking techniques to prevent binagysteation
Allocation
3) remote thread injection
1) hot-patching of the existing code
Other 2) function-pointer hooking
3) modifying the return address on the stack

We discuss the three code source types for botlddia and Linux OS in more details

below.
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4.2.1.1 Code in File-Backed Address Space Regions

4.2.1.1.1 Windows OS
The application is typically made up of a base atadde that loads library components

containing additional functionality. The executahled the library components are represented
by on-disk files that are mapped into a processtr@ss space when the application is launched
or during run-time. File-backed address space nsgomntain data from on-disk files. Windows
OS differentiates between files that are mappedass, and files that are mapped as executable
images. The code that loads a file into memorytbapecify whether the file is loaded as a data
file or an image file. Data files have arbitraryntent and structure and are simply mapped one to
one to their address space regions. Image fileth@wther hand, must be stored in the portable
executable (PE) format and may contain data as agekxecutable code. A PE file contains
several sections each with its own read/write pgsian characteristics. Data sections may be
read-only or writable. Code sections in generalex@ecutable and read-only. Image files can be
mapped as data files. However, if a data file isstored in the PE format, the system loader will
refuse to load it as an image. When a new prosestsiited or a library component is loaded, the
NtMapViewOfSectiomative system call is used to map a code sectit;ma process’s address
space in memory. The description of thtMapViewOfSectiosystem call and its parameters is

given in Table 4.2.

4.2.1.1.2 Linux OS
The binary loader maps the executable file alonth e loadable segments of any

required libraries into memory using themapsystem call. Thenmapsystem call exposes an
interface that allows for associating a memory eawgh a file descriptor. The description of the

mmapsystem call and its parameters is given in Tal8e 4
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Table 4.2 Windows system calls.

System Call Parameters and their description

(IN SectionHandle, IN ProcessHandle, IN OUT Baseidd, IN ZeroBits,
CommitSize, IN OUT SectionOffset, IN OUT PULONGewSize, IN
InheritDeposition, IN AllocationType, IN Protect)

SectionHandle — a handle to Section object, suidssreated by a call to
NtCreateSection or NtOpenSection

NtMapViewOfSection ProcessHandle — a handle to the process thatéheshould be mapped into

BaseAddress — a pointer to the variable receivirtgal address of mapped
memory

Protect — specifies the type of protection forrigion, such as
PAGE_EXECUTE_READWRITE

(IN ProcessHandle, IN BaseAddress, IN NumberOfByo&sotect, IN
NewAccessProtection, OUT OldAccessProtection)

ProcessHandle — a handle to the process that thection should be set fo
NtProtectVirtualMemory | BaseAddress — a pointer to base address to protect
NumberOfBytesToProtect — a pointer to size of regmprotect

NewAccessProtection — specifies the type of praiador the region, such
as PAGE_EXECUTE_READWRITE

(IN ProcessHandle, IN OUT BaseAddress, IN ZeroBNsQUT
RegionSize, IN AllocationType, IN Protect)

ProcessHandle — a handle to the process to allowat®ory in

BaseAddress — a pointer to a variable that wilkkiez the base address of
NtAllocateVirtualMemory| the allocated region of pages.

RegionSize — a pointer to a variable that will reeg¢he actual size of the
allocated region of pages

Protect - specifies the type of protection for thgion, such as
PAGE_EXECUTE_READWRITEs
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Table 4.3 Linux system calls.

System Call Parameters and their description

mmap (void *start, size_t length, int prot, intgha int fd , off_t offset)

mmap function asks the system to nbapgthbytes starting abffsetfrom the file
specified by the file descriptdd into memory, preferably at addrestart. If start
is 0, mmap returns the actual place where the bi§enappedprot describes thé
desired memory protection and can be a bitwisefohe values PROT_NONE |/
PROT_READ / PROT_WRITE / PROT_EXEC

1%

mprotect (const void *addr , size_t len, int prot)

mprotect changes protection for the calling prosessemory page(s) containing
any part of the address range in the interadt[, addr+len-1]. prot describes the
desired memory protection and can be a bitwisefohe values PROT_NONE |/
PROT_READ / PROT_WRITE / PROT_EXEC

4.2.1.2 Code in Private Address Space Regions

4.2.1.2.1 Windows OS
Private address space regions are created throggtmic memory allocation calls and

contain volatile data, which only exist when thestivay process is alive. Two types of code exist
in private address space regions: dynamically geedrcode and injected code. Dynamically
generated code is created by the process itsalinaime while injected code is forcibly loaded

into a process’ address space by another processnftes of applications that may generate

dynamic code include just-in-time (JIT) compilargerpreters, and executable unpackers.

To create code in private address space regionsgddMis applications first allocate new
address space regions by calling theAllocateVirtualMemorysystem call with proper
read/write/execute permission setting, and latkovioby writing code into the allocated regions.
Setting these regions to be writable is necessecguse the code may modify itself as it is being
executed. In addition, applications could useNktRrotectVirtualMemoryystem call to modify
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the permissions of private address space regidasda. The usage of these two system calls is

given in Table 4.2.

While dynamic code generation sees a great deldgitimate usage, code injection is
almost exclusively used by malicious programs. mown code injection attack is to inject a
user space rootkit code into the address space syki@m daemon process. There are three

common code injection attacks:

1) Hooking the Native LoadeAssume a user space shell code is placed on anvicti
host via an initial exploitation. The shell coderthhooks the file loading system call
to trick the dynamic loader into loading a maligohbinary in memory rather than
from an intended file on disk [53]. Because theionals binary is registered with the
victim process, a query for modules loaded into Wnim process allows for

detection of the injected code.

2) Reflective Library InjectionThe code loaded through a remote exploitation ¢osita
a minimal PE loader that can load additional codbaut relying on the native loader
[54]. Because the native loader is not involvede tloaded code is largely
undetectable to the operating system and the lgpptiocess. The only indicator that
the loaded code exists is a chunk of private addspsice region is allocated with

read/write/execute permissions.

3) Remote Thread Creatioihe Windows APICreateRemoteThreaallows a process
to start a thread in another process. Common usesaaf this system call include
injecting a thread into a remote process being gigbd to issue a breakpoint or

injecting a thread into a process to query heaptloer process information. Using
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this API, a malicious process starts a new threaal victim process by passing it the

address of a piece of code already injected irgovittim process.

4.2.1.2.2 Linux OS
To create code in private address space regiomsyxLapplications first allocate new

address space regions by calling theapsystem call with read, write, and execute memory
protection flags and the anonymous flag not tied file descriptor, and later follow by writing
code into the allocated regions. In addition, aggtions could use theprotectsystem call to
modify the permissions of private address spacmmedater on. The usage of these two system

calls is given in Table 4.3.

4.2.1.3 Other

Code may also be introduced via run-time overfldtacks that alter the execution path
through hot-patching of existing code or contratstve data structures, e.g., changing a return
address or a function pointer by overflowing a bufCLAW does not provide protection against

attacks using these types of code.

4.2.2 Relevant Kernel Data Structures

4.2.2.1 Windows OS

EPROCESS The kernel creates an EPROCESS data structureafdr running process
to hold a variety of information about the procdSBROCESS structures for all active processes
are linked in a doubly linked list (Figure 4.1).eTRsActiveProcessHead kernel symbol points to
the doubly-linked list of EPROCESS structures. Pisé\ctiveProcessHead pointer includes two

pointers, a forward (Flink) pointer and a backwéstink) pointer. The Flink pointer points to
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the active process links of the first EPROCESS. Blek pointer points to the active process

links of the last EPROCESS structure in the agtnoeess list.
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Figure 4.1 Windows code and memory managementstiatetures.

PEB: The process environment block (PEB) componerat process’s EPROCESS data
structure contains a pointer to the virtual addresshe memory-mapped PE image of the
program loaded into the process, and a pointer hi \tirtual address location of the
PEB_LDR_DATA object that maintains information aball DLLs loaded into the process
(Figure 4.2) [55]. PEB is actually stored in a @e&'s user address space rather than in the
kernel because it needs to be modified in userespdEB_LDR_DATA contains pointers to

doubly-linked lists of loaded modules that are edrin load order (InLoadOrderLinks), in

83



memory order (InMemoryOrderLinks), and in initigton order (IninitializationOrderLinks).
PEB_LDR_DATA is modified as modules are loaded atoaded. Each loaded module is
represented as a LDR_DATA _TABLE _ENTRY structure,ichhis an element of a doubly-

linked list of loaded modules, and contains detilsut the module name, base address and size.

PE

_PEB EXE

ImageBaseAddress PEE LDR_DATA

Ldr
_LDR_DATA_TABLE_ENTRY _LDR_DATA_TABLE ENTRY _LDR DATA_TABLE_ENTRY

[ Flink [ Fiink | Flink [ Fiink [&=
InLoadOrderModuleList| InLoadOrderModuleList InLoadOrderModuleList InLoadOrderModuleList
— Ellinkl Blink Elinkl Blink

DliBase DliBase DliBase
EntryPoint EntryPoint EntryPoint
SizeOflmage SizeOflmage SizeOflmage
FullDlIName FullDlIName FullDlIName

Figure 4.2 The PEB data structure.

VAD: For each block of consecutive memory addressesstiet the same memory-
related settings, Windows maintains a virtual asslrelescriptor (VAD) entry storing the
following information: start and end addresses, tgmtion settings (read-only, writable,
executable), data source type (file-backed memonyrivate address space), information about
the associated file (if file-backed memory). Alltees for a process are aggregated in a VAD

tree (VadRoot) (Figure 4.1).
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CONTROL_AREA: A VAD object points to a CONTROL_AREA object thstores

detailed information about different subsectiona fife.

SUBSECTION: For each mapped file, there are one or more SWUB3EN objects
which store important mapping data. For data fitkere is normally only one subsection, since
the complete address range has the same chartctehsit for image files, multiple subsections
may exist: one for each PE section plus one for Ree header. This is due to different
characteristics of PE sections, e.g. some may bd-oaly while others are writable or

executable. Each subsection contains a pointéretaéxt subsection.

FILE : FILE object is used by Windows to track a singpen instance of a file. The file
object contains a pointer to the Unicode name effile. Another most important pointer is the

SECTION_OBJECT_POINTERS field described next.

SECTION_OBJECT_POINTERS: Due to the different mapping and usage
characteristics of data files and image files,aitéht control areas are used. If, for exampldgea fi
is first mapped as a data file, a correspondin@ dattion control area is created. If then the
same file is mapped as an image, an image seabioinot area is created as well. Both objects
are of the same type except that for data filesnadly only one subsection is created, while for
image files the number of subsections equals tmebeu of PE sections in the related file plus
one for the PE header. In fact, Windows internatlgps each executable, which is abmube
loaded first as a data file and then in a secospl &6 an image. This results in the creation of two
different control areas, from which either is uskghending on the type of the created view. To
maintain these different control areas per filethia file object Windows stores one unique array

for each opened file that contains pointers tordtated data and image control areas. Either of
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these two pointers may be zero, but not both ofmtheThis array is called
SECTION_OBJECT _POINTERS and is pointed to by eaclhe fobject. The
SECTION_OBJECT_POINTERS structure contains threlatps as seen in Figure 4.2. The
first is called the DataSectionObject, the nextcadled the SharedCacheMap, and the final
pointer is called the ImageSectionObject. DataBa€ibject and ImageSectionObject are related
and are actually pointers to the data and imagetra@orareas correspondingly. The
SharedCacheMap is a pointer to the SHARED CACHE_M#&RBcture, which is used by the

operating system to maintain the cache.

4.2.2.2 Linux OS

TASK_STRUCT: The kernel creates a task_struct for every psoasning on a Linux
system. The task_struct structure holds informagibbout the current state of the process (Figure
4.3). task_struct structures for all active proessare linked in a doubly linked circular list. The
global variable init_task is of type task_structlaapresents the head to the doubly-linked list of
task_struct structures. The init_task includes #@dvand backward pointers. The forward
pointer points to the active process links of tingt task_struct. The backward pointer points to

the active process links of the last task_strucicsire in the active process list.

VM_AREA_STRUCT: The vm_area_struct descriptor (similar to VAD \Windows
OS) represents a memory region owned by the proaedscontains the start and the end
addresses of the region. All vm_area_struct strastare linked together in an address-ordered
singly linked list. Each vm_area_struct points e associated mm_struct structure (similar to
VadRoot in Windows OS) that describes a procesdtess$ space. There is only one mm_struct

per process shared by all user-space threads.mhéle field of each memory region descriptor
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contains the address of a file object for the mdgdpe; if that field is null, the memory region is

not associated with a file.

3 INIT_TASK > TASK_STRUCT > TASK_STRUCT
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Figure 4.3 Linux code and memory management daiatates.

FILE : The file object contains fields that allow therk to identify both the process
that owns the memory mapping and the file beingpedp The file structure includes a pointer

to the dentry data structure.

DENTRY : Dentry structures are created by the virtualdifstem to represent a directory
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entry (directory or file). The dentry structure ta@ns the name of the directory entry and a

pointer to the inode structure.

INODE: The mapped file is identified by the inode ddtacure, which is an in-memory
representation of a disk inode. The i_mapping fiefld each inode object points to the

address_space object of the file.

