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Abstract of the Dissertation

Modeling brain structures

from hundreds of hypoglossal motoneurons to millions of cerebellar cells

by

Heraldo Memelli

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

Computational neuroscience is a rapidly growing field in the quest to discover

how the human brain works. Mathematical modeling and computer simulations

increasingly help neuroscientists test hypotheses and explore neuronal mechanisms

from the level of single cells to billions of neurons. In this PhD Dissertation, we

have implemented and analyzed computational models of two mammalian brain

structures: the hypoglossal nucleus and the cerebellum.

As a first project, we have developed a detailed computational model for a net-

work of Hypoglossal Motoneurons (HMs). HMs are located in the brainstem and

exhibit synchronous firing activity. They are coupled by gap junctions, direct elec-

trical links between neighboring neurons. We have simulated HM networks with

hundreds of neurons for a quantitative analysis of changes in their synchronized

behavior under different conditions. Some of the conditions and mechanisms ana-

lyzed include: simulated gap junction uncoupling, changes in premotor excitatory
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input current strength, modulation of HM firing frequency, and the emergence of

different firing groups.

A major ongoing project in our lab is the building of a unified efficient system

for creation, simulation, and visualization of large-scale models of brain structures.

These models are morphologically representative neuronal networks which include

neurons and synapses of different types. We have used this system to create mod-

els of the cerebellum, the "little brain" that coordinates complex motor activities.

The cerebellum large-scale models consist of millions of neurons and billions of

synapses. We have run numerous simulations on PCs and on Blue Gene supercom-

puters to analyze firing activity in the cerebellar circuits.

The approaches for the two projects are somewhat different. The first project

focuses on the biophysical details of the model and the resulting biological inter-

pretations of specific cellular mechanisms. The second project emphasizes perfor-

mance and simulations of very large networks of different cell types. Both projects

provide useful insight into various mechanisms in the respective simulated net-

works.
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Chapter 1

Introduction

1.1 Neuroscience and Computational Modeling

It is widely accepted that understanding the brain is one of the most challenging

intellectual tasks of the 21st century, "the century of the brain". The human brain

contains over one hundred billion nerve cells or neurons and roughly one quadrillion

(1015) connections, or synapses, between neurons. How this complex "machine"

functions is still a vast mystery.

The neuron is the basic building block of the brain and the nervous system. It

is an electrically excitable cell that is specialized in inter-cellular communication.

The main function of a neuron is to receive input "information" from thousands of

other neurons through its numerous dendrites, to process that information, and then

to send "information" as output to other neurons through its axon.

Synapses are the main type of connections between neurons (usually axon-to-

dendrite) through which "information" flows from one neuron to another by electro-

chemical signals. The neuron that is sending the signal through its axon is called

the pre-synaptic neuron, and the receiving neuron is defined as post-synaptic. There

are dozens of types of neurons in mammalian nervous systems and they vary in

shape, size, and electrical behavior but they share many common characteristics
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CHAPTER 1. INTRODUCTION 2

that distinguish them from other cells in the body.

The signals produced by the neurons are called action potentials. An action

potential is an all-or-nothing positive spike in the membrane voltage. As the result

of the input from other cells, the membrane voltage can become more positive than

the negative resting potential ("depolarized"). If the potential becomes depolarized

enough to cross a threshold, the neuron generates an action potential, or in other

words, it fires a spike. For a more comprehensive review of neuroscience please

see [51].

Computational neuroscience is a relatively new field that has been rapidly

growing in the last decade and is going to be crucial in the quest to discover how

the human brain works. Theoretical models give scientist the tools and capabilities

to test hypotheses that are impossible or impractical to test in vivo.

Mathematical models of varying complexity have been developed for neurons.

Those models range from the detailed but computationally expensive Hodgkin-

Huxley (HH) neuron model [30], to simpler Integrate-and-Fire (IF) models, like

the Izhikevich model [34].

Several research groups, rather than focusing on precise details in individual

neurons, seek to build networks that consist of millions or even billions of neurons

to reach scales where mass neuronal effects emerge. The different levels of bio-

logical accuracy or complexity are determined by the kind of questions that these

models are targeting.
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1.2 Modeling Single Neurons

1.2.1 Hodgkin-Huxley Models of Neurons

Biologically plausible models of neuronal cells are inspired by considering each

cell as an electrical circuit. Since the bi-layer membrane encasing each neuron

is impermeable to ions, it acts as an electrical capacitor that accumulates electric

charges by blocking their diffusion. In addition, specific ion channels embedded

in the membrane are selectively permeable to certain ions under some conditions,

letting part of the membrane act as a variable resistor.

In 1952, Hodgkin and Huxley developed a model that, even today, is con-

sidered useful and reasonably accurate. The model approximates the main ionic

mechanisms behind the generation of action potential "firing spikes" in the giant

axon of a squid [30]. It takes the form of a set of ordinary differential equations

(ODEs) that contain one voltage-based differential equation, and several other dif-

ferential equations for each gating variable. The passive properties of such models

can be readily derived from Kirchoff’s laws.

Figure 1: Hodgkin-Huxley diagram

The HH model consists of four nonlinear ordinary differential equations, as



CHAPTER 1. INTRODUCTION 4

shown in Equation 1 that keep track of the major currents that can be observed in

the squid neuron: the capacitive membrane current (C), the sum of external input

currents from other neurons (I), a potassium K+ ion current, a sodium Na+ ion

current, and a general "Leak" current (represented by the generic resistance R in the

diagram) that collectively accounts for the movement of other ions, mainly chloride

Cl�.

The model keeps track of conductances, the g-variables in Equation 1 for each

ion and it has non-linear gating variables for the K+ and Na+ ion channels (the m, n,

h variables). The likelihood of any given gate x being open is governed by its steady

state variable value (Equation 2). Since gates do not open and close instantaneously,

the time constants equations are introduced (Equation 3).

C

dV

dt

= I

input

+ g

Na

(E
Na

� V ) + g

K

(E
K

� V ) + g

L

(E
L

� V ) (1)

g

Na

= ḡ

Na

m

3
h g

K

= ḡ

K

n

4
g

L

= ḡ

L

(2)

dx

dt

=
x1(V )� x

⌧

x

(V )
where x = m,n, h (3)

The HH model is considered biologically plausible by neuroscientists. The

main reason is that experimentalists can adjust model parameters that control ion

flow at the cellular level to match the observed electrical activity of many specific

types of neurons.

The fact that the HH model has so many nonlinear differential equations (dV,

dm, dn and dh) makes it quite computationally expensive. Computational neuro-

scientists often add even more equations to the standard HH model to account for

other mechanisms, such as the movement of calcium (Ca2+) ions. These additions

make the model more accurate but add to the computer time needed to simulate it.
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1.2.2 Integrate and Fire Models

Because of the computational complexity of the HH model, many modelers of neu-

ronal networks have focused their attention on computationally simpler classes of

neuron models. Leaky IF is the simplest of the standard models used in modeling

large networks of neurons [10].

dx

dt

= �x

⌧

+ x

input

(4)

if(x � x

threshold

){

x = x

reset

}

The single Equation 4 for dx and the threshold test for firing are the heart

of all Leaky IF models. The �x/t term causes membrane potential x to decay

exponentially over time if the neuron does not receive new synaptic inputs x

input

.

Spikes are generated artificially whenever the cell voltage exceeds the "threshold"

and then the potential "resets" to a constant pre-defined value.

The model is quite computationally simple because it takes only 4 to 10 (de-

pending on specific implementation) floating-point operations for each time step

for each neuron [34]. However, this type of model lacks biological plausibility,

not only because it does not take into account the biological details of different ion

channels but also because it cannot display many complex spiking behaviors such

as tonic bursting or threshold variability [34].

dV

dt

= 0.04v2 + 5v + 140� u+ I

ext

(5)

du

dt

= a(bv � u) (6)
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if(v � 30mV ){

v = c

u+ = d

}

To answer many interesting questions about brain mechanisms, scientists need

to simulate large-scale networks of biologically motivated spiking neuron models.

The problem is that models in the HH family are very computationally expensive,

limiting the sizes and efficiency of simulated networks. The purest IF models are

often too simplistic and do not offer a variety of firing patterns. What is needed

is a neuron model much more computationally simple than HH but which retains

enough biophysical detail to at least produce the variety of firing patterns exhibited

by most real neurons.

Figure 2: Izhikevich neuron model. (Adapted from [34]).

Eugene Izhikevich has developed a neuron model that is almost as simple as
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the standard Integrate-and-Fire but which can model a large variety of the firing

patterns seen in neurons in the brain [34]. The two Izhikevich equations, (5) and

(6), and the firing threshold and reset condition are shown above. According to

Izhikevich, his model is roughly 100 times more computationally efficient than the

HH model [34]. Just by changing the values of four parameters (a,b,c,d), the two

equations plus the threshold condition and reset can realistically model the firing

behavior of many types of neurons observed experimentally, as shown in Figure 2.

1.3 Modeling Networks of Neurons

Although modeling single neurons with HH equations can give useful results, the

most common modeling work in computational neuroscience involves simulations

of networks of neurons. These networks can be very different in terms of size and

complexity, sometimes modeling large parts of the brain or even the brain of whole

organisms.

Simulating brain structures with large-scale neuronal models is extremely use-

ful because it lets researchers precisely manipulate features of simulated neural

tissues and observe both local and global properties of neural systems. During the

last decade, large-scale brain modeling has risen in prominence, with a wide range

of publications on brain-scale models [2, 23, 33, 37].

Most large-scale modeling research groups focus either on networks that are

highly realistic down to the individual axon collaterals and dendrite branches of

each neuron [39] or on systems simplified enough to simulate in huge-scale on

massively parallel hardware [2, 29, 37].
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1.4 Our Work

Our work fits somewhere in between the extremes of highly detailed biophysical

networks and huge-scale simplified networks.

For our first project, we have developed a computational model of a network

of Hypoglossal Motoneurons (HMs), which are located in the brainstem and con-

trol the tongue muscles. They are coupled by gap junctions, direct electrical links

between neighboring neurons. The mathematical model of HMs captures in great

biophysical detail the neurons’ ionic currents and firing activity. We have simu-

lated HM networks with hundreds of neurons for a quantitative analysis of their

synchronized firing activity. The main goal of this investigation is to shed light

on the factors that influence the synchronized behavior of this small network of

motoneurons.

BOSS is the main ongoing project of our lab. It is a unified system for cre-

ation, simulation, and visualization of large-scale models of brain structures. These

models are morphologically representative neuronal networks and include neurons

of different types, learning synapses and gap junctions. The first structure that we

have focused on is the cerebellum. We have built large-scale models of cerebel-

lar tissue consisting of up to millions of neurons and billions of synapses to match

mammalian cerebellar literature. We run many simulations (on PCs and on Blue

Gene supercomputers) to test hypotheses related to the functioning of the cerebel-

lum.



