

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

CCN Forwarding Strategies

A Dissertation Presented
by

Ahmed Waliullah Kazi

to
The Graduate School

in Partial Fulfillment of the
Requirements

for the Degree of
Doctor of Philosophy

in
Computer Science

Stony Brook University

August 2015

ii

Stony Brook University
The Graduate School

Ahmed Waliullah Kazi

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Dr. Hussein G. Badr - Dissertation Advisor
Associate Professor, Department of Computer Science

Dr. Samir R. Das - Chairperson of Defense
Professor, Department of Computer Science

Dr. Ellen Liu - Committee Member
Research Assistant Professor, Department of Computer Science

Dr. Thomas G. Robertazzi - Outside Committee Member
Professor, Department of Electrical & Computer

Engineering, Stony Brook University

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

iii

Abstract of the Dissertation

CCN Forwarding Strategies

by

Ahmed Waliullah Kazi

Doctor of Philosophy
in

Computer Science
Stony Brook University

2015

An active area of Future Internet Architectures research is Information Centric

Networking (ICNs). Content Centric Networking (CCN) is one of the widely

known ICN proposals. ICNs propose a communication paradigm in which named

content is the focal point. A fundamental component of ICNs is “in-network

caching”, whereby routers act as content caches. The routers implement a

“forwarding strategy” for packets that makes intelligent decisions taking several

factors into account, not the least of which is leveraging the presence of cached

content in the network. From early on, two basic forwarding strategies were

proposed for CCN, CCN-Flooding and CCN-Publication.

We present a performance study of CCN-Flooding and CCN-

Publicationbehavior and bandwidth consumption. We analyze the interplay

between two important components of CCN, in-network caches and the Pending

Interest Table (PIT), under CCN-Publication. We show that the effect of PIT

aggregation increases commensurately with network load and the Betweenness

Centrality attribute of the network topology. While both PIT aggregation and in-

network caching contribute significantly to savings in network bandwidth

consumption, we show that they do not do so in an additive fashion. As network

load increases, gains from cache hits diminish and are replaced by gains from PIT

iv

aggregation, without dramatically impacting the level of overall savings

achieved.We also identify and analyze various issues pertaining to CCN-

Flooding, such as calibration of PIT timeouts; a PIT-induced isolation effect that

negatively impacts bandwidth consumption and response time; and the effects of

adopting FIB routes based on volatile in-network cache entries. Finally, we

analyze CCN-Publication taking into account, unlike the current research

literature, the bandwidth costs of populating the FIBs, and compare that to CCN-

Flooding.

Next, we propose a new lightweight forwarding strategy for CCN. One of the

primary objectives for a forwarding strategy is to improve user experience by

exploiting in-network caching, while minimizing the associated costs. To this

effect, we compare the new forwarding strategy, called CCN-FOH, against CCN-

Publication and CCN-Flooding. The results show that CCN-FOH provides for a

better user experience while keeping its overheads comparable to, if not better

than, the less costly CCN-Publication.

v

Dedicated to Ami and Daddy Saeen; Maahera, Khadijah, and Ismaeel; Humera,
Ayesha, and Umer; andFaiz.

vi

Contents

List of Figures viii
\

List of Tables x

Introduction and Background 1
1.1 Limitations of the Internet Architecture 1
1.2 Information Centric Networks 3

1.2.1 Translating Relaying Internet Architecture Integrating
Active Services (TRIAD) 5

1.2.2 Content Centric Networks (CCN) 6
1.2.3 Data-Oriented Network Architecture (DONA) 8
1.2.4 Publish Subscribe Internet Routing Paradigm (PSIRP) 10
1.2.5 4WARD NetInf 12

1.3 Discussion 13
1.3.1 Naming 14
1.3.2 Name Resolution 15

1.4 Summary 20

Forwarding in Content Centric Networks 21
2.1 Introduction 21
2.2 CCN Forwarding Strategies 22
2.3 Research in In-networking Caching 23
2.4 Research in Forwarding Strategy 24
2.5 Dissertation Outline 27

Performance Study of CCN Forwarding Strategies: CCN-
Flooding and CCN-Publication 29

3.1 Introduction 29
3.2 Experiment Design Space and Methodology 31

3.2.1 Simulator 31

vii

3.2.2 Topologies 33
3.2.3 Traffic Generated 37
3.2.4 Cache Sizes and FIBs 39
3.2.5 Performance Metrics 40

3.3 Results – CCN-Flooding 41
3.3.1 Timeouts and Interest Packet Generation 41
3.3.2 Effect of Topology on Expended Effort 44
3.3.3 Effects on Non-volatile Entries in FIBs: Expended Effort 46
3.3.4 In-network Caching and FIBs under CCN-Flooding:

Expended Effort 47
3.3.5 In-network Caching: Path Cost 50

3.4 Results – CCN-Flooding vs. CCN-Publication 51
3.5 Results – CCN-Publication 54

3.5.1 PIT Aggregation: Topological Considerations 55
3.5.2 Cache-PIT Interplay 57

3.6 Summary 59

CCN-FOH: A Lightweight Forwarding Strategy 61
4.1 Introduction 61
4.2 New Forwarding Strategy: CCN-FOH 64
4.3 Experiment Design Space and Methodology 66

4.3.1 Simulator 66
4.3.2 Topologies 67
4.3.3 Traffic Generated 70
4.3.4 Cache Sizes and Packet Generation Rates 73

4.4 Results and Discussion 76
4.4.1 Potential Effectiveness of CCN-FOH 77
4.4.2 Effect of Topology 79
4.4.3 Comparison of Bandwidth Costs 86
4.4.4 Comparisons of Strategies from the Perspective of User

Experience
87

4.5 Variants of CCN-FOH 96

Conclusion and Future Work 100

Bibliography 104

viii

List of Figures

1-1 Internet Architecture Out of Shape 2

1-2 Classification of ICN Initiatives 3

1-3 Data Structure in CCN Nodes 7

1-4 Flow Chart for the CCN Node Forwarding Operation 8

1-5 FIND and REGISTER Operations 9

1-6 PSIRP Identifiers with Network Functionality 10

1-7 4WARD NetInf Name Resolution at the Intradomain Level 13

3-1 39-node (top-left), 51-node (top-right), 70-node (bottom-left),
and 100-node (bottom-right) 34

3-2 Key Characteristics of the Network Topologies 37

3-3 Box Plots for Expended Effort under Workload Set 1 45

3-4 Q-Q Plots for C1000_FIB vs. C100_FIB under Workload Set 4 47

3-5 CDFs for Expended Effort in Network 39-node 48

3-6 Box Plots for Expended Effort in Network 51-node 49

3-7 Box Plots for C1000_FIB: Path Cost (blue) vs. Path Deflation
(red) 50

ix

3-8 Box Plots for Expended Effort: CCN-Flooding vs. CCN-
Publication under C1000 Configuration

52

3-9 Box Plots for Path Cost: CCN-Flooding vs. CCN-Publication
under C1000 Configuration 53

3-10 CDFs and Box Plots for the Congested Network Scenario with
a PIT but no caching: Workload Set 1 55

3-11 Bar Charts for the Number of Hops Expended with PIT but no
Caching 56

3-12 Bar Charts for the Number of Hops Expended under C100 and
C1000 for 39-node and 51-node 57

4-1 39-node (top-left), 51-node (top-right), 100-node (bottom-left),
and 154-node (bottom-right) 69

4-2 Cumulative Frequency of Requests for the Top 50 most
Popular Objects generated using Zipf-Mandelbrot Distribution
with α = {0.7, 1.5, 2.5} and N=10,000 objects 72

4-3 Percentage of Cache Evictions and Non-Evictions at Nodes for
CCN-Publication, CCN-Flooding, and CCN-FOH for 154-
node under Workload: Set 1 (top) and Set 2 (bottom) 74

4-4 (a) Average Cache Hits per Request (top-left), (b) Average-
Response-Time-per-Request Percent Differential (top-center),
(c) Nearness Percent Differential (top-right), (d) Average-
Total-Interest-Hops-per-Request Percent Differential (bottom-
left), and (e) Average-Total-Data-Hops-per-Request Percent
Differential (bottom-right) 78

4-5 Requests satisfied between Caches, PIT, and Repository for:
(a) Cache-Unfriendly Workload (top); (b) Cache-Friendly
Workload (bottom) 80

4-6 Nearness Percent Differential for: (a) Cache-Unfriendly
Workload (top); (b) Cache-Friendly Workload (bottom) 81

4-7 Eviction and Non-Evictions in Caches of: (a) 39-node with
cache configuration c1p and Cache-Unfriendly Workload
(top); and (b) 100-node with cache configuration c1p and
Cache-Unfriendly Workload (bottom)

82

4-8 (a) Bandwidth costs for CCN-Flooding (FLD - red), CCN-

x

FOH (FOH - green), and CCN-Publication (PUB - blue) for:
(a) Cache-Unfriendly Workload (top); (b) Cache-Friendly
Workload (bottom)

86

4-9 Requests satisfied outside the requesting node between Caches,
PIT, and Repository for: (a) Cache-Unfriendly Workload (top);
(b) Cache-Friendly Workload (bottom) 89

4-10 Proportion of Requests satisfied between On-Path and Off-Path
Caches under CCN-FOH with: (a) Cache-Unfriendly Workload
(top); (b) Cache-Friendly Workload (bottom) 91

4-11 AvgRT Percent Differential across Topologies and Cache-
Configurations for: (a) Cache-friendly workload (top); (b)
Cache-unfriendly workload (bottom) 93

xi

List of Tables

I Summary of Name and Name Resolution Techniques 18

II Characteristics of the Network Topologies 33

III Workload Characteristic 38

IV CCN-Publication vs. CCN-Flooding 62

V Characteristics of the Network Topologies 68

VI Workload Characteristics 71

VII AvgRT/Req Percent Differential between CCN-Publication
(100%) and CCN-FOH 88

1

Chapter 1

Introduction and Background

1.1 Limitations of the Internet Architecture

The design principles which defined the underlying architecture of the Internet were

conceived in the 70’s [1, 2]. It is safe to say that the Internet has far exceeded the

expectations of its creators. Even they could not have foreseen how the Internet

would become a global phenomenon that would revolutionize the world, and

impact every phase of our daily lives. Nevertheless, from the hindsight of forty

years’ experience, we can now see that these design principles were both a major

reason for the success of the Internet, but also contribute to its limitations as a

platform for further development into the future.

Since the inception of the Internet, it has evolved over time to overcome various

challenges. The research community had to address these challenges within the

constraints of the Internet’s underlying architecture. This so-called “Evolutionary”

approach takes the current Internet as the starting point for tackling its shortcomings

and challenges [3]. Encrypted sockets (i.e., TLS) [4], DiffServ [5], IntServ [6],

CDNs [7] [8], NAT [9], MobileIPv4 [10], etc., are all ad-hoc solutions which

exemplify the Evolutionary approach. Over the years many such solutions, which

are sometimes no more than “patches”, have been added to the architecture which

has gradually evolved into the shape shown in Figure 1-1. This figure illustrates an

important point: the Internet architecture is complex. A lot of the protocols,

especially in the Control Plane, overlap with different layers which makes it

Chapter 1. Introduction and Background

2

difficult to grasp the overall architectural structure. Designing further modifications

to plug into such an architecture is a daunting task.

Figure 1-1. Internet Architecture Out of Shape (taken from [11])

One research direction that seeks to address such challenges is the so-called

“Clean Slate” approach. There is a wide debate within the research community as

to the appropriate approach forward (Evolutionary vs. Clean Slate) for future

network architecture [12, 13]. Proponents of the Clean Slate approach [14, 15]

argue that the challenges facing the Internet today and for the foreseeable future

need to be addressed without the design constraints of the current architecture. The

Clean Slate approach allows for the designing of new basic protocols and network

architectures for the future Internet which would otherwise not be possible. This

approach is not necessarily contradictory, but rather can actually be complimentary,

to the Evolutionary approach. The solutions available under a Clean Slate approach

are much broader and more novel than for an Evolutionary approach, and so can

also assist in guiding the redesign of the current Internet architecture.

Chapter 1. Introduction and Background

3

1.2 Information Centric Networks

The Internet is popular due to the content that can be accessed on it. One Clean

Slate approach that is currently the focus of much research interest is Information

Centric Networking (ICNs) [16-20]. In ICNs, the focus shifts from the physical

machines where content is located to the content itself. This involves a shift from

the traditional host-to-host communication paradigm to an object-based

communication paradigm in which content is the focal point. Consequently, we no

longer deal with IP addresses but only with content names. There are several

potential benefits to such architectures: security; multicasting; elimination of

redundant traffic; no mobility management – which is inherently built into the

network; routing to the nearest content copy; etc.

Figure 1-2. Classification of ICN Initiatives

There are several projects aimed at developing this new content-based

paradigm. We classify these as First, Second, Third, and Fourth Generation on the

basis of their: (a) time of origin, and (b) contribution to subsequent ICN proposals

(Figure 1-2). In the First, precursor, Generation, TRIAD (1999) [21] was one of the

Chapter 1. Introduction and Background

4

earliest proposals to adopt something of an Information Centric approach, but not

in a radically fundamental way. It introduced the concept of content routing on top

of the IP layer. CCN (2006) [22] is a Second Generation initiative which introduced

the fundamental Information Centric paradigm shift in which the focus moved from

content location (“where”) to the content itself (“what”), and proposed the

replacement of the IP layer by a content-centric network layer. DONA (2007) [23]

is also a Second Generation initiative, inspired by TRIAD. It proposed the notion

of flat, self-certifying names for content which are resolved using anycast over an

overlay network on top of IP. Prominent Third Generation proposals (2008 –

2010), such as PSIRP [24] and 4WARD NetInf [25], build on the efforts of the

previous two generations by proposing scalable mechanisms for the intradomain

and interdomain levels. Direct descendants of each of PSIRP, 4WARD NetInf, and

CCN in the Fourth Generation (2010 –) are PURSUIT (http://www.fp7-pursuit.eu),

SAIL NetInf (http://www.sail-project.eu/), and NDN (http://www.named-

data.net/), respectively. These, along with other similar initiatives such as

Expressive Internet Architecture (http://www.cs.cmu.edu/~xia/), CONNECT

(www.anr-connect.org/) (which complements CCN), and CONVERGENCE

(http://www.ict-convergence.eu/) may be classified as Fourth Generation to the

extent that they build on preceding efforts.

While an object-based approach defines, and is therefore common, to all ICNs,

different proposals adopt varying other components as fundamental building blocks

of their individual design architecture. Security, for example, is one such

component. Two tightly-coupled components, however, that are at the heart of all

ICN architectures are naming and name resolution [26]. In an architecture that

places content at its core, naming objects becomes the central element, analogous

to the centrality of IP addressing in today’s Internet for example. Names define how

objects are identified, and in principle may be loosely classified as flat vs.

http://www.fp7-pursuit.eu/
http://www.sail-project.eu/
http://www.named-data.net/
http://www.named-data.net/
http://www.cs.cmu.edu/~xia/
http://www.anr-connect.org/
http://www.ict-convergence.eu/

Chapter 1. Introduction and Background

5

hierarchical, persistent vs. non-persistent, aggregatable vs. non-aggregatable,

human-readable vs. human-unreadable, etc. Name resolution (i.e., locating an

object given its name), on the other hand, needs to handle billions of object-to-

location bindings in a scalable, speedy, and efficient manner. In a given ICN

architecture, the potential solutions available for name resolution are a direct

function of the specific naming scheme adopted for objects.

We shall use examples from various ICN proposals to highlight the range of

naming and name resolution design alternatives. In line with the work presented in

this thesis, we limit our discussion to salient considerations of naming and name

resolution only, and leave aside a discussion of other aspects of these ICNs. As

stated above, many ICN initiatives have put security as a central design concern,

which has implications for the kind of naming (e.g., self-certifying names, etc.) and

name resolution schemes they propose. This security aspect is well-surveyed in [27]

and will not be included in our discussion.

1.2.1 Translating Relaying Internet Architecture Integrating

Active Services (TRIAD)

Naming. Objects in TRIAD are identified using URLs. This implies non-persistent

names. Object names are dependent on their location; if the location changes, the

name changes accordingly. The names are hierarchical and are not aggregatable

beyond two-level domain names, e.g., www.ieee.org.

Name Resolution. In TRIAD, content routers (CRs) perform conventional IP

routing tasks and also act as name servers. When the Content Layer (immediately

above the IP layer) of the client requests for a URL to be resolved, the request

traverses a series of CRs which maintain name-to-next-hop mappings similar to

traditional IP routers. TRIAD is based on two protocols: (a) Internet Name

Resolution Protocol (INRP), which performs the lookup based on the URL

Chapter 1. Introduction and Background

6

requested, to find the IP address of the “best” content server; and (b) Name-Based

Routing Protocol (NBRP), similar to BGP except that it advertises URL

reachability information to the CRs, and is responsible for maintaining the routing

tables needed by the INRP. Certain name servers can operate as content caches,

directly providing the content requested.

1.2.2 Content Centric Networks (CCN)

Naming: CCN proposes usage of URI-like, hierarchical, aggregatable, globally-

unique names for content. For example,

/cs.stonybrook.edu/akazi/paper.pdf/_v<timestamp>/_s3,

is a valid name which is self-explanatory in terms of what it represents: a PDF file

named “paper”, owned by user akazi. The name is divided into three components:

(a) a globally-routable name (/cs.sunsysb.edu); (b) an organizationally-unique

object name (/akazi/paper.pdf); and (c) versioning and segmentation information

(/_v<timestamp>/_s3).

Name Resolution. There are two types of packets in CCN: (a) interest packets,

which issue a request for content using the hierarchical content name; and (b) data

packets that contain the content requested. In place of IP routers there are Content

Routers (CRs). The forwarding model at a CR makes use of three main data

structures as seen in Figure 1-3. The Content Store (CS) is used to cache content.

The Pending Interest Table (PIT) stores Interest packets that could not be served by

the CR, and were therefore forwarded upstream. An entry in the PIT consists of the

content name in the interest packet and the router interface that packet arrived on.

Subsequent interest packets for the same content, but received on different

interfaces of the CR, are maintained in the same PIT entry by adding the new

interface to the entry. The Forwarding Information Base (FIB) is similar to the IP

forwarding table; but since content can be simultaneously located at multiple

Chapter 1. Introduction and Background

7

locations, a FIB entry identifies multiple outgoing interfaces known to lead to

copies of the content.

Figure 1-3. Data Structure in CCN Nodes (taken from [22])

Content forwarded along the path between the providing and requesting nodes

is cached in the CS at intermediate CRs. Thus, subsequent requests for the same

object may be resolved by cached content at intermediate CRs serving an interest

packet, instead of forwarding the packet all the way to the original provider node

for the content. Furthermore, to control redundant upstream request traffic, interest

packets for the same content are suppressed at the first intermediate CR with a PIT

entry for that content. Details of the forwarding operation for Interest packets are

shown in Figure 1-4.

Chapter 1. Introduction and Background

8

Figure 1-4. Flow Chart for the CCN Node Forwarding Operation

Returning data packets are forwarded along all interfaces registered in the PIT

entry for that content; the PIT entry is purged; and an entry is made in the FIB for

the content and the interface off which the data packet arrived. Name resolution

and routing operations are thus amalgamated. Interest packets are routed (or

flooded, if there is no entry in the FIB for the content), while data packets piggyback

using the PIT entries.

1.2.3 Data-Oriented Network Architecture (DONA)

Naming. DONA uses globally unique, flat, self-certifying names for content. The

components of a name are <Principal: Label>, where Label (e.g., abc.html) is

chosen by the owner, while Principal is a cryptographic hash of the owner’s public

key. A name has no association with where its content is located. If that object were

moved to a different location, it would still retain the same name. In this respect, a

name is persistent and does not change due to mobility/migration. However, if the

owner of the object changes, the object name would have to change even though it

remains the same object with respect to its content, and in this more fundamental

respect names cannot be said to be truly persistent.