ADDRESS_SPACE The address_space structure represents theluiniraory image
of the file and holds the search tree of pagesaféite. The address_space structure allows for
ordered enumeration of all physical pages pertgitinan inode. In turn, the i_mmap field of
each address_space object point to a vm_area_sutactstructure. While a single file may be
represented by multiple vm_area_struct structuoesesponding to the file portions mapped by
multiple processes into their address space, ikevaly one address_space structure for the file

no matter how many processes have mapped a partfdal

4.2.2.3 System Call Table Structures

The function pointers (addresses) of individualtesys calls exported by the kernel are
stored in the system call table (Figure 4.4). Imédws OS, the system call table is represented
by the system service dispatch table (SSDT) dat&tsire. In Linux OS, the system call table is
represented by the sys call_table data structuteeri\an application makes a system call, it
places the associated system call number in the E)ster, which is used as an index into the
system call table. Each system call pointer inttide is four byte long. Thus, to get a system
call offset into the system call table, the systwth number in the EAX register is multiplied by
4. The address stored at the calculated offsettpdinthe actual system call function in the

kernel address space in memory.
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Figure 4.4 System call dispatching.

4.2.3 System Call Interception in Xen Hypervisor

User applications invoke system call requests theeiexecuting software interrupts (INT
O0x2E in Windows OS and INT 0x80 in Linux OS) or the fast system call entry mechanism
using the Intel SYSENTER/SYSEXIT or AMD SYSCALL/SRET instruction pairs. The fast
system call entry mechanism was introduced duestbpmance issues on Pentium processors
with the software interrupt method. All Windows siens starting with XP and Linux kernels

starting with 2.6 use the fast system call entryhoe.

On a Xen para-virtualized platform, capturing sgstealls and their arguments is
straightforward. Each trap from a DomU transferstaa to the hypervisor, which forwards the
trap to the DomO domain. However, the situatiom@re complex on an HVM platform. On

such a platform, traps are directly forwarded ® kiernel of the HVM by the hardware without
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the involvement of the hypervisor. Fortunatelyisistill possible to capture system calls on the
HVM platform, although differently on AMD and Intélardware. When an application needs to
execute a system call, it normally specifies tlipested system call number in the EAX register
and a pointer to the user stack in the EDX regiatetl then issues the SYSENTER instruction.
The SYSENTER instruction passes control to the eskispecified in the model specific register
(MSR) containing the entry point of the system &alhdler. Execution of this instruction results
in transition into kernel mode. Once in kernel motihee system call number is read from the
EAX register and is looked up in the system cdilgaOn the Intel platform, interception of
system calls can be achieved by guaranteeing higatiSR points to an unmapped memory
address, causing a trap to the hypervisor by a fegée Conversely, AMD supports control
flags that can be set to trigger transfers to tyy@ehvisor on system calls. The hypervisor then
forwards the relevant information, such as the emlaf the registers containing the system call
number and parameters, to the DomO domain for systdl processing. While these methods of
interception are certainly effective, they introdugerformance overhead because they require

that every system call trigger an exit to the hyysar.

4.3 Related Work

4.3.1 Code Verification Systems

Several studies have explored the problem of caddication in memory of running
processes using the out-of-VM approach (Table 4l#gse can be roughly divided into (1)
periodic code verification methods that periodigalheck the static code portions of the running
program to detect if the program has been tampsitbg (2) continuous run-time code integrity

verification methods to detect code tampering gbtsm(3) on-demand code verification
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methods to ensure only approved code is allowdnettoaded by a program into the process’
address space at load-time. All these methods iwpdalculating hashes of sections of memory,
such as kernel text or user program memory durikgavn good state that are then used as a

comparison baseline at the time of code verificatio

Table 4.4 Code verification systems.

System | User Space (U) / Kernel Spa¢ce Code Verification Type Virtualization Type
Name (K) Monitoring
CLAW u On-demand Full virtualization
Livewire U Periodic Software-based (Type 2)
Copilot K Periodic Coprocessor-based
SBCF K Periodic Full virtualization
NICKLE K Continuous run-time Emulator, Software-based
(Tvpe 2
Secvisor K Continuous run-time Custom-made hypervis
Manitou U/K Continuous run-time Full virtualization
Patagonix U/K Continuous run-time Full virtualizadi
HIMA U On-demand Para-virtualization
X-Spy K On-demand Para-virtualization

4.3.1.1 Periodic Code Verification

The Livewire intrusion detection system used argrity checker to detect if a running
user-level program had been tampered with by peadlg computing a hash of the immutable

sections (.text) of a running program, and comggitito a known good hash [4].

The Copilot integrity monitor implemented a detentstrategy based on MD5 hashes of

the host kernel’s text, the text of any loaded kémodules, and the contents of some of the host
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kernel's critical data structures [16]. Copilot @dhted “known good” hashes for these items
when they were believed to be in a correct, nonpromised state. The Copilot monitor then
periodically recalculated these hashes throughost kernel run-time and watched for results
that differed from the known good values to detades where a rootkit had modified some of

the kernel’s existing executable instructions.

Similarly to the Copilot approach, state-based mritow integrity (SBCFI) monitor
kept a copy of the kernel code’s hash, and at eantrol flow integrity check, it made sure the

kernel’s code had not been modified by compariragéinst the “known good” hashes [56].

The periodic nature of this group of methods intiwes the possibility of evasion. An
attacker can modify the code and revert back toahgnal code between two consecutive

checks without the security monitor detecting tbdectampering.

4.3.1.2 Continuous Run-Time Code Verification

A hypervisor-based NICKLE was developed to transpty prevent unauthorized kernel
code execution [57]. NICKLE computed a priori affd cryptographic hash of the kernel’'s code
and on each VM startup performed the authenticaifahe loaded kernel code by comparing it
with the known correct value. The authenticatedh&kecode was copied into a shadow physical
memory of the target VM that was not accessiblenfwithin the VM. If the hash values did not
match, the kernel module’s code was not copied itheoshadow memory. At run-time each
kernel instruction fetch was verified by comparitige shadow memory maintained by the
hypervisor with the actual physical memory at thatation. Any differences indicated the
presence of a rootkit, and thus the code was ptegidrom executing on the guest system. Linux

kernel modules (LKMs) also required authenticati@fiore their insertion since NICKLE could
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not distinguish between a valid and a maliciousxgemodule. A disadvantage of this kind of
authentication scheme was that it needed to be atigrperformed every time a module was
inserted into the kernel, and in-depth analysis nasessary to ensure that the LKM did not

invalidate the kernel.

A small hypervisor system SecVisor was proposeehforce the write+execute property
of memory pages of the VM with the goal of prevegtunauthorized code from running with
kernel-level privileges [58]. The write+execute peaty stated that the pages of kernel memory
could be either writable or executable, but nex@hbSecVisor used a white-list based approval
policy containing “known good” SHA-1 hashes of l#irnel runtime code to allow loading of
kernel code at runtime. All code that was attemptetle loaded into kernel memory from the
time the kernel was started was checked againstiiitelist approval policy. SecVisor required
modifications of the kernel code and thus did nopport closed-source OSes. Moreover,
SecVisor was not able to function if the OS kelmad mixed pages that contained both code and

data.

Litty and Lie proposed a hypervisor-based systeatled Manitou, for validating the
executing code of both user applications and thadtavithin a guest VM [7]. The hypervisor
maintained a list of cryptographic hashes of thenemory representations of application and
kernel-level code pages that might be run withim ¥M. Manitou authenticated executing code
by taking a cryptographic hash of the content page right before executing code contained on

that page. Only pages that matched those in tseettdist were allowed to execute.

A hypervisor-based Patagonix system based on Mamitts designed to detect rootkits

that avoided tampering with files on disk by injagtmalicious code into binaries as they ran.
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Patagonix identified covertly executing binariesigpecting the code as it executed in memory
and verifying the integrity of the executing biremi[10]. The executing code was identified
using a trusted external database that containgotagraphic hashes of binaries. Patagonix
compared the executing binaries reported by theM@$Sthe good known binaries it identified

and reported any discrepancies to the administréatagonix did not handle the on-demand

loading of running programs to measure them irr edirety

As the continuous run-time code verification methaeimploy the VM executable
memory protection, this approach may lead to spgrjgage faults impacting the performance of

the system.

4.3.1.3 On-Demand Code Verification

The goal of CLAW is to track on-demand code loadéwgnts and to perform verification
of the loaded code prior to its first executionisTabjective is related to the group of methods

that focus on providing code integrity measuremeémgtactively monitoring system events.

A hypervisor-based HIMA was developed to measueeititegrity of VMs running on
top of the hypervisor by measuring user-level paogg to be loaded into the guest VM and
validating the integrity of the measured prograhreughout the program execution [59]. HIMA
monitored all the system calls that changed the &/ptbgram memory layout, including loading
and removing kernel modules, creation and ternonatf user processes, and loading and
unloading of libraries. On intercepting the apprater event, HIMA computed the SHAL hash of
the program code and initial data segment as tbelogded into the memory. HIMA completed
all its measurements before the control jumpedh® lbaded program to guarantee that no

instruction ran inside the system before being nmness After measuring the program, HIMA
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added a new entry to the measurement list, and-ehsonsistency of the integrity measurement
of user programs by capturing any attempt to modifgasured programs throughout their

execution. HIMA measured para-virtualized Linuxtsyss only.

A hypervisor-based X-Spy system was implementedamsintrusion detection and
protection framework [60]. One of the X-Spy’s fuiocts was to monitor system calls within a
Linux OS for the purpose of protecting the integaf the kernel. System calls were traced using
the INT 0x80 instruction interception. X-Spy usedavhitelisting technique by which all kernel
modules allowed to be loaded were explicitly spedifalong with their respective SHA-1 hash
values. If the module or binary to be loaded attiome was not specified in the whitelist or if it
had an incorrect hash value, X-Spy prevented ihfbeing loaded by preventing the system call
from reaching the VM kernel space. The memory sicantechnique was used to computer the
hash of the binary that involved loading the cortelgéext and .data sections of a binary into
memory by setting the program counter to the nexfepand asking the VM kernel to load the
page, and then hashing it while handling the pagét.flf the hash could not be verified, the
hypervisor invalidated all of the memory and reaafrthe control back to the guest domain.

Because of the invalid .text section to which thé pointed, the process crashed.

The scope of the above tools was limited to parawiized VMs only whereas the

CLAW was specifically designed for fully-virtualide/Ms.

4.3.2 System Call Interception Systems

A number of systems have been developed for deteaf malicious processes by
analyzing system calls (Table 4.5). We cover tHated work including hardware emulators,

para-virtualized systems, and fully virtualizedtsyss.
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Table 4.5 Comparison of system call monitoring eys.

System Name

Virtualization Type

System Call Intptmm Mechanism

CLAW full virtualization System call table + MSRvialidation
Ether full virtualization MSR invalidation
VMScope emulator Instruction tracking
TTAnalyze emulator Instruction tracking
XView emulator Instruction tracking

Onoue et al. [61]

para-virtualization

Guest OS hiraode patching & Native
system call trapping chain

Xenini para-virtualization Native system call trappchain
HIMA para-virtualization Native system call trapgichain
X-Spy para-virtualization Native system call trampichain

4.3.2.1 Hardware Emulators

Out-of-VM system call tracing has been employecinulator-based environments for
malware analysis to identify malware startup medras, command and control channels, and
access to sensitive information. Examples of systems include VMScope [62], TTAnalyze

[63], and XView [64], which are based on dynamikdry translation technique of QEMU [41].

TTAnalyze automated the process of analyzing a @@vprocess where the malware
under analysis was executed inside an emulatorament, and relevant Windows API and
native system calls were tracked and logged. Thsruation pointer value of the virtual
processor was compared to the start addresseksafesthting system functions to determine the
exact system function invoked by the malware prec&3Analyze monitored the CR3 register

value to determine whether or not the system oathked by current instruction belonged to the

malware process.
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An emulator based system VMScope allowed viewinthefsystem call events of a VM-
based honeypot by intercepting and interpreting ghemeters and return values of various

internal system calls invoked inside the VM.

XView used a dynamic cross-view based approactetectl processes hidden by rootkits.
In order to identify a rootkit process, XView dyniaaily maintained a list of active processes
built outside the monitored VM and comparing ittwihe list reported by the guest system. The
outside view containing active processes was cocistl by intercepting low-level system calls
used to create and terminate processes and iniagoe/stem call arguments and the return

values of these system calls.

4.3.2.2 Para-Virtualized Systems

The code verification systems, HIMA and X-Spy, ddsed earlier also made use of

system call monitoring to detect code loading event

Onoue et al. [61] proposed a security system tbatraolled the system call execution of
processes using the para-virtualization versioReaf to intercept events related to system calls.
The hypervisor intercepted system calls invoked gogcesses in the monitored VM and
restricted their execution based on the securificpalefined by a user. When a system call
invoked by a process matched with an allow-ruletha security policy, it was allowed to

execute. Otherwise, a system call violating theisgcpolicy was forced to fail.