Chapter 2

Network of Hypoglossal Motoneurons

2.1 Biological Background: Hypoglossal Motoneu-

rons and the Hypoglossal Nucleus

Figure 3: Illustration of rat brain. Adapted from [35].

Hypoglossal motoneurons (HMs) are part of the hypoglossal nucleus which is

located in the brainstem and plays an important role in controlling tongue move-

ments. The rat brain, illustrated in Figure 3, shows where the brainstem nuclei are

9
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located (under the cerebellum, in the pathways that lead to the spinal cord). Fig-

ure 4 illustrates even more specifically where the HMs are located in the sliced rat

brainstem, with the Hypoglossal Nucleus being shown as XII and colored in red.

HMs participate in a variety of upper airway behaviors, including but not lim-

ited to swallowing, breathing, suckling, speech, and maintaining upper airway pa-

tency [24]. Subsequently, they are of particular interest, as a failure in these neu-

rons can disfacilitate the tongue, rendering an airway obstruction. This could po-

tentially exacerbate hypoxic conditions, and may potentially contribute to sudden

infant death syndrome (SIDS) and obstructive sleep apnea.

Figure 4: Location of the HMs in the brainstem of the rat. (Adapted from [24].)
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2.2 The HM Network Model

2.2.1 The Hypoglossal Motoneuron Model as an Extended

Hodgkin-Huxley Model

The neurons in this project were modeled using ionic current equations from the

rat HM mathematical model generated by Purvis and Butera [52]. They developed

a single-compartment, electrophysiological, HM model based primarily on experi-

mental data from neonatal rat HMs.

Figure 5: HM spike details

The model is able to reproduce the fine features of the HM action potential: the

fast afterhyperpolarization (fAHP), the afterdepolarization (ADP), and the medium-

duration afterhyperpolarization (mAHP), as illustrated in Figure 5. The model also

reproduces the repetitive firing properties seen in neonatal HMs and replicates the

neuron’s response to pharmacological experiments. As such, it is suitable to be

used for studying the role of specific ionic currents in HM firing.
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Figure 6: HM model illustration of all channels and parameter values

The HM model belongs to the HH category of models, but it is extended with

a few additional ion channels. Equation 7 below presents all the ion currents of

the model. More specifically, these myriad ion channels include the voltage-gated

category: sodium, potassium, and calcium channels; the ion-activated category:

Ca2+-activated K+ channels, Ca2+-activated Na+ channels, and K+-activated Na+

channels; and leak channels. Figure 6 illustrates all the channels that are controlled

by Equation (7). The g values represent the maximum conductance and they are

given as parameter values in [52].
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BK

b

BK

(E
K

� V )

+ ḡ
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2.3 Gap Junctions

Intercellular space

Hydrophilic channel
2-4 nm space

Connexon 

Plasma membranes

connexin monomer

Closed Open

Figure 7: Gap junctions between neurons.(From: Wikimedia Commons)

Gap junctions (also known as electrical synapses) are intercellular channels

(illustrated in Figure 7) between neurons and are found in many parts of the mam-

malian central nervous system (CNS) [7, 14]. They are direct electrical links be-

tween adjacent neurons. In the brainstem and spinal cord, gap junction proteins
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and/or functional gap junction coupling have been reported in various nuclei in-

cluding the locus coeruleus, nucleus of the solitary tract (NTS), hypoglossal motor

nucleus (HMN), phrenic motor nucleus (PMN), vestibular nucleus, and inferior oli-

vary nucleus [1, 5, 7, 14]. Figure 8, adapted from [16], shows some examples of

electrical coupling via gap junctions in different areas of the brain. In the figure, we

can clearly see the effect that the presence of the gap junctions has in the membrane

potential of a (lower) neuron that is connected to another (upper) neuron that just

spiked.

Often gap junctions are present in CNS areas that require synchronized fir-

ing activity. They appear to play an important role in a number of vital functions,

including respiration, where they influence overall respiratory control and central

CO2 chemoreception [14, 19, 61]. To this end, previous reports have identified

the gap junction proteins connexin26 (Cx26), connexin32 (Cx32), and connexin36

(Cx36) in neurons within respiratory regions of the rat brainstem [14, 59, 60, 63]

and functional blockade of gap junctions has been shown to alter various aspects of

respiratory-related activities [9, 60].

Figure 8: Examples of electrical coupling via gap junctions in different areas of the

brain.
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Numerous studies, both experimental and computational, have focused on an-

alyzing the synchrony of neuronal networks connected via gap junctions [31, 41,

50,56,57,60]. The computational work has involved a variety of cell types ranging

from pancreatic beta cells to interneurons, and has been focused on analyzing cou-

pling strength when changing gap junction connectivity or intrinsic currents within

the cells [50, 56].

I

GJ

=
CX

j=1

g

GJ

(V
j

� V

i

) (8)

Equation 8 presented above shows the gap junction current I
GJ

that is received by

neuron i from the C gap junction connections that it forms with other neurons,

and is based on a classical model presented by Perez-Velasquez and Carlen [49].

Figure 9 shows an example of one of our models with two neurons connected by

gap junctions.

Figure 9: An input current of 1 nA was applied to Neuron 1 while no input current

was applied to Neuron 2. Application of current to Neuron 1 elicits action potential

firing in this neuron and changes in membrane potential in the gap junction-coupled

neuron (Neuron 2).
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2.4 Details of Creating the HM Network Model

As mentioned in section 2.2.1, the individual neurons were modeled using the

ionic current equations from the rat hypoglossal motoneuron (HM) mathematical

model generated by Purvis and Butera [52]. The parameters for the ionic currents

of the cells were initially not changed from the Purvis-Butera model for the first

study. Eventually, for one of our studies, we tested different levels of SK (small-

conductance Ca2+-activated K+ channel) conductance.

Figure 10: Example of four HMs connected with each other via gap junctions. The

neurons rapidly attain perfect synchrony.

For our simulations, Euler’s method was used for numerical integration with

a time-step of 0.05 ms. A few of the simulations were checked at a dt=0.01 ms

to ensure correctness and numerical stability. The usual input to the system was a

square-wave excitatory current applied to each neuron at slightly different starting

times (as seen in Figure 10 with the first spikes occurring at different times). A

variable white-noise was added at every time-step. We have created homogenous
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networks of hundreds of HMs probabilistically connected into a network via simple

gap junctions. The implementation of the gap junctions was based on the model

by Perez-Velasquez and Carlen [49] as described in section 2.3. A basic example

of our model with four neurons connected with high-conductance gap junctions is

shown in Figure 10.

2.4.1 Neuronal Synchrony

Synchronized neuronal activity can be associated with both healthy neuronal func-

tioning and pathological conditions. Respiratory motoneurons require some degree

of synchrony to coordinate intrinsic and extrinsic tongue muscles [4], diaphragm

and tongue motoneurons [65]), and left and right hypoglossal nerve activities dur-

ing respiration [48]. On the other hand, excessive synchrony, particularly through

gap junction coupling, has been shown to be associated with seizures [49]. A major

part of this chapter of the dissertation focuses on analyzing the synchrony of our

network models, in particular under the effect of gap junction coupling.

� =
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N
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(t))2 � ( 1
N
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(t))
2

1
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N
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We needed an objective measure to make numerous comparisons and analyses

for synchronized neuronal network behavior. To evaluate synchrony, we imple-

mented a quantitative measurement of network synchrony that we call � (Equation

9), originally proposed by Hansel et. al. [28]. This synchrony measure is computed

by calculating the ratio of the time-averaged variance of the population voltage and

the population average of time-averaged variance of single cell voltage. However,

unlike the standard form, which is applied to data points over all time, for some of

the studies we apply the measure to short time bins of 200-500 ms duration con-

secutively. Much like a short-time Fourier transform, this provides insight into how
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the properties of the signal change over time and helps to ameliorate limitations of

a method that was originally intended for use over the entire signal.

2.4.2 Using the Model

Our network model of HMs was used extensively to test aspects of gap junction

coupling. In this dissertation, we present three of our most thorough studies. In

our first study we performed an analysis of the effects of lowering gap junction

conductance to address some conflicting observations from gap junction blockade

experiments. In our second study, we analyzed the effect of changing the amplitude

of the excitatory input current to HMs and the influence of specific ion currents

(such as the Ca2+-gated K+ channels) on the synchronized behavior of a network

of HMs with different gap-junction coupling conditions. In our third study, we

analyzed an interesting emerging Central Pattern Generator (CPG)-like behavior

under conditions of gap junction coupling, where the HMs divide themselves into

different firing groups.

2.5 Study 1: Analyzing Gap Junction Blockade

In this study, we performed an analysis of the effects of lowering gap junction

conductance to address some conflicting observations from gap junction blockade

experiments.

2.5.1 Uncoupling Simulations

Blockade of gap junctions has been shown to alter respiratory activity by affect-

ing inspiratory-phase neuronal synchrony [9, 60], an observation that is consistent

with the idea that the conductance and opening or closing of gap junctions has a
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direct effect on synchrony of neuronal networks [56]. Intuitively, one might assume

that gap junction blockers would produce a complementary decrease in neural syn-

chrony; however, studies examining the effects of gap junction blockade have pro-

duced mixed results. In the field of central respiratory control, this is highlighted by

a series of studies focusing on respiratory rhythm generation and inspiratory-phase

neuronal synchrony. In these studies, Solomon et. al. [60] demonstrated that phar-

macological blockade of brainstem gap junctions reduces inspiratory-phase syn-

chronization in the phrenic nerve in the adult rat while Bou-Flores and Berger [9]

showed that on a short-time-scale, gap junction blockade increased inspiratory-

phase synchronization in the hypoglossal and phrenic nerves in the neonatal rat.

Additionally, Winmill and Hedrick [73] reported that fictive breathing was differen-

tially affected by blockade of gap junctions in larval versus adult bullfrogs. While

age-related differences in Cx expression and gap junction coupling are known to

exist [1, 6, 12, 59, 61–63], it is unclear how or why neuronal synchrony would be

differentially affected by blockade of gap junctions in the above studies. To address

these curious and conflicting findings in the literature, we used our model of the net-

work of HMs in the hopes of elucidating potential mechanisms that might explain

the gap junction-mediated decreases versus increases in neuronal synchrony.

To simulate the gap junction blockade experiments, we first established a gap

junction-coupled 100 motoneuron model. After simulating this model until full

synchrony is achieved, gap junction conductance was gradually lowered, but never

reduced to zero, since some of the pharmacological agents used to block gap junc-

tion coupling may only partially reduce channel conductance albeit other pharma-

cological agents completely close the channel (reviewed by Rozental et. al. [54]).

A detailed example from these simulations is shown in Figure 11. As gap junction

conductance decreases, so does neuronal synchrony. The decrease in synchrony is
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Figure 11: Example of simulation showing the effects of gap junction uncoupling.

