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Abstract of the Dissertation

Understanding Online Fashion Networks

by

Kota Yamaguchi

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

Emergence of online social networks has transformed how people

interact with digital media. Any user is a consumer and a pub-

lisher of media content, such as texts, images, or videos, in the

online community. In such an environment, it is crucial to develop

technology to help people by organizing and utilizing plethora of

media content to meet the community demands. To this goal,

this dissertation studies and tries to establish computational ap-

proaches to understand networked content, using large-scale data

from a real-world online fashion network, Chictopia. This study fo-

cuses on two major challenges of fashion networks: understanding

of visual content, and understanding of user behavior.
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The first component is the understanding of fashion pictures. This

dissertation studies computer vision techniques to recognize gar-

ment items in a picture. This dissertation proposes clothing-parsing

algorithms, which assign one of clothing category to every pixel.

The algorithm takes advantage of the unique characteristics of

fashion pictures that human pose gives a strong contextual cue

in clothing parsing. The proposed approach considers two scenar-

ios in clothing parsing. The first is to identify the location of items

given an item list (localization scenario). This localization prob-

lem is formulated as a joint label assignment with respect to a

probability distribution. The second scenario is to identify both

kind of items and their locations (detection scenario). This dis-

sertation proposes a data-driven approach to solve the difficulty in

identifying clothing items. The empirical results show promising

recognition performance in both scenarios, as well as the benefits

of clothing parsing in human pose estimation.

The second focus of this dissertation is the analysis of user be-

havior in fashion networks. Specifically, this research studies the

effects of visual, textual, and social factors on content popularity.

The analysis makes use of the clothing parsing techniques, as well

as network and text information to predict picture popularity in

both in-network and out-of-network cases. The experiments find

significant statistical evidence that social factors dominate the in-

network scenario, but a combination of content and social factors
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can help predicting popularity outside of the network.
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Chapter 1

Introduction

The growth of online visual social networks, such as Facebook, Google+, In-

stagram, and Pinterest, to name a few, is transforming how people interact

with visual media. People take a picture of their interest on a mobile device

and instantly upload it to the Internet so that they can share it with friends,

families, or even with the general public. In consequence, there is now a huge

collection of user-generated photos and videos quickly emerging on the Web;

To list a few, as of July 2013, Facebook users upload 350 million photos daily

and the total number of hosted photos reaches 240 billion. Instagram users

upload 40 million photos daily, 16 billion in total. Flickr hosts 8 billion photos

in total. Lastly, Pinterest has gained 70 million users.

The key functionality of online visual networks is that people share a pic-

ture they find interesting by taking a certain action. For example, in Facebook,

people like an image to implicitly show their interest to others, or explicitly

share. In Pinterest, the action is to pin any image they find interesting on the

Web, or even repin an image that somebody on their network already pinned.
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In other words, social interaction happens because of visual media.

In face of such new visual-social interaction on the Web, it is natural to ask

a fundamental question; “How can we model online visual networks?”. More

precisely, there arise interests in understanding what kind of images or videos

people upload on the network, how people react to shared visual media, and

what we can learn from such interaction. These questions further break down

into what methodology we can apply to computationally and quantitatively

analyze online visual networks.

This dissertation specifically focuses on online fashion networks as a case

study of visual networks, an instance of online visual network specializing

in fashion pictures, such as Chictopia, Lookbook, and Chicisimo. There are

advantages in analyzing fashion networks:

Data availability It is relatively easy to collect fashion images on the Web,

since fashion pictures are by nature to be shown to the public.

Data quality Fashion pictures are consistent in data quality, compared to

general categories. Pictures on a fashion network mostly show a standing

person with a visible full body, which is suitable for analysis.

Analysis technology Recent advancement in computer vision enabled re-

liable human detection, which greatly helps analyzing fashion pictures.

The broad goal of this dissertation is to establish a computational method-

ology to understand online visual networks. These include two different as-

pects: content understanding and behavior understanding. The former is a

2



(a) Input (b) Parsing result

Figure 1.1: Clothing-parsing problem. The goal is to detect clothing items at
pixel level.

class of computer vision problem that try to recognize the content of an im-

age. The latter is an attempt to model the behavior of users in online visual

networks.