Xenini was developed as a system for detectingisiins in the para-virtualized XEN
hypervisor by intercepting and analyzing systenhtcates [65]. Xenini disabled the fast system

calls facility and used the 0x80 software interrapintercept system calls.
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4.3.2.3 Fully Virtualized Systems

The Ether analyzer was developed for malware aisatys fully virtualized hardware
platforms utilizing hardware virtualization extemss [66]. Ether was able to trace all system call
executed by the target OS by exploiting the x8& fastem call entry mechanism. The
performance evaluation of the system showed tlaaing added extra latency to system calls,
however, the majority of this latency was due ttifrtations of the Ether user space component

and a full in-hypervisor implementation would hdns much lower latencies.

4.4 System Architecture

4.4.1 Overview

CLAW assumes that the administrator has determimeskt of approved permitted
executable files and library modules and then pexpa whitelist that consists of the SHA-1
cryptographic hash values of these executablediheklibrary modules (Step 1 of Figure 4.5). At
run time, CLAW intercepts every program load ogeratn the VMs that it protects, applies the
SHA-1 function to the executable file or library dube being loaded, and uses the resulting
SHA-1 value to look up the whitelist. Creation amdintenance of a whitelist according to its
list of allowed programs is actually non-trivialspecially in the face of constant software
patches and upgrades, and growing sophisticatiosotifvare installation. But this issue is

outside the scope of this study.

The design of CLAW should attain the following faieoalities outside the monitored

VMs:

1) Detecting new loaded programs in monitored VMs teefthey are executed in
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monitored VMSs,

2) Checking the hash values of loaded programs ag&iesthitelist, and

3) Aborting the processes holding loaded programbefwhitelisting checks do not

go through.

The Issue 1 could be addressed by interceptingemsysialls associated with specific
program loading operations. However, because th#orpeance overhead of system call
interception may be substantial, monitoring keroelprocessor data structures as a result of

program loading operations may be more efficient.

MONITORING VM MONITORED VM
VT T T T T o T T T T T [
I Administrator Front-end component,
I |
I ,l, 1 |
| 4 Code |
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1 ——p] [ntrospection |3y |
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Figure 4.5 The CLAW architecture.
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For Issue 2, CLAW computes a loaded program’s hesdbe by applying the SHA-1
hash function to the in-memory PE/ELF image rathan the on-disk PE/ELF file of the loaded
program. It would have been very difficult to accése on-disk files of loaded programs without

installing any agent in the monitored VMs.

For Issue 3, to simplify the interaction betweenAWV. and the monitored VMs, CLAW
aborts a process holding an illegitimate loadedyf@m by zeroing out the address space region
holding the loaded program. This approach is singpld effective, and does not require any

cooperation from monitored VMs.

As shown in Figure 4.5, CLAW is composed of a frentl component running in a
monitoring VM and a back-end component running dasthe hypervisor. The back-end
component of CLAW suspends a monitored VM whenca@tg a new loaded program in a user
process running in the VM. After suspending a VNg back-end component notifies the front-
end component to extract the detected loaded prograd verify if the associated hash value is
in the whitelist. CLAW’s front-end component is ablo access the address space of each
monitored VM and make sense of the kernel datactstres of monitored VMs using the real-
time kernel data structure monitoring system. Erchitecture enables active monitoring of the

protected VMs without requiring installation of aagents inside them.

The current CLAW implementation is built on the dhtvT hardware and the Xen
hypervisor and is designed to support guest VMsiing both Linux Ubuntu Jaunty and

Windows XP.
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4.4.2 Design and Implementation

4.4.2.1 Verification of Code in File-Backed Space

4.4.2.1.1 Creation of a New Process

CLAW continuously watches for newly created proesss each monitored VM so that
it can verify the executable files being loadedobefthey are executed. To intercept process
creation operations in Windows OS, CLAW keeps tratkhe Flink and Blink pointers in the
structure pointed to by PsActiveProcessHead. If GL8bserves a write to either Blink or Flink
on the page containing this structure (Step 2aigfrEé 4.5), it traverse the processes lists to
determine if a new EPROCESS structure has beenedreat if an existing process has been
terminated. The process creation steps in Windo@sa3 shown in Figure 4.6, up to the image
mapping into the process’ address space have girfea@en done. As soon as the back-end
component of CLAW detects a new process in a VMus#pends the VM, and notifies CLAW’s
front-end component to take over. The front-end ponent uses the process’s EPROCESS data
structure to track down the new process’s PEB dhitecture, and eventually the address space

region mapping of the PE file used in the newlyated process (Step 3 of Figure 4.5).

. Image Mapped EPROCESS
Inc1)age F:e OEPROC(::ESSC' 3| Into Process’ Inserted Into
pene ject Create Address Space Processes List
2
Initial Thread Initial Thread Required Program
Created Execution > Libraries Execution
Begins Loaded Begins

Figure 4.6 Windows OS process creation flow.
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To intercept process creation operations in Ling OLAW keeps track of the forward
and backward pointers in the init_task structur€LAW observes a write to the forward or the
backward pointer on the page containing the insk tstructure, it traverse the processes list to
determine if a new task_struct structure has beeated or if an existing process has been
terminated. As soon as the back-end component éf\Cldetects a new process in a VM, it
suspends the VM, and notifies CLAW'’s front-end camgnt to take over. The front-end
component uses the process’s task_struct to trask dhe start and end addresses of the .text

section of the ELF file used in the newly createacpss.

The front-end component verifies the legitimacyta binary file by applying the SHA-1
hash function to the file’s .text immutable codets®m and comparing the resulting hash value
against all cryptographic hash values in the wisit€5tep 4 of Figure 4.5). If there is a match,
CLAW allows the new process to run as usual byrnéig control to the monitored VM. If no
match is found, the front-end component of CLAWazgeout the address space region holding

the executable file and effectively prevents thecpss from continuing.

4.4.2.1.2 Loading of a Library Into an Existing Process
To detect new library modules loaded into an exgsforocess in a Windows VM, the

back-end component of CLAW monitors writes to tlaggs that contain the backward (Blink)
pointer to the InLoadOrderLinks module list of aer processes in that VM. When CLAW'’s
front-end component detects a write to the BlintefS2b of Figure 4.5) field on any of these
pages, CLAW'’s back-end component analyzes theLR& DATA_TABLE_ENTRY member

appended to the corresponding list to verify thevipdoaded module (Step 3 of Figure 4.5).
More concretely, using the DlIBase field, CLAW ltes the in-memory PE image of the library

module, computes a SHA-1 hash value for the PE é'sagext section, and checks the resulting

102



hash value against the whitelist (Step 4 of Figugg. If no match is found, CLAW’s front-end
component zeros out the address space regionddibifary module and returns control to the
VM. This design works for program loading operasidor library modules that are either on-
disk or in-memory, and therefore covers the typeaafe injection attacks that eventually use the

native loader.

To detect new library modules loaded into an exgsprocess in a Linux VM, the back-
end component of CLAW intercepts themapsystem call. This call is used (1) in creating and
associating a memory range with contents of anjoc@mponent and (2) for creating memory
ranges not tired to file descriptors such as thossd in code injection attacks. We apply the
system call interception mechanism described inrnet section to verify both file-backed

address space mappings and private address sgameste

4.4.2.2 Verification of Code in Private Space

In Windows OS, code in private address space regiamn created by a
NtAllocateVirtualMemorysystem call possibly followed by MtProtectVirtualMemorysystem
call. In Linux OS, code in private space region<risated by anmapsystem call possibly
followed by amprotect system call. CLAW’s back-end component supportsystem call
interception mechanism that captures these twoesystalls, and notifies the front-end
component to analyze the captured system callggetaaddress space. If the write and execute
permissions of the target address space regiotuared on, CLAW'’s front-end component sets
the target address space region as non-execusablleat when the target address space region is
first executed later on, a page fault occurs. Adttimstant, CLAW'’s front-end component

computes a SHA-1 hash value of the target addssegegion and looks up the whitelist with
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the resulting hash value. The above design worlectafely against all code injection attacks
described in the Background section. Unfortunatiélg/so tends to fail dynamically generated
code, i.e., those produced by JIT compilers, imetgps and executable unpackers, because it is
unlikely for the whitelist to include dynamicallyegerated code. To address this false positive
problem, CLAW offers the option to disable whitaéhg checks for processes that run JIT

compilers, interpreters and executable unpackers.

CLAW'’s system call interception mechanism worksalows:

1) System Call Table Extraction: In Windows OS, evexgcuting thread stores a pointer to
the SSDT at a known offset inside its ETHREAD dstaucture. CLAW locates the
SSDT data structure in memory through the ETHREADhe executing threads. In
Linux OS kernel versions 2.6 and above, the Systep file holds the kernel address for
the system_call_table array. The CLAW system usissfile to locate the sys_call_table

data structure in memory.

2) System Call Capturing: CLAW turns off the presd®} it on the memory pages pointed
to by the system call table entries associated whth system calls that are to be
intercepted, for exampleNtAllocateVirtualMemory/ NtProtectVirtualMemory and
mmap/mprotecfFigure 4.7). Turning off the present bit of a pagataining system call
routines causes a page fault whenever the monitékdnvokes a systems call in that
page and transfers control to the hypervisor (2epf Figure 4.5). CLAW’s back-end
component then turns on the present bit of the pagsing the page fault, and turns off
the present bit of the page containing the retaigiress of the invoked system call, and

resumes the system call. When the invoked sys#&tineturns, another page fault occurs
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because the present bit on the return addresshemgfapage is off. At this point,
CLAW'’s front-end component is notified to analyze tsystem call’s input and output

arguments (Step 3 of Figure 4.5).

After the analysis of the arguments is completeA®Ls back-end component turns on

the present bit of the page causing the page faudt,continues the system call’s return to

user mode.
SYSTEMCALL  p bt disabled P bit enabled P bit disabled
FUNCTION i d >
PAGE
System call System call
PROCESS enfry returm >

Figure 4.7 The CLAW system call interception stepsve enable/disable the present bit on
system call entry/return.

3) Handling of Concurrent Identical System Calls: Mgitig the permission of a kernel
space page affects all user processes running pftthe kernel because the kernel
address space is shared by all processes. Therefben the present bit of a page
containing system call routines is turned on beeamse of the system calls in it is
invoked, it is not possible to intercept other eystcalls in the same page. To solve this
problem, we modify the SYSENTER_EIP_MSR registerptunt to an invalid page
whenever there is at least one system call in géi@c(Figure 4.8). With this mechanism,
system call interception works correctly even wh&me system calls are being
executed, because every SYSENTER system call ugiydr a page fault due to the

setting of the SYSENTER_EIP_MSR register.
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PROCESSB >
System call M\System call
entry return
SYSTEMCALL ppjtaisabled P Phitenabled W > Pbitdisabled
FUNCTION SYSENTER SYSENTER -
PAGE mechanismenabled mechanism disabled
System cal System call
PROCESS A =il — >

Figure 4.8 Combination of the CLAW and the MSR-stgji based system call interception.

In summary, CLAW features two system call interaapimechanisms. When no system
call is in execution, it uses a fine-grained ing@tion mechanism that traps only for pages
containing system calls that are to be intercepgtevever, as soon as one or more system calls
are invoked and being executed, it switches to assagrained interception mechanism that
stops all system calls. Note that as soon as tAeseggrained interception mechanism is enabled,

the fine-grained one is disabled.

Because a page could contain multiple system oalines, when system calls that co-
reside with a system call to be intercepted arke@dathey also trigger a page fault. When such

page faults arise, CLAW simply ignores them and esoon.

4.4.3Key Data Structures Monitored by CLAW

Table 4.6 provides the summary of the key datacttras actively monitored by CLAW.
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Table 4.6 Summary of the data structures monitbygeGLAW.

O Data Structures (Fields) Actions Taken

PsActiveProcessHead (Flink,Blink)On write, traverse the processes lists to
determine if a new EPROCESS
structure has been created or if (an
existing process has been terminated.

Windows
_PEB_LDR_DATA On write, analyze the last
(InLoadOrderModuleList) _LDR_DATA_TABLE_ENTRY
member appended to the list to verjfy
the newly loaded module.
init_task (next, prev) On write, traverse the processes lists to
Linux determine if a new task_struct structure

has been created or if an existing
process has been terminated.

4.5 Evaluation

In this section, we describe the experiments comduto evaluate the effectiveness and

performance impact of the CLAW system.

4.5.1 Experimental Setup

The test machine consisted of a virtualized setliat used Xen version 3.3 as the
hypervisor and Ubuntu 9.04 (Linux kernel 2.6.26)}las DomO kernel. The host system used a
Duo CPU P8600 processor containing two CPU corés48Hz and 2GB of system memory.
The CLAW prototype was installed in the Dom0O domdm addition, the virtualized server
hosted a DomU domain running a default installattdnWindows XP and configured with

512MB RAM.
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4.5.2 Experiments

45.2.1 Effectiveness

After initializing the CLAW prototype, we ran thaternet Explorer application as the
benign sample. CLAW was successful in identifyingetnet Explorer as a trusted application,

which was allowed to execute.

In the next test, we used the Metasploit Frameworkxploit a buffer overflow in the
Microsoft Server Service (MS08-067) [67, 68]. Werilran a payload introduced via the buffer
overflow vulnerability that injected malicious counto the running Internet Explorer process via
a remote thread injection attack. Execution of thected code was prevented. Next, we
configured the Metasploit framework to use a rdfeclibrary injection payload that allowed
the library to load itself into the target addregmce without using the native loader (e.g., the
library did not appear in the list of loaded moduie the PEB). When we executed the exploit,
CLAW detected a call to allocate a private virto@mory in the process with the write/execute

permissions and blocked execution of the injectatedecause it was not in the whitelist.