The biological simulated time was 8 seconds on a network of 100 motoneurons.

(a) Voltage traces from a selection of 20 of the neurons; upper panel shows ex-

panded traces from 3 regions indicated, demonstrating perfect synchrony during

the initial segment, the reduction of synchrony as the neurons are uncoupling dur-

ing the second segment, and unsynchronized firing in the final segment. (b) Average

gap junction conductance (in nS). (c) Integrated total voltage trace of the entire net-

work. (d) The measure of synchrony of the network with data points every 200

ms.
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clearly seen when all voltage traces are summed together in part c of the figure, al-

though the decrease in total voltage may not necessarily reflect a loss of synchrony.

2.5.2 Gap Junction Blockade of Motoneuron Nucleus and Up-

stream Inputs

Under experimental conditions in which the application of gap junction blockers

is provided by bath application or systemic perfusion, the effects of gap junction

blockade may not be exclusive to the neuronal population under investigation but

could be influenced by other neural areas that provide direct or indirect input to this

region.

Figure 12: Lowering the gap junction conductance and resulting decrease in inte-

grated voltage output.

In the respiratory circuit, for example, some respiratory-related neurons in ad-

dition to the HMs have been shown to exhibit gap junction coupling. This includes

the pre-BotC [53], which is the primary locus of inspiratory activity and as such

is the major component of inspiratory drive to which hypoglossal motor activity

is entrained. Thus, a decrease in gap junction coupling in the pre-BotC, which is

upstream of the HMs, could alter HM activity since blocking gap junctions would

be expected to decrease the total voltage (Figure 12) from this region as well. If
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this were to occur, it would lead to an alteration in the strength of the input to the

HMs. To assess this possibility, upstream gap junction blockade was incorporated

into the model as a reduction of the input current to the motor nucleus.

Thus, for these simulations, both the motoneuron nucleus and its upstream

drivers were subjected to gap junction blockade by simultaneously reducing input

current and gap junction conductance. Under these conditions, we observed effects

that were distinct from those shown during gap junction blockade of the motoneu-

ron nucleus alone (Section 2.5.1). In this case, rather than a decrease in synchrony,

an increase in synchrony was observed as gap junction conductance was steadily

decreased (Figure 13A). Concomitantly, the measure of neural synchrony was also

increased, verifying that synchrony increases as gap junction conductance is re-

duced (Figure 13B).

To ensure that this effect is not an exotic behavior contingent on precise pa-

rameter settings, we ran several simulations over a broad variety of input currents

and gap junction conductances. These simulations are summarized in Figure 14 and

clearly demonstrate that synchrony increases monotonically with increases in gap

junction conductance for a fixed input current and decreases monotonically with

increases in input current for a fixed gap junction conductance.

Our simulations have demonstrated that gap junction blockade generally pro-

duces a decrease in neuronal synchrony when applied exclusively to the nucleus of

interest and either an increase or decrease in neuronal synchrony when decreases

in gap junction conductance and input current are combined. We suggest, however,

that whether synchrony is reduced or enhanced potentially relies more heavily on

the nature of the incoming inputs into a nucleus rather than froim a reduction of syn-

chrony in the nucleus itself. Though gap junctions have traditionally been viewed

as simple synchrony enhancers, and some of our simulations appear to support this

view, our study has highlighted the idea that the role of gap junctions can be deeply
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nuanced and highly dependent on the state of the cell and surrounding tissue.

Figure 13: Reducing the input current (I) and gap junction conductance enhances

neuronal synchrony. In (A) I=0.5nA and gap junction conductance = 1.2nS; in (B)

I=0.3nA and gap junction conductance = 0.8nS.

While mixed results have been reported in the literature, the mechanisms un-

derlying these differences were not identified. Thus, our simulations provide new

mechanistic insight explaining these differences.
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Figure 14: Effect of changes to gap junction conductance and to input current on

neuronal synchrony.

It should be noted, however, that at the onset of this study, we did not ex-

pect neuronal synchrony to increase with simulated gap junction blockade. While

our observations verify that an increase in synchrony can occur with gap junction

blockade, it certainly defies intuition. Previous computational models of oscillatory

networks have shown that while strong gap junction coupling can synchronize neu-

ronal oscillations, weak gap junction coupling can phase-lock cells [42,57], the later

of which could potentially lead to an increase in neuronal synchrony. An alternate

explanation, however, must be considered when taking into account the methods

employed for application of the gap junction blockers in the experimental studies

described above. In this case, we reasoned that since the gap junction blockers

were applied directly to the artificial cerebrospinal fluid bathing the tissues, they

might have affected CNS areas other than the motoneuron nucleus responsible for
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the motor output studied. If this were the case, the synaptic input to the hypoglos-

sal and/or phrenic motoneuron nuclei would potentially be reduced. Assessment of

this possibility revealed that simultaneously reducing the gap junction conductance

and the input current that corresponds to the input from the upstream drivers can

produce in an increase in neuronal synchrony, an effect that was distinctly different

from that observed when reducing only gap junction conductance of the motoneu-

ron nucleus. Thus, our computational model and simulations clearly demonstrate

that gap junction blockade can decrease or increase neural synchrony depending on

the circumstances associated with drug application.

2.6 Study 2: Effects of Firing Frequency on Network

Synchrony

2.6.1 Introduction

As a follow-up to the previous study on gap junction blockade and inspired by its

results, we decided to look deeper into firing frequency as a related factor that may

affect network behavior. In fact, there have been very few studies that have ana-

lyzed the effects of neuronal excitability and firing activity on network synchrony.

Synchronous oscillations occur over a wide range of firing frequencies in different

brain structures [49, 66, 68] and the synchrony can be sensitive to those frequen-

cies. In the locus coeruelus, for example, it has been shown that increasing ac-

tion potential frequency of individual neurons reduces the synchronized activity of

the nucleus. Additionally, Chow and Kopell [15] performed a complete modeling

study on various aspects of electrical coupling and confirmed that driving current
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(which affects firing frequency) causes the models (mostly pairs of integrate-and-

fire neurons) to lose synchrony or fire out-of-phase. Firing frequency modulation is

typically achieved by controlling the input current that is supplied to the neurons in

simulation, and also by changing intrinsic properties of the model. Here we analyze

the effects of both.

Figure 15: SK and firing frequency

Average firing frequency of a gap junction-coupled network in response to changes

of SK conductance. Data shown were obtained from simulations with different

levels of input current (as indicated).

2.6.2 Effects of SK and Input Current Amplitude on Firing Fre-

quency

Firing frequency of neurons can be drastically influenced by changes in the parame-

ters of specific ion channels. One of the typical ion channels that affects excitability,
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is the Ca2+-activated K+ channel, also known as the "SK channel" [69]. SK chan-

nels are common throughout the CNS and are gated exclusively by intracellular

Ca2+ [53]. HMs are known to contain SK channels, and they play a role in both

shaping the action potential as well as firing frequency [71]. We first examined

how changes in SK conductance affect the excitability (i.e., firing frequency) of a

neuron. For these simulations, SK conductance was altered for a fixed level of in-

put current, and multiple levels of input current were evaluated. Figure 15 above

illustrates the results of these simulations, and demonstrates that lowering SK con-

ductance produces an increase in firing frequency at each level of input current

tested.

Figure 16: Average firing frequency of a gap junction-coupled network in response

to changes in input current (I). Data shown were obtained from simulations with

different levels of SK conductance (as indicated).
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At the same time, it is well known that the firing frequency of neurons can

also be modulated by the magnitude of the input current a neuron receives. So we

also examined how changes in input current affect the excitability (i.e., firing fre-

quency) of a neuron. For these simulations, an excitatory input current that ranged

from 0.3 to 4 nA was applied. Similar to the above tests, for these simulations, SK

conductance was set to a fixed level, and multiple levels of SK conductance were

evaluated. Figure 16 illustrates the results of these simulations, and demonstrates

that average network firing frequency increases in response to increasing the mag-

nitude of the excitatory input current at each level of SK conductance tested. Gap

junction conductance was set to a low level of 0.05nS for Figures 15 and 16.

Our simulations also revealed that firing frequency was significantly increased

from a minimum of ⇡ 10Hz for the lowest level of applied input current to as high

as 55 Hz for the highest level of applied input current, which is consistent with the

range of "steady-state" firing frequencies reported for neonatal HMs [71].

2.6.3 Effects of Changing Firing Frequency on Synchrony

In order to perform a more thorough analysis of the effect of changing firing fre-

quency (by changing SK and input current) on strength of synchrony, we decided

to divide our simulations on gap junction-coupled networks with: (1) low coupling

strength, (2) medium coupling strength, and (3) high coupling strength. The pa-

rameters chosen are presented in Table 1 and three typical examples from these

simulations are shown in Figure 17.
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Table 1: Parameters values for grouping simulations in three different levels of

synchrony

Category Connectivity Gap Junction Conductance Synchrony Range

Low 3% 0.05 <0.25

Medium 5% 0.1 0.25-0.75

High 10% 0.2 >0.75

Using the two methods described above for altering firing frequency, we tested

whether network synchrony is influenced by changes in firing frequency with the

simulations divided in three different levels of coupling as described in Table 1. The

results of these simulations are summarized in Figure 18.

Regardless of the strength of gap junction coupling, increasing firing frequency

by either method generally produced an overall decrease in network synchrony,

illustrating a clear anti-correlation between synchrony and firing frequency. Results

from these simulations for both the effects of decreased SK conductance-mediated

increases in firing frequency (Figure 18A) and increased input-current-mediated

increases in firing frequency (Figure 18B) clearly illustrate this trend although the

precise behaviors elicited by each method as well as under each coupling strength

condition are somewhat different.
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Figure 17: Three levels of coupling

While this trend was generally observed under all simulation conditions, it

should be noted that the level of synchrony was (1) consistently below 0.3 in net-

works with low coupling strength (2) between 0.3 and 0.6 in networks with medium

coupling strength, and (3) between 0.4 and 1.0 in networks with high coupling

strength. Furthermore, regardless of the initial level of synchrony observed for

the different levels of coupling strength, all networks were susceptible to changes

in firing frequency. Moreover, in networks with both low and medium coupling

strengths, firing frequencies of >20 and >30 Hz, respectively, were capable of re-

ducing synchrony to near zero, indicating that the neurons in these networks essen-

tially became fully desynchronized.

Our simulations also revealed some noticeable differences for the effects of
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Figure 18: Synchrony in a gap junction-coupled network in response to changes in

firing frequency for the three different levels of coupling strength. A. Simulations

showing the influence of changes of SK conductance at different levels of input cur-

rent. B. Simulations showing the influence of changes in input current at different

levels of SK conductance.
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SK conductance-mediated changes in firing frequency (Figure 18A) versus those

for input-current-mediated increases in firing frequency (Figure 18B), especially in

networks with medium and high coupling strengths. In networks with medium cou-

pling strength, for example, decreasing SK conductance markedly increased firing

frequency, but only elicited a slight decrease in synchrony; increasing input current

modestly increased firing frequency, but produced a sharp decrease in synchrony.