As a content understanding problem, this dissertation tackles the clothing

parsing problem, where the goal is to assign a pixel-wise label of clothing

items. Figure 1.1 illustrates the input and output of the parsing process. This

dissertation proposes an approach to solve this challenging problem under two

scenarios. The first is a localization scenario, where the goal is to locate items

in a picture given what kind of items are possibly present. The other is a more

challenging detection scenario, where we do not know what items are shown

in the picture beforehand.

For behavior understanding, this dissertation tries to statistically analyze

popularity of a picture. Using Web-crawled data from chictopia.com, the

proposed analysis quantifies both content and social factors found on a user-

3
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uploaded picture and try to analyze the relationships between a picture and its

resulting popularity through statistical analysis. On content representation,

the analysis makes use of the method taken from the clothing parsing.

This dissertation begins by reviewing relevant work in clothing recognition

and social popularity analysis. The proposed clothing-parsing approach in

this dissertation relies on some of the state-of-the-art computer vision meth-

ods, and Chapter 2 will go through recent efforts in the research community

on clothing recognition and its applications, fundamentals of semantic image

segmentation, as well as human pose estimation. Also this chapter will review

the literature on computational analysis of social multimedia networks and

discuss the insights and hypotheses previously proposed about popularity in

networks.

Chapter 3 explores the first clothing parsing attempt in a localization sce-

nario. The approach is probabilistically formulated as a joint labeling problem

over image regions called superpixels. The key idea in this formulation is to

incorporate the output of pose estimation as a condition to the parsing prob-

lem. The results show that inclusion of pose estimation contributes to the

resulting parsing quality.

Chapter 4 discusses clothing parsing in a more challenging detection sce-

nario. This dissertation proposes a data-driven approach, which is named

Paper Doll Parsing, to overcome the difficulty of dealing with large item cat-

egories. This approach first creates a large collection of fashion images from

chictopia.com. This large dataset is both used for narrowing down item cate-

gories in a picture as well as helping item localization. The results show that

this data-driven approach performs significantly better in detection scenarios.

4
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In an effort to understand user behaviors, the popularity of a fashion picture

is analyzed in Chapter 5. The statistical study shows that a social network has

a dominant influence on photo popularity, but not necessarily when a photo

is not shared in the network. A closer look reveals that social factors are also

playing some role in predicting unbiased content popularity.

Finally, Chapter 6 concludes this dissertation.
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Chapter 2

Background

This chapter will review the previous work relevant to understanding of on-

line visual networks, both in terms of content understanding and behavior

understanding.

2.1 Content Understanding

Understanding visual content is the ultimate goal of computer vision research.

This section will first review recent efforts in clothing recognition and related

applications, fundamentals of image parsing, and pose estimation.

2.1.1 Clothing recognition

Clothing retrieval

There is a growing interest in clothing recognition, perhaps mostly due to its

potential benefit in e-commerce applications. Automatic clothing recognition

enables a natural and semantic image search to users of online fashion shops.

6



This is reflected in the increasing number of recent work in clothing recognition

considering retrieval or recommendation applications [67, 66, 48, 29, 70, 25,

109].

Most notably, the work of Liu et al. [67] proposes a visual search approach

to match a fashion picture taken on the street to clothing images in online

shopping sites. They consider a mapping between street and shopping images

with a sparsely coded transfer matrix so that the difference between these

two distributions does not affect the quality of retrieval. Kalantidis et al.

report in [48] a similar cross- scenario retrieval approach, where they utilize

clothing parsing to explicitly represent each item. Also, Cushen et al. propose

a visual search approach with efficiency in mind in a mobile scenario [25].

Retrieval of similar clothing can also help finding similar pose or person [38]

in digital media. Alongside the retrieval applications, efforts are made to a

create fashion- related datasets for further study, such as [111] and [68].

Recognition of clothing items constitutes the basis for analyzing or de-

scribing a fashion image. The goal in this research is to provide a fundamental

technique and insight in clothing recognition to enable such applications.

Attribute recognition

When designing a retrieval system, the requirement is often not only the index

of item categories but also attributes of items, such as color, pattern, or shape.

Automatic identification of such attributes, namely, the attribute-recognition

problem, has been the focus of several clothing recognition work [13, 22, 11, 29].

Such attribute analysis is built upon detection and localization of items in a

picture, which is the result of clothing item recognition.

