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Abstract of the dissertation
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High-Dimensional Data Mining

by
Hao Huang

Doctor of Philosophy
in

Computer Science
Stony Brook University

2014

Abstract:
Today’s modeling and analysis of high-dimensional data is either based on hu-

man expertise to hand-craft a set of task-specific data, which suffers significantly
from the ever-increasing complexity and the unknown patterns of the new data; or
is based on simple data-driven approaches which tend to lose the fundamentally
physical insights of real world datasets. Therefore, it is very difficult with today’s
modeling practice to efficiently, effectively, and unsupervisedly detect reliable pat-
terns and information in high-dimensional data. In this dissertation, we developed a
scalable data modeling framework that utilizes modern theoretical physics for unsu-
pervised high-dimensional data analysis and mining. Not only does it have a solid
theoretical background, but it is capable of handling different tasks with different
capability (clustering, anomaly detection and feature selections, etc.). This frame-
work also has probabilistic interpretation that avoids the sensitivity from scaling
parameter tuning or noise appearance in real world applications. Furthermore, we
presented a fast approximated approach to make such a framework applicable on
large-scale datasets with high efficiency and effectiveness.

During my dissertation research, we made the following salient contributions:
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1. We proposed a diffusion-based Aggregated Heat Kernel (AHK) to improve
the clustering stability, and a Local Density Affinity Transformation (L-
DAT) to correct the bias originated from different cluster densities. Our pro-
posed framework integrates these two techniques systematically. As a result,
it not only provides an advanced noise-resisting and density-aware spectral
mapping to the original datasets, but also demonstrates the clustering stabili-
ty during the process of tuning the scaling parameters.

2. We devised a Local Anomaly Descriptor (LAD) that faithfully reveals the
intrinsic neighborhood density to detect anomalies. LAD bridges global and
local properties, which makes it self-adaptive with different samples’ neigh-
borhood. To offer better stability of local density measurement on scaling
parameter tuning, we formulated a Fermi Density Descriptor (FDD). FD-
D steadily distinguishes anomalies from normal instances with most of the
scaling parameter settings. We also quantified and examined the effect of
different Laplacian normalizations with the purpose of detecting anomalies.

3. We developed a robust feature selection algorithm, called Noise-Resistant
Unsupervised Feature Selection (NRFS). It measures multi-perspective
correlation that reflects the importance of features with respect to noise-
resistant instance representatives and different global trends from spectral de-
composition. In this way, the model concisely captures a wide variety of local
patterns, and selects representative features with high quality.

4. We mitigated the space and time complexity of spectral embedding in order
to apply the above techniques to real-world large data mining, by proposing
a Diverse Power Iteration Embedding (DPIE). We tested DPIE on various
applications (e.g., clustering, anomaly detection and feature selection). The
experimental results showed that our proposed DPIE is more effective than
popular spectral approximation methods, and even obtains the similar quality
of classic spectral embedding derived from a classic eigen-decompositions.
Moreover, DPIE is extremely fast on big data applications.
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Finally, we provided a brief introduction of our on-going work and future re-
search directions. By elaborating our developed works within the proposed frame-
work, we showed that our scalable physic-based unsupervised data modeling is
potent and promising for large-scale and high-dimensional data analysis, data min-
ing, and knowledge discovery. It is a rich and fruitful area for research in terms of
both theory and applications.
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Chapter 1

Introduction

1.1 Problem Statement and Motivations

The last decade has brought a large amount of high-dimensional data col-
lected in business and scientific area. The related databases and information
sources are available through advanced devices covering different dynamic do-
mains: atmosphere, medicine, biology, and social network, etc. These data are
high-dimensional, large-scale, nonuniformly distributed, and with unprecedented
patterns. Such fact arises one of the greatest challenges in data mining and knowl-
edge discovery: to efficiently and unsupervisedly discover unprecedented pattern
within the large-scale and high-dimensional datasets, and especially, to design fast,
unsupervised and robust data modeling framework with ability from global
pattern mining to local feature detection.

The importance and difficulty of this unsupervised data modeling is leading to
the fundamental study increasing of multi-scale manifold learning, from the basic
geometric characteristics such as curvature [105] and geodesics distances [104], to
intrinsic topological structure [10] [18] [38] [39] [52] [136], and other particular
features [6].

A high-dimensional dataset can be represented as a collection of high-
dimensional points in Rm, where m is the number of dimensions or features. Three
problems with different perspectives about such kind of dataset have been under
spotlight for the last decades: clustering, anomaly detection, and feature selection.
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Clustering, or cluster analysis, is the unsupervised task of grouping a set of objects
in such a way that objects in the same group (called a cluster) are more similar (in
some sense or another) to each other than to those in other groups (clusters). In
other word, clustering is to automate the extraction of global representative pattern-
s, and to label each object accordingly. On the other hand, anomaly detection (or
outlier detection) is the identification of items, events or observations which do not
conform to an expected pattern or other items in a dataset. Typically, the anoma-
ly detection can be translated to the problem of deciding which data points show
special or suspicious distribution patterns compared with the other points. Feature
selection, also known as attribute selection, is the process of selecting a subset of
relevant features for use in model construction. Its central assumption is that the
data contains many redundant or irrelevant features. Redundant features are those
which provide no more information than the currently selected features, and irrele-
vant features provide no useful information in any context.

Towards these three directions respectively, researchers in recent years have
explored various techniques. However, given less and even no prior knowledge
of the unseen patterns and noise appearance in real world applications, researches
about unsupervised and robust data modeling considering clustering, anomaly de-
tection and feature selection in the same framework are rather rare. On the other
hand, high efficiency and effectiveness of any proposed methodology and frame-
work are both indispensable and essential on real world large-scale applications.

Our work is inspired by a physics-based diffusion theory, since it has built-in
multi-scale property and strong probabilistic interpretation. Diffusion theory has
been one of the research hot topics in the last decade, because it has robustness
against data perturbation and the curse of high dimensionality. Diffusion distance
is based on Markov matrix, which is a stochastic representation of random walk on
a graph [103]. It can consider up to t steps out of all the possible paths bridging any
two points, which makes it much more comprehensive than other measurements
such as geodesic distance [27]. In other word, diffusion distance has a potential to
be more stable to data perturbation via a family of diffusion maps [28].

One promising option among all the diffusion techniques is heat diffusion [56]
[23] [68]. Heat diffusion describes the exchange of thermal energy between phys-
ical systems by dissipating heat. Heat equation, a formula describing the process
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of heat diffusion, can be naturally used to build multi-scale representation on mani-
folds and graphs. One advantage of heat diffusion is that it integrates both the topo-
logical information of manifold and the multi-scale property of scatter data togeth-
er. Another advantage is that it provides robust representation of high-dimensional
datasets by computing the average probability from the diffusion process. In the
next few sections, we explore the utility of heat diffusion on data analysis.

1.2 Research Challenges

Data modeling is a process that lies in between data collection and subsequent
analysis tasks such as model optimization [119]. Due to different applications, it
can be classified into varying types. Different researches precede the applications
in conventional machine learning domain, such as stochastic state space planning
[119], clustering [109], anomaly detection [19] and feature selection [44] [123]. In
this dissertation, the overall theme of our research is to efficiently, stably and un-
supervisedly model data within different perspectives and applications. Challenges
that our research faced include the following aspects.

• Unsupervised Data Modeling for Diverse Applications
Unsupervised data modeling raised in the domains of not only machine learn-
ing, but also computer vision and medical imaging. With more and more mas-
sive scientific datasets having unprecedented patterns from new scientific do-
mains, we need to detect the useful and new patterns without any prior knowl-
edge. According to different applications, information would be in demand
on different perspectives. However, with the exiting techniques, the problem-
s of unsupervised data modeling that can handle different applications can
be quite difficult: when we concentrate on global data distribution with the
purpose of clustering, the embedded structure must be invariant to local data
perturbation by covering comprehensive global information; local anomaly
detection, on the other hand, should describe local density which is intrinsic
and informative on its adaptive or even limited neighborhood. In a common
way, both of the global and local patterns are determined only by visible
neighborhood while avoiding negative effects such as noise appearance, over
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diffusion (with too large scaling parameters), or losing intra-connection insid-
e clusters (with too small scaling parameters). In our research, we introduced
an unsupervised framework for high-dimensional data modeling, where ba-
sis functions emerge from the dilatory actions of a diffusion operator on the
graph, such as random walk, and functions over parameter space are progres-
sively remapped into low-rank-frequency atoms, with parameters to control
different scopes.

• Robust Data Modeling and Analysis
Data modeling and analysis is of little use if the results are radically-different
when the scaling parameters of algorithms are slightly modified or even with
very little noise perturbation. We call such susceptibility the sensitivity of
algorithms, and one of the most desirable properties of data modeling is ro-
bustness. In our research, we introduced a few robust algorithms with the fol-
lowing advantages: (1) not sensitive to any small change of parameters; (2)
not sensitive to data perturbation; (3) non-degraded performance even with
significant noise level or less-correct parameter settings; and (4) competitive
and comparable results when comparing with those less-robust algorithms
without any data perturbation and with correct parameter settings. With these
robustness properties, we can reliably analyze data and conduct other data-
driven tasks in succeeding analysis steps. The robustness property is equally
significant for domain experts who do not have strong machine learning back-
ground as they become much more comfortable in utilizing robust algorithms.
In short, we propose robust algorithms with comparably stable performance
under noise perturbation and parameter tuning.

• Density-sensitive Clustering Algorithms
Many clustering algorithms assume uniform or similar density distribution
among different clusters [100], and this assumption does not always reflect
the real world data distribution. To alleviate this assumption, previous works
used the local density information by incorporating a local scaling parameter
into the kernel functions [156] [160] or approximating the local density [153]
[30]. However, problems still exist because either the parameters are sen-
sitive to heterogeneous density distributions [156] [30], or such algorithms
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could not precisely reflect local density [160] [153]. In our work, we pro-
posed a novel affinity transformation to correct the bias from different density
distribution effects across clusters in affinity matrix.

• Universally Applicable Algorithms on Various Kernel Functions
Most of the current existing algorithms which target on the above problems
could only be applicable to a small number of applications, e.g. some mea-
surement only works on Euclidean space. In our research we designed a
generally applicable framework by proposing methods only based on general
affinity matrix instead of certain space or kernels, and such methods work
well with any type of kernel functions. Such a feature distinguishes our work
from other approaches in handling more diverse and complex real world prob-
lems.

• Multi-Perspective Feature Selection
Feature importance is usually more about a “local” conception than a “global”
one. To obtain a better representative feature subsets, the feature impact to
different low-embeddings or spectrums need to be considered [35]. Besides,
the view of instances is also indispensable since some features may only have
strong correlation with certain instances with respect to certain spectrums.
Therefore it is necessary to design a feature selection algorithm built upon
multi-perspective correlations. Our proposed algorithm selects features under
local context instead of global context, therefore it has a local view from both
the instance and feature perspectives, and measure their local correlations
with the global spectrums. Therefore, it provides a more informative feature
selection strategy.

• Efficient Approximation of Spectral Embeddings
One foundation of our research framework is spectral embedding construc-
tion, which is one of the most effective dimension reduction algorithms in
machine learning and data mining [100]. However, its associated high com-
plexity in both time O(n3) and space O(n2) prevents it from practical uti-
lization in many large-scale real-world applications. Many researches have
developed a few approximate spectral embeddings which are more efficient,
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but meanwhile far less effective. In this research we introduced an efficien-
t and effective approximation to spectral embedding. So that our proposed
techniques can be easily applied to the large-scale real-world applications
with desired quality.

Figure 1.1: Our proposed physics-based unsupervised data modeling framework
and the derived techniques.

1.3 Research Contributions

In this dissertation, we present a scalable physics-based data modeling frame-
work (see Figure 1.1) for unsupervised high-dimensional applications. Particularly
speaking, our contributions in this research include:

• Density-Aware Clustering based on Aggregated Heat Kernel and Its
Transformation
We proposed a diffusion-based Aggregated Heat Kernel (AHK) to improve
the clustering stability, and a Local Density Affinity Transformation (LDAT)
to correct the bias originating from different cluster densities. AHK aggre-
gately models the heat diffusion traces along all the time scales, so it ensures
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robustness during clustering process, while LDAT probabilistically reveals
local density of each instance and suppresses the local density bias in the
affinity matrix. Our proposed framework integrates these two techniques
systematically. As a result, not only does it provide a noise-resisting and
density-aware spectral mapping to the original dataset, but also demonstrates
the stability during the process of tuning the scaling parameters (which usu-
ally control the range of neighborhood). Furthermore, our framework works
well with the majority of similarity kernels, which ensures its applicability
to many types of data and problem domains. The systematic experiments on
different applications showed that our proposed algorithms outperform state-
of-the-art clustering algorithms, and achieve robust clustering performance
with respect to tuning the scaling parameter and handling various levels of
noise. This work is documented in Chapter 3. Our publications related to this
work include:

– Hao Huang, Shinjae Yoo, Hong Qin and Dantong Yu, “A Robust Clus-
tering Algorithm based on Aggregated Heat Kernel Mapping”, in Pro-
ceedings of IEEE International Conference on Data Mining 2011 (IEEE
ICDM 2011, acceptance rate: 12.2%).

– Hao Huang, Shinjae Yoo, K. Kaznatcheev, K. G. Yager, F. Lu, Dan-
tong Yu, O. Gang, A. Fluerasu and Hong Qin, “Diffusion-based Clus-
tering Analysis of Coherent X-ray Scattering Patterns of Self-assembled
Nanoparticles”, in Proceedings of the 29th Symposium on Applied
Computing 2014 (ACM SAC 2014, Data Mining track, acceptance
rate: 23.2%).

– Hao Huang, Shinjae Yoo, Dantong Yu and Hong Qin, “Density-aware
Clustering based on Aggregated Heat Kernel and Its Transformation”,
submitted to ACM Transactions on Knowledge Discovery from Data,
under second round revision.

• Physics-based Anomaly Detection Defined on Manifold Space
We proposed two unsupervised anomaly detection algorithms through dif-
ferent theoretical physics domain. Building upon the embedding manifold
derived from heat diffusion, we devised Local Anomaly Descriptor (LAD)
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which faithfully reveals the intrinsic neighborhood density. It uses a scale-
dependent umbrella operator to bridge global and local properties, which
makes LAD more comprehensive within an adaptive scope of neighborhood.
To offer more stability of local density measurement on scaling parameter
tuning, we formulated Fermi Density Descriptor (FDD) which measures the
probability of a fermion particle being at a specific location, that correspond-
s to the neighborhood density. By choosing the stable energy distribution
function, FDD steadily distinguishes anomalies from normal instances with
most of the scaling parameter settings. To further enhance the efficacy of
our proposed algorithms, we explored the utility of Anisotropic Gaussian K-
ernel (AGK) which offers better manifold-aware affinity information. We
also quantified and examined the effect of different Laplacian normalizations
for the purpose of anomaly detection. Comprehensive experiments on both
synthetic and benchmark datasets verified that our proposed algorithms out-
perform the existing anomaly detection algorithms. This work is recorded in
Chapter 4. The related publications include:

– Hao Huang, Hong Qin, Shinjae Yoo and Dantong Yu, “Local Anomaly
Descriptor: A Robust Unsupervised Algorithm for Anomaly Detection
based on Diffusion Space”, in Proceedings of ACM Conference on In-
formation and Knowledge Management 2012 (ACM CIKM 2012, ac-
ceptance rate: 13.4%).

– Hao Huang, Hong Qin, Shinjae Yoo and Dantong Yu, “A New Anoma-
ly Detection Algorithm based on Quantum Mechanics”, in Proceedings
of IEEE International Conference on Data Mining 2012 (IEEE ICDM
2012, acceptance rate: 19.9%).

– Hao Huang, Shinjae Yoo, Dantong Yu, and Hong Qin, “Physics-based
Anomaly Detection Defined on Manifold Space”, ACM Transactions on
Knowledge Discovery from Data 2014, 9(2) (ACM TKDD 2014).

• Noise-Resistant Unsupervised Feature Selection via Multi-Perspective
Correlations
We designed an advanced feature selection strategy, called Noise-Resistant
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Feature Selection (NRFS), based on multi-perspective correlation computa-
tion that is effective and robust to both noisy observations and features. By
selecting representative instances via density distribution statistics, we re-
duced the occurrence of the noisy observations. For each feature, we com-
puted its local correlation with each instance and each global spectrum (or
trend) of data to find the most informative features. Noisy features tend to
have lower local associations with all the the global spectrums and represen-
tative instances compared with the informative ones, while the locally infor-
mative features show strong associations to at least one global spectrum and
some representative instances. We thoroughly considered all the correlation
scores from different perspectives to obtain the comprehensive and yet non-
redundant feature subset. We introduce this work in Chapter 5. The related
publication is:

– Hao Huang, Shinjae Yoo, Dantong Yu and Hong Qin, “Noise-Resistant
Unsupervised Feature Selection via Multi-Perspective Correlations”,
accepted by IEEE International Conference on Data Mining 2014 (IEEE
ICDM 2014, acceptance rate: 9.7%).

• Diverse Power Iteration Embeddings and Its Applications
To resolve the impracticality of spectral embedding due to its computational
complexity, and at the same time maintain its effectiveness, we proposed a
novel power-iteration-based method, called Diverse Power Iteration Embed-
dings (DPIE). DPIE aims to find diverse and yet informative low dimensional
embeddings, which is different from the single or very-close embedding vec-
tors from previous power iteration methods. In theory, our proposed DPIE has
the same or similar representational power of classic spectral embeddings, so
that it can be applicable to various spectral analysis. Compared with the ex-
isting spectral embedding approximations, DPIE achieves a similar or even
lower time and space computational complexity, but a more desired quali-
ty. We systematically evaluated DPIE on a number of important applications
(e.g. clustering, anomaly detection, and feature selection). The results con-
firmed that our proposed DPIE significantly outperforms other existing algo-
rithms in terms of both effectiveness and efficiency. The work is described in
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Chapter 6 in details and the related publication is:

– Hao Huang, Shinjae Yoo, Dantong Yu and Hong Qin, “Diverse Power
Iteration Embeddings and Its Applications”, accepted by IEEE Interna-
tional Conference on Data Mining 2014 (IEEE ICDM 2014, acceptance
rate: 9.7%).

1.4 Dissertation Organization

The remainder of this dissertation is organized in the following fashion. In
Chapter 2, we begin with background theory review and analyze their properties.
In Chapter 3, 4, 5, 6 we introduce our major works. In Chapter 3, we present robust
clustering methods with affinity transformation for heterogeneous density clusters
that against scaling parameter tuning and noise sensitivity. Chapter 4 introduces two
unsupervised anomaly detection algorithms: one is a heat-diffusion-based anomaly
detection, another is a quantum-mechanics-based algorithm with strong probabilis-
tic interpretation. Chapter 5 presents a noise-resistant unsupervised feature selec-
tion algorithm based on multi-perspective correlation measurement. In Chapter 6
we describe a spectral embedding approximation, which is both efficient and ef-
fective for large-scale datasets. Therefore it makes our framework practical in real
world applications. Finally, Chapter 7 summarizes our contributions on the finished
work and also discusses our ongoing work and future research directions.
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Chapter 2

Background Theory

Our framework is based upon Laplace operators, spectral analysis and heat
diffusion. In this chapter we briefly review the basic ideas of related techniques and
analyze their properties.

2.1 Graph Laplacians

Laplace operator, when it is applied on spectral analysis and methodology, is
usually called graph Laplacian. Here we introduce the classic unnormalized and
normalized graph Laplacians on finite weighted graphs.

We denote X ∈ Rn×m as a dataset with n instances, each instance has m
features. Its similarity (or affinity) matrix W ∈ Rn×n represents the pair-wise
likeness of instances considering the whole feature space. The degree matrix D ∈
Rn×n is defined by D(i, j) =

∑n
p=1W (i, p) if i = j, and 0 otherwise. Then the

unnormalized Laplacian matrix Lnn ∈ Rn×n can be defined as:

Lnn = D −W, (2.1)

which is the difference between the degree matrix D and the similarity matrix W
of the graph. The nice properties of Lnn has been discussed in [100]. One of the
most important ones is that Lnn has as many eigenvalues 0 as there are connected
components, and the corresponding eigenvectors are the indicator vectors of the
connected components.
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There are two common ways of normalizing Lnn to correct its bias of different
density [100][28], one is the symmetric normalized Laplacian matrix Lsym ∈ Rn×n,
and the other is random walk normalized Laplacian matrix Lrw ∈ Rn×n:

Lsym = D−1/2LnnD
−1/2. (2.2)

Lrw = D−1Lnn. (2.3)

The matrix Lsym has the advantage of being symmetric therefore it has a more
balance view in the instance neighborhood, while Lrw is a stochastic matrix which
can be viewed as the transition matrix of a Markov chain on each instance.

To better depict the global distribution, Coifman et.al [28] analyzed these two
normalization and proposed a new normalization family. It is shown in [28] that
if we assume uniform sampling of data points from a sub-manifoldM, the eigen-
vectors of Lrw with σ → 0 and n → ∞, tend to approximate Laplace-Beltrami
operator onM, which guarantees manifold structure reconstruction. However, in
reality, the sampled data points tend to be nonuniform and show skewed density
distributions, resulting in poor manifold structure reconstruction. To improve the
global distributional sensitivity of traditional normalization, the following two ad-
ditional normalizations are considered in [28]:

Lfp = I −D−1W
′
, (2.4)

where W ′
= D−1/2WD−1/2, and

Llbn = I −D−1W
′′
, (2.5)

whereW ′′
= D−1WD−1. Lfp ∈ Rn×n is called Fokker-Planck normalization (FP),

and Llbn ∈ Rn×n is called Laplace-Beltrami normalization (LBN). Especially, LBN
can remove the influence of the dataset density and recovers manifold structures on
Mwith the condition of both σ → 0 and n→∞ [28]. In other words, the addition-
al re-normalization of affinity matrix W enables to reconstruct manifold structures
better under non-uniform density distribution for the purpose of clustering.

Graph Laplacian has been closely integrated into spectral analysis (Section
2.2). From any of the aforementioned L∗∗, we can obtain the corresponding eigen-
vectors. The first c (c � m) non-trivial eigenvectors with the smallest eigenvalues
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(except 0) are the most important signal components, which in theory form the man-
ifold structure of X [100]. Denote these c eigenvectors as Ψ ∈ Rn×c. Each row of
Ψ is the corresponding coordinates of each original instance in the manifold space,
while each column of Ψ (eigenvectors) represents an axis (dimension) in the man-
ifold space. These eigenvectors are orthogonal to each other and together provide
the compressed and embedding representation of the low-rank distribution of the
dataset.

As far as we know, there is no other research focus on the effect of different
Laplacians on clustering and anomaly detection within the same framework. In this
dissertation we analyze this problem with the modeling techniques we proposed.

2.2 Spectral Embeddings and Clustering

Spectral analysis already gained increasing popularity in the last decade be-
cause of its ability to discover embedding data structure. It has a strong connection
with graph cut, i.e., it uses eigenspace to solve a relaxed form of the balanced graph
partitioning problem [109]. Its second desirable aspect is that, with nonlinear k-
ernels it can capture the nonlinear structure of data, which is difficult for k-means
[60] or other linear clustering algorithms.

ALGORITHM 1: SpectralClustering(X , c)
Input: X ∈ Rn×m where n is #instances, m is #features, and c is #clusters.
Output: Cluster assignments of n instances.

1 Construct the affinity matrix W ∈ Rn×n;
2 Compute the diagonal matrix D ∈ Rn×n where D(i, i) =

∑n
j=1W (i, j) and

D(i, j) = 0 if i 6= j ;
3 Apply the graph Laplacian L ∈ Rn×n using Lnn = D −W ,
Lrw = I −D−1W or Lsym = I −D−1/2WD−1/2 where I ∈ Rn×n is an
identity matrix ;

4 Extract the first c nontrivial eigenvectors Ψ of L, Ψ = {ψ1, ψ2, . . . , ψc} ;
5 Re-normalize the rows of Ψ ∈ Rn×c into Yi(j) = ψi(j)/(

∑
l ψi(l)

2)1/2 ;
6 Run k-means with c and Y ∈ Rn×c.

Spectral clustering, as shown in Algorithm 1, usually starts with local infor-
mation encoded in a weighted graph which is constructed from certain similarity
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kernels on input data, and clusters according to the global eigenvectors of the corre-
sponding (normalized) affinity matrix. However, it has a few limitations as follows:

• The selection of the scaling parameter (if any) of similarity kernel could af-
fect the clustering results radically (as shown in Figure 2.1(a) and 2.1(b)) be-
cause the scaling parameter usually determines each instance’s neighborhood
scope.

• The clustering results are sensitive to noise. For instance in Figure 2.1(c),
with only a few noisy instances, the clustering result is quite different and the
optimal range of scaling parameter also varies.

• The reconstructed embedding structures may fail to represent the diversity of
density across clusters, which leads to clustering results with a poor quality
(as shown in Figure 2.2).

The above problems are partly due to the fact that the similarity kernels (or affinity
matrix construction) used in the spectral clustering are sensitive to the parameter
scaling and noise appearance [156]. In Section 2.3, we will describe some popularly
used similarity kernels. In Section 3.3 we will propose a robust clustering algorithm
against parameter and noise sensitivity.

(a) σ = 0.22 (b) σ = 0.23 (c) σ = 0.22 with nois-
es

Figure 2.1: The sensitivity example of NJW [109], one of the traditional spectral
clustering algorithms, with respect to different Gaussian scaling parameter σ and
noise appearance. The two output clusters are colored with red or blue. A small
variation to σ or data points (noise) leads to radically-different results. Such an
instability becomes an issue to traditional spectral clustering algorithms.

The second reason for the aforementioned problems is that (normalized) affin-
ity matrix cannot take the local density information into consideration, in particular
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for those data points between two clusters with heterogeneous densities. A syn-
thetic example of such problem is demonstrated in Figure 2.2. Section 3.4 will
introduce a simple and effective way of correcting the local density bias.
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(a) Original Dataset
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(b) NJW (W(GLS), σ(G) = 2),
NMI = 0.7186
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(c) RW (W(GLS), σ(G) = 2),
NMI = 0.5998
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(d) NN (W(GLS), σ(G) = 2),
NMI = 0.6731
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(e) ST (W(LCS), q = 3 in
σ(Li,p)),
NMI = 0.7333
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(f) SCDA (W(GLS), σ(G) = 2),
NMI = 0.7126

Figure 2.2: Clustering results of different algorithms on a synthetic dataset with
heterogeneous density distributions. Figure 2.2(a) shows the original dataset, where
the green and blue clusters with Gaussian distributions have higher density than
the red cluster with a uniform distribution. The clustering results of NJW (Figure
2.2(b)), RWC (Figure 2.2(c)) and NN (Figure 2.2(d)) are shown respectively, which
are not capable of capturing the density variation. For the localized method, ST
(Figure 2.2(e)) has better result since it has a locally adaptive scaling parameter (in
Equation 2.9), while SCDA (Figure 2.2(f)) reveals a similar density-awareness as
NJW. In short, none of the above methods provides a desirable separation that is
aware of both density change and manifold structures across clusters.
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2.3 Affinity Matrix Construction

Affinity matrix construction (the construction of W ) is the first step of spec-
tral analysis with significant influence to the final results. In practice it is derived
from certain similarity kernels. How to choose an appropriate similarity kernel is a
critical step in spectral analysis as different types of datasets might have different
preference for similarity measurements. There are several popular ways to measure
the similarity W (i, j) between any two instances x(i) and x(j). Here we focus on
introducing three of them: network connectivity, cosine similarity, and Gaussian
kernel.

Network Connectivity. Network datasets such as social networks, computer net-
works and biological networks, define affinity matrix based on their dataset repre-
sentations, which are often modeled as undirected graphs. Each edge has a weight
to describe the relationship between the two related nodes representing data in-
stances in the dataset. In a network dataset the simplest edge weight is usually
defined as the connectivity between two nodes. The simplest network connectivity
W(NET )(i, j) can be defined as:

W(NET )(i, j) =

1, if x(i) and x(j) are connected,

0, if x(i) and x(j) are unconnected.
(2.6)

In addition, we can model network datasets as directed graphs as well. A twitter
network with followers and followees is a good example of directed graph.

Cosine Similarity. A popular measurement for text dataset is the cosine angle
between two vectors [3]. The cosine similarity is represented using dot product and
magnitude as:

W(COS)(i, j) =
x(i)·x(j)

‖ x(i) ‖2· ‖ x(j) ‖2

. (2.7)

For text matching, the vectors x(i) and x(j) are usually the term frequency vec-
tors of the documents. Since term frequency is always positive, the resulting sim-
ilarity ranges from 0 meaning independence, to 1 meaning exactly the same, and
in-between values indicating intermediate similarity. The cosine similarity can be
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seen as a method of normalizing length during comparison, with denominator nor-
malizing each vector to compare different text sizes.

Gaussian Kernels. One of the most commonly used similarity measurements in
data mining is the Gaussian kernel, of which traditional form is defined as follows:

W(GLS)(i, j) = exp(
− ‖ x(i)− x(j) ‖2

2σ(G)
2

), (2.8)

where σ(G) controls the width of neighborhood [100] with a globally fixed value. So
we call this kernel as the global Gaussian kernel W(GLS). It is widely used because
it works well on many datasets with Gaussian distribution. However, its biggest
challenge is how to choose the value of σ(G), which affects the clustering results
significantly [156]. In other words, clustering result is very sensitive of tuning σ(G).
Besides, σ(G) is not adaptive to local density change.

Instead of selecting one globally-fixed parameter σ(G), Zelnik-Manor et al.
proposed to calculate a local scaling parameter σ(Li,k) for each data point in their
self-tuning spectral clustering algorithm (ST) [156]:

W(LCS)(i, j) = exp(
− ‖ x(i)− x(j) ‖2

σ(Li,k)σ(Lj,k)

), (2.9)

where the parameter σ(Li,k) is the Euclidean distance between x(i) and its k-th n-
earest neighbor (k-nn). This kernel uses k-nn distance to approximate the local
density, which is similar to the idea of Local Outlier Factor (LOF) [14]. Therefore
it can adaptively recognize the local density difference to some extent. However
it is extremely important to determine the value of k to faithfully reveal the local
density, as shown in [69]. On one hand, k cannot be too large to capture the local
distribution. On the other hand, an overly small k will lead to statistical error with-
out a sufficient neighborhood scope. This is to say, compared with global Gaussian
kernelW(GLS), local kernelW(LCS) shifts the degree of freedom, or sensitivity, from
σ(G) to k, which is still hard for users to specify.

Particularly, both Equation 2.8 and 2.9 may fail miserably on the boundary
area among clusters with different densities. Figure 2.3 shows a synthetic exam-
ple that both kernels fail to classify the red data point b. Here the blue cluster is
relatively denser than the green one. The point b lies between these two clusters
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Figure 2.3: Due to the similar density distribution, point b should belong to the
green cluster. However, both global and local scaling Gaussian kernels fail to clas-
sify point b due to their non-awareness of local density statistics.

with the same Euclidean distance to the closest data point in each cluster (namely
E(b, a) = E(b, c), where E(i, j) denotes the Euclidean distance between x(i) and
x(j)). When the density distribution is considered, point b should belong to the
green cluster because its local density is more similar to the density of the green
cluster. Therefore, the ideal similarity kernel should return W (b, a) < W (b, c) and
W (a, d) > W (a, b).

Nevertheless, the global Gaussian kernel, with a single scaling parameter, on-
ly obtains the right result on W (a, d) > W (a, b) because of E(a, d) < E(a, b),
while on the other hand returns W(GLS)(b, a) = W(GLS)(b, c) because of E(b, a) =

E(b, c). For the local scaling Gaussian kernel, we need to tune k very careful-
ly. If k = 5 there is σ(La,5) = E(a, b) and σ(Lc,5) = E(b, c), which also leads to
W(LCS)(b, a) = W(LCS)(b, c). Only if k < 5 it gives W(LCS)(b, a) < W(LCS)(b, c)

because of σ(La,k) < σ(Lb,k) ' σ(Lc,k). However, it will bring another issue: it
leads to W(LCS)(a, d) < W(LCS)(a, b) due to σ(Ld,k) < σ(Lb,k) when k < 5. The
same problem also shows up in Figure 2.2(e): although k is best tuned and ST has
additional adjusting steps to further boost the performance [156], it does not im-
prove performance substantially compared with NJW (only about 2% improvement
in NMI). In other words, both the global and local scaling Gaussian kernel cannot
accurately and stably differentiate the similarity differences with regards to local
density.
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Recently, Zhang et al. proposed a local density adaptive similarity kernel (SC-
DA) [160] which is defined as:

W(DA)(i, j) = exp(
− ‖ x(i)− x(j) ‖2

2σ2
(G)(fε(i, j) + 1)

), (2.10)

where fε(i, j) is the number of instances in the joint region of the ε-neighborhoods
around instance x(i) and x(j), and ε is the specified radius of the sphere neighbor-
hood region. It is claimed that fε(i, j) can represent the local density between x(i)

and x(j), and therefore W(DA) can be used to distinguish inter-cluster instances.
However, the way of choosing ε in [160] is by a linear regression with the input
parameters such as maximum and variance of all instance pairs in the test dataset.
Not surprisingly, it is highly unstable when SCDA is used on the other datasets in
an unsupervised way. Correa et al. proposed a similar idea using empty region [30]
which also suffers instability by a slight perturbation to the radius of region, espe-
cially on the complex high-dimensional datasets, due to the curse of dimensionality.
Figure 2.2(f) shows that SCDA performs quite similarly to NJW, and can neither
provide a convincing correction to the density bias.