In addition, when input current was very close to rheobase with high levels of SK

conductance, a small decrease in SK produced a very slight increase, rather than a

decrease in synchrony.

Our simulations also revealed that networks with high coupling strength dis-

play the greatest degree of spread and volatility in synchrony. In these networks,

two subtypes of network behavior were observed in response to SK conductance-

mediated increases in firing frequency: (1) networks that exhibited a high level of

synchrony (⇡ 1.0), but became slightly less synchronized as SK conductance was

decreased and (2) networks that exhibited a moderate level of synchrony (⇡ 0.4),

but became more synchronized as SK conductance was decreased. In contrast,

input-current-mediated increases in firing frequency elicited more consistent behav-

iors. In this case, with low levels of input current, synchrony remained very high,

and as input current was increased, synchrony dropped either gradually or abruptly.

During these steep drops, slight increases in firing frequency occasionally elicited

an increase in synchrony, which was followed by a continued precipitous decline.

Additionally, in some networks, a high degree of synchrony was maintained even

at relatively high firing frequencies although at the highest firing frequencies, a

decrease in synchrony was observed [21]. These findings could potentially be rec-

onciled based on the previous study presented in this dissertation, indicating that

gap junction blockade can produce varying effects, from increased to decreased

synchronization, depending on whether or not upstream premotor neurons are also
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affected by gap junction blockade [41].

Additional simulations were performed to examine the effects of firing fre-

quency changes on gap junction-coupled networks with extreme values. In this

case, a network that was almost completely unsynchronized (with very low gap

junction coupling) and a network that was almost perfectly coupled (synchrony

above 0.98) were used. Our simulations in the unsynchronized network revealed

that increasing firing frequency was ineffective in producing any significant changes

in synchrony (not shown). Similarly, our simulations in the almost perfectly cou-

pled network revealed that synchrony was not disrupted by increases in firing fre-

quency (not shown). We interpret these observations to suggest that extreme values

for gap junction coupling seem to protect against frequency-based changes in syn-

chrony.

While both decreasing SK conductance and increasing input current increased

firing frequency, which tended to reduce synchrony, each method for modifying

firing frequency and synchrony did so at a different rate. While changes in input

current greatly altered synchrony with small changes to firing frequency,changes

in SK conductance tended to produce larger changes in firing frequency with less

pronounced changes in synchrony (as seen by the less steep curves in 18A). Though

it is not entirely clear why changes in SK conductance and input current have these

particular effects, we speculate that it has to do with the dual effect of SK on firing

frequency and spike shape, as compared to the single effect of input current on

firing frequency alone. In this case, altering spike shape simultaneously with firing

frequency may help to maintain synchronization when it would otherwise be lost.
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2.7 Study 3: Emergence of Multiple Firing Groups

2.7.1 Introduction

During our simulations, we noticed an interesting emerging property of the firing

activity of the neurons. Despite no explicit division of neurons into two groups, we

observed a spontaneous division of neurons into two distinct firing groups, as in the

example shown in Figure 19. This behavior resembles models of central pattern

generators (CPGs). Central pattern generators (CPGs) are observed in neural re-

gions that spontaneously generate oscillatory behavior in the absence of patterned

input. In both invertebrates and vertebrates, they appear to play a critical role in the

formation of repeated oscillatory behaviors, including activities such as walking,

swimming, heartbeating, and breathing [13, 38]. Because of their roles in cardiac

and respiratory function, CPGs may be considered vital for basic survival across

much of the animal kingdom.

Traditional CPG models usually involve two distinct nuclei mutually inhibiting

one another via synapses. Our model is very different since it is only a single

nucleus model with random gap junction coupling. The division of the neurons into

multiple firing groups appears sensitive to gap junction conductance, probability of

gap junction coupling between cells, topology of gap junction coupling, and, to a

lesser extent, input current into our simulated networks.

Traditionally, reciprocal synaptic inhibition between two neuronal populations

(or two groups of neuronal populations, or even two individual neurons [55]) is seen

as the standard method of generating CPG behavior in both biological and compu-

tational systems. Originally proposed by Brown [11], this style of CPG appears

in biological models of lamprey and mammalian locomotion models [40] and as a

component in more complex models of respiratory activity [58]. This form of CPG
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is often referred to as the half-center model and is a prominent model for robotic

locomotion controllers.

Figure 19: Emergent firing groups

While half-center CPGs typically focus on synaptic inhibition, recent work

indicates that gap junction coupling may also play a role in locomotor patterns [36]

and respiratory patterns [53, 60]. A combination of gap junctions and synaptic

inhibition may also be responsible for synchrony in some neuronal populations,

and even if gap junctions are not responsible for generating a mutually inhibitory

connection, inhibitory currents coupled by gap junctions could easily play such a
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role [67].

Although hard-wired reciprocal synaptic inhibition may be easy to identify

physiologically, we propose that this same style of inhibition can spontaneously

form in a single pool of gap junction-coupled neurons, mutually inhibiting one an-

other via their slow afterhyperpolarization (sAHP). The sAHP following the action

potential can be modified directly through Ca2+-gated K+ channels e.g., via the I
SK

channel as shown in the previous study, that are known to play an important role in

burst frequency modulation. Since neurons would dynamically assign themselves

to one of the two "half-centers", changes to gap junctions or inputs alone could

modify how individual neurons align their firing. This would produce a highly

dynamic modifiable half-center CPG capable of adapting to the rapid demands of

locomotion or respiration.

Table 2: Total connections in firing groups

Category From group 1 From group 2

Connections to group 1 CS1(S1 � 1)/2 CS1S2/2

Connections to group 2 CS1S2/2 CS2(S2 � 1)/2

Here, we present a biologically realistic model of gap junction-coupled neu-

rons that exhibit multiple output rhythms typical of half-center CPGs. Unlike stan-

dard half-center CPG models, however, we have one pool of ubiquitous neurons

with random gap junction coupling that are still able to output two or more distinct

phase-shifted rhythms.
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2.7.2 Half-Center-like Behavior

In the simulations, following the opening of gap junctions, two distinct phase-

shifted signals reminiscent of a traditional half-center CPG could be generated in a

single nucleus with ubiquitous connectivity. An example of this behavior is shown

in Figure 19, where opening the gap junctions shifted a fairly asynchronous firing

pattern among the 100 neurons into two distinct neuronal firing groups. To high-

light this division into two firing groups, the neurons were color-coded according

to their group affiliation (Figure 19(b)). A raster plot of their spiking behavior was

also generated Figure 19(c). In general, one group was often better aligned than

the other, and upon further investigation, the randomness and ubiquity of connec-

tivity actually fostered conditions encouraging one slightly larger group to act as

a "driver" for the smaller "follower" group. On average, connectivity between and

within the firing groups is given in Table 2, with the probability of two neurons

being gap junction-coupled set to C, and the number of neurons in firing group i

being S
i

.

Table 3: Fraction of connections in firing groups

Category From group 1 From group 2

Connection ratio to group 1 (S1 � 1)/(S1 + S2 � 1) (S2)/(S1 + S2 � 1)

Connection ratio to group 2 (S1)/(S1 + S2 � 1) (S2 � 1)/(S1 + S2 � 1)

While this implies that both groups are sending roughly an equal amount of
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conductance between one another, as would be expected by bidirectional gap junc-

tion coupling, it masks a more important property. Since each group has a very

different degree of interconnectedness, the amount of incoming drive in relation to

internal drive is markedly different (see Table 3).

Figure 20: Three firing groups

As S1 > 1 and S2 > 1, the ratio of internal connections in group 1 is identi-

cal to the ratio of connections in group 2 received from group 1. Regardless the

size of each spontaneously formed group, the larger group always receives more

internal than external stimulation and extends more excitability to drive the smaller

group. Thus, based on probability alone, a similar topology is consistently ob-

served regardless of network size. This does not exclude the possibility of having

two equally sized groups, which would be expected to have more balanced dynam-

ics. While the main focus of the current investigation is on half-center like CPGs, it

should be noted that generating more than two groups is feasible even though more

rare. In the model below, for example, three groups were observed (Figure 20).
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Figure 21: Gap junction conductance vs. input current

Furthermore, in a similar fashion with the previous two studies, we also looked

at the effect of changes in input current amplitude. The results showed that even

without altering patterns of connectivity, modifying conductance through gap junc-

tions and/or input current into the system had the potential to shift the firing pat-

terns between 1, 2, and 3 independent groups (Figure 21). In this case, gap junction

conductance was seen to exert a greater influence than that of input current in deter-

mining the number of firing groups 21, with higher gap junction conductance being

associated with fewer groups and lower gap junction conductance being associated

with more groups. While input current was capable of producing a shift between
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different firing behaviors, changes in input current were less predictive of a trend in

the number of firing groups.

2.7.3 Topology Effects

Up until now, all of our models have used random connectivity without any concern

for spatial placement of the cells. Since slice preparations are commonly used to

study CPGs of the spinal cord, and the slice itself often has a thickness (350 - 600

µm) within the range of the dendritic span of motoneurons (250 - 700 µm), where

gap junctions primarily form between dendrites and/or somas, we opted to orient

neurons along a two-dimensional plane as a first approximation to this layout to

begin to explore the effects of spatial connectivity on half-center like CPG group

formation. Gap junction connections were made at random, with each cell having

a probability of 50% of connecting to any cell within a radius of 5 in the model

with topology. Neighboring cells in the plane topology were all evenly spaced in a

square lattice, with non-diagonal neighbors at a distance of 1.

While one might predict that neurons in each firing group would clump to-

gether into two massive nuclei, this is not the case. Instead, neuronal groups tended

to form a mottled appearance, with clumps from each group equally interspersed

(Figure 22). This configuration would ensure that each neuron would be exposed

to some members of each firing group, thus loosely preserving connectivity rem-

iniscent of a topology-free model. Figure 22 also reveals that one neuron spent

five firing cycles with the firing group color coded in red before joining the firing

group color coded in blue. This suggests that unlike in a traditional half-center

CPG where group allegiance is a hard-set property of each neuron, in some rare

instances, a neuron may straddle the fence and move between two groups.
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Figure 22: Mottled topology and firing groups

For Figure 23 multiple simulations were performed varying both the probabil-

ity of forming a gap junction with a neighbor within a given radius and the radius

itself. The results from this series of simulations resemble Figure 24, a plot based

on the average of the total hypothetical conductance received by each neuron.
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Figure 23: Connectivity topology in the model.