Chapter 1. Introduction and Background

9

Name Resolution. DONA uses name-based routing to locate the closest copy of

the content, using anycast service. Instead of DNS, it has Resolution Handlers

(RHs) which are similar to Content Routers in TRIAD. Every domain needs at least

one RH, similar to a local DNS server. The resolution system consists of two

operations: (a) FIND <P: L>, and (b) REGISTER <P: L>. The former is used to

locate content while the latter registers content. The REGISTER message is sent to

the local RH – determined in the same way that we locate the local DNS server.

Figure 1-5. FIND and REGISTER Operations (taken from [23])

Each RH maintains a registration table that stores the name and the next-hop

RH. The RH updates the registration table and sends the REGISTER message to its

upstream peers for global distribution. FIND messages are forwarded to the local

RH. If the content is within the local domain then the RH directs the client to the

content. If it is not, then the RH forwards the FIND to its upstream peers. RHs route

FIND messages to the closest copy, but the corresponding content packets use the

IP layer for forwarding. Both operations are shown in Figure 1-5.

Chapter 1. Introduction and Background

10

1.2.4 Publish Subscribe Internet Routing Paradigm (PSIRP)

Naming. PSIRP proposes an architecture in which Publish/Subscribe operations

are supported at every level (network level, application level, etc.). There are four

identifiers across the various levels of the architecture, as shown in Figure 1-6.

Figure 1-6. PSIRP Identifiers with Network Functionality (taken from [28])

Application Identifiers (AId): PSIRP gives applications the freedom to

provide application-specific names for content which are not globally unique.

Hence, any naming scheme can be mapped on to the PSIRP architecture, for

example, hierarchical naming as in CCN.

Rendezvous Identifiers (RId): These are flat identifiers which define content

(e.g., a file) in the network. For example, a PDF file would be assigned a unique

RId within a scope.

Scope Identifiers (SId): These are also flat identifiers which define

aggregations of RId objects. Content is uniquely identified globally by its RId

and the SId of the scope in which it resides. Hence, PSIRP has a “structured”

(two-level hierarchical) naming scheme at the global level. Scopes are

Chapter 1. Introduction and Background

11

analogous to network-oriented topologies, but are much richer since they can

designate not only IP-like physical scopes, e.g., a university campus, but also

logical scopes, e.g., Facebook friends, etc. Content can be published in multiple

scopes. The same content in different scopes will have a different SId (and

possibly RId). Thus, if content migrates it will have a different global Id,

rendering names at this level non-persistent.

Forwarding Identifiers (FId): These are flat identifiers which assist in routing

the content to the subscriber and are created dynamically when the name for a

given object is resolved.

Name Resolution. Published content is represented by RId’s. Content is published

(with meta-data pertaining to it included) within a scope represented by a SId. A

SId thus represents all the RId’s within the scope. For each scope, there is at least

one Rendezvous Node (RN) which is responsible for managing the scope’s RId’s.

These RId’s will potentially be in the billions, since each individual object is

assigned one. To achieve scalable reachability information, only the SId’s are

advertized, and not the individual RId’s. SId’s are advertized (published) at RNs

that are further upstream, e.g., the RNs of the service provider’s domain, and

intermediate domains until a Tier-1 RN is reached.

A subscriber interested in an item of published content will first need to acquire

a SId and RId for the item through search engines, similar to the way we search for

relevant website content today. To locate the item, a Subscription with the relevant

SId:RId:metadata is relayed to the local RN of the subscriber. If the subscriber is

within the same scope (local domain) as the item, then the RN will resolve the

Subscription. If not, the RN forwards the Subscription to the next RN upstream,

and this process continues recursively until the RN for the scope is found. This RN

will then initiate the path discovery between the publisher and subscriber.

Chapter 1. Introduction and Background

12

1.2.5 4WARD NetInf

Naming. NetInf names are persistent. An object is represented mainly at two levels:

Information Object (IO): Represents information about the object without any

association as to its location. Essentially, it is a name which is not topologically

bound to a location. It is the higher of the two levels.

Data Object (DO): The actual object itself or the bit-level representation of

that object.

Both information and data representations of an object are named using flat

identifiers. The components of an identifier are: a tag (to identify the object type);

an optional parameter that is a cryptographic hash of the owner's public key; and a

mandatory label which is unique.

Name Resolution. NetInf design incorporates flexibility by allowing several levels

of indirection before a name is resolved to its locater. It supports different types of

bindings which are maintained to inter-relate different representations of objects

and their locations: IO → IO, IO → DO, and DO → locaters. Thus, NetInf deals

with a lot of information that will be required to resolve an object name and find its

location. NetInf introduces the notion of Multiple Distributed Hash Tables

(MDHTs) [29] and Late Location Constructors (LLC) for intradomain name

resolution; and Resolution Exchange (REX) systems for global resolution. Due to

shortage of space, we only discuss the MDHT and REX.

As its name implies, a MDHT maintains several DHTs at various levels in an

Autonomous System (AS): Access Node HT; POP DHT; and AS DHT. The binding

of object to locater is replicated at each of these levels. Whenever an object name

is requested, it is looked up in the following order (see Figure 1-7): (a) Access Node

HT, (b) POP DHT, and (c) AS DHT. If the request is resolved at a lower level, it

does not need to be propagated upward. On the other hand, if it remains unresolved

Chapter 1. Introduction and Background

13

at the AS DHT level, then the object is not present in the domain, and the request

will be forwarded to the REX. MDHTs were chosen for the intradomain level

because they are highly scalable and, in a single AS setting, do not pose any issues

of mistrust or non-cooperation for key placement.

Figure 1-7. 4WARD NetInf Name Resolution at the Intradomain Level

(taken from [29])

MDHT is an intradomain solution. It requires global (interdomain) resolution

which is provided by the REXs. These are maintained by third parties, similar to

Top Level Domain (TLD) DNS servers. A resolution request not satisfied within

the AS will be forwarded to the corresponding REX which will either have the

binding or will contact other REXs for it. The REXs maintain all bindings for the

ASes under their responsibility. The REXs themselves can be implemented using,

for example, a DHT.

1.3 Discussion

The current Internet architecture is fundamentally oriented towards physical nodes:

“naming” involves providing unique identifiers to nodes, and “name resolution”

deals with locating them (and, ultimately, establishing routing paths to them).

Chapter 1. Introduction and Background

14

Thus, naming and name resolution are integrated. The main reason for this is IP

semantics, in which an address represents a single “locater-identifier” that both

names/identifies a node and gives its network location within the topology. The

dominance and ubiquity of the Internet tends to make it the “normative” standard

for network design. However, it is important to keep in mind that naming and name

resolution are two conceptually and logically distinct operations. ICN initiatives

make a clean break from IP-like semantics by focusing on naming and locating

network content rather than physical nodes. Furthermore, like all Future Internet

initiatives, ICN schemes support locater-identifier separation.

1.3.1 Naming

As mentioned earlier, names can be categorized as flat or hierarchical, and possess

certain properties such as persistence, aggregatability, human-readability, etc. In

general, flat names support persistence, while hierarchical names are inherently

aggregatable, and may be human-readable. Persistent names have the advantage of

inherently accommodating content mobility. Flat names, however, are not

aggregatable – this is a price that would have to be paid if one stringently insists on

having persistent names. Hierarchical names, because they are aggregatable, have

the potential advantage of in-built scalability. Scalability is thus a more acute

challenge for flat naming schemes, especially given the number of named objects

an ICN would have to support.

IP semantics makes names topologically bound. These names are consequently

non-persistent and are not immune to relocation/migration of the named object.

Most ICN initiatives propose topologically-independent names. They also lean

strongly towards using persistent names. NetInf and DONA use flat naming

schemes that are indeed persistent. PSIRP supports persistent names (AId’s) at the

application level. Hence, reference to an object name in, say, a webpage, would not

Chapter 1. Introduction and Background

15

have to be updated even if this referenced object moves to a new location. However,

the representation of this same object in terms of its (SId:RId) name would change

if the object were moved to a new scope, and hence is non-persistent with respect

to this level. PSIRP’s persistent AId names necessitate an extra resolution step (AId

→ SId:RId) which increases the complexity and impacts the scalability of the

resolution system. CCN uses hierarchical names precisely in order to support name

aggregation, and so relies on a hierarchical structure for name resolution. Content

with the same name can be advertized from any location in the network, so CCN

names are nevertheless topologically independent. Topological independence,

however, is only a necessary but not sufficient condition for persistence, and CCN

names are not persistent. For example, the globally-routable component of a CCN

name is typically an organizational ID which changes with the owner’s relocation

to a different organization; thus, the globally-routable component in the content

name would need to be replaced. On the other hand, CCN can be made to support

persistent names if this globally-routable component is made persistent (e.g., a

personal ID instead of an organizational ID). Finally, as previously mentioned,

TRIAD uses URL names, which are inherently non-persistent.

1.3.2 Name Resolution

The properties of a given ICN naming scheme (flat/hierarchical, persistence,

aggregatability, human-readability, and so on) directly impact the kind of name

resolution techniques that can be applied. The central concern of any name

resolution scheme in ICNs has to be scalability.

Scalability is already a dominant issue that threatens the current Internet, in

which, let it be recalled, “named objects” are IP networks and “name resolution”

corresponds to resolving IP network addresses. IP prefix aggregation has proven a

successful strategy to address scalability in the Internet; however, IP prefix

Chapter 1. Introduction and Background

16

disaggregation due to multihoming and traffic engineering has tended to counteract

this. Already in 2011, BGP routing tables maintained approximately 350,000+

entries and this number has risen quite rapidly in recent years. With ICNs the

problem will be magnified to the extent that the number of named objects will be

orders of magnitude larger. The more salient name resolution techniques presented

in the ICN literature are, in order of most scalable to least scalable: (a) DHTs (both

global, GDHT, and multi-level, MDHT); (b) hierarchically-structured techniques

analogous to the current DNS system (e.g., REX in NetInf); and (c) flooding.

Flat naming schemes yield a very large search space (especially for NetInf

which incorporates several additional bindings that burden the resolution system).

ICNs that need to resolve flat names tend to rely on structured networks (DHTs)

for more efficient searching. At the intradomain level, DHTs can resolve names in

constant time. NetInf's MDHT structure, for example, resolves names within an AS

in constant time.

Interdomain resolution with structured networks, such as DHTs, has been

viewed by some as the ideal scheme from the perspective of scalability, and is a

vigorous subject of debate in the research community [30]. While DHTs have the

property of being scalable in terms of the asymptotic growth rate for the system,

this comes at the cost of resolution latency. Moreover, a scalable DHT scheme for

the interdomain level (GDHT) would involve an increasingly large number of

nodes under distributed management. Due to the nature of flat-name resolution by

distributed hashing, the bindings for the flat object names of a given autonomous

system (AS) could be under the management of any number of other ASes, which

raises some disabling trust issues. While the PSIRP initiative does not specify how

SId’s are to be maintained and resolved at the interdomain level, PSIRP using

GDHT can be made to overcome the trust issue because it uses a two-level

hierarchical (SId:RId) naming scheme. Because a SId does not constitute the

Chapter 1. Introduction and Background

17

complete hashed object name, it can be assigned in such a way as to ensure that its

resolution bindings are maintained by a GDHT node within the AS to which the

object belongs. However, as already mentioned above, PSIRP’s (SId:RId) names

are not persistent.

In light of the trust issues outlined above, a GDHT scheme for NetInf-like

persistent flat names is not a viable option. Flat naming schemes preserving

persistence therefore resort to DNS-like solutions, e.g., the REX system in NetInf.

However, there are a more limited number of nodes responsible for resolution in

such systems as compared to GDHT, yielding a correspondingly much higher

number of bindings per node.

CCN’s design philosophy presupposes that, because of CR caching, requested

content is more likely to be found closer to the requesting node than further away,

and so it initially proposed using flooding to locate the closest copy. CCN has been

strongly critiqued for adopting this strategy as flooding is not a scalable option. A

variant of “pure” CCN has been proposed (to be implemented on top of IP) using

OSPF and BGP for content name prefix advertisement at the intradomain and

interdomain levels, respectively.

The role of names at the user-level, i.e., user perception, has not been effectively

addressed in ICN schemes. It is common behavior amongst users to memorize and

exchange object names, which mandates human-readable names. More

importantly, name resolution for human-readable names depends on whether these

names are required to be globally unique; if not, simple cryptographic hashing will

not suffice and additional resolution steps will be required. Some ICN schemes

(e.g., NetInf) propose metadata or keywords to identify objects, which is not a

satisfactory solution for the user-level. In this respect, ICN schemes that employ

URI names have an advantage in as much as they are both human-readable and do

not require additional resolution steps.

Chapter 1. Introduction and Background

18

Flat names are not aggregatable and therefore cannot be grouped according to

inherent mutual associations they might possess. If the current Internet model, in

which web pages reference multiple embedded objects, is considered, this lack of

associability is an extra burden on the resolution system: each flat name, though it

might refer to an object on the same server, needs to be individually explicitly

resolved. Hierarchical names for such objects, on the other hand, need only be

explicitly resolved once, since they would possess a common, globally-routable

name component that makes their mutual association explicit.

Our discussion on names and name resolution is summarized in Table I below.

Table I. Summary of Name and Name Resolution Techniques

1 4WARD NetInf addresses naming and name resolution at a “dictionary” layer which is

above the IP layer, while PSIRP addresses them at the Application (AId) and Network

Layers (RId and SId).

Chapter 1. Introduction and Background

19

Scalable mechanisms constitute a sine qua non for the success of ICN

architectures. It can be argued that aggregation, or some equivalent compaction

mechanism, is essential for scalability even for flat-naming schemes. Various data

structures have been advocated in the literature to that end. Probabilistic data

structures, such as Bloom filters for example, have been used to reduce the size of

routing tables by aggregating content names [31], and can also assist in controlling

flooding in CCN [32].

ICNs employ name resolution to find the location of the named content in order

to retrieve it: the locaters returned from the name resolution stage are used to

establish a path to the content. In principle, name resolution to locate the content

and building a path to that content could be accomplished as a single integrated

step. DONA and TRIAD do not attempt to do this because they rely on IP

forwarding to route to the content location. PSIRP also does not integrate name

resolution with routing in order not to overburden the RNs, which would then also

have to handle data packets as well as control packets that resolve subscriber

requests. It uses a separate Topology Function instead to build a path to the content.

NetInf does offer this integrated service as an option, but in practice prefers to keep

the two operations distinct in order to take advantage of different transfer protocols

for retrieving content. Like PSIRP, it also prefers not to direct content traffic

through the DHT resolution systems so as not to overwhelm them. CCN is the only

architecture which has an integrated name resolution and routing mechanism as a

central component of its design, using reverse-paths built during the name

resolution phase to retrieve data packets.

Chapter 1. Introduction and Background

20

1.4 Summary

This chapter provides the broad background to our thesis by presenting an overview

of ICNs in general, together with a taxonomy and brief survey of the various ICN

proposals from the perspective of naming and name resolution.

Our thesis works deals with forwarding in the specific context of the CCN

architecture. In Chapter 2 we give a detailed presentation of the related work in this

field, and provide the reader with an outline of the structure for the remainder of

the thesis.

21

Chapter 2

Forwarding in Content Centric Networks

2.1 Introduction

The work of this dissertation deals with forwarding in CCN. In this chapter, we

outline the related work in this field, and present an outline of the remainder of the

thesis.

First, we introduce the two basic forwarding strategies of CCN that are

commonly used in Section 2.2. In-network caching is a fundamental component of

ICN architectures in general, and of CCN in particular [33]. We therefore next

discuss CCN research that solely focuses on in-network caching in Section 2.3.

However, in-network caching is correlative to a forwarding strategy. Given a

capability for in-network caching, we need a forwarding strategy that makes use of

and leverages that capability; on the other hand, the dynamics of the forwarding

strategy tend to influence, where they do not actually fully determine, cache content

placement. In Section 2.4, we focus on research conducted on forwarding strategies,

for which we have identified two broad approaches. The first of these, which came

as a natural outgrowth of research into Content Distribution Networks, takes the

optimization of content placement in the in-network caches as its point of departure.

The focus and driving motivation is on the effective utilization of the caches.

Forwarding strategy then follows as a consequence of cache content placement and

distribution, aimed at leveraging the latter. The second approach takes the design of

the forwarding strategy itself as the starting point and attempts to enhance the

delivery of content to the user, leveraging in-network cache content along the way

Chapter 2. Forwarding in Content Centric Networks

22

as best it can. Cache content placement here is a consequence of the forwarding

strategy. Finally, in Section 2.5, we present an outline of the remainder of this

dissertation.

2.2 CCN Forwarding Strategies

From early on, two basic forwarding strategies were proposed for CCN: CCN-

Flooding came first, followed shortly by CCN-Publication. In CCN-Flooding,

interest packets are flooded into the network, and data packets are received in

response. These data packets are then used to populate the FIBs with routing

information. In contrast, CCN-Publication, which has since gained wide currency,

pre-populates the FIBs. Repository nodes advertize/publish the names of their

objects using an OSPF-like mechanism, by means of which routing information can

be derived to populate the FIBs.

Some authors, however, focusing on maximizing the usage of in-network cache

content, have adopted an approach in which there is no notion of maintaining FIBs

and use CCN-Flooding for every request. This version of CCN-Flooding, together

with CCN-Publication, can be viewed as opposite ends of a spectrum from the

perspective of how aggressively a CCN forwarding strategy might search for cached

content. CCN-Publication takes a minimalist approach. Essentially, it is similar to

IP forwarding, but with in-network caching along the path. CCN-Flooding, on the

other hand, both carries out an exhaustive search for cached and repository content,

and ubiquitously populates the in-network caches with the content it finds.

Chapter 2. Forwarding in Content Centric Networks

23

2.3 Research in In-network Caching

In the CCN literature, there is a considerable body of research that centers on in-

network caching as a primary, if not sole, concern, setting aside other aspects of

CCN such as, in particular, the forwarding strategy. The focus is on in-network

caching and issues related to maximizing its performance, such as cache location

in the network, cache replacement policy based upon content popularity, cache

storage size, content placement, and so on. Reference [34] is a performance study

examining the potential of in-network caching in CCN using BitTorrent user

request patterns running on real-world topologies. Reference [35] analyzes in-

network caching in CCN under various conditions, such as multiple topologies,

content popularity, cache replacement policies, and traffic patterns. In [36], the

authors argue that from a network operator perspective, the success of content-

oriented networks hinges on the performance of in-network caching. References

[37, 38] propose cache replacement policies which are based on content popularity.

Reference [37] analyzes and addresses the limitations of a Most Popular Content

cache replacement strategy. Reference [38] proposes a new replacement strategy

that achieves higher cache hit rates and less traffic compared to the traditional LRU

and LFU policies. Some authors put the efficiency of in-network caching – a

fundamental component of CCN, and of ICNs in general – into question. Reference

[39] concludes that cache storage should be placed only at the network edge.

Reference [40] questions the efficiency of universal in-network caching. It argues

for an approach that focuses on a strategic placement of caches in the network,

exploiting the concept of Betweenness Centrality of nodes in order to achieve better

gains. On the other hand, Reference [41] presents a case for larger cache storage

at nodes with higher degree (essentially, the core nodes). Reference [42] concludes

that a one-size-fits-all solution for cache storage allocation will never be optimal

Chapter 2. Forwarding in Content Centric Networks

24

for CCN as there are too many variables, such as network topology and content

request patterns, which have an impact on performance.

2.4 Research in Forwarding Strategy

Research in forwarding strategies is not always an exception to the trend that

privileges caches and content placement described in Section 2.3 above. The

research can be classified according to two broad approaches. In the first approach,

the primary focus is, again, on optimizing content placement in the caches.

