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Abstract of the Dissertation

Formal Verification of Nonlinear Biological Systems

by

Md. Ariful Islam

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Abstraction and composition have proved to be particularly useful in extend-
ing the reach of formal verification. Abstraction reduces the size of the system under
investigation by neglecting details irrelevant to the properties of interest. Compo-
sitionality allows us to decompose large-scale system into smaller components and
verify each component individually and reason about the verification of entire system
from verified components. Together, these two techniques permit us to substitute a
component with its equivalent abstraction such that the overall system retains the
property of interest.

In this thesis, we first show that in the context of the Iyer et al. (IMW)
67-variable cardiac myocycte model, it is possible to replace the detailed 13-state
probabilistic model of the sodium channel dynamics with a much simpler Hodgkin-
Huxley (HH)-like two-state model, while only incurring a bounded approximation
error. We then extend our technique to the 10-state model of the fast recovering
calcium-independent potassium channel. The basis of our results is the construc-
tion of an approximate bisimulation between the HH-type abstraction and the cor-
responding detailed ion channel model, both of which are input-controlled (voltage
in this case) CTMCs.

We then present BFComp, an automated framework based on Sum-Of-Squares
(SOS) optimization and delta-decidability over the reals to compute Bisimulation
Functions (BF). BF formalizes the notion of abstraction in dynamical systems by
establishing approximate equivalence between the original system and its abstract
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equivalent. In addition, BFComp framework supports compositional reasoning. In
this work, we are particularly interested infeedback composition, where output of
one component is the input to another, and vice versa. By appealing to small-gain
theorem of BFs, it can be shown that an abstract component with lower complexity
can replace a detailed component in a feedback composition. Such substitution
is safe in the sense that approximation error between the detailed and abstract
component will not be amplified in the feedback composition. We will illustrate the
utility of BFComp on a canonical cardiac-cell model, showing that the four-variable
Markovian model for the slowly activating potassium current component can be
safely replaced by a one-variable Hodgkin-Huxley-type approximation.

Finally, we present what we believe to be the first formal verification of a
biologically realistic (nonlinear ODE) model of a neural circuit in a multicellular
organism: Tap Withdrawal (TW) in C. Elegans, the common roundworm. TW is
a reflexive behavior exhibited by C. Elegans in response to vibrating the surface
on which it is moving; the neural circuit underlying this response is the subject of
this investigation. Specially, we perform reach-tube-based reachability analysis on
the TW circuit model of Wicks et al. (1996) to estimate key model parameters.
Underlying our approach is the use of Fan and Mitra’s recently developed technique
for automatically computing local discrepancy (convergence and divergence rates)
of general nonlinear systems.

The results we obtain are a significant extension of those of Wicks et al. (1996),
who equip their model with fixed parameter values that reproduce the predominant
TW response they observed experimentally in a population of 590 worms. In con-
trast, our techniques allow us to much more fully explore the model’s parameter
space, identifying in the process the parameter ranges responsible for the predom-
inant behavior as well as the non-dominant ones. The verification framework we
developed to conduct this analysis is model-agnostic, and can thus be re-used on
other complex nonlinear systems.
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Chapter 1

Introduction

Biological systems are extremely complex systems. The complexity exists at different
levels of organization that ranges from the subatomic realm to individual organisms
to whole populations and beyond. Despite the enormous complexity, biological sys-
tems operate in a harmonious fashion with milions of entities with a great precision.
This harmony, however, is disrupted in disease states. Determining the root cause
of diseases states is the key question in biological and medical research. Due to
their inherent complexity, the comprehension and analysis of biological systems is a
major challenge

Over the last few decades, the technological advances in data acquisition and
data processing have revolutionized the way we understand biological processes.
From the molecular level to the organ level, new mechanisms underlying these pro-
cesses are uncovered on a regular basis, and then formalized mathematically. Such
processes are, typically, described as Differential Equations Model (DEM) such as
Partial Differential Equation (PDE)s and Ordinary Differential Equation (ODE)s.

Despite significant inroads into capturing biological processes using DEMs in
recent years, we do not yet have a mature science to support verification and valida-
tion of Differential Equation Model (DEM). Traditional analysis tools are unable to
cope with the full complexity of DEM or adequately predict behaviors. Additionally,
approaches to modularity and composability that enable reliable and verifiable as-
sembly of individual models to represent interacting systems of systems are needed.

The traditional approach in verification and validation of DEM relies mainly
on simulation, which ensures the system works as intended only on a few scenarios
selected carefully by the domain expert. Formal verification, on the other hand,
promises to catch bugs in corner cases by exploring the space of all possible execu-
tions of the system. Recently, researchers have made steady progress in developing
methodology, algorithms, and tools for the verification of nonlinear ODE models.
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In particular, reachability analysis, an automatic technique for exploring the entire
state space of a system model, have been studied in several papers [12, 2, 11, 50].

Reachability analysis, however, run into the well known State Explosion Prob-
lem when large DEMs are used for verification. In the case of myocytes, PDE
models have evolved from 4 state variables in the Noble model [73] to 67 state vari-
ables in the Iyer-Mazhari-Winslow (IMW) model [47], pushing simulation efforts,
not to mention formal analysis, up against the tractability boundary. The original
benchmark for neurons was the 4-variable ODE model of Hodgkin and Huxley [42].
Thus, deriving guarantees for large-scale DEM is a grand challenge. Given a prop-
erty of interest, the DEM i) must have the requisite level of detail, and ii) must be
amenable to tractable formal verification.

Two techniques have proved to be particularly useful in extending the reach
of formal analysis: abstraction and decomposition. Abstraction reduces the size of
the system under investigation by neglecting details irrelevant to the properties of
interest. Decomposition, as the name suggests, decomposes the system into smaller
pieces, which are then analyzed on their own. Together, these two techniques per-
mit compositional reasoning : if A1 abstracts I1 and A2 abstracts I2, then their
composition A1‖A2 abstracts I1‖I2.

Compositional reasoning has proved to be especially useful in the non-numerical
setting, with simulation and bisimulation among the most widely used abstraction
techniques. Intuitively, simulation is a game requiring that each move of I from
state x1, with observation o1, to a state x2, with observation o2, can be matched
by a move of A from state y1, with observation o1, to a state y2, with observation
o2. Both I and A start in their initial states, and iteratively continue from the
successor states. Bisimulation is the symmetric form of this game. Simulation and
bisimulation have the very salient property of supporting compositional reasoning
in the sense discussed above.

In the numerical setting, the notions of simulation and bisimulation were ex-
tended in two ways. First, the moves of the game are assumed to take some (equal)
amount of time. Second, identical observations are replaced with the more robust
notions of δ-simulation and δ-bisimulation, where δ is the maximum distance (error)
between observations.

In chapter 3, we first show that in the context of the Iyer et al. (IMW)
67-variable cardiac myocycte model, it is possible to replace the detailed 13-state
probabilistic model of the sodium channel dynamics with a much simpler Hodgkin-
Huxley (HH)-like two-state model, while only incurring a bounded approximation
error. We then extend our technique to the 10-state model of the fast recovering
calcium-independent potassium channel. The basis of our results is the construction
of a δ-bisimulation between the HH-type abstraction and the corresponding detailed
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Figure 1.1: Component-wise model-order reduction of IMW model using abstraction
and compositional reasoning.

ion channel model.

Unfortunately, δ-bisimulation does not automatically support compositional
reasoning. When parallel composition feeds the outputs of subsystem A1 to the
inputs of subsystem A2 (and vice versa), the error of A1 with respect to I1 can get
amplified by A2, which may lead to an even larger error of A2 with respect to I2,
which is then again amplified by A1, and so on. For example, in the context of
the IMW model (see Fig. 5.1), let this model with its sodium channel removed be
denoted by ΣR (the “rest” of the IMW model). Then, replacing ΣI within ΣI‖ΣR

with its δ-bisimilar channel ΣH may lead to widely divergent behavior by ΣH‖ΣR

with respect to ΣI ‖ΣR in terms of their APs, even for a very small δ. Careful
examination of the problem reveals that this is due to ΣH not properly closing as
the AP reaches the conclusion of its upstroke phase.

To find the proper conditions under which the δ-bisimulation abstraction ΣH of
ΣI behaves properly with respect to its feedback composition with ΣR, we enlist the
support of Bisimulation Functions (BFs) [31, 33, 35, 29, 49]. Similar to Kamke and
Lyapunov functions, Bisimulation Functions (BFs) have played a transformative
role in extending the control-theoretic notions of Lyapunov Stability and ISS [82,
83, 84] to system verification. BFs are Lyapunov-like functions that decay along the
trajectories of a given pair of dynamical systems. Level sets of BFs yield approximate
bisimulation relations that generalize the classical notion of bisimulation equivalence
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of finite-state systems [68] to real-valued continuous-time dynamical systems. BFs
also allow one to show that a system is robust to bounded deviations in the input
signals. As shown in [29, 62], one can appeal to a small-gain theorem to compute
BFs that bound the error that is introduced when substituting ΣH for ΣI within
ΣR.

In chapter 5, we present BFComp: an automated framework for computing
BFs that characterize IOS of dynamical systems. In addition to establishing IOS,
BFComp is designed to provide tight bounds on the squared output errors between
systems whenever possible. For this purpose, two SOS optimization formulations
are employed: SOSP1, which enforces the decay requirements on a discretized grid
over the input space, and SOSP2, which covers the input space exhaustively. SOSP2
is attempted first, and if the resulting error bounds are not satisfactory, SOSP1 is
used to compute a Candidate BF (CBF). The decay requirement for the BFs is then
encoded as an SMT formula and validated over a level set of the CBF using the
dReal tool. We illustrate the utility of BFComp on a canonical cardiac-cell model,
showing that the four-variable Markovian model for the slowly activating Potassium
current component can be safely replaced by a one-variable Hodgkin-Huxley-type
approximation.

In chapter 6, we present the formal verification of a nonlinear ODE model
of a neural circuit in a multicellular organism: Tap Withdrawal (TW) in C. Ele-
gans, the common roundworm. Specifically, we perform reachability analysis on the
TW circuit model of Wicks et al. (1996), which enables us to estimate key circuit
parameters. Underlying our approach is the use of Fan and Mitra’s recently de-
veloped technique for automatically computing local discrepancy (convergence and
divergence rates) of general nonlinear systems. We show that the results we obtain
are in agreement with the experimental results of Wicks et al. (1995). As opposed
to the fixed parameters found in most biological models, which can only produce
the predominant behavior, our techniques characterize ranges of parameters that
produce all three observed behaviors: reversal of movement, acceleration, and lack
of response.

Finally, in chapter 8, we will summarize all the results and discuss some excit-
ing future work directions.
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Chapter 2

Background

In this chapter, we will first present the mathematical model of cardiac myocytes.
We will show both markovian [47] and HH-type [42] ionic chanel dynamics. Later,
we will present the mathematical model of tap withdrawal circuit in C. Elegans [92].

2.1 Dynamics of Cardiac Myocytes

Cardiac myocytes belong to the class of excitable cells, which also includes neurons.
Such cells respond to an external electrical stimulus in the form of an AP, the
characteristic change of the transmembrane potential in time as the cell responds
to the stimulus. A typical ventricular myocyte AP and its associated phases are
shown in Fig. 2.1(Right). Either an external stimulus, or the diffusing charge from
the neighboring cells can excite the myocyte, causing an AP to quickly depolarize
the membrane from a negative resting potential of Vres mV to a maximum of Vmax
mV followed by gradual repolarization.

2.1.1 The IMW Cardiac Cell Model

The IMW DEM, a physiologically detailed model, describes the ionic processes
responsible for the generation of an AP in human ventricular myocytes:

−CV̇ = INa+INab
+I

Ca
+I

Cab
+I

Kr
+I

Ks
+I

K1
+Ito1+Ip(Ca)

+

I
NaCa

+I
NaK

+I
CaK

+Ist (2.1)

where V is the membrane potential, V̇ is its first-order time derivative, C is the
membrane’s capacitance, and Iv are the ionic currents shown in Fig. 2.1(Left), except
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Figure 2.1: (Left) Currents in IMW: Blue and brown arrows show ionic currents
flowing through channels. Blue circles and arrows correspond to ionic exchanger
currents and green circles denote ionic pumps. Intra-cellular currents are shown
in Magenta. (Right) The AP, its phases, and associated currents. (Right-Inlay)
The sodium current INa dominates other currents during the upstroke phase. The
calcium-independent transient outward Potassium current Ito1 influences the AP’s
notch in the early repolarization phase. We focus on one of its two components, the
IKv4.3 current.

for Ist. This is the stimulus current, which could be either an external stimulus or
the diffused charge from neighboring cells.

Ionic currents result from the flow of sodium, potassium and calcium ions,
across the myocyte’s membrane. Three types of transport mechanisms are respon-
sible for these flows: channels, pumps, and exchangers. Ion channels are special
proteins that penetrate the membrane’s lipid bi-layer, and are selectively permeable
to certain ion species. Depending on the conformation of the constituent protein, the
channel either allows or inhibits the movement of ions. The protein conformation is
voltage dependent, thus the name voltage-gated channels. All the transmembrane
currents in Fig. 2.1 result from voltage-gated ionic channels, except for INaK , INaCa,
and Ip(Ca), which are exchanger or pump currents.

We focus on the behavior of the sodium channel, which regulates the flow of
INa, a dominant current in the upstroke phase of the AP. The other focus of the
paper will be the channel corresponding to the potassium current, IKv4.3. Along with
the IKv1.4 current, it constitutes the Ito1 current, which influences the notch of the
AP at the end of early repolarization [39].

2.1.2 The HH Model for Ion Channels

Hodgkin and Huxley, in their seminal work of [42], model the squid neuron’s sodium
channel behavior using two independent processes: activation and inactivation.
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Starting from the resting potential, if the cell is depolarized to a constant voltage,
activation is responsible for the sudden increase in the channel’s conductance. This
is followed by inactivation, which gradually brings the conductance down, before
reaching a steady state. The resulting ionic current is modeled as

INa(V, t) = gNam
3(V, t)h(V, t)(V − VNa) (2.2)

where gNa is the maximum conductance of the sodium channel, and VNa is sodium’s
Nernst potential. The gating variables m(V ) and (1− h(V )) measure the extent of
activation and inactivation respectively, with m = 0 (h = 1) representing complete
deactivation (recovery from inactivation) and m = 1 (h = 0) representing complete
activation (inactivation).

The dynamics of m and h are given by the DEM H as follows.

Definition 2.1.1. The DEM H gives the dynamics of m and h, both ∈ R≥0:

ṁ = αm(V )(1−m)− βm(V )m, ḣ = αh(V )(1− h)− βh(V )h

The linear system obtained by fixing V = v will be denoted as Hv. The conductance
of a channel modeled using by m and h is given by:

OH(V, t) = m(V, t)λh(V, t) (2.3)

where λ is the degree of activation1, and is 3 in [42]. The rate functions αx(V )
and βx(V ), x ∈ {m,h} are continuous in V, and for the sodium channel are given
by Eqs. (20)-(21) and Eqs. (23)-(24) of [42].

In the Voltage Clamp Experiment (VCE) performed by the authors in [42], the
membrane potential was initially maintained at the resting potential Vres. In each
of the VCE, the membrane potential was suddenly changed to a clamp potential
Vc and the emanating ionic current and conductance was observed till steady state.
The dynamics of the gating variables m and h, during a VCE is given by:

x(V = Vc, t) = x∞ − (x∞ − x0)exp(−t/τx), x ∈ {m,h} (2.4)

where the parameters x∞(Vc) = αx(Vc)/(αx(Vc) + βx(Vc)), τx = 1/(αx(Vc) + βx(Vc))
and x0(Vc) = x∞(Vres), x ∈ {m,h}. Eq. (2.3) was then fit to the observed current
to estimate the parameters.

1In this paper, we consider the degree of inactivation to be 1 for reducing the sodium and
potassium channels.
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Figure 2.2: The 13-variable voltage-controlled CTMC,MNa, for the sodium channel
component of the IMW model. The conductance of the channel is the sum of
occupancy probabilities O = O1 +O2. The transition rates are defined in Table 2.1.

2.1.3 Voltage-Controlled CTMC Models

The IMW model uses physiologically detailed models to capture the behavior of ion
channels. The voltage-dependent conformations of the constituent protein are cap-
tured as states of a stochastic model. Continuous functions of voltage are employed
for transfer rates between the states.

In the IMW model, the sodium current, INa, is modeled by an equation sim-
ilar to Eq. (2.2). The conductance of the HH-type channel, m3h, is replaced by
ONa(V, t) = O1(V, t) + O2(V, t), the sum of the occupancy probabilities of the two
states of the stochastic model shown in Fig. 2.2 [56, 58] and defined as follows.

Definition 2.1.2. Consider the 13-state model for sodium-channel dynamics shown
in Fig. 2.2. Let pj denote the jth state occupancy probability from the vector p =
[C0, C1, C2, C3, C4, O1, O2, C0I, C1I, C2I, C3I, C4I, I]T ∈ R13

≥0. The evolution of p
is described by the model MNa as:

ṗj =
∑
i 6=j

kij(V )pi −
∑
i 6=j

kji(V )pj i, j = 1, . . . , 13 (2.5)

where ṗj denotes the time derivative of pj, V is the transmembrane potential, and
kij(V ) ∈ R≥0 is the transition rate from the ith to the jth state as defined in Table 2.1.
This system can be re-written as:

ṗ = ANa(V ).p, (2.6)

where ANa(V ) is a 13× 13 matrix with ANaj,i (V ) = kij(V ) i 6= j, ANaj,j (V ) = −
∑
i 6=j

kji.