45.2.2 Performance

VM performance is impacted by the following CLAW mtwring components: (1) data
structure monitoring (the PsActiveProcessHead +B RIPR_DATA monitoring); (2) system
call interception (present bit-based system cableroeption + MSR-based system call

interception).

To measure the run-time CLAW overhead, we seletttedPCMark industry standard

benchmarking application [30] to run several benatk® for the data structure monitoring and
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the system call interception components. The resfltesting appear in Table 4.7. Each of the
benchmarks was first run without CLAW to obtain th&seline performance and then re-run
with (1) the PsActiveProcessHead monitoring enabled the _PEB_LDR_DATA and CLAW
system call interception disabled; (2) the PsA&neessHead and PEB LDR _DATA
monitoring enabled and the CLAW system call intptme disabled; (3) the
PsActiveProcessHead and PEB _LDR_DATA monitorirgaldied and the CLAW system call
interception enabled; (4) all system call interaaptusing the MSR-based system call

interception based approach (continuous interceptfall system calls) enabled.

Table 4.7 Run-time performance of CLAW.

Benchmark | PsActiveProcessHepBsActiveProcessHead CLAW's MSR
Monitoring + System System
_PEB_LDR_DATA call Call
Monitoring Interception| Interception of all
system calls
CPU 2.4% 2.6% 0.8% 7.9%
Memory 1.3% 1.3% 4.6% 64.3%
HDD 3.7% 3.8% 1.1% 29.5%

Among the three schemes used in CLAW to detectramdoading, the CLAW system
call interception incurs the least overhead becalse targeted at specific pages containing
system call routines of interest. The MSR-basedesyscall interception incurs the most
overhead. The overhead incurred by monitoring o #sActiveProcessHead structure is
somewhat higher than expected, because there atdicatons to the same page holding the

process list that trigger spurious write protectidaults. The overhead incurred by
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_PEB_LDR_DATA monitoring is negligible as comporeof this structure are located in user

address space pages and are rarely modified.

Because it is difficult to measure the run-timefpenance degradation of interaction
with applications, we focus on their startup timstead. We measured the startup time of three
interactive applications: MS Office Word, Mozillar&fox, and Adobe Acrobat. We ran these
applications and used the PassMark AppTimer [60] to measure the time between when an
application was started and when its main windomufe input appeared, with and without the
CLAW. These measurements also included the cod#éicagion times while the VM was
suspended, and appear in Table 4.8. Even thougpetftentage overheads are more substantial
than batched programs, the start-up overhead tinadl ¢three interactive applications are less

than one second, which are reasonable and acocepisdl experiences.

Table 4.8 Startup performance of CLAW.

Applications Total Startup Time, msec Overhead
MS Office Word 1,764 37%
Mozilla Firefox 366 43%
Adobe Acrobat 1,487 17%

To evaluate the performance advantage of the P&ftocessHead and
_PEB_LDR_DATA data structure monitoring over inggtion of system calls involved in new
process creation and code mapping using libranes, extended the CLAW system call
interception mechanism to include monitoring of t€reateSection and NtMapViewOfSection
system calls. NtCreateSection is always invokednnanaew process is started to create a section

object. NtMapViewOfSection is used to map views séction objects created using
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NtCreateSection into a process address space. dtiwncof NtMapViewOfSection with the
request of mapping a view of a section combinedh Wit page protection flag argument set to
allow executions indicates that the process is nmgpa new executable region. To extract the
code region used in mapping a view, we look up NtglapViewOfSection’s section handle
argument among the handles owned by the requeptincess to locate the address of the
corresponding section object. The list of handiewed by the process can be found using the
corresponding process EPROCESS structure. We asddhtifies section object to traverse the
related memory structures in the kernel memory led VM to extract the subsection
corresponding to the .text section of the file aedfy the identity of the region using SHA-1
hashing. The performance benchmark results of tikrddteSection and NtMapViewOfSection
system call interception are provided in Table &&rtup performance results are provided in

Table 4.10.

Table 4.9 Run-time performance of NtCreateSectind AtMapViewOfSection system call
interception.

Benchmark PsActiveProcessHead CLAW's
+ System
_PEB_LDR_DATA Call
Monitoring Interception of

NtCreateSection &

NtMapViewOfSection
CPU 2.6% 1.1%
Memory Latency 1.3% 3.2%
HDD 3.8% 1.3%
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Table 4.10 Startup performance of CLAW using Nt@8action and NtMapViewOfSection
system call interception.

Applications Total Startup Time, msec Overhead
MS Office Word 1,996 52%
Mozilla Firefox 538 110%
Adobe Acrobat 1,623 28%

Interception of the NtCreateSection and NtMapVie®&idtion system calls has a minor
run-time performance advantage while the startwgrleead time using these system calls has
significantly increased. The increase in the sigrtime is due to parsing of the system call
arguments that requires traversing and parsingés of data structures in the kernel address
space. Although our experiments show that diretéraeption of the NtCreateSection and
NtMapViewOfSection system calls has a better roretperformance, the PsActiveProcessHead
and PEB_LDR_DATA data structure monitoring may dmneficial in addressing scenarios
where the NtCreateSection and NtMapViewOfSectiostesy calls are hooked by malicious

user-space code to bypass invocations of the adt@akateSection and NtMapViewOfSection.

4.6 Limitations

Code verifications performed by the CLAW at loaaki include the binary code of the
executable file and libraries in its initially load state. However, a process may be exploited
over the course of its execution through an appdinavulnerability, such as a buffer overflow,
and new unverified code may be introduced by mdaipg the existing code and thus,
bypassing the CLAW load-time defense mechanisms.cDuent system does not specifically

defend against these attacks.
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The CLAW does not detect malicious activity thaeslanot introduce any unapproved
code into the system but rather uses the approvee. ¢-or instance, a malicious process could
attempt to tamper with the non-control data of acpss that may be used by the application
while carrying out its computations and interacsi@md indirectly modify its operations without
injecting additional code. Examples of such attasksgl a proposed defense mechanism are

described in Chapter 5.

Finally, false positives may also arise from preoeg code dynamically generated by
JIT compilers, interpreters, and packed executaliesur future work, we will investigate how

these special cases can be addressed by CLAW.

4.7 Summary

We presented the CLAW, a system that verified thaecidentity in the VM execution
environment. The CLAW verified binary code in ugpeocesses by computing a cryptographic
hash over the executable file and its dependentiesry components) at their load-time
mapping. These verifications were taken when aqe®a@nd libraries were loaded in memory
but before their first execution. The CLAW alsockad and analyzed code in executable
memory regions allocated at run-time. We developegrototype of our approach for the
Windows and Linux operating systems. The resultsvgld that the system was able to reliably
identify whitelisted codes in applications whileobtking unapproved codes. Successful
identification of the malicious code introduced ailigh code injection attacks further
demonstrated CLAW'’s effectiveness in dealing witiptssticated attacks designed to hide the
code’s presence. The concepts and techniques dgestus this study could be applied to other

operating systems and hypervisors.
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5 Access Token Manipulation Attack Detection Tool

5.1 Introduction

Many real-world software applications are suscéptiio attacks that alter the target
program’s control data (e.g., return addressesfametion pointers) in order to execute injected
malicious code. Because control-data attacks hasen bpre-dominant, many defensive
techniqgues have been developed to protect progmamrat flow integrity to prevent such
attacks. With the advancement of control flow pectiten techniques, attackers have devised a
new group of attacks to bypass the defenses. Tdémeks target non-control data and are less
straightforward to construct than control data cgitabecause they require in-depth semantic
knowledge of the target data. The current ranggetdnsive techniques against non-control data
attacks is limited. This is because data structfireguently targeted by non-control attacks

change rapidly making it difficult to differentiabeetween normal and abnormal states.

The stealthiest of non-control data attacks is direct kernel object manipulation
(DKOM) attack, which directly accesses and writekérnel data structures stored in memory
without using any APIs. A unique example using B¥OM technique is the hidden process
attack in which the attacker manipulates the dolibked list of running processes to unlink a
malicious process and hide it from the OS view [{fher examples of hidden object attacks

include driver and network data hiding to creatsdaiews of loaded drivers and network usage.

In this study, we focus on DKOM-based access takamipulation attacks that target
authorization and authentication data assigned touraming process. The access token

manipulation is a post-exploitation technique allugvthe attacker to escalate privileges on an
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already compromised Windows host. The access talata structure determines the access
privileges associated with a running Windows precasd is derived from the user’s log-on
session. When a process attempts to perform vaaotisns, the privileges in the access token
are compared to the required privileges to detezminaccess should be granted or denied.
Privilege escalation is achieved either by altefftuiken patching) or copying (token stealing)

the access token of a target process.

In the token patching attack, the attacker altbesaccess token of a target process to
raise the process’s privileges to the maximum lewethe local system. Rootkits are known to
make use of the token patching attack by directlgrariting portions of the kernel memory
storing the process’s access token with new pgese In the token stealing attack, the attacker
copies an already existing token of a user who grasiously logged into the compromised
machine and swaps the target process’s access woktethe copied token to assume the user’s
privileges. Because tokens of logged-in users maye hdomain-wide privileges, the token
stealing attack magnifies the dangers of the tgka&tiching attack by allowing the attacker to

compromise additional machines on the network domai

We describe the design and implementation of alniefensive tool called ATOM that
watches access tokens of running processes tot detsess token manipulation attacks. ATOM
has an agentless architecture built on top of tH&KBSM system. We have successfully
implemented an ATOM prototype on the Xen hypervisod targeted it at Windows and Linux

VMs.
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5.2 Background

5.2.1 Access Token Data Structure

Every Windows process has an associated EPROCHS&Sstacture (Figure 5.1). The
EPROCESS keeps track of various process-specife idaluding a pointer to its own access
token in the Token member of the EX FAST_REF t{figure 5.2). The pointer points to the
TOKEN data structure (Figure 5.3). The exact memadgress of the TOKEN structure is
calculated from the Token member by XORing the Tokelue with OxFFFFFFF8. The XOR
operation is required because the last 3 bitseflthken value are used to keep a reference count
for optimization purposes. Thus, token addressesya end with the last three bits equal to

Zero.

typedef struct _EPROCESS

KPROCESS Pch;

Ex_PUSH_LOCK ProcessLock;
LARGE_INMTESER CreateTime;
LARGE_IMTEGER ExiTTime;
Ex_RUNDOWH_REF RuUndowhProtect;
PWiDID UnigueProcessId;
LIST_EMTRY aActiveProcessLinks;
ULOMS Quotalsage[3]:

ULOMG quotaPeak[3];

LLOMG CommitCharoe;

ULoMG Peakvirtualsize;

ULOMG wirtualsize;

LIST_EMTRY SessionProcessLinks:
PvioID DebugPort;

union

PVOID ExceptionPortData;
ULOMG ExceptionPortwvalue;
ULOMNG ExceptionPortstate: 3;

,
PHANDLE_TABLE ObjectTable;
Ex_FAST_REF Token;

[...]
} EPROCESS, %PEPROCESS;

Figure 5.1 EPROCESS data structure.
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typedef struct _EX_FAST_REF
1
union
PVoID Object;
ULOMG RetCht: 3;
LLoMS walue;

;
} Ex_FAST_REF, “PEX_FAST_REF;

Figure 5.2 EX_FAST_REF data structure.

typedef struct TOEEN
i
TOKEN S0OURCE Tokenlource;
LUID TokenId:
LUID AuthenticationId:
LUID ParentTokenId:
LLARGE TNTEGEERE ExpirationTime:
FPERESOURCE TokenLock:
LUID ModifiedId:
TLONG S3essionld:
TULONG UserindGroupCount;
TULCONG Restricted3idCount:
ULONG PrivilegeCount:
ULONG Variasblelength:
ULONG DynamicCharged:
ULONG Dynamiclivailabhle:;
TLCONG Defaultowner Index:
PSID _AWND ATTREIBUTES UserAndGroups:
F3ID MND ATTRIBUTES RestrictedSids:
PVOID PrimaryGroup;
FUID MWD ATTRIBUTEZI Frivileges:
ULONG * DynamicPart:
PACL DefaultDacl:
TOEEN TYPE TokenType:
SECURITY IMPERZCNATION LEVEL Impersonationlevel;
ULONG TokenF lags:
TCHAR TokenInUse:
FSECURITY TOKEN FROXY DATA ProxyData:
FSECURITY TOKEN AUDIT DATA AuditData:
SEF_AUDIT POLICY AuditFolicy;
TLCONG VariahlePart:
} TOEEN, *PTOEEN:

Figure 5.3 TOKEN data structure in Windows XP.

117



The TOKEN data structure is composed of static @yrdemic parts (Figure 5.4). The

static part has a well-defined structure and doas change in size. It stores the count of

privileges in the PrivilegeCount field and the cbwf the security identifiers (SIDs) in the

UserAndGroupCount field. The dynamic part contaatisthe user privileges and SIDs. The

exact number of these varies depending on the etiatkeof the user who created the process.