Forwarding strategy is also a concern, but follows as a consequence of cache

content placement and distribution, and aims at better leveraging the latter. In [43,

44] content placement is dependent on the popularity of an object. In [44] popular

content is pushed towards the end users so that the latency and traffic generated to

retrieve such content is reduced. References [43, 44] focus on content placement

first, and then simply adopt CCN-Publication as a forwarding strategy, and thus

leverage on-path caches only. On the other hand, [45-47] leverage off-path caches.

They use hashing schemes, both to distribute cached content between caches within

the network, and to retrieve that content. The goal is to maximize utilization of

available cache storage capacity by eliminating redundant content, which

consequently reduces traffic as more requests will be resolved using in-network

caching.

The second approach takes the design of the forwarding strategy as its starting

point and attempts to enhance the delivery of content to the user, leveraging in-

network cache content along the way as best it can. In this approach, the placement

and distribution of cache content becomes a consequence of the way the forwarding

strategy operates. Caches are populated according to the content retrieved by the

forwarding strategy as that content weaves its way back to the requesting node. Our

work in this thesis falls squarely within this second approach.

Chapter 2. Forwarding in Content Centric Networks

25

Reference [48] explores the design space between an “exploration” approach

(flooding) on the one hand, and an “exploitation” approach (pre-populated FIBs)

on the other. The authors point out that having infinitely large FIBs is not possible

in real-world situations, and thus, flooding, despite its heavy cost, is unavoidable

in situations where no FIB entry is found for an object. They explore the

exploration-exploitation design space to analyze the tradeoffs between FIB size and

the frequency of flooding required.

Reference [49], by the same authors, on the other hand, also explores the

exploitation-exploration design space. The goal here, however, is to design a

dynamic forwarding strategy that leverages off-path caching. This is similar to what

we do in Chapter 4 where we also propose a forwarding strategy that explores the

potential afforded by off-path caching. Reference [49] implements a reinforcement

learning algorithm which is used to rank interfaces associated with “volatile” FIB

entries, i.e., FIB routing information pointing to content that was located in caches.

“Non-volatile” (regular) FIB entries typically point to the repositories that “own”

that content. Initially, requests for the first few chunks of an object are sent not only

to the repository (in order to guarantee data delivery), but are also flooded on other

interfaces in the hope of locating off-path content. This state of the forwarding

strategy is called exploration. If off-path cache content is found, the forwarding

strategy goes into the exploitation state, in which it uses the interface ranked best

amongst those pointing to off-path content, to forward subsequent interest requests

for the remaining chunks of the object. The exploration phase of the forwarding

strategy is thus critically dependent on objects being divided into chunks. The

strategy we present and analyze in Chapter 4 has different operational mechanisms

and does not impose this restriction. Furthermore, while [49] achieves its maximum

gain for larger cache sizes, our strategy works well also for under-provisioned

caches.

Chapter 2. Forwarding in Content Centric Networks

26

Reference [50] analyzes multipath forwarding strategies under various

conditions, such as network topology, cache size, cache replacement policy, content

popularity, etc. It assumes that an object can exist in multiple repositories. The FIBs

are pre-populated, and, for each repository holding a copy of the object, a FIB entry

may point to multiple shortest paths to that repository. The authors reach several

conclusions. For a given object, making use of multiple shortest paths to one single

repository yields better performance than using the available paths to all of the

multiple repositories. Consequently, if repository load reduction is not an issue,

then a single repository would suffice for the object. The only advantage, then, of

multipath forwarding to that repository is robustness in case of link failure. Finally,

they conclude that multipath forwarding strategies that complement single-path

routing with an added component of opportunistic exploration of a CCN

neighborhood is worth investigating. This is akin to what we do in Chapter 4.

Reference [51, 52] proposes an adaptive forwarding mechanism. The paper

highlights the benefits of maintaining in-network state information in CCN. This

information is utilized to make instantaneous decisions, thereby making the

adaptive forwarding mechanism resilient to changes in the state of the network,

such as congestion, packet loss, link failures, etc. The study assumes pre-populated

FIBs that maintain information on multiple interfaces towards a repository hosting

a given object. The interfaces are ranked according to selected criteria, such as

shortest path, fastest route, etc. While comparative evaluation of which criterion

works best is outside the purview of the study, the results show that the adaptive

forwarding mechanism can provide excellent performance in handling blackhole

hijacks, link failures, and network congestion.

Chapter 2. Forwarding in Content Centric Networks

27

2.5 Dissertation Outline

This dissertation deals with forwarding strategies in the specific context of CCN.

The outline of the thesis is as follows:

 In Chapter 3, we present a simulation-based performance study of

bandwidth consumption for CCN-Publication and a version of CCN-

Flooding that is used to populate the FIBs. The chapter is divided into two

sections.

In the first section, we study the bandwidth consumption of the CCN-

Flooding strategy. We also identify and analyze various issues pertaining to

its behavior, such as calibration of PIT timeouts; a PIT-induced isolation

effect that negatively impacts bandwidth consumption and system response

time; and the effects of adopting FIB routes based on volatile in-network

cache entries.

Due to the well-known drawbacks of a flooding-based approach in

computer networks, preference in the research community soon shifted to

CCN-Publication. However, performance studies in the relevant literature

do not take into account the bandwidth costs associated with pre-populating

the FIBs that a CCN-Publication approach entails. We analyze CCN-

Publication from a perspective that does take into account these bandwidth

costs, and compare that to CCN-Flooding.

The second section of the chapter focuses on the interplay between two

important components of CCN, caches and the Pending Interest Table

(PIT), under CCN-Publication. We show that the PIT aggregation effect

increases commensurately with both network load and the Betweenness

Centrality attribute of the network topology. While both PIT aggregation

and in-network caching contribute significantly to achieving savings in

Chapter 2. Forwarding in Content Centric Networks

28

network bandwidth consumption, they do not do so in an additive fashion.

As network load increases, gains from cache hits diminish and are replaced

by gains from PIT aggregation, without dramatically impacting the overall

level of savings achieved.

 In Chapter 4, we propose a new lightweight forwarding strategy for CCN.

One of the primary objectives of any forwarding strategy, on the one hand,

is to improve user experience by exploiting in-network caching, while

minimizing the associated costs on the other. To this effect, we compare the

new forwarding strategy against the well-established CCN-Publication and

CCN-Flooding strategies. The results show that the new strategy, which we

call CCN-FOH, provides for a better user experience while keeping its

overheads comparable to, if not better than, the less costly CCN-

Publication.

 In Chapter 5, we present future directions for our research and offer some

concluding remarks.

29

Chapter 3

Performance Study of CCN Forwarding Strategies:

CCN-Flooding and CCN-Publication

3.1 Introduction

In this chapter, we present simulation-derived results and observations on bandwidth

consumption in CCN networks with respect to a disparate set of issues that have not

received much attention in the research literature. We examine CCN under the two

well-known forwarding strategies, CCN-Flooding and CCN-Publication, using a

combination of several topologies and workload sets with differing characteristics.

As outlined in Section 2.2 of Chapter 2, there are two distinct versions of CCN-

Flooding presented in the research literature. One version – the version we deal with

in this chapter – defines CCN-Flooding essentially as a mechanism by which to

populate the FIBs. An interest packet that finds forwarding information in a FIB

follows the path designated by the FIB entry. In the absence of such a FIB entry, the

interest packet is instead flooded. FIBs are initially empty and interest packets are

therefore flooded. Over time, however, as data packets are returned from repository

nodes, they populate the FIBs along the return shortest paths to the requesting nodes

with forward routing information. Thus, this version of CCN-Flooding gradually

converges to CCN-Publication. The second version of CCN-Flooding, which we

adopt and further discuss in Chapter 4, uses flooding essentially to leverage off-path

content.

Chapter 3. Performance Study of CCN Forwarding Strategies

30

Not much attention has been given to overall network behavior under the CCN-

Flooding approach. Nevertheless, as a practical matter, a finite-sized FIB cannot

maintain entries for all objects in the system. When we do not have a “hit” in the

FIB for a given object request, the corresponding interest packet still needs to be

forwarded somehow. Flooding is therefore still maintained as a possible option to

handle such situations [48, 51]. Hence, we consider investigating CCN performance

under flooding to be worthy of some interest despite the generally deprecated status

associated with this approach. The first major theme of this chapter, presented in

Section 3.3, therefore will be to highlight and characterize some issues that arise

under the CCN-Flooding approach. But first, we present our experiment design

space and methodology in Section 3.2 with respect to the simulator we developed;

the topologies and workloads implemented, and their characteristics; cache

configurations; and performance metrics.

Under CCN-Flooding, populating the FIBs and making use of FIB entries to

forward interest packets are two aspects of a single, integrated dynamic. Studying

bandwidth consumption under CCN-Flooding consequently inherently accounts for

the bandwidth costs of populating the FIBs. This is not the case under CCN-

Publication, in which populating the FIBs via an OSPF-like mechanism on the one

hand, and forwarding interest packets by means of such pre-populated FIBs, on the

other, are two distinct stages. All studies we are aware of, to the extent that they

report on bandwidth consumption under CCN-Publication (e.g., [35, 48]), take a pre-

populated FIB as their starting point, ignoring the costs incurred by the OSPF-like

mechanism that provisions the FIB content in the first place. A second theme of this

chapter, therefore, is to present in Section 3.4 a comparison of the bandwidth

consumption associated with CCN-Flooding vs. CCN-Publication, taking into

account of the bandwidth cost of pre-populating the FIBs under the latter approach

so as to provide a meaningful comparison with the former.

Chapter 3. Performance Study of CCN Forwarding Strategies

31

The Pending Interest Table (PIT) is a vital component of the CCN architecture

(Subsection 1.2.2, Chapter 1), whereby second and subsequent interest packets

reaching a node at which there is a pending (i.e., still unsatisfied) request for the

same object are suppressed and the data packet for the object is then multicast back

to the requesting nodes when it arrives. This is the so-called PIT suppression or PIT

aggregation effect. However, the approach taken by the CCN-specific studies [34,

35, 41], all of which assume CCN-Publication, tends to isolate the in-network

caching behavior from the PIT aggregation effect. In [35], for example, simulations

are run in a congestion-free network; and in [34] the simulations are driven using

traditional IP-network packet-level traces and their results are post-processed to take

into account in-network caching. The PIT aggregation effect is not considered nor

taken into account in these studies. The third major theme of this chapter, presented

in Section 3.5, therefore is to investigate the effect of PIT aggregation and of Cache-

PIT dynamics under the CCN-Publication approach.

3.2 Experiment Design Space and Methodology

3.2.1 Simulator

We developed a simulator in JavaSim [53] to perform our experiments. The

following are some of the more salient features of our simulator.

– CCN data structures and operations are supported as described in [22] and

Subsection 1.2.2 of Chapter 1, unless otherwise noted below.

– Generation of new requests is Poisson. The generated interest packet is then

randomly assigned to an emitting node with equal probability. The object

associated with the interest packet is also randomly chosen with equal

probability.

Chapter 3. Performance Study of CCN Forwarding Strategies

32

– The specific data entity requested by an interest packet is either a single,

complete object or one chunk/segment of an object, depending on whether

we are simulating object-mode or chunk-mode operation.

– In the CCN-Publication approach, the forwarding strategy is to follow the

shortest path to the object. In the case of CCN-Flooding, the forwarding

strategy is to flood on all interfaces (excluding the interface on which the

interest packet was received) if there is no FIB entry for the object.

– In the CCN-Publication approach, FIBs are pre-populated based on the

shortest path to the owning node using Dijkstra's algorithm. In the CCN-

Flooding approach FIBs are only populated when an interest packet is

satisfied. More to the point, the interest packet must be satisfied from a node

that “owns” the requested object (i.e., repository). No FIB entry is made if

the object is fetched from an intermediate cache because: (a) cache content

is volatile; and (b) we discovered that FIB entries based on cache content can

lead to anomalous circuitous paths that are much longer than the shortest path

between the node requesting the data object and the owning node.

– There is no support for FIB entries directed towards multiple outgoing

interfaces.

– We do not implement CCN’s hierarchical naming conventions and security

aspects. Objects are given flat id numbers and FIB entries are based on these

object ids. It should be noted, however, that our results are not severely

impacted by the inability to aggregate names that a hierarchical naming

scheme would have allowed, and this for two reasons. Firstly, our study does

not focus on FIB size and we permit our FIBs to be provisioned with as many

object id entries as the CCN-Flooding and CCN-Publication approaches

supply. Secondly, under chunk-mode operation, a chunk is identified by the

Chapter 3. Performance Study of CCN Forwarding Strategies

33

2-tuple <object id, segment number>. In this case, a PIT entry for the chunk

consists of the full 2-tuple, but a FIB entry is based only on the object id.

– Cache replacement policy is LRU.

The architecture of a node in our simulator consists of a centralized processing

queue in which all arriving interest and data packets are placed in a first-come-first-

served order, including interest packets generated at that node. The processing

delay for each packet is set to a constant 0.1 time units. We assume that

transmission links have infinite bandwidth. Nevertheless, we have a link

propagation delay, also of 0.1 time units. This was introduced so that the flow of

packets in the network is temporally staggered, in order to avoid bulk point arrivals

of packets at a node. It should anyway be noted that our simulation methodology is

set up to focus on investigating bandwidth usage in a manner that is not coupled to

delays in the network.

3.2.2 Topologies

We consider four networks of which two are synthetically generated (using BRITE

[54]) and two are real-world. Their main topological characteristics are summarized

in Table II. The networks themselves are shown in Figure 3-1.

Table II. Characteristics of the Network Topologies

Nodes Type Structure |E|/|V| |D| cDC cSC cBC

39 Synthetic Core & Edge 1.05 5 0.21 0.63 0.41

51 Real-world Core 3.15 7 0.34 0.79 0.29

70 Real-world Core 5.071 3 0.78 0.89 0.22

100 Synthetic Core & Edge 2 6 0.08 0.24 0.10

|E|/|V| is the ratio of vertices to edges; |D| is the diameter; cDC, cSC & cBC are

centralized graph metrics.

Chapter 3. Performance Study of CCN Forwarding Strategies

34

Figure 3-1. 39-node (top-left), 51-node (top-right), 70-node (bottom-left),

and 100-node (bottom-right).

The illustrations are based on the Betweenness Centrality of nodes. The size of a node

is directly proportional to its BC value: nodes with larger sizes and brighter colors

(reddish) have higher Betweenness Centrality values, while ones with smaller size and

lighter colors (greenish) have the lowest.

The synthetic networks are the 39-node and 100-node. Both topologies

comprise a set of core CCN router nodes surrounded by a set of edge nodes that act

as gateway routers of stub user networks. Interest packets are generated only at the

edge nodes which are also the only nodes that can “own” data objects (i.e., an edge

node acts as the repository for the data objects residing at the user networks behind

it). The 39-node network comprises 8 core nodes that are almost like a ring, with

31 edge nodes hanging off it. For the 100-node topology we arbitrary designated

nodes of degree ≤ 2 as edge nodes and the rest as core nodes. The network thus

Chapter 3. Performance Study of CCN Forwarding Strategies

35

comprises 68 core nodes of degree ≥ 3 and 32 edge nodes which all happen to have

exactly degree 2 (there are no degree 1 nodes).

The real-world topologies are selected from the well-known collection of PoP-

level ISP maps generated using the Rocketfuel ISP topology mapping engine [55].

At this level, the topologies of the ISPs show only the gateway routers. Hence we

did not make a core-edge distinction between the nodes in these two networks. All

nodes in 51-node and 70-node act both as CCN routers and as “repository”

gateways to networks that generate user interest packets and own data objects. 51-

node is the ISP map of TW Telecom (AS 4323), located in the US; 70-node is the

ISP map of Deutsche Telekom (AS 3320) in Germany.

Figure 3-2 illustrates the key characteristics of the four networks in terms of

centralized metrics based on the following standard graph topology measures of

vertex centrality [56]: Degree Centrality (DC), Stress Centrality, and (Normalized)

Betweenness Centrality (nBC)1. These standard measures are calculated on a per

node basis. A single “centralization” metric that characterizes the network overall

can be derived from them using the approach proposed by Freeman [57]:

Centralized Degree Centrality (cDC). cDC is close to 0 for a network in which

each node has the same degree. It gets closer to 1 the more “imbalance” there is,

with fewer nodes of high degree and more with low degree, a star topology being

the extreme such case.

Centralized Stress Centrality (cSC). cSC is close to 0 for a network in which each

node has the same Stress Centrality. It gets closer to 1 the more imbalance that there

is, with fewer nodes having a high number of shortest paths going through them

1 nBC is a normalization of Betweenness Centrality (BC) across networks with different numbers

of nodes. It is obtained by uniformly dividing BCi (the BC for node i) by the number of pairs of

nodes in the topology, not including node i itself. This yields the rescaled measure, nBCi, for node

i.

Chapter 3. Performance Study of CCN Forwarding Strategies

36

and more nodes having fewer or none; again, a star topology is the extreme such

example. Thus, cSC measures the degree to which the totality of shortest paths in

the network pass through a subset of “choke-point” intermediate nodes, without

distinction as to the individual pairs of nodes connected by these paths.

Centralized Betweenness Centrality (cBC). cBC is close to 0 for a network in

which each node has the same Betweenness Centrality (i.e., shortest paths for pairs

of endpoint nodes are evenly spread, with no overlap between intermediate nodes

on the paths connecting the endpoint pair). It gets closer to 1 the more imbalance

there is, with increasingly fewer nodes lying along an increasingly higher

proportion of these pair-wise shortest paths; a star topology is again the extreme

such example. In distinction to cSC, cBC measures the degree to which shortest

paths for each pair of end nodes themselves pass through a subset of “choke point”

nodes.

The cDC of network 70-node is almost 0.8, implying that this topology has a

nexus of disproportionately high-degree nodes as compared to, for example, the

network 100-node for which the cDC value is close to 0, indicating that its nodes

have evenly distributed connectivity. This aspect of 70-node is further confirmed

by the high cSC value of 0.89. As shown by Figures 3-1 and 3-2, in 70-node four

nodes out of the total provide a disproportionate amount of the shortest-path

connectivity in the network. However, though a small subset of nodes are thus

acting as relays for a disproportionately large number of shortest paths, the

relatively low cBC value of 0.23 indicates that these paths are well-distributed

amongst this subset. Network 51-node displays some of the same general

characteristics as 70-node, though in a less sharply accentuated fashion, with a

subset of nine such relay nodes instead of just four.

Chapter 3. Performance Study of CCN Forwarding Strategies

37

Figure 3-2. Key Characteristics of the Network Topologies

The figure plots the Degree Centrality (DC) along the x-axis, and the normalized Betweeness

Centrality (nBC) along the y-axis. The z-axis gives the count of the number of nodes.

Figure 3-2 shows only the core nodes for networks 39-node and 100-node. Both

networks are servicing essentially the same number of edge nodes (31 and 32,

respectively). However, 39-node has only eight core nodes whereas 100-node has

several times that number. Not surprisingly, therefore, the core nodes of 39-node

are more central to network connectivity, as can be seen from its cSC and cBC

values. Overall, 100-node is the best balanced of our networks, which visually can

be directly perceived from Figures 3-1 and 3-2, and from its cSC and cBC values

which are the lowest across the four networks.

3.2.3 Traffic Generated

We use the GlobeTraff tool [58] to create a synthetic stream of traffic workload.

GlobeTraff is a derivative of ProWGen [59], which itself is a tool for generating

Chapter 3. Performance Study of CCN Forwarding Strategies

38

Web traffic. Essentially, GlobeTraff builds on ProWGen’s functionality, providing

additional traffic types such as P2P, Video, and “Other”. We used GlobeTraff to

generate four workload sets with different characteristics, as shown in Table III.