The linear system Mv
Na is obtained by fixing V = v in Eq. 2.6. The conductance

(output) of the model is given by O1 +O2.
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rate function rate function rate function
α(V ) c.e−19.6759+0.0113V δδ(V ) c.e−38.4839−0.1440V ε 0.0227
β(V ) c.e−26.2321−0.0901V γγ(V ) c.e−21.9493+0.0301V ω 1.0890
γ(V ) c.e−16.5359+0.1097V η(V ) c.e−19.6729+0.0843V cn 0.7470
δ(V ) c.e−27.0926−0.0615V On(V ) c.e−20.6726+0.0114V cf 0.2261
ν(V ) c.e−26.3585−0.0678V Of (V ) c.e−39.7449+0.0027V a 1.4004

Table 2.1: Transfer rates ofMNa, which is shown in Fig. 2.2. Values were instanti-
ated from Table 6 of [47] at temperature T = 310K, and c = 8.513× 109.

The potassium current IKv4.3 in the IMW DEM is modeled by

IKv4.3 = gKv4.3 (OK(V )) (V − VK) (2.7)

where gK is the maximum conductance of the channel, VK is the Nernst potential
for potassium, OK(V ) = O(V ) is the occupancy probability of the open state in the
10-state voltage-controlled CTMC shown in Fig. 2.3 [39] and defined as follows.

Definition 2.1.3. Consider the 10-state model for the potassium channel component
shown in Fig. 2.3. Let qj denote the jth state occupancy probability from the vector
q = [C0, C1, C2, C3, O, CI0, CI1, CI2, CI3, OI]T ∈ R10

≥0. The evolution of q, as
described by the model MK, is given by

q̇j =
∑
i 6=j

kij(V )qi −
∑
i 6=j

kji(V )qj i, j = 1, . . . , 10 (2.8)

where q̇j denotes the time derivative of qj, V is the transmembrane potential, and
kij(V ) ∈ R≥0 is the transition rate from the ith to the jth state as defined in Table 2.2.
This system can be re-written as:

q̇ = AK(V ).q, (2.9)

where AK(V ) is a 10 × 10 matrix with AKj,i(V ) = kij(V ) i 6= j, AKj,j(V ) = −
∑
i 6=j

kji.

The linear system Mv
K is obtained by fixing V = v in Eq. 2.9. The conductance

(output) of the model is given by O.

2.2 Tap Withdrawal Circuit of C. Elegans

In this section, we describe the Tap Withdrawal (TW) neural circuit of C. Elegans.
We then present a mathematical model of the circuit.
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Figure 2.3: The 10-variable voltage-controlled CTMC,MK , for the potassium chan-
nel component of the IMW model. The conductance of the channel is the occupancy
probability O. The transition rates are defined in Table 2.2.

rate function rate function rate function
αa(V ) 0.5437e0.029V f1 1.8936 b1 6.7735
βa(V ) 0.0802e0.0468V f2 14.2246 b2 15.6213
αi(V ) 0.0498e0.0004V f3 158.5744 b3 28.7533

βi(V ) 0.0008e(5.374×10
−8V ) f4 142.9366 b4 524.5762

Table 2.2: Transfer rates of MK , shown in Fig. 2.3. c = 8.513 × 109. Note that
these values are different from the ones given in Table 9 of [47]. Corrections were
made to the parameters to match the observed APs of the IMW model.

2.2.1 The Tap Withdrawal Circuit

In C. Elegans, there are three classes of neurons: sensory, inter, and motor. For the
TW circuit, the sensory neurons are PLM, PVD, ALM, and AVM, and the inter-
neurons are AVD, DVA, PVC, AVA, and AVB. The model we are using abstracts
away the motor neurons as simply forward and reverse movement.

Neurons are connected in two ways: electrically via bi-directional gap junc-
tions, and chemically via uni-directional chemical synapses. Each connection has
varying degrees of throughput, and each neuron can be excitatory or inhibitory,
governing the polarity of transmitted signals. These polarities were experimentally
determined in [92], and used to produce the circuit shown in Fig. 2.4.

The TW circuit produces three distinct locomotive behaviors: acceleration,
reversal of movement, and a lack of response. In [91], Wicks et al. performed a
series of laser ablation experiments in which they knocked out a neuron in a group
of animals (worms), subjected them to a tapped surface, and recorded the magnitude
and direction of the resulting behavior. In the control group with no neurons knocked
out, 98% of subjects reacted to a tap with a reversal of locomotion, but there were
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Figure 2.4: Tap Withdrawal Circuit of C. Elegans. Rectangle: Sensory Neurons;
Circle: Inter-neurons; Dashed Undirected Edge: Gap Junction; Solid Directed Edge:
Chemical Synapse; Edge Label: Number of Connections; Dark Gray: Excitatory
Neuron; Light Gray: Inhibitory Neuron; White: Unknown Polarity. FWD: Forward
Motor system; REV: Reverse Motor System.

still measured cases of acceleration and “no response” behavior. Fig. 2.5 shows the
response types for each of their experiments.

2.2.2 Mathematical Model for the Tap Withdrawal Circuit

In [92], Wicks et al. presented a mathematical model for the TW circuit. This
subsection provides an overview of this model.

Modeling the Neuron

The dynamics of a neuron’s membrane potential, V, is determined by the sum of all
input currents, written as:

CmV̇ =
1

Rm

(Vl − V ) +
∑

Igap +
∑

Isyn + Istim

where Cm is the membrane capacitance, Rm is the membrane resistance, Vl is the
leakage potential, Igap and Isyn are gap-junction and the chemical synapse currents,
respectively, and Istim is the applied external stimulus current. The summations are
over all neurons with which this neuron has a (gap-junction or synaptic) connection.
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Figure 2.5: Effect of ablation on Tap Withdrawal reflex. The length of the bars
indicate the fraction of the population demonstrating the particular behavior. [91]

Modeling Gap-Junction Currents

The current flow between neuron i and j via a gap-junction is given by:

Igapij = ngapij g
gap
m (Vj − Vi)

where the constant ggapm is the maximum conductance of the gap junction, and ngapij is
the number of gap-junction connections between neurons i and j. The conductance
ggapm is one of the key circuit parameters of this model that dramatically affects the
behavior of the animal.

Modeling Chemical Synapse Currents

The synaptic current flowing from pre-synaptic neuron j to post-synaptic neuron i
is described as follows:

Isynij = nsynij gsynij (t)(Ej − Vi)
where gsynij (t) is the time-varying synaptic conductance of neuron i, nsynij is the
number of synaptic connections from neuron j to neuron i, and Ej is the reversal
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potential of neuron j for the synaptic conductance.

The chemical synapse is characterized by a synaptic sign, or polarity, specifying
if said synapse is excitatory or inhibitory. The value of Ej is assumed to be constant
for the same synaptic sign; its value is higher if the synapse is excitatory rather than
inhibitory.

Synaptic conductance is dependent only upon the membrane potential of presy-
naptic neuron Vj, given by:

gsynij (t) = gsyn∞ (Vj)

where gsyn∞ is the steady-state post-synaptic conductance in response to a pre-synaptic
membrane potential.

The steady-state post-synaptic membrane conductance is modeled as:

gsyn∞ (Vj) =
gsynm

1 + exp (−4.3944
Vj−VEQj

VRange
)

where gsynm is the maximum post-synaptic membrane conductance for the synapse,
VEQj

is the pre-synaptic equilibrium potential, and VRange is the pre-synaptic voltage
range over which the synapse is activated.

Modeling the Tap Withdrawal Circuit

Combining all of the above pieces, the mathematical model of the TW circuit is a
system of nonlinear ODEs, with each state variable defined as the membrane poten-
tial of a neuron in the circuit. Consider a circuit with N neurons. The dynamics of
the ith neuron of the circuit is given by:

Cmi
V̇i =

Vli − Vi
Rmi

+
N∑
j=1

Igapij +
N∑
j=1

Isynij + Istimi (2.10)

Igapij = ngapij g
gap
m (Vj − Vi) (2.11)

Isynij = nsynij gsynij (Ej − Vi) (2.12)

gsynij =
gsynm

1 + exp (−4.3944
Vj−VEQj

VRange
)
. (2.13)

The equilibrium potentials (VEQ) of the neurons are computed by setting the
left-hand side of Eq. (2.10) to zero. This leads to a system of linear equations, that
can be solved as follows:

VEQ = A−1b (2.14)
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where matrix A is given by:

Aij =

{
−Rmi

ngapij g
gap
m if i 6= j

1 +Rmi

∑N
j=1 n

gap
ij g

gap
ij gsynm /2 if i = j

and vector b is written as:

bi = Vli +Rmi

N∑
j=1

Ejn
syn
ij gsynm /2.

Output of the Tap Withdrawal Circuit

The potential of the motor neurons AVB and AVA determine the observable behavior
of the animal. If the integral of the difference between VAVA - VAVB is large, the
animal will reverse movement. By extension, if the difference is a large negative
value, the animal will accelerate, and if the difference is close to zero there will be
no response. The equation that converts the membrane potential of AVB and AVA
to a behavioral property, (e.g. reversal), is given by:

Propensity to Reverse ∝
∫

(VAVA − VAVB)dt (2.15)

where the integration is computed from the beginning of tap stimulation until either
the simulation ends or the integrand changes sign. To allow initial transients after
the tap, the test for a change of integrand sign occurs only after a grace period of
100 ms.

2.2.3 Normalization of Tap Withdrawal Circuit Model

For the purpose of reachability analysis (Section 6.1), we normalize the system of
equations with respect to the capacitance. Combining Eqs.( 2.10) and ( 2.13) and
taking Cmi

to the right-hand side, we have:

V̇i =
Vli − Vi
RmiCmi

+
ggapm

Cmi

N∑
j=1

ngap
ij (Vj − Vi) +

gsynm

Cmi

N∑
j=1

nsyn
ij (Ej − Vi)

1 + exp (−4.3944
Vj−VEQj

VRange
)

+
1

Cmi

Istimi

Now letting gleaki = 1
RmiCmi

, ggapi = ggapm

Cmi
, gsyni = gsynm

Cmi
and Iexti = 1

Cmi
the system

dynamics can be written as:

V̇i = gleaki (Vli − Vi) + ggapi

N∑
j=1

ngap
ij (Vj − Vi) + gsyni

N∑
j=1

nsyn
ij (Ej − Vi)

1 + exp (−4.3944
Vj−VEQj

VRange
)

+ Iexti (2.16)
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This is the 9 dimensional ODE model of the TW circuit. The key circuit parameters
are the gap conductances, ggapi , and we aim to characterize the ranges of these
conductances that produce acceleration, reversal, and no response.

15



Chapter 3

Approximate Bisimulation of Ion
Channel Dynamics

The emergence of high throughput data acquisition techniques has changed cell
biology from a purely wet lab-based science to also an engineering and information
science. The identification of a mathematical model from cellular experimental data,
and the use of this model to predict and control the cell’s behavior, are nowadays
indispensable tools in cell biology’s arsenal [71, 8].

Improved data acquisition has led to the creation of increasingly sophisticated
partial DEMs for cardiac cells (myocytes). Their main purpose is to elucidate the
biological laws governing the electric behavior of cardiac myocytes, i.e., their under-
lying ionic processes [20].

Inspired by the squid-neuron DEM [42] developed by HH, Luo and Rudy de-
vised one of the first myocyte DEMs, for guinea pig ventricular cells [60]. Adapting
this model to human myocytes led to the ten Tusscher-Noble2-Panfilov DEM [85],
which has 17 state variables and 44 parameters. Based on updated experimental
data, IMW subsequently developed a DEM comprising of 67 state variables and 94
parameters [47]. This DEM reflects a highly detailed physiological view the electro-
chemical behavior of human myocytes.

From 17 to 67 variables, all such DEMs capture myocytic behavior at a par-
ticular level of abstraction, and hence all of them play an important role in the
modeling hierarchy. It is essential, however, to maintain focus on the purpose of
a particular DEM; that is, of the particular cellular and ionic processes whose be-
havior the DEM is intended to capture. Disregarding this purpose may lead to the
use of unnecessarily complex DEMs, which may render not only analysis, but also
simulation, intractable.
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If the only entity of interest is the myocyte’s transmembrane voltage, co-
authors Cherry and Fenton have experimentally shown that a Minimal Model (MM)
consisting of only 4 variables and 27 parameters can accurately capture voltage prop-
agation properties in 1D, 2D, and 3D networks of myocytes [7]. The MM has allowed
us to obtain dramatic simulation speedups [5], and to use its linear hybridization as
the basis for formal symbolic analysis [40].

Since new technological advances are expected to lead to further insights into
myocytic behavior, it is likely that the IMW model will be further refined by adding
new variables. As in model checking and controller synthesis, one would therefore
like to compute the smallest approximation that is observationally equivalent to the
state-of-the-art DEM with respect to the property of interest, modulo some bounded
approximation error. This, however, is not easily accomplished, as it implies the
automatic approximation of very large nonlinear DEMs.

A first step toward the desired automation is to identify a set of approximation
techniques that allow one to systematically remove unobservable variables from say,
a detailed model such as IMW to end up with the MM, if the only observable variable
is the voltage. This is one of the goals of the project computational modeling and
analysis of complex systems [72]. A byproduct of this work is to establish a long-
missing formal relation among the existing myocyte DEMs, facilitating the transfer
of properties established at one layer of abstraction to the other layers. Building such
towers of abstraction is becoming increasingly prevalent in systems biology [22, 24].

In this chapter, we focus on model-order reduction and abstraction of ion chan-
nel dynamics. The main question posed in this paper is the following: Assuming
that the conductance of the ion channel is the only observable, is the behavior of
an HH-type channel equivalent to the behavior of the IMW channel, modulo a well-
defined approximation error? Specifically, we answer this question for the sodium
and the calcium-independent potassium channels. Rather than dealing with be-
havioral equivalence explicitly, we ask if it is possible to construct an approximate
bisimulation [30, 34, 32, 35] between the HH and IMW channel models? This no-
tion of equivalence is stronger than the conventional behavioral equivalence, which
compares the observed behaviors (trajectories) of two systems.

The answer to the above-posed question is of broad interest, as it reduces
to showing the existence of an approximate bisimulation between two continuous
time Markov decision processes; that is, two input-controlled (voltage in this case)
CTMCs. We answer this question in the positive, by explicitly constructing such a
bisimulation. See Fig. 3.1 for an overview of our approach.
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Figure 3.1: A modular view of the IMW DEM that composes various concurrently
evolving components corresponding to the different ionic currents. We replace the
13-state INa and the 10-state IKv4.3 components with corresponding 2-state HH-type
abstractions. A two-level fitting process, described in Section 3.1, is used to identify
the abstractions. Approximate bisimilarity of the detailed components and their
corresponding abstractions allows us to substitute them for each other within the
whole-cell model. The stimulus current affects the overall voltage update and is not
an input to the ionic current components. The system outputs the 13 currents in
Eq. (1).

3.1 Model-Order Reduction of Ion Channel Dy-

namics

We construct two HH-type DEMs, HNa and HK , that can be substituted for the
components MNa and MK respectively within the IMW cardiac-cell model. We
perform the following abstractions in the process:

• The abstractions HNa and HK employ three and four activating subunits re-
spectively. A single subunit is used to model inactivation.

• We abstract away the conditional dependence between activation and inacti-
vation. This is done by abstracting away the scaling factors: a of MNa and
f1 − f4, b1 − b4 of MK .

After identifying HNa, its conductance, m3h, is substituted forMNa’s conductance,
O1+O2, in the IMW model’s version of Eq. (2.2). Similarly HK ’s conductance, m4h,
replaces MK ’s conductance, OK in Eq. (2.7). Note that this leads to two levels of
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substitution. First, the conductance of the detailed ionic current components is sub-
stituted by the abstract model conductances. Then the modified current component
replaces the original term in Eq. (2.1).

Our approach to obtaining the 2-state HH-type abstractions HNa and HK

from the detailed models, MNa and MK respectively, is summarized in Fig. 3.2,
and described as follows.

Set of n finite representative behaviors 
produced at constant V 

Parameter Estimation from 
Finite Traces (PEFT)

time

Rate Function Identification
(RFI)

Detailed component
models

used in the IMW DEM

2-state HH-type
abstractions

Voltage Clamp
Simulations

Constant-voltage
conductance
time courses

Figure 3.2: Abstraction process for ion channel dynamics. The voltage-controlled
CTMC components are simulated at constant voltages (clamp potentials) using
the steady state values corresponding to V = Vres as the initial conditions. The
conductance time courses are then fit as per Eq. (2.3) to obtain the parameters
αm, βm, αh, βh at the clamp potentials used for voltage clamp simulations. The
four parameter values, along with the initial conditions determine the Hv abstrac-
tions. The parameters are then fit in the RFI step to obtain parameter functions
αm(V ), βm(V ), αh(V ), βh(V ).