Figure 24: Connectivity topology theoretical guess
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2.7.4 Discussion and Other Considerations

The dynamic nature of these CPGs would be especially beneficial for either the

generation or modification of locomotor or respiratory central patterns. In contrast

to our model, most models of CPGs incorporate static group affiliation, which alone

may not be able to produce the sorts of dynamically changing locomotor and res-

piratory patterns seen in nature. In both locomotion and respiration, adaptation of

rhythms to both external environmental changes and descending cortical commands

may be more difficult in a simpler CPG, which may lack the requisite complexity

required to describe the wealth of patterns that humans and other mammals are ca-

pable of exhibiting in these two activities. Moreover, CPGs formed through gap

junctions can alter group affiliation without relying explicitly on changes in gap

junction coupling. With this in mind, some of the rarer behaviors seen in the cur-

rent model, including the more exotic three firing group behavior, might be easy for

a biological system to generate and maintain as long as the initial state of the system

is within the vicinity of the correct set of parameters. Evolutionarily speaking, it

would also be easier to create a CPG that itself had no explicit wiring, but could

rely on random connectivity to self-organize.

Though this novel CPG has many admirable traits, some inherent properties

of these systems may make them harder to tune or more difficult to find biologi-

cally. The volatile nature of a system that drastically changes behavior with small

changes in parameters could open such neural systems up to a plethora of neurolog-

ical disorders. While we offer no strong hypotheses regarding known disorders that

might stem from such a disruption, known disorders with errant or absent patterns

certainly come to mind: spastic gait, persistent muscle spasms, and the sudden loss

of breathing implicated in SIDS. Furthermore, because such systems can exist in a

singular nucleus with otherwise ubiquitous physiological properties, the only way
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to identify such systems experimentally would be to observe them while active,

rather than through simple histology alone.

2.8 Other Studies, Considerations, and Limitations

Apart from the three studies described above, our work with networks of HMs has

included other related topics, some of which can be analyzed in future studies.

These topics include: creating and using a reduced model of the HM, analyzing

network-level behaviors for the reduced model, analyzing developmental changes

of HMs by creating subtypes of the model with different parameters for different

age groups.

2.8.1 Reduced Model of HMs

We have developed a simplified model of the HMs, without many of the detailed

ion channels of the Purvis-Butera model. The reduced model is a combination of

the simple spiking Izhikevich [34] model, which contains only a Na+, K+, and leak

current, with some additional channels. More specifically, it involves a voltage-

gated Ca2+ currents I
Ca

, and the AHP (AfterHyperPolarization) current. The firing

pattern is similar to the original model, as shown in Figure 25 below.

One of the reasons for creating the reduced model was to see if the simu-

lations would run significantly faster on the reduced model, which has less than

half the number of differential equations compared to the full model. But for large

networks of neurons, the performance is very much influenced by connectivity, so

even though the reduced model runs faster, the difference is not significant enough

for networks of hundreds of neurons which contains many thousands of gap junc-

tions. Figure 26 shows an example of performance difference in a network of 1700
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neurons.

Figure 25: Full vs. reduced HM model firing behavior.

Figure 26: Performance (runtime) of full vs. reduced HM models in a large network

We even used the reduced model to analyze some of the behaviors from our
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studies presented earlier in this chapter to see if some of those behaviors could be

replicated. For instance, the CPG-like behavior with multiple firing groups (one,

two, or three) can be reproduced in the reduced model as shown in Figure 27.

Figure 27: Reduced HMs displaying emergent firing groups behavior.

2.8.2 Subtypes of HMs

It is known that throughout development, HMs exhibit a variety of electrophys-

iological changes. The model that we used for our studies reflects the neonate

electrophysiology. In our lab, we extended the initial HM model and have also

created subtypes to reflect developmental changes. These changes were imple-

mented by varying BK channels, and the Ca2+ currents (both voltage-gated and

leak). The firing frequencies of the HMs are quite different. There is also litera-

ture that demonstrates changes in the density of gap junctions with age. Interesting

modeling studies with a developmental focus can be performed and all the studies

mentioned above could be also analyzed from a developmental perspective but that

is beyond the scope of this dissertation.
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2.8.3 Limitations

The nature of computational models brings limitations that have to do with simpli-

fying assumptions and incomplete knowledge of the systems that are being studied.

For instance, as is common in modeling studies, the input currents chosen for the

excitatory drive of the motoneurons are simplified and may not replicate the synap-

tic input received from the premotor nuclei. Despite the fact that the HM model

that we used for these studies is a very detailed and thorough biophysical model,

it still makes simplifying approximations such as treating the neuron as a single

compartment and keeps track of only one value for a uniform membrane potential

on the whole neuron.

As is the case with all modeling, a reasonable computational model does not

necessarily imply the existence of a biological correlate. In addition, testing some

of the guesses or conclusions made from our models may be extremely difficult

to do experimentally in live animals. Furthermore, we are limited to the sets of

parameters explicitly examined, and, therefore, we cannot rule out that additional

mechanisms may play a role in those behaviors.

When modeling networks of neurons, we focus only on the neurons them-

selves. However, neurons do not exist in isolation, they are part of a tissue that

involves many other cell types and the conditions of the tissue itself may affect

neuronal functioning. Experiments like blockade of gap junctions in the biological

situation may also affect the glia, which are known to contain extensive gap junc-

tion coupling [20], and the uncoupling of glia could contribute to behaviors in the

system that we were not capable of capturing with the present model. It would be

of considerable general interest to model the extent to which such coupling strength

between an excitable neuron and a nonexcitable glial cell might affect neuronal

network activity [43], and future studies could consider that possibility.
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BOSS and a Large Cerebellum Model

3.1 Introduction to the BOSS Project

Several research groups, rather than focusing on precise details in individual neu-

rons, seek to build networks that consist of millions or even billions of neurons

to reach scales where mass neuronal effects such as memory and visual percep-

tion emerge. Simulating large-scale neuronal models gives researchers the power

to manipulate features of simulated neural tissues and observe both local and global

properties of neural systems. During the last decade, large-scale brain modeling

has risen in prominence, with a wide range of publications on brain-scale mod-

els [2, 33, 37].

Most large-scale modeling research groups focus either on networks that are

highly realistic down to the individual axon collaterals and dendrite branches of

each neuron, with the typical example being the Blue Brain project [39] or on sys-

tems that are simplified and run on massively parallel hardware, with the typical

example being the Gordon Bell prize-winning model of a cat brain [2].

Rather than emphasizing biophysical or neuromorphic details, our group is

more interested in a balanced approach that capitalizes on general structural con-

nectivity and approximations of neuron morphology while trying to maintain the

48



CHAPTER 3. BOSS AND A LARGE CEREBELLUM MODEL 49

overall behavior of the tissues as a whole. The Brain Organization Simulation Sys-

tem (BOSS) is the main ongoing project of our lab. It is a unified system for cre-

ation, simulation, and visualization of large-scale models of brain structures.

Figure 28: The BOSS project

As illustrated in Figure 28, the project consists of three major components:

INIT - an initializer in which parameters control the creation of the models;

RUNSIM - an efficient simulation engine;

VIZ - a custom visualization program.

We have continuously improved our tools making them more efficient and

adding various features to make the models as accurate as possible. The model-

ing software gives identical results, except for timings and limits on model sizes,

when run on a single laptop, a lab personal computer (PC), or on NY-Blue, the

regional IBM Blue Gene supercomputer.
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3.1.1 The Model Initializer: INIT

In the initialization phase (INIT), parameters specify spatial distributions of neurons

and synapses and control creation of models that are morphologically representative

neuronal networks. At the start of model creation, instances of all neuron types

are placed in a three-dimensional (3D) simulation space. Axonal and dendritic

fields, where all synapses are located, are approximated as 3D rectilinear boxes, as

illustrated in Figure 29.

Synapse placement is of great concern in large-scale models, since synaptic

connection patterns control the flow of excitation and inhibition through a neuronal

network. A typical approach to initialize synapse placement is to prespecify a few

pools of interconnected neurons and define the random likelihood that any two neu-

rons in a given pool are connected by a synapse [3].

Rather than specifying neuronal pools, our approach draws from both statisti-

cal connectivity and spatial location mappings. Instead of defining neuronal pools

without any sense of spatial geometry, we place neurons in 3D Cartesian (XYZ)

space. Each neuron has axonal and dendritic synaptic regions at preset positions rel-

ative to its soma. We let each neuron form connections with other neurons within

3D overlap volumes of their synaptic regions. In this way, synapse locations are

based on the spatial proximity of axons and dendrites by a method that is more de-

tailed than placing synapses between randomly selected neurons, but less detailed

than finding them where precise axonal and dendritic arborizations touch [39].

Our approach to building brain models starts with the creation of detailed pa-

rameter specifications. The program reads in a parameter file that statistically de-

scribes the neuronal and synaptic configuration of the brain tissues to be modeled.

The parameter file can be either in plain text format or in an XML format with our

predefined parameter namelists. Our program can be easily modified to accept input
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files in other formats, such as neuronal description parameters in NeuroML [26].

Figure 29: Three cell types of the cerebellum and the boxes representing their neu-

ritic fields

The input parameter file contains a list of cell types, what pairs of cell types

can form synapses, the density of each type of soma in the model space, the axonal

and dendritic shapes and positions relative to the soma of each instance of a cell

type, plus statistical properties about synapse concentrations and whether they are

inhibitory or excitatory. See subsection 3.3.1 on building the cerebellar model for

more details. The distances of each synapse from its axonal and dendritic somas

combined with parameters specifying propagation speeds in axons and dendritic

speeds at different distances from the soma determine propagation delays and at-

tenuations for action potentials passing though each synapse. To lessen computer

memory needs and execution times, our present modeling system does not consider

branching details within dendritic trees.

After parsing the input file, the program places all cell instances in the 3D
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Figure 30: Bounding boxes

space. The axonal and dendritic regions, where all synapses are located, are ap-

proximated as axis-aligned bounding boxes (AABBs), as seen in Figure 30. All

instances of neurons of the same type have their synaptic region boxes in the same

positions relative to the soma, or cell center.

The most critical step for our approach is determining axonal-dendritic inter-

sections once all volumes of potential connectivity have been specified by place-

ment of all neuron instances. The task requires walking through three-dimensional

space and determining where axonal and dendritic synaptic volumes overlap. For

neuronal simulations involving many millions of neurons, finding overlapping vol-

umes poses a significant computational challenge.

To perform neurite-overlap detection efficiently, we have developed a practical
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algorithm to walk through the axonal and dendritic volumes. There are two vari-

ants of the algorithm: one "Staggered Walk" (SW) that performs the walk blindly

in one predetermined dimension (e.g., X) and the other "Staggered Walk Dynamic"

(SWD) that uses a quick method to determine the optimal dimension (X, Y, or Z)

for starting the staggered walk [75]. These walk approaches turned out to be partic-

ularly useful in the rapid determination of connectivity between millions of neurons

in moderate-scale to large-scale models. The algorithm starts by sorting the neuritic

boxes in the predetermined same axis and then performs a plane sweep while main-

taining lists of "open" and "closed" local boxes that may overlap. Once the code has

walked past the "closed" points of neuritic fields, they are not considered anymore

in the overlap comparisons. This saves a lot of computation time. Once an overlap

is found, the algorithm calculates the volume of overlap and creates synapses based

on the percentage of maximum possible overlap. Staggered walks provide an au-

tomated method to create verifiable simulation models by reproducibly specifying

details of neuron placement and synaptic connectivity. Our algorithm scales well

and within a few minutes permits the rapid creation of models containing billions

of synapses, which would take many hours with a naive O(N2) approach.