Table III. Workload Characteristics

Parameters Set 1 Set 2 Set 3 Set 4

Distribution α = 0.75

Zipf

α = 1.5

Zipf

α = 0.75

Zipf

k=0.513,

λ = 6010

Weibull

Number of Objects 54273 54273 18091 101

Object Median Size 10KB 10KB 10KB 5MB

Object Mean Size 10KB 10KB 10KB 10MB

Number of Requests 183682 177355 175696 174

Requests/Object 3.4 3.3 9.7 1.7

The traffic workload parameters are classified with respect to two criteria.

Content Popularity:

Object popularity is modeled by a Zipf distribution with parameter α. There is

general agreement that α has significant impact on overall system performance. But

there is no consensus as to appropriate α values for modeling various types of

traffic, such as web objects, UGC (YouTube-like User-Generated Content), P2P,

and VoD (Video on Demand). A wide range of values, α ∊ [0.6 , 2.5], are discussed

in [50]. For web-like objects, an α value in the range [0.64 , 0.83] is accepted as a

good approximation [60, 61]. The α values for our workload Sets 1 & 3 are selected

from within this range (α = 0.75). For Set 2, we double the α value to 1.5, keeping

the number of requests and objects approximately the same as in Set 1 in order to

investigate the effect of further biasing requests in favor of the more popular objects

of Set1. Set 3, on the other hand, is used to investigate a more intensive pattern of

requests over a smaller number of objects, by reducing the number of objects to a

third (from 54,273 to 18,091) as compared to Sets 1 & 2, but keeping the number

of requests approximately the same (175,696 ~ 183,682). Effectively, Set 3 issues

Chapter 3. Performance Study of CCN Forwarding Strategies

39

the same number of requests as Sets 1 & 2, but only over the subset constituting the

most popular, top third objects of Set 1.

As reported in [62], UGC traffic does not have a heavy tail, hence the Zipf

distribution only partly captures its popularity characteristics. Reference [62]

proposes either the Weibull or Gamma distributions. GlobeTraff implements both.

We chose the Weibull distribution with parameters k = 0.513 and λ = 6010 to

generate the UGC-traffic workload Set 4.

Content Characteristics:

We have configured the traffic workload to be of fixed size ~1.8GB to facilitate

performance comparison across the four sets. The sizes of the web-like objects in

Sets 1, 2 & 3 is modeled by the concatenation of the Lognormal (body) and Pareto

(tail) distributions [58] with a mean of 10KB [58, 63]. For the UGC workload Set

4, object sizes are modeled by a concatenated normal distribution [58] with mean

size 10MB [64]. We therefore reduce the number of objects (to 101) and requests

(to 174) in order to keep the overall workload size fixed at ~1.8GB. Furthermore,

objects in Set 4 are broken into chunks of size 10KB [35, 48], which enables us to

investigate the effects of chunk-mode operation in comparison to the object-mode

of Sets 1, 2 & 3. In studies comparable to our work (e.g., [48]) an object space of

10,000 objects is taken as adequate. As such, the ~54,000 objects for Sets 1 & 2,

and ~18,000 for Set 3 are well within precedent.

3.2.4 Cache Sizes and FIBs

Cache sizes are dimensioned as a percentage of the object space. As shown in Table

III, workload Sets 1 & 2 have 54,273 objects each of mean size 10KB, giving an

object space of 542 MB. For Set 3, the corresponding values are 18,091 objects,

10KB, and 180MB, respectively. For Set 4: 101 objects, 10MB, and 1GB. Whether

Chapter 3. Performance Study of CCN Forwarding Strategies

40

we are operating in object-mode or chunk-mode, a cache of size n represents a per-

node cache capacity of n×10KB, which we assume capable of caching n objects

(chunks) of average size 10KB each. For Sets 1 & 2, therefore, experiments

conducted with cache size 1,000 represent a per-node cache capacity of ~1.8% of

the object space (this quantity is also called the Cache/Catalog size). Similarly, for

Sets 3 & 4, cache size 1,000 represents Cache/Catalogue sizes of ~5% and ~1%,

respectively. Hence, Cache/Catalogue sizes in our study vary in the range [1.8% ,

5%]. Previous ICN studies used values of 0.25% [65], [0.5% , 20%] [66], and

[0.000001% , 1%] [67]. Our values are compatible with these.

3.2.5 Performance Metrics

In order to uniformly compare bandwidth consumption across topologies with

different characteristics, we adopt Path Stretch as our basic unit of performance.

Path Stretch is defined as:

Path Stretch = Hopstotal / Hopsshortest , where

Hopstotal = total number of hops that a packet travels in the network,

Hopsshortest = number of hops along the shortest path route between the

node originating an interest packet and the node which

owns the data object being requested.

Interest and data packets sizes vary by orders of magnitude the one from the

other, with a commensurate difference in the raw bandwidth each type consumes

per hop in the network. In order to keep this difference in view at all times, we use

Path Stretch to define distinct performance metrics for each of interest and data

packets as follows:

Chapter 3. Performance Study of CCN Forwarding Strategies

41

Expended Effort. Measures the Path Stretch for an interest packet (inclusive of

retransmissions and flooded “clones”). If the packet is following a FIB-defined

route right from the source node and does not need to be retransmitted, then its

Expended Effort will be 1 (as in an IP network). Values greater than 1 reflect extra

bandwidth consumed, expressed in terms of multiples of the bandwidth expenditure

for the end-to-end, shortest path.

Path Cost. Measures the Path Stretch for a data packet. A data packet originating

at the node which owns the data object will have Path Cost value 1. Values less

than 1 reflect situations in which the data object is fetched from a nearer cache.

Values greater than 1 imply that the object is satisfied from multiple locations

(caches) in response to a flooded request.

3.3 Results –– CCN-Flooding

3.3.1 Timeouts and Interest Packet Generation

The CCN architecture assumes that interest packets will be backed by timeouts so

that requests that remain unsatisfied in a lossy environment are retransmitted. PIT

timeouts are also necessary so that unsatisfied PIT entries are purged from the PIT

tables.

Preliminary experiments demonstrated that setting appropriate timeouts is a

particularly difficult and troublesome challenge, especially under the CCN-Flooding

approach. Clearly, an interest packet’s timeout needs to be set somewhat larger than

the timeouts for the PIT entries made at intermediate nodes by this interest packet.

On the one hand, this is so that retrieved data has a chance of reaching the requesting

node without getting suppressed along the way due to PIT entries prematurely

timing out. On the other hand, we do not want an interest packet to timeout before

its intermediate-nodes PIT entries have done so, otherwise the retransmitted interest

Chapter 3. Performance Study of CCN Forwarding Strategies

42

will simply be suppressed due to these original, unexpired PIT entries. Our

preliminary experiments made it clear that determining appropriate timeout values

is very topology-dependent. Different networks experiencing roughly the same

overall traffic load display wide variation in their RTT times. For example, shortest

paths in network 70-node, which has a diameter of only 3, are disproportionately

dependent on a very few number of central, high-degree nodes, as has been

mentioned above. These nodes experience rapid processing queue buildups

compared, for example, to the more “balanced” network 100-node. An appropriate

timeout value for the one network is by no means adequate for the other.

Furthermore, unlike TCP in the traditional Internet, CCN operation (at least in

object-mode, but less so in chunk-mode) does not provide relatively stable end-to-

end paths with a stream of outgoing and returning traffic by means of which we may

constantly evaluate RTTs for the path, dynamically adjusting timeout values

accordingly.

Since, as already mentioned, our simulation methodology is set up to focus on

investigating bandwidth usage in a manner that is not coupled to delays in the

network, we are able to bypass these difficulties in a manner which, while

presupposing some “oracular” knowledge of the state of the network, nevertheless

serves to uphold the purposes of our study. First, we dynamically adjust the

generation rate for new interest packets so as to keep the network load low (see

below). Timeouts for interest packets and PIT entries are then calculated

dynamically as follows. Define:

Qi = queue size at node i,

Qmax = max  nodes i (Qi), the queue size at the maximally congested node,

Tproc = packet processing time at a node,

Tprop = one-hop link propagation delay,

Chapter 3. Performance Study of CCN Forwarding Strategies

43

Tmax = ((Qmax + 1) × Tproc) + Tprop, the maximum one-hop delay.

The PIT timeout at a node is then defined as:

 PITTO = 2 × D × Tmax , where D is the network diameter.

The PIT entry timeout for a given interest packet is thus based on the RTT along

the network diameter path. This RTT is computed in terms of the queuing delay at

the maximally-congested node in the network at the instant when the interest packet

is generated. The timeout value loosely assumes that interest packets and their

corresponding data packets travel the full diameter of the network, through

maximally congested nodes at each hop. It does not adjust for the diminishing

remaining path distance as each of these packets progresses towards its destination.

The interest packet timeout is defined as:

iPKTTO = PITTO + η ,

where η is a small “safety margin” value added to make the interest packet timeout

larger than its PIT entry timeouts. These timeout values are quite conservative and

tend to maximize the chances that interest packets are satisfied by their

corresponding data packets without triggering off an undue number of spurious

timeouts and interest retransmissions.

Note that when interest packets are flooded, they create PIT entries all over the

network. In particular, these entries are created also in sectors of the network through

which encountered data would not be flowing back to satisfy the interest packets.

Yet if a node in such a sector happens to issue a request for the same object, its

interest packet would be immediately suppressed for the duration of the timeout of

the PIT entries made by the flooding packet, even though there is no chance that

data which consumes these PIT entries is going to flow through that sector of the

network. Thus, in the context of CCN-Flooding, an unintended consequence of

Chapter 3. Performance Study of CCN Forwarding Strategies

44

CCN’s PIT timeout mechanism is, in effect, to temporarily isolate sectors of the

network from receiving requested data in a timely manner when requests for this

data are already pending from other, non-intersecting sectors of the network.

Finally, the mean of the exponential inter-generation time distribution for new

interest packets is set to 1.0 time units (EM=1.0). The packet is then randomly

assigned to an emitting node. Initial experiments showed we had 10%-15%

retransmissions in the network due to the “isolation” effect of PIT timeouts

described above. In order to mitigate the spurious impact this has on bandwidth

consumption, we dynamically adjust the generation rate such that no packet is

generated if Qmax > 1 at the instant of generation.

3.3.2 Effect of Topology on Expended Effort

Figure 3-3 shows the Expended Effort for the four network topologies under the

Set 1 workload. A configuration of Cn_FIB / Cn_noFIB denotes a network with a

cache capacity of n objects (in object-mode; n chunks in chunk-mode) with FIBs

and with no FIBs implemented, respectively. C0_FIB / C0_noFIB denotes no

caching. Cinf represents the hypothetical case where we have caches of infinite

size2.

For each topology, we observe an expected general trend of improving

Expended Effort as we traverse through the configurations in each individual box

plot, from C0_noFIB (pure flooding) to Cinf. On the other hand, there is a

measurable increase in overall Expended Effort as we go from network 39-node, to

2 Under the CCN-Flooding approach for this hypothetical case of infinite-sized caches, an object

will have an entry in a node’s FIB if and only if a copy of that object also resides in the node’s

cache. Thus we talk of configuration “Cinf” with no distinction as to whether FIBs are implemented

or not since the presence of FIBs has no impact on performance. As will be seen below, the exception

to this is Set 4, for which infinite-sized caches with FIBs yield significantly lower Path Stretch than

without FIBs. The Cinf results given throughout the paper for Set 4 are therefore those for which

there is a FIB.

Chapter 3. Performance Study of CCN Forwarding Strategies

45

100-node and 51-node, and on to 70-node. As may have been anticipated, flooding

costs increase – in fact, disproportionately so – with the number of edges in the

network.

Figure 3-3. Box Plots for Expended Effort under Workload Set 1

The whiskers stretch to a maximum of 1.5 times the interquartile range

(IQR), which is represented by the height of the box.

A more detailed examination of the variation in Expended Effort seen in Figure

3-3 serves to highlight the contributing effect of secondary topological differences,

other than the number of edges. Consider the fact, for example, that even though

100-node has more edges than 51-node, its overall performance is somewhat better.

The average Expended Effort for the configurations of 100-node range from a high

of 76.57 to a low of 47.52; for 51-node, the corresponding values are 117.06 and

69.65. 51-node is a less “well-balanced” network than 100-node to the extent that

it has a smaller number of central nodes that support a higher proportion of shortest

paths, and which consequently are relatively more congested. The difficulty of

Chapter 3. Performance Study of CCN Forwarding Strategies

46

correctly calibrating PIT timeout values has been mentioned above. PIT timeouts

are more likely to be underestimated the more a node is congested, thereby

triggering interest packet retransmissions. We conjecture that the poorer

performance of 51-node compared to 100-node is due to this effect and the

consequent flooding cost of the interest packet retransmissions. This conjecture is

further buttressed when we consider 70-node, which has four highly congested

central nodes. Interest packet retransmissions yield the extremely high outlier

values seen in Figure 3-3, the most extreme case of which occurs for C0_FIB whose

mean and median Expended Effort are 293.91 and 286.5, respectively, but whose

outlier values (truncated at 2,500 in the figure) stretch to 3,899.

3.3.3 Effects of Non-volatile Entries in FIBs: Expended Effort

As mentioned before, volatile FIB entries can lead to routing anomalies. On the

other hand, the absence of volatile entries also causes anomalous behavior, with

respect to bandwidth consumption for certain types of workloads. To investigate

this anomalous behavior we limit our discussion in this subsection to 39-node and

51-node (whose topological characteristics are perhaps somewhat more

representative of networks in general than 70-node and 100-node).

Set 4 is a chunk-mode UGC traffic workload. This type of workload derives

maximum benefit from the FIBs: the retrieval of the first chunk of an object

populates the FIBs and, within one RTT, subsequent chunks benefit from this.

Intuitively, increasing the cache size should, in principle, have a positive impact

on performance. Figure 3-4, however, shows not only that this is not the case, but

that bandwidth consumption degrades with increasing cache size. The figure gives

the quantile-quantile (Q-Q) plots for the Expended Effort distributions under

configurations C100_FIB vs. C1000_FIB for each of 39-node and 51-node. It

clearly shows that bandwidth consumption increases with increased cache size. The

Chapter 3. Performance Study of CCN Forwarding Strategies

47

reason for this is straightforward. The larger the in-network caching capacity, the

more chance that a node requesting an object will find that object without having

to flood all the way to the owning node. Because we do not make volatile FIB

entries, the FIBs are consequently not populated by the returning data packets, and

all chunks of the object end up being retrieved by flooding. Analogous Q-Q plots

(not shown) for configurations C0_FIB vs. C100_FIB establish that the

corresponding Expended Effort CDFs are virtually identical, highlighting the fact

that no benefit was derived from adding in-network caching (representing ~0.1%

of the object space) to FIBs. On the other hand, Q-Q plots for C1000_FIB vs. Cinf

(also not shown) demonstrate a continuing degradation in performance of the type

observed in Figure 3-4 as the cache size is increased further.

Figure 3-4. Q-Q Plots for C1000_FIB vs. C100_FIB under Workload Set 4

3.3.4 In-network Caching and FIBs under CCN-Flooding:

Expended Effort

We first consider the worst case scenario for bandwidth consumption, given by the

C0_noFIB configuration (pure flooding). As is evident from Figures 3-5 and 3-6,

C0_noFIB has the worst Path Stretch across workload sets. Next, consider

configuration C0_FIB to observe the effects of introducing FIBs in the network.

Our experiments start with empty FIBs, which are then populated as requests are

Chapter 3. Performance Study of CCN Forwarding Strategies

48

issued using CCN-Flooding. The improvement in performance is quite apparent

irrespective of topology and workload.

Figure 3-5. CDFs for Expended Effort in Network 39-node

Under CCN-Flooding, caching, on the other hand, has limited impact on

Expended Effort. To illustrate this point, consider the extreme example of Cinf.

Trivially, an infinite-sized cache will provide the best cache hit ratio irrespective of

network topology or workload characteristics (for the case of Sets 1, 2 & 3; the

anomalous impact of caching on Set 4 has been dealt with in the preceding

subsection and is excluded from our discussions for the remainder of this chapter).

However, a request that does not locate its data object directly in its own source

node’s cache will cause an interest packet to be flooded, thereby, by and large,

entailing the full bandwidth cost of this flooding even though the data will be

encountered in the caches of very nearby routers.

Chapter 3. Performance Study of CCN Forwarding Strategies

49

Figure 3-6. Box Plots for Expended Effort in Network 51-node

This point can be seen from Figures 3-5 and 3-6 when we move from C0_FIB

to C1000_FIB, adding in-network caching to the system. While some improvement

in performance for Sets 1, 2 and 3 occurs, it is nowhere as marked as the

improvement achieved when FIBs were introduced. Lest it be thought that the

modest contribution of caching to Expended Effort performance is due to

inadequate cache size, consider the hypothetical Cinf case, which yields the

theoretical upper bound of system performance for Sets 1, 2 & 3. In going from

C1000_FIB to Cinf, we note relatively little improvement, though the specific

amount of benefit derived varies somewhat with topology and workload. From this

we may conclude that cache size 1,000 is broadly adequate from the perspective of

Expended Effort. Indeed, for Set 2 under both 39-node and 51-node, and for Set 1

under 51-node, one may even say that the networks are well-provisioned cache-

wise.

Chapter 3. Performance Study of CCN Forwarding Strategies

50

3.3.5 In-network Caching: Path Cost

The effect of in-network caching on retrieving data objects from caches closer to

the requesting node is well-attested in the literature. We call the Path Stretch

thereby achieved “Path Deflation” in order to distinguish it from our own Path Cost

metric. Path Deflation is shown by the red boxes in Figure 3-7, which presents the

case of C1000_FIB. In the context of CCN-Flooding, Path Deflation reflects the

Path Stretch for the copy of the data object retrieved from the nearest cache, which

could be an “off-path” cache, in the sense that it need not lie along the shortest path

route to the owning node. Because of flooding, multiple, replicate copies of the

object could be fetched from caches along other paths in the network. Path Cost

(blue boxes in Figure 3-7) is the overall bandwidth consumed in retrieving all

copies of the object, and therefore reflects the cost overhead for data packets

entailed by CCN-Flooding. As seen from the figure, Path Cost > Path Deflation.

This is true for all workloads, in all four topologies, under all configurations.

Figure 3-7. Box Plots for C1000_FIB: Path Cost (blue) vs. Path Deflation (red)

As expected, Path Deflation improves the more “cache-friendly” the workload

(compare the red boxes for Set 1 vs. Sets 2 & 3, for each of 39-node & 51-node).

The same cannot be said in general for Path Cost, for which topological traits come

into play. There is not much overall difference, for example, between Sets 1 & 3

(blue boxes) for 51-node despite their distinct distributional characteristics

Chapter 3. Performance Study of CCN Forwarding Strategies

51

(averages: 1.42 vs. 1.54, respectively; medians: 1 vs. 1; 95th quantiles: 4 vs. 5.34;

standard deviations: 1.83 vs. 2.32).

3.4 Results –– CCN-Flooding vs. CCN-Publication

In this section, we briefly compare some aspects of bandwidth consumption under

CCN-Flooding and CCN-Publication. As previously mentioned, there is no FIB

information at the start of the simulation for CCN-Flooding. During the simulation,

the FIBs are populated over time as data packets are satisfied by “owning” nodes.

Thus, CCN-Flooding accounts for the bandwidth costs incurred in populating the

FIBs. A direct comparison with CCN-Publication therefore necessitates that we

also account for the cost of pre-populating FIBs in the latter. We do so by

calculating that cost and amortizing it over interest packets. In doing so, we assume

that only one named object is advertized per “publication” packet and that these

publication packets are roughly of the same size as interest packets. The

amortization is done on a per-object basis: in other words, the cost of publicizing a

given object is evenly amortized across the requests (interest packets) for that

particular object. This makes the overhead OSPF costs cheaper for a request

targeting a more popular object than for a request targeting a less popular one. Our

results are presented for the 39-node and 51-node networks under the C1000

configuration in Figures. 3-8 and 3-9.