2.4 Diffusion Distance and Diffusion Maps

Embedding reconstruction in spectral clustering (Step 1 to 5 in Algorithm 1)
are very sensitive to noise appearance and scaling parameter tuning (if it is built
upon the Gaussian kernels). Diffusion maps was proposed by Coifman et al. in
[28] to solve these problems.

Diffusion maps (DM) is a Markov-transition-based projection hinged on diffu-
sion process. The non-negativity property of the original affinity matrix W allows
to normalize it into a Markov transition matrix P = D−1W . The states of the
corresponding Markov process are data points, which enables us to analyze it as
(positive) random walk. It is straightforward to calculate the transition probability,
pt(i, j) (the probability of transition from x(i) to x(j) after t steps) using entries
from P . Thus the diffusion distance Dt(i, j) between x(i) to x(j) at the time scale
of t can be defined as:

Dt(i, j) = (
∑
k

(pt(i, k)− pt(j, k))2

φ1(k)
)
1
2 , (2.11)
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(a) Diffusion Maps when t =
1,
NMI = 0.5864
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(b) Diffusion Maps when t =
30,
NMI = 0.6546
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(c) Diffusion Maps when t =
50,
NMI = 0.7056
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(d) Diffusion Maps when t =
100,
NMI = 0.6140
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(e) Multiscale Diffusion Maps,
NMI = 0.6486

Figure 2.4: Clustering results of Diffusion Maps (DM) and Multiscale Diffusion
Maps (MDM) on the synthetic dataset in Figure 2.2(a). The global Gaussian kernel
is used here with σ(G) = 2. Figure 2.4(a) to 2.4(d) show the results of DM from t =
1 to t = 100. Although DM with t = 50 obtains better separation in the boundary
area among the three clusters, it is hard to guess the best range of t unsupervisedly.
MDM, in spite of the elimination of parameter t, easily gets over-diffusion without
perception of density change (see Figure 2.4(e)).

where φ1 is the stationary distribution of the positive random walk (trivial left eigen-
vectors). So the diffusion map at the time scale of t projects the data points to n
dimensional eigenspace as:

Ψt : x→ [λt1ψ1(x), λt2ψ2(x), ..., λtnψn(x)], (2.12)

where λi are eigenvalues and ψi are the corresponding right eigenvectors of P [107].
In this way the diffusion distance between x(i) and x(j) becomes:

Dt(i, j) = (
n∑
k=1

[λ2t
k (ψk(i)− ψk(j))2])

1
2 . (2.13)
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By projecting the data to the diffusion space, 1) the sensitivity to noise is minimized
due to the theory of random walk, 2) the effect of scaling parameter σ (if there is
any) is reduced. However, another scaling parameter t is still essential because it
controls the transitive connectivity. Besides, how to tune the value of t is perplexing
because even less clues for tuning it exist than that of σ in the Gaussian kernels.
Here we use experiments to reveal its effect, as shown in Figure 2.4(a) to 2.4(d).

In 2009, Richards et al. proposed multiscale diffusion maps (MDM) [122],
which considers all possible paths between each instance pair across all the discrete
time scales t in the diffusion space. In practice λti in Equation 2.12 is replaced by:

∞∑
t=1

λti =
λi

1− λi
. (2.14)

So the multiscale diffusion maps is defined as:

Ψ(M) : x→ [
λ1

1− λ1

ψ1(x),
λ2

1− λ2

ψ2(x), ...,
λn

1− λn
ψn(x)]. (2.15)

Multiscale diffusion maps is claimed to be more robust [122] by eliminating the ef-
fect of t. The quantity of MDM involves summing over all paths of all discrete time
scales connecting x(i) to x(j). As a consequence, this projection should be very
robust to noise perturbation in theory, unlike the geodesic distance or Euclidean
distance. From the prospect of machine learning, this observation allows us to con-
clude that this projection is appropriate for designing inference algorithms based on
the majority: it takes into account all the evidences relating x(i) to x(j).

Although diffusion maps [28] and multiscale diffusion maps [122] provide
more stable descriptions with a strong probabilistic interpretation, and therefore re-
duce the instability incurred by Gaussian scaling parameters and noise appearance,
they still suffer from the lack of density-awareness as shown in Figure 2.4.

2.5 Heat Equation and Heat Kernel

Part of our proposed methodology is inspired by heat diffusion theory [68]
with the following reasons:

1. It can provide intrinsic and robust similarity measurement that is aware of
manifold structure.

21



2. It can provide information intimately related to local density.

3. It has many attractive properties such as symmetric, positive semi-definite,
and stable under noise appearance.

Laplace operator is closely associated to heat diffusion, connecting geometry
of a manifold with the properties of the heat flow. Using the discrete Laplace oper-
ator, the heat equation can be simplified, and generalized to matrix operation over
spaces with an arbitrary number of dimensions. Due to its intrinsic connection to
Markov process, in practice the heat equation is often coupled with random walk
graph Laplacian [28], Lrw (Equation 2.3), which describes a stochastic process that
randomly jumps from vertex to adjacent vertex. Heat equation therefore can be
defined by:

∂Ht

∂t
= −LrwHt, (2.16)

where Ht = e−tLrw is the heat kernel on Riemannian manifold M and t is the
time scaling parameter [56]. For Lrw = ψ′λψ (ψ and λ are the eigenvectors and
eigenvalues of Lrw), the heat kernel can be re-formulated as follows:

Ht(i, j) =
N∑
p=1

[e−λptψp(i)ψp(j)], (2.17)

where λp is the p-th eigenvalue and ψp(i) is the i-th element in the p-th eigenvector.
Ht(i, j) represents the amount of heat being transferred from i to j in time t given
a unit heat source at i in the very beginning (t = 0). The scaling parameter t in
heat kernel is used to control the transitive connectivity: small t makes the loosely-
connected graph into slightly stronger connection, while large t makes the graph
tend to be more strongly-connected.
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Chapter 3

Density-Aware Clustering based on
Aggregated Heat Kernel and Its
Transformation

3.1 Chapter Introduction

Clustering, the task of discovering natural groupings based on the input data
patterns, has been one of the most active research topics in machine learning and
knowledge discovery. As a powerful unsupervised data analysis technique, cluster-
ing is especially desirable for modeling large datasets because the tedious and often
inconsistent manual classification and labeling process can be avoided. While many
traditional clustering algorithms have been developed over the past few decades
[74] [42], some popular ones that emerged over the last decade generate promising
results on various challenging tasks. Among them, spectral clustering [109] [126]
[157] [25] [16] [146] demonstrates excellent performance to detect clusters with
complex shapes and complicated input space distributions.

3.1.1 Motivations

Despite their earlier success, most of spectral clustering methods still suffer
from the following real world challenges:
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• The clustering results can be radically different when the scaling parameters
of the algorithms are slightly modified or there is some noise perturbation
among clusters. We call such a susceptibility the sensitivity to parameter
tuning and noise.

• Most of these methods tend to assign medium similarity between the bound-
ary instances among clusters with different densities. Therefore they fail to
quantify local density well, which may result in poor manifold reconstruc-
tion and undesirable clustering results.

• Most of the existing density-aware algorithms are only applicable on the Eu-
clidean space. Therefore their capabilities are significantly constrained in
handling today’s various types of data, such as social networks and text
datasets.

Robustness is one of the most desirable properties of clustering algorithms,
however, here it becomes an essential challenge for spectral clustering. As shown
in Figure 2.1, it is a well known problem that the scaling parameter σ of Gaussian
kernel (see Equation 2.8 for details) for the affinity matrix has significant impacts
on discovering embedded structure because σ determines whether two points are
considered similar (neighbors) or not [115]. Although several methods were pro-
posed to address this problem (e.g., [141], [156]), it remains challenging to find a
certain range for σ which is optimal to maintain stable yet desirable performance.
Another aspect of robustness in spectral clustering is the clustering quality with re-
spect to noise data. As noted in [100], spectral clustering is less sensitive to data
perturbation than the popular k-means algorithm. However, given different applica-
tion domains and/or inappropriate data preprocessing techniques, spectral cluster-
ing can still be susceptible to noise [143], which tends to complicate the clustering
parameter selection, especially when making use of scaling parameter σ of Gaus-
sian kernel. In summary, since parameter selection can be significantly affected by
the noise level of data (as shown in Figure 2.1(c)), we must address robust spectral
clustering in terms of parameter selection and noise appearance simultaneously.

In this work, the robustness of clustering algorithms should be measured in
the following aspects: (1) not sensitive to small parameter changes; (2) not sensi-
tive to existing noise; (3) stable performance even under a significant noise level
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or suboptimal parameter settings; and (4) competitive and comparable results when
comparing with those less-robust clustering algorithms without any data perturba-
tion and with correct parameter settings. With these robustness properties, we can
reliably analyze data and conduct other data-driven tasks in subsequent analysis
steps. The robustness property is equally significant for domain experts who do
not have strong machine learning background as they become much more comfort-
able in utilizing robust algorithms for their domain data analysis. Therefore it is
imperative to develop robust clustering algorithms [25].

Another requirement of real world clustering application is to discern the d-
ifferent density distribution among clusters. The traditional spectral clustering al-
gorithms (such as NJW [109] and RWC [126]) assume uniform sampling distribu-
tion inside the input dataset to approximate the continuous Laplace operators on
Riemannian manifold, and tend to assign medium level affinity on the boundary
between low and high density areas. These problems cause the inferior manifold
reconstruction especially around cluster boundaries.

As an example, Figure 2.2 shows the clustering results from different graph
Laplacians built upon Gaussian kernels. The synthetic dataset in Figure 2.2(a) con-
tains three clusters: the blue and green clusters with a denser Gaussian distribution
and the red one with a uniform and sparser distribution within a rectangular area.
Figure 2.2(b) to 2.2(d) show the results from three conventional spectral cluster-
ings: NJW [109] with symmetric Laplacian (Lsym), RWC [103] with random walk
Laplacian (Lrw), and NN [100] without Laplacian normalization (Lnn) . Since Lsym
has a more balanced view, NJW performs better than RWC, and demonstrates bet-
ter density-awareness. However, if we take density distribution into account, all of
them fail to separate the clusters appropriately.

Some localized approaches have been focusing on solving these problems, e.g.,
Self-tuning Spectral Clustering (ST) [156] and Local Density Adaptive Similarity
(SCDA)[160]. Nevertheless, they could not effectively capture the local density on
the affinity matrix since additional parameters which are very sensitive to heteroge-
neous density distributions are required. Therefore such approaches may also fail
to quantify local density well, and cause undesired clustering results (as shown in
Figure 2.2(e) and 2.2(f)). Moreover, these algorithms are built upon Gaussian ker-
nel, and could only be applicable to the applications in the Euclidean space. Their
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capabilities are therefore significantly constrained in handling today’s big complex
data. One example is network dataset, including social networks, computer net-
works, and biological networks. Network dataset can be naturally represented as
affinity matrix themselves because they are already of graph-structure (see details
in Equation 2.6). Another example is text data which often uses the cosine kernel
to measure similarity (see details in Equation 2.7). Although Gaussian kernel is
popularly used in many applications, we also need to handle the aforementioned
datasets with diverse characteristics. Therefore, to be more practical and adaptive
in different real world situations, local-density-aware clustering algorithms need to
work well with any form of similarity kernels.

3.1.2 Contributions

In this research we propose a heat-diffusion-based framework which provides
not only competitive average performance, but also robustness to scaling parameter,
noise appearance and different density distributions across clusters. Our framework
has the following contributions:

1. We derive a robust kernel function by integrating heat kernel along the entire
time scale (Section 3.3.1), and combine it with Laplace-Beltrami Normalization
(LBN, Section 3.3.3). We call this algorithm as Aggregated Heat Kernel (AHK,
Section 3.3.4). As a result, we provide a robust clustering algorithm while
reducing the negative influences on stability by scaling parameter tuning
and noise appearance. We also discuss the connections of AHK to the other
popular and related approaches (Section 3.3.2).

2. We design a probability-based local density affinity transformation (LDAT, Sec-
tion 3.4) that aims to reduce different density effects across clusters in the
affinity matrix. It is a simple and effective enhancement to local density aware-
ness especially around the cluster boundary area. It is not only based on affinity
matrix, so it works well with any type of similarity kernels. These features
distinguish our proposed framework from other candidate approaches in han-
dling diverse and complex real world problems.

3. Our novel framework (Section 3.5), systematically combining AHK and LDAT
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together, delivers robust clustering results in terms of different scaling parameter,
noise level and divergent density distribution across different clusters.

4. We thoroughly evaluate the proposed framework with several closely-related
baseline algorithms on a number of synthetic and benchmark datasets (Section
3.6). The experimental results confirm that the proposed framework, even un-
der suboptimal parameter settings, outperforms existing approaches for datasets
with noise and heterogeneous density distribution, using different similarity ker-
nels.

3.2 Related Works

Towards robustness, researchers have explored various techniques, including
robust statistics [11] [72], noise insensitive regression [24] [17], noise resistant
transformation [148], and noise robust clustering [33] [57] [88] . However, ro-
bust clustering approaches that are adaptive to both parameter tuning and noise
sensitivity are rather rare. In fact, as shown in Figure 2.1, scaling parameter and
noise perturbation are correlated to each other. Mean shift clustering [29] and noise
robust spectral clustering [88] also fail in considering these two simultaneously
and systematically. In [20], M-estimation robust statistics is used in a robust path-
based similarity measurement which requires no local parameters to be set man-
ually, nonetheless, prior knowledge of data domain is required, which is not our
research target here.

Towards density-driven clustering, some non-spectral clustering algorithm-
s such as DBSCAN [48] [140] and OPTICS [4] start from the estimated density
distributions of corresponding nodes. Some researches approached density through
updating similarity information, such as shared nearest neighbors (SNN) [75] and
[57]. The similarity between two points is confirmed by their shared (or common)
nearest neighbors. Later some advanced techniques [46] [131] based on SNN have
also been proposed. But their performance suffer significantly from the curse of
dimensionality and the sensitivity of neighborhood scaling parameters [46], since
their metrics are usually based on Euclidean space. Moreover they cannot cluster
datasets well when the density distributions vary significantly [64].
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There are some existing graph-based techniques which built upon hierarchi-
cal modeling. Chameleon [78] defines affinity from relative inter-connectivity and
closeness which are based on a min-cut bisection of clusters. But its computation
requires a high computational cost. Recently Graph Degree Linkage [159] was de-
signed with easy implementation and high computational efficiency. However its
performance is very sensitive to the perturbation of similarity result from scaling
parameter tuning.

In Section 3.3, we propose a new framework that corrects the undesired ef-
fects from the aforementioned limitations. It is built upon advanced diffusion space
which is stable to scaling parameter tuning and noise perturbation. Also our pro-
posed method is aware of local density change across clusters, therefore it behaves
well under non-uniform density distribution. Moreover, compared with the other
popular algorithms, our method is more universally applicable since it can use the
Gaussian kernels, as well as any other kernel to construct affinity matrix.

3.3 Aggregated Heat Kernel (AHK) and Its Use in
Clustering

This subsection proposes a probabilistic clustering method based on heat dif-
fusion theory. The reason we resort to heat diffusion is to minimize the negative
influence of both scaling parameter tuning and noise appearance. Since we con-
centrate on global distribution for data clustering, the embedded structure must be
invariant to local perturbation (noise or outliers), and they should be determined on-
ly by “visible” neighborhood while avoiding negative effects from changing scaling
parameters. The Heat kernel (HK), as the fundamental solution of heat diffusion,
offers a statistical description of random walk, so it can be employed to build a
diffusion map. Here we integrate spectral clustering and the heat diffusion theo-
ry together and show that the integrated approach improves the robustness to both
scaling parameter tuning and noise appearance.
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(a) σ = 0.15 (b) σ = 0.16 (c) σ = 0.28

Figure 3.1: The sensitivity of heat kernel (HK, Equation 2.17) to time scaling
parameter t on Iris dataset clustering (measured by NMI). Experiments in Figure
3.1(a) to 3.1(c) are built upon global Gaussian kernel with different σ. We can see
that AHK outperforms HK in most cases and it doesn’t require tuning t. We use the
random walk Laplacian in this experiment.

3.3.1 Aggregated Heat Kernel

In this subsection, we describe and analyze the construction of Aggregated
Heat Kernel (AHK). Similar to the conventional heat kernel in Equation 2.17, AHK
is also built upon the eigen-decomposition of (Laplacian-normalized) affinity ma-
trix W . As discussed in Section 2.5, a heat kernel (HK) is multiscale. The function
Ht(i, ∗) is mainly determined by the nearby neighborhood of x(i), and this area
grows bigger as t increases. In other words, for a small t, Ht(i, ∗) only represents
local properties of the area around x(i), but a large t can capture the properties
from a larger area or even the entire data space. Yet this additional degree of free-
dom makes it difficult to determine the value of t (Figure 3.1) because we have
little clue about how to find the best t value, which is similar to the time scaling
parameter in diffusion maps and the scaling parameter σ in Gaussian kernels. In
other words, the clustering result become sensitive to the time parameter selection
in heat kernel.

We propose a robust kernel function by integrating the entire continuous time
scale on heat kernel, and name it as Aggregated Heat Kernel (AHK):

H(i, j) =

∫ ∞
0

Ht(i, j)dt =
n∑
k=1

[
1

λi
ψk(i)ψk(j)]. (3.1)

Specifically, the derivation of this function can be explained in the form of Laplace
transform [5]:

F (s) =

∫ ∞
0

e−stf(t)dt, (3.2)
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where parameter s is a complex number and f(t) is “degeneralized” to a constant
function one. Here the Laplace transform is interpreted as a transformation from the
time domain, in which inputs and outputs are functions of time (t), to the frequency
domain, where the inputs and outputs are the functions of frequency (λ). Therefore
this transform provides an alternative functional description that simplifies the pro-
cess of analyzing the heat system behavior, and synthesizes a new comprehensive
system with a set of properties inherited from the original heat kernel:

• Symmetric: H(i, j) = H(j, i).

• Semigroup identity: H(i, j) =
∫
M
H(i, k)H(j, k)dk.

• Positive semi-definite:
∑

p,qH(i, j)cpcq ≥ 0, where c1, c2, ..., cn are real
numbers.

With the pure and applied probability term, AHK can be explained as an ex-
pected value of heat kernel. If we interpret t as a random variable with the proba-
bility density function F , then AHK, or the Laplace transform of f is given by the
expectation:

LF (λ) = E[e−λt]. (3.3)

So AHK, to some degree, is a weighted average of all possible heat diffusion pro-
cesses across the entire continuous time-domain.

The definition of AHK can also be elucidated by Fredholm theory [41], a theo-
ry of integral equations, where the actual function space is determined by the eigen-
functions of the differential operator; that is, by the solutions to Lψ(i) = λψ(i).
The set of eigenvectors ψ here spans a Hilbert space since there is a natural inner
product. Therefore the kernel H(i, j) is a realization of the Fredholm operator or
the Fredholm kernel. It follows from the completeness of the basis of the Hilbert
space, namely, that one has:

δ(x(i)− x(j)) =
∑
k

[ψk(i)ψk(j)], (3.4)

where δ(x) is the Dirac delta function (a generalized function defined in the real
space R, such that its value is zero everywhere except at origin 0) since the eigen-
vectors ψ associated with L are assumed to be complete and orthogonal to each
other.
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From Figure 3.1 we observe that in the original heat kernel (HK) the time
scaling parameter t is also correlated with Gaussian scaling parameter σ, and t

needs to be tuned carefully. Moreover, Figure 3.1 shows that AHK performs better
than the original HK on almost all times t regardless the value of σ. Comparatively,
AHK is capable of providing more comprehensive and stable probabilistic affinity
information.

By the definition of heat diffusion, AHK is naturally associated with the ran-
dom walk normalization, Lrw, but we could also generalize AHK on other Lapla-
cians such as Hsym on symmetric Lsym or Hnn on unnormalized Lnn. In Section
3.3.3 we will analyze the best Laplacian for constructing AHK.

3.3.2 Connections to AHK

In this subsection we build theoretical connections from AHK to the other
existing popular techniques.

Inverse Laplacian. AHK can be viewed as a pseudo inverse or Moor-Penrose
inverse [58]. By doing so, we achieve multiscale heat diffusion. Instead of doing
pseudo inverse, we could directly inverse graph Laplacian matrix [88] as:

(I + βLsym)−1, (3.5)

where β is the positive regularization parameter and I allows us to invert Laplacian
matrix always. Note that, [88] used this direct inversion to design noise robust
spectral clustering.

Commute Distance. Commute distance C(i, j) between x(i) and x(j) is defined
by the expected random walk round trip travel time. AHK is also known as Green’s
function [120], which is closely related to the commute distance (CD) or resistance
distance. The Green’s function is a left inverse operator of Laplace operator, Hrw ·
Lrw = I . For Hnn constructed on unnormalized Lnn, commute distance can be
reformulated as:

C(i, j) = vol(Hnn(i, i) +Hnn(j, j)− 2Hnn(i, j)), (3.6)
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where vol =
∑n

i=1D(i, i). Just like AHK, commute distance also considers all
possible length, paths and their weights, which is more robust than the shortest path
or geodesic distance. Note that, commute distance can also be expressed by the
random walk Lrw or symmetric graph Laplacian Lsym [120].

Diffusion Distance. Commute distance is also related to diffusion distance. By
integrating Equation 3.1 into the above equation, we get:

C(i, j) = vol
n∑
k=2

[(1/λk)(ψk(i)− ψk(j))2], (3.7)

and also multiscale diffusion distance can be defined by:

∞∑
t=1

D2
t (i, j) =

n∑
k=1

[1/(1− λ2
k)(ψk(i)− ψk(j))2]. (3.8)

Both commute distance and diffusion distance look similar but they have different
eigenvalue weighting and different Laplacian normalization.

Diffusion distance [122] can also be represented by 1/λi, which shares the
same weighting with H but it is for distance weighting. If the time summation
starts from t = 1, then it is exactly the same as the multiscale diffusion distance
(MDM) of Equation 2.14. Both of eigenvalue weighting (starting from t = 0 or
t = 1) will show quite similar weighting distribution anyway for 0.5 ≤ λ ≤ 2,
which is common for most of the graph Laplacians.

Laplace Transform and Fourier Transform. As previously analyzed, AHK can
be explained as a degeneralized form of Laplace transform [5]. Laplace transform is
related to Fourier transform, but whereas the Fourier transform expresses a function
or signal as a series of modes of vibration (frequencies), the Laplace transform
resolves a function into its moments. Like the Fourier transform, in our derivation of
AHK, the Laplace transform is used for solving differential and integral equations.
But the equivalence relation between Laplace Transform and Fourier Transform is
not valid in our AHK derivation because the region of convergence (ROC) of F (s)

in Equation 3.2 contains no imaginary component.
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Figure 3.2: Different ways of manifold reconstruction on 20ngB dataset.

3.3.3 Different Laplacians and Their Comparison

Even though we made proper connections among relative approaches, most of
them used different Laplacians without thorough evaluation. Therefore it is not yet
clear what is the best graph Laplacian for our proposed H. It is shown in [84] that
if we assume uniform sampling of data points from a sub-manifoldM, the eigen-
vectors of Lrw with σ → 0 and n → ∞ tend to approximate Laplace-Beltrami
operator onM, which guarantees manifold reconstruction. However, in reality, the
sampling rate of data points tends to be non-uniform and it shows skewed densi-
ty distributions, resulting in a manifold reconstruction with a poor quality in AHK.
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The following two additional normalizations are used to improve the density aware-
ness of Laplacians:

W (κ) = D−κWD−κ, (3.9)

L(κ) = I −D(κ)−1
W (κ), (3.10)

where κ is a normalization factor and D(κ) is the diagonal matrix with the sum of
W (κ) row weight.

• If κ = 0, L(0) = Lrw which is exactly the random walk (RW) Laplacians.

• If κ = 1/2, then it is called Fokker-Planck (FP) diffusion.

• If κ = 1, it is called Laplace-Beltrami Normalization (LBN).

The relations among the three normalizations are well described in [28]. Depending
on κ, LBN can also be reduced to the random walk normalization or Fokker-Planck
diffusion. In particular, we focus on LBN because it removes the negative influence
of the dataset density and recovers manifold structures onM with the condition of
σ → 0 and n→∞ [28]. In other words, the additional re-normalization of affinity
matrix W enables us to reconstruct manifold structures under non-uniform density
distribution. Another advantage of LBN is that the consequent clustering results
can be less sensitive to noise and scaling parameter tuning.

Figure 3.2 shows the effects of different approaches and Laplacians on 20
newsgroup text data (20ngB) (see Section 3.6 for more details). True inversion
(Figure 3.2(a)) and commute distance (Figure 3.2(b)) show the worst results in sep-
arating three topics. Although they share the same Laplacian matrix inversion, the
results are quite different. Interestingly multiscale diffusion map (MDM, Figure
3.2(c)) shows the best separation among all the non-AHK approaches. In the case of
AHK, most of Laplacian approaches (except unnormalized Laplacian) reconstruct
the topic distribution as a sphere shape. AHK with unnormalized Laplacian (Figure
3.2(d)) appears to have the ability of separation but the distance among documents
are very close to each other compared with other Laplacians. Symmetric Laplacian
(Figure 3.2(e)) shows very good separation and sphere shape reconstruction but it
is not anisotropic transition. The original random walk (RW) normalization (Figure
3.2(f)) shows the most mixture of three topics but once we add the additional nor-
malization of Equation 3.9, we reconstruct better manifold structures. LBN shows
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the best coherent and condensed structure (Figure 3.2(h)) among all different Lapla-
cians. For our future experiments we mainly focus on LBN, but we provide further
and more detailed analysis regarding different approaches with different Laplacians
in Section 3.6.

3.3.4 Combination of AHK and LBN and Discussion

After investigating the nice properties of AHK and LBN, we now present our
robust spectral clustering algorithm that combines these two techniques, and there-
by is less sensitive to the scaling parameter selection and noise appearance. For the
notational simplicity, we call the integrated algorithm as the AHK Clustering, or
AHK directly. Let X be the input dataset of size n ×m, where n is the number of
data points and m is the number of dimensions (features), our algorithm is detailed
in Algorithm 2.

ALGORITHM 2: AHKClustering(X ,c,γ)
Input: X ∈ Rn×m where n is #instances, m is #features, c is #clusters,

and γ is an eigenvalue smoothing parameter.
Output: Cluster assignments of n instances.

1 Construct the affinity matrix W ∈ Rn×n;
2 Compute the diagonal matrix D ∈ Rn×n where D(i, i) =

∑n
j=1W (i, j) and

D(i, j) = 0 if i 6= j ;
3 Apply Laplace-Beltrami Normalization Llbn using Equation 3.9 and 3.10

with κ = 1 ;
4 Extract generalized eigenvectors ψ(i) and corresponding eigenvalues λi,
i = 1, 2, ..., n ;

5 ConstructHlbn matrix with ψ(i) and λi using
H(i, j) =

∑n
k=1[ 1

λi+γ
ψk(i)ψk(j)] ;

6 Extract the first c nontrivial eigenvectors ψ′ ofHlbn, ψ′ = {ψ′1, ψ′2, . . . , ψ′c} ;
7 Re-normalize the rows of ψ′ ∈ Rn×c into Yi(j) = ψ′i(j)/(

∑
l ψ
′
i(l)

2)1/2 ;
8 Run k-means with c and Y ∈ Rn×c.

Algorithm 2 undergoes two times of data warping: In Step 1, the original affin-
ity matrix W is constructed using a similarity kernel as appropriate (please refer to
Section 2.3 for the kernel selection) according to the specific data characteristics.
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Then we use LBN as Laplacian normalization on W (Step 2 and 3, check Sec-
tion 3.3.3 for more details) and utilize the derived eigendecomposition to construct
AHK (Step 4 and 5, check Section 3.3.1 for more details). After that it comes to the
second data warping by extracting the first c nontrivial eigenvectors from the AHK
affinity matrix (Step 6). Finally we perform k-means on the normalized eigenvec-
tors and label the projected data points. The smoothing parameter γ in Step 5 is
added to avoid the eigenvalue λ from being to small and thereby stabilize the AHK
affinity matrix computation. In practice we set γ = 0.001 by default.

Regarding the computational complexity, eigenvalue decomposition is the
most time consuming step and dominates the computation. There are many iter-
ative methods to conduct eigenvalue decomposition (e.g., power iteration [8]), but
in general finding the eigenvalues reduces to matrix multiplications by computing
a symbolic determinant, in which the running time is O(n3 + n2log2n) [112].

It is worth to notice that AHK has the following significant benefits: 1) It is
a stronger form of random walk process by taking all possible paths in entire con-
tinuous time scales into consideration, therefore it is more robust and less sensitive
to noise or artifacts than other regular kernels. 2) To mitigate the biased contribu-
tion of the denominator from some extremely small eigenvalues λ, AHK introduces
a smoothing term γ to make computation more stable. 3) To relieve the bias to
non-uniform density distribution, AHK employs Laplace-Beltrami normalization
(LBN) which can recover the Riemannian manifold under skewed density distribu-
tion. In other words, AHK enables better and more stable manifold reconstruction,
especially under noise, parameter disturbance, and non-uniform density distribu-
tion. Therefore in theory it guarantees the strong adjacency (similarity) among
intra-cluster instances even under suboptimal conditions. In the Section 3.4, we
introduce an affinity transformation to give the clustering algorithm a better insight
into the separation between adjacent/overlapping clusters with different density dis-
tributions.

3.4 Local Density Affinity Transformation (LDAT)

As we discussed in Section 2.3, there are numerous similarity measurements
ranging from network connectivity to Gaussian kernels. Unfortunately, few existing
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approaches took local density into consideration. Some exceptions, such as [160]
[153] are based on simple approximations of local density that fail to provide the
stability against neighborhood perturbation.

In this subsection we propose a Local Density Affinity Transformation (L-
DAT) with the following attractive properties: 1) It reveals local density differences
for the purpose of correcting density bias; 2) It can be applied on any similarity
kernel; 3) It works quite stably with a solid probabilistic interpretation. The entire
procedure of LDAT is documented in Algorithm 3.

ALGORITHM 3: LDAT(W , k)
Input: Input affinity matrix W ∈ Rn×n where n is #instances, and k is the

neighborhood size.
Output: LDAT affinity matrix W (LDAT).

1 For each instances, only keep the k-nn affinity information and set all the
other as zero in W ;

2 Apply a positive random walk normalization P on W (Equation 3.11) ;
3 Construct the reduced P (Equation 3.13) ;
4 Employ another positive random walk normalization W (LDAT) on the

reduced P .

Stage 1 (Step 2 in Algorithm 3). In our research we measure the local density
on affinity matrix with a positive random walk normalization as our first step. It
provides both probabilistic and local density information by involving degree or
volume of each instance, and brings the advantage from the difference between
P (i, j) and P (j, i):

P (i, j) =
W (i, j)∑
kW (i, k)

, (3.11)

where P (i, j) is the transition probability from x(i) to x(j) and
∑

kW (i, k) is the
local volume of x(i) if we quantify k in a certain neighborhood (W (i, k) is non-zero
if x(k) is inside x(i)’s k-nn neighborhood). It means that we only maintain the con-
nections within the k nearest neighborhood (k-nn) and remove other distant affinity
information. If W faithfully describes the real affinity information,

∑
kW (i, k), as

local volume of x(i), is a simple and effective approximation of x(i)’s local density.
Intuitively, the larger the local volume is, the denser x(i)’s local neighborhood is.
In general, P (i, j) is different from P (j, i) if the local density distribution between
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instances x(i) and x(j) is different. Intuitive speaking, if the manifold structure
and associated data points can be properly recovered by the positive random walk
normalized affinity matrix, a data point set with high density before normalization
would become even more condense (comparatively) afterward, which can be ob-
served from the blue cluster Figure 3.3(d).