Privileges

Groups

TOKEN
Static Portion
LUID Attribute
LUID Attribute
LuID Attribute
LUID Attribute
p_SID Attribute
p_SID Attribute
p_SID Attribute
SID
sSID
sSID
continues...

Variable Portion

Figure 5.4 Static and variable parts of the takewindows XP [70].

The UserandGroups field stores a pointer to a dyallyp allocated array of

PSID_AND_ATTRIBUTES structures storing securityndgi@ers (SIDs) including a SID for the

user and all of the SIDs for the groups to whiahuker belongs (Figure 5.5).

118



typedef struct 3ID AND ATTRIEUTES |
P3ID 3id;
TLONG Attributes:;
} 3ID AND ATTRIEUTES, *F3ID AND ATTRIBUTES:

typedef struct 3ID |
TCHAR Rewvision:
TCHAER 3ZubbluthorityCount:
SID IDENTIFIER AUTHORITY Identifierduthority:
ULONG  Sublduthority[ANTSIZE ARRAY] ;
Y 3ID, *PISID:

Figure 5.5 SID_AND_ATTRIBUTES and SID data struetsir

Each PSID_AND_ATTRIBUTES structure is composed wb ffields: Sid, which is a
pointer to the SID structure holding SID informaticand Attributes, which stores a series of
binary flags that hold the SID attributes. When & Ss added to the token, the
UserAndGroupCount value is incremented. The Secidéscriptor Definition Language form
of a SID can be illustrated using the following eyde: “S-1-5-21-2833009033-2652595096-
1975694352-1012", where “1” is the revision, “5"tiee identifier authority that created the SID,
“21-2833009033-2652595096-1975694352” is the coemputlentifier, and “1012” is the

account or group identifier.

The Privileges field of the TOKEN data structureres a pointer to a dynamically
allocated array of LUID_AND_ATTRIBUTES structures Figure 5.6). Each
LUID_AND_ATTRIBUTES structure is composed of tweeliils: Luid storing the privilege ID
and Attributes storing a series of binary flagst thefine whether a privilege associated with a
given LUID is enabled or disabled. In the Priviledist, some of the privileges are disabled by

default (Figure 5.7).
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typedef struct LUID AND ATTRIEUTES {
LUID Luid;
DWORD Attributes:;
} LUID AND ATTRIEUTES, *PLUID AND ATTRIEUTES:

Figure 5.6 LUID_AND_ATTRIBUTES data structure.

z iexplore.exe: 6772 Properties

Image | Petformance | Disk and Mebwork Ferformance Graph | Threads
cete | Seewty | Enironment | Job e S

- Lser:
5 SID: 5-1-5-21-2057499043-1289675208-1959431 660-2005621

Session: 0

I Group Flags |
| ; tandatary

| Everyone tandatory

| LOcaL tandatory

| NT AUTHORITY &uthenticated Users tandatory

| §-1-5-21-133741 3286-2060671373-61685808-575331 Domain-Local, Mandatory
| 5-1-5:21-133741 3286- 2060671 379-61685308-941 605 Mandatory

' 5-1-6-21-2009805145-1893945487-14604595795-683968  Domain-Local, Mandatory
| §-1-5-21-2009805145-1893945457-1460495795-845473  Mandatary

| 5-1-5:21-2009505145-1893945487-1460495795-952561  DomaireLocal, Mandatary
| 51-5-21-2057499049-1289676208-19594 31 660-1054550. Mandatary

| 5-1-5-21-2057499049-1 289676208-1959431660-1140522  DomaireLocal, Mandatary
| 5-1-5-21-2057499049-1289676208-19594 316601212080  Mandatory

| 5-1-5-21-2057493049-1289676208-1959431660-1212082  Domain-Local, Mandatory
| 5-1-5:21-2057499049-1289676208-1959431660-1 248724 Mandatory

| 5-1-5-21-2057433049-1289676208-1950431 6601248726 DomainLocal. Mandatory o |

Lania® WCaTa e o TaTu B Tl Ealaln u Lutalalu . Knlada ¥ L alnla i Ralutatahc/nd LI

Group SID; 5-1-5-5-0-414369

| Frivilege Flags o~
| SeBackupPrivilege Dizabled |
SelChangeMatifyPrivilege Default Enabled

| SeCreateGlobalPriviege Default Enabled

| SeCreatePagefilePrivilege Dizabled

| SeDebugPrivilege Dizabled

| SelmpersonatePrivilege Default Enabled

SelncreasebB azePriontyPrivilege  Dizabled

| SelncreazeluotaFrivilege Dizabled |
| Sal AadMrivarPrivilana Frahblad E i |

K, l [ Cancel ]

Figure 5.7 SIDs and Privileges contained in thecess’s access token using Sysinternals’
Process Explorer tool [71].
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5.2.2 Token Manipulation Attacks

This section describes the post-exploitation precesing token manipulation attacks.

5.2.2.1 Access Token Patching

Access token patching attacks are commonly launblgddernel level rootkits. There are
two main rootkit families: control-data manipulainootkits and non-control data manipulating

rootkits.

Control data manipulating rootkits, known as hogkiootkits, change the kernel control
flow path in such a way that control first flows ttee attack code. The original code is either
never invoked or executed after the attack codexecuted. Hooking may come in several
variations including import/export table hookingysem service dispatch table hooking,
interrupt descriptor table hooking, and inline ftioe hooking. These methods allow an attacker
to gain control of the execution path by patchingction pointers in a table through which a set

of calls or events are routed or by modifying timeaby code of a target function.

Non-control data manipulating rootkits do not charnge control flow directly but
manipulate values of critical variables, which wmrnt directly or indirectly influence the
algorithms used by the kernel. Such rootkits ofteget kernel data with dynamic characteristics
without injecting any code into the kernel memopase. These rootkits use DKOM techniques

to dynamically change certain kernel data structsmeh as the access token data structure.

Non-control data manipulating rootkits launch ascedken manipulation attacks to raise
privileges of a malicious process without makingigle call to any of the process or token

related APIs. This can be accomplished by modifytteda contained in the TOKEN data
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structure directly in memory. When modifying the KEN data structure, rootkits patch the SID
list and the Privileges values. The FU rootkit me@xample of an access token patching rootkit

[70]. The FU rootkit operates using the followirtgyss:

1) Finds the EPROCESS data structure for the targeegs using the process PID;

DwWoORD FindProcessEPROC (int terminate_PID)

DWORD eproc = OwQOO00000;
int Ccurrent_PID =

int start_PID = 0;

int i_count = 0;

= )
PLIST_ENTRY plist_actiwve_procs;
if (terminate_PID == 0]
return terminate_PID;
Bproc = (DWORD) PSGETCUrrentProcess();
start_PID = “((DWORD¥I(eproc+PIDOFFSET));
current_PID = sStart_PID;

?hﬁTE(l)
if{terminate_PID == current_PID)
return eproc;
else if{{i_count »= 1) && (start_PID == current_PID))
return OxQo000000;
else {
plist_active_procs = (LIST_ENTRY *) (eproc+FLIMKCOFFSET);
eproc = (DwoRD) plist_active_procs->Flink;
Bproc = eproc — FLIMKOFFSET;
current_PID = *({int %) (eproc+PIDOFFSET));
T_count++;
I
I

2) Finds the TOKEN data structure associated witrBRROCESS data structure;

?NDRD FindProcessToken (DWORD eproc)

C'woRD token;

__asm o
mov eax, Eproc;
add eax, TOKEMOFFSET;
mow eax, [eax];
and eax, 0xfffffffs;
mow token, eax;

return token;
3) Finds the privileges in the token and adds newilpges;

The fact that many privileges are disabled by defabhen a token is created proves to be

useful for an attacker in order to add privileged groups to a process token. If a desired
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privilege already exists in the token but is disablthe rootkit enables the privilege. If a
desired privilege does not exist in the token,rthakit finds a disabled privilege and re-
uses its space by overwriting it with the new pege. By enabling or overwriting

disabled privileges already contained in the tokba, attacker can avoid increasing the
token's size and overwriting memory regions adjaterthe process's token some of

which may be invalid.

4) Finds the SIDs in the token and adds new SIDs;

Disabled privileges may also be overwritten to madam for new SIDs.

5) Finally, modifies the PrivilegeCount and UserAnd@sGount counts.

In Windows versions prior to Windows Vista, therere/ no integrity checks on the
UserAndGroup list of SIDs and therefore, it wassilole to add SIDs by finding dead space in
the token structure to overwrite it with. In theeat versions of Windows starting with Vista,
new fields SidHash and RestrictedSidHash have hddad in the access token structure (Figure
5.8 and Figure 5.9). These two fields contain thehles of the SIDs stored in the dynamic part of
the token in order to prevent accidental or intehah@dification of this part of the access token.
The hashes are checked every time the token is De=phite the added integrity checks, access
token manipulation attacks are still possible ifittee main alternatives to bypass these defense

measures:

1) Applying the hash algorithm after modifying the Si§ls;

2) Avoiding SID list patching and acting only on theviteges;

3) Directly swapping the TOKEN value of the attackepsocess with the value in the
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EPROCESS structure of a victim process using tkentstealing attack as described in

the next section.

Eypedef struct _TOKEN

TOKEM_SOURCE Tokensource;
Lurc Tokentd;
LUID authenticationId;
LUID ParentTokenId;
LARGE_INTEGER ExpirationTime;
PERESOURCE TokenLock;
LUID ModifiedIid;
SEP_TOKEN_PRIVILEGES Privileges;
SEP_AUDIT_POLICY auditPolicy;
ULONG sessionId;
ULOMG UserAndsroupCount;
ULONG Restrictedsidcount;
ULONG vardiahleLength;
ULOMG Dynamiccharged,
ULOMG Dynamicavadlabhle;
ULonNG DefaultownerIndex;
PSID_AMD_ATTRIBUTES Userandcroups;
PSID_AMD_ATTRIBUTES Restrictedsids;
PWOID Primarysroup;
ULOMG * DynamicPart;
PacL DefaultDacl;
TOKEN_T¥PE TokenType;
SECURITY_IMPERSOMATION_LEVEL ImpersconationLevel;
ULOMG TokenFlags;
UCHAR TokenInuse;
ULONG IntegritylLevelIndex;
ULOMG MandatoryPoldcy;
PSECURITY_TOKENM_PROXY_DATA ProxyData;
PSECURITY_TOKEM_AUDIT_DATA auditData;
PSEP_LOGON_SESSION_REFERENCES Logonsession;
LUID originatingLogonsession;
SID_AMD_ATTRIBUTES_HASH SidHash;
SID_AND_ATTRIBUTES_HASH RestrictedsidHash;
ULoMG variahlepart;

T TOKEM, ®PTOKEM;|

Figure 5.8 TOKEN data structure in Windows Vista.

typedef struct SID AND ATTRIBUTES HASH
{

ULONG 3idCount;

PSID AND ATTRIBUTES SidAtctr;

ULONG Hash[32];
} SID_AND ATTRIBUTES HASH, *PSID AND ATTRIBUTES HASH:

Figure 5.9 _SID_AND_ATTRIBUTES_HASH data structure.

124



5.2.2.2 Access Token Stealing

During normal operations of a system, there arerneslof some variety present depending
on the system’s function and its usage environmniétite system is compromised, these tokens
can be used by the attacker in token stealing ket achieve privilege escalation. The token
stealing attack involves the exchange of a malgiptocess’s token with an access token of

another process running on the same system.

There are two main types of access tokens usefulhie attack: primary tokens and
impersonation tokens. Every process has a pringkgnt that describes the security context of
the user account associated with the process. sopation is the ability of a process to
temporarily impersonate a security context difféfeom the context of the process by starting a
thread using a different access token. The maisorefor impersonation is to enable a service
running under a certain security context act orabiedf connecting clients by executing threads
under the clients’ own security context. There &er impersonation levels: Anonymous,
Identification, Impersonation, and Delegation, ohieh the Impersonation level and the

Delegation level have the most significant secuntplications (Figure 5.10).

typedef enum 3JIECURITY IMPERSONATION LEVEL

i
Securitvinonyvmous = 0O,
SecurityIdentification = 1,
SecurityImpersonation = 2,
SJecurityDelegation = 3

POSECURITY INPERSONATION LEVEL:

Figure 5.10 Impersonation levels.

The Impersonation level tokens, which are normaltgated as a result of a non-

125



interactive login, allow a thread to impersonate slecurity context on the local system but do
not allow access to external systems. A common plamould be an FTP server impersonating
client requests. The Delegation level tokens, whacta normally created as a result of an
interactive login, allow a thread to impersonate #ecurity context on any system. Examples

include logging in using remote access servicessahdions.

By hijacking Delegation level tokens, an attackan gain domain level privileges to
access systems that are otherwise secure fromt deewte exploits. This is possible because
Delegation tokens contain authentication credentaid so can be used to access external

systems for which those credentials are valid.

A token stealing attack normally involves the feliag steps:

1) Enumeration of tokens present on the compromisstiy

2) Selection of a Delegation or Impersonation token;

3) Starting a new process and swapping the procesisén twith the token selected in the

previous step.