Figure 3-8 gives the Expended Effort for CCN-Flooding vs. CCN-Publication.

The results could well have been anticipated: by and large, interest packets expend

less bandwidth in locating data objects under CCN-Publication than CCN-

Flooding, even when the OSPF “set-up” costs of the former are taken into account.

The interesting point, however, is that for 39-node in particular, the cost differential

is perhaps less than one might have expected. Indeed, for the more cache-friendly

workload Sets 2 and 3, the median cost under CCN-Flooding is actually less than

Chapter 3. Performance Study of CCN Forwarding Strategies

52

under CCN-Publication. Furthermore, of the four topologies, 39-node, though

synthetically derived, perhaps comes closest to what a “typical”

small ISP/backbone might look like, having core-edge separation in which 31

repository/gateway edge nodes are evenly distributed around a core of 8 non-

repository router nodes.

Figure 3-8. Box Plots for Expended Effort: CCN-Flooding vs. CCN-Publication

under C1000 Configuration

These results, of course, have to be treated with a certain amount of caution.

They are dominated by the amortized cost of populating the FIBs under CCN-

Publication. The specific number of requests for a given object therefore

significantly affects the bandwidth cost entailed in requesting and retrieving that

object. Smaller or larger workloads (i.e., with fewer or more requests over the same

number of objects) will have significant bearing on the results obtained, as well as

the other assumptions underlying these OSPF set-up costs (e.g, one named object

is advertized per publication packet; publication packets are roughly the same size

Chapter 3. Performance Study of CCN Forwarding Strategies

53

as interest packets; etc.). Nevertheless, our results at least serve to indicate that the

issue perhaps could merit further investigation.

Figure 3-9. Box Plots for Path Cost: CCN-Flooding vs. CCN-Publication under

C1000 Configuration

Figure 3-9 gives the Path Cost for CCN-Flooding vs. CCN-Publication and

clearly shows that less bandwidth is expended in fetching data objects under CCN-

Publication than under CCN-Flooding. One of the advantages of CCN-Flooding

cited by its proponents is that it is able to locate copies of the data in caches that are

off the shortest path and potentially closer to the requesting node, unlike CCN-

Publication under which objects are satisfied from caches along the shortest path

route only. While this might well be the case and of advantage in improving

delivery performance [48], it is also clear that because CCN-Flooding fetches

multiple copies of the data from wherever it finds them, off-path caching does not

yield any bandwidth savings benefit. As seen from Figure 3-9, Path Cost values

greater than 1, indicating that multiple copies of the object were received from

Chapter 3. Performance Study of CCN Forwarding Strategies

54

multiple locations along various paths, are not uncommon. Finally, it is perhaps

worth noting from the figure that the bandwidth cost differential between CCN-

Flooding and CCN-Publication for 39-node, while clearly in favor of the latter, is

less than the corresponding cost differential for the two approaches in 51-node.

3.5 Results –– CCN-Publication

The focus of our attention in this section will be Cache-PIT dynamics under CCN-

Publication. For simplicity, we assume a loss-free environment which obviates the

need for interest packet and PIT timeouts, with all the inherent calibration issues that

these entail.

PIT aggregation occurs when an interest packet requesting an object is

suppressed at an intermediate node because there is already a pending PIT entry

generated by a previous interest packet for that same object. More to the point, PIT

aggregation is only possible if second and subsequent interest packets arrive within

an RTT of the one that created the PIT entry. Thus, to achieve a discernible PIT

aggregation effect, we need to generate interest packets at a high rate so that more

interest packets overlap within a single RTT. On the other hand, increasing the

generation rate increases queue buildup and congestion at the nodes, which will

increase network RTT and thereby accentuate the PIT aggregation effect.

To observe the PIT aggregation effect, we set the mean of the exponential inter-

generation time distribution to 0.025 time units (EM=0.025). The networks are

significantly congested at this generation rate, with traffic intensities for the most

central, congested nodes reaching 0.99 in all four topologies. We call this the

“congested network” scenario, as compared to the “non-congested” scenario for

which EM=1.0, yielding traffic intensities at the nodes under 0.1 for all topologies

and workload sets.

Chapter 3. Performance Study of CCN Forwarding Strategies

55

3.5.1 PIT Aggregation: Topological Considerations

Figure 3-10 shows the Expended Effort for the four network topologies under

workload Set 1 with EM=0.025, and a PIT but no caching, so as to further highlight

the PIT aggregation effect.

Figure 3-10. CDFs and Box Plots for the Congested Network Scenario with a PIT

but no Caching: Workload Set 1

A pattern of decreasing benefit derived from PIT aggregation may be observed

as we move from the 39-node topology, to 51-node, 70-node, and 100-node, in that

order. As may be seen from the CDF plots of Figure 3-10, the proportion of requests

that retrieve their objects from owning nodes (i.e., Path Stretch = 1) are: 0.50 (39-

node), 0.72 (51-node), 0.78 (70-node), and 0.83 (100-node). Average Expended

Effort, of course, follows the same pattern, increasing monotonically from a value

of 0.66 for 39-node, which is leveraging the PIT the most effectively, to 0.93 for

100-node, which leverages it the least. While Figure 3-10 shows the results only

for workload Set 1, this pattern is consistent across workload Sets 2 and 3 as well.

This trend relates directly to the cBC values in Table II. 39-node has the highest

cBC value (0.41) amongst the four networks. This cBC value reflects the relative

imbalance in 39-node of having a higher proportion of shortest paths passing

through a smaller subset of central nodes. There is a further aspect of 39-node which

enables it to better leverage PIT aggregation benefits. 39-node has core-edge

separation, where 31 edge nodes are connected to a small core of 8 nodes. Thus,

Chapter 3. Performance Study of CCN Forwarding Strategies

56

when the network is congested, these core nodes act as effective points for PIT

aggregation. For 51-node and 70-node, the smaller cBC values of 0.29 and 0.22

indicate that shortest path are more evenly distributed amongst intermediate central

nodes. Even though only one path is selected to populate the FIBs out of possibly

multiple shortest paths connecting a given pairs of nodes, all things being equal FIB

shortest paths will nevertheless be more dispersed amongst the central nodes. This

will essentially attenuate the potential for PIT aggregation. Of the four networks,

100-node has the most evenly distributed shortest paths over central nodes, and

consequently leverages the least from PIT aggregation.

Figure 3-11. Bar Charts for the Number of Hops Expended with PIT but no Caching

The figure gives a set of bar charts for each of 39-node, 51-node, 70-node & 100-node. There

are two bar plots for each of workload Sets 1, 2 & 3. The first is for a generation rate EM=1.0

and the second for EM=0.025. An individual bar is calculated based on the total number of

hops expended in an IP network for the corresponding workload set, and gives the

percentage of this base number that is expended in the CCN-Publication network due to: (i)

going the full path to the owning node to fetch the requested object (Repository); and (ii)

fetching the object by means of PIT aggregation. Also shown is the percentage of hops thus

saved as compared to the IP network base value due to: (iii) PIT aggregation (Saved PIT).

Chapter 3. Performance Study of CCN Forwarding Strategies

57

Lower Expended Effort, used as a direct measure of bandwidth expenditure and

savings, can be misleading – the more so for networks with small diameters. For

example, 70-node has a diameter of only 3; it also has many nodes with significant

degree, as reflected by its cDC value of 0.7886. Requests satisfied from owning

nodes only 1-hop away from the requesting nodes nevertheless contribute a Path

Stretch of 1. In Figure 3-11, we compare the number of hops saved over an entire

workload set as a percentage of the hops expended in a shortest-path IP network

(i.e., with no PITs). The bars in the figure corresponding to EM=0.025 confirm that

39-node saves the most hops, followed by 51-node, 70-node, and 100-node, in that

order, for all three workload sets. Note, incidentally, that the bars corresponding to

EM=1.0 (non-congested scenario) show virtually no savings from PIT aggregation.

3.5.2 Cache-PIT Interplay

Figure 3-12. Bar Charts for the Number of Hops Expended under C100 and

C1000 for 39-node and 51-node

This figure is similar to Figure 3-11 but also gives the percentages of the number of

hops: (a) expended by requests satisfied due to cache hits under CCN-Publication; and

thus, (b) saved due to these cache hits, as compared to the IP network base value.

Chapter 3. Performance Study of CCN Forwarding Strategies

58

To elucidate the Cache-PIT relationship, we consider configurations with cache

sizes equal to 100 (C100) and 1000 (C1000) objects. Figure 3-12 compares 39-node

and 51-node under congested and non-congested scenarios across the workload

sets, for configurations C100 and C1000.

Focusing on the lower two sets of bar charts in Figure 3-12, which are for

C1000, we compare the pair of bars for EM=1.0 and EM=0.025 for each workload

set in turn, for both 39-node and 51-node. There is no significant change in the

overall savings achieved between the non-congested and congested network

scenarios for a given workload set in a given topology. Rather, what happens in

going from the one scenario to the other is that gain achieved by cache hits in the

non-congested case are substituted for by a roughly equal amount of gain achieved

by PIT aggregation in the congested case. It thus becomes quite apparent that gains

from PIT aggregation and cache hits are not additive but rather somewhat alternates

for each other. In the upper two sets of bar charts, for C100, while some extra hop

savings are achieved in going from the non-congested to the congested scenarios,

nevertheless the same phenomenon prevails overall: gains from PIT aggregation by

and large replace gains from cache hits, though not in a proportionate fashion, thus

leading to some extra savings. For a given network serving the pattern of requests

defined by a given workload under non-congested conditions (i.e., these requests

are issued at a low generation rate), RTTs are shorter and subsequent requests for

the same object are more likely to find earlier requests for that object already

satisfied, thereby both nullifying the opportunity for PIT aggregation and

increasing the chances of locating the object in a cache. Under congested

conditions, RTTs are longer, earlier requests for the object are more likely still to

be pending, thereby both decreasing the probability of having the caches populated

with that object and increasing the opportunity for PIT aggregation. Thus, in

moving from non-congested to congested, cache hits become less and PIT

Chapter 3. Performance Study of CCN Forwarding Strategies

59

aggregation becomes more likely, with the latter acting as a sort of “compensatory”

mechanism for “gains” deficiencies caused by “inadequately” populated caches.

When we compare C100 to C1000 in Figure 3-12 for a given workload in a

given topology under the congested network scenario, we note that the amount of

hops saved by PIT aggregation decreases, while hops saved due to cache hits

increases. This hold true across all workload sets for both topologies. It becomes

apparent that increasing cache size does not dramatically improve overall savings:

hops saved by PITs are replaced by hops saved by caches. Better-provisioned

caches increase the chances of locating the desired object through a cache hit, which

simultaneously obviates the possibility of having a pending PIT request at that node

for the object.

3.6 Summary

In this chapter we presented simulation-derived results and observations on a

disparate set of issues related to CCN networks. These issues come together to the

extent that they all relate to bandwidth consumption on the one hand, and have not

received much attention in the current literature, on the other. We examined both the

CCN-Flooding approach and the more current CCN-Publication approach.

For CCN-Flooding we identified and reported on the following issues:

– Proper calibration of PIT timeouts is sensitive to topology and inherently

difficult. This observation also holds for CCN-Publication, but has graver

consequences for CCN-Flooding.

– Flooded interest packets create PIT entries all over the network causing

sectors of the network that do not lie along the paths of the returning data

objects to become isolated for the duration of the PIT entries with respect

Chapter 3. Performance Study of CCN Forwarding Strategies

60

to new requests for these same objects, due to the PIT suppression effect.

This triggers off spurious interest packet timeouts and bandwidth wastage.

– FIB routes based on volatile cache content can create circuitous paths.

However, if they are disallowed then performance degrades in a different

way: an object satisfied from a cache does not create a FIB entry and

subsequent requests for the object will flood, consuming extra bandwidth.

It is worth pointing out that the issues identified with CCN-Flooding in this

chapter are applicable to the version of CCN-Flooding used in Chapter 4. The latter

is a far more aggressive version of the strategy since it does not maintain any FIB

tables. All requests are therefore flooded in the network. All issues identified here

are further magnified for the CCN-Flooding version used in Chapter 4.

For CCN-Publication, we focused on PIT-cache dynamics and showed that the

PIT aggregation effect increases commensurately with both network load and the

Betweenness Centrality attribute of the topology. While both PIT aggregation and

in-network caching contribute significantly to achieving bandwidth savings, they do

not do so in an additive fashion. As traffic load increases, enhanced gains from PIT

aggregation tend to, by and large, replace diminishing gains from cache hits.

We also examined bandwidth consumption in CCN-Flooding vs. CCN-

Publication with the overhead bandwidth costs of pre-populating FIBs using OSPF-

like mechanisms in the latter approach taken into account. We find that, whatever

advantages off-path caching might offer for improved system delivery performance

under CCN-Flooding, these come at the expense of increased bandwidth

consumption as compared to CCN-Publication.

61

Chapter 4

CCN-FOH: A Lightweight Forwarding Strategy

4.1 Introduction

A primary objective of any CCN forwarding strategy is to improve user experience

by exploiting in-network caching on the one hand, while minimizing the associated

costs on the other. To this effect, CCN-Publication implies an extremely

conservative approach to in-network caching. Essentially, it performs like IP

forwarding, but with on-path caching along the way. It does not attempt to seek the

closest available in-network cached copy of the content. CCN-Flooding, on the

other hand, has the potential to do so. Because the focus here is on enhancing the

user experience by leveraging in-network cached content, the version of CCN-

Flooding we adopt is different from that of Chapter 3. The Chapter 3 version uses

flooding as a mechanism only to locate content and populate the FIBs with routing

information when such routing information happens to be unavailable. The version

of CCN-Flooding used here does not maintain or use FIB entries. It uses flooding

for every request. Thus, with every request, it carries out an exhaustive search for

cached and repository content, and ubiquitously populates the in-network caches

with the content it finds. In this respect, CCN-Flooding leverages off-path caches

and pulls content closer to requesting nodes very effectively, and will always locate

and retrieve the closest copy of the content.

It might seem upon superficial consideration that an aggressive strategy such as

CCN-Flooding should prove more beneficial to user experience than the minimalist

approach of CCN-Publication. However, on careful analysis, it becomes apparent

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

62

that this is not necessarily the case. We briefly present results in Table IV that

compare CCN-Publication and CCN-Flooding in this context. They are derived

from simulations of a 154-node network3 using a cache-friendly workload4 with

c0.1p5 cache size.

Table IV: CCN-Publication vs. CCN-Flooding

Initially, let us examine Average Cache Hits per Request (AvgHits/Req) and

Nearness. AvgHits/Req provides a metric by which we can measure both: (a) how

widespread the search for cache content is; and (b) how pervasively we populate

the caches themselves6. Table IV shows that AvgHit/Req for CCN-Flooding is

more than twelve times (9.35/0.74) greater than CCN-Publication. Typically, the

more copies located per request, the better the chances of finding content closer to

the requesting node, which is measured using Nearness. The Nearness value for

CCN-Flooding in Table IV indicates that data packets of the nearest-located object

3 It contains 154 nodes of which 123 are edge nodes and 31 are core nodes. The edge nodes perform

the function of consumers (requesting nodes) and producers (repositories). See Subsection 4.3.2 for

further details.
4 Interest requests are generated using a Zipf-Mandlebrot distribution with α = 1.5 for the object

requested, from a total object space of 10,000. See Subsection 4.3.3 below for details.
5 A cache size of “cXp” indicates that the cache can hold up to X% of the objects in the total object

space.
6 (a) & (b) are tightly coupled given that the search strategy tends to directly impact how caches are

populated with content.

Metrics
Cache Size (c0.1p)

CCN-Publication CCN-Flooding

AvgHits/Req 0.74 9.35

Nearness 100% 77.88%

AvgTIHops/Req 100% 5329.45%

AvgTDHops/Req 100% 541.68%

AvgRT/Req 100% 215.6%

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

63

satisfying an interest request travelled, on average, 77.88% of the number of hops

traversed under CCN-Publication. Thus, for c0.1p caches, which we consider to be

under-provisioned cache sizes in this context, CCN-Flooding does succeed in

bringing content closer compared to CCN-Publication. In terms of Nearness, CCN-

Flooding clearly out performed CCN-Publication.

From the perspective of user experience and bandwidth costs, however, the

situation may be entirely different. We measure user experience in terms of the

Average Response Time per Request (AvgRT/Req). Bandwidth costs for interest

packets are measured as the Average Total Interest Hops per Request

(AvgTIHops/Req); for data packets we use the Average Total Data Hops per

Request (AvgTDHops/Req)7. The costs of retrieving multiple copies from caches

and having content closer in CCN-Flooding does not come cheaply. Nearness does

not necessarily improve the user experience given the network overheads entailed.

For example, Table IV shows that even though CCN-Flooding retrieves content

closer, its bandwidth costs, 5,329.45% and 541.68% for AvgTIHops/Req and

AvgTDHops/Req, respectively, are significantly higher than CCN-Publication. The

AvgRT/Req for CCN-Flooding is also 215.6% that of CCN-Publication. Therefore,

CCN-Flooding’s success in bringing content closer comes at such exorbitant cost

in terms of network resources and congestion that overall user experience decidedly

degrades in this instance. We may conclude that, if user experience is the

determinant criterion for a strategy’s success, getting content closer is not

necessarily advantageous. From this perspective, CCN-Publication significantly

outperformed CCN-Flooding.

7 Interest and data packets vary by an order of magnitude the one from the other, with a

commensurate difference in the raw bandwidth each type consumes per hop in the network, so we

use a separate metric for each.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

64

CCN-Publication and CCN-Flooding may be viewed as two ends of a spectrum.

CCN-Publication has low bandwidth costs but is not very effective in provisioning

and leveraging cache content. CCN-Flooding, on the other hand, provisions and

locates cache content in a pervasive manner, but at high bandwidth cost. In this

chapter we present a new lightweight forwarding strategy, and compare it to CCN-

Publication and CCN-Flooding. The new strategy is an extension of CCN-

Publication that assimilates some of the positive attributes of CCN-Flooding, but

in a balanced manner. It improves on CCN-Publication by leveraging the presence

of in-network cache content more effectively, without entailing the high costs

associated with CCN-Flooding’s all-pervasive approach. The chapter is structured

as follows. Section 4.2 introduces the new CCN forwarding strategy. Section 4.3,

describes our experiment design space and methodology. Section 4.4 presents our

results and discussion.

4.2 New Forwarding Strategy: CCN-FOH

The design of the new forwarding strategy is grounded in two principles. The first,

which follows from CCN-Flooding, is to enhance the exploration of caches, at least

as compared to CCN-Publication. The more extensive the search space, the higher

the chances of locating content closer, especially when we have small-sized caches.

The second principle is to keep the costs entailed by the first principle manageable,

so that user experience response time is improved, or, at the very least, does not

degrade.

The new forwarding strategy is built as an extension to CCN-Publication. In

addition to forwarding an interest packet along the shortest path to the repository

of the requested object, the new strategy also explores the immediate, 1-hop

neighbors of each node along that path. At each hop along this shortest path, we

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

65

“flood” a special “exploration” interest packet8 on all interfaces excluding: (a) the

interface on which the original interest packet was received; and (b) the interface

on which the original interest packet will be relayed forward along the shortest path.

The exploration packet, when received at the neighboring node, will experience one

of three possible outcomes: (1) it will find the content, in which case a data packet

will be sent back, and this cache hit will be accounted for as an off-path cache hit;

(2) it will find a PIT entry for this object, in which case, we will update the PIT

entry with the incoming interface of the exploration packet, and when the PIT entry

is satisfied a data packet will be created, and this request will be recorded as

satisfied by the PIT; or (3) it will not find the content in the cache or a PIT entry

for the object, in which case the exploration packet is terminated. It is worth

stressing that in outcome (3) the exploration packet does not create new PIT entries

(this is a point we shall return to in Subsection 4.4.4 below). However, as mentioned

in outcome (2), exploration packets do take advantage of the PIT mechanism if a

PIT entry is already present.