7



The idea of clothing attribute recognition dates back to the early work

by Borras et al. [10], which discusses the detection of certain composition

of clothing in upper-front body. More recent work of Berg et al. proposes

automatic attribute discovery from shopping images using associated text de-

scription [6]. Also, Bossard et al. discusses attribute classification in noisy

Web images [11]. The work of Bourdev et al. [13] reports the use of poselet,

a discriminative image patch to capture small visual pattern in a picture, to

detect clothing attributes. The approach by Chen et al. considers dependency

between attributes using conditional random fields (CRF) [22]. Finally, Di et

al. [29] proposes a retrieval system based on fine-grained attribute detection.

Attributes are often difficult to quantize, because there is typically no single

absolute measure for them [81]. In an effort to better represent attributes, some

papers propose a human-in-the-loop approach to improve supervision [23, 54].

Clothing and person identification

Another important application of clothing recognition is the identification of

person by clothing. Because what he/she wears give a strong context to iden-

tify that person in a picture, several work consider person identification using

clothing cue in personal photo collection [2, 39, 108], repeated shots [96], or in

surveillance scenario [110, 112].

Fashion style may identify not only a person, but also the social status,

occupation, and occasion. In this direction, work by [98] and [92] attempt

to recognize occupation of people by clothing. Also attempts are made to

identify social group based on fashion style [80, 55]. In the other way, Liu et

al. proposes a system to recommend a fashion coordination by occasion [66].
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Clothing parsing

The key idea in clothing parsing is to consider pose estimation and image

parsing together. Human pose gives a strong context for the recognition of

garment items; for example, locating shoes or boots becomes easy if we already

know the location of a foot because we know that people wear shoes on foot.

In clothing parsing, such pose context is explicitly taken into account in an

image parsing approach. Clothing parsing has not been studied much until

recently, perhaps because of the lack of some of the important algorithms to

reliably recognize deforming clothing items.

There is an early work on clothing representation [21], where clothing is

modeled by a grammar of sketch templates. Another attempt in clothing rep-

resentation is made in [18, 43], where clothing deformation is described by a

subspace approach. A probabilistic approach is made in [44], which consid-

ers a shape prior for jacket recognition. There is work that takes a robotics

perspective [76]. These attempts are not necessarily made for general cloth-

ing parsing where the goal is to recognize large categories of items, but they

give an insight into how a shape deformation should be modeled in clothing

recognition.

A general clothing parsing with large clothing categories first appears in

[111], where parsing is formulated as a MAP estimation of image-region labels

in conditional random field (CRF) given pose estimation. Following this, Dong

et al. [30] proposes clothing parsing as an inference problem over parselet,

which is a basis group of image regions that constitute clothing items. Also,

Liu et al. proposes a method to eliminate a pixel-level supervision in learning
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using image-level color tags [65].

The clothing parsing framework proposed in this research differs from pre-

vious attempts in that 1) the method aims at recognition of fine-grained cloth-

ing categories without any prior information about an image, 2) the approach

does not rely on an oversegmentation algorithm thus overcoming the limi-

tation imposed by the uniformity assumption in image regions, and 3) the

approach takes advantage of large, weakly annotated noisy Web images with

small annotation effort by human.

2.1.2 Image parsing

Image parsing is one form of image recognition problem, where the goal is to

give a semantic label to each pixel in a given image. There has been numerous

attempts in solving image parsing problems in computer vision [93, 62, 42,

87, 101, 31, 31, 102, 95]. Clothing parsing is considered a domain-specific

formulation of image parsing.

Image parsing is generally formulated as a joint labeling problem over pix-

els or local groups of pixels, which are often called superpixels, segments, or

regions. In case of superpixel labeling, it is assumed that all pixels inside the

same superpixel have the same semantic label. This view treats an image as

a graph, where nodes correspond to a pixel or a superpixel, and edges cor-

respond to spatial connection between them. Let us denote an image with a

vector of pixels x ≡ [x0, x1, ..., xN ], where xi is a pixel or a superpixel at loca-

tion i. The goal is to assign corresponding semantic labels y ≡ [y0, y1, ..., yn]

at each location, where yi takes a semantic label, such as t-shirt or pants in
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clothing parsing, or tree or sky in case of scene parsing. The parsing problem

is typically formulated as a joint maximum a posteriori (MAP) inference prob-

lem in a Markov random field P (y|x), which is a joint probability distribution

holding a Markov property:

ŷ ∈ arg max
y

P (y|x). (2.1)

Often, the model P (y|x) is applied a negative-log transform to avoid numerical

issue in solving the problem. The transformed model E(y|x) ≡ − lnP (y|x)

is called an energy function, and the parsing problem is treated as an energy

minimization problem after the transform:

ŷ ∈ arg min
y

E(y|x). (2.2)

In practice, a second-order MRF is often employed to encourage smooth-

ness in the final labeling, with a few exceptions utilizing higher-order poten-

tials [83, 52]. The intuition behind this approach is that a spatially neighboring

regions with similar appearance are likely to have the same semantic label; For

example, two neighboring pixels that look green are both likely to be a part

of tree but not a boundary of sky and tree in scene parsing. In a second-order

model, the energy function can be expressed in the following form:

E(y|x) ≡
∑
i

Φ(yi|xi) +
∑

(i,j)∈V

Ψ(yi, yj|xi, xj), (2.3)

where Φ and Ψ are potential functions and V is a set of connections between

node i and j in an image. Usually, V is chosen for neighboring spatial regions
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so that labeling of location i is only influenced by the labeling of its neighbor.

The first-order term (unary potential) Φ models a likelihood of assigning

a certain semantic label only given its associated pixel xi, and is the most

important term in modeling the energy function. In previous work, a number

of nonparametric (data-driven) approaches have been employed in an effort

to better represent the likelihood function [62, 87, 101, 63, 31, 31, 102, 95].

Chapter 4 proposes a data-driven approach in clothing parsing.

The second-order term (pairwise potential) Ψ considers a likelihood of as-

signing two labels at once. A common form of this term enforces a consis-

tent labeling between two adjacent pixels when they share similar appearance

(smoothing prior) [86].

2.1.3 Pose estimation

Human pose estimation is another important computer vision problem, where

the goal is to identify the configuration of human body in a picture. Recent

progress in human pose estimation [79, 85, 84, 37, 38, 14, 113, 116, 41, 82, 27,

1, 56] is a major component in establishing the clothing parsing framework in

this dissertation, since the appearance of deformable items is strongly affected

by human pose.

The basic formulation of the modern pose estimation approach is as a

joint labeling problem over body parts. The formulation is similar to image

parsing in that this is also a joint labeling problem, but the labeling is over

the location (image coordinates) of body parts or joints, such as head or right

arm [84, 37, 38, 14, 113, 82]. Let us denote pose configuration with Y ≡
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[yhead, yneck, ..., yright ankle], where yi ∈ R2, i.e., image coordinate. Practically, yi

takes a discrete number due to the difficulty in dealing with continuous space.

The pose estimation problem is then described as a MAP inference over Y

(Eqn 2.1), and through the negative-log transform (Eqn 2.2), the problem is

formulated as an energy minimization problem.

Like the image parsing problem, it is common to use a second-order model

for pose estimation (Eqn 2.3). Such model has been sometimes called a pic-

torial structure [36, 34, 72], which later has been extended to a generic object

detector [35] for deformable objects. In pose estimation, the unary poten-

tial considers a likelihood of placing a body part i to a certain location in a

picture, and typically makes use of appearance of that location to model the

likelihood. The second-order term considers a likelihood of relative displace-

ment of two body parts, such as distance between a shoulder and an elbow.

This term models kinematic constraints of human body, but connection of the

body joints differs depending on the approach taken [38, 113]. Some work

explicitly considers clothing in pose estimation [18, 45]. Efforts are also made

to take advantage of image segmentation in pose estimation [51, 1, 56].

2.2 Behavior Understanding

There has been research interests in understanding human response to visual

content in psychology [46]. This dissertation aims at understanding the behav-

ioral model specific in an online network of visual media from a more statistical

or sociological aspect. More precisely, the goal is to understand how people

respond to fashion pictures that other people share on the Internet.
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Social popularity

In social networks, it is common to observe the so-called rich-get-richer phe-

nomenon, which suggests that the growth of connections in a social network

is proportional to the current connections [5]. As a result, distribution of con-

nections at each node in a social network follows a power-law distribution.

The same setting applies to an online visual network; the popularity of visual

content follows a power-law distribution. Consequently, it is hypothesized that

the popularity of the content in an online visual network is largely influenced

by the structure of the network but does not depend much on the content

itself.

In the past, Salganik et al [88] performed controlled experiments on an

artificial music market and found evidence that social influence is indeed the

primary factor driving the eventual popularity of an “average” song, and pop-

ularity prediction of the “average” song based solely on content is essentially

impossible in general. Chapter 5 investigates a similar social-popularity hy-

pothesis in a visual content. Yet, this dissertation aims to quantitatively un-

derstand how content data contributes to the resulting popularity under social

influence in a real-world social-network setting. For this purpose, this disser-

tation incorporates both social and content factors in the analysis based on

data collected in the wild from an existing social network in addition to data

collected under more controlled conditions.