The swapping in the last step can be accomplislyecalling an existing API, such as
ImpersonateLoggedOnUser in Windows OS. In thisysthdwever, we only consider DKOM-
based token stealing attacks that directly oveewtite value of the Token member of the

EPROCESS structure in memory to point to a diffeemtess token [72].
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5.3 Related Work

5.3.1 Control Data Manipulating Rootkits

Methods for detection of control data manipulatiogtkits can be roughly divided into
static control data monitoring methods and exeoupath monitoring methods. Static control
data monitoring methods detect signs of a rootkitusion by checking known invariant data
regions in memory for suspicious entries. Violatiaf such invariants suggest the kernel has
been compromised. Execution path monitoring metlaelstify known program execution paths
in advance and monitor run-time execution pathsrtsure they conform to the known paths.

Deviations from know execution paths are suggestiveotkit presence.

5.3.1.1 Static Control Data Monitoring

5.3.1.1.1 Periodic Checks

Co-processor based Copilot was designed to detextiek rootkits overwriting the
addresses of the kernel's system call handling tiong in the system call table with the
addresses of their own doctored system call hagdlinctions as well as modifying the host
kernel’s text or the text or any loaded LKMs [16ppilot extracted the memory addresses of the
system call table and the kernel text from the kestel and its System.map file at configuration
time, calculated known “good hashes” for these #em@nd monitored the related memory
regions throughout the host kernel run-time usiegqaic checks to detect changes to these
kernel memory regions. The fundamental limitatibiCopilot was its inherent inability to detect
modifications as they occurred. A clever rootkighti conceivably modify and rapidly repair the

host kernel between checks as a means of avoiditegtibn.
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5.3.1.1.2 Continuous Monitoring

The hypervisor-based intrusion detection systenewive employed similar methods to
detect signs of malicious rootkit activity [4]. Tetect modifications to sensitive portions of the
kernel memory continuously in real-time, Livewirearked the code sections and system call
table derived from the debugging information of #e¥nel binary as read-only. If a program
tried to modify these sections of memory, the mmnitas notified about the malicious attempt,

and the VM was halted.

In another related study, Paladin leveraged thialirmachine technology to propose a
solution for real-time detection and containmentaouftkit attacks. Paladin relied on specification
of access control policies tailored to protect mgnareas and system files that could be a target
of rootkit attacks [73]. The memory access conpaicies included policies to protect the kernel
system call table, the interrupt table, and thenélecode from being overwritten in memory by
defining legitimate applications that could writeda kernel memory. To obtain the knowledge
about the guest OS semantics, Paladin ran a dmgile the host OS to facilitate symbol
lookups in the System.map file for kernel text segtnsystem call table, and interrupt descriptor
table. Given the specifications of the access obpolicies and the physical addresses of the
protected memory regions, Paladin used the hypmmnis monitor write accesses across the
system for validity. Any time an illegal access wdstected, the process attempting

modifications was killed.

Static control data monitoring systems make theweseVulnerable to rootkits that take
this type of discovery method into account and evdee security monitors, for instance, by
manipulating the system call table dispatch handied redirecting the system call to a
completely fabricated table filled with pointersralicious system call handlers. A static control
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data monitor would continue to monitor the originahchanged system call table, which would
no longer used by the kernel. Furthermore, momigpfor writes in known static data locations
would not prevent rootkits from hijacking functitiloks within data structures that were meant

to be overwritten.

5.3.1.2 Execution Path Monitoring

5.3.1.2.1 Periodic Checks

State-based control flow integrity (SBCFI) perfodna static analysis of the kernel's
source code and compiled binary for global varial@iad function pointers reachable from the
global variables and built an approximation of krcontrol-flow graph that would be followed
at run-time by a legitimate kernel [56]. Functianimiers were tracked and validated periodically
at run-time to determine consistency with the aarftow graph using a monitor placed in a
separate security VM. The monitor process travetisedarget kernel’s memory in parallel with
the target VM’s execution. Because the monitoriregwlone periodically, the SBCFI monitor
could only be used to reliably discover persistdr@nges: if an attacker modified the kernel for a
short period, but undid the modifications in tinesd then the next check period, then monitor
might fail to discover the change. Additionally,edto the lack of dynamic run-time information,
SBCFI was only able to achieve an approximatiokevhel control-flow graph. The static nature
of the SBCFI system and learning inextensibility€dtio the rapidly changing nature of the
Linux kernel) were some shortcomings of this apphoa’he performance of SBCFI was also

shown to incur close to 40% overhead on a typicathime running on Xen.

5.3.1.2.2 Continuous Monitoring

HookSafe, a hypervisor-based system, was designetbtect control flow modifying

rootkits [74]. On initialization, HookSafe used amguest kernel module to allocate memory
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pages from the non-paged pool and copy protectatekbooks from their original locations to
the newly allocated memory pages. It then loadediridirection layer code in the guest OS to
regulate accesses to these memory pages. The lsgemas notified through a hypercall about
the allocated memory pages to detour all accessgsotected hooks to the hook indirection
layer. For read accesses, the indirection layaplsi read from the shadow hooks and returned
to the hook site. For write accesses, the indimeckayer issued a hypercall and transferred the
control to the hypervisor to validate the write wegt according to values seen in the offline
normal operation profiling phase. By re-locatingoks to dedicated memory pages, HookSafe
avoided the unnecessary page faults caused byrnigappites to irrelevant data that might be co-
located with hooks on the same page. Hooks alldcak run-time were identified by
instrumenting the guest OS memory allocation fumsi and utilizing the run-time context
information to infer whether a particular kernejeatt of interest containing an embedded hook
was being allocated. If one such kernel object a@aimg a kernel hook was being allocated, a
hypercall was issued to HookSafe to create a shadopy of the hook. The HookSafe
implementation required modifications to the moratbOS and therefore could not be extended

to support closed source OSes.

5.3.1.2.3 Offline Analysis

From another perspective, HookFinder [75] basedaowhole system emulator was
developed to automatically analyze an unknown gty malicious binary and identify if this
code installed any hooks into the system. HookFinges designed for malware analysis rather
than on-line detection. By instrumenting CPU instieans with taint propagation capabilities,
HookFinder considered any changes made by the mmalaa tainted and tracked taint

propagation throughout the system. HookFinder reizegl a specific change as a hooking point
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if the control flow was affected by some tainteduea Though effective in identifying specific
hooks registered in the malware code, HookFindaldcoot discover other hooks that did not lie

in the execution paths of any of these progrand tla@refore would go undetected.

The HookMap implementation collected a list of samjially executing kernel
instructions when handling a system call and idiextithe control-flow transfer instructions that

could potentially be exploited by rootkit for hidjpurposes [76].

5.3.2Non-Control Dynamic Data Manipulating Rootkits

The control data manipulating rootkit detection Inoels that detect violations based on
changes to static kernel content, control flowthe executing binaries can not be applied to
detection of rootkit attacks on non-control dataudures as they often include data and
functions pointers that are meant to be overwritgsiditionally, attacks against such data may
be performed by using already approved kernel colleh satisfies kernel code integrity.

Therefore, a number of specialized methods have teeeloped to combat such attacks.

5.3.2.1 Periodic Checks

Petroni et al. [77] extended the capability of ofpj16] for detection of attacks against
dynamically allocated constantly-changing kernejeots using a co-processor. The monitor
relied on an expert to describe the correct opmradf the system via specifications of security-
relevant data structures and constraints on hogetkdata structures interoperated. The monitor
periodically compared actual observed dynamic Kedaga values in the snapshots of kernel
memory with the specifications of constraints omnké dynamic data values and reported any

semantic integrity violations.
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The cross view detection method in a hypervisoeda¥Mwatcher implementation
leveraged the self-hiding nature of rootkits toeimfootkit presence by detecting discrepancies
between process lists from different points of diéb@ [3]. VMwatcher approach used an
introspection-based method to obtain a view ofgfeeEesses running in the system and invoked
a standard API function from within the OS to det API view of the processes running in the
system. The two results were compared, and therdiite in the results revealed hidden rootkit

processes.

The above systems use a periodic sampling apprtdathmay be exploited by the
malware to remain undetected in between two cotisecisnapshot periods making this
approach far less attractive due to its lack of edacy. Conversely, ATOM is able to extract
and analyze the data structures continuously, oveirgg the limitations of the periodic checks

approach.

5.3.2.2 Continuous Monitoring

Srivastava et al. [18] developed Sentry, a VM-basgstem that prevented illegitimate
changes to dynamically allocated kernel data objieotm occurring by mediating access to these
objects. Sentry introduced modifications to the nwoed OS kernel to identify locations of
newly constructed dynamically-allocated kernel daltgect. The need for mediated access to a
newly constructed data object was communicatedéykernel to the hypervisor at the time that
it constructed the object. Similar to page protewi manipulation approach used in the
RTKDSM system, the OS passed the physical pageefrasmber (PFN) of the newly allocated
memory page holding kernel data object requiringtgution to the hypervisor. When the

memory protection module in the hypervisor receisedequest to add protection for the
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monitored VM’s page, it added the PFN to a lispadtected pages and removed the page’s write
permission causing page faults on all attemptedetesbject alterations. Sentry only allowed
alterations invoked by legitimate kernel functiaotyal Sentry implementation also made
alterations to the memory layout of kernel datacttires to separate security critical and non-

critical fields for increased performance and tf@eerequired access the OS source code.

Rhee et al. [17] proposed the KG system that pitederootkit attacks targeting dynamic
data by detecting changes to monitored kernel statatures. KG monitored the execution of the
OS at the instruction level using QEMU emulatoraasexternal monitor. For each kernel data
structure requiring protection, a policy was writtgescribing how the data structure should be
identified in a raw view of memory as well as thexacteristics of an attack against that data
structure. The policies were derived using the &esource code and the analysis of functions
used to access given kernel data structures. Aimmenthe system identified data structures of
interest in memory and intercepted all writes teitladdress ranges. The methodology described
in the study was only portable to VM monitors teapported memory interposition to translate
guest instructions into host instructions and tfweeg it could not be extended to support
commercial hypervisors that did not provide memimtgrposition, such as Xen and VMWare

ESX, unlike in ATOM developed in this study.

A hypervisor-based VMhuko was designed to provie-time protection for static and
dynamic kernel data by mediating access to the$a dsing access control policies [78].
VMhuko relied on the static analysis of the OS seutode to extract information about data
structures as well as their related normal kerbgai access patterns and to build access control
policies for the extracted kernel objects. Locaiah all static kernel objects were identified at

run-time using the kernel debug symbols and systep information in Linux. Dynamic kernel
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objects were located at run-time using the assumphiat all dynamic data were accessible from
global kernel data structures residing at well-kndacations. For instance, the init_task global
data structure was assumed to be first accesseabkiits to locate and traverse the task linked
list and then manipulate the dynamically allocatask struct structures. Therefore, init_task
was monitored for read accesses. Memory pagesiomgastatic objects and pointer-valued
fields of global kernel data structures were marksdprotected using not-writeable or not-
present fields and monitored for abnormal read warite kernel access patterns by comparing
function call traces to known good ones obtainedfthe static analysis of the sources code. All
rootkits used in the evaluation were system célletanodifying rootkits running as self-hiding
processes. Although the average VMhuko performaneehead was reported as 17%, no details
were provided regarding the number of static andhadyic objects monitored in their
experiments. The VMhuko protection would be difftdo design for a closed source OS such as
Windows where the source code could be unavail&lghermore, a disadvantage of this kind
of implementation was that the source code analysexled to be manually performed every
time a module was inserted into the kernel to enshiat valid accesses by the module were not
invalidate by VMhuko. Additionally, due to the ladk dynamic run-time information, VMhuko

was only able to achieve an approximation of norkeahel access activity.

5.3.3 Summary of Methods

Static control data monitoring methods includingpat, Paladin, and Livewire, are
intended for protection of a small number of ingati data structures positioned at fixed
locations and known at compile time. These methaydsnot suited well for advanced attacks
targeting dynamic non-control kernel data wherations of data and the number of instances

are not known in advance. While the Copilot arattitee was later extended to support detection
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of such attacks [77], the new extension was basednoasynchronous approach and suffered
from inherent inability to detect attacks launchaad withdrawn between two subsequent
periodic snapshots as a means of avoiding deteddatadin served as a good detection and
prevention mechanism but the specifications of mgnazcess control policies for protected
memory regions were static and a comprehensiveguwi/them was infeasible especially when
dealing with dynamically allocated objects. The t8erKG, and VMhuko architectures might be
considered extensions of the Paladin approach rategtion of dynamically allocated objects.
However, these extensions either required OS nuadifins to detect object allocations or the
availability of the kernel source code to constractess control policies that might be difficult
to obtain for a closed source OS such as Windawsut implementation, we extended the static

control data monitoring approach to protecting aglattacks on dynamic non-control data.

Execution path monitoring methods are a subsehefgeneral concept of protecting
invariant data known at compile time or enumeraldéa derivable from the invariant data.
Although these methods may be extended to suppormdically allocated control data, such
extensions may not be applicable to guard dat&tsies unreachable from the global variables

and lacking semantic relationships with others [65]
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Table 5.1 Non-control data manipulating rootkitedion systems.