In case of a cache hit from an exploration packet, the corresponding data packet

returning to the requesting node will consume all the PIT entries created by the

original interest packet at nodes along the shortest path that it had traversed up to

that point. This interest packet, on the other hand, continues its journey to the

repository and will ultimately cause a corresponding data packet to be generated.

This data packet will eventually be suppressed downstream as all the PIT entries

beyond a certain point on the return path will have been consumed by the data

packet created by the exploration packet. If exploration packets do not find any

8 No such packet is flooded from the last node, one hop away from the repository, which would be

pointless.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

66

cache hits then the new forwarding strategy behaves exactly the same as CCN-

Publication. We call our new forwarding strategy CCN-FOH (“Flood One Hop”).

4.3 Experiment Design Space and Methodology

This is a simulation-based study in which, unlike Chapter 3, we use the CCN

simulator ndnSIM [68] to perform our experiments. Similar to Chapter 3, however,

the experiments implement a varied set of topologies (both synthetic and real-

world) with distinct topological attributes (Subsection 4.3.2), running two workload

sets of different and contrasting characteristics (Subsection 4.3.3), using different

cache sizes (Subsection 4.3.4).

4.3.1 Simulator

CCN-Flooding and CCN-Publication are implemented in the pre-packaged version

of ndnSIM [68], where they are referred to as “flooding” and “best route”,

respectively. To conduct our experiments, we have extended ndnSIM’s

functionality. We briefly highlight a few of these extended features:

– CCN-FOH and its variants are implemented as separate forwarding

strategies.

– The “NDN-Consumer-Zipf-Mandelbrot” application is modified:

 We create prefix strings, denoting the name of the requesting object along

with the name of the repository node at which it resides, by mapping the

object id generated by the application to that of the repository. For

example, if we request object id “5” which resides on repository node

“60” then the prefix string will be “60/5”.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

67

 Objects are randomly distributed across requesting/repository (edge)

nodes.

 The retransmission mechanism has been modified to take account of these

changes.

– We have made the following modifications to collect more refined statistics:

 PIT data structure is extended. In addition to the incoming interface of an

interest packet, the PIT also stores the requesting node, nonce value, and

introduces a strategy bit.

 We implemented two new tracers. The first tracer, called the “main-

tracer”, keeps track of the entire history of all Interest and data packets at

each hop. The second tracer, called the “cs-eviction-tracer”, counts the

number of times an object has been evicted from a cache.

 We created several packet tags which aid in statistics collection.

4.3.2 Topologies

We use four network topologies which overlap with those of Chapter 3 (Subsection

3.2.2), but here we maintain core-edge separation for all four. Thus, the topologies

comprise a set of core CCN router nodes surrounded by a set of edge nodes that act

as gateway routers of stub user networks. Interest packets are generated only at the

edge nodes which are also the only nodes that can “own” data objects (i.e., an edge

node acts as the repository for the data objects residing at the user network(s) behind

it). The four topologies consist of the synthetically generated 39-node and 100-node

networks (using BRITE [54]), and the real-world 51-node network. In place of the

real-world 70-node network of Chapter 3, we introduce a new (real-world) 154-node

network. We summarize the main topological characteristics of the four networks in

Table V, and show the networks themselves in Figure 4-1.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

68

Table V. Characteristics of the Network Topologies

Nodes Type |E|/|V| |D| cDC cSC cBC

39 Synthetic 1.05 5 0.21 0.63 0.41

51 Real-world 3.15 7 0.34 0.79 0.29

100 Synthetic 2 6 0.08 0.24 0.10

154 Real-world 1.182 6 0.18 0.82 0.42

|E|/|V| is the ratio of edges to vertices; |D| is the diameter; cDC, cSC & cBC are

centralized graph metrics.

The 39-node and 100-node synthetic networks are in all respects exactly the

same as in Chapter 3. We repeat their specifics here for convenience. The 39-node

network comprises 8 core nodes that are almost like a ring, with 31 edge nodes

attached. For the 100-node topology, we arbitrary designated nodes of degree ≤ 2

as edge nodes and the rest as core nodes. The network thus comprises 68 core nodes

of degree ≥ 3 and 32 edge nodes which all happen to have exactly degree 2 (there

are no degree 1 nodes).

The real-world topologies were, as in Chapter 3, selected from the well-known

collection of PoP-level ISP maps generated using the Rocketfuel ISP topology

mapping engine [55]. Although the topologies of the ISPs at this level show only the

gateway routers, nevertheless, we take this as the initial point from which (unlike in

Chapter 3) we partition the networks into core and edge nodes based on the

Betweenness Centrality (BC) value of each node. All nodes with a BC of 0 serve as

edge nodes, while the nodes with BC greater than 0 act as CCN routers. The 51-

node network is formed of 29 such core and 22 such edge nodes. 154-node

comprises 31 core nodes with 123 edge nodes. 51-node is the ISP map of TW

Telecom (AS 4323), located in the US; 154-node is the ISP map of AT&T (AS

7018), also in the USA.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

69

Figure 4-1. 39-node (top-left), 51-node (top-right), 100-node (bottom-left),

and 154-node (bottom-right)

The illustrations are based on the Betweenness Centrality of nodes. The size of

a node is directly proportional to its BC value: nodes with larger sizes and

brighter colors (reddish) have higher Betweenness Centrality values, while ones

with smaller size and lighter colors (greenish) have the lowest.

Table V gives the centralized topology metrics proposed by Freeman [57] and

first introduced in Subsection 3.2.2 of Chapter 3. These depict the overall

characteristics of a network, and we briefly restate their salient features here for

convenience. The table gives the centralized Degree Centrality (cDC), centralized

Stress Centrality (cSC), and centralized Betweenness Centrality (cBC). These

metrics are derived from the corresponding standard graph topology measures for

vertex centrality [56] for the nodes of the network, namely Degree Centrality (DC),

Stress Centrality (SC), and Betweenness Centrality (BC), respectively. Centralized

metric values (cDC, cSC, cBC) close to 0 imply that the nodes of the network have

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

70

similar values for the corresponding vertex centrality measures (DC, SC, BC). On

the other hand, values closer to 1 imply that there is a significant imbalance, with a

few nodes having significantly higher corresponding vertex centrality values than

others.

The cSC of network 154-node is 0.82, implying that this topology has a nexus

of nodes with a disproportionately large number of shortest-path connectivity

running through them. This may be compared to, for example, 100-node for which

the cSC value is close 0.25, indicating that its nodes have relatively fewer such

potential “choke” points. Networks 39-node and 51-node exhibit characteristics

similar to 154-node, with cSC values of 0.61 and 0.79, respectively. On the other

hand, 39-node, 51-node and 154-node, however, have relatively low cBC values

(0.41, 0.29 and 0.42, respectively). Thus, even though each network has a small

subset of potential choke point nodes through which a disproportionately large

number of shortest paths run, these paths are evenly distributed amongst the nodes

of the subset, thereby mitigating the potential choking effect. This can be

corroborated in Figure 4-1 by the fact that 39-node, 51-node, and 154-node have

quite a few nodes represented as large, bright points. In contrast, network 100-node,

has a lot of nodes with similar Betweenness Centrality, and thus its overall cBC (0.1)

is much lower. As a final note, networks 39-node and 154-node, although the one is

synthetic while the other is real-world derived, tend to display similar characteristics

notwithstanding the major size difference between them.

4.3.3 Traffic Generated

We deployed the NDN-Consumer-Zipf-Mandelbrot application of ndnSIM at the

requesting nodes to create the traffic workload. We used two workload sets with

different characteristics, as shown in Table VI.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

71

Table VI. Workload Characteristics

Parameters Set 1 Set 2

Distribution α = 0.7

Zipf-Mandelbrot

α = 1.5

Zipf-Mandelbrot

Number of Objects 10,000 10,000

Object Median Size 10KB 10KB

Object Mean Size 10KB 10KB

Number of Requests ~100,000 ~100,000

Requests/Object ~10 ~10

These traffic workloads are similar in their broad characteristics to the Sets 1

and 2 workloads of Chapter 3, but differ in their specific details. As explained there

(Subsection 3.2.3, Chapter 3), traffic workload parameters are categorized with

respect to two criteria: (1) Content Popularity, and (2) Object Size.

Content Popularity. The Zipf-Mandelbrot α parameter value for workload Set 1

(α = 0.7) is selected from within the accepted range that represents the

characteristics of web-like objects; the value for workload Set 2 (α = 1.5) from

within the range for UGC (YouTube-like User-Generated Content), P2P, and VoD

(Video on Demand) content. While the α value for Set 2 is almost double that of

Set 1, the number of requests and objects is kept approximately the same as in Set

1 in order to more uniformly compare the effect of further biasing requests in favor

of the more popular objects. We conducted initial experiments where we set the

number of requests to 10 and 100 times the number of objects in order to gauge the

degree of simulation start-up bias on the performance results collected. Runs of 100

times the number of objects were split up into ten consecutive, equal-sized batches

and analyzed accordingly. It was determined that a run comprising requests 10

times the number of objects in the network space (i.e., 100,000 requests) did not

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

72

suffer significantly from start-up bias. We therefore conducted our experiments

using this run size.

Figure 4-2. Cumulative Frequency of Requests for the Top 50 most

Popular Objects generated using Zipf-Mandelbrot Distribution

with α = {0.7, 1.5, 2.5} and N=10,000 objects.

Figure 4-2 shows the Zipf-Mandelbrot distribution for our chosen α values 0.7 and

1.5 (we also include α value 2.5 for comparison). It is quite evident from Figure 2

that there is a stark difference between the two workloads with respect to the

percentage of requests issued for a subset of objects. With α value 0.7, the first 5

objects account for ~7% of the total 100,000 requests, and the next 15 objects for

~3% more; the remaining 9,980 objects account for 90%. It is clear that, for α value

0.7, there no significantly pronounced bias towards any particular object other than

maybe the first few. On the other hand, the situation is quite different for α value

1.5 where there is a very pronounced bias towards the first 10 objects, which

account for ~70% of requests. The next 30 objects amount to an additional ~10%,

while the remaining 9,960 objects account for only ~20% of the requests.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

73

Consider a cache that can hold, say, n objects and uses the traditional LRU or LFU

cache replacement policies. By the nature of things, cache contents will be heavily

biased towards the most popular objects. It should be evident then that the cache

will prove much more effective when dealing with workload Set 2 (α = 1.5) than

workload Set 1 (α = 0.7), the more so if the cache size n may be said to be under-

provisioned, in the sense of being “too small”. As such, we may characterize

workload Set 2 as being “cache-friendly”, especially when contrasted with the more

“cache-unfriendly” workload Set 1.

Object size. We have configured the object size with a mean of 10KB [58, 63]. In

comparable studies (e.g., [48]) an object space of 10,000 objects is taken as

adequate. Again, in the initial phase, we experimented with object spaces of

100,000 objects but we did not observe significant differences in the results. It is

worth noting that, when we increased the object space by an order of magnitude in

this way, we also increased the cache sizes by an order of magnitude. Thus the ratio

of object space and cache sizes remained the same during these initial configuration

experiments.

4.3.4 Cache Sizes and Packet Generation Rates

Cache size. Cache sizes are dimensioned as a percentage of the object space. As

shown in Table VI, workload Sets 1 and 2 have 10,000 objects each, of mean size

10KB, giving an object space of 100 MB. A cache of size n represents a per-node

cache capacity of n×10KB, which we take to be capable of caching n objects of

average size 10KB each. Experiments conducted with cache size 100, for example,

therefore represent a per-node cache capacity (Cache/Catalog size) that is 1% of

the object space. We refer to such a cache size as c1p, where 1p denotes 1%.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

74

Figure 4-3. Percentage of Cache Evictions and Non-Evictions at Nodes for

CCN-Publication (PUB), CCN-Flooding (FLD), and CCN-FOH (FOH) for

154-node under Workload: (a) Set 1 (top); (b) Set 2 (bottom)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

75

In Figures 4-3(a) & (b) we show the percentage of cache evictions and non-

evictions in the network 154-node, for all three forwarding strategies, with the

smallest cache-size configuration of c1p and c0.1p for Set 1 and Set 2, respectively.

Cache eviction at a node occurs whenever the node is processing a data packet

whose object is copied into the cache, thereby evicting some data object resident

there, as selected by the cache replacement policy. All data packets processed at

the node which do not lead to such an outcome are counted as non-evictions. The

small caches sizes were selected in order to experiment with under-provisioned

caches. Nodes in the figure are presented in order of decreasing Betweenness

Centrality. The first 31 nodes are the core nodes, and the rest are the edge nodes. In

CCN-Flooding, all the core nodes have ~100% eviction rate. This is also the case

for the core nodes that are heavily used in CCN-Publication and in CCN-FOH

(thereby confirming that the selected cache sizes do indeed represent under-

provisioned caches)9.

In order to observe the effects of increasing cache size, we also use cache sizes

c10p, c20p, and c32p for Set 1; and c0.5p, c1p, and c10p for Set 2. Overall, the

Cache/Catalogue sizes in this chapter vary in the range [0.1% , 32%]. Previous ICN

studies used values of 0.25% [65], [0.5% , 20%] [66], and [0.000001% , 1%] [67].

Our values are compatible with these.

Interest packet generation rate. We generate significant levels of traffic in the

networks by fine-tuning the (Poisson) interest packet generation rate at edge nodes.

For a given network configuration, this rate needs to be consistent across

forwarding strategies, irrespective of workload type, so that we may compare

between the strategies. The rate is determined by saturating the network with

9 It is interesting to note that, in a network with reasonably well-distributed shortest paths such as

the 154-node, some core nodes might not be utilized at all for forwarding under CCN-Publication

and CCN-FOH. Such core nodes show absent bars that appear as white space in the figure.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

76

interest packets to the point where it is on the brink of dropping packets at the router

queues. We calibrate the rate in this way under CCN-Flooding, which is the most

traffic intensive of the strategies and so is the first to incur packet drops. Thus, if

we do not experience packets drops with CCN-Flooding for a given generation rate,

none will occur under the other two strategies either. The interest packet generation

rates we determined for each topology based on the criterion above is as follows:

60, 55, 40, and 10 interest packets per second at each requesting/edge node, for the

39-node, 51-node, 100-node, and 154-node networks, respectively.

4.4 Results and Discussion

In this section we present our results and analysis of the performance of CCN-FOH

and the other forwarding strategies. First, in Subsection 4.4.1, we demonstrate the

potential effectiveness of CCN-FOH by taking up and further examining the

example we presented in Section 4.1 for the 154-node network, c0.1p cache size,

under cache-friendly workload. Subsection 4.4.2 expands the focus to all

topologies, all cache sizes and both workload sets and examines some of the

topological effects that impact forwarding strategy performance. Subsection 4.4.3,

briefly compares the bandwidth costs between the strategies. In Subsection 4.4.4

we examine the performance of CCN-FOH against, on the one hand, CCN-

Publication, and on the other, CCN-Flooding from the perspective of user

experience. We identify and analyze some of the factors that impact this user

experience. Finally, Subsection 4.4.5 reports on our experiments with various

variants of CCN-FOH. Note that we consistently report our results for response

times (AvgRT/Req), Nearness, and bandwidth consumption (AvgTIHops/Req &

AvgTDHops/Req) in terms of percentage differentials rather than absolute values

in order to make it easier to assimilate comparative performance results across

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

77

myriad combinations of forwarding strategy, network topology, and cache size

configurations.

4.4.1 Potential Effectiveness of CCN-FOH

We expand upon the results for CCN-FOH for the 154-node network presented in

Table IV, Section 4.1, where we have under-provisioned caches (c0.1p) and a

cache-friendly workload, to demonstrate CCN-FOH performing effectively with

respect to its two main design principles.

The first design principle of CCN-FOH, as described in Section 4.3, is to enhance

upon the exploration of caches, at least as compared to CCN-Publication. Figure 4-

4(a) shows that CCN-FOH has achieved this inasmuch as it has ~3 times more

Average Cache Hits per Request compared to CCN-Publication (2.2 vs. 0.74

AvgHits/Req, respectively). As a direct consequence of its enhanced cache

exploration, CCN-FOH successfully locates content closer compared to CCN-

Publication; indeed so much so that in this instance it is comparable to CCN-

Flooding (Figure 4-4(c)), even though CCN-FOH is far less aggressive and does

not explore caches as extensively as CCN-Flooding (9.36 AvgHits/Req). The

second design principle, and a vital component of CCN-FOH, is improving user

experience, measured in terms of response time. In Figure 4-4(b), we see that CCN-

FOH has an AvgRT/Req (Average Response Time per Request) that is 79.1% that

of CCN-publication. CCN-Flooding’s AvgRT/Req is 215.6% that of CCN-

Publication.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

78

Figure 4-4. (a) Average Cache Hits per Request (top-left);

(b) Average-Response-Time-per-Request Differential (top-center);

(c) Nearness Percent Differential (top-right);

(d) Average-Total-Interest-Hops-per-Request Percent Differential (bottom-left);

(e) Average-Total-Data-Hops-per-Request Percent Differential (bottom-right)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

79

Figures 4-4(d) & (e) show cost comparisons between the strategies for

bandwidth consumed by interest and data packets, respectively. Since CCN-FOH

is more aggressive in exploring caches, it exhibits a cost of ~720% more than CCN-

Publication in terms of AvgTIHops/Req (Average Total Interest Hops per Request).

However, in terms of the cost for AvgDTHops/Req (Average Total Data Hops per

Request), CCN-FOH (99.04%) is virtually identical to CCN-Publication (Figure 4-

4(e)). It is worth noting that the sizes of interest and data packets vary by an order

of magnitude the one from the other (256 vs. 10,000 bytes), with a commensurate

difference in the raw bandwidth each type consumes per hop in the network. Thus,

even though CCN-FOH suffers from higher bandwidth costs for interest packets

compared to CCN-Publication, this does not amplify to significantly larger raw

bandwidth wastage because of the small size of these packets. Overall, the benefits

of CCN-FOH do not come at an exorbitant cost. More to the point, whatever this

cost, it does not negatively impact the user experience as in the case of CCN-

Flooding.

4.4.2 Effect of Topology

We now expand our view to encompass all network topologies, all cache sizes, and

both workloads in order to examine the effect that network topology has on

forwarding strategy performance. Figures 4-5(a) & (b) show the ratio of satisfied

requests for each workload, distributed between caches, repositories, and PIT10.

Figures 4-6(a) & (b) show the relative Nearness for the different strategies. For each

instance of a particular network, cache size and workload, there is a distinct positive

correlation between the relative performance of the three forwarding strategies with

respect to the requests satisfied at caches, on the one hand, and Nearness, on the

10 Note that PITs have virtually no impact on overall performance – an interesting point in its own

right which we set aside for now.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

80

other. In each instance, a given strategy’s performance relative to the other two is

always the same for the proportion of requests satisfied at caches as it is for

Nearness.

Figure 4-5. Requests satisfied between Caches, PIT, and Repository for:

(a) Cache-Unfriendly Workload (top); (b) Cache-Friendly Workload (bottom)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

81

Figure 4-6. Nearness Percent Differential for: (a) Cache-Unfriendly Workload

(top); (b) Cache-Friendly Workload (bottom)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

82

Figure 4-7. Eviction and Non-Evictions in Caches of: (a) 39-node with cache

configuration c1p and Cache-Unfriendly Workload (top); (b) 100-node with

cache configuration c1p and Cache-Unfriendly Workload (bottom)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

83

If we focus on CCN-Flooding in particular, it is clear that it is the more

successful strategy for requests satisfied at caches in the 39-node network, under

both workloads. In contrast, it is the worst for 100-node. This contrast in behavior

between 39-node and 100-node for CCN-Flooding extends (as will be seen below)

to the AvgRT metric as well. In the remainder of this subsection, we analyze this

contrasting behavior of CCN-Flooding in order to gain a better understanding of

the impact that network topology has on forwarding strategy performance.