There has also been a number of attempts to address the problem of pop-

ularity prediction of online content in social, economic, and engineering con-

texts. Timely prediction of content popularity would be useful for both strate-

14



gic marketing and social media infrastructure purposes. Work in this direction

has looked into early social reaction to content and the prediction of popular-

ity growth in videos [19, 94, 100, 78, 9, 17], news [60, 104], music [97], and

discussion forums [58]. Recent work evaluates how presentation of content

influences its popularity [57]. Some of the very recent work also looks into

visual influence to popularity or behavior [7, 20, 4], or towards the other direc-

tion, attempts to categorize visual content by social information [99, 75, 50].

The social-popularity hypothesis is also consistent with studies of browsing

behavior on Flickr [61, 103] that show social factors strongly influence which

pictures are visited. This dissertation quantitatively studies the relationship

between social influence, content, and popularity and additionally explore the

use of computer-vision algorithms for extracting useful content-based features.

There have been also attempts to utilize user comments to recognize sen-

timent [90, 91]. While this dissertation focuses solely on popularity measure,

it would be interesting to extend the analysis to this direction.

Chapter 5 will explore quantitative approach to popularity analysis that

builds on computer vision that seeks to predict the aesthetic quality of im-

ages [28], but in addition explicitly considers social influence in the analysis

and focuses on a specific fashion-social-network setting.

Visual analysis for perceptual tasks

In related tasks, some recent work has made use of visual content analysis

in efforts to model subjective human perceptions of images. Applications in-

clude computational methods to model the perceptual quality of images [69]

or webpages [115]. Generally these techniques extract low-level features such
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as color, texture, contrast, or composition [89, 115] or higher-level attribute-

based features related to perceived aesthetic quality (e.g. ”follows the rule of

thirds”, or ”contains opposing colors”) [28]. In this dissertation, because the

focus is on a specific type of image content – photos of people – it is possible

to additionally make use of highly effective algorithms developed over many

years by the vision community for localizing people and their body parts. Ad-

ditionally, this dissertation proposes a high-level description of outfits specific

to the fashion social-network setting.

As demonstrated by these and other research related to analyzing visual

information in a social context [105, 24, 114, 47, 40], there is growing inter-

est toward leveraging multimodal information in social network applications.

Research in this domain could eventually benefit the social and behavioral

sciences, and other related fields. The multimodal approach proposed in this

dissertation to quantify online multimedia content is a starting point for fur-

ther research.
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Chapter 3

Clothing Parsing: Localization

Approach

This chapter describes a clothing-parsing approach. As a starting point, this

chapter considers a localization scenario; when we already know what kind of

items can appear but not yet about where these items are in a picture. While

this localization scenario is only useful for images with associated item lists,

such pictures often appear in online photo-sharing websites.

The goal of localization is to find the location of all possible items by

assigning one of item labels pixel by pixel. In case of fashion images, the

location of clothing items is strongly correlated with human pose. Therefore,

the key idea here is to consider an image-parsing problem together with a pose-

estimation problem. Specifically, this chapter considers two related problems;

1. predicting a clothing parse given estimates for pose, and

2. predicting pose given estimates for clothing.
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In the proposed approach, clothing-parsing is modeled as a label-assignment

problem to regions (superpixels) in an image. The task is to assign a clothing

label for every region, formulated as a maximum a posteriori (MAP) inference

problem in a joint probability distribution for region labels. The method

incorporates pose estimation as a condition to the probabilistic model.

Pose estimation is also a joint inference problem over a probability dis-

tribution, where the variables are locations of body joints instead of region

labels. This chapter also discusses an extension to the state-of-the-art work

on pose estimation [113], by considering clothing as a contextual input to pose

estimation.

3.1 Fashionista Dataset

For evaluation of the clothing-parsing framework, this chapter introduces a

novel dataset useful for training and testing clothing estimation techniques.

This dataset consists of photographs collected from chictopia.com. On this

website, fashionistas upload “outfit of the day” type pictures, designed to draw

attention to their fashion choices or as a form of social interaction with peers.