D ion/ | Cont / Requires
OS Semantics etect|c_>n ontl_nl:jqus Requires OS| the OS
Name Monitor Prevention Periodic Modifications | source
Acquisition (Y/N) code
D/P C/P
(DIP) (CIP) o
ATOM hypervisor VMI D C N N
VMwatcher| hypervisor VMI D P N N
Copilot co- Manual D p N N
extension | processor| specifications
Sentry hypervisor . 0S . P C Y Y
instrumentation
hardware OS source
KG code, kernel P C N Y
emulator | debug symbols
OS source
VMhuko hyperViSOf Code, kernel P C N Y
debug symbols

5.4 System Architecture

5.4.1 Overview

As shown in Figure 5.11, ATOM is composed of a frend component running in the

monitoring VM and a back-end component running dasthe hypervisor. The back-end

component suspends the monitored VM on detectingva process. After suspending the VM,

the back-end component notifies the front-end camepbto extract the new process’s access

token and analyze the privileges and the SIDs @& ttken using the real-time kernel data

structure monitoring system. Following the tokeralgsis, the front-end component asks the

back-end component to resume the VM execution anditiate the monitoring of the memory

portion containing the extracted access token. @dek-end component tracks all attempts to
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overwrite the privileges and the SIDs in the ac¢eksen. When a write is detected, the back-end
component notifies the front-end component to aealye altered access token and to alert the

administrator if an access token manipulation &ttsdetected.

5.4.2 System Design and Implementation

The ATOM architecture is built on the Intel VT harare and the Xen hypervisor, and is

designed to support VMs running both Linux Uburdurty and Windows XP.

5.4.2.1 Creation of a New Process

We assume the hypervisor component is started defoy malicious process is running.
ATOM continuously watches for newly created proesss each monitored VM so that it can
extract its access token. To intercept procesgsioreaperations, ATOM keeps track of the Flink
and Blink pointers in the structure pointed to tsABtiveProcessHead. If ATOM observes a
write to either Blink or Flink on the page contaigithis structure (Step 1 of Figure 5.11), it
traverse the processes lists to determine if aBBROCESS structure has been created or if an
existing process has been terminated. The processian steps in Windows OS, as shown in
Figure 5.12, up to the access token set up haeadyrbeen done. As soon as the back-end
component of ATOM detects a new process in a VMugpends the VM, and notifies ATOM’s
front-end component to take over. The front-end ponent uses the process’s EPROCESS data
structure to track down the new process’s TOKEN d&tucture so it can analyze the privileges

and SIDs.
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Figure 5.11 The ATOM architecture.
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Figure 5.12 Windows OS process creation flow.

5.4.2.2 Access Token Analysis

The process’s TOKEN data structure is identifiethi@ physical memory using the value
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of the Token field in the corresponding EPROCES® daructure. The rtkdsm.py plugin
implemented in the RTKDSM system links up a processa particular user account by
extracting all the SIDs contained in the processsess token and mapping the SIDs’ values to
their corresponding usernames and user groupseWabihe of the SIDs have well-known values
and can be easily mapped to their associated usgnoop name, other SIDs require additional
processing to determine the username associatdd esith SID. This additional processing
involves extraction of information from the machmeegistry. Specifically, we process the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NThehtVersion\ProfileList
registry key hive shown in Figure 5.13 to extrdwet tist of all local user account SIDs on the

machine.

% Registry Editor

File Edit W“iew Favorites Help

(2 Profiledist A Mame Type Data 2
Q51518 (DeFauIt) REG_S5Z {value not set)
g gi;s [ab]CentralProfie REG_5Z
o [R¥]Flags REG_DWORD 1500000000 (0
g 1521205745504 1285676205 1 955431660 173841 ProFiIeImagePath REG_EXPAND_SZ % SystemDrivesiDocuments and Settingstjenny
1 = ERTE ProFiIeLoadTimeHigh REG_DWORD 0x01cc5e79 (30170745)
D 5-1-5-21-2B33009033-2652595096- | 075604 352-500 ProfileLDadTimeLDw REG_DWORD 0:xb97bzb54 (3111356980)
(£ related. desc " ReFCount REG_DWORD 000000000 {07 b
< > < >

My ComputeriHKEY_LOCAL_MACHINE|SOFTWARE \MicrosoftiWindows MT\Currentyer sionProfileList)3-1-5-21-2833009033-2652595096-19756943

Figure 5.13 HKEY_ LOCAL_ MACHINE\SOFTWARE\Microsoft\Wdows
NT\CurrentVersion\ProfileList key hive

The username for each SID can be inferred by lapkintheProfileimagePathstring
value inside the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProfileList\<SID>key. Using the Volatility’s registry-related APlsye
extract all the local user account SIDs on the nmechcontained as subkeys in the

“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NTi\€htVersion\ProfileList
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registry key hive. The ProfilelmagePath string value is usually of the

%SystemDrive%\Documents and Settings\<usernafoer, where the value of the <username>
string is the actual username. We use the Voldsilitegistry-related APIs to extract the SIDs in
the ProfileList key hive and map them to their nsenes. Apart from the individual account
SIDs, we also extract well-known group SIDs. Th&Bs have been set aside for specific

purposes and are the same on any Windows machine.
5.4.2.3 Access Token Monitoring
ATOM performs real-time monitoring of the extracte#ten using the following steps:

1) Using the rtkdsm.py plugin, ATOM accesses and s#vesurrent values of the SIDs,

privileges, and the counts of the privileges andsSl

2) The front-end component requests the RTKDSM sydtemoalculate memory ranges
containing the Token member of the EPROCESS, tbes,Sirivileges, and their counts.

The back-end component is notified to monitor thlewuated ranges for writes.

For Windows XP and older Windows version, the failog formula is used to calculate
the variable memory region size containing the SHd&l the privileges: (Size of
_LUID_AND_ATTRIBUTES  structure) *  PrivilegeCount + (Size  of

_SID_AND_ATTRIBUTES structure) * UserAndGroupCoun{Size of _SID structure)
* UserAndGroupCount. For Windows Vista and latemdbws versions, the following
formula is used to calculate the variable memorygioe size: (Size of
_SEP_TOKEN_PRIVILEGES structure) + (Size of _SID BMTTRIBUTES

structure) * UserAndGroupCount + (Size of _SID stane) * UserAndGroupCount.
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The two formulas differ because in Windows Vistd #ater, the privileges are stored in a
bitmap form inside an SEP_TOKEN_PRIVILEGES struetas shown in Figure 5.14.
Each field (Present, Enabled, and EnabledByDefab#)ng of type UINT64, has the
potential of holding up to 64 distinct privilege=ach identified by an index within the
bitmap; the Present field holds the active priveledoitmap, while the Enabled and
EnabledByDefault fields keep track of the statughefprivileges similar to the Attributes

field in older Windows implementations.

typedef struct SEP TOEEN PRIVILEGESD
i
UINTEd Present:
UTINTE4 Enabled:
UTINTE4 EnabledByDefault:;
} ZEP_TOEEN PRIVILEGEZ, *P3IEP TOEKEN PRIVILEGES:

Figure 5.14 SEP_TOKEN_PRIVILEGES structure in Wiwd Vista and later Windows
versions

3) If a write is detected at a monitored memory redidtep 2 of Figure 5.11), the front-end
component is notified by the back-end componenit san repeat the token analysis.
Depending on the memory region where the writeetected, we classify write instances

into the 4 categories:

i. False token stealing attack a write is detected to the Token field of the
EPROCESS data structure. The new address is ahtfdrom the previous
address, and it points to an invalid token. Fotainse, following the process
termination, the Token field of the EPROCESS stieets overwritten as a result

of the EPROCESS data structure de-allocation.
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ii.  True token stealing attack a write is detected to the Token field of the
EPROCESS data structure. The new value pointyv#didtoken. ATOM extracts
the new values of the privileges/SIDs, their coustsl compares them to the
previously saved values, and alerts the admingstigtout the changes (Step 4 of

Figure 5.11).

iii. False token patching attacka write is detected to the privileges/SIDs foilag
a system call. To modify a process token, Windowsovides the
NtAdjustPrivilegesTokemnd NtAdjustGroupsTokemsystem calls. We intercept
the NtAdjustPrivilegesTokemnd NtAdjustGroupsTokesystem calls using the
CLAW system call interception technique (Step JF-wmjure 5.11). If the write to
the token is caused by a system call, we consideffalse token patching attack
and thus, do not notify the administrator. In oomplementation, we do not
consider adversarial attempts to evade detectiomimking a token-modifying

system call concurrently with a DKOM attack.

iv.  True token patching attack a write is detected to the privileges/SIDs ameirt
counts, and it is not a result of th&ltAdjustPrivilegesTokenand
NtAdjustGroupsTokenystem calls. Using the rtkdsm.py plugin, ATOMraxts
the new values of the privileges/SIDs/their countempares them to the
previously saved values, and alerts the admingstitout the changes (Step 4 of

Figure 5.11).

5.4.3"Always-on” and “Periodic Polling” Monitoring Modes

The ATOM implementation supports both the “always-and “periodic polling”
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monitoring modes. The system operations and tlaeeisecurity implications were described in

the RTKDSM system.
5.4.4 ATOM Implementation for Linux OS
5.4.4.1 Background

5.4.4.1.1 Process Credentials

In the kernel versions < 2.6.29, user privileges stored in the uid, euid, gid, and egid
fields of the task struct data structure (Figurg5h. In the kernel versions >= 2.6.29, the
task_struct was changed along with the logic of tameess to the process credentials (Figure

5.16). The cred data structure was introduced anthins the uid, euid, gid, and egid fields.

struct task struct {

/% pointers to next and previous task struct in the task vector ¥
struct task struct *next task, Fprev task;

int pid;

/% pointers to (original) parent process, youhgest child, younger sibling,
older =ibling, respectiwvely. */

struct task struct *p opptr, Fp pptr, *p eptr, *p ysptr, Fp osptr;

/% process credentials */

unsigned short uid,euid,suid,fauid;

unsigned short gid,egid,sgid, fagid;

Struct mm struct *mm;

b:

Figure 5.15 The task_struct data structure.
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struct task struct {

ééést struct cred *cred;
b
struct cred {

uid uid: /% real UID of the task */

gid £ oid; /* real GID of the task */

uid £ suid; /% zaved TID of the task */

gid © =gid; /% zaved GID of the task */

uid ¢ euid; /* effective UID of the task */
gid © egid; S effective GID of the task +/
uid ¢ fauid; JS* UID for VF3 ops %/

gid £ fagid: J% GID for VF3 opz */

Figure 5.16 The task_struct and cred data strustarkinux kernel versions >= 2.6.29.

5.4.4.1.2 Rootkit Attacks on Process Credentials

To alter the process's credentials in the kernedioes < 2.6.29, Linux rootkits overwrite
the credentials fields with 0 as shown in Figurg75.Later 2.6 Linux versions adopted a cred
structure to hold all information related to thevipeges of a process. To alter the process's
credentials in the kernel versions >= 2.6.29, ritethverwrite the credentials as shown in Figure
5.17. The prepare_creds function first preparesea set of credentials by allocating and
constructing a duplicate of the process's credentidhe commit_creds function commits the
new credentials to the current process. To simphfy privilege escalation path, a number of
rootkits simply find another process that has theilpges of root and that never exits, usually
PID 1, and set the cred pointer of the target m®de that of PID 1's. This effectively gives the
attacker’s process full control, and the rootkieslonot have to attempt the non-trivial task of

allocating its own cred structure.
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#if LINUX VERIION CODE < KERNEL VERIICN(Z, &, 29)

current->uid = gurrent->gid = 0O;
current->euid = current->egid = 0:
current->suid = current->sgid = 0:
current->fsuid = current->f=gid = 0;

fielse
hew = prepare creds(];
if | new !'= WNULL ) {

new->uid = new->gid = 0O;
new-r>euid = new-regid o;
new->suid = new-rsgid = 0;
new->fzuid = new->fzgid = 0;

commmit creds (new):
H
#endif

Figure 5.17 Rootkit attacks on process credentialsnux OS.

5.4.4.2 Implementation

5.4.4.2.1 New Process Detection

To intercept process creation operations, ATOM ke#gack of the forward and
backward pointers in the init_task structure. If @V observes a write to the forward or the
backward pointer on the page containing the insk tstructure, it traverse the processes list to
determine if a new task_struct structure has beeated or if an existing process has been
terminated. As soon as the back-end component @MTdetects a new process in a VM, it

suspends the VM, and notifies ATOM'’s front-end cament to take over.

The rtkdsm_linux.py plugin implemented in the RTKIDSystem operates similarly to
the rtkdsm.py plugin in Windows OS. The process'edentials are found in the physical
memory using the corresponding task_struct datetstre. The rtkdsm_linux.py plugin reads the

values of the uid, euid, gid, and egid containetthiwithis data structure.
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5.4.4.2.2 Credentials Monitoring

ATOM performs continuous monitoring of the processtedentials. The monitoring

involves the following steps:

1) Using the rtkdsm_linux.py plugin, ATOM accesses aades the values of the uid, euid,

gid, and egid;

2) The front-end component requests the RTKDSM sydteroalculate memory ranges
containing the uid, euid, gid, and egid fields. Teck-end component is notified to

monitor the calculated ranges for writes.