1. Voltage clamp simulations
VCEs, pioneered by Hodgkin and Huxley in their seminal work of [42], are
intended to expose the activation and inactivation processes governing a chan-
nel’s behavior. The experiments involve stimulating the channel by changing
the membrane potential suddenly and then holding it constant, starting from
appropriate initial conditions. As the ion channel reacts by opening, and
then closing, the resulting ionic currents are recorded. The corresponding
conductance time courses characterize the channel’s response to varying the
membrane potential.

We simulated VCEs by simulating the detailed models, MNa and MK , for
various values of V . In other words, the systems of linear differential equations,
Mv

Na andMv
K , were simulated for different values of Vres ≤ v ≤ Vmax. We used

20,000 uniformly spaced voltage values for v, and the correspondingMv
Na and

Mv
K were simulated using MATLAB’s ODE45 solver [64], starting from the
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initial conditions specified in Table 4 of [47]. The initial conditions correspond
to the steady state of the models at v = Vres. This is exactly the initially
conditions used by Hodgkin and Huxley in [42]. The resulting conductance
time courses, O1(t) + O2(t) for Mv

Na and O(t) for Mv
K , were recorded until

steady state was reached. As per Theorem 3 in Appendix A, for all v ∈
[Vres, Vmax], Mv

Na and Mv
K have stable equilibria and therefore steady state

is guaranteed. Simulating the models at constant voltage values corresponds
to the clamp potentials to which the membrane was excited in [42] to uncover
the activation and inactivation process.

2. PEFT
PEFT is a procedure that identifies Hv

Na and Hv
K models corresponding to

Mv
Na andMv

K respectively. The parameters αvm, β
v
m, α

v
h, β

v
h are estimated such

that the resulting conductance time courses, produced by Hv
Na and Hv

K , match
the conductance time courses observed in the voltage clamp simulations for
Mv

Na and Mv
K respectively.

In our implementation, we fitMv
Na’s conductance time series, O1(t)+O2(t), to

Hv
Na’s m

3(t)h(t). Time series O(t) observed from Mv
K was fit with m4(t)h(t)

to identify Hv
Na. At constant voltage v, the trajectories m(t) and h(t) of Hv

Na

and Hv
K are given by

z(t) =
αvz

αvz + βvz
+

(
z(0)− αvz

αvz + βvz

)
exp (− (αvz + βvz ) t) (3.1)

where z ∈ {m,h} and x ∈ {Na,K}. The fitting was performed using MAT-
LAB’s curve fitting utility cftool [65] for each voltage value v used in the
voltage clamp simulations. Two aspects of our implementation deserve fur-
ther elaboration:

• Choosing m(0) and h(0) - The initial conditions were chosen such that
for Hv

Na, m(0)3h(0) and for Hv
K , m(0)4h(0) was approximately equal to

OVres , the steady state conductances of MVres
Na and MVres

K respectively.
As per convention, we also ensured that mv(0) ≈ 0 and h(0) ≈ 1 for
both the models. We chose m(0) = 0.0027, h(0) = 0.95 for Hv

Na; m(0) =
0.00138, h(0) = 0.98 for Hv

Na.

• Providing seed-values - For each voltage-value v, cftool needs seed
values of αvx, β

v
x, x ∈ {m,h}, to start optimizing over the parameter

space. The parameters estimated for the ith voltage vi were used as seed-
values for vi+1. For i = 0, when v = vres, the parameters were calculated
by trial and error.

3. RFI
RFI is a procedure that fits the parameter values, αvm, βvm, αvh and βvh, as
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functions of voltage to produce the parameter functions αm(V ), βm(V ), αh(V )
and βh(V ). We fit exponential functions using cftool [65]. The parameter
functions defining HNa and HK are as follows.

Rate functions that define HNa:

αm(V ) =

{
13.63− 14.3

1+exp(0.061V+1.72)
V ≤ 19.98

20.76− 7.89
1+exp(464.1V−13920) V > 19.98

βm(V ) =


9.925 V ≤ −65

4.7− 2.58
1+exp(0.61V+38.19)

−65 < V ≤ 5.8

12.24− 7.77
1+exp(1877V−56314) V > 5.8

αh(V ) =
0.1745

1 + exp(269.8V + 17720)

βh(V ) = 10.1− 10

1 + exp(0.0579V + 0.71)

Rate functions that define HK

αm(V ) =

{
0.45 exp(0.026V ) V ≤ 24.5

0.85− 0.048
1+exp(−0.2V+9.5)

V > 24.5

βm(V ) =

{
0.029 exp(0.065V ) V ≤ 24.5

0.1839− 0.05
1+exp(0.19V−9.32) V > 24.5

αh(V ) = 0.0015− 0.0014

1 + exp(0.027V − 2.54)

βh(V ) =

{
0.12− 0.06

1+exp(−0.054V+2.62)
V ≤ 24.5

0.109 + 0.015
1+exp(−0.033V+10.83)

V > 24.5

Adapting the Abstraction Process to Arbitrary Observable Functions of
MNa and MK: The two-step abstraction process, consisting of PEFT and RFI,
assumed that the conductance of the detailed models was the observable function
for them. In other words, O1(V, t) +O2(V, t) forMNa, and O(V, t) forMK mapped
a state of the corresponding model to its output. The abstraction methodology
described above is not restricted by these observable functions and can be adapted
to arbitrary functions that map a state to its output.

Suppose we are given a stochastic (detailed) ion channel model M, with a
function that maps the state occupancy probability vector to a real-valued output.
The goal is to reduce it to an HH-type abstraction, H, that has a degree of activation
λ and 1 as the degree of inactivation. We provide details for modifying PEFT, such
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that the resulting set of constant-voltage Hv systems are behaviorally equivalent to
constant-voltage versions, Mv, of the detailed model.

The first step is to establish a mapping between the states ofM and a 2(λ+1)-
state stochastic model corresponding to the HH-type model, denoted by Hstoch.
We will label the states of Hstoch as xij, and denote the corresponding occupancy
probability by pij where i = 0, . . . , λ and j = 0, 1. The model Hstoch interprets the
degrees of activation and inactivation as the number of independent activating and
inactivating subunits of the channel. In our case, the state xij corresponds to the
conformation of the channel where i activating and j inactivating subunits are in an
“open” state that allow ion flow. Fig. 3.3 shows the model Hstoch corresponding to
an HH-type model with λ = 3 and a degree of inactivation of 1. In the model, the

Figure 3.3: Invariant manifolds can be used to map the states of a 2(λ + 1)-state
stochastic model to an HH-type model with a degree of activation λ and degree of
inactivation 1 (λ = 3 in the example).
state x21 corresponds to the a conformation where the inactivating subunit and two
of the activating subunits are open. The inactivating subunit can close at a rate of
βh(V ) and change the conformation to x20. The remaining activating subunit can
open at the rate of αm(V ) to change the state to x31. In this conformation, all the
three activating subunits and the inactivating subunit are open. Thus, this state
corresponds to the conformation of the channel which allows ion flow. From the
state x21, any of the two independent activating subunits could close at a rate of
2βm(V ) to change the state to x11. Once we have mapped the states of the given
stochastic model to the states of Hstoch, PEFT can be modified to identify Hv

stoch

systems that can match the behavioral traces observed from Mv.

The two-state HH-type model forms an invariant manifold [53] of Hstoch. The
occupancy probability of the state xij is given by mihj. This correspondence helps
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us map a state vector of Hstoch to a state of the HH-type model (the vector [m,h]T ).
Note that this mapping is exact and provides an output function that can be matched
to the output function of M. Suppose the output function maps states of M
corresponding to the states x11 and x31 under the established mapping. Then the
output function of H will take as arguments mh and m3h. PEFT can be used to
minimize divergence of this new observation function to identify Hv systems.

3.2 Results

The component models, MNa and MK , were substituted by their respective HH-
type abstractionsHNa andHK within the whole-cell IMW model. The substitutions
were done in three combinations: 1) substitution of MNa only, 2) substitution of
MK only, and 3) substitution of both MNa and MK . The modified IMW models
were simulated in FORTRAN in all three cases with an integration time step of 0.001
ms. Both supra- and sub-threshold stimuli, lasting 0.5 ms, were used to excite the
cardiac cell. Supra-threshold stimuli used were: S1 = −100 pA/pF, and S2 = −120
pA/pF. Sub-threshold stimuli employed were: S3 = −10 pA/pF, and S4 = −20
pA/pF.

S V (mV) INa (pA/pF) IK (pA/pF)

Na
Only

K
Only

Both Na
Only

K
Only

Both Na
Only

K
only

Both

S1 7.73×
10−4

1.4 ×
10−3

1.6 ×
10−3

2.7 ×
10−3

8.3 ×
10−6

5.2 ×
10−3

6.2 ×
10−5

1.72×
10−4

1.1 ×
10−3

S2 7.3 ×
10−4

1.4 ×
10−3

1.5 ×
10−3

5.2 ×
10−3

5.4 ×
10−5

5.2 ×
10−2

4.67×
10−5

2.54×
10−4

2.5 ×
10−4

S3 1.61×
10−5

1.1
×10−3

1.1 ×
10−3

- - - - - -

S4 1.39×
10−4

1.2 ×
10−3

1.3 ×
10−3

- - - - - -

Table 3.1: Mean L2 errors incurred in the simulations after substituting MNa by
HNa and MK by HK in the IMW model. The first column, S, stands for the
stimulus used to excite the cell at the beginning of the simulation. Only the voltage
errors were recorded for the sub-threshold stimuli S3 and S4 as the currents were
negligible.

Fig. 3.4 provides empirical evidence of the modified whole cell models being
behaviorally equivalent to the original models. The model retains both normal and
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Figure 3.4: Comparison of the original and the modified IMW models when MNa

and MK are substituted by HNa and HK respectively. Subfigures (a)-(c) are ob-
tained for the S1 stimulus, (d)-(f) for the S2 stimulus, (g) for the S3 stimulus and
(h) for the S4 stimulus. S1 and S2 are supra-threshold stimuli and lead to an AP,
whereas S3 and S4 being subthreshold stimuli fail to produce the AP.
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anomalous cell-level behaviors on replacing the 13-state sodium channel and/or 10-
state potassium channel components with the corresponding 2-state abstraction(s).
In the next section, we formalize the equivalence ofMNa andMK to HNa and HK

respectively using approximate bisimulation.

3.3 Approximate Bisimulation Equivalence of MI

and MH

In this section, we formalize the equivalence of the the detailed ion channel models,
MNa and MK , and their HH-type abstractions, HNa and HK . Proposed in [35],
the concept of approximate bisimulation enables us to formalize the approximate
equivalence of two dynamical systems. The conventional notion of behavioral equiv-
alence compares the trajectories of the two systems. Approximate bisimulation is
stronger than approximate behavioral equivalence in that it allows for compositional
reasoning. We will use the following two dynamical systems to define approximate
bisimulation in a way similar to [34]:

∆i :

{
ẋi(t) = fi(xi(t),ui(t))

yi(t) = gi(xi(t))
, i = 1, 2. (3.2)

with the state vectors xi ∈ Rni , the input vectors ui ∈ Rm and the output vectors
yi ∈ Rp. We assume that the dynamics are given by Lipschitz-continuous functions
fi : Rni ×Rni → Rni , i = 1, 2. We use X0

i ⊆ Rni , i = 1, 2, to denote the set of initial
conditions for the two dynamical systems.

In our case, the ion channel models MNa and MK are dynamical systems
with 13 and 10-dimensional state vectors, p ∈ R13

≥0 and q ∈ R10
≥0, respectively. The

dynamics of p and q, corresponding to f(., .) in Eq. (3.2), are given by Eqs. (2.6) and
(2.9) respectively. Both models receive voltage, a 1-dimensional input and produce
conductance, a 1-dimensional output. The output functions are gNa(p) = O1 + O2

and gNa(q) = O as per Definitions 2.1.2 and 2.1.3. Table 4 of [47] provides the
initial conditions for the two models. Both models have a single initial condition.

The HH-type abstractions,HNa andHK , on the other hand have 2-dimensional
state vectors, [mNa, hNa]

T and [mK , hK ]T respectively. The dynamics are as per
Definition 2.1.1. The rate functions defining the two models were identified in the
RFI step and are given in Section 3.1. Voltage, the input, and conductance, the
output, are both 1-dimensional. The output function, as per Definition 2.1.1 is
mλ
i hi, i ∈ {Na,K}, where λ = 3 for HNa and λ = 4 for HK . In Section 3.1, PEFT

identified the singleton initial conditions for them.
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Definition 3.3.1. The two dynamical systems defined in Eq. (3.2) are said to be
approximately bisimilar with precision δ, denoted by ∆1

∼=δ ∆2, if there exists a
relation Bδ ⊆ Rn1 × Rn2 such that:

1. For every x1 ∈ X0
1, there exists x2 ∈ X0

2 such that (x1,x2) ∈ Bδ.

2. For every (x1,x2) ∈ Bδ, d(y1,y2) ≤ δ, where y1 and y2 are the corresponding
outputs and d is a metric distance defined on Rp.

3. For every (x1,x2) ∈ Bδ, for all T > 0,

(a) If on the input signal u(t), ∆1 produces the trajectory x1(t), where x1(0) =
x1, then ∆2 evolves as per the trajectory x2(t), where x2(0) = x2, such
that (x1(t),x2(t)) ∈ Bδ for all t ∈ [0, T ].

(b) If on the input signal u(t), ∆2 produces the trajectory x2(t), where x2(0) =
x2, then ∆1 evolves as per the trajectory x1(t), where x1(0) = x1, such
that (x1(t),x2(t)) ∈ Bδ for all t ∈ [0, T ].

It should be noted that Definition 3.3.1 also applies when ∆1 and ∆2 are
autonomous systems, i.e. they do not evolve according to an explicit input signal.
In that case, the input signal can be considered as time. Bδ, which is used to
denote the approximate bisimulation relation, contains corresponding states from
trajectories of the two systems. These trajectories must be initialized from states
related by Bδ. The constant voltage versions of the ion channel models, Mv

Na and
Mv

K , and their corresponding HH-type abstractions, Hv
Na and Hv

K , are examples
of autonomous dynamical systems. For all voltage values, the initial conditions of
Mv

Na andMv
K are the same as that ofMNa andMK respectively. Similarly, for all

voltage values, the initial conditions ofHv
Na andHv

K are the same as that ofHNa and
HK respectively. Next, we state a lemma that leads to the approximate bisimilarity
of the constant-voltage abstractions, Hv

Na and Hv
K , and their corresponding detailed

models Mv
Na and Mv

K .

Lemma 1. Consider the voltage values v ∈ [Vres, Vmax] that were used to simulate
and fit the trajectories of, Mv

Na and Mv
K in PEFT. The corresponding HH-type

abstractions Hv
Na and Hv

K are approximately bisimilar to the detailed models, i.e.
Mv

Na
∼=δvNa

Hv
Na and Mv

K
∼=δvK

Hv
K. The errors δvNa and δvK are the maximum

errors incurred by the PEFT procedure while fitting the trajectories of Mv
Na and

Mv
K respectively.

Proof. Theorem 3 in Appendix A proves that for all the voltage values v ∈ [Vres, Vmax],
the corresponding Mv

Na and Mv
K have stable equilibria. The fitting performed by
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PEFT ensures that the corresponding HH-type abstractions Hv
Na and Hv

K also reach
their steady state.

Let δvNa and δvK be the maximum error incurred by cftool while fitting the tra-
jectories ofMv

Na andMv
K , respectively. The approximate bisimulation relation BδvNa

relates the corresponding states on the unique trajectories of the two systems. Two
states on the two trajectories are related if they are reached from their respectively
initial conditions in the same time.

We are guaranteed that the errors in the observations will not deviate more
than δvNa and δvK as the respective pairs of systems reach their steady state, thus
ensuring Mv

Na
∼=δvNa

Hv
Na and Mv

K
∼=δvK
Hv
K .

Theorem 2. Let V be the set of input signals, denoted by V (t), such that V (0) =
Vres and the signals reach the resting potential, Vres, infinitely often. If the type of
input signals are restricted to V, then MNa

∼=δNa
HNa and MK

∼=δK HK, where
δNa = 6× 10−3 and δK = 0.15.

Proof. Consider the input signal V (t) ∈ V . As this input signal is provided toMNa

and HNa, we will compare the resulting trajectories p(t) and [mNa(t), hNa(t)]
T . A

similar treatment will be given to the trajectories, q(t) and [mK(t), hK(t)]T , ofMK

and HK respectively.

Consider the time interval [t, t+ δt]. In the limit δt→ 0, we can consider the
input V (t) = v for t ∈ [t, t + δt]. The evolution of MNa and HNa in the interval
[t, t + δt] can be approximated by the evolution of the constant voltage dynamical
systems Mv

Na and Hv
Na respectively.

For every voltage value v that the input signal V (t) can take over the interval
[t, t + δt], there will be a value v∗ ∈ [Vres, Vmax], which is closest to it among the
voltage values used to simulate Mv∗

Na during PEFT. Thus, the divergence between
the trajectories of Mv

Na and Hv
Na in the interval [t, t+ δt] can be broken down into

three components:

• Divergence between Mv
Na and Mv∗

Na

• Divergence between Mv∗
Na and Hv∗

Na

• Divergence between Hv∗
Na and Hv

Na

As per Lemma 1, Mv∗
Na
∼=δv

∗
Na
Hv∗
Na. This ensures that the divergence between Mv∗

Na

and Hv∗
Na is bounded by δv

∗
Na.