Because these are people who particularly care about their clothes they tend

to display a wide range of styles, accessories, and garments. However, pictures

are also often depicted in relatively simple poses (mostly standing), against

relatively clean backgrounds, and without many other people in the picture.

This makes it an ideal scenario to study clothing.

As a training and evaluation set, 685 photos were selected with good visi-

bility of the full body and covering a variety of clothing items. This carefully
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Figure 3.1: Pose-annotation tool.

selected subset were then annotated with two kinds of data in the crowd-

sourcing service, Amazon Mechanical Turk. The first Turk annotation gathers

ground-truth pose annotations for the usual 14 body parts [113]. The second

Turk annotation gathers ground-truth clothing labels on superpixel regions.

All annotations are verified and corrected if necessary to obtain high quality

annotations. Figure 3.1 and 3.2 show the user interface of the annotation tools.

In this ground-truth data set, there are 53 different clothing items, of which

43 items have at least 50 image regions. Adding additional labels for hair, skin,

and null (background), gives a total of 56 different possible clothing labels – a

much larger number than considered in any previous approach [13, 10, 21, 112,

39, 96, 110]. On average, photos include 291.5 regions and 8.1 different clothing

labels. Many common garment items have a large number of occurrences

in the data set (number of regions with each label denoted in parenthesis),
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Figure 3.2: Clothing-annotation tool.

including dress (6565), bag (4431), blouse (2946), jacket (2455), skirt (2472),

cardigan (1866), t-shirt (1395), boots (1348), jeans (1136), sweater (1027),

etc. Table 3.1 shows 20 common clothing items and their frequency (number

of segments with that label in the annotated dataset). Frequently observed

items include null (122068), skin (17328), hair (9920), dress (6565), bag (4431),

blouse (2946), shoes (2701), top (2543), skirt (2472), jacket (2455), and so on.

However, even items probably unheard of by the fashion non-initiate, also have

many occurrences – leggings (545), vest (955), cape (137), jumper (758), wedges

(518), and romper (164), for example.
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Label #Region Label #Region
null 122068 coat 2343
skin 17328 shirt 1935
hair 9920 cardigan 1866
dress 6565 blazer 1727
bag 4431 t-shirt 1395
blouse 2946 boots 1348
shoes 2701 shorts 1149
top 2543 jeans 1136
skirt 2472 pants 1116
jacket 2455 sweater 1027

Table 3.1: 20 frequent clothing labels.

3.2 Problem Formulation

The goal of parsing is to assign a label of a clothing or null (background) to

every pixel. However, the proposed approach approximates pixel labels with

region labels and assumes that all pixels in the same region share the same

label. This approximation reduces the computational expense of handling

large number of variables associated to every pixel.

Let I denote an image showing a person. This section denotes the set of

clothing labels by L ≡ {li}, where i ∈ U is a region index within a set of

image regions U in I, and li is a clothing label for region indexed by i (e.g.,

li = t-shirt or pants). Also let si denote the set of pixels in the i-th region.

The proposed framework takes a probabilistic approach to the clothing-

parsing problem. The parsing problem can be modeled as a MAP assignment

of clothing labels to a probability distribution given an image P (L|I). How-

ever, to take advantage of clothing and human body relationship, the frame-

work introduces another variable, human pose configuration, and considers

the distribution in terms of interactions between clothing items, human pose,
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and image appearance. This section denotes a human pose configuration by

X ≡ {xp}, which is a set of image coordinates xp for body joints p, e.g., head

or right elbow. Then, the clothing-parsing problem is formulated as two con-

secutive MAP inference problems: arg maxX P (X|I) and arg maxL P (L|X, I).

Ideally, one would then like to find the joint MAP assignment over both cloth-

ing and pose labels with respect to the joint probability distribution P (X,L|I)

simultaneously. However, such MAP assignment problems are often computa-

tionally intractable because of the large search space and the complex structure

of the probabilistic model.

In summary, the proposed clothing-parsing pipeline proceeds as follows:

1. Obtain superpixels {si} from an image I

2. Estimate pose configuration X using P (X|I)

3. Assign the best clothing items L using P (L|X, I)

4. Optionally, re-estimate pose configuration X using model P (X|L, I)

Figure 3.3 shows an example of this pipeline. The following sections briefly

describe each step and formally define the proposed probabilistic model.