3.1.2 The Simulator: RunSim

After all the structures get initialized, the run simulation (RunSim) phase begins.

Our simulations use the Izhikevich integrate-and-fire models [34] that were de-

scribed in the Introduction, Chapter 1. The Izhikevich model was chosen for its

simplicity, computational efficiency, and flexibility in producing different behav-

iors with only a few parameter changes [34]. Since we are more interested in global

large-scale network activities, we believe that we are not losing much by not having
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detailed ion channels, as used for the Hodgkin-Huxley style neuron models.

Our models run not only on standard PCs, but also on supercomputers with

identical results except for timings and model size limits. We have used up to

1024 nodes on a Blue Gene/P, and up to 4096 computing nodes on a Blue Gene/L.

We use MPI (Message Passing Interface) for the parallelization of the code across

nodes. [27]. We call our model space a "universe" and the Cartesian space is divided

equally into "nodes". Each node is responsible for all synapses within its zone

that provide dendritic inputs to somas located in its node space. The "zone" is

a region surrounding each node’s portion and includes any data pertaining to cells

connecting to neurons in that node. We have also added multithreading via OpenMP

to get performance improvement when the code runs on multicore architectures.

During simulation runs, model time is divided into equal time steps. Euler’s

method is used for the numerical integration to calculate the voltage V in the Izhike-

vich model for each neuron. After each time step, lists of neurons that have just fired

are broadcast among all computing nodes. Nodes receiving firing signals adjust

synaptic weights and neuronal excitation levels as needed. We have implemented

an image filter mechanism, where the pixel levels of an image get transformed to

probabilities of force firing neuron types (in most of the cases the mossy fibers).

Model sizes are limited primarily by the amount of computer memory available

to hold synapse data at runtime. The reason is that there are many more instances

of synapses than any other data structures (such as neuron somas, neuritic fields).

We optimized memory usage especially for synapse structures. Each currently uses

only 12 bytes and stores the minimum amount of information needed for simulation.
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3.1.3 The Visualizer

The third part of our BOSS system is the custom visualization software, Viz. It

renders 3D models simulated by BOSS. Viz is written in C++ and can be compiled

on different operating systems, including Microsoft Windows, Apple Mac OS X,

and GNU/Linux. Viz depends on FLTK ("Fast Light Toolkit"), a cross-platform

GUI toolkit written in C++ that supports OpenGL. Figure 31 illustrates the user

interface of VIZ.

Figure 31: Illustration of the VIZ user interface.

Viz can render models with up to a billion synapses on a lab PC. It can display

detailed static models of neuronal networks, optionally showing synaptic connec-

tions and neuritic fields. There are also display modes for dynamic simulation re-

sults including color-coded neuronal activity by firing frequencies, by cell internal
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voltages, or by synapse weight changes. Many of the images shown in this chapter

of the dissertation have been created using Viz. Viz has been an invaluable tool in

helping us refine our large cerebellar models.

3.2 The Cerebellum

Figure 32: Illustration of the human brain including the cerebellum.

The cerebellum (Latin for "little brain") is a region of the brain that plays an

important role in motor control. It may also be involved in some cognitive functions

such as attention and language, and in regulating fear and pleasure responses; its

movement-related functions are the most solidly established [74]. The cerebellum

does not initiate movement, but it contributes to coordination, precision, and accu-

rate timing of muscle contractions. It receives input from sensory systems of the

spinal cord and from other parts of the brain, and integrates these inputs to fine tune
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motor activity [25]. Cerebellar damage does not cause paralysis, but instead pro-

duces disorders in fine movement, equilibrium, posture, and motor learning [25].

Animals and humans with damaged or destroyed cerebella are still able to perform

movements, but these movements will be slow, inexact, and poorly coordinated.

Although the gross function of the cerebellum (motor control) is well known, there

is no consensus on how it achieves coordination. Its regular structure, which has

undergone much detailed neuroanatomical investigation, provides many hints.

The cerebellar cortex consists of three major and easily distinguishable lay-

ers: the outermost molecular layer, the ganglionic or Purkinje cell body layer, and

the granular layer [22]. The molecular layer is built principally of dendritic ar-

borizations and densely packed thin axons of granule cells, running parallel to the

longitudinal axis of the folium, hence called parallel fibers. The cell bodies of only

two types of neurons are localized in the molecular layer: the basket and the outer

stellate cells. The dendritic ramifications of both neuron types are confined to the

molecular layer, as are the axons of the outer stellate cells. The axon ramifications

of the basket neurons are situated both in the molecular layer and the Purkinje cell

layer, penetrating into the granular layer [22]. The Purkinje cell layer is a single

sheet that contains the Purkinje cell bodies and several kinds of axons either as-

cending or descending between layers, as well as the ascending dendrites of Golgi

cells. The granular layer is densely packed with billions of tiny granule neurons.

A considerable portion of the granular layer space is occupied by the glomeruli, or

rosettes, where mossy fibers synapse onto Golgi and granule cell dendrites [22,35].

Figure 33 shows the layers and some of the main cell types.
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Figure 33: Illustration of cerebellum, its layers, and cell types. (Adapted from [35])
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Figure 34: Illustration of a cerebellar "beam" consisting of parallel fibers and Purk-

inje cells. (Adapted from [35])

The cerebellum has five distinct well known neuron types: 1. Purkinje, the

huge characteristic cell and the only output of the cerebellum, 2. granules, the

most numerous neurons in the mammalian brain with characteristic long parallel

fibers, plus inhibitory 3. basket, 4. stellate, and 5. Golgi cells. [22]. Inputs to

the cerebellum come from two sets of axons: climbing and mossy fibers. The

Purkinje cells are among the largest cells of the brain and each can form up to

200,000 input synapses each (in the human cerebellum). Granule cells are the most

numerous cells in the brain. Their cell bodies are tiny but their long parallel fiber

axons reach all the way to innervate the dendritic fields of Purkinje cells and give

rise to the cerebellar "beams" as illustrated in Figure 34. Golgi cells receive inputs

from mossy and parallel fibers, and inhibit the mossy fiber to granule cell synapses,
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thus modulating the signal on the parallel fibers. Basket and stellate cells inhibit

Purkinje cells. [22, 44–47]

Mossy fibers from various sources (pons, medulla, cerebrum) provide input to

the granule cells, which in turn provide input to the Purkinje cells via the par-

allel fibers. Climbing fibers from the inferior olivary nucleus contact Purkinje

cells directly. Each Purkinje cell receives excitatory input from just one climbing

fiber. [22, 35].

3.3 Using BOSS to Create a Large-Scale Cerebellum

Model

Given that the cerebellar cortex has the most regular anatomy of any brain region

and that there is a wealth of structural information available, we decided that it

would be possible to construct an accurate large-scale model of a big part of the

cerebellum that could be used to test various theories on its function. The model

has been a work in progress. We have gone through numerous iterations to improve

its accuracy.

3.3.1 INIT Parameters for the Cerebellum

We used the extensive cerebellar literature, in particular the Sir John Eccles’ book

[22] and the Szentagothai series of publications [44–47], to gather detailed statistics

about the cerebellum and tried to match as much as possible the cell shapes and

densities in the three cerebellar layers and the synaptic connectivity.
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Figure 35: Sample parameters for cerebellar model
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The input parameter file contains all the statistics for creating the structural

model. Figure 35 shows an excerpt from a text file for a model of a 6,000 µm by

2,800 µm patch of cerebellar cortex. The model contains somas and synapses for 12

morphologically distinct types of neurons. Each thin (2x2 µm) granule cell axon, or

"parallel fiber", extends 3,000 µm in the longitudinal (Y) direction [MAYY=3000].

Parameters are shown only for Purkinje cells plus their axonal and dendritic poten-

tial synapse regions and for the granule cells plus their synaptic regions. Electrical

parameters for dendrites, somas, and axons have been elided

After one section (PARAMS... END) with overall model parameters, each

input file has a section (CELL... END) dedicated to each cell type. The section

for a cell type specifies the density and placement of its somas in the model space,

the shapes and soma-relative positions of the axonal and dendritic synaptic regions

for each soma, the density of synapses from its axons to each other cell type wher-

ever their axonal and dendritic regions overlap, and electrical characteristics of its

dendrites, somas, and axons.

The section for Purkinje (P) cells places the centers of all P-cell somas into

a single plane at Z=0 (by default), at points 50 µm apart in Y (MCY) and 75 µm

in X (MCX). The second line (MAYY) describes each P-cell’s single tiny (2x2x2

µm) axonal region ending in the dentate nucleus 10,000 µm (MAZO) below the

P-cell center. The third line (DN=2) gives the widths and locations of the two den-

dritic regions for each P-cell: the thin but huge (1i0x240x320 µm - MDY, MDX,

MDZ) main dendritic tree above (MDZO=160 µm) each soma and a tiny (2x2x2

µm) synaptic region 5 µm ibelow (MDZO=-5) each soma center. P-cell electri-

cal parameters for neurite signal propagation speeds, synapse strengths, and soma

spiking behaviors are omitted. The last line (SYNDA) of synapse densities (in

thousandths) reveals that each P-cell axon forms no (0) synapses except one (1000)

where it overlaps ("touches") the dendritic region of a dentate nucleus cell (D), the
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last type in the model.

Parameters in the section for granule cells (N) specify that granule centers

are packed 5x5 µm apart below the P-cells in 16 (CZLN) layers 20 µm (MCZ)

apart from Z=-20 µm (MCZLVL) to Z=-320µm. The next line (MAYY=3000)

says that each tiny granule cell has a long, thin 2x3000x2 µm "parallel fiber" axon

that extends 1,500 µm each way (+Y, -Y), passing through the dendritic trees of

nearly 400 Purkinje cells. In this model, each granule cell interacts with afferent

axon endings within its 10x10x20 µm dendritic synapse region. Each granule cell

axon forms one synapse in all P-cell dendritic regions that it penetrates, in 25%

of the Golgi cell regions, and in 75% each of the five types of inhibitory stellate

interneurons found within the upper cortical (molecular) layer dominated by the

densely packed dendritic trees of Purkinje cells.

Figure 36: Four Purkinje and three granule cells visualized.