The divergence between [mv∗
Na(t), h

v∗
Na(t)]

T , the trajectory of Hv∗
Na, and

[mv
Na(t), h

v
Na(t)]

T , the trajectory of Hv
Na, can be bound using sensitivity analysis.

We bound the sensitivity of the solutions mNa(t) and hNa(t) to a change in voltage
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from v to v∗. The sensitivity is bounded by taking the partial derivative of the
solution in Eq. (2.4) with respect to the voltage V . Using chain rule we have,

∂m

∂V
=

∂m

∂m∞
.
∂m∞
∂V

+
∂m

∂τm
.
∂τm
∂V

∂h

∂V
=

∂h

∂h∞
.
∂h∞
∂V

+
∂h

∂τh
.
∂τh
∂V

The maximum change in voltage, i.e. the difference between v∗ and v, is given by
the granularity of voltage values that were used in PEFT. When 20000 uniformly
spaced values are taken in [Vres, Vmax], max(|v−v∗|) ≈ 0.007. ForHNa,

∂m∞
∂V
≤ 0.001,

∂taum
∂V

≤ 0.0015, ∂h∞
∂V
≈ 0.0001 and ∂tauh

∂V
≤ 0.0014. For HK , ∂m∞

∂V
≤ 4.84 × 10−5,

∂taum
∂V
≤ 6.73× 10−5, ∂h∞

∂V
≈ 2.79× 10−9 and ∂tauh

∂V
≤ 2.3× 10−6.

Performing a similar analysis for bounding the divergence between Mv
Na and

Mv∗
Na is slightly more complicated. The solutions of the two 13×13 systems depends

the matrix exponentials eA(v) and eA(v
∗), where A is the rate matrix defined in Defi-

nition 2.1.2. The matrix exponentials are determined by the spectrum (eigenvalues)
of A. Thus the sensitivity of the solutions of Mv

Na and Mv∗
Na can be bound by

bounding the change in the spectrum of A due to a change in voltage from v to v∗.
Bauer-Fike theorem [6] can be used to bound the perturbation in the spectrum. The
maximum change in the eigenvalue is bound by a factor of max(|v − v∗|) ≈ 0.007.

Combining the three components of errors, we get δNa = 6× 10−3. Note that
this is a conservative bound and is much more than the the empirical evidence shown
in Section 4. A similar analysis can be performed to bound the divergence of MK

and HK , to get δK = 0.15.
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Chapter 4

Bisimulation Function

Incremental Input-to-State Stability (ISS) of a pair of dynamical systems refers to the
property that bounded differences in their input signals lead to bounded differences
in their resulting state trajectories. Incremental Input-to-Output Stability (IOS)
generalizes incremental Input-to-State Stability (ISS) to systems with output maps.
Since the seminal work of Sontag [82, 83, 84], the K, KL, and K∞ classes of Kamke
functions have been used to characterize ISS of dynamical systems as extensions of
Lyapunov stability; see [57]. These Lyapunov-like functions have been used in the
small-gain theorems of [94] to establish stability of feedback-based interconnected
systems, thereby enabling compositional design of nonlinear control systems.

Similar to Kamke and Lyapunov functions, Bisimulation Functions (BFs) have
played a transformative role in extending the control-theoretic notions of Lyapunov
Stability and ISS to system verification. BFs [31, 33, 35, 29, 49] are Lyapunov-like
functions that decay along the trajectories of a given pair of dynamical systems.
Level sets of BFs yield approximate bisimulation relations that generalize the clas-
sical notion of bisimulation equivalence of finite-state systems [68] to real-valued
continuous-time dynamical systems. BFs also allow one to show that a system is
robust to bounded deviations in the input signals.

BFs can also be used to reason compositionally about dynamical systems.
Consider a dynamical system D with a subsystem S connected to the rest of D
through a feedback loop. Moreover, suppose we have an approximately equivalent
version S ′ of S that uses fewer state variables than S. That is, S ′ is an abstraction
or model-order reduction of S, and by substituting S ′ for S in D one would hope to
obtain the corresponding model-order reduction in D. Care must be taken in this
situation, however, as the approximation error between S and S ′ may get amplified
by the feedback context in which S resides.

As shown in [29, 63], one can appeal to a small-gain theorem to compute BFs
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that bound the error that is introduced when substituting S ′ for S within D. BFs
can also be used in other system design and verification settings, including controller
design [36, 67], reachability analysis [61], and simulation-based verification [43, 14].

The following definition of BFs is adapted from [29], where ‖ . ‖ is used as
L2-norm.

Definition 4.0.1. Let Σi = (Xi,X 0
i ,U , fi,Y , gi), i = 1, 2, be two dynamical systems

such that Xi ⊆ Rni, U ⊆ Rm and Y ⊆ Rp.

A bisimulation function (BF) is a smooth function S : Rn1 ×Rn2 → R≥0 such
that for every x1 ∈ X1, x2 ∈ X2, u1,u2 ∈ U :

‖ g1(x1)− g2(x2) ‖≤ S(x1,x2), (4.1)

∃λ > 0, γ ≥ 0 :
∂S

∂x1

f1(x1,u1) +
∂S

∂x2

f2(x2,u2) (4.2)

≤ −λS(x1,x2) + γ ‖ u1 − u2 ‖

4.1 IOS Theorem of BFs

The Theorem 1 presented in [29] is modified to incorporate the adapted definition
of BFs and presented below.

Theorem 4.1.1. Let S be a BF with parameters λ and γ between dynamical systems
Σi, i = 1, 2, and let x1(t) and x2(t) be two trajectories of the systems. For all t ≥ 0,

‖ g1(x1(t))− g2(x2(t)) ‖ ≤ S(x1(t),x2(t))

≤ e−λtS(x1(0),x2(0))+
γ

λ
‖ u1 − u2 ‖∞

where ‖ u1 − u2 ‖∞= supt≥0 ‖ u1(t) − u2(t) ‖ denotes the maximum difference in
the input signals being fed to the two systems.

Proof. From Eq. (4.1), we have the first inequality. From Eq. (4.2), we have

dS(x1(t),x2(t))

dt
≤ −λS(x1(t),x2(t)) + γ ‖ u1(t)− u2(t) ‖

≤ −λS(x1(t),x2(t)) + γ ‖ u1 − u2 ‖∞

Let η(t) = e−λtS(x1(0),x2(0)) + λ
γ
‖ u1 − u2 ‖∞. It is a solution of the differential

equation η̇(t) = −λη(t) + γ ‖ u1 − u2 ‖∞. Moreover, S(x1(0),x2(0)) ≤ η(0); then
from the funnel theorem, it follows that ∀t ≥ 0, S(x1(t),x2(t)) ≤ η(t).
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It follows from Theorem 4.1.1 that the existence of a BF between two dynam-
ical systems is a proof of the following IOS property: when approximately equal
signals are fed as inputs to the two systems, they produce approximately equal out-
puts. When applied to one system, a BF demonstrates the robustness of the system
to small variations in the input signal. The Lyapunov-like functions-based approach
is an extension of input-to-state stability of [84].

4.2 Compositionality Theorem of BFs

When subsystems are connected using feedback, their respective BFs can be com-
posed subject to a small-gain condition. We formalize this idea by stating a result
based on Theorem 2 of [29].

Theorem 4.2.1. Let Σi = (Xi,X 0
i ,Ui, fi,Oi, gi), i = 1, 2, A,B, be dynamical sys-

tems such that U1 = OA, UA = O1, U2 = OB and UB = O2. Let S12, parameterized
by λ12 and γ12, be a BF between Σ1 and Σ2. Let SAB, parameterized by λAB and
γAB, be a BF between ΣA and ΣB.

Let ΣA1 = ΣA||Σ1 and ΣB2 = ΣB||Σ2. If the small-gain condition (SGC)
γABγ12
λABλ12

< 1 is met, then a BF S can be constructed between ΣA1 and ΣB2 by com-
posing SAB and S12 as follows:

S(xA1,xB2) = α1SAB(xA,xB) + α2S12(x1,x2) (4.3)

where xA1 = [xA,x1]
T and xB2 = [xB,x2]

T and the constants α1 and α2 are given by:
γ12
λAB

< α1 <
λ12
γAB

and α2 = 1 if λAB ≤ γ12

α1 = 1 and γAB

λ12
< α2 <

λAB

γ12
if λ12 ≤ γAB

α1 = 1 and α2 = 1 in other cases

(4.4)

Proof. Consider S be a function of the form (5.4.1). We will find conditions on α1

and α2 such that S is a BF between ΣA1 and ΣB2. If α1 ≥ 1 and α2 ≥ 1, then

S(xA1,xB2) ≥ SAB(xA,xB) + S12(x1,x2)

≥‖ gA(xA)− gB(xB) ‖ + ‖ g1(x1)− g2(x2) ‖

because SAB and S12 satisfy Eq. (4.1). The observational difference of ΣA1 and ΣB2:

‖ gA1(xA1)− gB2(xB2) ‖ =√
‖ gA(xA)− gB(xB) ‖2 + ‖ g1(x1)− g2(x2) ‖2

≤‖ gA(xA)− gB(xB) ‖ + ‖ g1(x1)− g2(x2) ‖
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Therefore, it shows that S satisfies Eq. (4.1). Applying similar steps as in [29], we
can write the following:

∂S

∂xA1
fA1(xA1,uA1) +

∂S

∂xB2

fB2(xB2,uB2)

≤ −(α1λAB − α2γ12)SAB(xA,xB)− (α2λ12 − α1γAB)S12(x1,x2)

If (α1λAB − α2γ12) > 0 and (α2λ12 − α1γAB) > 0 and λ = min( (α1λAB−α2γ12)
α1

,
(α2λ12−α1γAB)

α2
), then

∂S

∂xA1
fA1(xA1,uA1) +

∂S

∂xB2

fB2(xB2,uB2) ≤ −λS(xA1,xB2).

Therefore, S will be a BF if α1 ≥ 1, α2 ≥ 1, (α1λAB − α2γ12) > 0 and (α2λ12 −
α1γAB) > 0. As shown in [29], these four conditions can be expressed as λABλ12

γABγ12
<

1.
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Chapter 5

BFComp Framework

In this chapter, we present BFComp: an automated framework for computing
BFs that characterize IOS of dynamical systems. BFComp, which is illustrated
in Fig. 5.1, leverages acSOS optimization and δ-decidability over the reals [28], a
new form of Satisfiability Modulo Theory (SMT), to compute BFs. In addition to
establishing IOS, BFComp is designed to provide tight bounds on the squared
output errors between systems whenever possible.

An overview of BFComp is as follows. Given a pair of dynamical systems
Σ1 and Σ2, an Sum Of Square Programming (SOSP) called SOSP 2 is formulated
and solved using MATLAB SOSTOOLS [76]. SOSP 2 requires the decay parameter
λ, the gain parameter γ, and so-called descriptor functions that characterize the
bounded state and input spaces. If the resulting BF provides satisfactory bounds
on the output error, then the BF computation terminates.

Otherwise, an alternative SOSP formulation, SOSP 1, is called upon. SOSP 1,
which we recently proposed in [63], uses λ and γ to compute a Candidate BF (CBF)
that satisfies the decay condition of [29] only across a discretized grid over the
bounded input space. BFComp then appeals to the δ-decidability-based dReal [28]
to verify that the decay requirement, which is encoded by the SMT formula ψ, is
exhaustively satisfied over the exterior of the CBF’s l-level set.

Level sets are used here because dReal relies fundamentally on the technique
of δ-relaxation, which may lead to spurious counterexamples. Taking the level set of
the CBF filters out the origin and a finite-sized neighborhood around it, which gives
rise to the spurious counterexamples. Starting from a relatively small (aggressive)
value, which retains most of the state space in the domain of ψ, the parameter l is
(iteratively) tuned to filter ψ’s domain to avoid such counterexamples. A positive
result by dReal implies that the CBF is actually a valid BF everywhere outside the
l-level set. If a (genuine) counterexample c = (x1,x2, u1, u2) to ψ is found, then c
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Figure 5.1: BFComp: An Automated Framework for Computing BFs using SOS Opti-
mization and δ-Decidability.

is used to refine the input-space grid.

To illustrate the utility of BFComp, we apply it to the model-order reduc-
tion of a canonical cardiac-cell model [63]. In particular, we use our framework to
compute BFs that appeal to the small-gain theorem of [29] to establish that the four-
variable Markovian potassium-channel component of the cell model can be safely
replaced by an approximately equivalent one-variable abstraction. The canonical
model captures the feedback-based interconnection of the four-variable model within
the detailed 67-variable Iyer-Ma-zhari-Winslow (IMW) ventricular cell model [47].
To the best of our knowledge, this is the first compositional proof of a feedback-based
approximate model-order reduction of a biological system.
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5.1 Background

In this section, we present physiological background by introducing the four-variable
Markovian subsystem for the IKs current of the IMW model.

We define dynamical systems using a 6-tuple (X ,X 0,U , f,O, g), where X is
the state space, X 0 ⊆ X is the set of initial conditions, U is the input space, f :
X × U → X is the vector field defining the dynamics, O is the set of outputs, and
g : X → O maps a state to its output.

Next, we introduce the detailed Markovian potassium-channel model, which is
employed as a component in the Iyer-Mazhari-Winslow (IMW) ventricular myocyte
model [47].

5.1.1 The Potassium-Channel Subsystem

Figure 5.2: ΣK : the detailed potassium-channel model, corresponding to the ionic
current IKs in the IMW model.

Definition 5.1.1. The potassium channel model ΣK is given by (X,X0,V , fK ,O, gK).
A state x ∈ X ⊆ R4

≥0 is the occupancy probability distribution over the four states
of the voltage-controlled Continuous Time Markov Chain (CTMC) shown in Fig. 5.2
in the following order of the state labels: [C0, C1, O1, O2]. The dynamics fK is given
by

fK : ẋ = AK(V ) x, (5.1)

where V ∈ V ⊆ R, the transmembrane voltage, is the input to the system
and AK(V ) is the 4 × 4 voltage-controlled rate matrix. The off-diagonal entry
AK(i, j), i 6= j, is the transition rate from state xj to state xi. For example,
AK(3, 4) = ω(V ), the transition rate from O2 to O1. The diagonal entry AK(i, i) is
the negative of the sum of all the outgoing rates from state xi. The transition rates
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are

α = 7.956× 10−3,

β(V ) = 0.216× exp(−0.00002 V ),

γ = 3.97× 10−2,

δ(V ) = (7× 10−3)× exp(−0.15 V ),

ε(V ) = (7.67× 10−3)× exp(0.087 V ), and

ω(V ) = (3.8× 10−3)× exp(−0.014 V ).

The set of outputs O ⊆ R≥0 contains the conductance values for the states. Given
a state x, gK(x) , x3 + x4 maps it to its conductance given by the sum of the
occupancy probabilities of the states labeled O1 and O2. The system has a single
initial condition x0 = [0.9646, 0.03543, 2.294 × 10−7, 4.68 × 10−11] ∈ X0, as per
Table 4 of [47].

Next, we define a one-variable abstraction for ΣK .

5.1.2 Model-Order Reduction of ΣK

The curve fitting-based approach of [70, 45] can be used to identify the following
one-variable Hodgkin Huxley (HH)-type approximation for ΣK .

Definition 5.1.2. The HH-type abstraction ΣH is given by (Y, Y 0,V , fH ,O, gH).
A state y ∈ Y ⊆ R≥0 denotes the value of an activating (m-type) subunit. The
dynamics fH is given by

fH : ẏ = αm(V )(1− y)− βm(V )y, (5.2)

where V ∈ V ⊆ R, the transmembrane voltage, is the input to the system. The
rate functions αm(V ) and βm(V ), identified using the two-step curve fitting-based
approach of [70, 45], are as follows.

αm(V ) = (−1.331× 10−10)V 4 − (2.466× 10−7)V 3

− (9.723× 10−6)V 2 − 0.0001231V + 0.001049 (5.3)

βm(V ) = (4.788× 10−10)V 6 − (1.547× 10−8)V 5

+ (1.642× 10−7)V 4 − (2.85× 10−6)V 3

+ (6.704× 10−5)V 2 − (0.0007041)V + 0.003285. (5.4)

The set of outputs O ⊆ R≥0 contains the conductance values for the states. Given
a state y, gH(y) , y maps it to its conductance. The system has a single initial
condition y0 = 1.32× 10−5.
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5.2 Canonical Cell Models and Compositional Rea-

soning

In this section, we setup our case study on approximate model-order reduction within
feedback loops. We first introduce the voltage subsystem ΣC representing the cell
membrane, which we compose with ΣK and ΣH to obtain two Canonical Cell Models
(CCMs). We then state our compositionality result in terms of the two CCMs, and
show how BFs can be used to prove the result.

Definition 5.2.1. The voltage subsystem ΣC is a capacitor-like model given by
(V ,V0,O,
fC ,V , gC). State V ∈ V ⊆ R is the voltage. The dynamics of ΣC is given by

fC : V̇ = −GK(V − EK) O, (5.5)

where GK = 90.58 and EK = −35 mV are the parameters of the model, and O ∈
O ⊆ R≥0, the conductance of the potassium channel, is ΣC’s input. The system
outputs its state, i.e., for V ∈ V, gC(V ) = V , and the initial condition is V0 = 0 mV .

As per Eq. (5.5), VK represents the equilibrium for a fixed-conductance input.
Thus, V takes values in [−35, 0].