Stage 2 (Step 3 in Algorithm 3). Ideally, the transition probability between
two points within the same cluster should be larger than two boundary points across
two (neighboring) clusters with different densities. The difference between the tran-
sition probability must be captured in order to accurately separate different cluster-
s. For example in Figure 2.3, there should be P (a, d) ' P (d, a) � P (a, b), and
P (a, b) � P (b, a) if we consider the local volume difference. In other words, as
far as point a is concerned, its affinity to b is relatively smaller compared with its
affinity to any other point in the blue cluster. We call the difference between P (i, j)

and P (j, i) local density bias.
Our goal is to fix this local density bias by making point b in Figure 2.3 to

be further away from point a than from any point in the green cluster, and thereby
assimilate b into the green cluster. We achieve this goal by reducing P (i, j) (if
P (i, j) > P (j, i)) :

P(i, j) = max[P (i, j)−α(P (i, j)−P (j, i)), 0], if P (i, j) > P (j, i), (3.12)

where α ∈ [0, inf] is used to control how much reduction is applied to P(i, j).
When α = 0, P(i, j) is the same as a positive random walk normalization P (i, j).
When α > 0, the local density bias is taken into account. When α = 1, P(i, j) =

P (j, i), which translates into P(b, a) = P (a, b) < P(b, c) in Figure 2.3, so that
point b can be classified into the green cluster.

Because our goal is to rectify the local density bias, α = 1 is a simple and
natural choice and our experiments on Figure 2.2(a) dataset also confirmed that
when α = 1, it shows the best performance, as shown in Figure 3.4. Therefore,
Equation 3.12 can be simplified as:

P(i, j) = min(P (i, j), P (j, i)). (3.13)

Although this step looks simple, it actually contributes a lot on classifying the
boundary points by “assimilating” them to the point set with similar density. Figure
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3.3(e) shows the effect of Equation 3.13, where the relative distance between the
red point and green cluster become shorter compared with Figure 3.3(d). From the
perspective of any blue point, the red one is farther away than the blue species. Intu-
itively, even though the red point may initially treat blue points as closer neighbors
than the green points, the blue points will “push” it away.

Stage 3 (Step 4 in Algorithm 3). After applying Equation 3.13, we employ
another positive random walk normalization, which again endows our method with
a probabilistic interpretation. Figure 3.3(f) shows the effect of this second normal-
ization on top of Figure 3.3(e): the red point is still far away from blue cluster and
close to green cluster.

Superficially speaking, LDAT is similar to SNN (shared nearest neighbors [75]
[46] [131]) except for the first random walk normalization in Algorithm 3. But in
fact this step is of great importance. If there is no random walk normalization before
Equation 3.13, most part of the matrix is still symmetric (considering k is not very
small in step 1). In this case Equation 3.13 would not have real impact on the
final performance, as shown in the comparison between Figure 3.3(b) and 3.3(c).
However in our proposed LDAT, the first random walk normalization between step
1 and step 3 delivers awareness of density difference. Therefore the subsequent
reduced P is capable to correct the bias originating from different cluster densities.
Another positive side-effect of the first random walk normalization in LDAT is that
it supplies stability with different setting of k, while SNN suffers a lot from such
perturbation (Figure 3.10 in Section 3.6).

We now analyze the effect of LDAT in theory, which is closely connected to
NCut (normalized cut). Suppose there are only two point sets X and Y in the entire
dataset V where V = X ∪ Y , the corresponding NCut is defined as follows [100]:

NCut(X, Y ) =
C(X, Y )

assoc(X, V )
+

C(Y,X)

assoc(Y, V )
, (3.14)

where C(X, Y ) =
∑

i∈X,j∈Y Wij , and assoc(X, V ) =
∑

i∈X,j∈V Wij . If we re-
straint the connections of each node in k-nn neighborhood, Equation 3.14 can be
rewritten as:

NCut(X, Y ) =
C(X, Y )

v(X)
+
C(Y,X)

v(Y )
= P (X|Y ) + P (Y |X), (3.15)
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where v(X) is the summation of volume of all the instances in X , and P (X|Y ) is
the transition probability from any instance in cluster Y to any instance in clusterX .
The minimization of NCut actually seeks a cut through the graph such that a random
walk seldom transitions from X into Y or vice versa. However NCut has strong
density bias when dealing with datasets with heterogeneous density distributions,
which can be proven as follows.

Proposition 1 Let graph G be k-nn connected and non bi-partite. And the affinity
have been normalized by the positive random walk Laplacian. For two overlapping
sets A,B ⊂ V and A ∪ B = V , given that A is denser than B, but intra-cluster
density is uniform and the number of nodes are very similar. NCut may fail to
provide the best cut due to the local density bias.

Proof: As shown in Figure 3.5(a), define O as the overlapping area, A′′ as
the area inside A that is close to O, and B′′ as the area inside B that is close to
O. Assume that under certain k-nn constraint, connections only exist between two
adjacent area. In other words, there is no connection between A′ andO, A′′ andB′′,
and B′ and O. Apparently the overlapping area O has the highest density.

Now let’s firstly “zoom-in” to analyze the cutting area. Suppose a cut separate
V into two adjacent sets X and Y , where X ∪Y = V and X ∩Y = Ø. Apparently
there is:

v(V ) = v(X) + v(Y ), (3.16)

and since the affinity has been normalized by positive random walk normalization,
there is:

v(X) = |X|, (3.17)

where |X| is the number of instance in X . Suppose |X| ∼ |Y | ∼ T , there are:

NCut(X, Y ) =
C(X, Y )

v(X)
+
C(Y,X)

v(Y )

=
1

T
(C(X, Y ) + C(Y,X)).

(3.18)

Now we only focus on the value of C(X, Y )+C(Y,X) under different density
distributions. Figure 3.5(b) shows the connection between X and Y . We suppose
the simplest 2-nn neighborhood and the average density of X and Y are p and r
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respectively. The average density of the boundary area is q. Xb are the points in the
boundary area of X close to Y , similarly Yb are the points in the boundary area of
Y close to X . Xc and Yc are the other points inside X and Y . There is C(X, Y ) =

C(Xb, Yb) and C(Y,X) = C(Yb, Xb). We can assume C(Yb, Xb) = qη/(q + r) and
C(Yb, Yc) = rη/(q+ r), and C(Xb, Yb) = qη/(p+ q) and C(Xb, Xc) = pη/(p+ q),
where η is a connection factor. C(X, Y ) + C(Y,X) will change under different
density distributions.

1. If p ∼ r, q would also have similar value. Then C(Xb, Yb) + C(Yb, Xb) = η;

2. Suppose p < r, then we have p < q < r (since X ∩ Y = Ø). There is:

C(Xb, Yb) + C(Yb, Xb) =
qη

q + r
+

qη

p+ q
=

(2q2 + pq + qr)η

q2 + pq + qr + pr
. (3.19)

If q2 > pr, there is C(Xb, Yb) + C(Yb, Xb) > η.

In short, if |X| is similar to |Y |, the value of Equation 3.18 is dominated by
C(Xb, Yb) + C(Yb, Xb). And the minimization of conventional NCut makes it less
likely to cut along the boundary where q2 > pr. Since NCut value under the condi-
tion of p � r or p � r is very possible to be greater than that under p ∼ r, NCut
is less likely to cut along L3, since the two sides have the most different density
distribution.

A special case is that A and B are adjacent (A is much more denser than B) but
there is (almost) no overlapping area, as shown in Figure 3.6. We make the similar
assumption that under certain k-nn constraint, connections only exist between two
adjacent area. In other words, there is no connection between A′ and B′′, and A′′

and B′. The same deduction of Equation 3.18 and analysis still holds as in the
general case in Figure 3.5(a). Since density on the two sides of L3 changes a lot,
the conventional NCut tends to cut along L1 or L2 rather than L3. 2

Proposition 2 LDAT alleviates the density bias of NCut through lowering the NCut
value.

Proof: To prove LDAT alleviates the density bias under different density dis-
tribution, we suppose p < r. In Figure 3.5(b) (after random walk normalization),
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C(Yb, Xb) < C(Xb, Yb). Step 3 in Algorithm 3 makes C(Xb, Yb) ← C(Yb, Xb) =

qη/(q + r). After the second random walk normalization (Step 4), there is:

C(Xb, Yb) + C(Yb, Xb) =
qη/(q + r)

p/(p+ q) + q/(q + r)
+

qη

q + r

<
qη/(q + r)

p/(q + r) + q/(q + r)
+

qη

q + r
=

qη

p+ q
+

qη

q + r
,

(3.20)

therefore LDAT lowers the NCut value compared with Equation 3.19. Furthermore,

C(Xb, Yb) + C(Yb, Xb) =
qη/(q + r)

p/(p+ q) + q/(q + r)
+

qη

q + r

=
(2pq2 + q3 + pqr + rq2)η + (pq2 + q3)η

(2pq2 + q3 + pqr + rq2) + (pqr + pr2)
,

(3.21)

and we have
(pq2 + q3)η

pqr + pr2
=

(pq2 + q3)η/(pq)

(pqr + pr2)/(pq)
=

(q + q2/p)η

r + r2/q
. (3.22)

Suppose q = βp and r = (β +4)p, where β > 1 and 4 > 0, the condition that
makes Equation 3.21 smaller than η is

q + q2/p

r + r2/q
=

βp+ β2p2/p

(β +4)p+ (β +4)2p2/(βp)
=

β + β2

(β +4) + (β +4)2/β
< 1

⇒ 4
2

β
+ 34− (β2 − β) > 0

⇒4 >
(
√

9 + 4(β − 1)− 3)β

2
.

(3.23)

1. On the one hand, from the proof of Proposition 1 we know that traditional
NCut doesn’t cut along L3 when q2 > qr. This condition can be also repre-
sented as:

β2 > β +4. (3.24)

Assume that both Equation 3.23 and 3.24 holds, we have:

β2 − β > 4 >
(
√

9 + 4(β − 1)− 3)β

2

⇒ β − 1 >

√
9 + 4(β − 1)− 3

2

⇒ β > 1,

(3.25)
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which always holds according to p < r.

2. On the other hand, traditional NCut cuts along L3 when q2 < qr. This con-
dition can be also represented as:

β2 < β +4⇒ 4 > β2 − β. (3.26)

We also have the condition4 > β2 − β > (
√

9+4(β−1)−3)β

2
holds.

Therefore, after LDAT the value of NCut becomes smaller than η where exists
density difference. The effect of LDAT is not so obvious inside each cluster of the
area with similar density. However, if p << r, C(Xb, Yb) + C(Yb, Xb) becomes
much smaller than that in the uniform distribution. In short, if |X| ∼ |Y |, after
LDAT C(Xb, Yb) +C(Yb, Xb) between areas with the most different density carries
the smallest value. So in Figure 3.5(a) it leads to the cutting line to be much closer
to L3. It means that LDAT alleviates the density bias of NCut. In the special case
of Figure 3.6, the cutting line with the most different density distribution on the two
sides is L3, therefore after LDAT, NCut also tends to cut along L3 other than L1

and L2. 2

In Figure 3.7 the positive effect of LDAT is quite evident when applied to the
conventional spectral algorithms (RWC). Compared with the simple RWC result in
Figure 2.2(c), RWC+LDAT boosted performance more than 25% (Figure 3.7(b)),
which will be further verified in Section 3.6. Note that since LDAT is an straightfor-
ward transformation of affinity matrix, it can work well with any type of similarity
kernels, which gives rise to a novel feature compared with other methods only rely
on Euclidean space [160] [153] [30].

However, LDAT has a strong assumption that the affinity matrix W contains
sufficient and accurate neighborhood information. Although this requirement can
be easily satisfied for those small and simple datasets, it becomes quite challenging
when the datasets are large and complex (with high-dimensions). Especially if we
only keep k-nn neighborhood for each instance, the constrained information will be
highly vulnerable to the change of k given only simple kernel function like Gaussian
kernel (see blue curve in Figure 3.8). In our research we perform LDAT on top of
AHK, in order to reflect both manifold-aware and density-aware structure. In the
next subsection we will describe and further analyze the combined framework.
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3.5 The Proposed Framework for Clustering

We have introduced a robust heat-diffusion-based kernel (AHK, Section 3.3)
and a local-density-bias-corrected affinity transformation (LDAT, Section 3.4). We
now incorporate these two techniques into a systematical framework to provide a
more effective and powerful clustering algorithm, as documented in Algorithm 4.

ALGORITHM 4: AHK+LDAT-Clustering(X , c, k)
Input: Input data X ∈ Rn×m where n is #instances and m is #features, c is

#clusters, and k is the neighborhood size.
Output: Cluster assignments of n instances.

1 Construct the AHK affinity matrixHlbn as in Algorithm 2;
2 Set the diagonal ofHlbn to be zero to avoid over-diffusion ;
3 Only keep the k-nn affinity information for each instances ;
4 Transform theHlbn using LDAT as in Algorithm 3 ;
5 Compute the first c eigenvectors ψ, ψ = {ψ1, ψ2, . . . , ψc} ;
6 Extract the first c nontrivial eigenvectors ψ, ψ = {ψ1, ψ2, . . . , ψc} ;
7 Re-normalize the rows of ψ ∈ Rn×c into Yi(j) = ψi(j)/(

∑
l ψi(l)

2)1/2 ;
8 Run k-means with c and Y ∈ Rn×c.

Here AHK stably provides sufficient and accurate affinity information of the
high-dimensional datasets with complex distribution. Therefore AHK supplies a
sturdy platform for the subsequent LDAT. LDAT is also extremely crucial, due to
its nice properties of precisely considering the local density and cleanly separating
the boundary instances between clusters with diverse densities. It makes correc-
tions and improvements to the traditional NCut-based spectral clustering. By sys-
tematically integrating AHK and LDAT, we set up a robust manifold-and-density-
aware clustering algorithm. Its running time is O(n3 + n2log2n) when the eigen-
decomposition method [112] is used.

Although AHK is quite effective in recognizing manifolds even under skewed
conditions, it has a negative side-effect of getting over-connection due to the natural
properties of random walk. This side-effect might lead to an undesirable uniform
affinity since an infinite number of pathes between any two instances tend to draw
them deceivably close to each other without proper control. To mitigate this prob-
lem, we only use the off-diagonal terms while ignoring the diagonal term of AHK
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(Step 2 of Algorithm 4). It avoids the infinite diffusion getting lost on those in-
stances with a lot of connections, as their degrees are enormous [101].

In order to show the positive effect of AHK and LDAT respectively, we per-
form case study separately.

1. First of all, AHK helps to improve the manifold reconstruction quality of
LDAT. Compared with RWC+LDAT, we test AHK+LDAT on the synthet-
ic example of Figure 2.2(a), the result is shown in Figure 3.7(c). It can be
observed that AHK can directly helps the subsequent LDAT to gain more
cluster-aware separation (by clearly separating the blue and green clusters
from the red one), and obtain 7%+ performance increment compared with R-
WC+LDAT. Moreover, AHK+LDAT demonstrates more stable performance
than RWC+LDAT as the neighborhood size k changes, which is shown in
Figure 3.8.

2. Secondly, to confirm AHK+LDAT’s superiority on AHK alone, we test
AHK+LDAT on the 20ngB dataset and Figure 3.2(i) shows the correspond-
ing manifold reconstruction. Clearly LDAT helps to make the intra-cluster
instances more condense to their cluster center. It boost the performance
more than 7% compared with AHK alone.

Supplementary experiments on real benchmark datasets will be presented in Section
3.6 to further support the above discovery.

3.6 Experimental Results and Quantitative Analysis

In this subsection we analyze and verify our proposed AHK, LDAT, and the
combination of AHK+LDAT in terms of clustering effectiveness and robustness.

3.6.1 Experimental Setup

Datasets. We verify the effectiveness of our proposed methods by evaluating on
eighteen benchmark datasets (Table 3.1) with three types of affinity constructions.
Gaussian kernel is used for the first seven datasets from UCI. Network connectiv-
ity with undirected edges (all weighted as 1) are applied to the next five datasets
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Table 3.1: Statistics of our evaluation datasets.
Data Set # inst. # attr. # clus.

1 Wine 178 13 3
2 Glass 214 9 6
3 Vehicle 846 18 4
4 Vowel 990 11 11
5 Yeast 1484 8 10
6 Images 2100 19 7
7 Pendigits 3498 16 10
8 Polbooks 105 105 3
9 UMBC 404 404 2

10 MSP 1067 1067 2
11 Citeseer 2114 2114 6
12 Cora 2485 2485 7
13 20ngA 400 400 2
14 20ngB 600 600 3
15 20ngC 800 800 4
16 RCV1-2 1600 29992 2
17 RCV1-3 2400 29992 3
18 RCV1-4 3200 29992 4

ranging from political blogs to scientific paper citation domains. The last six tex-
t datasets use cosine similarity: the first three are the subsets of 20 Newsgroup
[77] and the last three are the subsets of RVC1 [85]. To reduce sampling bias,
we randomly samples from different clusters to make each (sub)datasets 20 times,
and record the average clustering performances. 20ngA contains 200 documents
from misc.forsale and soc.religion.christian. 20ngB adds 200 documents from
talk.politics.guns to 20ngA. 20ngC adds 200 documents from rec.sport.baseball to
20ngB. RCV1-2 contains 1600 documents, among them 800 from C15 and another
800 from ECAT. We add 800 documents from GCAT to RCV1-2 to create RCV1-3.
RCV1-4 has 800 more documents from MCAT upon RCV1-3.

Baselines. Eight popularly used clustering algorithms are chosen for comparison:
symmetric normalized spectral clustering (NJW) [109] and random walk spectral
clustering (RWC) [103] are chosen since they are the classic spectral clustering
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algorithms. RWC+SNN is RWC algorithm built upon shared nearest neighbors
(SNN) [75] [46] to update similarity. Additionally, we choose Graph Degree Link-
age (GDL) [159] as the representative of recent graph-based methods with agglom-
erative (or hierarchical) modeling. Density-based spatial clustering of applications
with noise (DBSCAN) [48] [140] is a density-driven clustering algorithm because
it finds a number of clusters starting from the estimated density distribution of cor-
responding instances. Self-Tuning (ST) spectral clustering [156] and local densi-
ty adaptive similarity clustering (SCDA) [160] are two locally adaptive clustering
methods which adjust classification according to different neighborhood density
measurements. We also select the k-nn Diffusion Maps clustering (kDM) [28] as
another candidate since it is a diffusion-based algorithm with robustness on noise
perturbation.

Evaluation Metrics. Since we have the ground truth of the clustering label infor-
mation for each dataset, we compare the clustering results against the true labels.
We use normalized mutual information (NMI) [132] as the evaluation metric due to
its popularity and its information-theoretical interpretation. Suppose S ∈ Rn×1 is
the result label vector for all data instances generated by one particular clustering
algorithm and T ∈ Rn×1 is the true label vector. The NMI score is calculated as
follows:

NMI(S, T ) =
I(S;T )√

H(S)×H(T )
, (3.27)

where H(S) and H(T ) are the entropies, and I(S;T ) is the mutual information
between S and T . The NMI score is normalized by their entropies and it ranges
from zero to one where the larger score indicates the better clustering result.

Parameter Settings. As most of the spectral clustering algorithms assume that
the number of clusters c is known a priori, so do our algorithms. Our proposed
methods have three parameters: Gaussian scaling factor σ (if Gaussian kernel is
used to construct AHK), the size of neighborhood k (to control k-nn connections),
and the reduction parameter α in LDAT.

Gaussian scaling factor σ is also used in the other included clustering competi-
tors. To obtain an adaptive parameter and at the same time preserve local density
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information, we compute the average distance between each instance to its q-nearest
neighbors, and use this value (noted as σq) to set the Gaussian scaling parameter. In
the remaining subsection, we will test the algorithm performance with different q in
the range of [2, 50], with 1 as the step size. When we test the stability of algorithms
against the other two parameters k and α (Section 3.6.5 and 3.6.6), we fix q = 2 by
default.

For a proper neighborhood size k, we set its value as half of the average cluster
size k = n/(2c), where n is the number of instances in a dataset and c is the number
of clusters. We assume that this is a safe choice for each instance to assemble its
true local density. In Section 3.6.5 we will further test the algorithm sensitivity to
k in the range of [10%, 100%] of n

c
with 10% as step size to verify the rationality of

k = 50%.
In Section 3.4, we already discussed the effect of α on LDAT. In our gener-

al experiments, we use α = 1 by default but we will also test RWC+LDAT and
AHK+LDAT with different value of α ∈ [0, 2] in Section 3.6.6.

For DBSCAN experiments, we set Eps, the neighborhood radius, in the same
way as we set σq. We assign minPts, minimal number of instances considered as
a cluster, in the range of [10,min(n/c, 300)], and only record the best result among
them.

3.6.2 General Comparison with Different Affinity Construc-
tions

Table 3.2 and 3.3 summarize the clustering performance of seven algorithms:
RWC, kDM, ST, SCDA, NJW, DBSCAN, GDL, and our proposed AHK+LDAT.
Specifically, for the first seven datasets using Gaussian kernel, we document the
best performance across q ∈ [2, 50] for each algorithm. SCDA and GDL are only
defined on Euclidean distance/space and therefore could not work with network
connection and cosine similarity.

Generally speaking, AHK+LDAT outperforms those selected algorithms
across the three commonly-used affinity construction methods. In Table 3.2 our
AHK+LDAT shows the best average score. 1) Gaussian kernel: AHK+LDAT ob-
tains 0.4856 average NMI which is 13.09% higher than the second best algorithm
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NJW, and 16.14% better than RWC. 2) Network connectivity: the average NMI
of AHK+LDAT reaches 0.4551, which is 8.18% higher than the second best algo-
rithm (NJW), and 110.89% better than RWC. Table 3.3 shows that for datasets with
an increasing number of clusters, our AHK+LDAT on cosine similarity has better
and more stable performance than the other algorithms. In particular, AHK+LDAT
outperforms the second best method kDM by 78.16%.

Our AHK+LDAT either has the best or ranks top three over all the candidate
algorithms for each dataset. The only two exceptions are Polbooks and UMBC.
However, for UMBC our AHK+LDAT score is more than 95% of the best score
from kDM. As for Polbooks, though the NMI score of AHK+LDAT is only about
92% of the best performance, the dataset size is quite small. Intuitively, the density
distribution and its variation on such a small dataset is not obvious due to the small
sample size v.s. that of a larger one.

Compared with the other algorithms, DBSCAN fails miserably since it is
mainly defined in Euclidean space and suffers from the “curse of dimensionality”
and lack of manifold awareness. GDL, ST and SCDA, although based on the theory
that supports local density adaptation, are unable to maintain desirable performance
across all the datasets, which is mainly caused by their suboptimal local density ap-
proximations. Originated from diffusion equations, kDM shows its stability on all
the three types of datasets/kernel functions. NJW has comparable performance on
Table 3.2 but not Table 3.3, partially due to that it does not have any correction for
local density bias.
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(f) Eigenspace by GAU
and LDAT
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Figure 3.3: 2D Eigenspace derived from the (transformed) affinity matrix of the
previous synthetic example (Figure 3.3(a)), with only the first two non-trivial eigen-
vectors being plotted. Here we only focus on the relative distances. The eigenspace
derived from Gaussian similarity (GAU) is shown in Figure 3.3(b), while the one
from shared nearest neighbors (SNN) on GAU is shown in Figure 3.3(c). The rel-
ative density between blue and green cluster doesn’t change much since the pro-
jection has no probabilistic transition. Figure 3.3(d) to 3.3(f) show the effect of
the three steps in our proposed LDAT built GAU. The blue cluster becomes denser
after probabilistic transition. Our proposed AHK in Figure 3.3(g) makes the inner-
cluster points even more condense. The combination of AHK+LDAT in Figure
3.3(h) draws the red point into the green cluster.
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Figure 3.4: RWC+LDAT performance on the dataset of Figure 2.2(a) with reduction
factor α ∈ [0, 2] in Equation 3.12.

(a) (b)

Figure 3.5: In Figure 3.5(a), A and B are two overlapping subsets and A is denser
than B. O is the overlapping part and apparently has the highest density. Suppose
there is only one cut, L3 would be the best choice to maintain uniform inner-cluster
density distribution. Traditional NCut fails to cut along L3 as proven in Proposition
1. But LDAT can correct the density bias of NCut and cut along L3, which is proven
in Proposition 2. Figure 3.5(b) shows the connections in the boundary area between
two adjacent sets X and Y. The average density of X and Y are p and r respectively.
The density of boundary area is q. The change of connection weight before and
after LDAT is analyzed in the proof of Proposition 1 and 2.
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Figure 3.6: Special case: A and B are two adjacent but non-overlapping subsets and
A is denser than B. In order to maintain uniform inner-cluster density distribution,
L3 is the best cut. Traditional NCut fails to cut along L3 as proven in Proposition
1. But LDAT can correct the density bias of NCut and cut along L3. The effect of
LDAT is proven in Proposition 2.
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(a) RWC+SNN (W (GLS)

with σ(G) = 2),
NMI = 0.6686
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(b) RWC+LDAT
(W (GLS) with σ(G) = 2),
NMI = 0.7555
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(c) AHK+LDAT
(W (GLS) with σ(G) = 2),
NMI=0.8097

Figure 3.7: Figure 3.7(a) and 3.7(b) show the effect of shared nearest neighbor
(SNN) and our proposed LDAT, both built upon W (GLS) and a positive random
walk normalization (RWC). It demonstrates LDAT’s advantage of better recogniz-
ing density differences among clusters than SNN and other algorithms shown in
Figure 2.2 and 2.4. The LDAT built upon AHK, shown in 3.7(c), has the best NMI
result through being aware of both density and manifold structures.
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Figure 3.8: LDAT performance on the dataset in Figure 2.2(a) with different neigh-
borhood size k. k is set as the percentage of n/c (n is #instances and c is #clus-
ters). AHK+LDAT has better and more stable performance than RWC+LDAT as k
changes.
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3.6.3 Respective Effect of AHK and LDAT

To verify the effect of AHK and LDAT respectively, we document the experi-
ments of RWC, RWC+SNN, RWC+LDAT, AHK, and AHK+LDAT in Table 3.4.

1. For the data experiments using Gaussian kernel, AHK increases NMI by
5.43% compared with RWC, while LDAT boosts up 13.90%. Compared with
RWC+SNN, RWC+LDAT raise 3.12%. Therefore here the effect of LDAT
is more obvious than that of AHK. Therefore although both using LDAT,
AHK+LDAT is only 2% better than RWC+LDAT. And AHK+LDAT outper-
forms AHK by about 20%.

2. For those network datasets, AHK increases 93.47% while LDAT only raises
about 2% over RWC. It means AHK helps a lot here: AHK+LDAT raises 9%

compared with AHK only, but on the other hand AHK+LDAT is 107% better
than RWC+LDAT.

3. In the experiments of text dataset, AHK enhances performance by 99.68%

and LDAT 86.89% when both of them are compared with RWC. AHK+LDAT
outperforms RWC+LDAT by 23.59%, and outperforms RWC+SNN by
26.23%. On the other hand, AHK+LDAT also outperforms AHK by about
15.67%.

In short, both AHK and LDAT can improve RWC, but in different aspects:
AHK alleviates the clustering sensitivity to the scaling parameter and data pertur-
bation, while LDAT provides more insight to the density change across different
clusters. Table 3.4 shows that RWC+LDAT and AHK all increase RWC’s perfor-
mance. When both AHK and LDAT are applied, AHK+LDAT obtains the best
performance in general.
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3.6.4 Robustness on Adaptive Scaling Parameter (q)

To systematically demonstrate the superior robustness of AHK and
AHK+LDAT across different Gaussian scaling parameter q, we test several algo-
rithms on seven datasets: wine, glass, vehicle, vowel, yeast, image, and pendigits
datasets. The test range of q is [2, 50] with one as the step size. Figure 3.9 shows
the performance of eight algorithms.

DBSCAN (Figure 3.9(a)) and GDL (Figure 3.9(e)) are extremely unstable and
there are little clue about how to tune q in an unsupervised way. With manifold
awareness, NJW (Figure 3.9(b)) shows better and more stable clustering perfor-
mance. Compared with RWC (Figure 3.9(c)), RWC+LDAT (Figure 3.9(f)) achieves
higher quality of performances, especially with glass datasets (41.15% ↑), yeast
(13.04% ↑), image (54.25% ↑) and pendigits (7.25% ↑). On the other hand, com-
pared with RWC+SNN, RWC+LDAT has better performance on wine (3.03% ↑),
glass (5.54% ↑) and vowel (7.81% ↑). This confirms that LDAT helps to improve
clustering results by providing density awareness in the cluster overlapping area.
AHK (Figure 3.9(g)) enhances the clustering stability across q especially on wine,
glass and image datasets, but it doesn’t necessarily retain the best performance.

Overall, the combination of AHK+LDAT has the best result on average and
performs consistently across different values of q. The stability of AHK+LDAT
inherently originates from the AHK with LBN, and its outperformance partly comes
from LDAT.

3.6.5 Robustness on Neighborhood Size (k)

To reveal the stability with respect to the neighborhood scaling parameter k
across datasets, we test k ∈ [10%, 100%] of n

c
on kDM, RWC+SNN, RWC+LDAT

and AHK+LDAT, the algorithms that built upon k-nn neighborhood. We also report
results on wine, glass, vehicle, vowel, yeast, images, and pendigits datasets.

Although it doesn’t provide the best performance, kDM (Figure 3.10(c)) in-
deed has a stable performance across different k since it builds on diffusion map.
The peak performance of RWC+LDAT (Figure 3.10(b)) on each dataset mostly
surpass the peak performance of kDM because of the power of LDAT. However
it fails to sustain stable result across different k. But still RWC+LDAT is more
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(c) RWC as q change
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(d) RWC+SNN as q change
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(f) RWC+LDAT as q change
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(g) AHK as q change
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(h) AHK+LDAT as q change

Figure 3.9: Stability with different adaptive scaling parameter q.
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stable than RWC+SNN in that LDAT updates the similarity on a probabilistic in-
terpretation rather than the direct (original) similarity. From the same point of
view, AHK+LDAT obviously has better stability than RWC+LDAT since AHK
contributes a lot on the manifold-awareness and therefore the whole algorithm
has stronger support from statistics. Figure 3.10(d) shows that our AHK+LDAT
demonstrates consistently better performance when we choose the neighborhood
size k = 50%× n

c
.
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(a) RWC+SNN as k change
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(b) RWC+LDAT as k change
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(c) kDM as k change
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Figure 3.10: Stability under different neighborhood size k.

3.6.6 Robustness on Reduction Degree (α) in LDAT

Figure 3.11 shows the stability of RWC+LDAT and AHK+LDAT when α is
being tuned. The integration along all the time scales and LBN provide AHK
an advanced random walk process, which leads to better average performance of
AHK+LDAT. The only two exceptions are glass and wine, where RWC+LDAT out-
performs AHK+LDAT. But if the datasets are getting larger, more sampling points
will support a better manifold reconstruction (like image and pendigits).
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Generally speaking, α ∈ [0.9, 1.1] makes LDAT sustainably performs better
than RWC (LDAT when α = 0) for both RWC+LDAT and AHK+LDAT. Therefore
by default we recommend α to be one.
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(a) RWC+LDAT as α change
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(b) AHK+LDAT as α change

Figure 3.11: Stability under different reduction factor α.

3.6.7 Robustness to Different Noise Levels

We conduct experiments on controlled noisy datasets to examine the perfor-
mance of our algorithms and make comparison with the other algorithms. The yeast
and RCV1 datasets are used for this experiment. We added uniformly-distributed
noise to create more datasets, each of which has a different percentage of noise, i.e.
0%, 10%, 20%, · · · , 100%. To study the robustness against noise comprehensively
and avoid tuning scaling parameter q for the best case scenario, we iteratively e-
valuate with all possible values for the scaling parameter q and record the average
performance result. The experimental results are displayed in Figure 3.12.

Overall, AHK+LDAT shows both robust and better performance across differ-
ent noise conditions. Although RWC+LDAT shows better performance than NJW
for most cases, its effectiveness decreases dramatically and demonstrates a simi-
lar trend to that of NJW. Similar to AHK+LDAT, kDM shows stable performance
across different noise percentages, occasionally even outperforms AHK+LDAT in
the case of yeast dataset with a small percentage of noise.

61



10% 20% 40% 60% 80% 100%
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Noise Level

N
M

I

 

 

NJW

kDM

RWC+LDAT

AHK+LDAT

(a) Yeast with different noise percentages

10% 20% 40% 60% 80% 100%
0.2

0.3

0.4

0.5

0.6

Noise Level

N
M

I

 

 

NJW

kDM

RWC+LDAT

AHK+LDAT

(b) RCV1-4 with different noise percentages

Figure 3.12: Algorithm performance on different noise levels.
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Figure 3.13: Scalability Analysis.

3.6.8 Scalability Analysis

This subsection analyzes the algorithm scalability. The experiment was done
on a 2.3 GHz Intel Core i7 processor with 8 GB 1600 MHz DDR3 memory.