3) If a write is detected at a monitored memory regibe front-end component is notified
by the back-end component to repeat the analystheotredentials. Depending on the
memory region for which the write has been deteatedclassify write instances into the

4 categories:

I.  True credentials stealing attacka write is detected at the cred field of the
task_struct data structure. The new value pointa t@lid cred data structure.
ATOM extracts the new values of the credentialspngares them to the
previously saved values, and alerts the admingtrabout the changes. This

credentials stealing attack is specific to the kimarsions >= 2.6.29 only.

ii. False credentials stealing attacka write is detected at the cred field of the
task_struct data structure. The new address isrdiif from the previous address,
and it points to an invalid cred. For instance|owing the process termination,
the cred field of the task struct structure is owdten as a result of the

task_struct data structure de-allocation.
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ii.  False credentials patching attacka write is detected to the uid, euid, gid, and
egid following a system call. We intercept the gaind setgid system calls using
the CLAW system call interception technique. If thete is caused by a system
call, we consider it a false credentials patchitigck and thus, do not notify the

administrator.

iv.  True credentials patching attack a write is detected to the uid, euid, gid, and
egid, and it is not caused by a system call. Usirgg rtkdsm_linux.py plugin,
ATOM extracts the new values of the uid, euid, gidd egid, compares them to
the previously saved values, and alerts the adtratds about the changes. The

credentials patching attack may occur in all Li2& versions.

5.4.5Summary of Data Structures Monitored by ATOM

Table 5.2 provides a summary of the key data sirastactively monitored by ATOM.

5.5 Evaluations

5.5.1 Experimental Setup

Our testbed consisted of a virtualized server tisad Xen version 3.3 as the hypervisor
and Ubuntu 9.04 (Linux kernel 2.6.26) as the kefaelDomO. The host system had Duo CPU
P8600 processor running two cores at 2.4GHz and @GHstem memory. The ATOM system
was installed in the DomO domain. In addition, theualized server hosted a DomU domain
running a default installation of Windows XP OS lwihe IS web server. This domain was

configured with 512Mb RAM.
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Table 5.2 Summary of the data structures monitbygedTOM.

(O Data Structures (Fields) Actions Taken

PsActiveProcessHead (Flink,Blink)On write, traverse the processes lists to
determine if a new EPROCESS structyure
has been created or if an existing progess
has been terminated.

_EPROCESS (Token) On write, the front-end component |is
notified by the back-end component |to
repeat the analysis of the token.

Windows

_TOKEN (UserAndGroupCount, | On write, the front-end component |is
UserAndGroups, Privileges) notified by the back-end component |to
repeat the analysis of the token.

init_task (next, prev) On write, traverse the processes lists to
determine if a new task_struct structure
has been created or if an existing progess

. has been terminated.
Linux

task_struct (uid, euid, gid, egid) | On write, the front-end component |is
notified by the back-end component |to
repeat the analysis of the credentials.

5.5.2 Experiments

5.5.2.1 Effectiveness

5.5.2.1.1 Token Patching Attack

To demonstrate the effectiveness of the ATOM ired@tg token patching attacks, we
performed an attack using the Fu rootkit [70, Fj.allows the intruder to hide information from
user-mode applications and kernel-mode modulesitagtty modifying kernel data structures

used by the operating system, such as, removingegritom the process and loaded modules
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linked lists. In addition, Fu is capable of modifgi a process's token to change the process’s

privileges and replacing the process’s owner SID.

Prior to the attack, the Fu rootkit was loadedhia test VM. The malicious process was
then started in the VM. The ATOM system runninghe “always-on” mode detected the new
process and began monitoring its token. The Fukiowtas directed to modify the malicious
process’s privileges and SIDs contained in theriokdie ATOM system detected the writes to

the token and alerted the administrator about tiaela

We further performed a token patching attach wiith $ystem running in the “periodic
polling” mode with the timing parameter T set to B&ec. We modified privileges in the
malicious process’s token and immediately restdiezin to their original values to avoid
detection. Although the first write was detected AYOM, the overall attack involving
overwriting of multiple privileges was not. Desp@@ improved performance in the “periodic
polling” approach as was shown in Chapter 2, theritulic polling” mode reduced the ATOM
effectiveness and provided a lesser degree of @ssewr The experiment illustrated that system
execution in the “periodic polling” mode introducedwindow of vulnerability between two
consecutive checks on the monitored data structhi@sever, by setting the timing parameter T

to 5 msec, the ATOM system was routinely able tectehe token patching attempts.

5.5.2.1.2 Token Stealing Attack

To demonstrate the effectiveness of the ATOM systandetecting token stealing
attacks, we performed a token stealing attack usiagattack code presented in [72]. We started
two processes in the test VM — a victim processning with the privileges of the

“Administrators” user group and a malicious procagsming with the privileges of the “Users”
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user group. The ATOM system running in the “alway$-mode detected the new processes and
began monitoring their tokens. The token stealmgeccopied the desired access token from the
victim process and exchanged the original valuthefToken field in the malicious process with
the address of the copied token. Following thisrafpen, the malicious process had the same
access rights as the victim process. The ATOM sgystetected the write to the Token field of

the malicious process and alerted the administediout the attack.

5.5.2.2 Performance Assessment

The VM performance is impacted by the following AWIGnonitoring components: (1)
monitoring of the PsActiveProcessHead structurg; rinitoring of the EPROCESS data
structures; (3) monitoring of the TOKEN data stwies; (4) CLAW system call interception.
The performance impact of the PsActiveProcessHEREROCESS, and TOKEN data structure
monitoring using the RTKDSM system in “always-omida‘periodic polling” mode was shown
in Chapter 2. The performance impact of the CLAVgtem call interception was shown in

Chapter 4.

5.6 Summary

We presented a detection system called ATOM thad ube RTKDSM system to
intercept DKOM-based access token manipulatiorclestéargeting non-control data. This class
of attacks is difficult to detect using the exigtiefensive methods for control-data manipulating
attacks. The ATOM defensive approach consisted afitaring all write accesses to memory
pages containing access tokens of running procemsgésreal-time analysis of tokens when

updates targeting privileges in a token were detecto avoid false positives caused by the OS
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supported token-modifying system calls, we insthl&e system call interception mechanism
enabling ATOM to differentiate between writes caligy system calls vs. DKOM writes. Our
evaluation of ATOM showed that the system was &bkiccessfully detect DKOM-based token

manipulation attacks using the presented techniques

The semantic knowledge and memory locations of datzctures targeted by DKOM
attacks were the key data required by our impleatemt. Both of these data could be obtained
through the Volatility framework for any of its qumrted data structures and provided as an
input into the ATOM system making the ATOM approatirectly applicable for protection of

other critical data structures that might be taxddty DKOM attacks.
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6 Conclusions and Future Work

6.1 Conclusions

Over the last few years, VMI technology has evoltednonitor VM behavior in an
agentless fashion. VMI provides a constellationnddérmation about the states of all running
VMs making the agentless approach superior to rdmditional in-host agent-based monitoring.
The contribution of VMI is especially prominent security tools, such as virus scanners and
intrusion detection systems. By de-coupling segutdols from the internal OS execution

environment, VMI makes them resilient to maliciattacks.

However, the VMI approach comes at a cost - VMIligggions must deal with the
semantic gap issues requiring extensive knowledgk raconstruction of the guest OS data
structures. Reconstruction is commonly done fromatsh leading to correctness challenges,
increasing the likelihood of buggy introspectiongdimiting flexibility and extensibility of VMI
tools. As a result, generality of manual reconsioms is poor since the VMI tool is tied to the

guest OS. This problem is exacerbated if the gD&sts closed-source.

As forensic analysis tools aim to tackle many & s#ame issues that plague VMI tools,
the forensic community has already done much ofmbik bridging the semantic gap to support
multiple operating systems and a large number ofiddedata structures. Several VMI studies
have previously proposed the use of forensic methawdd tools for rapid data structure
reconstruction. However, existing forensic analys@s are designed for an offline analysis and
thus, lack capabilities required by VMI tools toplament active monitoring techniques capable

of analyzing and detecting events as they occur.
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6.1.1 RTKDSM

This research focuses on describing the RTKDSM éramork designed tautomatically
reconstruct kernel data structures of interest @émdcontinuously monitor states of the
reconstructed data structures in real-time to stigaziive monitoring. The RTKDSM system is
the first VMI framework leveraging a forensic frawmk to track changes in the reconstructed
data structures in real-time. By building on toptbé forensic tool acumen, the RTKDSM
system reduces the complexity of developing VMIlmapions associated with data structure
reconstruction and by extension the likelihood ofdpy introspection. Leveraging the Volatility
framework, the RTKDSM system eliminates effort dogions supporting the common modular
motif in computer science. These ideas have beeviqusly proposed but not developed to be
practically usable. This objective has been acliewethis study. The RTKDSM system is
capable of supporting a wide range of VMI applicas due to the RTKDSM framework’s
flexibility and extensibility, which has been langi until now. This research has demonstrated
effectiveness and practicality of the RTKDSM franoekv by building three novel system
prototypes, vCardTrek, CLAW, and ATOM, which candmsily adapted for data flow tracking

and security monitoring in industrial settings.

6.1.2vCardTrek

vCardTrek is the first published example of a VM$tem used for the development of a
VMI tool for data flow tracking, thus moving the romept of VMI-based monitoring beyond the
usual virus and intrusion detection applicationsordbver, the main difference between
vCardTrek and other tools with a similar goal istthy applying VMI, it does not rely on

machine or application instrumentation when deaintin multiple machines. The conceptual
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framework devised in this work could be applieddesigning similar tools for real-world

payment card processing applications running ohwedd computing environments.

Table 6.1 Summary of the data structures used layd/Gek, CLAW, and ATOM.

System Data Structures

ADDRESS_OBJECT
vCardTrek TCPT_OBJECT

EPROCESS

PsActiveProcessHead
CLAW PEB_LDR_DATA

init_task

PsActiveProcessHead
EPROCESS

ATOM TOKEN

init_task

task_struct

6.1.3CLAW and ATOM

The problems addressed by CLAW and ATOM systemshadlenging because of the
four restrictive requirements: (1) acting in a @etive mode, that is, the ability to detect events
as they occur, (2) OS-independence, that is, nafroations to the monitored OS or installation
of agents inside the OS, (3) direct applicabilityte approach to HVYM machines, which are the
main stream in virtualization, and (4) finally, thbility to intercept system calls selectively. The
main difference between these tools and other pusly published tools with similar goals is the

ability to address the four requirements in ondesysmade possible due to the novelty of the
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RTKDSM and CLAW system call interception technigdeseloped in this dissertation.

6.2 Future Work

6.2.1RTKDSM

The RTKDSM system currently provides a solid fouratafor active monitoring in a
virtualized environment. Yet, our experience wogkiwith the RTKDSM system highlighted
some areas that would benefit from additional ne$eaAn important problem that needs to be
addressed by the future research is how to enaklRTKDSM system to automatically and
dynamically choose between the “always-on” and‘gegiodic polling” mode without affecting
VMI applications’ performance and the timelinessdaftection. Our research has shown that
some data structures are consistently allocatednemory pages that experience frequent
spurious updates unrelated to the data structsedf ihaking the “periodic polling” mode more
suitable for monitoring of such data structures. this group of data structures, the next step is
to quantify the number of kernel data structureanges that may be missed as a result of
different polling frequencies in the “periodic go§” mode to help determine the optimal polling
interval to ensure timeliness of detection. Oueagsh has also shown that some data structures
are allocated in memory pages that are rarely egdd#bereby monitoring of such data structures
can be done in the “always on” mode without impagtihe performance. Hence, the next stage
of our work is to investigate memory locations coomio various data structure types and to
add capabilities to the RTKDSM system to dynamyceloose the appropriate monitoring mode
depending on the data structure type. Furthermmoaehine learning techniques may be applied
to efficiently train the RTKDSM system to choosetvibeen the “always-on” and “periodic

polling” mode.
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6.2.2ATOM and CLAW

From our experience developing the ATOM system, nbgt stage of this work is to
generalize the ATOM approach by applying it to &folatility-supported data structure type.
This step will require updating the CLAW systeml @allerception mechanism with system calls
lists relevant to various data structure types kmglbhe extensibility of the ATOM approach to
detection of DKOM attacks on any kernel data stmectBecause the RTKDSM approach is able
to detect changes in general, rather than focusmgspecific symptoms of known DKOM
attacks, the future ATOM system will be able toedetoth known as well as unseen previously

DKOM attacks.

6.2.3vCardTrek

The next stage of our vCardTrek work is to devebkypport for persistent TCP
connections and intra-host cross-process commumisatSpecifically, in our implementation,
we monitor TCP connections to track card data ffmnoss multiple VMs. vCardTrek initiates a
search of the memory of a VM only when it is invadvin a newly established TCP connection.
In the future, we plan to support persistent TCRneations, which may stay open for a long
time and service multiple transactions. Also, ooarse-grained data flow tracking mechanism
does not currently handle data flow tracking ofssrprocess communications within the same
VM. More research is required to determine the mixte which data flow tracking can be
implemented via cross-process intra-host TCP cdiores; pipes, and shared memory. This is
an important direction of future research. Finallye would like to conduct additional
evaluations of vCardTrek on testbeds that mimicdpotion environments to identify actual

limitations of the tool's current design or implemgtion.
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