In the case of detailed cardiac cell models, such as the IMW model, ion-channel
subsystems such as ΣK and ΣH take voltage as input from the rest of the model
and provide the conductance of the channel as the output. The rest of the model
takes the channel conductance as input and outputs the voltage, which is then fed
back to the ion-channel subsystems. Next, we define CCMs ΣCK and ΣCH that
reflect this feedback-based composition; see Fig. 5.3. The models are canonical in
the sense that other ion-channel subsystems can be added to obtain the complete
IMW model.

Definition 5.2.2. Systems ΣCK and ΣCH (see Fig. 5.3) are obtained by performing
feedback-composition on the voltage subsystem ΣC with ion-channel subsystems ΣK

and ΣH , respectively; i.e., ΣCK = ΣC ||ΣK and ΣCH = ΣC ||ΣH . The state spaces,
initial conditions, dynamics and outputs are inherited from the subsystems, as ex-
plained below. Both ΣCK and ΣCH are autonomous systems and do not receive any
external inputs.

A state of ΣCK is given by [x, VK ]T , where x is a state of ΣK and VK is a
state of ΣC. The subscript K in VK is used to denote the copy of ΣC composed with
ΣK. The system dynamics are given by Eqs. (5.1) and (5.5). The output is given
by [gK(x), VK ]T . The initial condition is the pair of the initial conditions of ΣK and
ΣC.
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Figure 5.3: ΣCK and ΣCH : ion-channel subsystems ΣK and ΣH are feedback-composed
with ΣC , which represents the cell membrane. ΣCH is obtained by i) identifying the one-
variable abstraction ΣH of ΣK using the curve-fitting procedure given in [70, 45]; and
ii) substituting ΣH for the detailed model ΣK within ΣCK .

A state of ΣCH is given by [y, VH ]T , where y denotes a state of ΣH and VH
denotes a state of ΣC. The subscript H in VH is used to denote the copy of ΣC com-
posed with ΣH . The system dynamics are given by Eqs. (5.2) and (5.5). The output
is given by [gH(y), VH ]T . The initial condition is the pair of the initial conditions of
ΣH and ΣC.

When ΣK in ΣCK is replaced by ΣH to obtain ΣCH , the behaviors of the
composite CCMs might diverge. This is due to the feedback composition that tends
to amplify deviations in the outputs of either of the subsystems. Fig. 5.4 shows a
pair of trajectories of ΣCK and ΣCH that start from nominal initial conditions.

The goal of the paper is to compute BFs that prove that the composite CCMs
are indeed approximately equivalent, i.e., the following statement holds.

Compositionality Result : There exists a BF S between ΣCK and ΣCH that
renders the two CCMs to be approximately equivalent as characterized by Theorem
4.1.1.

S is computed compositionally as follows. First, the components ΣK and ΣH

are proved to be approximately equivalent by computing a BF SKH between the
two systems. Then, the context ΣC is proved to be robust to input deviations by
computing a BF SC for it. The computation procedure ensures that the prerequisite
small-gain condition is satisfied by SKH and SC , thereby enabling the application
of Theorem 4.2.1; this results in a BF S between ΣCK and ΣCH . Next, we describe
BFComp and apply it for computing SKH and SC in the following sections.
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Figure 5.4: Simulations of ΣCK and ΣCH : when ΣK is replaced by ΣH , feedback compo-
sition tends to accumulate error incurred due to the abstract component. The mean L1
errors: OKs : 1.1786× 10−4, V : 0.2002 mV .

5.3 Computing BFs using SOS Optimization

In this section, we will present both SOSP 1 and SOSP 2 formulation to compute
BFs.

5.3.1 Computing CBFs using SOSP 1

In [63, 1], we presented SOSP 1, a computation procedure based on SOS optimization
for computing CBFs. In this subsection, we review the algorithm and comment on
its input-space sampling approach.

A multivariate polynomial p(x1, x2, . . . , xn) = p(x) is an SOS polynomial if
there exist polynomials f1(x), . . . , fm(x) such that p(x) =

∑m
i=1 f

2
i (x). For example,

p(x, y) = x2 − 6xy + 12y2 is an SOS polynomial; it can be expressed as (x− 3y)2 +
(
√

3y)2. We denote the set of all SOS polynomials by S.

An SOS optimization Problem (SOSP), involves finding an S ∈ S such that
a linear objective function, whose decision variables are the coefficients of S, is
optimized. The constraints of the problem are linear in the decision variables. A
formal definition of an SOSP can be found in the SOSTOOLS user guide (p. 7).

Consider two dynamical systems (Xi, {x0
i }, [umin, umax], fi, O, gi), i = 1, 2, with

u1 and u2 being the scalar inputs of the two systems. Let UG represent a discretized
grid for u1 and u2. The grid is formed by dividing the input space [umin, umax] into
a finite number of uniformly spaced intervals, and (ui1, u

j
2) denotes the pair of inputs

where u1 takes the ith value and u2 takes the jth value. In [63, 1], we presented the
following SOSP for computing BFs using SOS optimization.
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Definition 5.3.1. SOSP 1, as per [63, 1], is defined by the following equations.

Minimize S(x0
1,x

0
2) (5.6)

subject to:

− S(x1,x2) + [g1(x1)− g2(x2)]
2 ∈ S, (5.7)

∃λ > 0, γ ≥ 0 such that ∀x1,x2, u
i
1 ∈ UG, u

j
2 ∈ UG : (5.8)

− ∂S

∂x1

f1(x1, u
i
1)−

∂S

∂x2

f2(x2, u
j
2)− λS(x1,x2) +

γ(ui1 − u
j
2)

2 ∈ S. (5.9)

The CBF S starts at its maximum value at the pair of initial conditions
(x0

1,x
0
2), and then decays along various trajectories of the two systems. Thus, along

any pair of trajectories, the gap between S(x1(t),x2(t)) and the Squared Output
Difference (SOD) [g1(x1(t)) − g2(x2(t))]

2 is maximum at t = 0, i.e. at the initial
states. To improve the bound on the SOD given by S, we minimized S(x1(0),x2(0))
as the objective function of the SOSP.

Eq. (5.8) enforces the decay condition for a BF, given by Eq. (4.2), only on
the samples (ui1, u

j
2) that comprise the grid U . The validity of Eq. (4.2) on the

entire input space can be verified using delta-decidability, as shown in Sec. 5.4. In
Sec. 5.5.1, we present an alternative SOSP that enforces Eq. (4.2) on the entire input
space.

5.3.2 Computing BFs using SOSP 2

In this section, we describe SOSP 2, an SOSP formulation that can be used to
compute BFs. SOSP 2, in contrast to SOSP 1, which was reviewed in Section 5.3.1,
exhaustively covers the input-space. First, we present the problem formulation and
then we show that the solutions are indeed BFs.

We assume that the input spaces are described using sets, such as U =
{u ∈ R : ρ(u) ≥ 0}, where ρ(u) is called a descriptor function. For exam-
ple, ρ(u) = (u − umin)(umax − u) describes the input-space U = [umin, umax].
We denote the components of the state vectors as x1 = [x11, x12, . . . , x1n1 ] and
x2 = [x21, x22, . . . , x2n2 ]. Each of these components take values in a closed inter-
val, i.e. x11 ∈ [x11, x11], . . . , x1n1

∈ [x1n1 , x1n1 ] and x21 ∈ [x21, x21], . . . , x2n2 ∈ [x2n2 , x2n2 ]. We introduce vectors of
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polynomials τ1 and τ2 as descriptor functions of the state vectors:

τi(xi) =


(xi1 − xi1)(xi1 − xi1)

...

(xini
− xini

)(xini
− xini

)

 , i = 1, 2. (5.10)

Definition 5.3.2. Consider two dynamical systems Σi = (Xi, {x0
i }, [umin, umax], fi,O, gi),

i = 1, 2. SOSP 2 is given by the following equations.

Minimize S(x0
1,x

0
2) (5.11)

subject to:

S(x1,x2)− [g1(x1)− g2(x2)]
2 ∈ S, (5.12)

∀ui ∈ [umin, umax], xij ∈ [xij, xij], i = 1, 2, j = 1, . . . , ni,

∃λ > 0, γ ≥ 0, σ1(x1, u1) ∈ S, σ2(x2, u2) ∈ S, and vectors of

SOS polynomials σ3(x1, u1) and σ4(x2, u2) such that :

− ∂S

∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− λS(x1,x2) +

γ(u1 − u2)2 − σ1(x1, u1)ρ(u1)− σ2(x2, u2)ρ(u2) −
σ3(x1, u1)τ1(x1)− σ4(x2, u2)τ2(x2) ∈ S. (5.13)

Next, we show that the feasible solutions of SOSP 2 are indeed BFs for the
systems.

Theorem 5.3.3. Consider a feasible solution, (S, σ1, σ2, σ3, σ4, λ, γ), of the SOSP
2. S satisfies Eqs. (4.1) and (4.2), and thus is a BF between Σ1 and Σ2.

Proof. S, from a feasible solution (S, σ1, σ2, σ3, σ4, λ, γ), satisfies Eq. (5.12):

∀x1,x2 : S(x1,x2)− [g1(x1)− g2(x2)]
2 ∈ S.

As an SOS polynomial is always non-negative, we get

S(x1,x2)− [g1(x1)− g2(x2)]
2 ≥ 0,

which implies [g1(x1)− g2(x2)]
2 ≤ S(x1,x2), S satisfies Eq. (4.1).

A feasible solution satisfies Eq. (5.13):

− ∂S

∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− λS(x1,x2) + γ(u1 − u2)2 − σ1(x1, u1)ρ(u1)

− σ2(x2, u2)ρ(u2)− σ3(x1, u1)τ1(x1)− σ4(x2, u2)τ2(x2) ∈ S.
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Non-negativity of SOS polynomials leads to

− ∂S

∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− σ1(x1, u1)ρ(u1)− σ2(x2, u2)ρ(u2)

− σ3(x1, u1)τ1(x1)− σ4(x2, u2)τ2(x2) ≥ λS(x1,x2)− γ(u1 − u2)2.

Multiplying both sides by -1 and then reversing the inequality, we get

∂S

∂x1

f1(x1, u1) +
∂S

∂x2

f2(x2, u2) + σ1(x1, u1)ρ(u1) + σ2(x2, u2)ρ(u2)

+ σ3(x1, u1)τ1(x1) + σ4(x2, u2)τ2(x2) ≤ −λS(x1,x2) + γ(u1 − u2)2.

As σ1(x1, u1)ρ(u1) + σ2(x2, u2)ρ(u2) + σ3(x1, u1)τ1(x1) + σ4(x2, u2)τ2(x2) is always
non-negative, we can eliminate the sum and still retain the inequality to get

∂S

∂x1

f1(x1, u1) +
∂S

∂x2

f2(x2, u2) ≤ −λS(x1,x2) + γ(u1 − u2)2.

5.4 Validating SOSP 1 CBFs using δ-Decidability

Consider two dynamical systems (Xi, {x0
i }, [umin, umax], fi, O, gi), i = 1, 2. Let S,

parameterized by λ and γ, be a CBF, which can be obtained by solving SOSP 1,
see Def. 5.3.1. A valid solution of SOSP 1 satisfies Eq. (4.2) over the input grid UG
that is used in SOSP 1. The focus of this section is to validate if S satisfies Eq. (4.2)
over all the inputs, and thus is a BF for the two systems. For this purpose, we use
dReal [28], which implements δ-decidability, to validate S. Consider the function ψ:

ψ(x1,x2, u1, u2) ,−
∂S

∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− λS(x1,x2) + γ(u1 − u2)2.

If S satisfies Eq. (4.2) over the entire state and input space, then the following SMT
formula must be unsatisfiable:

∃x1,x2, u1, u2 : ψ(x1,x2, u1, u2) < 0. (5.14)

Delta-decidability, which involves relaxing ψ by a parameter δ > 0, can be used to
check if Eq. (5.14) is indeed unsatisfiable. The open-source tool dReal implements
δ-decision procedures and can be used for our problem. A decision procedure is said
to be δ-complete if for any SMT formula, it returns either unsat, if the formula is
unsatisfiable, or returns δ-sat, if the formula’s δ-relaxation is satisfiable, see [28, 25,
26] for a formal definition.
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Figure 5.5: Validating SOSP 1-based CBFs using dReal.

When Eq. (5.14) is presented to dReal, with a pre-determined δ, three pos-
sibilities, which are illustrated in Fig. 5.5, arise. We discuss each of them next.

Case A, dReal returns unsat : Eq. (5.14) is unsatisfiable, and therefore S is
a valid BF. Delta-relaxation ensures a stronger result, we may claim that ψ ≥ ε,
where ε is a function of δ and other internal parameters of dReal.

Case B, dReal returns δ-sat, with a counterexample, where ψ < 0. The tuple
of states and inputs that is returned as the counterexample contains an input pair,
where S fails to satisfy Eq. (4.2). The input pair is then used to refine UG and SOSP
1 is repeated; Eq. (5.8), which represents a family of inequalities, is instantiated over
UG, as well as the input pair from the counterexample.

Case C, dReal returns δ-sat, with a counterexample, where ψ ≥ 0. This pos-
sibility arises due to the delta-relaxation. The formula ψ evaluates to a very small
value in the range [0, ε]. The counterexample is spurious and does not provide any
information about S. Thus, we present a workaround to avoid this case.

To avoid Case C, we filter the domain of the state variables x1 and x2 in
Eq. (5.14) to eliminate the pairs of states that contribute to the spurious counterex-
amples. Specifically, we validate the CBF S only on, and outside its l-level set.
Eq. (5.14) is modified as

∃x1,x2, u1, u2 : (S(x1,x2) ≥ l) ∧ (ψ(x1,x2, u1, u2) < 0). (5.15)

The intuition behind level-set-based filtering of the domain is as follows. The func-
tion ψ goes to 0 when the states and the inputs go to 0. Also, ψ bounds the derivative
of S with respect to time. The time-derivative of S takes very low values near the
origin of the state-space, as the the origin is an equilibrium for our systems. Fig. 5.8
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illustrates this property. When the inputs to the subsystem are held constant, the
derivative of a BF becomes very low as the trajectories decay to the origin, which is a
stable equilibrium. Thus, the derivative of S with respect to time, and consequently
ψ, will have relatively larger values outside the l-level set of S.

The parameter l may be tuned till we avoid Case C completely and cover as
many states as possible. Starting from an aggressive small value of l ≥ 0, it may be
incremented in small steps till Case C is completely avoided.

Our level-set-based approach can be justified as follows. We define the exterior
of the l-level set of S as: S≥l , {(x1,x2)|S(x1,x2) ≥ 0}. Validating Eq. (5.14) over
S≥l ensures that Eq. (4.1) and Eq. (4.2) are satisfied for all states within S≥l. In
a practical setting, where we want to establish IOS between two systems, the sets
of initial conditions become important. Given the decaying nature of a BF, the
maximum value of the BF over a given pairing of the initial states is the best bound
on the SOD that the BF can provide. Approximate bisimilarity of two systems can
be established by minimizing the maximum value of the BF over all pairings of the
initial states. For a given CBF, if this value is greater than the level set l, at which
the CBF is validated, then the CBF can be used to be provide practical bounds on
the SOD.

CBFs validated using the level-set-based approach also enable compositionality
arguments, albeit in a weaker setting. To this end, we state the following proposition.

Proposition 5.4.1. Let Σi = (Xi,X 0
i ,Ui, fi,Oi, gi), i = 1, 2, A,B, be dynamical sys-

tems such that U1 = OA, UA = O1, U2 = OB and UB = O2. Let S12, parameterized
by λ12 and γ12, be a BF between Σ1 and Σ2 in S≥l112 . Let SAB, parameterized by λAB
and γAB, be a BF between ΣA and ΣB in S≥l2AB .

Let ΣA1 = ΣA||Σ1 and ΣB2 = ΣB||Σ2. If the small gain condition (SGC)
γABγ12
λABλ12

< 1 is met, then a BF S between ΣA1 and ΣB2, which satisfies Eq. (4.1) and

Eq. (4.2) over S≥l112 × S
≥l1
AB , can be constructed as follows.

S(xA1,xB2) = α1SAB(xA,xB) + α2S12(x1,x2)

where xA1 = [xA,x1]
T and xB2 = [xB,x2]

T and the constants α1 and α2 are as per
Theorem 4.2.1.

Proof. Consider S be the function as per the theorem. We will find conditions on
α1 and α2 such that S is a BF between ΣA1 and ΣB2 in S≥l112 × S

≥l1
AB . If α1 ≥ 1 and

α2 ≥ 1, then

S(xA1,xB2) ≥ SAB(xA,xB) + S12(x1,x2)

≥‖ gA(xA)− gB(xB) ‖ + ‖ g1(x1)− g2(x2) ‖
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because SAB and S12 satisfy first conditon of BF. The observational difference of
ΣA1 and ΣB2:

‖ gA1(xA1)− gB2(xB2) ‖ =√
‖ gA(xA)− gB(xB) ‖2 + ‖ g1(x1)− g2(x2) ‖2

≤‖ gA(xA)− gB(xB) ‖ + ‖ g1(x1)− g2(x2) ‖

Therefore, it shows that S satisfies first condition of BF too. As (x1,x2) ∈ S≥l112 and
(xA,xB) ∈ S≥l2AB , by applying similar steps as in [29], we can write the following:

∂S

∂xA1
fA1(xA1,uA1) +

∂S

∂xB2

fB2(xB2,uB2)

≤ −(α1λAB − α2γ12)SAB(xA,xB)− (α2λ12 − α1γAB)S12(x1,x2)

If (α1λAB − α2γ12) > 0 and (α2λ12 − α1γAB) > 0 and

λ = min( (α1λAB−α2γ12)
α1

, (α2λ12−α1γAB)
α2

), then

∂S

∂xA1
fA1(xA1,uA1) +

∂S

∂xB2

fB2(xB2,uB2) ≤ −λS(xA1,xB2).