Figure 3.13 shows that SCDA is the most time-consuming algorithm, which
is not surprising since it requires more time to compute the joint region of the ε-
neighborhoods. On the other hand, DBSCAN is the most efficient algorithm in
time with R* tree and a non-matrix based implementation. NJW and RWC are in
need of eigen-decomposition, therefore their running time is more than GDL. Our
proposed AHK, similar to kDM, also requires second construction of similarity
matrix and another eigen-decomposition, so their scalabilities are worse than NJW
and RWC, but still better than SCDA.
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3.7 Chapter Summary

This chapter presents a novel clustering algorithm that seamlessly integrated
two robust and effective techniques, i.e. Aggregated Heat Kernel(AHK) and Lo-
cal Density Affinity Transformation (LDAT). Consequently, our proposed approach
achieved remarkable performance improvements for those datasets with heteroge-
neous density distributions. Three primary advantages of our work are: (1) Its
manifold reconstruction is robust to the scaling parameter tuning and noise appear-
ance; (2) It alleviates local density bias in Normalized Cut; and (3) It functions well
with any affinity measurement, and is universally applicable. Our comprehensive
experiments validate that the proposed algorithm outperforms the majority of the
existing clustering algorithms.
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Chapter 4

Physics-based Anomaly Detection
Defined on Manifold Space

4.1 Chapter Introduction

Anomaly detection, or outlier detection, is of great significance to many real
world applications [163] [116], such as cancer diagnostics and virus detection. Its
primary goal is to distinguish normal instances from a small portion of new or
abnormal instances (anomalies) [19] [96] [97]. In many applications, anomalies
are sparse and quite diverse, learning with the known anomalies [50] [151] [12]
may not be necessarily useful in detecting the unknown ones in previously unseen
data [134]. On the other hand, manually labeling known datasets can be extremely
time-consuming for real-life applications and sometimes even unpractical to detect
new types of rare events. Therefore, the key challenge of anomaly detection still
lies in its ability to quantitatively characterize the intrinsic and informative density
distribution around every instance in a unsupervised fashion.

In this chapter we propose two different unsupervised anomaly detection al-
gorithms: Local Anomaly Descriptor (LAD), and Fermi Density Descriptor. They
measure instance anomalousness based on different physics theory, i.e. heat d-
iffusion and quantum mechanic theory respectively. Compared with the existing
algorithms [14] [113] [96] [138] [2], our methods are capable of measuring local
density more effectively in that:
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• Our methods have solid physics theory background.

• Our methods are based on manifold space, where the distance between
anomalies and normal instances would be magnified. It makes anomalies
more salient than in the input space.

• Our methods provide a more adaptive scope of neighborhood, which is of
great importance to distinguish not only global but also local anomalies from
normal instances.

• Our methods are highly desirable to combat scaling parameter tuning sensi-
tivity.

These properties make our algorithms more informative and intrinsic to detect
anomaly.

4.1.1 Related Works
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(b) LOF Score (k = 10)
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(c) IForest Score (nt = 100,
ρ = 4000)

Figure 4.1: Synthetic dataset is shown in Figure 4.1(a) with normal instances (blue),
global anomalies (yellow), and local anomalies (red and green). Figure 4.1(b) LOF
score with k = 10. 4.1(c) IForest score. The anomalousness are visualized as height
bar over all the instances. For each algorithm output, the anomalousness scores are
normalized in the range of [0, 1] to have an easy comparison. We can see that both
LOF and IForest fail to totally distinguish local anomalies from normal instances.

According to the most classical definition by Hawkins [61], an anomaly is
“an observation which deviates so much from the other observations as to arouse
suspicion that it was generated by a different mechanism”. However, it is far from
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trivial to define the quantitative sense of “deviates from the other observations”. As
Figure 4.1(a) illustrates, global anomalies (in yellow) are those data points with low
density in the entire data space. We can also say that these points are with globally
low neighborhood density. On the other hand, local anomalies (in red and green) are
data points with low local density in a constrained region. We call that these points
are with locally low neighborhood density. Profoundly speaking, local anomalies
can be thought of as a generalization of global anomalies, as global anomalies will
typically also be local anomalies, but not vice versa [34].

In implementation, kNN-based algorithms such as LOF [14], LDOF [158],
and LOCI [113] are defined on Euclidean distance. LOF [14], one of the earliest
work using kNN distance for anomaly detection, defines anomaly if its distance to
its k-th nearest neighbor (kNN) is greatly larger than the distances of its neighbors
to their own k-th nearest-neighbors. Recent research [34] extended LOF to high-
dimensional dataset by using random projection to reduce dimensions. Two major
drawbacks of these approaches are: (1) They tend to miss local anomalies (Fig-
ure 4.1(b)) since it is not peculiar that kNN distances of local anomalies are similar
to their normal instance neighbors’. (2) It is of extreme importance to determine the
value of k to faithfully reveal the instance anomalousness. On one hand, k cannot
be too small to avoid statistical error. Specifically, we need to ensure that for each
instance, especially those forming micro-cluster of anomalies, it covers a large e-
nough neighborhood that includes more normal instances than anomalies. On the
other hand, too large k will lead to overlook some genuine anomalies. In Sec-
tion 4.8.2 we will show that LOF is unpractical to detect anomalies in benchmark
datasets by analyzing its sensitivity of k.

Instead of detecting anomalies based on average neighborhood distance, recent
approaches such as IForest [96] [97] and Mass [138] are to separate the anomalies
from normal instances with their noteworthy attribute distribution. A represen-
tative anomaly definition [96] in these papers states that anomalies should have
“attribute-values that are very different from those of normal instances”, and at
the same time should be “minority consisting of fewer instances”. Therefore these
approaches have the capacity to handle anomalies with different attribute distri-
bution compared with normal instances. Nonetheless, they may fail to detect local
anomalies when their attributes have not-so-different distribution with some normal
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instances’. From Figure 4.1(c) we can see that, even though IForest does a good job
on global anomaly detection, it fails to distinguish local anomalies (green and red
instances in Figure 4.1(a)) from the “boundary” instances in the cluster of normal
instances (blue instances in Figure 4.1(a)). The reason is that, these anomaly detec-
tors partition instances mainly based on observable attributes, or more precisely, the
attribute distribution in input data space. Therefore it will fail miserably when the
anomaly distribution becomes far less discriminative if they share similar attribute
range/distribution pattern with parts of the normal instances. In Figure 4.2 we can
see that some anomalies have overlapping distribution with normal instances on the
first four eigenvectors in ionosphere dataset (a popularly used dataset for anomaly
detection [96] [63] [110]). Such overlapping also appears at nonclassical multidi-
mensional scaling (MDS) as well. This case, to a certain degree, shows that the
aforementioned problem indeed exists in some real world applications.
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Figure 4.2: Histogram of anomalies (red) and normal instances (blue) on the first
four eigenvectors 1 of ionosphere dataset (a popular benchmark dataset for anoma-
ly detection [96] [63] [110]). Some anomalies have overlapped distribution with
parts of normal instances and therefore it is nontrivial to separate them simply by
difference between attribute distributions.

1Since the dataset is high-dimensional, dimension reduction is imperative to provide a concise
illustration. Although eigenvectors do not necessarily show full distribution of the input data, they
tend to show certain patterns of original dimensions in the input space.
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Since the neighborhood density is not as straightforward as pair-wise distance
or attribute distribution in the input space, many researches turned to manifold s-
pace. In an ideal manifold projection with enlarged distance between anomalous
and normal instances, anomaly detection is no longer as hard as that in the input
space. A few techniques [2] tried to find an approximation of the data using a com-
bination of attributes that capture the bulk of the variability in the data, and then
detect anomalies on the projected space. This kind of approaches is to approxi-
mate the manifold subspaces in which the anomalous instances can be easily iden-
tified [19]. However, the existing algorithms are based on suboptimal techniques
such as isometric feature mapping (ISM) and locally linear embeddings (LLE) [2]
which are highly sensitive to density-varying and complex data distribution [84]
[142]. Therefore anomaly detection algorithms based on such manifold reconstruc-
tion mechanism may fail miserably.

4.1.2 Motivations

Motivated by the aforementioned problems, we refine the definition of anoma-
ly as follows:

Definition: Anomalies are those instances with (1) locally low neighborhood
density and (2) small quantity of similar instances compared with normal in-
stances.

To capture anomalies under such definition, we consider the Laplace operator in
physics theory, which has solid foundation and intrinsic relationship with mani-
fold reconstruction. The reason why we resort to manifold space is that normal
instances usually lie on low dimensional embedding structures with high density.
But the anomalies projected in manifold space tend to deviate from the normal in-
stances which makes them more discriminative. On the other aspect, measurement
of anomalousness is highly related to similarity function, in that the anomalousness
of an instance is high if it has few of similar neighbors. Laplace operator is a differ-
ential operator given by the gradient divergence of a function on Euclidean space.
Therefore the Laplace operator, if it is performed on a similarity matrix, is capable
of representing the flux density of the gradient flow of the neighborhood similarity.
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Consequently, it offers a natural mechanism to express intrinsic neighborhood den-
sity information. Furthermore, the Laplace operator occurs in differential equations
that describe many physical phenomena, such as the diffusion equation for heat
and quantum mechanics. These properties deliver inspiration and solid theoretical
foundation to our research in this chapter.

4.1.3 Contributions

This chapter articulates two physics-based unsupervised anomaly detection al-
gorithms with the following contributions:

1. We are the first to quantitatively characterize local density information based
on heat diffusion theory (Section 4.2), and develop Local Anomaly Descriptor
(LAD, Section 4.4.1). This method has a locally adaptive scope of manifold-
aware neighborhood and therefore can very well satisfy the first property of our
proposed anomaly definition in Section 4.1.2.

2. In favor of taking the amount of similar instances into account (the second prop-
erty of the above definition in Section 4.1.2), we integrate scale-dependent um-
brella operator (Section 4.4.1) into LAD which can bridge the gap between local
and global information.

3. We are the first to explore the use of quantum mechanics theory (Section 4.5) in
anomaly detection, and propose Fermi Density Descriptor (FDD, Section 4.6)
which supplies rigorous probabilistic explanation for detecting anomalies, and
supreme stability to scaling parameter tuning.

4. We firstly analyze different Laplacian normalization effects (Section 4.6.2) with
the goal of anomaly detection. Both theoretical proof and quantitative experi-
ments demonstrate that unnormalized Laplacian Lnn is the most responsive to
local neighborhood density.

5. We explore the use of anisotropic Gaussian kernel (AGK, Section 4.3) which
more faithfully approximate the similarity between instances in the ideal mani-
fold space, and therefore can best help in manifold reconstruction with the goal
of anomaly detection.
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6. We systematically evaluate the proposed algorithms with several closely-related
baseline algorithms on a number of benchmark datasets (Section 4.8). Our al-
gorithms show not only better average performance but also more stable results
than the other popular algorithms.

4.2 Heat Kernel Signature based on Heat Diffusion

4.2.1 Introduction of Heat Diffusion

Our first proposed algorithm is strongly inspired by heat diffusion theory [68]
in that it can provide information intimately related to local density. Heat theory can
be interpreted as the transition density function of Brownian motion [133], which is
the most fundamental continuous time Markov process. Laplace operator is closely
associated to heat diffusion, connecting geometry of a manifold with the properties
of the heat flow. Using the discrete Laplace operator, the heat equation can be sim-
plified, and generalized to matrix operation over spaces with an arbitrary number
of dimensions. Due to its intrinsic connection to Markov process, in practice the
heat equation is often coupled with random walk graph Laplacian [28], Lrw (Equa-
tion 2.3), which describes a stochastic process that randomly jumps from vertex to
adjacent vertex. Heat equation therefore can be defined by:

∂Ht

∂t
= −LrwHt, (4.1)

where Ht = e−tLrw is the heat kernel on Riemannian manifold M and t is the
time scaling parameter [56]. For Lrw = ψ′λψ (ψ and λ are the eigenvectors and
eigenvalues of Lrw), the heat kernel can be re-formulated as follows:

Ht(i, j) =
N∑
p=1

[e−λptψp(i)ψp(j)], (4.2)

where λp is the p-th eigenvalue and ψp(i) is the i-th element in the p-th eigenvector.
Ht(i, j) represents the amount of heat being transferred from i to j in time t given
a unit heat source at i in the very beginning. The scaling parameter t in heat kernel
is used to control the transitive connectivity: small t makes the loosely-connected
graph into slightly stronger connection, while large t makes the graph tend to be
more strongly-connected.
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4.2.2 Heat Kernel Signature

In 2009, Sun et.al [133] proposed a concise form given by the heat kernel from
one instance to itself:

Ht(i) = Ht(i, i) =
N∑
p=1

[e−λpt(ψp(i))
2], (4.3)

which is called Heat Kernel Signature (HKS). The physical meaning of HKS is
the amount of heat each instance keeps within itself in time t. The property of
heat diffusion process states that heat tends to diffuse slower at instances with
more sparse neighborhood and faster at instances with denser neighborhood.
Therefore HKS can intuitively depict the local density of each instance (the
first property in our anomaly definition in Section 4.1.2). Besides, HKS also has
the following properties which make it a very lucrative candidate for local density
measurement:

• HKS is intrinsic to the local manifold structure;

• HKS is informative since it contains density information of the whole neigh-
borhood in t scale;

• The stableness of HKS against small perturbation in the neighborhood can be
well supported by the probabilistic interpretation of heat diffusion.

However, heat equation is assumed to build on the underlying manifold. But
in most applications, the underlying manifold is unknown. In geometric model-
ing application, HKS is usually built on eigenvectors from Gaussian kernel (GAU,
Equation 2.8) on observed space. Although graph Laplacian normalizations [28]
based on GAU on observed space can recover manifold structure to certain extent,
non-uniformly sampled instances tend to show unpreserved density distribution on
the reconstructed manifold. HKS on GAU will fail to reveal local density faithfully
in such reconstructions. Figure 4.3(a) and 4.3(b) shows the performance of HKS on
anomaly detection with t = 1 and t = 10 based on GAU and random walk graph
Laplacian normalization Lrw. When t = 10 (Figure 4.3(b)) the heat is extremely
easy to dissipate, which blends both local and a few global anomalies into normal
instances. Meanwhile many marginal instances of the two normal instance clusters
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(a) HKS with GAU(t = 1)
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(b) HKS with GAU(t = 10)
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(c) LAD with GAU(t = 1
and k = 10)
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(d) HKS with AGK(t = 1)
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(e) HKS with AGK(t = 10)
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(f) LAD with AGK(t = 1 and
k = 10)

Figure 4.3: HKS and LAD (Local Anomaly Descriptor, Equation 4.10) score with
GAU (Gaussian kernel, Equation 2.8) and AGK (Anisotropic Gaussian kernel, E-
quation 4.7) of the synthetic dataset in Figure 4.1(a). For each algorithm output, the
anomalousness scores are normalized in the range of [0, 1] to have an easy compar-
ison. We can see that LAD with AGK is the most aware of both global and local
anomalies.

stand out due to the fact that HKS on GAU fails to show manifold-aware properties.
When t = 1 (Figure 4.3(a)), although the short period of heat dissipation has salient
effect on global anomalies, HKS on GAU still fails to distinguish local anomalies
from normal instances on the boundary area of normal clusters. Therefore an alter-
native way is indispensable to build better manifold-aware affinity matrix. One of
the most preferable candidates is anisotropic Gaussian kernel (AGK) [127] [128].

4.3 Anisotropic Gaussian Kernel

In this subsection we use anisotropic Gaussian kernel (AGK) [127] to construct
HKS in the interest of better manifold reconstruction. In Figure 4.4 we can see the
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70 nearest neighbors of red instance when using GAU (Figure 4.4(a)) and AGK
(Figure 4.4(b)), which shows that the intra-manifold distances are much shorter
than the inter-manifold by using AGK. Figure 4.3(d) and 4.3(e) show that anomaly
detection can directly benefit from the use of AGK. In Figure 4.3(e) with t = 10, all
of the global anomalies are highlighted even though the local anomalies are latent
(compared with Figure 4.3(b)). This is because if the manifold is well reconstruct-
ed, global anomalies should be separated far away from normal instances even with
large t scale. Furthermore, with small scope of t = 1 (Figure 4.3(d)), the differ-
ence of anomalousness between local anomalies and boundary normal instances
are slightly more obvious than Figure 4.3(a), which illustrates that with the sup-
port from AGK, HKS is more capable of revealing the density information of the
intrinsic manifold structure.
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Figure 4.4: 70 nearest neighbors (in green) of red instance with GAU (Figure 4.4(a))
and AGK (Figure 4.4(b)), which shows that AGK has better manifold-aware prop-
erty than GAU.

In the rest of this subsection we briefly introduce AGK on the observed space
X (n × m matrix) that approximates the Gaussian kernel on the underlying man-
ifold Y (n × d matrix, with d � m). The idea is to approximate the Euclidean
distance between instances y(j) in the manifold space Y using covariance matrix
C = JJT where J is the Jacobian matrix [127] and the instances x(j) = f(y(j))

in the observable space X . Let y, ε be two instances in the manifold space Y and
x = f(y), η = f(ε) be their mapping to the observable space X . Let g : X → Y be
the inverse mapping of f : Y → X , that is, g(f(y)) = y and f(g(x)) = x, ∀y ∈ Y ,
∀x ∈ X . Expanding the functions y = g(x) in a Taylor series at the instance x
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gives:

ε(i) =y(i) +
∑
j

gij(x)(η(j)− x(j))

+
1

2

∑
kl

gikl(x)(η(k)− x(k))(η(l)− x(l)) +O(‖ η − x ‖3),
(4.4)

where gij = ∂g(i)
∂y(j)

. Therefore, the squared Euclidean distance in manifold space can
be approximated by:

‖ ε− y ‖2=
∑
ijk

gij(x)gik(x)(η(j)− x(j))(η(k)− x(k))

+
1

2

∑
ijkl

gij(x)gikl(x)(η(j)− x(j))(η(k)− x(k))(η(l)− x(l))

+O(‖ η − x ‖4).

(4.5)

A similar expansion can be built at instance η and the average of these two equations
can be produced as:

‖ ε− y ‖2=
1

2
(η − x)T [(JJT )−1(x) + (JJT )−1(η)](η − x)

+O(‖ η − x ‖4),
(4.6)

given that the Jacobian of the inverse g is the inverse of the Jacobian J (a de-
tailed description of calculation can be referred to [127]). So we can construct the
anisotropic Gaussian kernel:

W (AGK)(i, j) = exp(−‖ J
−1x(i)(x(i)− x(j)) ‖2 + ‖ J−1x(j)(x(j)− x(i)) ‖2

2σ2
),

(4.7)
where i, j = 1, ..., n.

AGK has the desired attributes that it is separable, and its first (nontrivial)
eigenfunctions are monotonic functions of the independent parameters [128]. It also
has been proved that the eigenvectors of AGK reveal the independent components
[127]. HKS, built on such approximation of manifold space, can better capture the
embedding structure of data as shown in Figure 4.3(d) and 4.3(e), which is difficult
or even impossible to achieve by using GAU or other similar techniques.
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4.4 Local Anomaly Descriptor (LAD) and Its Algo-
rithm Framework

4.4.1 Local Anomaly Descriptor

Although HKS on AGK has the capability to offer desirable local density in-
formation, it is of importance to select the right time scaling parameter t, which
provides a trade-off between the effects of local and global information. However,
it is hard to get the “best of both worlds” with single setting for this parameter. Even
with better manifold reconstruction, if t is large the heat is still easy to dissipate re-
gardless of normal instances or local anomalies (although not necessarily for global
anomalies), which is shown in Figure 4.3(e). This is because with large t scale, the
distance between local anomalies and the normal instances around them would still
be close. As a result, local anomalies cannot retain their heat. On the other hand, if
t is small, the heat diffusion runs for only a short period of time, and the resulting
anomalousness capture very local information, but almost carry the same value for
instances with similar density inside a very restrained neighborhood, which is the
major reason why it sometimes confuses some normal instances with local anoma-
lies. In Figure 4.3(d) we can see HKS on AGK assigns similar scores to the local
anomalies and some of the boundary normal instances. Intuitively speaking, HKS
on AGK still fails to take the amount of similar instances into account with off-the-
sweet-spot t setting.

As a means to handle the above problems, we propose to use umbrella op-
erator [135] [36]. Umbrella operator is an approximation of the Laplace operator
measuring the vector from the vertex in question to the barycenter of its neighbors.
In practice, umbrella operator U is usually implemented to compute the average
difference between a point x(i) and its k nearest neighbors nb(x(i), k):

U(i) =
1

k

∑
x(j)∈nb(x(i),k)

(x(j)− x(i)). (4.8)

In our research, we need to deliberate on the quantity of similar instances in
neighborhood by bridging the gap between global and local properties. If an in-
stance has a lot of close neighbors, the average value of neighborhood should be
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very similar to the value of this instance. Therefore we use the scale-dependent
(weighted) umbrella operator U :

U(i) =
1

k

∑
x(j)∈nb(x(i),k)

W (i, j)(x(j)− x(i)), (4.9)

where W (i, j) is the weight between x(i) and x(j). If we replace W (i, j) with
W (AGK)(i, j), then we may use scale-dependent umbrella operator on top of Heat
Kernel Signature (H). We call it as Local Anomaly Descriptor (LAD), and define
LAD for a point x(i) as follows:

Lt(i) = Ht(i)−
1

k

∑
x(j)∈nb(x(i),k)

Ht(j)×W (AGK)(i, j). (4.10)

The geometric meaning of LAD is illustrated in Figure 4.5 where we measure the
difference between a singleHt(i) and its neighborhood’s weighted averageHt(j)×
W (AGK)(i, j) value.

If an instance is globally anomalous, its HKS would be already high enough
to discriminate itself to the other instances. While it is locally anomalous, its HKS
is likely to be similar to some normal instances’ with similarly sparse neighbor-
hood. However, applying the scale-dependent umbrella operator, LAD can serve
to recognize the local anomalies from normal instances with expanded horizon of
neighborhood and reflection of the amount of similar instances inside. Since lo-
cal anomaly only has a small amount of neighbors with close HKS, but normal
instances, on the other hand, have more such neighbors.

LAD has a very lucrative property in considering the amount of similar
instances (the second property in our anomaly definition): since it not only
measures a very constrained local area with small t, but also considers the
heat diffusion area of the adjacent neighbors. It gives a measurement of an
expanded horizon to capture how many similar instances are there inside a large
enough neighborhood. If there are lots of similar neighbors (with similar local
density), LAD will be quite small since the neighborhood difference of HKS is not
large. On the contrary, if the neighbors’s HKS are different, LAD score tends to
be assigned a greater value. So even though k is not large enough to include the
whole appropriate neighborhood, LAD can still capture the information related to
the amount of similar instances.
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Figure 4.5: Illustration of LAD (Local Anomaly Descriptor, Equation 4.10) which
calculates weighted average of neighbor differences. It is one of the ways to take
the neighborhood distribution into consideration [135].

The benefits of LAD in comparison with HKS can be seen in Figure 4.3, which
shows that our proposed LAD has a penetrating awareness on both global and local
anomalies primarily because of the power of scale-dependent umbrella operator on
HKS.

Mathematically LAD could also use GAU as the connection weighted function
W (or W (GAU)), which not only affects the term of subtrahend in Equation 4.10 but
also the construction of HKS (Ht). To have a concrete understanding of the effect of
AGK, we also compare the different performance between GAU and AGK on LAD.
LAD with GAU in Figure 4.3(c), although makes some anomalies more salient, still
fails to distinguish some local anomalies and normal instances. But LAD with AGK
in Figure 4.3(f) clearly separates all the global and local anomalies from the normal
instances. This confirms that as a connection weighting function, AGK is more
effective than GAU in that AGK is more aware of the differences between instances
in the manifold space.

4.4.2 Algorithmic Framework of LAD

In this subsection we explain LAD framework step by step. Let X be a ma-
trix of size n × m, where n is the number of instances and m is the number of
dimensions, our framework is detailed in Algorithm 5. This algorithm undergoes
a kind of data warping process by using AGK (Step 1, Section 4.3) and Laplacian
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random walk normalization (Step 2, Section 2.1). Then we perform the eigen-
decomposition (Step 3) and construct HKS for each instance (Step 4, Section 4.2).
Equation 4.10 is used as the last step (Step 6, Section 4.4.1) to compute Local
Anomaly Descriptor as the final measurement of anomalousness.

ALGORITHM 5: LocalAnomalyDescriptor(X , σ, t, k)
Input: Input data X ∈ Rn×m, σ the Gaussian scaling parameter, t the time

scaling parameter, k the neighborhood size.
Output: LAD score for each instance.

1 Construct anisotropic Gaussian kernel W (AGK) using Equation 4.7 and σ;
2 Construct Laplacian random walk normalization Lrw on W (AGK) ;
3 Compute generalized eigenvectors ψp and corresponding eigenvalues λp,
p = 1, 2, ..., n. ;

4 Construct Heat Kernel Signature with time scale t using Equation 4.3 ;
5 Compute Local Anomaly Descriptor using Equation 4.10 with Heat Kernel

Signature and anisotropic Gaussian kernel in the k nearest neighborhood for
each instance ;

Regarding computational complexity, affinity construction using GAU takes
O(n2m). If using AGK it takes O(n2m2). Eigen-decomposition (Step 3) is an-
other time-consuming step. There are many iterative methods to conduct eigen-
value decomposition, but in general finding the eigenvalues reduces to matrix
multiplication by computing a symbolic determinant, which gives a running time
of O(n3 + n2log2n) [112]. An alternative way of estimating the heat kernel
Ht = e−tLrw is to use a partial sum of infinite series with:

e−tLrw =
∞∑
p

(−tLrw)p

p!
. (4.11)

This method would be especially attractive for small values of t, since only a few
terms would be needed to obtain an accurate estimation of e−tLrw [8], which is
desired to our LAD calculation since a small amount of t is good enough to reveal
the anomalousness.

On the other hand, if we only use a small portion of eigen-system (say the
first d eigenvalues and eigenvectors) to compute LAD, the eigendecomposition on-
ly takes O(n2d). We will analyze the performance of this fast version in the exper-
imental Section 4.8.6.
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4.4.3 Discussion of LAD
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(a) LAD (t = 100 and k =
10)
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(b) FDD (T = 1)
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(c) FDD (T = 0.01)

Figure 4.6: LAD with large t fails to reveal the local anomalousness 2 (Figure
4.6(a)) due to the over-diffusion. Comparably, FDD acts robustly in measuring
anomalousness regardless of small or large scaling parameter (Figure 4.6(b) and
4.6(c)).

As we introduce in the previous subsections, LAD can capture the two proper-
ties of our anomaly definition (Section 4.1.2) effectively:
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Figure 4.7: Illustration of stability test on ecoli dataset against time scaling param-
eter (t) tuning. We can see that although LAD (green curve) has better performance
and stability than HKS (blue curve) when t is small, it still doesn’t make accurate
detection when t becomes larger (t ≥ 100). Our ideal goal is to design an anomaly
detection algorithm (red curve) that maintains desirable result regardless of scaling
parameter tuning.

2For each algorithm output, the anomalousness scores are normalized in the range of [0, 1] to
have an easy comparison.
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• Local diffusion process calculated by HKS with small t can intuitively depict
the local density of each instance (Section 4.2.2).

• Umbrella operator provides a broader view even with too small t, so that it has
a lucrative property in considering the amount of similar instances (Section
4.4.1).

Although LAD gets over the instability of HKS to some degree by integrating
a scale-dependent umbrella operator, which provides a more broader view of neigh-
borhood distribution, LAD still suffers if the time scaling parameter t goes too large
(see the example in Figure 4.6(a)). More completely, Figure 4.7 shows the stability
of LAD is below expectation when t is large. The reason is that as the diffusion
time gets longer, HKS across all the instances will become all the same. Subse-
quently there is no difference between HKS of anomalies and their neighbors. This
problem of LAD (and of course HKS as well) comes from the essential properties
of heat diffusion by natural: once the dissipation time is large, heat will easily get
over-diffused.

In the next two subsections we resort to quantum mechanics whose research
objects are in a discrete space, which has potential to detect locally low neigh-
borhood density more stably (Figure 4.6(b) and 4.6(c)). In quantum mechanics,
particles jump from one quantum state to another, and the waves space is not con-
tinuous. The probability of a particle shows up at a certain place is highly related to
the local density of this place. In a certain degree, quantum mechanics intuitively
focuses on the intrinsic local density distribution, while largely ignoring the extrin-
sic properties (pair-wise distance, attribute distribution, etc.) of the ambient area of
input space.

4.5 Schrödinger Equation and Wave Function in
Quantum Mechanics

Besides heat diffusion, another physics concept which is closely related to den-
sity measurement is quantum mechanics [55], which also has strong connections to
Laplace operator. Quantum mechanics is a mathematical machine for predicting the
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behavior of microscopic particles. Anomalous instances can be treated as regions
of low density that correspond to the aggregation area of maximal free energy, and
such area is easier to trap particles. On the other hand, normal instances indicate
high density regions with minima of the free energy in the system, so the probability
for particles appearing in such area is low.

The Schrödinger equation is the key equation in quantum mechanics, which
describes how the quantum state of a physical system changes with time. One of
the most famous examples is the non-relativistic Schrödinger equation for a single
particle moving in an electric field. If we ignore the potential energy, it is directly
associated with Laplace operator L as follows:

ı
∂φ

∂t
(x, t) = Lφ(x, t), (4.12)

where φ is the space-time wave function of the quantum system, ı is the imaginary
unit, x is the position and t is time. The mod square |φ(x, t)|2 depicts the probability
density of a particle at position x at time t, which satisfies:∫

|φ(x, t)|2dx = 1. (4.13)

Assume the Laplace spectrum has no repeated eigenvalues, and L = ψ′λψ (ψ and
λ are the eigenvectors and eigenvalues of L), the space-time wave function φ(x, t)

can be expressed in the spectral domain as:

φ(x, t) =
∞∑
p=1

eıλptψp(x)f(λp), (4.14)

where f(λ) is the energy distribution. This is because in spectral domain, eigen-
value λ is approximately equivalent to energy level E [55], so f(λ) can also be
rewritten as f(E).

Integrating the mod square of wave function |φ(x, t)|2 over all time scales, we
can get

P(x) = limT →∞
1

T

∫ T
0

|φ(x, t)|2dt =
∞∑
p=1

f(λp)
2ψp(x)2. (4.15)

The physical meaning of P(x) is the average possibility for a particle with en-
ergy distribution f(λ) found at position x. The property of quantum mechanics
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states that due to the fast decaying nature of the evanescent wave, a particle tend-
s to be trapped within the vicinity of region where the strong field enhancement
occurs. In high-dimensional dataset, the “tip” regions are those data points with
sparse neighborhood. In other words, the particle tends to stay at instances with
more sparse neighborhood and rarely shows up at instances with denser neighbor-
hood. Therefore in theory P(x) can intuitively represent the local density of each
instance. In practice, however, there are two key challenges:

• What is the best energy distribution f(λ) ?

• What is the best graph Laplacian L (that directly associates with λ and ψ) ?

Section 4.6.1 will solve the first challenge, while the second challenge will be dis-
cussed and conquered in Section 4.6.2.

4.6 Fermi Density Descriptor (FDD) and Its Algo-
rithmic Framework

4.6.1 Energy Distribution Function and Definition of Fermi
Density Descriptor

In this subsection we explore what is the best energy distribution function f
for Equation 4.15. f(E) (f(λ) determines the probability that a particle is in ener-
gy state E. It can be viewed as a realization of the ideas of discrete probability in
such a case that energy can be treated as a discrete variable. In quantum mechan-
ics there are three distinctly different distribution functions [55], namely Maxwell-
Boltzmann distribution (MB), Fermi-Dirac distribution (FD) and Bose-Einstein dis-
tribution (BE). Besides quantum mechanics, existing research also explored distri-
butions based on other theoretical assumptions. Section 4.2 already introduce heat
dissipation (HD) which was used in [133] to describe the heat diffusion given time
t. In 2011, Aubry [7] chose Gaussian distribution (GD) in the logarithmic energy
as f(E) to define Wave Kernel Signature. Here we briefly introduce these five dis-
tribution functions and analyze their respective performance on anomaly detection.
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Maxwell-Boltzmann Distribution (MB).

fMB(E) =
1

eE/κT
. (4.16)

MB distribution depends on the energy level E of the single particle state, the abso-
lute temperature T , and the Boltzmann constant κ. In quantum mechanics, the MB
distribution usually applies to the particles at a high enough temperature and low
enough density where quantum effects can be ignored [55].