We use our visualization code to inspect and analyze models created with
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BOSS. Figure 30 in the earlier section shows an image that represents a tiny sec-

tion of a cerebellar model our application created when configured to generate the

model shown by the parameter file that we explained above. The two horizontal

lines at the top of the image are the two parallel fiber axons from the two granule

cells. Each of these long axonal fibers passes through many hundreds of dendritic

regions. In the sample model of four neurons, the overlapped regions were identi-

fied, and fifteen synapses were placed in accordance with the statistical parameters

provided in the input configuration file. Figure 36 shows another tiny zoomed-in

example of a model with four Purkinje cells and three granule cells selected. They

make up part of one cerebellar "beam", like the one shown in Figure 34.

3.3.2 Synapses, Learning, and Gap Junctions

Chemical synapses are created between type pairs that are well known to have con-

nections with each other. Those synapses are formed wherever there is overlap

(during the INIT phase) between axonal and dendritic fields. Most of the synapses

have a fixed weight (i.e., they do not get strengthened or weakened). The values of

weights are based on cerebellar literature and by adapting the values to get reason-

able firing frequencies from the Izhikevich neurons.

The most important synapses are the ones between granule and Purkinje cells.

They are known to be the main learning synapses in the cerebellum. [17, 32]. The

learning method used is based on STDP (Spike Timing Dependent Plasticity) rules

[8,64]. Figures 34 and 37 show the location of these learning synapses between the

granule parallel fibers and the Purkinje dendritic fields.
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Figure 37: A small model of the cerebellum with some Purkinje cells and parallel

fibers selected.

Non-chemical electrical synapses (or gap junctions) are also present in the

cerebellum. See Section 2.3 for details on gap junctions. More specifically, there

have been recent studies showing that neighboring Golgi cells form gap junctions

with each other on their apical dendrites [18,70]. Gap junctions are created on those

Golgi dendrites that overlap. Dendritic overlap detection is done by the same INIT

code that finds overlaps during creation of chemical synapses.

3.3.3 Firing Activity of Cerebellar Cells

We are using the Izhikevich model for all neuron types in our simulations. As a first

approximation for observed firing frequencies in our models, we chose the Regular

Spiking Izhikevich parameters for the neuron types with low firing frequencies and
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the Fast Spiking type for cell types with higher frequencies. The straight-forward

dynamics of the Izhikevich model make it easy to modulate the firing frequencies

of the cells to vary with the magnitude of total cell input.

We collected firing frequencies statistics of different cell types from cerebellar

literature as shown in Table 4. We try to tune the Izhikevich neurons to have sim-

ilar ranges of firing activity. In our simulations, we force fire different neurons to

get firing activity started. Since the inputs to the cerebellum are the mossy fibers

and the climbing fibers, we usually force fire those two cell types with frequencies

that are comparable to biological recordings. We have implemented an image fil-

ter mechanism, where the pixel grayscale levels of an image are transformed into

probabilities of force firing neuron types.

Table 4: Cerebellar cell firing frequencies by type

Cell Type Firing

Frequency

Purkinje 56.4 Hz (17-150 Hz)

Granule 10-20 Hz

Golgi 19.1 Hz

Basket 33 Hz

Stellate 33 Hz

Climbing Fiber 1-2 Hz

Mossy Fiber 50 Hz

Glomerulii 50 Hz
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3.3.4 Examples of Our Cerebellar Models

We have developed a range of models of different sizes and firing parameters de-

pending on the particular behavior that we are tuning. The sizes of the models also

depend highly on which computer runs the simulation. We are always trying to

increase the size and efficiency of the models that we generate.

3.3.4.1 Cerebellar Model Sizes and Ratios

Figure 38: A 2.9 by 4.5 mm model of cat cerebellar cortex showing the tall dendritic

regions of four Purkinje cells and the somas of 4,230 basket and 6,345 stellate cells

above the plane of 3,437 Purkinje somas. The blue base has 6.5M (blue) granule

somas and 1.3M (cream) mossy fiber rosettes.

Since the densities and sizes of cerebellar cell types differ drastically, the num-

bers of cells of each type are also quite different in our models. We always try to
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match roughly the literature statistics on densities and count ratios.

Table 5: Cerebellar cell counts by type.

Cell Type Count

(our model)

1400x1400 µm

Count

(literature

rough

estimates)

Ratio per

Purkinje

(our model)

Ratio per

Purkinje

(literature)

Purkinje 518 1.25 million 1 1

Granule 985,242 2.2 billion 1902 1769

Golgi 100 0.4 million 0.19 0.33

Basket 616 7.3 million 1.17 6

Stellate 924 20 million 1.75 16

Climbing Fiber 518 1.25 million 1 1

Mossy Fiber 4,900 5 million 9.4 4

Glomeruli 195,950 80 million 377 68

Totals 1,188,894 2.3 billion - -

On a lab PC with 128 gigabytes (GBs) of memory, we have simulated electrical

activity in networks with more than 20 million neurons and 4 billion synapses.

On 1,024 NY-Blue nodes with a total of 2,048 GBs, we have run models of 700

million neurons connected by 125 billion synapses, roughly a fifth the size of the

cat cerebellum. Table 5 shows the counts of the different cell types on a typical
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small 1400 x 1400 µm patch of cerebellar tissue. A summary of some of the largest

model sizes simulated on different platforms and with different amounts of RAM

memory are presented in Table 6. We always target fast simulation performance

and can get near real time simulations for tiny models of a few thousand neurons.

Scaling and simulation runtimes depend highly on the hardware. For example, we

can simulate 1 second of the large PC models (with 4 billion synapses) in less than

45 minutes, well within reasonable time frames.

Table 6: Large model sizes in different platforms

Platform Memory

Size (GB)

Neuron

Count

Synapse

Count

Tissue Area

(mm

2)

Real Time Any 5,600 1 million 0.1

Per 2GB 2 600,000 125 million 1

PC Large 128 22 million 4 billion 36

Blue Gene/P 1024x2 721 million 126 billion 1024

3.3.4.2 Firing Activity in Two Examples

We ran numerous simulations to see the flow of firing activity from input (mossy

fibers) to output (Purkinje cells). Firing activity of a sample model is illustrated

in Figure 39 after we stimulated two beams of mossy fibers. Excitatory activity

flowing from mossy fiber input reaches all the way to the Purkinje cells. A correct

balance of excitation and inhibition is necessary for the model to display a reason-

able amount of activity. The third panel (lower left) better illustrates the cerebellar
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layers, with the large block of green dots showing millions of tiny granule cells.

Figure 39: Firing rates of granule, Purkinje, stellate, and Golgi cells after activity in

two wide beams of mossy fibers; the lower right color bars gauge firing rates from

1 (violet) to 1000 Hz (red).

We ran various simulations on another relatively small model with three cir-

cular patches of mossy fibers being force fired at a frequency of 66 Hz. As can be

seen in the example simulation in Figure 40, the excitatory input travels up from the

mossy fibers (panel 1), to the granule cells and the glomeruli rosettes (the cylinders

in panel 2), and eventually excites the Purkinje cells (in panel 3). Panel 3 and 4 at

the bottom show the spread of Golgi inhibition into the glomeruli (the rectangular

dark purple flows around the cylinders). Some granule cells and Purkinje cells are

selected to show the "cerebellar beams" along lines of parallel fibers.
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Figure 40: Firing activity on a 1.4x1.4mm small model

3.4 Golgi Cells, Their Inhibitory Effect on Cerebel-

lar Activity, and the Role of Gap Junctions

One of the most important pathways of the cerebellum is the inhibitory loop re-

sulting from Golgi cells’ synaptic interactions. Golgi cells have a major role in the

pathway of firing activity that travels from the Mossy Fibers to the granule cells

(through the cell types illustrated in Figure 41).

As a crucial element in modulating overall cerebellar activity, the Golgi cells

have been studied extensively. They are large inhibitory neurons that receive input

from mossy and parallel fibers. They have a unique feature because they perform
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their inhibitory function by forming a synapse on the mossy fiber to granule cell

synapses themselves, thus modulating the excitatory synapse that goes through in-

dividual mossy fiber glomeruli (rosettes) to the granule cells.

Figure 41: Neuritic fields of two Golgi cells, three granule parallel fibers, two Purk-

injes, two rosettes, and one mossy fiber.

3.4.1 Golgi Anatomy

Even though it is known that Golgi cells play a crucial role in the cerebellar ac-

tivity, there has been contradictory information in the iliterature about their exact

anatomy and function. The density and potential overlap of Golgi cells have been

debated. Sir John Eccles’ book claims that Golgi cells do not overlap [22]. Many

later studies have disagreed with that conclusion, since neuroanatomical experi-

ments on different mammals have shown that the large Golgi neuritic fields have
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some overlap [18, 47]. In recent years, it has been shown that Golgi cells not only

overlap, but they also contain gap junctions in their apical dendrites [18, 70].

Figure 42: Top view of the Golgi cell layer with the selected cells showing the rows

and columns for which we are analyzing synchrony.

For our implementation, we chose square Golgi neuritic fields of 300x300 µm.

The Golgi cells were placed on the same layer, with their somas 150µm apart (as

illustrated in Figures 41 and 42. Every Golgi neuritic field partially overlaps eight

nearest neighbors with which it can form gap junctions. Each Golgi creates about

9,000 axonal connections to inhibit within the glomeruli rosettes, by blocking the

amount of excitation that passes from each rosette to nearby granules. Each Golgi

receives input from the mossy fibers via the same rosettes and, in its apical dendrites

synapses with granular parallel fibers. Figure 41 shows three neighboring parallel
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fibers (the almost vertical triplet of bright blue lines) piercing the large Golgi api-

cal dendrites (the large green boxes). Figure 43 shows dozens of parallel fibers

(horizontal blue lines) piercing the Golgi dendrites.

Figure 43: Top view of the Golgi cell layer with parallel fibers shown as blue lines

running horizontally.

3.4.2 Synchrony of Golgi Cells

There have been a few studies looking at Golgi activity, in particular on how syn-

chronized their firing is, and what influences that synchrony. For instance, Vos et.

al. measured activity in pairs of Golgi cells in rats and concluded that Golgi cells

that are in the same longitudinal axis (and thus receive common parallel fiber input)

tend to be significantly more synchronized than the Golgi cells that are in the trans-

verse axis [72]. Golgi cells that receive common parallel fiber inputs should fire
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coherently, whereas Golgi cells without shared parallel fibers have less synchro-

nized firing. We tested this theory using the 1400x1400 µm small version of our

cerebellar model (subsection 3.3.4), which contains 100 Golgi cells in a 10x10 grid

and a total of 1.2 million neurons, 83% granule cells. The structure of this model

is the same as the one whose cell counts by type are in Table 5 as well as the firing

images in Figure 40.