Therefore, S will be a BF in the domain S≥l112 × S
≥l2
AB if α1 ≥ 1, α2 ≥ 1, (α1λAB −

α2γ12) > 0 and (α2λ12−α1γAB) > 0. As shown in [29], these four conditions can be
expressed as λABλ12

γABγ12
< 1.

5.5 Results

In this section, we elaborate on computing the BFs SKH , SC , and the composed
BF S between ΣCK and ΣCH using BFComp. The BFs computed using SOSP
1 and SOSP 2 are then visualized along pairs of trajectories obtained by feeding
constant-input signals to the corresponding systems.

5.5.1 Computing SKH and SC using SOSP 2

Automated solvers, such as MATLAB SOSTOOLS [76], which can be used to solve
SOSP 2, have the following restriction: only polynomial vector fields, denoted by
fi(xi, ui), i = 1, 2 in Eq. (5.13), can be specified. In other words, fi must be a
polynomial function of xi and ui.

The potassium-channel subsystem ΣK does not satisfy the above-mentioned
requirement. The dynamics, see Eq. (5.1), is specified by ẋ = AK(V ).x, where x is
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the occupancy-probability vector and AK(V ) is the rate matrix, whose entries are
exponential functions of the input membrane potential V , see Defn. 5.1.1. Thus, the
dynamics of ΣK are not polynomial in the input.

As a workaround, we transformed the rate matrix AK(V ) to an approximately
equivalent matrix ApK(V ) by fitting the entries of A with polynomial functions using
MATLAB cftool [66]. The polynomial approximations of the voltage-dependent rate
functions, denoted by the superscript p are as follows.

βp(V ) = −(4.322× 10−6)V + 0.216,

δp(V ) = (2.125× 10−10)V 6 − (9.322× 10−9)V 5 + (8.964× 10−8)V 4

− (1.716× 10−6)V 3 + (8.87× 10−5)V 2 − 0.001284V + 0.006744,

εp(V ) = (4.435× 10−9)V 4 + (5.191× 10−7)V 3 + (2.539× 10−5)V 2

+ (0.0006507)V + 0.007652, and

ωp(V ) = (3.771× 10−7)V − (5.415× 10−5)V + 0.0038.

See Sec. 5.5.2 for a detailed justification for the polynomial approximations.

Computing SKH and SC using SOSP 2 begins with declaring the form of the
BFs. We chose ellipsoidal forms using the sossosvar function provided by SOS-
TOOLS: SKH(x,y) = [x,y].QKH .[x,y]T and SC(VK , VH) = [VK , VH ].QC .[VK , VH ]T .
Variables x,y, VK , and VH are declared using the pvar polynomial variable toolbox.
The coefficients of the BFs, which form the decision variables of the SOSPs, are
contained in the positive semidefinite matrices QKH (4 × 4) and QC (2 × 2). We
chose ellipsoidal forms, using the sossosvar, for the σ(, ., ) functions that strengthen
the decay requirement in Eq. (5.13) of Defn. 5.3.2. The descriptor functions were
obtained from the definitions ΣK , ΣH and ΣC .

SOSP2 was implemented in MATLAB R2013a, SOSTOOLS 2.04 [76] on an
Intel Core i7-4770K 3.5 GHz CPU with 32 GB of memory. For SKH , SOSTOOLS
terminated in 5.95 seconds with the following flags: feas ratio = 0.3147, pinf =
dinf = 0, numerr = 1. For SC , SOSTOOLS terminated in 5.95 seconds with the
following flags: feas ratio = 1.03, pinf = dinf = numerr = 0.

5.5.2 Justification for Polynomial Approximations of Rate
Functions

Polynomial approximations of the rate functions, which were described in Sec. 5.5.1,
can be justified as follows. We show that the difference in the eigenvalues of AK(V )
and ApK(V ), which controls the difference between the corresponding trajectories
of the two systems, is negligible for V ∈ [−35, 0]. Moreover, the difference can
be bounded after the polynomial curve fitting is completed. The resulting error
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between the trajectories can then be used to relax the bound on SOD provided by
Theorem 4.1.1.

We begin with empirical evidence of the difference between the spectra of
AK(V ) and ApK(V ) being minimal. Fig. 5.6 plots the spectrum of the two matrices
AK(V ) and ApK(V ) as a function of V . Only three eigenvalues are plotted as one of
the four state-variables of ΣK can be eliminated, as they sum to 1, resulting in a
3× 3 rate matrix.
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(a) First and second eigenvalues: mean
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10−3. Mean L1 error is 1.68× 10−5.

Figure 5.6: Spectra of AK(V ) and ApK(V ).

Next, we show that the difference between the eigenvalues can be bounded after
the fitting process. Note that, in general, Weierstrass Approximation theorem [48]
allows us to find polynomial approximations of the continuous exponential functions,
like β(V ), δ(V ), ε(V ), and ω(V ), to any degree of accuracy for V ∈ [−35, 0]. Once
the polynomial approximations have been identified, the Bauer-Fike Theorem (BFT)
[6] can be used to bound the corresponding error in the eigenvalues.

BFT relates the eigenvalues of an n × n diagonalizable matrix A, where A =
QDQ−1, to the matrix A+E, where E is an n× n perturbation. Every eigenvalue
µ of the matrix A+E satisfies the following inequality: |µ−λ| ≤ ||Q||.||Q−1||.||E||,
where λ is some eigenvalue of A and ||.|| denotes the 2-norm.

In our case, the original rate matrix AK is perturbed during the polynomial
approximation to ApK . As mentioned above, this perturbation can be minimized
arbitrarily. BFT can be applied to bound the difference between the eigenvalues
after the exact value of the perturbation is determined after the fitting process.

Fig. 5.7 illustrates the BFT on AK(V ) and ApK(V ). Fig. 5.7(a) plots the three
components that contribute to the upper bound: the norms of the eigenvector matrix
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Figure 5.7: Bounding the difference between the spectra of AK(V ) and ApK(V ) using
BFT. The superscript p is used to denote the eigenvalue of ApK(V ).

and its inverse, and the perturbation matrix, which can be arbitrarily minimized.
Fig. 5.7(b) illustrates the bound obtained by multiplying the aforementioned compo-
nents. Fig. 5.7(c) and Fig. 5.7(d) show the bounds for two partitions of the voltage
range for better clarity. We observe that BFT is not overly conservative and can be
used to obtain reasonable bounds between the original rate matrix AK(V ) and its
polynomial version ApK(V ).
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5.5.3 Computing SKH and SC using SOSP 1 and dReal

The details of implementing SOSP 1 in MATLAB SOSTOOLS can be found in Sec.
3 of [63]. We provide details on dReal-based validation of the CBFs.

For SKH , V = [−35,−25,−15,−5, 0]. V × V was used as the input grid to
compute the CBF SKH using SOSP 1. SKH was parameterized by λKH = 0.001 and
γKH = 0.0001. The CBF was validated as per Sec. 5.4; Eq. (5.15) was proved to be
unsat in dReal by choosing l = 0.001.

For SC , we consideredO×O as the input grid, whereO = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]. SC was parameterized by λC = 0.001 and γC = 0.0001. The CBF
was validated as per Sec. 5.4; Eq. (5.15) was proved to be unsat in dReal by choosing
l = 1.

The validation was implemented using dReal’s version 2.14.08-linux [28] on an
Intel Core i7-4770K 3.5 GHz CPU with 32 GB of memory. The running time was
416 minutes and 58.64 seconds for SKH and 7 seconds for SC .

5.5.4 Composing SKH and SC using the Small-Gain Theorem

The parameters of SKH and SC satisfy the SGC condition of Theorem 4.2.1, as
γKHγC
λKHλC

= 0.01 < 1 in both SOSP 1 and SOSP 2. Applying Theorem 4.2.1, we
linearly composed SKH and SC to obtain S = α1SIH + α2SC , where α1, α2 = 1. S
is a BF between the composite systems ΣCK and ΣCH . As per Theorem 2 of [29],
the parameter λ of S is given by

λ = min

(
α1λKH − α2γC

α1

,
α2λC − α1γKH

α2

)
= 0.0009.

5.5.5 Visualizing the BFs

Empirical validation of the BFs is provided by plotting them in 2D along the time
axis. As the time proceeds in the same manner in both systems, the corresponding
BF is plotted for the pair of states occurring at the same time along the trajectories
of the systems. The SOD observed for the pair of states is also plotted in the same
graph. The resulting plots show that the BFs bound the SOD and decay in time
along the pairs of trajectories, as per Theorem 4.1.1.

Figs. 5.8 (a) - (c) show SKH plotted along three pairs of trajectories of ΣK

and ΣH . Each pair was generated by supplying a pair of constant voltage signals
(V1(t), V2(t)) as inputs to ΣK and ΣH , respectively. The two subsystems were ini-
tialized as per Defs. 5.1.1 and 5.1.2, and simulated using MATLAB’s ODE45 solver.
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(d) OK(t) = 0.1, OH(t) = 0.9.
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(e) OK(t) = 0.3, OH(t) = 0.7.
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(f) OK(t) = 0.9 OH(t) = 0.1.
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(g) VK(0) = 0 mV , VH(0) = 0 mV .
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Figure 5.8: BFs SKH , SC , S, and their corresponding SOD plotted along trajectories

of the respective systems. In subfigures (a) - (c), SKH and SOD are plotted along three

pairs of trajectories of ΣK and ΣH generated using constant voltage (input) signals. In

subfigures (d) - (f), SC and SOD are plotted along three pairs of trajectories of ΣC

generated using constant conductance (input) signals. In subfigures (g) - (h), the composed

BF S and SOD are plotted along three pairs of trajectories of ΣCK and ΣCH generated

using different initial conditions. In all three cases, the BFs upper bound the SOD and

decay along the trajectories.

SKH was then evaluated along the resulting pair of trajectories after shifting the ori-
gin to the equilibrium defined by (V1(t), V2(t)). In two cases, SKH computed using
SOSP 2 provides slightly better error bound than that of using SOSP 1.

SC characterizes the ability of ΣC to tolerate small changes in the input signals.
In the composite systems ΣCK and ΣCH , these signals are provided by subsystems
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ΣK and ΣH , and thus vary slightly due to the fitting errors incurred by the model-
order reduction as described in Sec.5.1.2.

SC is plotted in Figs. 5.8 (d) - (f) along three pairs of trajectories of ΣC . Each
pair of trajectories was generated by supplying constant conductance (input) signals
(O1(t), O2(t)). ΣC was initialized at 0 mV and simulated using the Euler method.
SC was evaluated along the resulting trajectories after shifting the origin to the
equilibrium, −35 mV (EK). We observed that SC computed using SOSP 1 gives a
tighter SOD bound compared to SOSP 2.

CCMs ΣCK and ΣCH are autonomous dynamical systems and do not receive
any external inputs. To visualize the composite BF S, we simulated ΣCK and
ΣCH using the Euler method for different initial conditions. Fig. 5.4 plots the
trajectories obtained from these simulations. The corresponding conductance traces
of Fig. 5.4(a) and the voltage traces of Fig. 5.4(b) empirically validate that the
composed models are approximately equivalent as predicted by Theorem 4.2.1. BF
S along this pair, and two other pairs of trajectories is plotted in Fig. 5.8 (g) -
(i). The value of S is dominated by the value of SC , as it bounds the squared
difference of voltages and is much larger than SKH , which bounds differences in
probabilities. This is reasonable as voltage is the primary entity of interest when
analyzing excitable cells. One could scale subsystem ΣC such that its output lies in
[0, 1] and is thus comparable to the outputs of ΣK and ΣH . In all three cases, S
computed using SOSP 1 performs much better than the one computed using SOSP 2.

5.6 Performance Evaluation of BFComp

In this section, we present performance evaluation results for BFComp. The pa-
rameters of SOSP 1 and SOSP 2 were varied while computing the BF SKH using
SOSTOOLS. The validation of the SOSP-1-based CBF in dReal was also analyzed
by varying the level set parameter and δ. The running time for the SOSTOOLS
and dReal-based implementations are presented to illustrate the tradeoffs posed
by the different parameters. We begin with the performance of SOSTOOLS-based
implementations SOSP 1 and SOSP 2, which is illustrated in Fig. 5.9.

SOSP 1 uses UG, the input-space grid; see Def. 5.3.1. The size of the grid
corresponds to the granularity with which Eq. (4.2) is enforced across the input
space. Each input pair on the grid corresponds to one constraint in the SOSP.
Therefore, a relatively denser grid leads to a larger instance of SOSP 1, which takes
a longer duration of time to be solved in SOSTOOLS. On the other hand, a denser
grid ensures that Eq. (4.2) is satisfied on relatively more points across the input
space, which makes the validation step converge faster.
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Figure 5.9: Performance evaluation of SOSTOOLS-based implementations of SOSP
1 and SOSP 2.

Fig. 5.9 (a)-(b) reflects this behavior. SOSP 1 was used to compute SKH using
different grid sizes. Three different values of λ and γ were also used. The running
times increase exponentially with the grid size. The values of λ and γ do not affect
this trend. Moreover, SOSTOOLS offers the option of using the CDD package to
exploit the sparsity of multivariate polynomials; see Sec. 2.4.3 of [76]. This option
can significantly reduce the running time for large SOSPs, but the computation of
SKH using SOSP 1 is not affected by this option.
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Figure 5.10: Running times for dReal across different values of l.

Performance of SOSP 2 was analyzed for different values of λ and γ. The form
of the σ(, ., ) functions is an important parameter in SOSP 2. We chose an xTQx
form for these functions using sossosvar provided by SOSTOOLS; see Sec. 2.3.4
of [76]. Two combinations of σ(, ., ) functions were tested. In Combination 1, i) σ1
and σ2 were quartic in VK and VH , ii) σ3 was of degree 8 in VK , and iv) σ4 was
quadratic in VH . In Combination 2, i) σ1 and σ2 were of degree 8 in VK and VH , ii)
σ3 was of degree 12 in VK , and iv) σ4 was quartic in VH .

The relatively higher degree of the polynomials in Combination 2 results in a
larger instance of SOSP 2. Consequently, SOSTOOLS-based implementations take
longer to compute SKH , as illustrated in Fig. 5.9(c) - (d). The figures also show
that the exact value of λ and γ do not affect the running times. CDD-based sparse
representations were used for both generating both these plots.

Next, we focus on the validation of SOSP-1-based CBFs in dReal. The run-
ning time required to prove the formula in Eq. 5.15 in dReal depends on level-set
parameter l and the δ. A detailed worst case runtime analysis of dReal can be found
in [27]. Here, we report empirical run-time statistics for validating the CBF SKH
using Eq. 5.15 for different values of l and δ.

The parameter l defines the domain over which Eq. 5.15 is validated. A smaller
value of l corresponds to the formula being validated over a relatively larger portion
of the state-space. Consequently, dReal requires more running time. Fig. 5.10
illustrates the dependence of dReal’s runnning time for different values of l, while
keeping δ to a fixed value 1× 10−3. For clarity, Fig. 5.10(b) plots the running time
for l ∈ p[0.1, 1]. The running time increases exponentially as l decreases. Note that
the CBF SKH was successfully validated over all the data points.
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The performance of dReal was also analyzed by varying δ. The parameter was
varied from 1× 10−2 to 1× 10−8, while keeping l fixed at 5× 10−2. The running time
varied non-deterministically between 130 seconds and 190 seconds.
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Chapter 6

Model Checkign Tap Withdrawal
in C. Elegans

Although neurology and brain modeling/simulation is a popular field of biological
study, formal verification has yet to take root. There has been cursory study into
neurological model checking (see chapter 7), but not with the nonlinear ODE models
used by biologists. The application of verification technology to hardware circuits
has played a key role in the Electronic Design Automation (EDA) industry; perhaps
it will play a similar role with neural circuits.

For our initial neurological study, we have selected the round worm, Caenorhab-
ditis Elegans, due to the simplicity of its nervous system (302 neurons, ∼5,000
synapses) and the breadth of research on the animal. The complete connectome of
the worm is documented, and there have been a number of interesting experiments
on its response to stimuli.

For model-checking purposes, we were particularly interested in the tap with-
drawal (TW) neural circuit. The TW circuit governs the reactionary motion of
the animal when the petri dish in which it swims is perturbed. (A related circuit,
touch sensitivity, controls the reaction of the worm when a stimulus is applied to
a single point on the body.) Studies of the TW circuit have traditionally involved
using lasers to ablate the different neurons in the circuit of multiple animals and
measuring the results when stimuli are applied.

A model of the TW circuit was presented by Wicks, Roehrig, and Rankin
in [92]. Their model is in the form of a system of nonlinear ODEs with an in-
dication of polarity (inhibitory or excitatory) of each neuron in the TW circuit.
Additionally, Wicks and Rankin had a previous paper in which they measure the
three possible reactions of the animals to TW with various neurons ablated [91];
see also Fig. 2.5. The three behaviors—acceleration, reversal of movement, and no
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response—are logged with the percentage of the experimental population to display
that behavior.