Fermi-Dirac Distribution (FD).

fFD(E) =
1

e(E−µ)/κT + 1
, (4.17)

where µ can be obtained from∑
E

1

e(E−µ)/κT + 1
= n/2. (4.18)

Beside the same parameters as used in Equation 4.16, FD distribution is also con-
ditional on a chemical potential µ, and n the number of electrons in the whole
systems. Equation 4.18 represents the number of orbital since only two electrons
(with opposite ’spin’) can occupy each orbital. In quantum mechanics FD distribu-
tion applies to identical particles (fermions) with half-odd-integer spin in a system
in thermal equilibrium [55].

Bose-Einstein Distribution (BE).

fBE(E) =
1

e(E−µ)/κT − 1
, (4.19)

where µ can be obtained from∑
E

1

e(E−µ)/κT − 1
= n/2. (4.20)

The parameters used in BE distribution function have the same physical meaning
as those used in Equation 4.16 and 4.17. BE distribution describes the statistical
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behavior of integer spin particles (bosons). At low temperatures, bosons can be-
have very differently than fermions because an unlimited number of them can be
collected into the same energy state [55].

Heat Diffusion (HD).
fHD(E) = e−Et, (4.21)

where t is the time for heat dissipation. Heat diffusion describes how the amount of
heat dissipates from a heat source to its neighborhood at time t. Different from the
three distributions in quantum mechanics which depict the discrete pattern of par-
ticle movement in terms of probability, heat diffusion has a continuous conception
in both time and space domains.

Gaussian Distribution (GD).

fGD(E) = e−
(e−log(E))2

2σ2 . (4.22)

It is derived in [7] from a perturbation-theoretical analysis. Under the assump-
tion that the eigenvalues (eigenenergies) of an articulated dataset are log-normally
distributed random variables, the authors claimed that it is robust to small data per-
turbations while being as informative as possible.

Before comparison between the aforementioned different energy functions,
we need to clarify a few points. Firstly, since κ is a constant, from now on we
will remove κ from the relative formulas (Equation 4.16 ∼ 4.20) in the interest of
convenience. Secondly, although HD and MB distribution have different physical
meaning, they indeed have similar mathematical performance if we simply replace
t in Equation 4.21 with 1

T
in Equation 4.16. In other words, small diffusion time t

in heat diffusion has similar effect as large environmental temperature T in MB dis-
tribution. Therefore in the following analysis we simply ignore heat diffusion (HD)
and only compare the other four distribution functions. Thirdly, although with dif-
ferent physical meanings, for the sake of mathematical convenience, we assign 2σ2
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in GD (Equation 4.22) with the same value as T in the quantum mechanics func-
tions in order to compare the stability of different functions as scaling parameter
changes.
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Figure 4.8: Stability comparison between different energy distribution functions
on glass dataset. Blue curve is the eigenvalue (EV) ordered by increasing value
(decreasing importance since EV are derived from graph Laplacian). Green, red,
purple and brown curves are MB, FD, BE and GD distribution, respectively. Figure
4.8(a) shows the performance of four functions when T = 0.001, and Figure 4.8(b)
shows the performance of four functions when T = 50. We can see that FD has the
most stable performance as T changes.

Although MB/HD, FD, BE and GD distributions have solid theoretical back-
ground, the differences of mathematical performance give rise to very different s-
tatistics, especially the stability of outcomes.

1. Among these functions, FD is the most practical one for anomaly detection
in terms of performance stability under different parameter (T ) setting. In
Equation 4.17, two special terms can stabilize the distribution function per-
formance: the constant smoothing term “plus one” and the balancing term
µ in the denominator part. The role of the smoothing term is to damp the
contribution of the exponential part from being too small, which results from
either extremely small λ (E) or large T . The balancing term µ (computed
by Equation 4.18) is a parameter controlling the trade-off between small and
large λ (E). Besides, it helps to tune a sweet range for λ (E) according to
T , since it has a positive side-effect that it can accelerate the attenuation of
contribution from those trivial eigenvalues in Equation 4.17.
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2. Comparably, MB/HD and GD without any smoothing term or balancing term,
are very sensitive to either extremely small λ (E), or large scaling parame-
ter T . Although BE has balancing effect from µ, it actually suffers more
from the “minus one” in the denominator part, since it lessens the stability by
making the denominator part even smaller.

Figure 4.8 shows the value of different distribution functions across different
eigenvalue (energy) of glass dataset (statistic details of glass are in Section 4.8.1). In
general, FD distribution tends to assign stable weights regardless how temperature
T changes compared with the other energy distribution functions. To have a broader
and fair comparison between the effect of different energy distribution functions,
we test all the distribution functions on 7 datasets against changing T . The detailed
results, which again confirm our findings, are recorded in Section 4.8.5.

Now we integrate the FD distribution function (Equation 4.17) into Equation
4.15, and define Fermi Density Descriptor (FDD) at a point x(i) as:

F(i) =
1

C

∞∑
p=1

(
1

e(λp−µ)/T + 1
)2ψp(i)

2, (4.23)

where C =
∑∞

p=1( 1
e(λp−µ)/T+1

)2, µ can be derived from Equation 4.18 where n is
set as the number of data instances in practice.

4.6.2 Laplace Operator for FDD

We discuss the best choice of graph Laplacian for FDD in this subsection. In
Section 4.5, we have already shown that our proposed Fermi Density Descriptor
is derived from Schrödinger equation (Equation 4.12) which is strongly associated
with Laplace operator. Laplace operator is intimately related to the “shape” of data,
or more precisely, the density distribution of data. More precisely, Laplace operator
in Equation 4.12 is aiming to account for the kinetic energy of the particles consti-
tuting the system, which depends on the spatial configuration to conserve energy
[55]. Using the discrete Laplace operator, or graph Laplacian, the Schrödinger e-
quation can be simplified, and generalized to be matrix operation over space of an
arbitrary number of dimensions.
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Different graph Laplacian normalizations have been introduced in Section 2.1.
Although their effect on clustering has been thoroughly analyzed in [71] and [100],
it is still unclear what is the best choice for FDD with the purpose of anomaly
detection.

In general, when the data points are sampled from the equilibrium distribution
of a stochastic dynamical system, clustering algorithms tend to correct different
density bias in order to obtain stable and balanced instance clusters This is quite
different from the need of anomaly detection applications when the density of the
points is a quantity of interest, and therefore, cannot be ignored [28]. For clustering
purpose, we focus on normal instances and want to recover manifold insensitive
to the existing anomalies (usually being treated as noise in such applications). In
other words, the different density distribution prevents algorithms from the desire
clustering result and therefore need to be removed in clustering applications [71].
However, from anomaly detection’s point of view, the focus is on the anomalies,
and the recovered manifold should be aware of local density variation, therefore in
the manifold space the density differences between anomalies and normal instances
should be preserved or even magnified with respect to the input space distribution.
In a nutshell, we need to find the graph Laplacian that is most reactive to local den-
sity distribution with the purpose of anomaly detection.

Theorem 1 The density impact power for Lnn, Lrw, Lsym, Lfp and Llbn normal-
ization are 2, 1, 1, 0.5, and 0 respectively.

Proof: Define q(x) the true density function of x, and a kernel function
kσ(x, y) between x and y with σ as neighborhood scaling parameter. Let

qσ(x) =

∫
kσ(x, y)q(y)dy, (4.24)

which is an approximation of the true density q(x), we can form the new kernel
[28]:

kασ (x, y) =
kσ(x, y)

qασ (x)qασ (y)
, (4.25)

where α ∈ R. Apply the Laplacian operator to this kernel as follows:

dασ(x) =

∫
kασ (x, y)q(y)dy, (4.26)
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the new anisotropic kernel can be defined as:

pασ(x, y) =
kασ (x, y)

dασ(x)
. (4.27)

Therefore, based on the Laplacian operator, the infinitesimal generator of the
Markov chain with σ → 0 [28] can be defined as:

Lσ,α =
I − Pσ,α

σ
, (4.28)

where Pσ,αf(x) =
∫
pασ(x, y)f(y)q(y)dy with any function f . If σ → 0 we have:

limσ→0Lσ,αf =
∆(fq1−α)

q1−α − ∆(q1−α)

q1−α f. (4.29)

Hence the infinitesimal operator can be given by

∆ϕ− ∆(q1−α)

q1−α ϕ, (4.30)

where ϕ = fq1−α.
For Lrw normalization, αLrw = 0 [28] so the density impact power is 1 −

αLrw = 1. For Lfp normalization, αLfp = 0.5 [28] hence the density impact power
1 − αLfp = 0.5. For Llbn normalization, αLlbn = 1 [28] thus its density impact
power is 1− αLlbn = 0.

Lsym normalization can be transformed from Lrw normalization by Lsym =

D1/2LrwD
−1/2. From Equation 4.26 we know that D (d) is proportional to the

density impact power q, therefore limσ→0Lsym,σf depends on density function
q−1/2q1−αLrw q1/2 = q1 where αLrw = 0. On this account, its density impact power
is also 1.

For Lnn, since Lnn = DLrw, and limσ→0Lnn,σf depends on density function
q×q1−αLrw = q2 where αLrw = 0. Accordingly Lnn has the greatest density impact
power 2. 2

Proof of Theorem 1 demonstrates that Lnn is the best option for FDD. As an
illustration, Figure 4.9 shows the effects of different normalizations on ecoli dataset
(Section 4.8.1). We only plot the first three non-trivial eigenvectors derived from
the graph Laplacian. The red circles indicate anomalous instances while crosses
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(a) Random walk (Lrw) (b) Symmetric (Lsym)

(c) Fokker-Planck (Lfp) (d) Laplace-Beltrami (Llbn) (e) No-normalization (Lnn)

Figure 4.9: The comparison from different graph Laplacians effect on ecoli dataset
for the purpose of anomaly detection (measured by AUC) and clustering (measured
by NMI). Red circles indicate anomalous instances, while crosses in other color
represent different clusters of normal instances. We can see that Lnn is the best
choice for anomaly detection since it magnifies the distance and density differences
between anomalies and normal instances. On the contrary Llbn is the worst choice
for anomaly detection purpose but the best option for clustering.

with other colors represent different clusters of normal instances respectively. We
also show AUC score (Section 4.8.1) of anomaly detection result, and NMI score
(the detailed definition of NMI can be referred to [60]) of clustering result from
different graph Laplacians.

This experiment shows that the Llbn normalization (Figure 4.9(d)) reorganizes
points with larger intra-cluster similarity and smaller inter-cluster similarity. There-
fore Llbn normalization has the highest NMI (0.7167). Nevertheless, the over-
diffusion and the consequent unresponsiveness of density distribution generate a
tail of normal instances connected to anomalous instances, which leads to the low-
est AUC (0.8521). Compared with Llbn normalization, Lfp (Figure 4.9(c)) nor-
malization spreads the instances with a slightly more dispersive distribution (e.g.,
cluster in dark yellow), which makes a lower NMI 0.6655 but a slightly higher AUC
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0.8653.
Lrw (Figure 4.9(a)) and Lsym (Figure 4.9(b)) normalizations reconstruct circle-

like shape in their manifold space. But they also show more mixture of different
clusters since they preserve the same density as in the input space with impact power
equal to 1. Consequently it gives higher AUC (0.8739 for Lsym and 0.8797 for Lrw)
but lower NMI (0.6572 for Lsym and 0.6281 for Lrw) compared with Llbn and Lfp.

Lnn has the most polarized manifold reconstruction. The reason is that the
density difference is amplified by Lnn compared with the four normalizations. It
results in that the normal instances with higher density shrink to a condensed area
while anomalous instances are far away from the collapsed center of normal in-
stances. Consequently, Lnn has the strongest ability (with AUC 0.9042) to separate
anomaly from normal instances even though the clustering based on it will miser-
ably fail (with NMI 0.5432). Section 4.8.4 will show more convincing experiment
results which confirm that Lnn is the best Laplacians for FDD.

4.6.3 Algorithmic Framework of FDD

Let X be a matrix of size n×m, where n is the number of instances and m is
the number of dimensions, our algorithm is detailed in Algorithm 6.

ALGORITHM 6: FermiDensityDescriptorGlobal(X , σ, T )
Input: Input data X ∈ Rn×m, σ the Gaussian scaling parameter, T is the

environmental temperature.
Output: FDD score for each instance

1 Construct Anisotropic Gaussian Kernel (AGK) W (AGK) using Equation 4.7
and σ;

2 Construct Lnn (Equation 2.1) ;
3 Compute generalized eigenvectors ψ(i) and corresponding eigenvalues λi of
L, i = 1, 2, ..., n ;

4 Construct Fermi Density Descriptor (FDD) with temperature T using
Equation 4.23 ;

Step 1 (details in Section 4.3) constructs AGK similarity matrix and Lnn is
operated on top of it in Step 2 (details in Section 2.1) to generate density “polar-
ized” manifold projection. Then we perform the eigen-decomposition (Step 3) and
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compute FDD for each instance (Step 4, details in Section 4.6). FDD value is used
as the final measurement of anomalousness.

Similar to algorithm of LAD in Section 4.4.2, the computation of FDD is dom-
inated by affinity construction (O(n2m2) if AGK and O(n2m) if GAU), and eigen-
decomposition in Step 3 (O(n3) [112]). Also, if we only use a small portion of
eigen-system (say the first d eigenvalues and eigenvectors) to compute FDD, the
computational complexity of eigendecomposition would be drop to O(n2d). We
will analyze the performance of this fast version in Section 4.8.6.

4.6.4 Discussion of FDD

FDD satisfies the two properties of our anomaly definition (Section 4.1.2) in
a more concise and effective way. In that FDD relies on the “polarized” manifold
reconstruction which magnifies the distances between anomalies and normal in-
stances. Consequently, anomalous instances will be more singular and distinctive.
The dense neighborhood will become even denser, with analogous instances aggre-
gated together. The sparse neighborhood, on the contrary, will be more sparse. In
this fashion, FDD considers the locally low neighborhood density and amount of
similar instances simultaneously and effectively.

Besides, FDD has more robust performance against different physics parame-
ter settings (especially the extreme cases). Part of the reasons lie in the stable en-
ergy function FD which was already scrutinized in Section 4.6.1. The other reason
is because the “polarized” manifold reconstruction that “breaks” the connections
between anomalies and normal instances. Figure 4.6 and 4.7 illustrates the stability
comparison of FDD, LAD and HKS, which once again confirm that FDD maintains
desired result more stably with different parameter tuning.

4.7 Discussion of Theoretical Perspectives

We now justify the utility of our proposed two algorithms LAD and FDD
by briefly documenting their theoretical connections with a few existing method-
s, which also lays a solid foundation for their attractive properties for practical use.
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4.7.1 Comparison between LAD and FDD

LAD and FDD are all based on Laplace operator on the affinity matrix, and the
subsequent manifold reconstruction. They all try to describe the density information
in a retained but informative neighborhood. However, their different theoretical
background leads to quite different interpretation and performance.

Theoretical Backgrounds. LAD is inspired by heat diffusion, which is highly
related to Markov chain. It describes the amount of heat being transfer in a certain
time scale, therefore its conception is continuous in both time and space. On the
contrary, FDD measures the probability that a particle (fermion) shows up at a cer-
tain position. It is built upon quantum mechanics, whose key idea is that the motion
of a particle is discontinuous and random.

Manifold Reconstruction. Due to the close theoretical connections, LAD uses
random walk normalization Lrw by natural and projects origin instances onto a dif-
fusion space. However the diffusion process is hard to control and usually gets over-
diffused, leading to a blending of local anomalies into normal instances. But FDD
applies Lnn to construct a “polarized” manifold projection, which concentrates on
magnifying the difference between anomalies and normal instances. Roughly s-
peaking, in the “polarized” manifold the similar points with higher density tend to
collapse to the center of mass, therefore clusters of normal instance are topologi-
cally isomorphic to extremely condensed convex sets. Conversely, anomalies will
be more singular and distinctive from the normal instances. Although this type of
mapping is non-isometric and the original distribution is changed, it is of central
interest in anomaly detection, as it becomes more sensitive to locally low neighbor-
hood density and the preservation of intra-cluster distance or distribution is not a
concern at all. In Section 4.8.4 we will further confirm our choice of Laplacians for
LAD and FDD with support from more experiment results.

Strategies against parameter sensitivity. To overcome the narrow scope of s-
mall t, LAD integrates a scale-dependent umbrella operator on the projected diffu-
sion space, which bridges the gap between global and local properties. Its advantage
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compared with HKS is that, although with the same small t, LAD covers a suffi-
ciently large neighborhood for each instance x(i) since LAD also considers the t
scale neighborhood of x(i)’s neighbors. On the other aspect, it takes the quantity of
similar instances into consideration. But FDD approaches stability against param-
eter tuning in a different way: Equation 4.23 has two special terms which stabilize
FDD performance: the constant smoothing term “plus one” and the balancing term
µ in the denominator part. Both of these two terms can damp the contribution of
the denominator from being too small, which results from the extreme setting of
scaling parameter.

Stability. Although LAD provides more robust performance under very small t
compared with HKS, it still suffers when t becomes too large due to over-diffusion
of heat dissipation. But FDD has stronger stability than LAD in that it can conquer
the negative side-effect from extreme scaling parameter, regardless whether it is too
small or too large.

4.7.2 Connections between LAD/FDD and Other Anomaly De-
tection Algorithms

kNN-based Approaches. kNN-based methods [14] [34] [158] approach local
density for each instance using its neighborhood information. Like LAD and FDD,
they require (scaling) parameters to capture a reasonably large neighborhood, and
the density information is based on this prescribed local region. However, kNN-
based methods have strictly local context in that they simply fix the neighborhood
size with k. In contrast, LAD employs locally adaptive neighborhood size which
directly benefited from the physics-inspired properties of heat diffusion, while FDD
makes uses of stabilization terms to smooth out the performance fluctuation from
off-the-sweet-spot parameters. Moreover, kNN-based methods rely on Euclidean
distance in the input space which is a pair-wise local quantity, while our methods
consider the relationship between instances in manifold space, which is more com-
prehensive. For example, heat kernel used in LAD considers all the possible paths
between two instances within time t. Therefore our proposed methods are more
intrinsic and informative than kNN-based methods.
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Attribute-based Approaches. Attribute-based methods [96] [97] [138] try to
compute local density by adding up a sequence of values from an attribute-based
function [138], which to some extent is equivalent to a kernel density function such
as heat kernel. Their measurement of global instance distribution is based on each
attribute and how deviated each instance is from the other instances in that specific
attribute, which indeed is more informative than kNN-based approaches. However,
the strong emphasis on input attribute distribution is also a “double-sided sword”:
on one hand it is much faster without any distance calculation, on the other hand,
such distribution simply hinged on attributes still fails to consider local anomalies.
Although our methods undergo a step of dimension reduction or manifold projec-
tion at first, they map all the correlated attributes onto a few lower dimensions.
Therefore both LAD and FDD are more capable of stably finding local anomalies.

4.7.3 Connections between LAD and Other Related Techniques

Biharmonic Operator. HKS is directly derived from the Laplace operator and
its eigen-decomposition, therefore HKS is intrinsically a second-order property rel-
evant to the Laplace’s equation. The derivation of LAD, or the scale-dependent
umbrella operator, can be intuitively related to the biharmonic process, because the
Laplace operator is essentially applied twice (to compute both HKS and the subse-
quent scale-dependent umbrella operator). It provides a good balance in the sense
that it decays slowly in small cluster around the source instance and fast enough to
be structurally inherent in dense areas. This specific “balancing” is intimately de-
rived from the biharmonic equation with properties such as local support and global
informativeness [94].

Signal Processing. LAD also has strong connection to signal processing. In low-
pass filtering, the divergence of a sample from its average neighborhood is the easi-
est way to pinpoint those inconsistent instances if the desired signal has significant
high frequency content. As in traditional signal processing [135], it is possible for
LAD to quantify the frequency response by computing an adjoining sum of the
Laplace operator in its immediate vicinity. As a result, this enables LAD to distin-
guish between normal instances and inconsistent instances (anomalies) with greater
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precision.

Diffusion-based Clustering. Some recent researches [122] [120] [71] proposed
the probabilistic clustering approaches based on diffusion space. By integrating
all time scales of kernel function into one single term, this kind of techniques
completely removes the diffusion time scaling parameter, therefore has the built-
in robustness to data perturbation and scaling parameter tuning [71]. However, as
a side-effect, this process of “integration” easily assimilates local anomalous in-
stances into normal instance clusters since the excessive-diffusion tends to connect
everything together. LAD, in sharp contrast, is built upon kernel function with s-
mall time scale and scale-dependent umbrella operator instead of integrating all
time scales together. Therefore it avoids the excessive-connection problem.

4.7.4 Connections between FDD and Quantum-based Cluster-
ing/Classification

Many data mining researches [66] [65] [108] [147] used the Schrödinger e-
quation from quantum mechanics to allow the clusters, or over dense regions in the
data, to reveal themselves.

As an example, the intuition behind Quantum clustering [66] is based upon
the fact that in the quantum system local maxima in the ground state wave-function
correspond to the local minima of potential [147]. And such minima are likely to be
good candidates of the cluster centroid locations [147]. Instances lying in the basin
of attraction of particular minima were identified as a single cluster. Advanced
methods have been proposed [65] [147] which differ in how to handle the problem
of identifying data points with local minima of the function in high-dimensions.
Specifically, Schrödinger equation in [108] is used to calculate the probability of
locating a particle given its potential energy.

Although our proposed FDD also applies Schrödinger equation, it ignores the
potential energy in Equation 4.12. The reason is that we are not trying to cluster
instances to certain centroids but rather focusing on the local density measurement
to distinguish anomalies. In our study, the Schrödinger equation acts as a cost
function separating instances with different density instead of clustering/classifying
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instances according to the local potential.
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Figure 4.10: Dataset “wdbc” shown on the first three nontrivial eigenvectors.
Anomalous instances in green (37.3% of #instance) are more scattered and sparse
than normal instances in blue (62.7% of #instance). Therefore these anomalies, al-
though have a large amount of instances, should be treated as many small abnormal
clusters instead of a single cluster.

4.8 Experimental Analysis

4.8.1 Experimental Setup

Datasets. To demonstrate the performance of our proposed FDD and LAD,
we evaluate our algorithms on fifteen benchmark datasets including seven med-
ical datasets (breastcancer, wdbc, pima, arrhythmia, arcene, prostateTumor and
gse24417), four biological datasets (hayeRoth, ecoli, yeast, and abalone), and four
physics datasets (glass, ionosphere, pageblocks and magic04), whose statistics are
summarized in Table 4.1. All these datasets have been popularly used in anoma-
ly detection research (related references for each dataset are listed in Table 4.1).
Such diverse combination of data is intended for our comprehensive studies. In the
data preprocessing step, all nominal (including binary) attributes or attributes with
missing value are removed.

Anomalies in some of the datasets (wdbc, arrhythmia, prostatetumor etc.), al-
though carrying a large number of instances, have scattered and sparse distribution
as shown in Figure 4.10. Therefore the anomalies in these datasets should be treated
as a combination of many small anomalous clusters instead of one or a few normal
clusters with high density [34] [110], which is consistent with our anomaly defini-
tion in Section 4.8.1.
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Baselines. We choose seven state-of-the-art competitors in three categories to
show the outstanding performance of our proposed FDD and LAD. For kNN-based
algorithms, we choose Local Outlier Detection (LOF) [14] and Local Correlation
Integral (LOCI) [113]. Specially, LOCI provides an automatic, data-dictated cut-
off to determine whether an instance is an anomaly based on probabilistic reason-
ing. For attribute-based methods, we include IForest [96] and Mass [138]. For
manifold-based methods, we choose two different manifold-based techniques used
in [2] including locally linear embeddings (LLE), and isometric feature mapping
(ISM), followed by LOF to obtain anomalousness measurement. We also include S-
trangeness based Outlier Detection algorithm (StrOUD) presented in [9]. StrOUD
is based on Transductive Confidence Machines, which have been previously pro-
posed as a mechanism to provide individual confidence measures on classification
decisions [9].

Evaluation Metrics. Since we have the ground truth of labels for each dataset, we
compare our anomaly detection results with labels. For the purpose of theoretical
analysis and practical use, we use three evaluation metrics: AUC, F1-Score and
macro paired t-tests.

AUC. AUC measures the area under the Receiver Operating Characteristics
Curve, which can be interpreted as the probability that the classifier will assign
a higher score to a randomly chosen positive example than to a randomly chosen
negative example. AUC is commonly used to evaluate anomaly detectors and it is
cut-off independent. Detailed definition of AUC can be referred to [102].

F1-Score. In practical use, the anomalousness of all the instances are usually
sorted and those instances with higher value are assigned as anomalies. We assume
the number of anomalies h is already known (calculated with the ground truth), then
the first h instances with the highest anomalousness are selected. We evaluate the
estimated results with F1-score of the anomaly class. For more details of F1-score
we refer readers to [118].

Macro Paired T-Tests. During the experiment, we also show that our FDD
provides more stable anomaly detection accuracy for all the datasets by using macro
paired t-tests [164] against each competitor respectively. Note that a score of macro
paired t-tests (p-value) should be no more than 0.05 to be considered statistically
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significant.

Parameters. First of all, we introduce the parameter settings in our FDD and
LAD. Our algorithm FDD has two scaling parameters, the Gaussian scales σ and
the environmental temperature T . These two parameters are also used in our LAD
(heat diffusion time t has been replaced by 1

T
, check Section 4.6.1 for details).

Besides these two parameters, LAD also has another tuning parameter k, the size
of neighborhood scope, which is used in the scale-dependent umbrella operator. In
our experiments they are set as follows:

• σ: For local sensitivity, σ in both FDD and LAD are always fixed to be the
average distance of each point to its 2-NN (second nearest neighbor).

• T (1
t
): Specifically we fix t = 1 in LAD in all the experiments (except Figure

4.11(h) and 4.12(h)) to avoid the heat dissipation from over-diffusion. For all
the FDD experiments and LAD in Figure 4.11(h) and 4.12(h), the range of
T (1

t
) is in 10∧{−4,−3.8,−3.6, ..., 3.8, 4}.

• k: k is fixed to be k = d1% × ne (n is the number of instances) in Figure
4.11(i) and 4.12(i). But in the other LAD experiments, the stability of LAD
with different k is tested with k ∈ d{1%, 2%, 3%..., 100%} × ne.

The size of neighborhood scope, k, is a commonly used parameter which also ap-
pears in LLE, ISM, LOF, LOCI, and StrOUD. For these algorithms k is also tested
in k ∈ d{1%, 2%, 3%..., 100%} × ne.

The parameter settings of the other algorithms in our experiments are briefly
introduced as follows. For LLE and ISM, we fixed d = 5 to measure across different
k in Table 4.2 and 4.3, and in Figure 4.11(a) 4.11(b) 4.12(a) 4.12(b) as well. But in
Figure 4.11(c) 4.11(d) 4.12(c) 4.12(d) we show the stability of LLE and ISM across
different d ∈ [1, 30] by choosing the best k from the previous test for each dataset.
In LOCI, radius coefficient is set as α = 0.5 which is the same to their paper [113].
As for IForest, to conduct safe and fair comparison, we set ρ and the number of trees
nt as the following six combinations: ρ = 8 and nt = 100 (the number of trees);
ρ = 8 and nt = 1000; ρ = 256 and nt = 10; ρ = 256 and nt = 100; ρ = 256

and nt = 500; ρ = 256 and nt = 1000. For the same reason, in Mass we set
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the sub-sampling size ρ and the number of mass estimation ne as the following six
combinations: ρ = 8 and ne = 100; ρ = 8 and ne = 1000; ρ = 256 and ne = 10;
ρ = 256 and ne = 100; ρ = 256 and ne = 500; ρ = 256 and ne = 1000. On the
other hand, IForest and Mass are based on random sub-sampling which makes their
performance unstable. In an attempt to get more stable statistics, for each dataset
and parameter setting we run 30 times and compute the average AUC and F1-Score.
In Table 4.2 and 4.3, we document the average AUC/F1-score of the best four (out
of all six) parameter settings for each dataset.

4.8.2 Comparison of Average Performance

In this subsection we evaluate our proposed FDD and LAD, and the other
seven anomaly detection algorithms. Table 4.2 documents the average AUC of
each method across their corresponding tuning parameters, and the relative p-value
w.r.t to FDD; while Table 4.3 records the average F1-score of each method across
their corresponding tuning parameters, and the relative p-value w.r.t to FDD.

In Table 4.2 our proposed FDD and LAD show the first and the second best
average AUC score (0.7818 and 0.7758). They boost up the AUC close to or more
than 8% compared with the best performance (0.7214 from IForest) among the other
methods. For most of the datasets, FDD and LAD has the best or very close to the
best performance. Specifically, FDD is the top-three-ranked for all the datasets,
meanwhile our LAD, although not all the time, outperforms the other algorithms
in most cases. In fact the only two cases, arrhythmia and yeast, when LAD is not
among the best four ranks , LAD still reach more than 95% of the best AUC result.

Although some algorithms, such as LOF, IForest and StrOUD, are more effi-
cient in measuring the anomalousness, their methodologies are based on Euclidean
space and therefore under the curse of dimensionality. As the number of feature
increases, their performances drop significantly on the datasets such as arcene and
prostatetumor. The manifold-based algorithms like LLE and ISM are to reduce the
vulnerability of simple kernel under the high dimensions. In spite of the fact that
LOF measurement on the projection of LLE and ISM show better quality compared
with LOF on the input space, it suffers from the inferior manifold reconstruction.
Comparably, our FDD and LAD, built upon optimal embedding structure derived
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from solid physics theory, provide stronger capability of detecting anomalies in
terms of AUC.

As for the macro paired t-tests across all the datasets in Table 4.2, compared
with all the other algorithms, our quantum-theory-based FDD has extremely small
p-value (less than 1%). Even compared with the other proposed method LAD, FDD
still has very small p-value less than 5% with statistical significance. This proves
that our FDD has the most stable average performance in terms of AUC.

To have a comprehensive test with a more practical view, we also measure
the F1-score and document in Table 4.3. Here we only record the F1-score of the
anomalous subset (class) because it is the focus of anomaly detection. Although the
heat-diffusion-based LAD shows slightly fluctuating performance compared with
its AUC production in Table 4.2, it still surpasses (0.5338 vs 0.5026) IForest, the
best among the other algorithms (except FDD) for more than 6%. But the quantum-
theory-based FDD, acquires the best F1-score (0.5542), which improves more than
10% based on IForest. Furthermore, the same as demonstrated in AUC, F1-score
by FDD is almost persistently (except for glass) ranking top-three among all the
algorithms. In the actual application of anomaly detection, the users tend to focus
on the detected anomalous subset, instead of the whole label distribution, therefore
F1-score tells more story than AUC. In this case, FDD shows more convincing
quality in terms of F1-score. This is to say, our proposed FDD has the capability of
providing the most desirable label results of anomalies in pratice.

Compared with the basic LOF algorithm, IForest shows passable AUC and F1-
score on average, which supports the argument that it is able to take both global and
local contexts into consideration. This is different from kNN-based methods (LOF
and LOCI) which only concern with instance-wise local context. Compared with
LOF, LOCI has more than 8% better AUC and more than 7% better F1-score. This
moderately stable and stronger performance comes from the built-in concept of a
multi-granularity deviation factor [113]. Although Mass cannot always maintain
competitive quality of anomalousness measurement, it has the fastest computation
speed compared with all the other competitors.
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4.8.3 Comparison of Stability

To systematically manifest the stability against parameter tuning of each
method, we run experiments for LLE, ISM, LOF, LOCI, StrOUD, and our pro-
posed FDD and LAD across their corresponding parameter tuning respectively, and
record the AUC in Figure 4.11 and F1-score in Figure 4.12. We select seven small
datasets: wdbc, pima, arrhythmia, ecoli, yeast, glass and ionosphere for the stability
test. In theory, smaller datasets should be more sensitive to the change of scaling
parameters. Therefore these seven datasets are the more effective choices to show
whether the algorithms perform robustly during adjusting their parameters.

For the size of neighborhood k and the number of embedding dimension d,
LLE undergoes fluctuation especially on wdbc, ecoli and glass. It is mainly be-
cause LLE has strong assumption that the data is densely sampled and the embed-
ding structure is locally approximately linear, yet it is not true for many real world
datasets. Similarly, ISM’s results vary dramatically as k changes especially for
ecoli, glass, and ionosphere, although later ISM is comparably stable while tuning
d. The reason is that ISM is highly vulnerable to the local data perturbation, as
the embedding given by the ISM tends to recover the geodesic distances between
points on the manifold which is very locally sensitive compared with random walk
[84] [142].

Compared with LOF, LOCI performs robustly with different k, which results
from that its proposed multi-granularity deviation factor can more intuitively cope
with local density variations in the feature space and detect both isolated anomalies
as well as outlying clusters [113]. LOF, although occasionally beats LOCI with
certain k, shows seriously unstable performance as k changes, which can be simply
explained as follows: LOF is based on a direct normalization of anomaly scores for
an inadaptive neighborhood.