Figures 4-7(a) & (b) show the proportions of cache evictions to cache non-

evictions, under CCN-Publication, CCN-FOH and CCN-Flooding, for the 39-node

and 100-node networks, with cache-unfriendly workload. Each bar in Figure 4-7

represents the proportion of evictions to non-evictions at a particular node. The

nodes are ordered by decreasing Betweenness Centrality. Thus, core nodes, of

which there are 8 in 39-node and 68 in 100-node, are towards the left-hand side of

the figures, followed by the edge nodes. It is evident that caches at core nodes,

which are subjected to through traffic, have churn and are unstable for both

networks and all three forwarding strategies. On the other hand, the edge nodes are

much more stable, with the exception of 100-node under CCN-Flooding where we

have cache churn at these nodes as well.

Edge nodes in the 100-node network all have degree two or more. Thus, with

CCN-Flooding in particular, when requests are flooded and replies are generated,

data packets may use edge nodes as intermediate nodes, similar to the way core

nodes are utilized. Consequently, under CCN-Flooding, these edge nodes do not

have stable caches as can be seen in Figure 4-7(b). In the case of 39-node, all edge

nodes are of degree one. Edge nodes are thus not used as intermediate nodes, which

causes them to have stable caches. For 51-node, 11 of the 22 edge nodes have

degree more than one, the highest being ten. In 154-node, 108 of the 123 edge nodes

have degree one, and the remaining 15 all have degree two. Concomitantly, the

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

84

performance of CCN-Flooding improves monotonically as we move from 100-

node to 51-node to 154-node, and finally to 39-node (Figure 4-4 above; and Figure

4-11 which is presented and discussed below), a proximate factor being the

increasing stability at edge-node caches. Thus, the degree of edge nodes is an

important characteristic that effects overall performance. The cache-unfriendly

workload highlights this, and is consistent with what can also be observed under

the cache-friendly workload.

The second topological factor that effects CCN-Flooding is Centralized

Betweenness Centrality (cBC). Consider, on the one hand, a network with a very

high cBC value, such as a linear network, and, on the other hand, a well-connected

network which will have a low cBC value. The effect of flooding a request in these

two networks is quite different. Due to the operation of the PIT-suppression

mechanism in a topology in which shortest paths overlap, flooding in the linear

network would be similar to “constrained” flooding, returning a strictly limited

number of duplicate data packets. In the well-connected network, potentially more

duplicate data copies from various locations with non-overlapping shortest paths

could be returned for a given request, which also creates unnecessary traffic in the

network. More to the point, these duplicate copies would make the caches unstable

due to evictions. 39-node and 154-node have higher cBC values than 51-node and

100-node (0.41 and 0.42, vs. 0.29 and 0.10, respectively). Thus, 39-node and 154-

node incline more towards a “constrained” flooding dynamic, especially 39-node

which has a core connected in a ring-like topology (Figure 4-1(a)). 100-node has a

very low cBC, and consequently flooding has a severe impact in terms of bandwidth

usage and cache churn. 51-node is effected more than 39-node and 154-node are,

but is better than 100-node.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

85

In conclusion, in terms of topological characteristics, the degree of edge nodes

and the cBC play a vital role. CCN-Flooding, an aggressive strategy, performs well

when used in 39-node because the network’s properties with respect to these two

factors are such that flooding is relatively constrained. In contrast, flooding is

detrimental in the 100-node network. Thus, paradoxically, the success of an

aggressive strategy like CCN-Flooding is not due to the pervasiveness with which

it searches for content, but rather to the degree to which this pervasiveness happens

to be constrained by network topological characteristics. This is where CCN-FOH

works well. It seeks to locate content in a more pervasive manner than does CCN-

Publication, but uses an approach that is far more constrained than CCN-Flooding’s

aggressive pervasiveness. As such, it reaps all the benefit that CCN-Flooding is

able to when it operates under topologically constraining conditions (e.g., 39-node),

while averting the detrimental effects when such constraining conditions do not

apply (e.g., 100-node). As will be seen below in Figure 4-11, the performance of

CCN-FOH in 39-node and 154-node is comparable to, if not sometimes better than,

that of CCN-Flooding in terms of AvgRT, but with a much lower bandwidth-

consumption footprint (see Figure 4-8 below). In the case of the 100-node and 51-

node networks, CCN-FOH performs better than CCN-Publication, and outclasses

CCN-Flooding in particular, on all counts.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

86

4.4.3 Comparison of Bandwidth Costs

Figure 4-8. Bandwidth costs of CCN-Flooding (FLD - red), CCN-FOH

(FOH - green), and CCN-Publication (PUB - blue) for: (a) Cache-

Unfriendly Workload (top); (b) Cache-Friendly Workload (bottom)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

87

Figures 4-8(a) & (b) show the comparison of bandwidth costs for CCN-

Publication, CCN-Flooding, and CCN-FOH. As explained in Section 4.1, the

bandwidth costs are measured in terms of AvgTIHops/Req (x-axis) for interest

packets and AvgTDHops/Req (y-axis) for data packets. It is abundantly clear from

the figures that CCN-Flooding costs are very high, in particular with respect to the

bandwidth costs incurred by the interest packets. A similar situation was observed

in Chapter 3 (Subsection 3.3.4). Here, however, it is more severe because this

version of CCN-Flooding uses flooding for each and every request. This aggressive

approach of CCN-Flooding also influences AvgTDHops/Req because it increases

the potential for retrieving multiple data copies, which leads to higher

AvgTDHops/Req compared to the other strategies. On the other hand, CC-FOH

does not suffer from such heavy costs. When compared to CCN-Publication, CCN-

FOH being the more aggressive of the two, incurs a higher cost in terms of the

AvgTIHops/Req, but this cost is far less than that incurred by CCN-Flooding. With

respect to AvgTDHops/Reqs, however, it performs at par with CCN-Publication

since CCN-FOH retrieves a single copy of the content, suppressing additional,

duplicate copies11.

4.4.4 Comparisons of Strategies from the Perspective of User

Experience

We now shift focus and compare the performance of CCN-FOH, first with CCN-

Publication, then with CCN-Flooding, from the key perspective of user experience

(primarily AvgRT/Req), and examine factors that influence that experience.

CCN-FOH vs. CCN-Publication. CCN-FOH is not only successful in locating

content closer (Figures 4-6(a) & (b) above), as discussed in Subsection 4.4.2 above,

but also does so with a better response time. Overall, improvements in relative

11 This point will be dealt with explicitly towards the end of Subsection 4.4.4 which follows.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

88

AvgRT/Req are achieved for all four topologies, under both workloads, as can be

seen in Table VII. In order to better understand these improvements, we further

explore the effect of caching in CCN-FOH.

Table VII: AvgRT/Req Percent Differential between CCN-Publication (100%) and

CCN-FOH

Topologies
Cache-unfriendly (α=0.7) Cache-friendly (α=1.5)

1P 10P 20P 32P 0.1P 0.5P 1P 10P

39-node 92.2% 84.6% 85.6% 88.9% 79.6% 84.5% 85.2% 97.5%

51-node 95% 90% 90.5% 92.5% 84.9% 90.7% 91.4% 96.6%

100-node 96.5% 93% 91.9% 92.8% 91.1% 91.4% 92.4% 93.9%

154-node 88.5% 86.8% 90.4% 92.7% 79.1% 83.2% 85.4% 97%

First, note that cache hits may occur in one of two ways: (a) requests that are

satisfied at the requesting node itself (“satisfied inside”); and (b) requests satisfied

outside the requesting node (“satisfied outside”). The impact that a given strategy

has on requests “satisfied inside” is relatively minor. Cache content at a requesting

node is, by and large, a function of: (1) the pattern of requests issued by the node,

and (2) the caching policy, both of which are independent of forwarding strategy12.

Therefore, we focus on requests “satisfied outside”, for which cache hits are

influenced by the forwarding strategies.

12 This assertion requires some qualification. To the extent that a given strategy (e.g., CCN-

Flooding) causes the node’s cache to be examined by requests from other edge nodes, cache content

is impacted by strategy. However, our data shows the effect of this to be relatively minor.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

89

Figure 4-9. Requests satisfied outside the requesting node between Caches,

PIT, and Repository for: (a) Cache-Unfriendly Workload (top); (b) Cache-

Friendly Workload (bottom)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

90

Figure 4-9(a) & (b) show the proportion of requests satisfied by cache hits vs.

repositories vs. PIT. These plots are similar to Figures 4-5(a) & (b), the difference

being that here we are dealing only with the requests that are satisfied outside.

However, the conclusion to be drawn from both Figures 4-5 and 4-9 is the same:

CCN-FOH leverages the caches more effectively compared to CCN-Publication.

Focusing on the subset of outside requests that are satisfied from caches in Figures

4-9, we next examine their distribution between off-path and on-path caches under

CCN-FOH.

In Figures 4-10(a) & (b), we observe that CCN-FOH leverages off-path caching

quite effectively, thereby achieving one of its overall design objectives. It is

important to highlight, however, that this does not necessarily imply that it achieves

more cache hits overall in each and every instance than does CCN-Publication. For

example, consider the 51-node and 100-node networks with cache-unfriendly

workload and c1p cache configuration. Here, CCN-FOH retrieves 57.5% and

37.8% of the content from off-path caches, respectively (Figure 4-10(a)). However,

the differences between CCN-Publication and CCN-FOH for the overall number of

requests satisfied by cache hits are not substantial (Figure 4-9(a)), nor are the

AvgRT differentials (Table VII). Nevertheless, these contrary scenarios

notwithstanding, off-path caching in CCN-FOH plays a significant role overall in

utilizing caches more effectively, thereby yielding more cache hits at achieving

better Nearness and improved AvgRT/Req than CCN-Publication. It is worth

noting that our data shows that this is accomplished at low cost in terms of

bandwidth consumed by data packets, comparable to, if at times not better than, the

cost entailed by CCN-Publication. In summary, CCN-FOH is quite effective in

enhancing user experience (AvgRT/Req) overall, by leveraging cache content at

reasonable cost. On the one hand, it does this by being more aggressively pervasive

than CCN-Publication. On the other, it ensures that this pervasiveness does not

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

91

overreach, remaining sufficiently restrained so as not to entail the exorbitant

bandwidth costs, and consequent detrimental effect on user experience, of CCN-

Flooding.

Figure 4-10. Proportion of Requests satisfied between On-Path and Off-Path

Caches under CCN-FOH with: (a) Cache-Unfriendly Workload (top); (b)

Cache-Friendly Workload (bottom)

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

92

Finally, as an interesting aside on the relative dynamics of CCN-FOH and CCN-

Publication performance, note from Figures 4-10 that, as cache sizes increase from

under-provisioned to over-provisioned, the majority of requests satisfied through

cache hits shifts from off-path to on-path caches in CCN-FOH. The 100-node

network is an exception to this: the majority of cache hits are on-path for all cache

sizes. A distinctive trend can be seen for all four networks, where the proportion of

on-path cache hits increases with increasing cache size. As cache sizes get larger, a

forwarding strategy gains increasing benefit from on-path caching. For CCN-

Publication, this in effect causes its performance to “catch up” with that of CCN-

FOH. This can be seen in Figures 4-9, in which CCN-Publication’s level of cache

hits improves with increasing cache size, thereby approaching those of CCN-FOH,

as do its relative AvgRT differentials in Table VII.

CCN-FOH vs. CCN-Flooding. We now shift our attention to CCN-Flooding and

demonstrate that, overall, it is not a viable contender to CCN-FOH from the

perspective of user experience. We analyze the dynamics of CCN-Flooding to

better understand how its behavior negatively impacts AvgRT/Req.

In Subsection 4.4.2, we established that both CCN-FOH and CCN-Flooding not

only have a higher proportion of requests satisfied from caches, but are also

efficient in locating content closer to the requesting node, compared to CCN-

Publication. As can be seen in Figures 4-11(a) & (b), however, CCN-Flooding is

not a serious candidate from the perspective of AvgRT/Req when compared to

CCN-FOH. CCN-FOH performs equally well, if not better, particularly for under-

provisioned caches. The sole exception to this is the case of the (over-provisioned)

c10p cache-size configuration under cache-friendly workload. The performance of

CCN-Flooding is mainly dependent on two factors: (a) the “isolation effect”; and

(b) the effect of retrieving multiple duplicate copies of data objects

(AvgTDHops/Req; Section 4.1 above). These two factors are a direct consequence

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

93

of CCN-Flooding’s operational mechanism. Their effect is particularly pronounced

for configurations with under-provisioned cache-size and cache-friendly

workloads, and is significantly mitigated with over-provisioned caches.

Figure 4-11. AvgRT Percent Differential across Topologies and Cache-

Configurations for: (a) Cache-friendly workload (top);

(b) Cache-unfriendly workload (bottom).

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

94

Flooded requests retransmitted due to the isolation effect, though constituting

only a small proportion of the total number of requests issued, nevertheless have a

pronounced negative effect on average Response Time (RT). This is reflected in

the data by the fact there are many instances where the median RT for CCN-

Flooding, and at times even the 75th percentile value, is significantly lower than the

average RT. A particularly egregious example occurs in the 154-node network with

cache-friendly workload and cache size c0.1p: average RT is 11.012 ms, while the

75th percentile RT value is 5.610 ms. Further examination of this particular

simulation run reveals that one particular interest packet request, for the 7th most

popular object, had the worst response time (11,248 ms) and was retransmitted 5

times. Another request, for the 3rd most popular object, took 9,064 ms to complete

and was retransmitted 6 times. It is requests such as these that heavily skew the RT

distribution to the right and “distort” its mean.

The isolation effect is strongly mitigated when we have over-provisioned

caches and a cache-friendly workload because most requests for popular objects are

then satisfied at the requesting nodes’ own caches. Requests injected into the

network core therefore tend to be for less popular objects. Thus, the number of

multiple requests for the same objects simultaneously present in the network, and

the chances of consequent PIT suppression, are low. With a cache-unfriendly

workload, the isolation effect is mitigated for even smaller cache sizes since the

popularity profile of the data objects is such that requests simultaneously present in

the network are inherently more evenly spread across the object space.

The second factor that has an adverse effect on AvgRT/Req under CCN-

Flooding is the retrieval of multiple duplicate copies of objects. This phenomenon

is a consequence of CCN-Flooding’s aggressively pervasive approach to locating

content in caches. While this aggressiveness plays a role in improving Nearness, it

does so at heavy bandwidth cost, as discussed in Subsection 4.4.3 above, which

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

95

negatively impacts AvgRT/Req, especially in bandwidth-constrained networks,

due to the congestion it causes in the network. The effect is more prominent with

requests for the more popular objects, copies of which would be present at a larger

number of node caches.

CCN-FOH does not suffer from either of these two issues. With respect to

bandwidth consumed by the data packets, CCN-FOH performance is at par with

CCN-Publication, and even slightly better under certain scenarios. Though we

retrieve objects from off-path caches, however, unlike CCN-Flooding, these data

packets consume the PIT entries along the return shortest path. In the case of

multiple cache hits, the data packet generated by the closest copy will consume all

such PIT entries. Duplicate data packets (generated further upstream) will therefore

be suppressed at the first intermediate shortest-path node at which the closest-copy

data packet had already consumed the PIT entry. Thus, although multiple data

copies are generated, they are soon suppressed and do not significantly impact

bandwidth cost. Furthermore, CCN-FOH does not induce an isolation-effect in the

manner of CCN-Flooding because it does not create a PIT entry at an off-path node

if none is already present. Such a PIT entry, if present, would have been created by

some other interest packet for which the node is on its shortest path. In this case,

the off-path interest packet simply extends this pre-existing PIT entry – which does

not cause an isolation effect – so as to benefit from retrieved data that flows back

through the node.

The performance of CCN-Flooding might be quite competitive if it were not for

the isolation effect, especially in a network with ample bandwidth that would not

suffer undue congestion due to the retrieval of multiple duplicate data copies. This

argues for an adaptive approach to CCN-FOH, which dynamically adjusts along a

range from one-hop through to all-pervasive flooding as a function of the popularity

of the object sought. It is worth noting that the bandwidth cost would be higher for

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

96

such an adaptive strategy, compared to CCN-FOH. Thus, an effective adaptive

strategy would also have to dynamically adjust its behavior as a function of

available network bandwidth if it is to avoid inducing RT degradation due to

network congestion. We set these considerations aside for the present, and leave

them for future work.

4.5 Variants of CCN-FOH

We investigated several non-adaptive forwarding strategy variants derived from

CCN-FOH in a generally unsuccessful attempt to “fine tune” its performance for

the better. These schemes differ from CCN-FOH in one of the following two ways:

(a) the degree of aggressiveness in locating content in the network; and (b) the

degree of aggressiveness in populating caches by the data located. The results were

generally disappointing. Nevertheless, we briefly describe the strategy variants for

the record.

In the first three variants, we flood interest packets for only one hop (as in CCN-

FOH), but based upon probabilities generated according to geometric sequences

that are functions of the number of hops an interest packet has traveled along the

shortest path from the requesting node (however, we do not flood when we are only

one hop away from the repository node). Specifically,

– Linear-Probability (LP) scheme: The probability for flooding the interest

packet is determined using the following linear geometric sequence:

1,
1

2
,

1

4
,

1

8
 …

Thus, we will always flood on the first hop. At each subsequent hop the

probability will drop by a factor of 1/2.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

97

– Quadratic-Probability (QP) scheme: This scheme is less aggressive as it

uses a quadratic geometric sequence for the probability of flooding an interest

packet:

1,
1

4
,

1

9
,

1

16
 …

Again, we will always flood on the first hop. At each subsequent hop the

probability will drop by a factor of 1/(number of hops traveled)2.

– Reverse-Linear-Probability (RLP) scheme: This scheme is the opposite of

the Linear-Probability scheme. The probability for flooding interest packets

is based on the following linear geometric sequence:

1

(𝑛𝑢𝑚𝐻𝑜𝑝𝑠𝑇𝑜𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 − 1)
,

1

(𝑛𝑢𝑚𝐻𝑜𝑝𝑠𝑇𝑜𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 − 2)
, … 1

We flood with higher probability the closer the interest packet is to the

repository, on the theory that “neighborhoods” closer to the repository of a

given object are more likely to have that object in the node caches.

In contrast to these three schemes, the probability of flooding under CCN-FOH

is always 1. LP, QP and RLP are thus less aggressive in locating content compared

to CCN-FOH. Their performance with respect to AvgRT/Req, Nearness, and

efficient utilization of off-path caches was poor when compared to CCN-FOH.

The next two variants determine how data packets resulting from off-path cache

hits by CCN-FOH populate the caches on the return shortest path back to the

requesting node (CCN-FOH and the three variants above always populate these

caches). The idea was to investigate whether reducing churn in the in-network node

caches would improve performance.

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

98

– Off-Path Disabled (OPD) scheme: In this scheme, data packets resulting

from off-path cache hits do not populate caches on the return path to the

requesting node (including the cache of the requesting node itself).

– Off-Path Probability (OPP) scheme: Data packets resulting from an off-

path cache hit populate caches on return path with 50% probability at each

hop. This also applies to the cache of the requesting node.