The [92] model has a number of circuit parameters, such as gap-junction con-
ductance, capacitance, and leakage current, that crucially affect the behavior of the
organism. A single value for each parameter is given in [92]. With this single set
of parameter values, the model produces predominant behavior in most ablation
groups with a few exceptions.

While the experimental work in [91, 92] and the model presented in [92] were
by no means insubstantial, the exploration of the model is vastly incomplete. The
fixed parameter values fit through experimentation cause the model to replicate the
predominant behavior seen in said experiments, but little can be said about the
model beyond that. The ranges that can produce the predominant behavior, as well
as the two other behaviors, are completely missing. This is not to fault the authors
of [92], however, as the technology needed to uncover these ranges simply did not
exist at the time.

The missing technology was the ability to automatically generate local discrep-
ancy functions [15], and has only recently been developed [19]. With this technique,
we can theoretically compute reach tubes used in verification. In reality, this is not
a simple plug-and-play situation. To make use of [19], we needed to create the ver-
ification framework in Fig. 6.1. Through careful model engineering (Fig. 6.1 (1-3))
and verification engineering (Fig. 6.1 (4-6)) we were able to explore and verify the
full parameter ranges in the Wicks et al. model to produce all three behaviors in
the TW circuit. Such an understanding of the model is critical to morphospace
exploration [88] of the animal. A detailed description of our framework and its
application to the [92] model (Fig. 6.1(b)) is given in Sec. 6.1.

This verification framework has the additional benefit of being model agnostic.
It can be reused to verify other complex nonlinear ODE models.

The rest of the chapter develops as follows. Section 6.1 describes our reach-tube
reachability analysis and associated property checking. Section 6.2 presents our ex-
tensive collection of model-checking/parameter-estimation results.

6.1 Reachability Analysis of Nonlinear TW Cir-

cuit

Reachability analysis for verifying properties for general nonlinear dynamical sys-
tems is a well-known hard problem. The verification framework introduced in
Fig. 6.1 combines model and verification engineering to perform reachability analysis
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Figure 6.1: Verification framework of nonlinear ODE model based on automatic
computation of discrepancy function. (a) The general framework, (b) Application
to [92] model.

on the Wicks et al. [92] model, discovering crucial parameter ranges to produce all
three behaviors of the TW circuit. Our framework can be applied to any nonlinear
ODE model.

6.1.1 Background on Reachability using Discrepancy

Consider an n-dimensional autonomous dynamical system:

ẋ = f(x), (6.1)

where f : Rn → Rn is a Lipschitz continuous function. A solution or a trajectory of
the system is a function ξ : Rn × R≥0 → Rn such that for any initial point x0 ∈ Rn

and at any time t > 0, ξ(x0, t) satisfies the differential equation (6.1). A state x
in Rn is reachable from the initial set Θ ⊆ Rn within a time interval [t1, t2] if there
exists an initial state x0 ∈ Θ and a time t ∈ [t1, t2] such that x = ξ(x0, t). The
set of all reachable states in the interval [t1, t2] is denoted by Reach(Θ, [t1, t2]). If
t1 = 0, we write Reach(t2) when set Θ is clear from the context. If we can compute
or approximate the reach set of such a model, then we can check for invariant or
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temporal properties of the model. Specifically, C. Elegans TW properties such as
accelerated forward movement or reversal of movement fall into these categories.
Our core reachability algorithm [15, 44, 16] uses a simulation engine that gives
sampled numerical simulations of (6.1).

Definition 6.1.1. A (x0, τ, ε, T )-simulation of (6.1) is a sequence of time-stamped
sets (R0, t0), (R1, t1) . . . , (Rn, tn) satisfying:

1. Each Ri is a compact set in Rn with dia(Ri) ≤ ε.

2. The last time tn = T and for each i, 0 < ti − ti−1 ≤ τ , where the parameter τ
is called the sampling period.

3. For each ti, the trajectory from x0 at ti is in Ri, i.e., ξ(x0, ti) ∈ Ri, and for
any t ∈ [ti−1, ti], the solution ξ(x0, t) ∈ hull(Ri−1, Ri).

The algorithm for reachability analysis uses a key property of the model called
a discrepancy function.

Definition 6.1.2. A uniformly continuous function β : Rn ×Rn ×R≥0 → R≥0 is a
discrepancy function of (6.1) if

1. for any pair of states x, x′ ∈ Rn, and any time t > 0,

‖ξ(x, t)− ξ(x′, t)‖ ≤ β(x, x′, t), and (6.2)

2. for any t, as x→ x′, β(., ., t)→ 0.

If a function β meets the two conditions for any pair of states x, x′ in a compact
set K then it is called a K-local discrepancy function. Uniform continuity means
that ∀ε > 0,∀x, x′ ∈ K, ∃δ such that for any time t, ‖x − x′‖ < δ ⇒ β(x, x′, t) < ε.
The verification results in [15, 44, 17, 16] required the user to provide the discrepancy
function β as an additional input for the model. A Lipschitz constant of the dynamic
function f gives an exponentially growing β, contraction metrics [59] can give tighter
bounds for incrementally stable models, and sensitivity analysis gives tight bounds
for linear systems [13], but none of these give an algorithm for computing β for
general nonlinear models. Therefore, finding the discrepancy can be a barrier in the
verification of large models like the TW circuit.

Here, we use Fan and Mitra’s recently developed approach that automatically
computes local discrepancy along individual trajectories [19]. Using the simula-
tions and discrepancy, the reachability algorithm for checking properties proceeds
as follows: Let the U be the set of states that violate the invariant in question.
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First, a δ-cover C of the initial set Θ is computed; that is, the union of all the
δ-balls around the points in C contain Θ. This δ is chosen to be large enough so
that the cardinality of C is small. Then the algorithm iteratively and selectively
refines C and computes more and more precise over-approximations of Reach(Θ, T )
as a union ∪x0∈CReach(Bδ(x0), T ). Here, Reach(Bδ(x0), T ) is computed by first gen-
erating a (x0, τ, ε, T )-simulation and then bloating it by a factor that maximizes
β(x, x′, t) over x, x′ ∈ Bδ(s0) and t ∈ [ti−1, ti]. If Reach(Bδ(x0), T ) is disjoint from
U or is (partly) contained in U, then the algorithm decides that Bδ(x0) satisfies and
violates U, respectively. Otherwise, a finer cover of Bδ(x0) is added to C and the it-
erative selective refinement continues. We refer to this in this paper as δ-refinement.
In [15], it is shown that this algorithm is sound and relatively complete for proving
bounded time invariants.

6.1.2 Applying Local Discrepancy to TW Circuit

Fan and Mitra’s algorithm (see details in [19]) for automatically computing local
discrepancy relies on the Lipschitz constant and the Jacobian of the dynamic func-
tion, along with simulations. The Lipschitz constant is used to construct a coarse,
one-step over-approximation S of the reach set of the system along a simulation.
Then the algorithm computes an upper bound on the maximum eigenvalue of the
symmetric part of the Jacobian over S, using a theorem from matrix perturbation
theory. This gives a piecewise exponential β, but the exponents are tight as they are
obtained from the maximum eigenvalue of the linear approximation of the system
in S. This means that for models with convergent trajectories, the exponent of β
over S will be negative, and the Reach(T ) approximation will quickly become very
accurate. In the rest of this section, we describe key steps involved in making this
approach work with the TW circuit.

The model of the TW circuit from Section ?? can be written as V̇ = f(V ),
where V ∈ R9 has components Vi giving the membrane potential of neuron i. The
Jacobian of the system is the matrix of partial derivatives with the ijth term given
by:

∂fi

∂Vj
= −gleaki − ggapi

N∑
j=1,j 6=i

ngap
ij − gsyni

N∑
j=1,j 6=i

nsyn
ij

1 + exp(k
Vj−V

eq
j

VRange
)

= ggapi ngap
ij − gsyni nsyn

ij

k
VRange

exp(k
Vj−V

eq
j

VRange
)(Ej − Vi)

(1 + exp(k
Vj−V

eq
j

VRange
))2

(6.3)

For parameter-range estimation of the TW circuit, each parameter p of interest
is added as a new variable with constant dynamics (ṗ = 0). Computing the reach-
set from initial values of p is then used to verify or falsify invariant properties for
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a continuous range of parameter values, and therefore a whole family of models,
instead of analyzing just a single member of that family. Here the parameters of
interest are the quantities pleaki = 1/gleaki , pgapi = 10/ggapi , psyni = 1/gsyni .
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Figure 6.2: Model Checking Reversal Property of Control Group, with δ = 5×10−5,
varying ggapAVM .
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Figure 6.3: Model Checking Reversal Property of Control Group by refining δ.

Consider, for example, 1/gleaki as a parameter:

˙[
V

1/gleaki

]
=

[
f(V )
0

]
.

In this case the Jacobian matrices for the system with parameters will be singular
because of the all-zero rows that come from the parameter dynamics. The zero
eigenvalues of these singular matrices are taken into account automatically by the
algorithm for computing local discrepancy. In this paper we focus on pgapi , leaving
the others for future work.
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6.1.3 Checking Properties

Once the reach sets are computed, checking the acceleration, reversal, and no-
response properties are conceptually straightforward. For instance, Equation (2.15)
gives a method to check reversal movement. Instead of computing the integral of
(VAVA − VAVB), we use the following sufficient condition to check it:

φrev : ∀ t ∈ Tint ,∀ x ∈ Reach(Θ, [t, t]), VAVA(x) > VAVB(x).

Here, Tint is a specific time interval after the stimulation time, Θ is the initial set with
parameter ranges, and recall that Reach(Θ, [t, t]) is the set of states reached at time
t from Θ. We implement this check by scanning the entire reach-tube and checking
that its projection on VAVB(x) is above that of VAVA(x) over all intervals. If this
check succeeds (as in Figure 6.5(a)), we conclude that the range of parameter values
produce the reversal movement. If the check fails, then the reversal movement is not
provably satisfied (Figure 6.3(a)) and in that case we δ-refine the initial partition
(Figure 6.3(b)). In some cases, such as Figure 6.5(b), δ-refinement can not prove the
property satisfied or unsatisfied. This often occurs when two tubes intersect within
the interval of interest. In this case, the property is considered to be unknown.

Fig. 6.4 helps paint a picture of how the δ-refinement process works with two
parameters. We consider 4 refinement steps: δ = 7×10−5, δ = 6×10−5, δ = 5.5×10−5,
and δ = 5×10−5. For δ = 7×10−5, the property of interest is unknown at all points.
With δ = 6×10−5 the property is considered unknown for all red areas in the figure,
including red and blue areas. Blue areas show where δ = 5.5×10−5 are satisfied,
and in the blue and yellow area both δ = 6× 10−5 and δ = 5.5× 10−5 have a
satisfied property. The property is satisfied for the entire range of the graph when
δ = 5×10−5. Thus, the refinement process stops at δ = 5×10−5, and the entire
range of the parameter space is characterized.

6.2 Experimental Results

In this section, we apply our verification framework to the [92] model to estimate
parameter ranges that produce three different behaviors (reversal, acceleration, no
response) in the control and four ablation groups. We vary the gap-junction con-
ductance of the sensory neurons (ggapi , i ∈ {AVM,ALM,PLM}) and keep all other
parameters constant, as per [92]. Additionally, in the case of the no response behav-
ior, we must lower the gap-junction conductance of the other neurons by a factor of
103. In Sec. 6.1, we explain that we use pgapi as our parameter in the state vector
instead of ggapi , where pgapi = 10/ggapi . The parameter space we explore can be con-
sidered a bounding box, where each pgapi ranges over [0.01, 1]. As exploring the entire
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parameter space is computationally intensive, we intelligently select a subspace to
cover that lets us estimate contiguous ranges of parameters for each behavior. In
Table 6.2.2, we present these ranges in terms of ggapi .

In the following subsections, we will present our results for parameter range
estimation for all three behaviors of the control and ablation groups. This process
requires three experiments per group.

6.2.1 1-D Parameter Space

Here we vary pgapAVM in all groups, except the AVM,ALM- group. By varying this
parameter, we are able to produce reversal behavior in all four groups. We are
also able to produce acceleration in all groups but PLM-. The PLM neuron drives
acceleration in the TW circuit [91]. Hence, its absence in the PLM- group prevents
acceleration from being produced, justifying the result.

For the AVM,ALM- group, we vary pgapPLM and produce acceleration and no
response behaviors. As both AVM and ALM, responsible for reversal of movement,
are ablated, reversal cannot be produced by this group.

6.2.2 2-D Parameter Space

In this set of experiments, we vary two parameters simultaneously. First we vary
pgapAVM and pgapALM for the control and PLM- groups. In both cases we produce reversal
behavior. For the same reasons given in the previous subsection, we are unable to
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produce acceleration in the PLM- group and no response behavior in both these
groups.

Next, we vary pgapAVM and pgapPLM for the ALM- and ALM,DVA- groups. We are
able to produce both all three behaviors in both groups.

Group Name Property Parameters Ranges δ Runtime (sec)

Control

REV ggapAVM [46.2, 1000] 1×10−6 6324.4
REV ggapAVM , ggapALM [952.38, 1000]2 2×10−5 776.5
REV ggapAVM , ggapALM , ggapALM [990.01, 1000]3 2×10−5 314.23
ACC ggapAVM [15.87, 10] 1×10−5 1110.01
ACC ggapAVM , ggapALM [15.86, 15.87]2 2×10−5 1619.8
ACC ggapAVM , ggapALM , ggapALM [15.85, 15.87]3 2×10−5 320.12
NR ggapAVM - - -
NR ggapAVM , ggapALM - - -
NR ggapAVM , ggapALM , ggapALM [10.005, 10]3 5×10−5 124.23

PLM-

REV ggapAVM [467.3, 1000] 1×10−5 718.08
REV ggapAVM , ggapALM [952.38, 1000]2 2×10−5 775.12
ACC ggapAVM - - -
ACC ggapAVM , ggapALM - - -
NR ggapAVM - - -
NR ggapAVM , ggapALM [15.84, 15.87]2 5×10−5 124.23

ALM-

REV ggapAVM [467.3, 1000] 1×10−5 718.08
REV ggapAVM , ggapPLM [952.38, 1000]2 2×10−5 785.01
ACC ggapAVM [15.38, 15.87] 2e− 5 660.87
ACC ggapAVM , ggapPLM [14.91, 14.93]2 2×10−5 782.3
NR ggapAVM - - -
NR ggapAVM , ggapPLM [10, 10.05]2 5×10−5 125.01

ALM,DVA-

REV ggapAVM [250, 500] 1×10−5 1085.74
REV ggapAVM , ggapPLM [487.80, 500]2 2×10−5 779.75
ACC ggapAVM [13.88, 14.28] 1×10−5 1084.23
ACC ggapAVM , ggapPLM [15.84, 15.87]2 2×10−5 782.3
NR ggapAVM - - -
NR ggapAVM , ggapPLM [15.86, 15.87]2 2×10−5 779.01

ALM,AVM-
REV ggapPLM - - -
ACC ggapPLM [33.33, 1000] 5×10−5 3619.19
NR ggapPLM , ggapALM [10, 13.33] 5×10−5 3118.45

Table 6.1: Parameter ranges for all experiments, including δ and runtime information. REV=Reversal,
ACC=Acceleration, NR=No Response.
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6.2.3 3-D Parameter Space

Since the ablation groups we have used in this paper all feature at least one of the
primary sensory neurons (ALM, AVM, and PLM ) ablated, we can only show the
3-D case for the original animal.

For the 3-D case, in addition to pgapAVM and pgapALM , we have the pgapPLM conduc-
tance. Finally, we get a non-zero value for no response in the control, but Table 6.2.2
shows that this value is an order of magnitude smaller than acceleration and several
orders smaller than reversal.
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Figure 6.5: Experiment on runtime analysis.

6.2.4 Runtime and Memory Complexity Analysis

The time and memory needed for the procedure depends upon the value of δ used
and the size of the parameter space. Assume Ld to be the interval length in the
dth dimension. The total number of δ-balls required to cover the parameter space
completely is:

TN = ΠD
d=1Nd

where D is the number of parameters added to the state vector and Nd = 2Ld/δ.
If Ld is the same in all dimensions, TN = ND

d . We can analyze both runtime and
memory complexity based on TN . If we consider the time and memory required for
verifying each δ-ball to be O(1), then the time and memory complexity will both
be O(TN) = O(ND

d ). Note that the complexity also depends on the value of the
δ-refinement loop counter. Since we can safely assume that the loop will iterate only
a constant number of times, this is not an issue.
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Fig. 6.5 illustrates how runtime relates to TN in one (a) and multiple (b)
dimensions. The graph from (a) is the same as the 1D line in (b), but for a larger
range of TN . This increased range more clearly illustrates the linear relationship of
runtime to TN when D = 1. Part (b) shows the rates for D = 1, D = 2 and D = 3
over a much smaller range of TN but helps to demonstrate the effect of dimensionality
on time complexity. Since runtime grows at a trinomial rate when d = 3, we use
the largest δ values (smallest TN) that correctly cover the parameter space. This is
what makes the δ-refinement process imperative; it allows us to correctly verify a
property while avoiding runtime blow-up.
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Chapter 7

Related Work

In response to the increasing complexity of biological models, model reduction and
abstraction have become active areas of research in computational biology. In
[22, 24], the authors propose the idea of towers of abstraction, consisting of a hi-
erarchy of models that capture biological details at varying scales of space and
complexity. Compositionality and approximation are vital aspects of constructing
such a hierarchy, as pointed out in [23, 41].