StrOUD demonstrates not only its effectiveness and efficiency (since it is to-
tally based on the input space without any projection), but also its AUC stability
during the change of k. However, in terms of AUC result shown in Figure 4.11(g),
the curves have different patterns: StrOUD reaches higher AUC with smaller k on
wdbc, glass and ionosphere datasets, but it has better AUC result with larger k on
pima and ecoli. In the test of F1-score in Figure 4.12(g), StrOUD shows serious
instability on ecoli as k changes. Part of the reason comes from that StrOUD is
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principally built upon Euclidean distance on the input space, which cannot faithful-
ly reveal the intrinsic dissimilarity and density on the non-linear distributed data.
Furthermore, it becomes even worse on the more complex datasets with large num-
ber of features, as already confirmed in Table 4.2 and 4.3.

Compared with the above algorithms, our proposed LAD shows the best sta-
bility against the change of k, as demonstrated in both AUC (Figure 4.11(h)) and
F1-score (Figure 4.12(h)). This is because LAD has an inherent relationship with
heat diffusion and random walk. More specifically, LAD has a strong probabilis-
tic interpretation, with provides a power against noise appearance or neighborhood
size perturbation, as long as they are not severe enough to perturb the general neigh-
borhood statistics.

Importantly, we test the performance of our FDD and LAD with different phys-
ical parameters: heat diffusion time t in LAD and environmental temperature T .
The same as what we already described in Figure 4.7 and Section 4.7.1, LAD may
lost the power of local density description especially for local anomalies when t
goes large, which means over-diffusion. Therefore the AUC curves by LAD of
ecoli and yeast significantly drop in Figure 4.11(i). Likewise, the F1-score by LAD
in Figure 4.12(i) shows comparably unstable trends as t increases. On the con-
trary, Figure 4.11(j) establishes the robustness of FDD. Compared with LAD, FDD
has more potential in combating off-the-sweet-spot physical parameter since it is
constructed on “polarized” manifold space and it has additional stabilizing factors
which help to balance the riskiness from extreme cases. Another thing worth pay-
ing attention here is that in Figure 4.12(j), FDD does not always maintain strong
stability across all the datasets. But comparatively, our proposed FDD still retains
certain level of anomaly detection quality as parameter changes. And most im-
portantly, FDD outperforms the existing baselines in terms of average performance
and steadiness with the purpose of detecting anomalies. The robustness property
is equally significant for domain experts who do not have strong machine learning
background. Since there is no too much clue to tune the traditional yet unstable
algorithms such as LLE, ISM and LOF, it is much more comfortable for the domain
experts to utilize robust anomaly detection algorithms for the domain data analysis.
Therefore our proposed FDD is very hands-on and effective on many real world
applications.
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4.8.4 Comparison of Different Laplacians

In Section 4.2.1 and 4.6.2 we introduce our selection of Laplacian in LAD and
FDD. Here we analyze the reasons through experiments of LAD and FDD with the
five Laplacians and 15 datasets respectively. To save space, we only list the average
AUC in Table 4.4 and 4.5.

Table 4.4 shows the effect of different Laplacians on LAD, andLrw has the best
average performance. We also note that except Lnn, there is no too much difference
among the four (normalized) Laplacians. Detailed analysis are listed below:

1. The similar performance of Lrw, Lsym, Lfp and Llbn can be explained by
the use of umbrella operator in LAD, which gives attention on the weighted
distance between each point and its neighborhood. Therefore as long as the
eigenvalues are normalized, and there is deviation between the normalized
eigen-components, especially, the corresponding value of any anomaly and
its surrounding normal instances in the eigenvectors, LAD can capture such
deviation regardless the choice of normalized Laplacians. The reason we
emphasize Lrw on LAD is that LAD is based on heat diffusion, and heat
diffusion in classical physics has better interpretation with particles’ random
walk.

2. The reason why LAD fails on top ofLnn relates to the unnormalized eigenval-
ue distribution. Figure 4.13(a) and 4.13(b) show the eigenvalues (sorted in as-
cending order) derived from Lrw and Lnn on dataset “wdbc” correspondingly.
Without normalization, the eigenvalues in Figure 4.13(b) increase “exponen-
tially”, and only a small portion of eigencomponents in Heat Diffusion (Fig-
ure 4.13(d)) are given stable and large enough weights, while the other eigen-
components, even those informative, are gone away quickly. Comparatively,
the eigenvalues derived from Lrw show an inverse-hyperbolic-tangent-like
distribution. So the consequent Heat Diffusion (Figure 4.13(c) with t = 1)
gives very high weights on the first a few eigencomponents and less but non-
negligible weights on most of the following ones. Therefore the normalized
Laplacians such as Lrw weights the eigencomponents more safely, even con-
servatively, compared with Lnn.
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3. Note that if diffusion time goes too large, Heat Diffusion will only empha-
size the first few eigencomponents and ignore all the following, as shown in
Figure 4.13(g). Therefore HKS and even LAD fail with too large t.
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Figure 4.13: Eigenvalue by Lrw and Lnn, and the corresponding weighted function
of Heat Diffusion (HD, Equation 4.21) and Fermi-Dirac Distribution (FD, Equation
4.17). The dataset is “wdbc”.
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In Section 4.6.2 we prove that Lnn is the best choice for FDD. Table 4.5 con-
firms that Lnn has the best average performance on FDD. Here we give brief anal-
ysis:

1. FDD, different from LAD, doesn’t use umbrella operator but instead relies on
the energy distribution functions and the eigendecomposition on Laplacians.
Hence the Laplace operator becomes more essential on the construction of
FDD.

2. In Figure 4.13(f) and 4.13(h), Fermi-Dirac distribution function (FD) with
Lnn robustly assigns similar and very stable weight to the first 200+ eigen-
components of “wdbc” dataset, regardless of the value of T. Comparatively,
FD with normalized Laplacians such as Lrw (Figure 4.13(e)) embraces too
much eigencomponents, even including noisy ones. Without the help of um-
brella operator, these noisy components will bring unstable anomaly detec-
tion results, as shown in Table 4.5.
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4.8.5 Comparison of Energy Distribution Functions

To have a better understanding of different distribution function effects (intro-
duced in Section 4.6.1) on anomaly detection, we test their stability. Here we inte-
grate all the four functions, namely Maxwell-Boltzmann distribution (MB), Bose-
Einstein distribution (BE), Gaussian distribution (GD) and our chosen Fermi-Dirac
distribution (FD), into Equation 4.15 with Lnn operator, and calculate the anomaly
detection scores in AUC and F1-Score.

The results are illustrated in Figure 4.14 and 4.15. The stability of GD is
reasonable, but the scores are apparently lower than the other three. BE shows
the most fluctuant results in both AUC and F1-Score because it doesn’t have the
smoothing term “plus one”. MB suffers from extremely small temperature T, which
is similar to the fact that HKS suffers from large diffusion time t, therefore generally
it has a dropping trend when T becomes smaller. Our FDD, although not always
maintains the best performance, has the best average result and the most stability in
both AUC and F1-score.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

T(temperature)

A
U
C

 

 

(a) Equation 4.15 with MB, different T
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(c) Equation 4.15 with GD, different T
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Figure 4.14: AUC stability with different energy distribution functions.
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Figure 4.15: F1-Score stability with different energy distribution functions.

4.8.6 Comparison of Efficiency and Effectiveness

In this subsection we analyze the efficiency and effectiveness of LAD and
FDD with a small portion of eigencomponents. Also to obtain a short amount
of running time we only use GAU (O(n2m)) instead of AGK (O(n2m2)) here.
Suppose the size of dataset (number of instances) is n, the first max(|n/50|, 10)

eigencomponents are used to compute LAD and FDD, which note as LADf (GAU)

and FDDf (GAU). The AUC results are shown in Table 4.6. LADf (GAU) obtains
about 94% of AUC by full version LAD(AGK), while FDDf (GAU) only gets 67%

of full FDD(AGK). Apparently LAD doesn’t suffer a lot from small amount of
eigenvectors compared with FDD, which can be explained by the effect of umbrella
operator and the illustration results in Figure 4.13. Table 4.7 shows the running time
comparison of a few algorithms. The parameter settings are documented in previous
Section 4.8.1. Specifically IForest’s running time is measured by the average of the
best four parameter settings listed in Section 4.8.1. LADf (GAU) is two times
faster than LAD on average, and also more efficient than StrOUD and LOCI. The
most efficient one among these five algorithms is IForest, which is extremely fast
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on large dataset such as “magic04” and “pageblocks”. But it is worth to notice that
LADf (GAU) is more efficient on the small datasets.

117



Ta
bl

e
4.

6:
C

om
pa

ri
so

n
of

A
U

C
be

tw
ee

n
fu

ll
an

d
fa

st
ve

rs
io

n
of

L
A

D
an

d
FD

D
.

D
at

as
et

L
A

D
(A

G
K

)
L

A
D
f
(G
A
U

)
FD

D
(A

G
K

)
FD

D
f
(G
A
U

)

br
ea

st
ca

nc
er

0.
98

20
0.

98
74

0.
98

70
0.

48
56

w
db

c
0.

90
05

0.
96

81
0.

90
49

0.
48

83
pi

m
a

0.
71

01
0.

48
04

0.
71

19
0.

51
05

ar
rh

yt
hm

ia
0.

71
92

0.
56

66
0.

74
72

0.
49

73
ar

ce
ne

0.
55

51
0.

55
10

0.
55

51
0.

50
55

pr
os

ta
te

tu
m

or
0.

53
14

0.
61

85
0.

53
59

0.
50

41
gs

e2
44

17
0.

58
60

0.
44

49
0.

58
95

0.
50

54
ha

ye
sr

ot
h

0.
99

03
0.

93
11

0.
99

05
0.

49
08

ec
ol

i
0.

89
60

0.
93

77
0.

90
52

0.
87

63
ye

as
t

0.
61

15
0.

60
13

0.
62

12
0.

55
48

ab
al

on
e

0.
72

99
0.

73
87

0.
73

32
0.

42
50

gl
as

s
0.

87
32

0.
82

32
0.

87
37

0.
75

45
io

no
sp

he
re

0.
93

35
0.

82
41

0.
92

53
0.

30
00

pa
ge

bl
oc

ks
0.

88
93

0.
71

88
0.

89
39

0.
49

92
m

ag
ic

04
0.

72
86

0.
73

07
0.

75
20

0.
50

64
A

ve
ra

ge
0.

77
58

0.
72

82
0.

78
18

0.
52

69

118



Ta
bl

e
4.

7:
C

om
pa

ri
so

n
of

ru
nn

in
g

tim
e

(i
n

se
co

nd
s)

.
D

at
as

et
L

A
D

(A
G

K
)

L
A

D
f
(G
A
U

)
L

O
C

I
St

rO
U

D
IF

or
es

t
br

ea
st

ca
nc

er
0.

91
25

0.
27

32
45

.5
96

6
6.

24
00

4.
80

25
w

db
c

0.
81

37
0.

28
22

12
9.

76
96

3.
91

62
3.

82
11

pi
m

a
1.

33
04

0.
45

89
23

1.
32

38
6.

41
49

5.
38

05
ar

rh
yt

hm
ia

0.
52

04
0.

22
65

78
.8

05
7

3.
11

39
3.

80
83

ar
ce

ne
0.

17
72

0.
08

42
12

.6
36

7
8.

35
64

1.
46

13
pr

os
ta

te
tu

m
or

0.
14

42
0.

08
71

3.
19

04
7.

03
58

0.
50

22
gs

e2
44

17
0.

40
80

0.
17

91
65

.8
86

9
8.

60
48

3.
29

12
ha

ye
sr

ot
h

0.
10

58
0.

07
35

4.
20

58
0.

22
84

0.
65

99
ec

ol
i

0.
32

94
0.

12
23

32
.6

41
3

1.
44

03
2.

76
02

ye
as

t
5.

93
44

0.
54

48
85

1.
13

67
25

.5
28

9
4.

86
30

ab
al

on
e

72
.5

05
2

8.
88

77
17

11
2.

65
34

19
2.

06
56

5.
91

36
gl

as
s

0.
14

14
0.

08
67

14
.7

05
4

0.
60

44
1.

73
53

io
no

sp
he

re
0.

32
51

0.
10

03
41

.3
06

5
1.

45
13

2.
97

42
pa

ge
bl

oc
ks

92
.3

22
3

35
.4

09
2

33
72

5.
40

86
32

0.
37

60
6.

33
89

m
ag

ic
04

12
97

.0
36

6
47

1.
12

42
25

24
25

.9
87

7
86

4.
96

72
6.

61
97

A
ve

ra
ge

98
.2

00
4

34
.5

29
3

20
31

8.
35

03
96

.6
89

6
3.

66
21

119



4.9 Chapter Summary

This chapter documents physics-based methodology of unsupervised anoma-
ly detection. The first algorithm we propose is Local Anomaly Descriptor (LAD),
which is based on heat diffusion and scale-dependent umbrella operator. Its capa-
bility of representing local density relies on a short time heat dissipation and an
informative neighborhood that is guaranteed by the scale-dependent umbrella oper-
ator. Another anomaly detection method we proposed is Fermi Density Descriptor
(FDD). It is built upon a “polarized” manifold projection and quantum motion prob-
ability measured by Fermi-dirac energy distribution. We also analyze the utilization
of Anisotropic Gaussian Kernel (AGK) and the best choice of graph Laplacian with
the purpose of anomaly detection. Compared with the existing algorithms, our
proposed LAD and FDD exhibit better average performance and stability in our ex-
tensive experiments. Moreover, FDD demonstrates its robustness across different
physics scaling parameters compared with LAD.
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Chapter 5

Noise-Resistant Unsupervised
Feature Selection via
Multi-Perspective Correlations

5.1 Chapter Introduction

Many real world applications have high dimensionality in their feature space.
A larger number of features can be associated with expensive data collection cost,
more difficulty in model interpretation, expensive computational cost, and some-
times decreased generalization ability. These challenges are commonly referred to
“the curse of dimensionality”, and motivate a plethora of research to find a well
representative feature subset and thereby reduce the number of features before ac-
tual machine learning and analysis. Many feature selection approaches have been
developed [114] [98] [123] [35] [43] [106] [44]. In many applications, usually data
has no label information, since it is too expensive or difficult to assign labels by
experts. Therefore, it is important to develop an unsupervised approach which can
perform feature selection task without labels. Compared with the supervised case,
the unsupervised feature selection is much more challenging because of the lack of
prior knowledge. In this chapter, we focus on an unsupervised feature selection due
to its broad applicability.

The goal of feature selection is to minimize information loss when removing
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the noise and redundancy in the feature space [111], therefore can achieve better
1) model interpretation, 2) computational efficiency, and 3) generalization ability.
However, there are significant challenges associated with many existing unsuper-
vised feature selection algorithms:

1. Feature importance is usually more about a “local” conception than a “glob-
al” one. To obtain a better representative feature subsets, the feature impact
associates with different low-embeddings or spectrums need to be considered
[35]. Besides, the perspective of instances is also indispensable since some
features may only have strong correlation with certain instances with respect
to certain spectrums. Therefore it is necessary to design a feature selection
algorithm based on such multi-perspective correlation.

2. Real world datasets contain many noisy features (such as f5 and f6 shown
in Figure 5.1(c)). These noisy features have negative impacts and make it
difficult to identity the informative features, especially for the existing unsu-
pervised feature selection algorithms [35] [76] [62] [89].

3. Noisy observations/instances (colored as purple in Figure 5.1(a) and 5.1(b))
are also very common in real world applications. When a dataset has a sig-
nificant number of noisy instances, feature importance are hard to discover
by most of unsupervised feature selection algorithms [35] [89] [62] [88] due
to that the weights of feature become influenced by noisy instances.
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Figure 5.1: Synthetic dataset with four clusters (colored with red, blue, yellow and
green respectively), each has 300 instances and 34 features. In addition, there are
80 noisy instances (colored as purple). Figure 5.1(a) shows the feature subspace of
f1 and f2, where the blue and red clusters have a Gaussian distribution, while green
and yellow clusters show a uniform distribution in a rectangle area. Figure 5.1(b)
shows the feature subspace of f3 and f4, where blue and red clusters show uniform
distribution in a rectangle area, while green and yellow clusters have a Gaussian
distribution. The other 30 features are all noisy, for example f5 and f6 shown in
Figure 5.1(c). Through the experimental results listed in Table 5.1 we can see that
noisy instances can become a hurdle for feature selection, and noisy features, with
their quantity even more than that of the informative (useful) ones, could be another
issue.
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To solve these problems, our proposed method, called Noise-Resistant Fea-
ture Selection (NRFS), designs a feature selection strategy based on multi-
perspective correlation measurement which is effective and robust to both noisy
observations and noisy features. By selecting representative instances via densi-
ty distribution statistics, we reduce the occurrence of the noise observations.For
each feature, we compute its local correlation with regard to instance representa-
tive. Such local correlations are evaluated with respect to each global spectrum (or
trend) of data to find the informative features. Noisy features tend to have lower
local correlations across all of the global spectrums compared to the informative
ones, while the locally informative features tend to show strong association to at
least one global spectrum. We comprehensively considerate all the correlation s-
cores and obtain the informative feature subset. Our work in this chapter has the
following contributions:

1. Our proposed NRFS selects features under local context instead of global
context. We build a set of similarity matrices, where each similarity matrix
is constructed using a local feature subspace (each feature and its nearest
neighbor features) (Section 5.3.1). By doing this, we have a local perspective
w.r.t each instance and feature, and measure their local correlation with the
global spectrums (Section 5.3.2).

2. In order to mitigate the influence of noisy instances, we propose the Noise-
Resistant Density-Preserving Sampling (Section 5.4). It combines both
anomaly detection [70] and Density-Preserving Sampling [15], and selects
only instance representatives from the original dataset. By only analyzing the
feature impact on these representatives, we have a noise-instance-resistant
algorithm.

3. Our proposed NRFS has a more stable performance in that it selects features
by comprehensively considering multi-perspective correlation for each fea-
ture, each instance representative, and each global spectrum (Section 5.3.3).

4. Our proposed NRFS combines all the above contributions in a well-
organized framework (Section 5.5), to deliver a more robust feature selec-
tion algorithm, as shown in our systematic benchmark evaluation (Section
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5.6).

5.1.1 Related Works

He et al. [62] proposed Laplacian Score (LS) which is one of the earliest work
to seek features with respect to the manifold structure. It uses a nearest neighbor
graph to model the local geometric structure of the data and selects those features
which are smoothest on the manifold graph [35]. Similarly, Spectral Feature S-
election (SPEC) [161] obtains the feature importances by estimating the feature
consistency with the spectrum of a matrix derived from a similarity matrix on the
whole feature space. Jiang et al. pointed out the untrustworthiness of the similar-
ity matrix due to noise, and designed Eigenvalue Sensitive Criteria (EVSC) [76]
which evaluates the feature importances by measuring the change of graph Lapla-
cian’s eigenvalues. Although these methods could find features that are related to
the manifold structure to some degree, they cannot necessarily discriminate the fea-
ture importances because they are only based on the global context without local
perspective and noise resistance.

Recently many algorithms perform feature selection simultaneously during the
model building process [162]. In their work, the embedded modeling usually treats
feature selection as a part of training process. The feature importances are obtained
by optimizing the objective function of the learning model. The method in [149]
puts a l0-norm constraint into the proposed objective function to achieve sparse and
efficient solution. l1-norm has been used in [150] and Multi-Cluster Feature Se-
lection (MCFS) [35] to recover the global distribution pattern on either similarity
or dimensionality on the manifold space. Algorithms in [154] [67] and Nonnega-
tive Discriminative Feature Selection (NDFS) [89] use l2,1-norm regularization to
achieve similar objectives. Although these methods are effective and robust to some
degree, they only focus on the global feature importances by measuring how much
each feature can preserve the global distribution pattern on the low embedding di-
mensions (eigenvectors). Therefore they cannot reveal the local correspondence
between each feature-instance pair.

In general, the aforementioned unsupervised feature selection algorithms con-
duct feature selection globally by producing a common feature subset across all
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instances at the same time. This, however, might fail to deal with real world noisy
datasets in practice, where feature selection becomes challenging in the presence
of noisy observations, and where the local intrinsic property of data plays more
important role [87]. Li et al. proposed the Localized Feature Selection algorithms
[86] [87] which tend to find the optimal feature subsets for each cluster. But these
algorithms are either based on K-means or Bayesian variational learning, and not
practically robust to real world datasets due to the lack of manifold awareness and
noise effect mitigation.

Although projected clustering [1], subspace clustering [54] [83] and co-
clustering algorithms [26] [37] can detect local structure through simultaneously
clustering on instances and features of a dataset, they cannot provide the relative
importance value of each feature. Secondly, finding the correct subspace to define
a suitable group of objects is a difficult problem, since cluster objects may reside in
arbitrarily oriented, affine subspaces [83]. In addition, most of subspace clustering
methods are formulated only for a mixture of linear manifolds and do not work well
in the presence of nonlinear manifolds [54].

5.1.2 Motivations

We illustrate our motivation using a synthetic noisy dataset with 1280 instances
and 34 features in Figure 5.1. The dataset contains noise in both instance space and
feature space. It has four clusters, each cluster contains 300 instances and colored
with red, blue, yellow and green respectively. We also added 80 noisy instances
which are colored with purple. On the other hand, only the first four features are
significantly important: the subspace of f1 and f2 in Figure 5.1(a) shows that the
blue and red clusters have a Gaussian distribution, while green and yellow clusters
have a uniform distribution in the rectangle area; the subspace of f3 and f4 (Figure
5.1(b)) shows that the blue and red clusters have a uniform distribution in the rect-
angle area, while green and yellow clusters have a Gaussian distribution. Except
these four features, all the other 30 features show noisy distribution, such as f5 and
f6 shown in Figure 5.1(c).

There are two characteristics about this synthetic dataset: 1) it has a certain
amount of noisy instances that cannot be neglected (corresponds to challenge 1 in
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Section 5.1). 2) The dataset contains more noisy features than useful features (30

v.s. 4, which corresponds to challenge 2 in Section 5.1). These two characteristics
exist in many real world datasets, such as microarray or text datasets.

These two characteristics make the popular unsupervised feature selection al-
gorithms to be difficult to handle. In Table 5.1, we reveal the challenges of the other
popular feature selection algorithms. We evaluate K-means clustering results on
the selected four-feature subspace from a few popular feature selection algorithms
(SPEC [161], Laplacian Scores (LS) [62], MCFS [35] and NDFS [89]). From Table
5.1, we can see that if the noisy observations are filtered out, all the baseline algo-
rithms have better performance (although only slightly better for some algorithms),
which indicates that the noisy instances lower the performance. Among the four
popular feature selection algorithms, NDFS has the most noticeable improvemen-
t after filtering out the noisy observations, since it performs a joint and iterative
learning between cluster labels and feature selection matrix that optimizes the ob-
jective functions [89]. However, NDFS, as well as the other existing algorithms,
still suffers a lot from noisy features and observations.

We here design an advanced unsupervised feature selection algorithm which
not only reduces noisy instance effects (challenge 1), but also effectively filter out
the noisy features (challenge 2).

5.2 Notations and Background

We use X∗∗ ∈ Rn×m to denote a high-dimensional dataset with n instances
and m features. The corresponding global similarity matrix W∗∗ ∈ Rn×n can be
constructed to represent the relationship among instances considering the whole
feature space. Gaussian similarity is one of the most generally used options for
constructing W∗∗:

W
(GAU)
ij = exp(− ‖ Xi∗ −Xj∗ ‖2 /(2σ2)), (5.1)

where σ controls the width of neighborhood [100]. For some datasets with nonuni-
form sizes such as text datasets we tend to use cosine similarity:

W
(COS)
ij =

Xi∗·Xj∗

‖ Xi∗ ‖2· ‖ Xj∗ ‖2

. (5.2)
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The degree matrix D∗∗ on W∗∗ is defined by Dij =
∑n

k=1Wik if i = j, and 0

otherwise. Given W∗∗ and the corresponding D∗∗, the Laplacian matrix L∗∗ and
symmetric normalized Laplacian matrix Lsym∗∗ are defined as:

L = D −W, (5.3)

Lsym = D−1/2LD−1/2. (5.4)

From Lsym∗∗ we can compute the eigenvectors Y∗∗ ∈ Rn×c (c � m) which in the-
ory provide the manifold structure of the high-dimensional dataset X∗∗ [100]. By
carefully setting the value of c, the first c eigenvectors reveal the global distribution
pattern of X∗∗. In practice c is usually set as the number of clusters [109].

In 2010, Cai et al. proposed a method called Multi-Cluster Feature Selection
(MCFS) [35]. They measured the importance of each feature w.r.t. each column of
Y∗∗ which corresponds to the contribution of each feature for differentiating clusters
[35] by minimizing the following equation:

minak∗ ‖ Y∗k −Xak∗ ‖2 +β | ak∗ |, (5.5)

where Y∗k is the k-th column/eigenvector in Y∗∗, ak∗ is a m × 1 vector and β is a
parameter controls the ak∗’s approximation speed to zero. For each feature fj , they
defined the feature importance as:

MCFS(fj) = maxk | akj |, (5.6)

where akj is the j-th element of vector ak∗.

5.3 Multi-perspective Unsupervised Feature Selec-
tion

The notion of correlation is essential since it allows us to discover signals with
similar patterns and, consequently for feature selection applications, discover each
feature contribution to the global spectrums. In this section we consider the corre-
lation among features and global spectrums, and exhibit two important properties:
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Figure 5.2: Multi-layers of matrix (cube) used in our algorithm. Each layer shows
a case of Equation 5.7 with a similarity matrix Bi∗∗, coefficient matrix Ai∗∗ and
global spectrums Y∗∗. Equation 5.7 shows how to construct Ai∗∗ which represents
the multi-perspective correlations 1.

1. The effect of each feature may change over different instances or global spec-
trums. In this case, a single and static score for each feature regardless of dif-
ferent instances and spectrums would be misleading. It is desirable to have a
notion of multi-perspective correlation that evolves with each instance, each
feature and each global spectrum.

2. The second property is that some informative features w.r.t. certain instance
subset exhibit strong but fairly complex, non-linear correlations with global
spectrums. Traditional linear measures, such as [35] are less effective in cap-
turing these non-linear relationships. Here we seek a powerful model that can
capture such correlations on certain dataset applications.

We introduce a powerful model that can capture multi-perspective correlations
inside the high-dimensional dataset. It starts with global spectrum derivation and
make the spectrums as regression target. Then the association score is measured by
comparing the similarity between each global spectrum and each feature on certain
instance (representatives). Higher value of association score means higher possi-
bility that the corresponding feature is an informative feature with respect to the
related global spectrum.

1In practice we added one column-vector 1 ∈ Rn in Bi∗∗ which plays a role of intercept.

130



5.3.1 Constructing Similarity Cube

To learn a model of comprehensive feature weighting, we learn from multiple
instance representatives simultaneously, since each instance representative usually
only provides “strong feedback” to a subset of features. We will explain how to
choose instance representative in Section 5.4. To obtain each instance representative
perspective, we acquire the similarity information between the representative and
all the other instances within each local feature subspace. In this way, the influence
of each feature to the neighborhood of each representative can be revealed.

Specifically, for each instance representative xi (i ≤ p, where p denotes the
number of instance representatives) and each feature fj (j ≤ m), we construct
xi’s similarity vector Bi∗j (to all instances), which is a 1 × n vector based on the
q neighboring features of fj (including fj). Using fj’s q neighborhood instead of
only fj itself can generate more stable and informative similarity distribution for
each xi. For those applications with a large feature size, we use fast approximate
k-nearest neighborhood search [51] to obtain the neighbors of each feature. After
we extract q neighbors for each feature, we construct the corresponding similarity
matrix (on the instance representatives) within this feature subspace. Therefore for
each feature fj and each instance representative xi, we obtain a 1 × n similarity
vector Bi∗j . So we have a p× n×m three dimensional cube B∗∗∗ shown in Figure
5.2, where p is the number of instance representatives, m is the number of features
and n is the number of total instances.

In practice, for those Gaussian distributed dataset we use Gaussian kernel (E-
quation 5.1) to reveal the non-linear correlation between global spectrums and orig-
inal features. For text datasets, we use cosine similarity (Equation 5.2) to construct
similarity matrix.

Each Bi∗∗ shows xi’s similarity with all the instances within each local fea-
ture subspace. Next subsection explains, by learning the similarity of these local
information to the global spectrums Y∗∗, we can measure how much each feature
contributes to the global spectrums for each instance representative. The more it
contributes, the more important the corresponding feature is.
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5.3.2 Learning Coefficient Cube

On the other hand, different instances (representatives) may have very different
feature preferences. To qualify these preferences, we here resort to a regression
procedure, which typically requires learning from the low-rank model, or global
spectrums on instance space, in order to measure the feature contribution across
instance representatives to different spectrums.

Intuitively we want to extract the “key information” locally contained in the
similarity cube B∗∗∗ and measure how close they are to the global spectrums. This
is where the spectral decomposition Y∗∗ helps. Here Y∗∗ is set as the regression
target that consists of the first c global spectrums. These spectrums capture the key
aperiodic and oscillatory trends that explain the largest fraction of the data variance.
Thus, we only consider the low-rank subspace spanned by the first c global spec-
trums/eigenvectors. Specifically, we compare the feature impact for each instance
representative on this low-rank subspace, and extract the correlation/similarity s-
core.

For each instance representative xi in Cube B∗∗∗, there is one n×m similarity
layer Bi∗∗, which contains xi’s information related to all n instances and all m fea-
tures. GivenBi∗∗, we propose the following equation to characterize the correlation
between each feature and each global spectrum in the perspective of xi, i.e. Ai∗∗:

Bi∗∗ × Ai∗∗ = Y∗∗, i = 1, 2, ..., p. (5.7)

Equation 5.7, shown in Figure 5.2, is a simple regression problem. In practice we
solve it with the following ridge regression equation:

argminAi∗∗‖Bi∗∗ × Ai∗∗ − Y∗∗‖2 + λ‖Ai∗∗‖2. (5.8)

which can be solved by using Moore-Penrose pseudoinverse [31]. Ai∗∗ is a m ×
c matrix which represents the coefficients to reconstruct Y∗∗ given Bi∗∗

1. This
equation is to find the matrix factorization that has minimal reconstruction error
on Y∗∗. Because the layer/perspective is independent to each other, more advanced
techniques such as Lasso regression would not be necessary. The advantage of
using pseudoinverse here is that it is a relatively simple and non-iterative method,
and the weights/coefficients can be solved analytically.
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Figure 5.3: The selection of feature subset based on the coefficient cube A∗∗∗ (Sec-
tion 5.3.3).

The coefficient matrix Ai∗∗ is of interest because it reflects the correlation be-
tween the pattern of the corresponding feature in Bi∗∗ and the global spectrum Y∗∗.
When the value of such coefficients, or interdependence scores are high, the con-
tribution of the corresponding features to the global spectrums are high. These
measures can also help us to filter out the noisy features since they tend to have
very low correlation with the low-rank embeddings of the whole dataset.

In particular, Ai∗k provides the correlations of all the features to the global
spectrum Y∗k with respect to the instance representative xi. Therefore, for each in-
stance representative xi, we obtain a m× c coefficient matrix. The final coefficient
cube A∗∗∗ is p ×m × c (Figure 5.2). The three dimensional cube A∗∗∗ provides a
multi-perspective model of different feature weighting across all the instance repre-
sentatives and global spectrums. Therefore, it provides a comprehensive “platform”
for an informative feature selection.

5.3.3 Feature Selection with Coefficient Cube

Based on the coefficient cube A∗∗∗, we now select feature subset in a more
comprehensive way compared with the other existing methods.

1. First of all, we need to make all the coefficient measures have the same sign.
The coefficients generated from Equation 5.8 usually have mixed positive and
negative values, while the extremes of both sides show a strong correlation.
In our algorithm we take the absolute value of coefficient (similar to Equation
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5.6). Also since the “localized” feature selection may result in different value
ranges of coefficient, each coefficient vector Ai∗k should thereby be properly
normalized. In our implementation, we use L2-normalization for each Ai∗k,
therefore the above processing could be represented as:

Aijk = |Aijk|/
√

(
∑
g

|Aigk|2), (5.9)

Now the higher the coefficient value is, the more important the feature is to
the corresponding pair of instance representative and global spectrum.

2. We then select the feature subset based on the normalized A∗∗∗. To preserve
the global spectrums with a small amount of observed features, we select rep-
resentative features from the perspective of each global spectrum. Suppose
we need to select no more than h features (usually h > c), then bh/cc fea-
tures are chosen for each global spectrum, where c is the number of global
spectrums.