In the OPD scheme, data packets generated at off-path nodes do not populate

caches along the return path. Since CCN-FOH always populates these caches, OPD

and CCN-FOH constitute opposite ends of a spectrum in this respect. In contrast,

in the OPP scheme, the caches are populated based on a 50%-probability Bernoulli

trial. The OPP scheme, therefore, lies intermediately along the spectrum between

OPD and CCN-FOH. Overall, taking into account all requests, including the ones

satisfied at the requesting node itself, we observed that the performance differences

between OPD, OPP and CCN-FOH were very minor. CCN-FOH’s performance is

virtually never worse than that of OPD and OPP. When we consider only the subset

of requests that are satisfied outside the requesting nodes’ own caches, the situation

is slightly different, particularly in the case of under-provisioned caches. As

previously noted, such caches are prone to churn. Since both the OPD and OPP

schemes are less aggressive in populating caches, they tend to mitigate churn

somewhat. This, in turn, leads to slightly better performance in terms of

AvgRT/Req and Nearness as compared to CCN-FOH. However, their overall

performance across all requests is not better than that of CCN-FOH.

The last variant of CCN-FOH that we explored expands the extent of the

flooding:

– N-Hop Neighborhood scheme: We extend flooding from a neighborhood of

fixed radius 1-hop to a neighborhood of radius (N-1) hops around each node

Chapter 4. CCN-FOH: A Lightweight Forwarding Strategy

99

along the shortest path, where N is the residual distance from that node to the

repository. This scheme is comparable to an unabated CCN-Flooding in

which there is no PIT suppression.

The scheme was implemented for completeness’ sake rather than in the

expectation that it would yield any performance improvement. As anticipated, it

performed considerably worse than CCN-FOH.

100

Chapter 5

Conclusion and Future Work

The goal of the ICN architecture approach is to provide support for a broad

range of robust network services that are resilient to disruption and failure. These

services include in-network caching, inbuilt security, mobility, multiparty

communication via replication, and so on. In-network caching is correlative to a

forwarding strategy which leverages the presence of this cached content in the

network. Our work deals with forwarding strategy in, specifically, the CCN ICN

architecture.

Research in the field of in-network caching and forwarding strategy has tended

to take one of two distinct broad approaches. In the first approach, which came as

a natural outgrowth of research into Content Distribution Networks, the primary

focus is on optimizing content placement in the in-network caches so that caches

are effectively utilized. Forwarding strategy then follows as a consequence of cache

content placement and distribution, aimed at leveraging the latter. The second

approach takes the design of the forwarding strategy as its starting point and

attempts to enhance the delivery of content to the user, leveraging in-network cache

content along the way as best it can. In this approach, the placement and distribution

of cache content becomes a consequence of the way the forwarding strategy

operates: caches are populated with content retrieved by the forwarding strategy as

that content weaves its way back to the requesting node. Our work in this

dissertation falls within this second approach.

Chapter 5. Conclusion and Future Work

101

From early on, two basic forwarding strategies were proposed for CCN: CCN-

Flooding came first, followed shortly by CCN-Publication. These two basic

strategies can be viewed as opposite ends of a spectrum from the perspective of

how aggressively a forwarding strategy in CCN might search for network cached

content. CCN-Publication takes a minimalist approach. Essentially, it is similar to

IP forwarding, but with in-network caching along the path. No attempt is made to

explore for network cached content. Such content is made use of only if it happens

to be encountered in the caches of intermediate nodes along the shortest path to the

repository. It therefore has low bandwidth costs but is not very effective in

provisioning and leveraging cached content. CCN-Flooding, on the other hand,

both carries out an exhaustive search for cached and repository content, and

ubiquitously populates the in-network caches with the content it finds. It therefore

provisions and locates cached content in a pervasive manner, but at high bandwidth

cost.

 In Chapter 3 we investigated the performance dynamics of CCN-Publication

and CCN-Flooding, especially from the perspective of bandwidth consumption.

Based on the insights gained and presented there, we proposed and analyzed a new

lightweight forwarding strategy, CCN-FOH, in Chapter 4. CCN-FOH is based on

two design principles: (a) enhancing user experience by more effectively exploring

for in-network cached content, as compared to CCN-Publication; and (b) avoiding

the costs that induce a deterioration in user experience which an overly aggressive

approach to cache exploration is prone to, as exemplified by CCN-Flooding. We

demonstrated that CCN-FOH is quite effective in realizing its design goals and

delivering an enhanced user experience across a variety of differing network

topologies and workload characteristics. As such, it constitutes a better choice for

a (non-adaptive) forwarding strategy than both CCN-Publication and CCN-

Flooding.

Chapter 5. Conclusion and Future Work

102

CCN-FOH leverages off-path caching, which plays a significant role overall in

utilizing caches more effectively, yielding more cache hits, which in turn improves

locating content closer than CCN-Publication, and achieving an improved user

experience. It does so without entailing significant additional bandwidth costs. This

is because in both CCN-Publication and CCN-FOH the requesting node does not

receive duplicate copies of the object requested. CCN-FOH, therefore, does not

incur significant additional and potentially damaging costs as is the case with CCN-

Flooding, where multiple duplicate copies of the requested object are not

suppressed in the network and are delivered to the requesting node. In CCN-

Flooding, two main factors, which are both avoided by CCN-FOH, influence user

experience, namely: high bandwidth cost and the isolation effect. These two factors

combined play a significant role in negatively impacting the user experience. The

bandwidth costs entailed by CCN-Flooding’s aggressively pervasive approach to

locating content are very high, which leads to network congestion. The isolation

effect unnecessarily delays the servicing of user requests.

The analysis of performance dynamics carried out in Chapters 3 and 4

demonstrates that the success of a forwarding strategy, and the appropriate degree

of pervasiveness with which it should seek in-network cached content, is a function

of several factors that mutually effect and impinge on one another in complex ways:

network topology, workload characteristics, and cache size. By the nature of things,

a forwarding strategy attempts to service only those requests that fail to be satisfied

by a cache hit at the requesting node’s own cache, and are therefore injected into

the network. Since edge nodes tend to pull the most popular objects into their

caches, requests that are dealt with by the forwarding strategy will overwhelmingly

tend to be for other than these most popular objects. For object requests that are

injected into the network, their precise “standing” in the overall popularity profile

of the workload is governed by a complicated interplay between: the object

Chapter 5. Conclusion and Future Work

103

popularity characteristics of the workload itself; the degree to which cache sizes

constitute a situation of relative under- or over-provisioning (this itself is also a

function of the workload popularity profile and not just of the cache size); and the

nature of the network topology with respect to whether edge nodes handle through

traffic, which induces more churn in their caches, or not. Requests injected into the

network therefore can run the gamut from relatively highly popular objects (but not

necessarily the most popular), to rarely requested and quite unpopular objects. The

degree of pervasiveness that a forwarding strategy seeking to enhance user

experience should exercise in satisfying a requested object from in-network caches

cannot be determined without taking these considerations into account. Expending

effort to pervasively seek an unpopular and rarely requested object, for example,

would probably not pay off – it would be more efficient simply to fetch it from its

repository. By the same token, expending some appropriate amount of effort for a

more popular object is more likely to lead to a payoff. The situation is further

complicated by the fact that an unduly pervasive attempt at seeking in-network

content could be benignly constrained by the nature of the network topology itself.

This strongly argues for the development of forwarding strategies that take these

and similar considerations into account in a dynamically adaptive manner, and

defines an exciting and challenging agenda for our future work.

104

Bibliography

1. Clark, D., The design philosophy of the DARPA internet protocols.

SIGCOMM Comput. Commun. Rev., 1988. 18(4): p. 106-114.

2. Cerf, V. and R.E. Kahn, A Protocol for Packet Network

Intercommunication. Communications, IEEE Transactions on, 1974. 22(5):

p. 637-648.

3. Dovrolis, C. and J.T. Streelman, Evolvable network architectures: what can

we learn from biology? SIGCOMM Comput. Commun. Rev., 2010. 40(2):

p. 72-77.

4. Dierks, T. and C. Allen, The TLS Protocol. RFC 2246, 1999.

5. Blake, S., et al., An Architecture for Differentiated Services. RFC 2475,

1998.

6. Clark, D.D., S. Shenker, and L. Zhang, Supporting real-time applications

in an Integrated Services Packet Network: architecture and mechanism.

SIGCOMM Comput. Commun. Rev., 1992. 22(4): p. 14-26.

7. Saroiu, S., et al., An analysis of Internet content delivery systems. SIGOPS

Oper. Syst. Rev., 2002. 36(SI): p. 315-327.

8. Su, A.-J., et al., Drafting behind Akamai: inferring network conditions

based on CDN redirections. IEEE/ACM Trans. Netw., 2009. 17(6): p.

1752-1765.

9. Srisuresh, P. and M. Holdrege, IP Network Address Translator (NAT)

Terminology and Considerations. RFC 2663, 1999.

Bibliography

105

10. Patil, B., P. Roberts, and C. Perkins, IP Mobility Support for IPv4. RFC

3344, 2002.

11. Feldmann, A., Internet Clean Slate, 2008.

12. Dovrolis, C., What would Darwin think about clean-slate architectures?

SIGCOMM Comput. Commun. Rev., 2008. 38(1): p. 29-34.

13. Rexford, J. and C. Dovrolis, Future Internet architecture: clean-slate

versus evolutionary research. Commun. ACM, 2010. 53(9): p. 36-40.

14. Feldmann, A., Internet clean-slate design: what and why? SIGCOMM

Comput. Commun. Rev., 2007. 37(3): p. 59-64.

15. Roberts, J., The clean-slate approach to future Internet design: a survey of

research initiatives. Annals of Telecommunications, 2009. 64(5): p. 271-

276.

16. Ahlgren, B., et al., A survey of information-centric networking.

Communications Magazine, IEEE, 2012. 50(7): p. 26-36.

17. Trossen, D., M. Sarela, and K. Sollins, Arguments for an information-

centric internetworking architecture. SIGCOMM Comput. Commun. Rev.,

2010. 40(2): p. 26-33.

18. Information-Centric Networking Research Group (ICNRG). 2012;

Available from: http://tools.ietf.org/group/irtf/trac/wiki/icnrg.

19. Xylomenos, G., et al., A Survey of Information-Centric Networking

Research. Communications Surveys & Tutorials, IEEE, 2014. 16(2): p.

1024-1049.

http://tools.ietf.org/group/irtf/trac/wiki/icnrg

Bibliography

106

20. Ghodsi, A., et al., Information-centric networking: seeing the forest for the

trees, in Proceedings of the 10th ACM Workshop on Hot Topics in

Networks2011, ACM: Cambridge, Massachusetts. p. 1-6.

21. Cheriton, D., et al. Translating Relaying Internet Architecture integrating

Active Directories. 2001; Available from: http://www-

dsg.stanford.edu/triad/.

22. Jacobson, V., et al., Networking named content, in Proceedings of the 5th

international conference on Emerging networking experiments and

technologies2009, ACM: Rome, Italy. p. 1-12.

23. Koponen, T., et al., A data-oriented (and beyond) network architecture.

Computer Communication Review, 2007. 37(4): p. 181-192.

24. Nikos Fotiou, D.T., George C.Polyzos, Illustrating a Publish-Subscribe

Internet Architecture, 2010. p. 22.

25. Bengt Ahlgren, M.D.A., Christian Dannewitz, Anders Eriksson, Jovan

Golić, Björn Grönvall, Daniel Horne, Anders Lindgren, Olli Mämmelä,

Marco Marchisio, Jukka Mäkelä, Septimiu Nechifor, Börje Ohlman, Kostas

Pentikousis, Sabine Randriamasy, Teemu Rautio, Eric Renault, Pasi

Seittenranta, Ove Strandberg, Bogdan Tarnauca, Vinicio Vercellone,

Djamal Zeghlache, D-6.2 Second NetInf Architecture Description, 2010.

26. Bari, M.F., et al., A survey of naming and routing in information-centric

networks. Communications Magazine, IEEE, 2012. 50(12): p. 44-53.

27. Ghodsi, A., et al., Naming in content-oriented architectures, in Proceedings

of the ACM SIGCOMM workshop on Information-centric networking2011,

ACM: Toronto, Ontario, Canada. p. 1-6.

28. Mark Ain, S.T., Dirk Trossen, Pekka Nikander, Trevor Burbridge, András

Zahemszky, Jarno Rajahalme, Dmitrij Lagutin, Mikko Särelä, Janne

http://www-dsg.stanford.edu/triad/
http://www-dsg.stanford.edu/triad/

Bibliography

107

Riihijärvi, Teemu Rinta-aho, Conceptual Architecture of PSIRP Including

Subcomponent Descriptions, 2008. p. 85.

29. D'Ambrosio, M., et al., MDHT: a hierarchical name resolution service for

information-centric networks, in Proceedings of the ACM SIGCOMM

workshop on Information-centric networking2011, ACM: Toronto, Ontario,

Canada. p. 7-12.

30. Pentikousis, K., Distributed Information Object Resolution, in Proceedings

of the 2009 Eighth International Conference on Networks2009, IEEE

Computer Society. p. 360-366.

31. Christian Esteve, F.L.V., Maurício F. Magalhães, Towards a new

generation of information-oriented internetworking architectures, in

Proceedings of the 2008 ACM CoNEXT Conference2008, ACM: Madrid,

Spain. p. 1-6.

32. Kazi, A.W., Prefetching Bloom filters to control flooding in content-centric

networks, in Proceedings of the ACM CoNEXT Student Workshop2010,

ACM: Philadelphia, Pennsylvania. p. 1-2.

33. Zhang, G., Y. Li, and T. Lin, Caching in information centric networking: A

survey. Comput. Netw., 2013. 57(16): p. 3128-3141.

34. Tyson, G., et al. A Trace-Driven Analysis of Caching in Content-Centric

Networks. in Computer Communications and Networks (ICCCN), 2012 21st

International Conference on. 2012.

35. Rossini, G. and D. Rossi. A dive into the caching performance of Content

Centric Networking. in Computer Aided Modeling and Design of

Communication Links and Networks (CAMAD), 2012 IEEE 17th

International Workshop on. 2012.

Bibliography

108

36. Ardelius, J., et al., On the effects of caching in access aggregation networks,

in Proceedings of the second edition of the ICN workshop on Information-

centric networking2012, ACM: Helsinki, Finland. p. 67-72.

37. Ong, M.D., et al., FGPC: fine-grained popularity-based caching design for

content centric networking, in Proceedings of the 17th ACM international

conference on Modeling, analysis and simulation of wireless and mobile

systems2014, ACM: Montreal, QC, Canada. p. 295-302.

38. Han, B., et al., PPP: prefix-based popularity prediction for effective

caching in content-centric networking, in Proceedings of The Ninth

International Conference on Future Internet Technologies2014, ACM:

Tokyo, Japan. p. 1-6.

39. Fayazbakhsh, S.K., et al., Less pain, most of the gain: incrementally

deployable ICN, in Proceedings of the ACM SIGCOMM 2013 conference

on SIGCOMM2013, ACM: Hong Kong, China. p. 147-158.

40. Chai, W.K., et al., Cache "less for more" in information-centric networks,

in Proceedings of the 11th international IFIP TC 6 conference on

Networking - Volume Part I2012, Springer-Verlag: Prague, Czech

Republic. p. 27-40.

41. Rossi, D. and G. Rossini. On sizing CCN content stores by exploiting

topological information. in Computer Communications Workshops

(INFOCOM WKSHPS), 2012 IEEE Conference on. 2012.

42. Yonggong, W., et al. Optimal cache allocation for Content-Centric

Networking. in Network Protocols (ICNP), 2013 21st IEEE International

Conference on. 2013.

43. Li, J., et al., Popularity-driven coordinated caching in named data

networking, in Proceedings of the eighth ACM/IEEE symposium on

Architectures for networking and communications systems2012, ACM:

Austin, Texas, USA. p. 15-26.

Bibliography

109

44. Kideok, C., et al. WAVE: Popularity-based and collaborative in-network

caching for content-oriented networks. in Computer Communications

Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on. 2012.

45. Wang, J.M., J. Zhang, and B. Bensaou, Intra-AS cooperative caching for

content-centric networks, in Proceedings of the 3rd ACM SIGCOMM

workshop on Information-centric networking2013, ACM: Hong Kong,

China. p. 61-66.

46. Barakat, C., et al. Minimizing bandwidth on peering links with deflection in

named data networking. in Communications and Information Technology

(ICCIT), 2013 Third International Conference on. 2013.

47. Saino, L., I. Psaras, and G. Pavlou, Hash-routing schemes for information

centric networking, in Proceedings of the 3rd ACM SIGCOMM workshop

on Information-centric networking2013, ACM: Hong Kong, China. p. 27-

32.

48. Chiocchetti, R., et al., Exploit the known or explore the unknown?: hamlet-

like doubts in ICN, in Proceedings of the second edition of the ICN

workshop on Information-centric networking2012, ACM: Helsinki,

Finland. p. 7-12.

49. Chiocchetti, R., et al., INFORM: a dynamic interest forwarding mechanism

for information centric networking, in Proceedings of the 3rd ACM

SIGCOMM workshop on Information-centric networking2013, ACM:

Hong Kong, China. p. 9-14.

50. Rossini, G. and D. Rossi, Evaluating CCN multi-path interest forwarding

strategies. Computer Communications, 2013. 36(7): p. 771-778.

51. Yi, C., et al., A case for stateful forwarding plane. Computer

Communications, 2013. 36(7): p. 779-791.

Bibliography

110

52. Yi, C., et al., Adaptive forwarding in named data networking. SIGCOMM

Comput. Commun. Rev., 2012. 42(3): p. 62-67.

53. JavaSim. 1997; Available from: http://javasim.codehaus.org/.

54. Medina, A., I. Matta, and J. Byers, BRITE: A Flexible Generator of Internet

Topologies, 2000, Boston University.

55. Spring, N., et al., Measuring ISP topologies with rocketfuel. IEEE/ACM

Trans. Netw., 2004. 12(1): p. 2-16.

56. Newman, M.E.J., Networks : an introduction. 2010, Oxford: Oxford

University Press. xi, 772 p., [4] p. of plates.

57. Freeman, L.C., Centrality in social networks conceptual clarification.

Social Networks, 1978. 1(3): p. 215-239.

58. Katsaros, K.V., G. Xylomenos, and G.C. Polyzos. GlobeTraff: A Traffic

Workload Generator for the Performance Evaluation of Future Internet

Architectures. in New Technologies, Mobility and Security (NTMS), 2012

5th International Conference on. 2012.

59. Busari, M. and C. Williamson, ProWGen: a synthetic workload generation

tool for simulation evaluation of web proxy caches. Comput. Netw., 2002.

38(6): p. 779-794.

60. Mahanti, A., C. Williamson, and D. Eager, Traffic analysis of a Web proxy

caching hierarchy. Network, IEEE, 2000. 14(3): p. 16-23.

61. Breslau, L., et al. Web caching and Zipf-like distributions: evidence and

implications. in INFOCOM '99. Eighteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE. 1999.

http://javasim.codehaus.org/

Bibliography

111

62. Xu, C., C. Dale, and L. Jiangchuan. Statistics and Social Network of

YouTube Videos. in Quality of Service, 2008. IWQoS 2008. 16th

International Workshop on. 2008.

63. Fricker, C., et al. Impact of traffic mix on caching performance in a content-

centric network. in Computer Communications Workshops (INFOCOM

WKSHPS), 2012 IEEE Conference on. 2012.

64. Gill, P., et al., Youtube traffic characterization: a view from the edge, in

Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement2007, ACM: San Diego, California, USA. p. 15-28.

65. Carofiglio, G., et al. Modeling data transfer in content-centric networking.

in Teletraffic Congress (ITC), 2011 23rd International. 2011.

66. Katsaros, K., G. Xylomenos, and G.C. Polyzos, MultiCache: An overlay

architecture for information-centric networking. Comput. Netw., 2011.

55(4): p. 936-947.

67. Rossini, G. and D. Rossi, Caching performance of content centric networks

under multi-path routing (and more), 2011, Telecom ParisTech.

68. Afanasyev, A., I. Moiseenko, and L. Zhang, ndnSIM: NDN simulator for

NS-3. Technical Report, NDN-0005, 2012.