Singular perturbation [54, 69] and invariant manifold reduction [9, 37] are two
popular approaches to reducing multi-scale state-space models of chemical reaction
kinetics [18, 38, 77]. The quasi steady state assumption is central to singular per-
turbation techniques used in [77]. The derivative of fast variables, which evolve on
relatively short time scales, is approximated to be zero, resulting in model reduc-
tion. Despite being successful for chemical kinetics models, such techniques are not
well-suited for Markovian ion channel models. The former involves a constant rate
matrix A that renders the system linear, where as in our Markovian models, the
rate matrix A is a function of the transmembrane voltage V . The voltage V is itself
dependent on the evolution of the Markovian model and this circular dependency
causes the overall model to be nonlinear.

Reduction of Markovian ion-channel models, which is the central topic of chap-
ter 3, has been explored in [89, 90]. The focus is on reducing the simulation time,
rather than obtaining a formal reduction. In [81], Smith et al. reduce a stochastic
model for the sodium-potassium pump by lumping the states of their model. In [21],
Fink et al. use mixed formulations of an HH-type model and a Markovian model
to reduce the number of state variables for the calcium current. In this thesis, we
provide a systematic reduction of the sodium channel. Conventional approaches
like [55] use behavioral equivalence to validate the reduced models. Approximate
bisimulation, used in this paper, formalize equivalence in a compositional setting
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and also help in insightful analysis.

Approximate bisimulation equivalence of a detailed model to an abstract model
supports such compositional reasoning. In [3], the authors use bisimulation to con-
strain the U-projections of deterministic systems of algebraic differential equations
of biochemical networks. The projected automaton is U-bisimilar to the original
system and thus satisfies the same temporal logic formulae. Compositionality of the
models-of-interest is not investigated.

In other related work, a number of efforts, including [10, 78, 4], have been
devoted to developing process algebras that are capable of describing biological
systems (e.g., interactions among bacteria and bacteriophage viruses) via special
biologically motivated operators. Bisimulation in these calculi are typically congru-
ences, thereby allowing compositional reasoning through substitution of equal for
equals. These approaches typically do not consider continuous system dynamics and
feedback through composition.

Initial work on computing BFs, [31, 33, 35, 29, 49, 52], depended primarily
on Sum-of-Squares (SOS) optimization. SOS optimization has also played a crucial
role in enabling the automated computation of other Lyapunov-like functions, such
as Barrier Certificates [75, 74] and discrepancy functions [14, 43]. In [75, 52], the
authors employ an SOSP 2-like approach, which is based on the S-Procedure of [93]
and entails strengthening the Lyapunov-like inequalities over the region-of-interest
in the state and input spaces.

Despite the success of the above-mentioned approaches, SOS-optimization-
based techniques suffer from various drawbacks, such as numerical errors and choos-
ing the forms of the unknown polynomials, which may be crucial for getting good
Squared Output Difference (SOD) bounds. The simulation-based approach to ana-
lyzing stability of dynamical systems in [51], which is closely related to our work,
addresses some of these issues. Simulation traces of a given dynamical system are
used to compute so-called Candidate Lyapunov Function (CLF). The authors then
use an SMT-based ensemble of tools, which includes dReal, to validate the decay
requirements over level sets of the CLF. The BFComp framework differs from the
work of [51] in three ways. Firstly, we focus on BFs that characterize IOS of dynam-
ical systems, whereas the authors focus on Lyapunov stability in [51]. Secondly, as
shown in our case study, our framework places emphasis on SOD to enable bounding
the error that is incurred when a detailed subsystem is replaced by an abstraction
within a feedback loop. Lastly, our framework is completely based on Sum-of-Square
optimization, whereas the authors use a Linear Programming (LP)-based approach
to computing the CLFs.

BFComp builds upon our previous work of [63], which proposed SOSP 1, in
several ways. SOSP 1, as a standalone BF-computation technique, suffers from the
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following limitation: the decay condition of Eq. (4.2) is enforced only on a grid-based
discretized input-space. Therefore, SOSP 1 cannot be used to establish incremental
input-to-output stability for a continuum of input values. BFComp overcomes this
limitation in two ways. First, SOSP 2, which covers the input space exhaustively,
is applied. If the resulting BF fails to provide satisfactory bounds on the SOD,
then SOSP 1 is used to compute CBFs. The CBFs are then validated using dReal-
based delta reachability. In summary, BFComp overcomes SOSP 1’s limitation
of input-space discretization, as well as attempts to provide relatively tight SOD
bounds.

BFComp is an extension of our work in [1]. Based on the insightful feedback
from the reviewers, we elaborate further on approximating the rate functions of
ΣK with polynomials for computing SKH using SOSP 2. This technique can also
be applied to other systems with non-polynomial vector fields. We also provide a
detailed performance evaluation of the tool and highlight the tradeoffs between the
various parameters, such as the size of input-space grid in SOSP 1, the level set
parameter l for validating Candidate Bisimulation Function (CBF)s, and the choice
of the σ(, ., ) functions of SOSP 2.

LP-based computation of Lyapunov-like functions is a promising alternative
to SOS optimization. In [80, 79], the authors present LP formulations, based on
Handelman representations of polynomials, to compute Lyapunov functions. Con-
sequently, the computation avoids semi-definite programming, which enables SOS
optimization, and is therefore more robust to numerical errors. Incorporating such
LP-based approaches into our framework is part of the future work.

In chapter 6, we presented a discrepancy function-based reachability analysis
of Tap Withdrawal Circuit (TWC) in C. Elegans. Recently, researchers have made
steady progress in developing methodology, algorithms, and tools for the verification
of such nonlinear ODE models. Reachability analysis, in particular, have been
studied in several papers [12, 2, 11, 50].

Discrepancy function-based reachability analysis of nonlinead ODE model has
been proposed in [15, 44, 16]. In our work, we, however, apply the technique pre-
sented in [19]. Compared with [15, 44, 16], where safety verification algorithms for
dynamical switched hybrid systems were proposed, [19] focuses on one crucial com-
ponent that is missing in [15, 44, 16]: computing discrepancy functions for general
nonlinear systems. To the best of our knowledge, other methods could not provide
a less conservative over-approximation reach-tube in reasonable time.

Moreover, successfully applying this technique to the verification of TWC
model poses a major challenge. It requires both modeling and verification engi-
neering. The TWC model in chapter 6 had to be transformed to normalized gap-
junction conductances, the computation of the Jacobian had to be adjusted to take
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into account the singular matrices, and the routines for checking acceleration and
reversal properties from the reach-tubes had to be written.

In other related work on verifying neural circuit, Iyengar et al. present a
Pathway Logic (PL) model of neural circuits in the marine mollusk Aplysia in [46].
Specifically, the circuits they focus on are those involved in neural plasticity and
memory formation. PL systems do not use differential equations, favoring quali-
tative symbolic models. They do not argue that they can replace traditional ODE
systems, but rather that their qualitative insights can support the quantitative anal-
ysis of such systems. Neurons are expressed in terms of rewrite rules and data types.
Their simulations, unlike our reachability analysis, do not provide exhaustive explo-
ration of the state space. Additionally, PL models are abstractions usually made
in collaboration between computer scientists and biologists. Our work meets the
biologists on their own terms, using the pre-existing ODE systems developed from
physiological experiments.

Tiwari and Talcott [86] build a discrete symbolic model of the neural circuit
Central Pattern Generator (CPG) in Aplysia. The CPG governs rhythmic foregut
motion as the mollusk feeds. Working from a physiological (non-linear ODE) model,
they abstract to a discrete system and use the Symbolic Analysis Laboratory (SAL)
model checker to verify various properties of this system. They cite the complexity
of the original model and the difficulty of parameter estimation as motivation for
their abstraction. Neuronal inputs can be positive, negative, or zero and outputs
are boolean: a pulse is generated or not. Our approach uses the original biological
model of the TW circuit of C. Elegans [92], and through reachability analysis, we
obtain the parameter ranges of interest.
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Chapter 8

Conclusion and Future Work

In chapter, we will first summarize our work and then, present some interesting
future work directions.

8.1 Conclusion

In chapter 3, we constructed two-state HH-type models, HNa and HK , that can
replace the corresponding detailed ion channel models, MNa (13-state) and MK

(10-state) respectively, within the IMW model. The reduction was formalized by
proving the abstract and the concrete models to be approximately bisimilar. This
notion of system equivalence can be used for compositional reasoning.

In chapter 4, we presented Bisimulation Functions and relevant theorems from
proving compositional results. In chapter 5, we presented BFComp, an automated
framework based on SOS optimization and δ-decidability over the reals for comput-
ing BFs that characterize IOS of dynamical systems and provide reasonable bounds
on the SOD between the systems.

Given the pair of systems and descriptor functions for the states and input
spaces, BFComp uses SOSP 2, an instance of SOS optimization, to compute a
BF. If the BF does not provide satisfactory bounds on the Squared Output Dif-
ference (SOD), then SOSP 1, an alternative SOS optimization formulation, is used
to compute CBFs, which satisfy the Lyapunov-like decay requirement only over a
discretized grid in the input-space. We then appeal to dReal to validate the CBF
over the entire input-space. Validation is restricted to the exterior region of the
CBF’s l-level set to avoid the problem of spurious counterexamples, which can be
attributed to dReal’s δ-relaxation-based techniques.

We applied BFComp to compute BFs that appeal to a small-gain theorem,
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thereby compositionally showing that a detailed four-variable potassium-channel
model can be safely replaced by an approximately equivalent one-variable abstrac-
tion within a feedback-composed system.

In chapter 6, we performed reachability analysis with discrepancy to automat-
ically determine parameter ranges for three fundamental reactions by C. Elegans to
tap-withdrawal stimulation: reversal of movement, acceleration, and no response.
We followed the lead of the in vivo experimental results of [91] to obtain parameter-
estimation results for gap-junction conductances for a number of neural-ablation
groups. The ranges we present are a significant expansion of the results in [92],
where all of the parameters are constant and only the predominant behavior is
produced. To the best of our knowledge, these results represent the first formal
verification of a biologically realistic (nonlinear ODE) model of a neural circuit in a
multicellular organism.

The verification framework we develop is model-agnostic, and allows the tech-
niques of [19] to be applied to general nonlinear ODE models. This is only possible
through the careful model and verification engineering developed in this paper.

8.2 Future Work

In chapter 5, we present SOSP-based BFComp. One major drawbacks for this
approach is that it uses semidefinite programming, which is numerically more un-
stable than LP-based method. In [51], Kapinski et al. present LP-based technique
to compute Lyapunov functions for nonlinear dynamical systems.

Fig. 8.1 shows our revised BFComp, where we replace the SOSP with LP
formulation. The main idea is as follows. We generate a collection of simulation
traces of both systems generated by considering the grid points as the input pair
(ui1, u

i
2), i is the index of the grid point.
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Figure 8.1: Revised BFComp: An Automated Framework for Computing BFs using LP
and δ-Decidability.

Assume, traces xi1(tj) and xi2(tj), j = 0, 1, 2, ..., tN , N is number of simulation
steps, are the i-th simulation trace of system 1 and system 2, respectively and the
form of BF is S(x1,x2) = zTQz, where z is some vector of monomials of x1 and x2

and Q is a symmetric matrix. Now for each pair of simulation traces, we construct
the following LP probelm:
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min
Q
S(xi1(t0),xi2(t0)) (8.1)

subject to:

− S(xi1(tj),xi2(tj)) + [g1(xi1(tj))− g2(xi2(tj))]2 ≥ 0, (8.2)

− ∂S

∂xi1
f1(xi1(tj), u

i
1)−

∂S

∂xi2
f2(xi2(tj), u

j
2)− λS(xi1(tj),xi2(tj)) +

γ(ui1 − u
j
2)

2 ≥ 0 (8.3)

γ > 0 (8.4)

λ ≥ 0 (8.5)

As alluded in chapter. 6, our results cannot necessarily cover the entire parameter
space due to the TN required, but still enough to verify the properties in question. A
potential solution to the incomplete coverage is parallelizing our approach. Luckily,
calculating reach-tubes is a data-parallel computation and considered “trivially par-
allel” for the GPGPU (General-Purpose computing on a Graphics Processing Unit)
architecture. This should allow us to run verification experiments in a fraction of
the current required time, giving us a potential expansion of coverage.

Finally, we think our techniques can be used to generate new hypotheses for
biological experiments. For example, two ablation groups not included in the Wicks
et al. experiments are PLM, AVM- and AVD, PVC-. Using reachability analysis
we can determine the predominant behaviors for such groups and verify our results
experimentally.
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Appendix A

Stability properties of
voltage-controlled CTMCs for Ion
Channels

In this section, we use compartmental systems theory [87] to state and prove stability
properties of the constant-voltage ion channel models Mv

Na and Mv
K . This in turn

justifies the simulation strategy used in PEFT, i.e. finite-length simulations ofMv
Na

and Mv
K are sufficient to obtain the approximately bisimilar HH-type abstractions

Hv
Na and Hv

K .

Theorem 3. Let Ax(v), be the rate matrix of the corresponding dynamical system
Mx, x ∈ {Na,K}, as per Definitions 2.1.2 and 2.1.3. For all the values of the
bounded input v ∈ [Vres, Vmax], Ax(v) has exactly one eigenvalue that is 0 and the
real part of all the other eigenvalues is negative.

Proof. First, we will prove a lemma showing that the rate matrices Ax(v) are com-
partmental matrices for v ∈ [Vmin, Vmax].

Lemma 4. The rate matrix Ax(v) is a compartmental matrix for v ∈ [Vmin,
Vmax].

Proof. A square matrix M ∈ Rn×n is called a compartmental system if it satisfies
the following properties:

1. All the non-diagonal entries are greater than or equal to 0, i.e Mij ≥ 0 for
i = 1, . . . , n, j = 1, . . . , n, i 6= j.

2. Sum of the entries along all the columns is less than or equal to 0, i.e.∑n
i=1Mij ≤ 0, j = 1, . . . , n.
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The Mij entry of the matrix is interpreted as the rate of flow of mass from the jth

compartment to the jth compartment, i 6= j. The diagonal entry Mii is the total
rate of outflow from the ith compartment.

For the rate matrices Ax(v), the first property is satisfied as the non-diagonal
entries on the ith row of Ax(v) represent incoming transfer rates for state i. These
rates are positive as they are exponential functions of the input v. For MNa and
MK , these functions are listed in Tables 2.1 and 2.2 respectively.

Consider the jth column of Ax(V ). The entry Ax,ij, i 6= j denotes the transfer
rate from state j to state i. The diagonal entry of this column Ax,jj is the negated
sum of all the outgoing rates from state j. Thus, the sum of every column is 0.

Lemma 5. The rate matrix Ax(v) is irreducible for v ∈ [Vmin, Vmax].

Proof. Irreducibility of Ax(v) can be proved using a graph-theoretic argument. We
construct a directed graph Gv

x(W,E), where the set of vertices W corresponds to
the states of Mx. The set of edges E is constructed as follows. An edge, eij, from
vertex i to vertex j, i, j = 1, . . . , n exists if Ax,ij(v) 6= 0.

From linear algebra, we know that the matrix Ax(v) is irreducible if and only
if Gv

x(V,E) is connected, i.e. there is a path between every pair of vertices.

If there is an edge from state i to state j of Mx, then the transfer rate Ax,ij(v)
does not become 0 for any value of v as it an exponential function of v. Also,
for a given value of v ∈ [Vmin, Vmax], the corresponding graph Gv

x always remains
connected. Thus Ax(v) is irreducible for all v ∈ [Vmin, Vmax].

Now we introduce the concept of a trap of a compartmental system. A trap is
a compartment or a set of compartments from which there are no transfers or flows
to the environment nor to the compartments that are not in that set. A formal
definition is as follows. Let S be a linear compartmental system consisting of com-
partments C1, C2, . . . , Cn. Let T ⊆ S, be a subset of the compartments. We number
the compartments such that T consists of the compartments Cm, Cm+1, . . . , Cn for
m ≤ n. Let F ∈ Rn×n be the rate matrix consistent with the new numbering. The
subset T is a trap if and only if Fij = 0 for (i, j) such that j = m,m+ 1, . . . , n and
i = 0, 1, . . . ,m − 1. A trap is said to be simple is it does not strictly contain any
traps.

Lemma 6. The only trap in Ax(v) is the set of all states.

Proof. As Ax(v) is irreducible, as per Lemma 5, flow between any pair of compart-
ments is nonzero. Thus the only trap is the set of all compartments,

The proof of the Theorem 3 now follows from Theorems 2.2.4 and 2.2.6 of [87].
Prerequisite conditions have been proved in Lemmas 5 and 6.
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A corollary of Theorem 3 is that for all values of the input V ∈ [Vmin, Vmax]
the constant voltage autonomous dynamical systems MNa and MK have stable
equilibria. A 0 eigenvalue does not make ANa(v) and AK(v) Hurwitz, and thus does
not lead to asymptotic stability of the equilibria.
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