In the coefficient cube A∗∗∗, each global spectrum Y∗k corresponds to a p×m
matrix A∗∗k. The first dimension p correlates with the number of instance
representatives, while the second dimension m corresponds to the number of
original features. To study how much a global spectrum values each feature,
we need to compress this p × m matrix A∗∗k into a 1 × m vector A′∗k, in
which each value A′jk is the weight of feature fj w.r.t. the corresponding
global spectrum Y∗k. As shown in Figure 5.3, we choose the maximum along
all the instance representatives:

A′jk = maxi{Aijk}. (5.10)

Now we have a m × c correlation matrix A′∗∗ which shows the relation of
features and global spectrums.

3. For each global spectrum we select bh/cc features. Every time when we
select w.r.t. A′∗k, we choose the bh/cc features with the highest coefficient
value. And set the elements in the same positions but on the unprocessed
columns as 0, in order to avoid duplicate features. Finally we successfully
choose bh/cc × c features out of the original feature space.
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5.4 Noise-Resistant and Density-Preserving Sam-
pling

This section introduces how to select instance representatives by our proposed
noise-resistant density-preserving sampling. It consists of two components: outlier
removal and density-preserving sampling to fulfill the needs of our proposed feature
selection algorithm.

5.4.1 Noisy Observation Removal

The first step is to remove noisy observations. Here we assume noisy obser-
vations are those instances with small neighborhood density, which also called out-
liers or anomalies. We resort to anomaly detection algorithms [9] [69] [70], which
distinguish normal instances from a small portion of abnormal instances (noisy ob-
servations). Particularly we apply FDD (Fermi Density Descriptor) [70] due to its
effectiveness and stability. It measures the average probability of a fermion ap-
pearing at a specific location (corresponds to each instance in high-dimensional
coordinates) in the “polarized” manifold space. The computed probability provides
the value of anomalousness for each instance. By choosing the stable energy dis-
tribution function, FDD steadily distinguishes anomalies from normal instances. In
our algorithm, we sort all instances in the descending order of their anomalous-
ness, and remove the first 10% instances. We assume that the majority of the noisy
observations are removed after we apply this approach.

5.4.2 Density-Preserving Sampling

The second step is down-sampling. Many sampling methods have been pro-
posed [80] [45]. But most of them are stochastic and their sampling results vary
significantly from one repetition to another. There is no guarantee that the sample
results are inclusively representing the original dataset [15]. In this work, we adopt
a more intelligent sampling approach aiming to produce representative splits with
minimum duplications. We use the newly appeared density-preserving sampling
(DPS) [15] to eliminate the need for repeating an error estimation procedure by
dividing available data into subsets that are guaranteed to represent the input data.
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The idea of DPS is inspired by the concept of correntropy which is a nonpara-
metric similarity measurement between two random variables. Since correntropy
can be used to measure similarity, it can also be used to measure the quality of
a sample to preserve the representative of the whole dataset [15]. DPS uses cor-
rentropy as an optimization criterion, guiding the sampling process to split a given
dataset into two or more maximally representative subsets. In their paper, Budka
et al. proposed correntropy-inspired similarity index (CiSI) between two random
variables (datasets) X and Y :

CiSI(X, Y ) ≈ 1

n

∑
i∈(1...n)

G(xi − yj, 2σ2I),

i, j = argmini,j‖xi − yj‖, j ∈ Javail,
(5.11)

where G(xi − yj, 2σ
2I) denotes a Gaussian kernel centered at (xi − yj) to avoid

the ordering effect, σ2I is a diagonal covariance matrix of the Gaussian kernel, ‖· ‖
denotes the Euclidean norm, and the set Javail contains the indices of y which have
not yet been used, and it ensures that each yk is used only once. Since a Gaussian
kernel peaks at the 0 Euclidean distance regardless the value of σ, CiSI provides
a σ-independent iterative binary procedure to split dataset into subsets X and Y .
It selects instances zi and zj from dataset Z at each step such that the following
equation holds:

i, j = argmini,j‖zi − zj‖. (5.12)

Subsequently, zi and zj are added into X and Y to maximize CiSI(X ,Y ). The
procedure can be iteratively applied to split X or Y furthermore to get a small
enough sample size.

Note that the density-preserving sampling is not guaranteed to remove noisy
observations/instances. We have to combine both noisy observation detection and
density-preserving sampling to obtain the final informative instance representatives.

The main property of the above sampling strategy is to produce only represen-
tatives while excluding noisy observations. The down-sampling also reduces the
running time complexity as shown in Section 5.6.3. In Figure 5.4, we show the
effect of our sampling strategy with a 25% sample size (means p = 0.9n/4 after re-
moving 0.1n noisy observations), which demonstrates that the proposed sampling
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Figure 5.4: Sampling result of synthetic dataset in Figure 5.1. Instances marked
with red circles are one of the 25% sampling subsets after noisy instance removal.

strategy is not only noise-resistant, but also selects representatives with density-
preserving.

It is worth noting that given proper normalization, the above sampling strategy
can be also applied on text datasets.

5.5 Noise-Resistant Feature Selection and Theoreti-
cal Connections

5.5.1 Noise-Resistant Feature Selection

In this section, we propose the integrated framework that documents the whole
process of NRFS. LetX∗∗ be the dataset matrix of size n×mwhere n is the number
of instances and m is the number of features. Algorithm 7 describes NRFS step by
step.

Through Step 1 − 3, we obtain the global spectrum Y∗∗ (Section 5.2) as our
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ALGORITHM 7: NRFS(X∗∗, h, σ (if use Gaussian kernel), p, q)
Input: Input data X∗∗ ∈ Rn×m; h is the #selected features; σ is the

Gaussian scaling parameter; p is the #instance representatives; q is
the size of local feature subspaces.

Output: Selected feature subset.
1 Construct similarity matrix W∗∗ using Equation 5.2, or Equation 5.1 with σ

(Section 5.2);
2 Construct symmetric normalized Laplacian matrix Lsym∗∗ using Equation 5.3

and 5.4 (Section 5.2);
3 Compute generalized eigenvectors Y∗∗ (Section 5.2);
4 Remove noisy observations using anomaly detection algorithm (Section

5.4.1);
5 Down sample the remaining dataset to p instance representatives (Section

5.4.2) ;
6 Construct cube B∗∗∗ for each sample instance and each local feature

subspace with q (Section 5.3.1);
7 Learn the coefficient cube A∗∗∗ (Section 5.3.2);
8 Obtain the final feature subset (Section 5.3.3)

later regression target. We simply use all instances (including normal and noisy ob-
servations) to construct Y∗∗, in that we need to stably rebuild the low embeddings.
However it is both sensitive and useless to detect the local correlation w.r.t. noisy
instances between features and global spectrums. We thereby remove noisy obser-
vations and only focus on the informative representatives, by applying Step 4 and
5 which constitute the Noise-Resistant Density-Preserving Sampling (Section 5.4).
On the other hand, noisy features can be filtered out based on their values of the
coefficients in Step 6− 8 (Section 5.3). Here the noisy features are coincident with
the low correlation values between the global spectrums and local perspective of
the instance representatives.

Regarding computational complexity, NRFS is dominated by the eigendecom-
position (that gives Y∗∗) which takes O(n3) and pseudoinverse in Equation 5.8 that
takes O(p(mn2 + n3)). However, the pseudo inverse can be done parallelly for
different representative instance layer.

We run NRFS 30 times on the synthetic dataset in Figure 5.1 with p = 288 and
q = 1. Each time the four selected features are always f1, f3, f2, f4 which generate
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the highest K-means clustering result NMI = 1.

5.5.2 Connections with Other Techniques

Our proposed NRFS has close connection with recommendation techniques, of
which one popular approach for characterizing the multi-user personalization prob-
lem is collaborative modeling [81] [155]. In collaborative modeling, users provide
feedback on an absolute scale and the model integrates these feedback and obtain
final results. Most of these approaches are motivated by the intuition that even
though users have different preferences, many users share preference with other
users. Therefore the integrated result can be stable and informative. Similarly, our
NRFS treats instance representatives and global spectrums as two different kinds
of “users”. Each of them has its own perspective (feedback) of feature importance.
The coefficient cube A∗∗∗ of our NRFS (Section 5.3.2) reveals the two different
perspectives to each feature.

On the other hand, different from the target of collaborative modeling, our N-
RFS tries to locally weight features with multi-perspective correlations. This step is
closely related to matrix factorization [82] and fuzzy feature weighting [145] [73].
Our proposed NRFS learns from a low-dimensional latent model Y∗∗ which reliably
characterize the space of the “user’s” dominative yet diverse preferences. It com-
putes a factorization that has a minimal reconstruction error on the latent-variable
matrix Y∗∗. Finally, instead of assigning a global importance for each feature, N-
RFS weights feature according to different perspectives, namely, different global
spectrums Y∗k. Therefore it is a more comprehensive strategy compared with the
other feature selection algorithms.

5.6 Experimental Analysis

5.6.1 Experimental Setup

Datasets and Preprocessing. To demonstrate the performance of our proposed
method, we evaluate our algorithm on four microarray datasets and four tex-
t datasets (statistics are summarized in Table 5.2).

139



Table 5.2: Statistics of experimental datasets.
Dataset #instances #features #clusters

1 11Tumors 174 12534 11
2 Leukemia2 72 11225 3
3 BrainTumor2 50 10368 4
4 Lung 181 12533 3
5 RCV1-4Classes 1200 11370 4
6 Reuter21578A 1000 18933 5
7 20NewsgroupA 800 11269 4
8 20NewsgroupB 800 11217 4

The microarray datasets were mainly produced by oligonucleotide based tech-
nology [130]. We took the advantage of all available information in order to in-
crease the number of categories or diagnoses for outcome variable, as described in
[130]. In summary, the ten microarray datasets have 3-11 distinct diagnostic cat-
egories, 50-181 patients (instances) and about 10, 000-13, 000 genes (features). In
the preprocessing phase, we relied on the following three commonly used steps: 1)
base-10 logarithm [26], 2) standard quantile normalization [13] over multiple chips,
and 3) double centering [26] for background correction.

All the four text datasets we used came from large and popularly used datasets:
20Newsgroups, Reuters21578 and RCV1. The original 20Newsgroups has 18, 846

documents (instances) and 26, 214 words (features). 20NewsgroupA has 800 docu-
ments, namely 200 documents from four categories: alt. atheism, comp. graphics,
rec. autos, and sci. med. 20NewsgroupB has 800 documents and four categories:
comp. windows, rec. motorcycles, sci. space, and talk. religion. misc, and each
of them takes 200 documents. Note that there is no repetitive category in the above
two datasets. The origin Reuters21578 has 8, 293 documents and 18, 933 words.
We select 200 documents from each of the first five clusters. The origin RCV1
is a dataset contains 810, 000 documents. In order to obtain a smaller dataset, we
choose samples from only four categories: “C15”, “ECAT”, “GCAT” and “MCAT”,
with 300 documents from each category. Our text data preprocessing steps include
1) removing stop words; 2) applying stemming to the remaining words; 3) apply-
ing tf -idf transformation; 4) applying the l2-norm normalization on document; 5)
applying bi-normalization to the data matrix as in [37].
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Baselines and Evaluation Metric. We choose four state-of-the-art competitors
to show the outperformance of our proposed NRFS: Laplacian Score (LS) [62];
Spectral Feature selection (SPEC) [161]; Multi-Cluster Feature Selection (MCFS)
[35]; and Nonnegative Discriminative Feature Selection (NDFS) [89].

It would be the best to evaluate feature selection results based on ground truth
of feature importance value. However, in real world application, we cannot easily
find such ground truth because: 1) it is highly subjective to select candidate fea-
tures because there are many similar features/terms, and 2) feature selection is an
intermediate step for the rest of data analysis pipeline. However, even though we
don’t have the ground truth for feature importance, we do have the ground truth of
cluster labels to indirectly evaluate the quality of feature selection, by comparing
clustering performance of the feature-reduced dataset.

In our experiment, we evaluate the feature selection algorithms by performing
K-means clustering on the selected feature space. To give a more general perspec-
tive, we also test K-means clustering (WCSS [60]) without any feature selection.
Normalized Mutual Information (NMI) is used as our only evaluation metric among
all being described because most of clustering algorithm papers make use of NMI
as their primary evaluation metric. The detailed definition of NMI can be found in
[132].

Parameters. The number of selected features are set as { 200, 300, 500, 800,
1000, 1200, 1500, 1800 }. For the similarity function used in the microarray dataset
experiments, we use Gaussian similarity (Equation 5.1). We need to construct sim-
ilarity matrices with both local feature subspace and the whole feature space. Here
we adopt an adaptive width of neighborhood σ for each local feature subspace,
instead of a fixed value. In our implementation, we assign σ to be the average Eu-
clidean distance of each instance to itsK ′ nearest neighbor, whereK ′ is the average
size of clusters (K ′ = round(n/c)). For text datasets, cosine similarity (Equation
5.2) is a reasonable choice to compare texts with different sizes. For all the kNN
based similarity methods k = 5, where k specifies the size of neighborhood. The
number of eigenvectors c is set as the number of instance clusters, which assume to
be already known [109] [35].
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Especially, for MCFS, we keep min{M,n} non-zero entries in each eigenvec-
tor when trying to selectM features. For NDFS, we set α = 1e−006, β = 1e−006

and γ = 108. We follow the suggestions in [35] [89] to set default values for these
parameters.

Our proposed algorithm NRFS has two specific parameters: the sampling rate
p and the number of neighbors q for each feature. We set p according to DPS [15]
with level = 2 and pick one out of four sampling subsets), and q = 50 which is ap-
propriate for maintaining stable performance and alleviating noise effects adaptive-
ly. We also test the performance stability of NRFS across different size of feature
subspace q later.

To guarantee a fair comparison, for each size of feature subsets, we run every
algorithm 30 times and record the average NMI in Figure 5.5. Whenever we get
the reduced feature subspace, we apply the K-means clustering (the version with
minimizing within-cluster sum of square (WCSS) [60]), with 100 inner loops and
100 outer loops.

5.6.2 Overall Algorithm Performance Analysis

Figure 5.5 documents the performance of a few feature selection algorithms,
including our proposed NRFS and K-means clustering on the whole feature space.
The experiments are measured by NMI derived from the K-means clustering on fea-
ture subspaces generated by by the feature selection algorithms. The experimental
results offer the following observations:

1. Generally speaking, NRFS results on text datasets showed an “improving”
trend as the feature size increases, i.e. NRFS started with a suboptimal per-
formance for text datasets when the size of feature subset is small (eg. 200,
300), and surpassed the other algorithms when the size increases. The reason
is that the number of informative features/words in text datasets is usually
much higher (e.g. hundreds) than those in microarray datasets (e.g. dozen-
s). For microarray dataset, a small number of informative features contain
sufficient information to achieve a good clustering quality. However, for text
datasets, if a feature subset is too small, it cannot provide enough descriptive
capability to differentiate different document categories.
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2. Second, feature selection algorithms help to obtain a refined description of the
feature space. Compared with the K-means clustering on the whole feature
space, most of the five feature selection algorithms have better performance
in their reduced feature space. In particular, our proposed NRFS, has more
than 25% for the microarray datasets and 180% ∼ 200% improvement for the
text datasets in average.

3. Our proposed NRFS outperforms not only the similarity-based methods such
as LS and SPEC, but also regression-based methods such as MCFS and NDFS
in terms of average NMI. Moreover, NRFS shows more stable performance as
the number of feature change. Our NRFS outperforms MCFS, the second best
algorithm, by a margin of more than 10% for microarray datasets and 25%

for text datasets in average. It confirms that our proposed NRFS algorithm is
capable to find better representative feature subsets by detecting and taking
advantage of multi-perspective correlation.

4. MCFS [35] and NDFS [89], to some extent, are capable to exploit discrim-
inative information among different features, which result in more accurate
result than LS [62] and SPEC [161].

We conduct experiments with controlled size of feature neighborhood q to ex-
amine the NRFS’s stability. The datasets used in the experiments are 11Tumors,
BrainTumor2, Reuter21578A and 20NewsgroupB with q = [30, 50, 80, 100]. As
shown in Figure 5.6, our proposed NRFS consistently shows a robust performance
across different q.

5.6.3 Comparison of Time Complexity

Figure 5.7 shows the comparison results of time complexity among the six
algorithms including two versions of NRFS: NRFS-1 is with noise-resistant and
density-preserving sampling, while NRFS-2 uses the full instance space without
representative selection. With the help of our sampling strategy, NRFS-1 is 57%

faster than NRFS-2. Moreover, NRFS-1 has comparable running time with MCFS,
but it is more than 2.5 times faster than NDFS. Although SPEC and LS are more

143



efficient, their effectiveness shown in Figure 5.5 is actually much worse than our
proposed NRFS.

5.7 Chapter Summary

In this chapter we propose an unsupervised feature selection algorithm called
Noise-Resistant Feature Selection (NRFS). It has two main advantages: firstly, N-
RFS is a collaborative feature selection algorithm based on multi-perspective cor-
relation, in that it probes the feature effect via local perspective from instance
representatives and global spectrums, and thereby effectively distinguishes diverse
and informative features from the remaining ones. Secondly, NRFS applies noise-
resistant and density-preserving sampling to improve its efficiency while reducing
the negative affect incurred by noisy instances. Compared with existing algorithms,
our proposed NRFS demonstrates much more stable and better performance in the
experiments on microarray and text datasets.
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(c) Microarray dataset: BrainTumor2
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(d) Microarray dataset: Lung
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(h) Text dataset: 20NewsgroupB

Figure 5.5: Comparison of feature selection performance. Results are evaluate by
K-means clustering on the selected feature subset using NMI score. It shows that
our proposed NRFS (in red) outperforms the other competitors.
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(a) Microarray dataset: 11Tumors
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(b) Microarray dataset: BrainTumor2
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(c) Text dataset: Reuter21578A
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(d) Text dataset: 20NewsgroupB

Figure 5.6: Performance stability of NRFS across different size of feature neigh-
borhood q.
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Figure 5.7: Comparison of time complexity. NRFS-1 is NRFS with our sampling
strategy, while NRFS-2 is NRFS without any sampling.
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Chapter 6

Diverse Power Iteration Embeddings
and Its Applications

6.1 Chapter Introduction

Spectral Embedding is one of the methods to calculate low dimensional em-
beddings. It was used in clustering [109] [71] at first but later applied to many
other data mining applications such as anomaly detection [69] [70] and feature
selection [35]. Spectral Embedding uses a spectral decomposition of the graph
Laplacian[100]. The generated graph can be considered as a discrete approximation
of the low dimensional manifold embedded in the original high-dimensional data
space. Minimizing a cost function based on the graph ensures neighboring data
points that are close to each other on the manifold to be still mapped to neighboring
ones in the low dimensional space, i.e. preserving local distances/neighborhood.

Although Spectral Embedding gained an increasing popularity in recent years,
its associated high complexity in both time O(n3) and space O(n2) prevents it from
practical utilization in many real-world applications. For instance, we cannot do
spectral clustering directly on popular RCV1 benchmark dataset due to its large da-
ta size of nearly 200, 000 documents. Given a dataset with n data points, spectral
methods create an n× n affinity matrix and apply eigen-decomposition on the sub-
sequent Laplacian normalized matrix with the time complexity ofO(n3) in general.

To overcome these limitations, several methods are proposed such as [92]
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[137] [90]. Among them, Power Iteration Clustering (PIC) [92] is one of the most
promising candidates due to its speed, small memory requirements and yet effec-
tiveness in obtaining clustering results for datasets with small number of clusters.
However, PIC cannot handle well those datasets with a large number of clusters,
even with the new PIC-k (with k power iteration vectors) method [91]. In addition,
it is also an impediment to apply this type of power iteration embedding in many
other data mining applications, such as feature selection and anomaly detection.

This chapter proposes Diverse Power Iteration Embeddings (DPIE) which
overcomes the limitations of PIC/PIC-k and applies it in a broad scope of spec-
tral analysis. Moreover, it requires a far less amount of time and space, which is
similar to PIC-k. Our contributions in DPIE are as follows:

1. We proposed a novel power-iteration-based method that aims to find diverse
and yet informative low dimensional embeddings, which is different from the
single or similar embedding vectors from previous PIC methods.

2. In theory, our proposed DPIE has the same or similar representational power
of low dimensional projection with classic spectral embeddings, so that it can
be applicable to various spectral analysis.

3. Our proposed DPIE, compared with the existing spectral embedding approxi-
mations, achieves a similar or even lower time and space computational com-
plexity, but a more desired quality.

4. We systematically evaluated DPIE along with several closely-related algo-
rithms on a number of important applications. The results confirmed that our
new algorithm significantly outperformed other existing algorithms in terms
of effectiveness and efficiency.

6.2 Spectral Embeddings Construction

Spectral embedding construction already gained its popularity in the last
decade because of its ability to reveal embedded data structure. It has a strong
connection with a graph cut, i.e., it uses eigenspace to solve a relaxed form of a
normalized graph partitioning problem [109]. Its second desirable aspect is that it
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can capture the nonlinear structure of data with the help of nonlinear kernel, which
is difficult for k-means or other linear clustering algorithms.

ALGORITHM 8: SpectralEmbeddingConstruction(X , c)
Input: X ∈ Rn×m where n is #instances and m is #features, and c is

#low-dimensions.
Output: Spectral embeddings Y ∈ Rn×c.

1 Construct the affinity matrix W ∈ Rn×n of X;
2 Compute the diagonal matrix D ∈ Rn×n where D(i, i) =

∑n
j=1W (i, j) and

D(i, j) = 0 if i 6= j ;
3 Construct a graph Laplacian L using Lnn = D −W , Lrw = I −D−1W or
Lsym = I −D−1/2WD−1/2 ;

4 Extract the first c nontrivial eigenvectors Ψ of L, Ψ = {ψ1, ψ2, . . . , ψc} ;
5 Re-normalize the rows of Ψ ∈ Rn×c into Yi(j) = ψi(j)/(

∑
l ψi(l)

2)1/2 ;

Spectral embedding construction as shown in Algorithm 8, starts with local
information encoded in a weighted graph that is constructed from input data with a
certain similarity kernel, and selects embedding vectors from the global eigenvec-
tors of the corresponding (normalized) affinity matrix.

Although it demonstrated its effectiveness in clustering [109], feature selection
[35], and anomaly detection [69], it is infeasible for large-scale data analysis due
to its time and space complexities. The space requirement for constructing affinity
matrix (Step 1) is O(n2), and the computing time for eigen-decomposition in Step
4 is O(n3). A mechanism is needed to approximate Algorithm 8 with less time and
space requirements while retaining similar effectiveness.

6.3 Power Iteration Embeddings and Its Limitations

6.3.1 Power Iteration Embeddings

To address the complexity of classic spectral embedding construction, Lin et.al
[92] proposed power iteration clustering (PIC), which finds a one dimensional data
embedding using truncated power iteration on a Laplacian normalized affinity ma-
trix. PIC is based on a simple iterative method called power iteration, which we
will briefly introduce here.
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Figure 6.1: Single power iteration embedding (the embedding vt∗ provided by [92]
or Equation 6.3) for 2D dataset in Figure 6.1(a) with three clusters, of which each
cluster is represented with a different color. In Figure 6.1(b), 6.1(c), 6.1(d) and
6.1(e), the value of each component of vt∗ is plotted against its index. We can see that
although vt∗ eventually converges to a uniform vector (Figure 6.1(e) when t = 200),
the intermediate vectors (eg. vt∗ when t = 20) reveal the manifold embedding
of the dataset. This example shows that PIE could be an efficient alternative to
eigenvectors from traditional eigen-decomposition.

ALGORITHM 9: PowerIterationEmbedding(X)
Input: X ∈ Rn×m where n is #instances and m is #features.
Output: Power iteration embedding vt ∈ Rn×1.

1 Construct the affinity matrix W ∈ Rn×n of X;
2 Perform positive random normalization W ← D−1W ;
3 Initialize v0 ∈ Rn×1 ;
4 Repeat
5 vt+1 ← Wvt

‖Wvt‖1 ;
6 δt+1 ← |vt+1 − vt| ;
7 t← t+ 1 ;
8 until ‖ δt − δt+1 ‖max' 0 ;

According to [100], the c smallest eigenvectors of graph Laplacian Lrw happen
to be the c largest eigenvectors of random walk normalized affinity matrix Wrw =
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D−1W . For our notational convenience, we will use W for Wrw in the rest of this
chapter. Let W ∈ Rn×n and recall that if ψ is an eigenvector for W with eigenvalue
λ, then Wψ = λψ. Therefore in general, there is W tψ = λtψ for any t. This
observation is the very foundation of the power iteration method.

Suppose Ψ = {ψ1, ψ2, . . . , ψn}, the set of unit eigenvectors of W , forms a
basis in Rn×n, and has corresponding real eigenvalues Λ = {λ1, λ2, . . . , λn}. We
assume that the first c eigenvectors carry informative signals and the rest eigenvec-
tors are noise [100]. From the spectral theorem, for the properly normalized affinity
matrix W such as random walk normalization, there are eigenvalues as follows:

1 = λ1 > λ2 > . . . > λc � λc+1 > . . . > λn. (6.1)

Note that power iteration embeddings assume 1) there is at least a large enough
eigen-gap between c and c+ 1 and 2) λ2 ∼ λ3 ∼ . . . ∼ λc. Now let v(0) ∈ Rn be a
randomly generated vector, since Ψ is a basis of Rn×n, we have:

v(0) = a1ψ1 + a2ψ2 + . . .+ anψn, (6.2)

where ai is the weight of i-th eigenvector. Then, the power iteration will be:

vt = W tv(0) = a1λ
t
1ψ1 + a2λ

t
2ψ2 + . . .+ anλ

t
nψn

= a1ψ1 + λt2

(
n∑
i=2

ai(
λi
λ2

)tψ2

)
.

(6.3)

The power iteration will finally converge to a1ψ1 which is useless because it is a
constant vector. However, if the number of iteration t is cleverly set from being
too large as shown in [92], W tv(0) is a linear combination of the first c informative
eigenvectors, while all the other eigenvectors are gone away due to the eigen-gap.
In other word, the whole process should be controlled very well in order to remove
the terms of ψc+1 . . . ψn with diminishing rate (λc+1

λ2
)t, but still keep the rate of

(λc
λ2

)t big enough. Fortunately, if the power iteration reaches the eigen-gap, then
the convergence rate will be relatively slow because the similar values from λ2

to λc. PIC defines the velocity at t as δt = |vt − vt−1| and acceleration at t as
ε = ||δt−δt−1||max as a measure of the convergence rate and stop power iterations if
ε is very small to do early stopping. Figure 6.1 shows the effect of different number
of power iterations and t = 20 shows a pretty good clustering embedding. Lin and
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Cohen [92] proposed the described procedure as Power Iteration Embedding (PIE)
algorithm, also shown in Algorithm 9.
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6.3.2 The Limitations of PIE

Although it showed a pretty good embedding in Figure 6.1, it is not good e-
nough to handle large c clusters or different spectral applications. If the dataset
has a relatively large number of clusters, it is quite difficult to discriminate clusters
with a single PIE. The obvious reason is that if c is sufficiently large, the number
of required eigenvectors increases. But in PIE, the first few (or even one) nontrivial
eigenvectors dominate the whole vector. For instance, Figure 6.2 showed ten select-
ed clusters from 20Newsgroups (see Section 6.7.1) violates two PIE assumptions;
the biggest eigen-gap is between λ2 and λ3 and the second biggest is between λ3

and λ4, which also violates similar eigenvalues before c eigenvectors. So, the PIE
is quite similar to ψ2, which is not good enough to distinguish the ten clusters. But
the ten eigenvectors together reveal more information such as the blue cluster from
ψ3, the pink cluster from ψ6, etc.

Different random starting vectors v0 may reveal different degrees of impact on
top c eigenvectors due to different ai in Equation 6.2. Suppose ψk (k > 2 and λ2 >

λk) is a very informative eigenvector and there happens to be ak � a2. By atten-
tively controlling the number of iteration we may have a2λ

t
2 ' akλ

t
k � ak+1λ

t
k+1,

which means that vt holds essential information from ψk without concealing by the
first few ψi. So by increasing the number of initial vectors to generate multiple PIE
or PIE-k (k = dlog(c)e according to [91]), the quality of the generated embedding
vectors has potential to improve to a certain degree. For instance, the PIE-k of Fig-
ure 6.2 share the similar general trends with the second eigenvector but it reveals
slightly different distributions.

But there is still a crucial and unsolved problem: the first few eigenvectors
still overshadow the other less important but indispensable eigenvectors. Under
this circumstance, these first few eigenvectors are still dominant in the result vector
vt. We can easily see this from Equation 6.3 as well : each vtk is still dominated
by the first few ψ1, ψ2, . . . because of λt1 � λt2 � . . . � λtn. Therefore, for
large c clustering problems or the other spectral applications such as spectral feature
selection or anomaly detection, PIE and PIE-k are not practical, which we can also
verify in Section 6.7.
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6.4 Diverse Power Iteration Embeddings

As analyzed in the last session, the fundamental problem in PIE/PIE-k is the
essential influences by the first few eigenvectors in each converged embedding vec-
tor. To deal with this problem, we propose Diverse Power Iteration Embeddings
(DPIE) Ψ′ = ψ′1, ψ

′
2, . . . , ψ

′
n. We design DPIE to be a collection of informative and

yet divergent embedding vectors where each ψ′k reveals the corresponding eigen-
vector ψk more considerably than any other eigenvector. To achieve this goal, all
the previous eigenvectors Ψ1:k−1 = [ψ1, ψ2, . . . , ψk−1] must be removed from ψ′k,
which is the major difference between our DPIE and PIE/PIE-k.

In our DPIE, the first nontrivial embedding vector ψ′2 would be quite similar to
PIE but the subsequent DPIEs will be different in the sense that we take out all the
already-found DPIEs from the current one. Let v0

i denotes the i-th starting random
seed vector and vti = W tv0

i , and the power iteration was stopped at t-th iteration,
we compute ψ′k from the normalized linear fitting residue of the already-found k−1

DPIEs:

ψ′k =
vti −Ψ′1:k−1f

∗

‖ vti −Ψ′1:k−1f
∗ ‖1

, (6.4)

where f ∗ ∈ R(k−1)×1 is the weight coefficient vector of those already-found DPIEs,
and is derived from solving the linear equation argminf = ‖vti − Ψ′1:k−1f‖. In
other words, we treat the (unnormalized) ψ′k as residue or regression error, which
is obtained by subtracting the effects of the already-found DPIEs from vti . After
normalization ψ′k becomes the next found DPIE.

However, if we apply the same stopping criteria as that used in PIE or PIE-k,
we cannot discover good quality of DPIE. The primary reason is that PIE stopping
criteria will suppress the rest of eigenvector signals except the first few because
(λk/λ2)t � 1 if t is as large as the PIE stopping criteria. To avoid this problem, we
need to increase the acceleration threshold ε of PIE as we find more DPIEs. So, our
new stopping criteria for DPIE is as follows:

εi = i ∗ dlog(c)e ∗ ε/n, (6.5)

where ε is a tuning parameter and we used 10−6 by default as in [92] [93].
When ε is too small; or the random seed is similar to one of what we have

used; or vti can be well represented by the existing DPIEs, DPIE cannot find any
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ALGORITHM 10: DPIE(X , e, E, T , εi, η)
Input: X ∈ Rn×m where n is #instances and m is #features, e is the

maximum #DPIE, E is #random seed vectors (E > e), T is the
maximum #iterations, εi defines the acceleration threshold for the
i-th random seed, and η is the normalized residual threshold.

Output: Diverse Power iteration embeddings Ψ′.
1 Construct the affinity matrix of X;
2 Perform positive random walk normalization on the affinity matrix and

denote as W ;
3 Initialize v0 = [v0

2 | v0
3 | . . . | v0

E] ∈ Rn×E , Ψ′ = {1 ∈ Rn×1} ;
4 For each v0

i (i = 1, 2, . . . , E)
5 Repeat
6 vt+1 ← Wvt

‖Wvt‖1 ;
7 δt+1 ← |vt+1 − vt| ;
8 t← t+ 1 ;
9 until (‖ δt − δt+1 ‖max≤ εi) or (t ≥ T ) ;

10 Solve equation f ∗ = argminf = ‖vti −Ψ′1:k−1f‖ ;
11 rti ← vti −Ψ′f ∗ ;

12 If ‖r
t
i‖1
‖vti‖1

> η

13 ψ′i ←
rti
‖rti‖1

;
14 Insert ψ′i into Ψ′ ;
15 If size of Ψ′ equals to e
16 Break ;
17 End;
18 End ;
19 End ;
20 Remove 1 from Ψ′;
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new PIE. In that case, we check the normalized residual (line 12 in Algorithm 10):

ϑ =
‖ vtk −Ψ′1:k−1f

∗ ‖1

‖ vtk ‖1

. (6.6)

If ϑ is smaller than a certain threshold, we do not add such PIEs. In practice, we
used dlog(c)e ∗ η/n as our threshold and η = 10−6 by default. For notational
convenience, we denote the normalized residual threshold as η from now on.