For our simulations, we randomly force fired at a high frequency of 200 Hz

just 2% of the 4,900 mossy fibers in this model. Every 5 ms about 98 mossy fibers

fire an action potential and send their excitatory signals upward to the glomeruli

rosettes. This input style was chosen because it has no particular bias in terms of

orientation or clustering since the mossy fiber cells are spread uniformly in one

layer. The amount of excitation was chosen because it produces moderate firing

activity overall in the model.

Since we are not limited by the same factors as laboratory scientists, we can

record the voltages of entire longitudinal "rows" or transverse "columns" of Golgi

cells and calculate their synchrony values without being limited to statistical analy-

sis of electrode recordings from pairs of cells.

We selected a few Golgi cells and looked at their voltage traces and firing activ-

ity. Specifically, we selected two "rows" of ten Golgi cells each which are oriented

longitudinally in the same direction as the parallel fibers, and two "columns" of ten

Golgi cells each perpendicular (transversally) to the "rows". Figure 42 shows only

the 10x10 grid of Golgi cells and the square dendritic fields for the forty selected

cells; all other cells are hidden. Figure 43 shows the exact same model with many

parallel fibers revealed to illustrate that the "Rows" represent Golgi cells aligned in

the same direction as the parallel fibers.

The simulation ran for 1000 cycles (500 ms). We not only looked at some of

the Golgi firing but also calculated the synchrony within each of the two rows and
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two columns. Synchrony was calculated using the same Equation 9 in subsection

2.4.1 that measured the synchrony of Hypoglossal Motoneurons.

Figure 44: Voltage traces of two Golgi cells in one of the selected rows.

Figure 45: Voltage traces of two Golgi cells in one of the selected columns.

Figures 44 and 45 show pairs of voltage traces from two Golgi cells in the

selected rows or columns to illustrate the firing pattern of Golgi cells in these simu-

lations. The voltage traces of all ten Golgi cells in each row and column were used

to calculate the synchrony values for each row and column in Figure 46. Subtle

differences in the coherence of firing can be seen even in the raw voltage traces in

Figure 44 and 45. The red dots on the voltage traces show times of Golgi cell firing

spikes.
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The results of our simulations (illustrated in the graph on Figure 46) confirm

that Golgi cells in the same rows have significantly higher values of synchrony

(0.494 for Row 3 and 0.483 for Row 7) than groups of Golgi cells oriented in

columns (0.333 for Col 4 and 0.366 for Col 7). Our model is consistent in this

particular feature with the experimental data of Vos et. al. [72].

Figure 46: Synchrony levels of groups of Golgi cells.

We went a step further than the Vos study and analyzed whether strong gap

junctions have an effect on the on-and off-row behavior. After having performed

the original simulations with no gap junctions (Figures 44-46), we simulated the

same model with gap junction conductances set to a reasonable value of 5 nS

(nanoSiemens) and then to a very high value of 10 nS. As a preview of the syn-

chrony results, we show the voltage traces for two Golgi cells from one of the rows

and columns with the 5 nS gap junctions (Figures 47 and 48).
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Figure 47: Voltage traces of two Golgi cells in one of the selected rows, with gap

junctions at 5 nS.

Figure 48: Voltage traces of two Golgi cells in one of the selected columns, with

gap junctions at 5 nS.

The final results of the synchrony values show that gap junctions help synchro-

nize the activity for all rows and columns. For high values of GJ conductance (10

nS), the disparity between levels of synchrony for rows and columns is lessened

since all rows and columns reach a synchrony above 0.6. As mentioned in the HM

Chapter 2 (Section 2.5), usually gap junctions cause an increase in synchrony lev-

els. Depolarization or action potentials in one cell can cause depolarization or even

increased firing in neighboring cells which leads to a higher degree of synchrony.

As shown in Table 7 and in Figure 49, our GJ-connected Golgi cells consistently
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demonstrate higher synchrony for higher conductance values as well as greater syn-

chrony along parallel fiber bundles (rows) than across them (columns).

Table 7: Synchrony of Golgi cells

Group \ GJ Conductance (nS) 0 5 10

Row 3 0.494 0.581 0.628

Row 7 0.483 0.573 0.655

Col 4 0.333 0.483 0.621

Col 7 0.366 0.451 0.612

Figure 49: Synchrony levels of two rows and two columns of Golgi cells for differ-

ent levels of gap junction conductance. Data are same as in Table 7.
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3.4.3 Importance of Golgi Inhibition and Its Effect on Purkinje

Firing Frequency

The simulations in the previous section illustrate other important Golgi features, the

inhibitory effect of the Golgi cells even on their own firing activity and on the over-

all granular layer. Even though they are getting excitatory input of high frequency

(200 Hz), they do not produce action potentials with the same frequency, and they

do not reach perfect synchrony but are only moderately coherent. The Golgi cells on

the same row had a synchrony value of 0.48-0.49 out of 1.00 without gap junctions

and still only 0.63-0.65 with extremely strong (10 nS) gap junctions. That Golgi

cells show only moderate synchrony and limited firing rates has been reported in

studies of Golgi firing activity [18]. The moderate firing can be attributed to the

inhibitory loop by which Golgi cells when they fire, block the excitation passing

from the mossy fibers to the granule cells, in turn lowering the input that the Golgi

cells receive from parallel fibers.

The only "output" cells from the cerebellum and the most iconic cerebellar

cell is the Purkinje. As such, it is important to use simulations to analyze different

factors that influence the firing activity of Purkinje cells. It is well known that

Golgi cells play a significant role in the firing activity of the granular layer [18] via

the inhibitory mechanisms on the glomeruli, described in Section 3.2. Since the

granular parallel fibers are the main input to Purkinje cells, we expect that Golgi

cell inhibition plays a crucial role in modulating Purkinje firing frequency. Our

implementation of Golgi inhibition involves a fraction of pre-synaptic suppression

(e.g., 1/4 means only 1/4 of any firing spike excitation passes from a mossy fiber

to granule dendrites in the synaptic complex within a glomerulus). The half-life of

suppression is usually set at 5 ms. In the first 5 ms, immediately after a Golgi cell

fires, all mossy-granule cell synapses that are part of each glomerulus connected
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Figure 50: Firing frequencies of Purkinje cells for three values of Golgi inhibition
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to the Golgi will only transmit one fourth of the excitation, then one half of the

excitation in the next 5 ms, and inhibition will be inactive after that period until the

Golgi fires next.

We tested the effects of inhibition by running simulations with different dura-

tion of strong suppression. The excitatory input provided to the system was a fairly

strong pattern of firing from mossy fibers at 66 Hz with three spots set at the vertices

of an equilateral triangle. A simulation with a similar forced firing stimulus drive

was shown in Figure 40. The three levels of Golgi inhibition chosen were starting

allowing excitation transmission fractions of 1/4, 1/16 and 1/64. All fractions have

the same half-life of 5 ms, making the duration of significant inhibition for the first

one only 10 ms, but 30 ms for the last one.

We selected 40 Purkinje cells and measured their firing frequency for a 500

ms simulation with 25 ms time bins. Figure 50 shows the firing frequencies of the

Purkinje cells for three separate simulations where the only difference was their

Golgi inhibitory strength. The pattern of modulation of Purkinje firing frequency is

very clear. For the first simulation, the Golgi inhibition is not strong enough (1/4

excitation transmission) and does not last long enough, which causes the Purkinje

cells to fire often and to reach unrealistically high firing frequencies of more than

200 Hz. When the suppression is set to 1/16, the firing frequency of most of the

Purkinje cells settles within a stable range of 40-65 Hz, which is a quite reasonable

firing rate for Purkinje cells in vivo. For suppression set at 1/64 (fraction of excita-

tion transmission), the initial inhibition is too strong and its duration too long; the

firing frequency keeps dropping in the simulation and reached below 40 Hz for all

Purkinje cells.

The effect of Golgi suppression on Purkinje cells firing rate is also nicely il-

lustrated by picking one Purkinje cell and looking at the voltage trace of the same

cell (Figure 51) for each of the three simulations used to produce Figure 50. The
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number of Purkinje cell firing spikes during 1000 cycles simulating 500 ms of net-

work activity varies from 125 spikes with only 1/4 initial passing of mossy fiber

excitation to granule cells, to 69 spikes at an initial 1/16 level, and to only 58 Purk-

inje spikes at an initial 1/64 passing of excitation from mossy fibers to granule cells

thence to Purkinje cells.

Figure 51: Voltage traces of a Purkinje cell

These simulations and the analysis of Purkinje firing frequencies again con-

firmed expectations on behaviors of the cerebellar circuitry. In this case, we showed

the importance of Golgi cells on the overall activity of the cerebellum and in partic-

ular, how stronger Golgi inhibition reduces the firing frequency of Purkinje cells.



Chapter 4

Concluding Remarks

Computational neuroscience can be a very influential research area in providing

better tools and approaches to understand the brain. In this dissertation, we pre-

sented two computational modeling projects of networks of neurons. The projects

were different on many levels: the brain systems that we were studying, the type of

biological detail of the models, the network size and computational requirements,

and many other aspects. They are, however, both part of a similar approach and

type of analysis that is commonly used in modern computational neuroscience. We

created models of networks of neurons that attempt to replicate the activity of their

biological counterparts. The models of individual neurons consist of differential

equations that control the state of each neuron and the generation of its action po-

tentials. Parameters specify individual neuron details and the connectivity of the

networks. All simulations follow a similar pattern. After the model is generated,

an external input is supplied, and numerical integration updates the state of each

neuron at every time step. We record the state of some of the neurons, and we

also analyze the networks as a whole by calculating average firing frequencies or

synchrony.

The first project involved a lot of single-neuron biophysical details. Its main

goal was to shed light on the factors that influence the synchronized behavior of

84
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a small network of motoneurons. Our models were successful in providing in-

sights and allowing detailed analysis of factors that can affect network synchrony

including studies of gap junction blockade and changes in firing frequency (after

input current amplitude changes and alterations to specific ion channels that affect

excitability). The numerous simulations led us to observations that were even un-

expected at first, such as the spontaneous CPG-like behavior.

The second project, BOSS, had a somewhat different focus. It involved years

of coding to build a complete simulation software system for large-scale brain mod-

els. When creating large network models, the focus is more on aspects like general

morphology and connectivity of the systems and less on single cell electrophys-

iology. For the scope of this dissertation, we targeted the cerebellum as a well-

documented brain structure, and dove deeply into reproducing its overall structure.

Considering the size of the models that we simulated (hundreds of millions of neu-

rons and hundreds of billions of synapses), BOSS reached its goal of modeling huge

numbers of neurons in structured networks. In addition, our models have taught us

important details about specific features of the cerebellar functionality.

The two projects share even some of the behavioral analyses of the two net-

works. Gap junctions were simulated similarly in the network of HMs and between

Golgi cells in the large cerebellar models. Even though synchrony analysis was the

main focus of the first project, it was also used for one of our studies in cerebellar

models. The numerous simulations that were performed have provided the evidence

for the findings that are presented in this dissertation.
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