In terms of stabilities, if ε is too large which means we do very early stopping,
then we might not be able to find good eigenvector approximations because PIE
is a mixture of interesting and noisy eigenvectors. Relatively, the small ε is not a
big problem because the normalized residual threshold η can detect the duplicated
information and it is just a little bit slower. However, if ε becomes too small then
it will lead to over-convergent. In case of η, it is easy to tune because η has the
direct meaning of how much new information is added through the new candidate
PIE and it is not relevant to eigen-gaps of specific dataset. We present the DPIE
stability results in regards to ε and η in Experiment Section 6.7.5.

On the other hand, the power of DPIE can be also interpreted by diffusion
theorem. Note that Ψ1:k−1 has been removed from ψ′k, so the explicit formula of ψ′k
is:

ψ′k = bkλ
t
kψk + bk+1λ

t
k+1ψk+1 + . . .+ bnλ

t
nψn, (6.7)

where bi is the weight coefficient. Considering the 1-norm distance between x and
y on ψ′k there is:

Dt
k(x, y) = |ψ′k(x)− ψ′k(y)| =

n∑
i=k

biλ
t
i|ψi(x)− ψi(y)|. (6.8)

It is actually the same as the diffusion process [28], where ψ′k(x) is the diffusion
coordinate of x after t steps/time diffusion process, with all the directions of ψi
(i ≥ k) taken into account. So Dt

k(x, y) is a family of 1-norm diffusion distances
between x and y with Markov diffusion process in time t. It reflects the connectivity
in the graph of the data: Dt

k(x, y) will be small if there are a large number of short
paths connecting x and y, and large enough walking time t. In other words, there
is a large transition probability from x to y [28]. In this sense, t plays the role of
a scaling parameter. Therefore DPIE has a potential to be more stable to the noise
perturbation.
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The whole procedure for DPIE is defined in Algorithm 10. Note that 1) we
added one vector 1 from line 3 and take it out from the final results to simulate
the first eigenvector ψ1 which is a constant vector and it plays a role of intercept
in line 10 in Algorithm 10, and 2) we start v0 with v0

2 instead of v0
1 due to the

same reason. We can see the final DPIEs are quite instructive yet different from
each other in Figure 6.2. But like PIE/PIE-k, DPIE is mainly relying on matrix
vector multiplication and enjoys the same speed-up and scalability, and it can be
easily implemented as distributed matrix vector computation (Section 6.5). Since
the most time consuming part (from line 5 to line 9) does not depend on the other
DPIE computations, we can further parallelize Algorithm 10.

In the rest of this Section, we provide a simple proof of why DPIE can obtain
Ψ′ (Equation 6.7), of which each ψ′k has dominant eigenvector ψk while removing
the previous eigenvectors Ψ1:k−1.

Proposition 1 Assume that t is sufficient large and clear eigengap exists between
every two successive eigenvalues, the linear equation solver (Step 10 to 11 in Al-
gorithm 3) can remove the eigencomponents Ψ1:k−1 in order to construct DPIE.

Proof: Let us assume the first nontrivial DPIE ψ′2 is found, and the constant eigen-
component (ψ1) has been removed from ψ′2 and vt3. We now prove we can get ψ′3
from vt3:

vt3 = a2λ
t
2ψ2 + a3λ

t
3ψ3 + . . .+ anλ

t
nψn,

ψ′2 = b2λ
T
2 ψ2 + b3λ

T
3 ψ3 + . . .+ bnλ

T
nψn,

(6.9)

where T = t + ∆t with ∆t ≥ 1 (since we use earlier stopping by controlling εi
when i increases ). We assume argminf‖vt3−ψ′2×f‖ = f2 and all λj ≤ t/(t+∆t)

with j ≥ 1, there is:

(
1

λ
)∆t >

1

λ
≥ t+ ∆t

t
, (6.10)

therefore:
λt−1

λT−1
>
T

t
⇒ d(λt − λT )

dλ
= tλt−1 − TλT−1 > 0. (6.11)

Since t is sufficiently large, the ratio between aj and bj can be ignored. Equation
6.11 means that λt − λT becomes larger when λ is larger. Therefore to minimize
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the least square ‖vt3 − ψ′2 × f‖2, there should be f ∗ = f2 ∼ λt2/λ
T
2 , which means

the first nontrivial eigenvector ψ2 is removed from the residue:

vt3 − ψ′2 × f2 =
n∑
j=2

(λtj − λTj
λt2
λT2

)ψj =
n∑
j=3

(λtj − λTj
λt2
λT2

)ψj, (6.12)

in which ψ3 is the dominant vector. For all j ≥ 3, we assume λ2/λj ≥ (t+ ∆t)/t,
there is:

(
λ2

λj
)∆t >

t+ ∆t

t
⇒

d(λtj − λTj
λt2
λT2

)

dλj
> 0. (6.13)

which also leads to the removal of ψ3 on the following ψ′. Similarly the other
eigencomponents can be removed from the coming DPIEs. The above Proposition
did not guarantee the eigenvectors if the eigengap is not big between every two
successive eigenvalues. However, DPIE procedure guarantees to find diverse PIEs,
which are good enough as an approximated eigenvector solution for our proposed
applications.

6.5 Efficient Kernel Computation and Complexity
Analysis

DPIE provides a scalable and effective alternative to spectral embedding con-
struction, but it still requires the construction of normalized affinity matrix W (line
1 and 2 in Algorithm 10), which is a huge space cost. This section first describes
how to avoid the overhead for storing the affinity matrix by using exact cosine sim-
ilarity or an approximated Gaussian kernel, and then analyzes the time and space
complexity of the whole algorithm.

6.5.1 Cosine Similarity

A popular similarity kernel for text dataset is the cosine angle between two
vectors, which is defined as:

W(COS)(i, j) =
X(i)×X(j)

‖ X(i) ‖2 × ‖ X(j) ‖2

. (6.14)
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X is usually tf − idf weighted sparse matrix and the two norm normalizations in
the denominator term enable us to fairly compare documents with different length.

We apply implicit manifold [93] which is represented with a series of sparse
matrix multiplications. As described in [93], for the denominator term an additional
diagonal matrix Nii = 1/

√
X(i)X(i)T is computed and the affinity matrix A and

degree matrix D can be calculated with:

A = N ×X ×XT ×N,
D = N ×X ×XT ×N × 1,

(6.15)

where 1 is a constant vector of all 1’s, and XT denotes the transpose of X . To
remove the diagonal onA, we use a modified equationD = N×X×XT×N×1−1.
Therefore we can represent random walk power iteration as:

Wvt = D−1 × (N × (X × (XT × (N × vt)))− vt). (6.16)

Since vt is a n× 1 vector, and D and N are diagonal matrix which can be stored in
a sparse format, Equation 6.16 is a lot more efficient to implement and at the same
time keeps the same output as the conventional implementation. It is also worth to
mention that in anomaly detection application we use bi-normalization instead of
one-side random walk normalization to make the anomalies more salient:

Wvt = D−1 × (N × (X × (XT × (N × (D−1 × vt))))−D−1 × vt). (6.17)

6.5.2 Gaussian Kernel Approximation

One of the most commonly used similarity measurements is the Gaussian ker-
nel:

W(GAU)(i, j) = exp(
− ‖ X(i)−X(j) ‖2

2σ2
), (6.18)

where σ controls the width of neighborhood [100].
Gaussian kernel is a little bit more complicated than Cosine similarity since it

is not a linear construction. In our implementation we approximate it in a space-
efficient way by using random Fourier bases [121] [91] shown as follows:

1. Draw d i.i.d. samples $(1), . . . , $(d) from p($ ∼ 1
σ2N (0, 1)) where p(∗) is

fast Fourier transform;
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Table 6.1: Notations used in the complexity analysis.
Notations Meanings

1 n the number of instances
2 m the number of features
3 d the number of samples
4 T maximum power iterations in DPIE
5 e maximum number of DPIEs
6 κ condition number of data eigensystem

2. Draw d i,i,d. samples (offsets) b(1), . . . , b(d) from uniform distribution on
[0, 2π];

3. Compute R where R(i, j) =
√

2/d[cos($(j)Tx(i) + b)];

4. Use Equation 6.16 or 6.17 by replacing X with R.

This approximation can be interpreted as a random projection with Gaussian basis.
It projects each point onto a random direction and passes it through a sinusoidal
function with σ as bandwidth, and then slides the function by a random amount
(offset) [91]. According to the analysis in [121], as the number of samples d in-
creases, the error of this random Fourier bases approximation goes to zero.

6.5.3 Analysis of Complexity

Space Complexity. Cosine similarity compresses every intermediate result in a
vector form O(n), while the Gaussian kernel approximation is based on sampling
matrix of which size is O(nd). Therefore, the space complexity is at most O(nm),
which is only as the size of original dataset X , which is much smaller than O(n2)

in general.

Time Complexity. Since a matrix vector multiplication requires O(nm), the pro-
cess from line 5 to line 9 in Algorithm 10 takes O(nmT ), while the operation
of solving linear systems takes O(ne

√
κ) when using conjugated gradient method

(κ = λ∗1/λ
∗
2 is the condition number of Ψ′ where λ∗1 and λ∗2 are the first and second

eigenvalue of Ψ′) [125]. Note that these time complexities are much smaller than
O(n3).
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6.6 Discussion of Theoretical Perspectives

This section justifies the utility of our proposed DPIE by briefly discussing the
theoretical distinctions and connections with a few existing methods, which also
lays a solid foundation for DPIE’s attractive properties for practical use.

Instance-sampling based Methods. Researches like [144] [21] hold a subset of
original instances and extend the clustering result to the whole dataset. Other re-
searches like [40] generate a sparser version of matrix by sampling which can be
stored more efficiently and multiplied faster. Alternatively the similarity matrix can
also be sampled, which is known as the Nyström method [49]. These methods,
although reduce the computation cost, are quite sensitive to the sampling quality
[144]. Therefore the embedding quality deteriorates with poor sampling. On the
contrary, our proposed DPIE does not rely on any sampling strategy.

Random-projection based Methods. Yan et.al. proposed a general framework
[152] for fast approximate spectral clustering. It leverages random projection tree
to produce a set of reduced representatives and uses them as centroids to cluster
all the instances. Gittens et.al. [53] used randomized sketching to approximate
the eigenvectors. Their qualities rely on the subspace embedding techniques which
result from random projections. However the generated embeddings, because of
the indeterministic process, could contain a lot of noisy signals and fail to provide
desirable result. In spite of the fact that our DPIE also has random seed vectors as
initial status, the seed vectors eventually converge to certain patterns of eigenvector
combination during power iteration.

Frequent-direction based Methods. Recent researches drew on the similarity
between matrix sketching and the item frequency estimation problems, and pro-
posed frequent-direction based methods [90] with two major contributions: 1) be-
cause it is one-pass streaming algorithm, it can be implemented in space and time
efficiently, and 2) it approximates the truncated Singular Value Decompositions
(SVD). These methods are claimed to be deterministic since they have no sampling
or any randomized components. However, their quality is highly related to the input
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Figure 6.3: MatrixSketching [90] clustering results (recorded in NMI) on 20NG-10
dataset, which is a subset of 20Newsgroups with 10 clusters. We ran the algorithm
20 times and every time we shuffled the input order randomly. Obviously the results
are NOT stable against different input order, and a lot worse than our DPIE result
(NMI = 0.4373).

order. For instance, we evaluated the matrix sketching quality of [90] on 20NG-10
dataset 20 times and each time we randomly shuffled the order of input, and per-
formed K-means clustering on the final sketched matrix (evaluated by NMI [132]).
Figure 6.3 shows its poor results and the instability recorded in NMI across the 20

randomly shuffled experiments. On the other hand, our proposed DPIE is construct-
ed with close connections with random walk process. Thereby, DPIE is more stable
against perturbation or noisy features.

Power Iteration based Methods. Power iteration clustering [92] computes a lin-
ear combination of the important eigenvectors. It is extremely simple and elegant,
and efficient in practice and this is why our work shares the same foundation. D-
ifferent from the sampling methods and random projection methods, PIC in theory
does not modify the original data distribution thus there is no lost information.
However the major drawback it suffers is that it tends to return only the first few
(or even only one) eigenvectors, which are not enough to represent the datasets
with multiple classes or patterns. Although an advanced version, PIE-k, has been
proposed later in [91] with multiple output vectors, it does not solve the signal-
overlapping problem. Recently deflation-based power iteration method was pro-
posed [137]. It applies Schur complement deflation to remove the previously found
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pseudo-eigenvectors from the current matrix, so that it computes multiple orthog-
onal vectors without redundancy. However, strict orthogonality is also a “double-
edged sword” since it requires more iterations to extract certain eigenvectors with
smaller eigengaps, therefore deflation-based methods take more time to converge
compared with PIE-based methods. On the other hand, our DPIE also intends to
eliminate the previously found embedding vectors from the next one. But it does
not require the embeddings to be orthogonal to each other: each embedding is a d-
ifferent linear combination of eigenvectors. DPIE has similar representation power
as real eigenvectors but takes much less iterations than the deflation PIC, resulted
in faster computational speed.

6.7 Experimental Analysis

The low rank embeddings can be used on many data mining applications. We
evaluate the quality of the generated embedding vectors through three different ap-
plication areas: clustering, anomaly detection, and feature selection. For a fair
comparison, we constrain each test within a single thread to measure the actual run-
ning time. But we want to emphasize that all the algorithms, especially our DPIE,
can be implemented and run in a parallel environment.

• Clustering. We perform K-means on the generated low-rank embeddings
and evaluate the clustering result with NMI (Normalized Mutual Information
[132]).

• Anomaly Detection. We approximately compute Heat Kernel Signature
(HKS) [133] [69] score using the generated low-rank embeddings and evalu-
ate the score with AUC (Area under Receiver Operating Characteristics Curve
[102]) which is commonly used to evaluate anomaly detectors and is cut-off
independent [96].

• Feature Selection. We apply Multi-Cluster Feature Selection (MCFS) [35]
with the low-rank embeddings as input to extract feature subset. Although
it would be the best to evaluate results based on ground truth of feature im-
portance, it is difficult to find such ground truth. Therefore we evaluate with
NMI by applying K-means clustering on the selected feature space.
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Table 6.2: Statistics of datasets (including number of instances, features, clusters or
anomalies).

Dataset # ins. # fea. # clu.
1 20Newsgroups 18846 26214 20
2 Reuters21578 8293 18933 65
3 RCV1 193844 47236 103
4 USPS 9298 256 10
5 MNIST 70000 784 10

Dataset # ins. # fea. # ano.
6 20NG-10-11 4991 26214 100
7 Reuters21578AD 6261 18933 493
8 RCV1AD 7803 29992 200
9 magic04 19020 10 6688

10 satellite 6435 36 2036

6.7.1 Datasets, Baselines and Parameters.

Datasets. All datasets used in the experiments are summarized in Table 6.2. To
demonstrate the quality of the generated embedding on clustering, we evaluate our
algorithm on three text datasets: 20Newsgroups, Reuters21578 and RCV1, and t-
wo image datasets USPS and MNIST. Both of the USPS and MNIST datasets are
10 classes of handwritten digits. Reuters21578 and USPS are unbalanced dataset-
s with quite different size of clusters. For feature selection evaluation, we focus
on two datasets: 20Newsgroups and Reuters21578. In case of anomaly detec-
tion, we choose three text datasets and two scientific datasets. 20NG-10-11 is
a subset of 20Newsgroups, which consists of all the samples from 6 computer-
related clusters (from “comp.graphics” to “comp.windows.x” and treated as regular
samples) and 100 randomly-selected samples from “talk.religion.misc” (anomalous
samples). Reuters21578AD is a subset of Reuters21578 which is composed of the
first two largest categories as regular documents and the smallest 45 categories as
anomalous documents. RCV1AD is a subset of RCV1 which is made up of four
categories “C15”, “ECAT”, “GCAT”, and “MCAT” and we selected 200 “C15”
category documents as anomalies and the rest of three categories as regular docu-
ments. Satellite consists of the multi-spectral values of pixels in 3 × 3 neighbor-
hoods in a satellite image which has unbalanced classification associated with each
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neighborhood central pixel. Magic04 is a binary classification dataset from the U-
CI repository which was generated to simulate registration of high energy gamma
particles.

For text datasets, cosine similarity (Section 6.5.1) is a reasonable choice. For
USPS, MNIST, magic04 and satellite, Gaussian kernel (Section 6.5.2) is used. To
adopt an adaptive width of neighborhood σ instead of a fixed value, we assign σ to
be the average Euclidean distance of each instance to its second nearest neighbor.

Baselines. For clustering we choose five baselines: NJW (one of the convention-
al spectral clustering, or Spectral Embedding (SE) when we mention in feature
selection) [109], Power Iteration Embedding (PIE) [92], PIE-k [91], Matrix S-
ketching (MatSket) [90] and DeflationPIC [137]. Once we get the embeddings, we
performed a 2-norm normalization along instance side and a WCSS (minimizing
within-cluster sum of squares, with 100 inner loops and 100 outer loops) K-means
to obtain the cluster assignments.

The anomaly detection experiment is inspired by HKS [69] which is a mea-
sure of X(i)’s anomalousness usingHt(i) =

∑
p[e

λpt(ψp(i))
2] (λ and ψ are derived

from positive random walk Laplacian). We name HKS with true eigenvectors as
HKS-SE. However, since eigenvalues are not explicitly extracted by PIE, PIE-k,
MatSket, DeflationPIC and our proposed DPIE, we use the approximated equation
H ′(i) =

∑
p[(vp(i))

2] where vp is the p-th embedding vector, and call them HKS-
PIE, HKS-PIEK, HKS-MatSket, HKS-DFL and HKS-DPIE respectively. To have a
more comprehensive comparison, we also include IForest [96] which is a very effi-
cient and effective anomaly detection method. IForest detects data-anomalies with
binary trees, using the property that anomalies are more susceptible to isolation.

The feature selection experiment is integrated with MCFS [35] which mea-
sures the importance of each feature along each generated embedding that corre-
sponds to the contribution of each cluster by minimizing {minsp(‖ vp − Xsp ‖2

+β | sp |)} where sp is a m-dimensional vector and β controls the sp’s approxi-
mation speed to zero. For the j-th feature, MCFS defines the feature importance
as maxp|sp,j| where sp,j is the j-th element of vector sp. We evaluate the output
feature subsets by WCSS K-means clustering.
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Parameters. Firstly, the number of generated embeddings plays an essential role
on the embedding quality. It should be large enough to cover all the signals but
small enough to stay away from noise. For clustering and feature selection, we
use the first c embeddings from NJW, MatSket and DeflationPIC. PIE generates
only one vector while PIE-k set k = dlog(c)e [91]. We set the maximum number
of DPIEs to be e = dlog(c)e × 6 out of E = max(dlog(c)e × 30, 2c) random
seeds. In anomaly detection experiment, for HKS-SE we use all the eigenvectors
with eigenvalue-weighted, as the original definition in [133] and [69]. HKS-PIE
use only one embedding. For a fair comparison, we compute H ′ with (the first) 5

output embeddings for HKS-PIEK, HKS-MatSket HKS-DFL and our HKS-DPIE.
It is also worth to mention the followings: 1) As the other methods, we use the same
normalized affinity matrix as the input in Matrix Sketching to provide manifold
insight; 2) For text dataset on IForest, we use l2-norm normalized X as input to
make sure that the result is not sensitive to the document length; and 3) For MCFS
in feature selection, we perform 2-norm normalization along sample side of X to
evaluate uniform feature scales.

The heat diffusion time variable t in HKS-SE is set to be 1 in order to avoid
over-diffusion [69]. In IForest, to conduct a safe and fair comparison, we set the
sub-sampling size ρ = 4000 and the number of trees nt = 100 because these
parameters are the authors’ recommendation [95].

When we use Gaussian kernel approximation (Section 6.5.2) we set the num-
ber of samples d = 2000 and σ = 2000. The maximum number of power iteration
T is fixed to be 1000. Acceleration convergence rate in PIE and PIE-k is set to be
ε = 10−5/n where n is the number of samples, as described in [92] and [91]. In
our proposed DPIE, we set εi = i×dlog(c)e× ε/n with ε = 10−6, and normalized
residual threshold as dlog(c)e × η/n with η = 10−6 by default. In Section 6.7.5 we
test DPIE stability with different ε and η.

Finally, for each method with sampling steps or random seeds, we run 50 times
and report the average performance.
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6.7.2 Clustering Result Analysis

The clustering results are summarized in Table 6.3. We reported the time used
for the affinity matrix and embeddings constructions but we excluded the final K-
means steps. For NJW, we also excluded the affinity matrix construction time.

Generally speaking, NJW has the best average performance in NMI since it
has full knowledge of the real eigenvectors, but at the same time requires the most
expensive cost in time. Compared with PIE, PIE-k is 15 times slower on average
since it requires more input and output, but PIE-k improves 20% on average NMI
since it has the potential to contain different aspects of signal resulting from differ-
ent starting vectors. However, it only gets 40% of NJW in NMI. By truncated SVD
on normalized affinity matrix, MatSket can deterministically extract the low rank
approximation. So it covers additional signals in a more effective way than PIE-k
(more than two times better in NMI). But at the same time MatSket is also 1000+

times slower than PIE-k since it requires lots of SVD calculations. DeflationPIC, on
the other hand, computes multiple orthogonal pseudo-eigenvectors using deflation
technique, so that it could approximate the original eigenvectors to certain degree.
It shows improved performance in USPS and MNIST compared with MatSket. But
since it requires more matrix computations in the deflation equation, it is noticeably
much slower than PIE-k. Our DPIE, although not always the best among all the
(approximate) methods, achieves more than 95% performance of NJW in NMI, and
at the same time only requires quite a short running time which is close to PIE-k.
Especially, DPIE only takes about 2 minutes to process RCV1 dataset but more than
35% better than the second best approximation method with 7 times faster speed.

Due to out-of-memory problem, the NJW experiment on RCV1 could not be
finished since it requires full affinity matrix construction. However, using the space-
efficient ways introduced in Section 6.5 it is not a problem for the other listed meth-
ods, especially our proposed DPIE.

1We couldn’t run NJW on RCV1 dataset due to out-of-memory error, but instead cite its NJW
score from [129] for reference.
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6.7.3 Anomaly Detection

Table 6.4 shows the anomaly detection results. Similar to the clustering com-
parisons, HKS-PIEK performed better than HKS-PIE (21% improvement), with the
reason that PIE-k is possible to provide more informative signals. HKS-DFL and
HKS-MatSket can capture supplementary yet important eigenvectors, which leads
to a 6% and 10% boost up respectively compared with HKS-PIEK, but still much
worse than HKS-SE (less than 73%). IForest is efficient in that it detects the anoma-
lies by recording the short expected path lengths, so that it has 200% faster running
time than HKS-SE and still acquires 86 + % performance of HKS-SE. However,
our proposed HKS-DPIE is 4220 times faster than HKS-SE and yet reach the best
average performance.

6.7.4 Feature Selection

We tested all the embedding construction methods using MCFS [35] with {50,
200, 800, 1200, 1800} selected features, and reported the result in Table 6.5. Simi-
lar to clustering experiments, DeflationPIC and MatSket perform better than PIE-k
and PIE. But DPIE extracts more representative features, which are even with better
quality than those derived from original spectral embeddings (SE). This can be ex-
plained by the fact that DPIE formulates all the informative signals within diffusion
space, which is a more compact and profound way than discrete eigenvectors.
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6.7.5 Stability Experiments

We conduct experiments with different acceleration threshold ε and normal-
ized residual threshold η to study the parameter tuning sensitivities of DPIE. The
results are illustrated in Figure 6.4. It indicates that DPIE has a stable range of per-
formance on clustering with large enough ε and small enough η. The reason is that
for clustering we need more number of embeddings which cover enough informa-
tive eigenvectors. Consequently the iteration should have early stopping controlled
by increasing ε to prevent the iteration procedure to remove the less strong eigen-
components, and lowering η to include more diverse DPIEs. Similarly, for anomaly
detection DPIE performs stably with large ε and small η. If the anomalies only take
a small percentage of total instances, more PIEs are required to separate anomalies
from the normal ones. By assigning large enough ε and small enough η, we ensure
to obtain enough PIEs while removing the negative influence from the later (noisy)
ones.

6.8 Chapter Summary

In this chapter we propose a power-iteration-based low dimensional embed-
dings to cope with the time and space complexities of traditional spectral analysis.
Our proposed Diverse Power Iteration Embedding (DPIE), inspired by the power
iteration embedding (PIE [92]), can eliminate duplicated information due to a few
dominant eigenvectors, which makes it achieve outstanding performance compared
with PIE and other related methods [91]. DPIE can be used for not only clustering
but also various spectral analysis including feature selection and anomaly detec-
tion. Extensive experiments and evaluations on the three spectral analysis applica-
tions have demonstrated that our proposed DPIE is the most effective in improving
the clustering, anomaly detection, and feature selection methods in the comparison
with state-of-the-art baseline approximation algorithms. Meanwhile, DPIE remains
efficient in terms of time and space complexity, i.e. being as efficient as PIE-k and
much faster than MatrixSketching [90] and DeflationPIC [137].
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Figure 6.4: Stability experiment with different acceleration threshold ε and normal-
ized residual threshold η.
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Chapter 7

Conclusion and Future Work

This chapter summarizes our finished works, ongoing works and future re-
search directions. Our works focus on seeking novel modeling techniques based on
physics principles that not only have solid theoretical foundation, but also have
intrinsic and informative insight on those high-dimensional and heterogeneous
datasets from various domains. We also demonstrate that our scalable physics-
based modeling framework has great potential in many valuable applications.

7.1 Contribution Summary

In our research, we have investigated and presented a physics-based method-
ology framework, with which we can combine clustering, local anomaly detection,
and feature selection together. Moreover, we have proposed a practical way to apply
this framework on real world large-scale datasets. Our work is generally applica-
ble to most of the application domains without specific assumptions. Our salient
contributions include:

1. We have developed a new spectral clustering algorithm, called Aggregated Heat
Kernel (AHK), with robustness to both scaling parameter tuning and data per-
turbation. This research was originated from heat kernel and diffusion maps. In
technical essence, our AHK permits reorganizing the spectral-embedded struc-
ture regardless sub-optimal scaling parameter selection and noise perturbation.

175



2. We have developed a novel clustering methodology that seamlessly integrates
two powerful concepts: Local Density Affinity Transformation (LDAT) and
AHK to achieve remarkable performance under the heterogeneous density distri-
butions. Three primary advantages of this work include: (1) It suppresses local
density bias of different density in affinity matrix; (2) It functions well with any
affinity measurement in a universally-applicable way; and (3) It reconstructs d-
ifferent density manifold with high fidelity and utilizes them to offer guidance
during clustering.

3. We have designed an original unsupervised anomaly detection algorithm, called
Local Anomaly Descriptor (LAD), which is based on the physics-inspired dif-
fusion space and weighted umbrella operator. Compared with the existing algo-
rithms, our proposed LAD has demonstrated many important properties such as
intrinsicality to local density, and stability to small parameter perturbation.

4. We have devised a new unsupervised anomaly detection algorithm, called Fermi
Density Descriptor (FDD), with strong performance and robustness to param-
eter tuning. This algorithm was originated from quantum mechanics, and has a
physically-rigorous probability interpretation. To further enhance the functional-
ity of our algorithm, we first explored the best choice among different Laplacian
normalizations with the goal of mining anomalous instances.

5. We have proposed an unsupervised Noise-Resistant Feature Selection (NRFS).
NRFS is a collaborative feature selection algorithm based on multi-perspective
correlation, in that it probes the feature effect via local view from instance rep-
resentatives and global spectrums, and thereby effectively distinguishes infor-
mative, non-redundant and diverse features from the remaining ones. Moreover,
NRFS applies noise-resistant and density-preserving sampling to improve its ef-
ficiency while reducing the negative affect incurred by noisy instances.

6. To make the above spectral-embedding-based methods applicable on large-scale
datasets, we proposed a power-iteration-based low-rank embedding construc-
tion, called Diverse Power Iteration Embedding (DPIE), to approximate the
classic yet inefficient spectral embedding construction. Compared with the oth-
er approximation methods, DPIE has outstanding performance with fast running
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time and low storage requirement. Extensive experiments and evaluations have
demonstrated that DPIE is very effective and efficient in improving the cluster-
ing, anomaly detection, and feature selection methods.

Besides the aforementioned contributions, we have also accomplished a few
works on real-world application, including short-term solar energy prediction and
nanoscale structure mining using our proposed machine learning and data mining
techniques. Since they are not under the theme of this dissertation, we did not list
them here.

7.2 On-going Works

There are still many immediate and valuable research topics that can be includ-
ed into our current framework. Following are several of them that can be directly
extend from work we have done so far.

7.2.1 Coclustering for Microarray Datasets

On many application datasets such as document datasets and biological mi-
croarray datasets, there are usually corresponding correlations between instance
subsets and attribution subsets. In other words, a cocluster of instances in these
datasets can be composed of instances with similarity over only a subset of attri-
butions. Unsupervisedly discovering such interrelations is not achievable by tra-
ditional clustering methods. The major reason is that the traditional methods can
only tackle each data type independently, which will lose the interaction that are
essential to gain a full understanding of the data.

Coclustering (Biclustering) algorithms simultaneously cluster row and colum-
n of a dataset. Row and column usually represent data instance and feature re-
spectively. Therefore, the results of the coclustering algorithm reveal which group
of features maximally response to which group of data instances, or vice versa.
Through coclustering, we are able to discover a hidden global structure in the het-
erogeneous data, and it will seamlessly integrate multiple data types to provide us a
better picture of the underlying data distribution with high value in many real world
applications.
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There are so many coclustering algorithms categorized by the type of their cost
functions [79] [26] [37] [22] [139] [32] [99]. The existing algorithms are either
too sensitive to parameter tuning, or to initialization [22] [139] [99] and nonuni-
form density distribution [79] [26] [37] [32] in instance space or attribute space.
Moreover, they are lack of simultaneous consideration between instance density
and attribution density distribution.

We attempt to simultaneously provide manifold and density awareness be-
tween instance space and attribute space, and to integrate the interaction measure-
ment into coclustering methods. This can improve the discovery power of interre-
lations inside those complex datasets. By building the global affinity of not only
intra-instances or intra-attribute, but also between instances and attributes, and ap-
plying our density-sensitive affinity transformation, we seek to recognize the subset
structure with strong correlation between instance and feature/attribute.

7.2.2 Heat Spreading Clustering with Boundary Constrains

We have proposed heat diffusion based clustering algorithms in our finished
work. One of the advantages of such techniques is that, both diffusion and its kernel
function afford robust description of manifold reconstruction, with solid probabilis-
tic interpretation. While these techniques have shown their promising potentials in
robust clustering, there still remain certain limitations in the current state-of-the-art,
including initial heat source locating, and boundary area over-connection.

First, existing work oftentimes emphasizes the equal probability of heat dif-
fusion (or more generally speaking, random walk) starting point among all the in-
stances, while paying far less attention to locating/selecting the initial heat source.
The heat spreading tends to lose control if we assign all the instances as heat source,
since the diffusion process focus on the global trend instead of only trace heat
spreading of representative heat source. To avoid such problems, the heat sources
should be those representative center points inside each clusters. The heat from
such heat sources gradually diffuse inside the intra-cluster area without bridging
inter-cluster structure together. On the other hand, if the boundary instances are
assigned as initial heat sources, after a number of random walk or diffusion steps,
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the heat dissipation among these instances tends to connect different clusters to-
gether. In short, these characteristics of over-diffusion fail to refine information
to describe and reconstruct the manifold. Moreover, they are sensitive to density
changes between clusters with overlapping boundary area, which goes against the
manifold-aware nature of the diffusion.

To better depict the characteristics of a manifold, an informative and stable ini-
tial heat source locating algorithm is strongly desirable. Furthermore, the affinity
between boundary points should be set as zero or very small to avoid over connec-
tion among clusters. In this way the heat diffusions inside each cluster are isotropic
in nature, which are based on isotropic heat kernels inside manifolds, while diffu-
sion among boundary area will be anisotropic to control the diffusion direction via
small weighted boundary affinity.

7.3 Future Directions

In long term, we expect to extend our scalable physics-based data modeling
framework to more complex structure discovery such as structural pattern recogni-
tion [124] and time-series learning [47]. Recently graph kernels [124] have received
considerable interest within the machine learning and data mining community. We
plan to introduce a novel approach enabling kernel methods to utilize additional
information hidden in the structural neighborhood of the graphs. Our assumption is
that graph similarity can not only be described by the similarity between instances,
but also by the similarity between structural neighborhood. Furthermore, we will
also explore the potential to apply our proposed methodology on time-series da-
ta [47] by constructing multi-scale coordinates, or dynamic parameterization. We
look forward that this series of works will provide us more insight of physics-based
data modeling under different applications.
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