3.2.1 Superpixels

This chapter uses the image segmentation algorithm by Arbelaendez et al. [3]

to obtain superpixels. The algorithm provides a hierarchical segmentation, but

experiments in this chapter set the threshold value to 0.05 to obtain a single

over-segmentation for each image. This process typically yields between a few

hundred to one thousand regions per image, depending on the complexity of
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(a) Superpixels (b) Pose estimation

(c) Clothing parse

null
shorts
shoes
purse
top
necklace
hair
skin

(d) Pose re-estimation

Figure 3.3: Clothing-parsing pipeline: (a) Parsing the image into superpix-
els [3], (b) Original pose estimation using state of the art flexible mixtures-of-
parts model [113]. (c) Precise clothing parse output by the proposed clothing-
estimation model (note the accurate labeling of items as small as the wearer’s
necklace, or as intricate as her open-toed shoes). (d) Optional re-estimate of
pose using clothing estimates (note the improvement in her left-arm predic-
tion, compared to the original incorrect estimate down along the side of her
body).
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the person and background appearance (Fig 3.3(a) shows an example). This

size is considerably smaller than a typical 600 × 400 = 240, 000 pixels in the

Fashionista dataset, and greatly reduces the computational expense in parsing.

3.2.2 Pose estimation

The proposed pipeline begins by estimating pose X̂ using P (X|I):

X̂ ∈ arg max
X

P (X|I) . (3.1)

For the initial pose estimate, this chapter uses the pose estimator proposed

by Yang et al. [113]. In the estimation algorithm, in addition to the above

terms, this estimation model includes an additional hidden variable repre-

senting a type label for pose mixture components, T ≡ {tp} for each body

joint p. This extra variable contains information about the types of ar-

rangements possible for a joint. Hence, the estimation problem is written

as (X̂, T̂ ) ∈ arg maxX,T P (X,T |I). The likelihood function used to evaluate

pose [113] is:

lnP (X,T |I) ≡
∑
p

wp(tp)
Tφ(xp|I)

+
∑
p,q

wp,q(tp, tq)
Tψ(xp − xq)

− lnZ, (3.2)

where, w are the model parameters, φ and ψ are feature functions, and Z is

the partition function. Since the estimated mixture components are not used
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in parsing, T̂ is discarded and only X̂ is kept.

3.2.3 Clothing labeling

Once the initial pose estimate X̂ is obtained, the pipeline proceeds to the

estimation of clothing labels:

L̂ ∈ arg max
L

P (L|X̂, I) . (3.3)

This chapter proposes to model the probability distribution P (L|X, I) with a

second-order conditional random field (CRF):

lnP (L|X, I) ≡
∑
i∈U

Φ(li|X, I) +
∑

(i,j)∈V

λ1Ψ1(li, lj) +

∑
(i,j)∈V

λ2Ψ2(li, lj|X, I)− lnZ, (3.4)

where V is a set of neighboring pairs of image regions, λ1 and λ2 are model

parameters, and Z is the partition function. Figure 3.4 illustrates the graphical

model of the distribution.

The unary potential function Φ is modeled using the probability of a label

assignment, given the feature representation of the image region si:

Φ(li|X, I) ≡ lnP (li|φ(si, X)). (3.5)

This chapter defines the feature vector φ as the concatenation of (1) normalized

histograms of RGB color, and (2) normalized histogram of CIE L*a*b* color,

(3) histogram of Gabor filter responses, (4) normalized 2D coordinates within
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Figure 3.4: Graphical model of the clothing labeling. Each superpixel region
has label li and pixels si. The vertical edges represent a unary potential Φ
while each 4-node vertical cycle forms a pairwise potential Ψ.

the image frame, and (5) normalized 2D coordinates with respect to each

body joint location xp. The following experiments in this chapter use 11 bins

for each feature type. Using a 14-joint pose estimator, this results in a 440

dimensional sparse representation for each image region. Logistic regression is

experimentally chosen for the specific marginal probability model P (li|φ(s, X))

after evaluating a few distributions for the Fashionista dataset.

The pairwise potential function Ψ1 is a log empirical distribution over pairs

of region-labels in a single image:

Ψ1(li, lj) ≡ ln P̃ (li, lj). (3.6)

This term serves as a prior distribution over the pairwise co-occurrence of

clothing labels (e.g. shirts are near blazers, but not shoes) in neighboring

regions within an image. The function is computed by normalizing average
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frequency of neighboring label pairs in training samples.

The second pairwise potential in (3.4) estimates the probability of neigh-

boring pairs having the same label (i.e. label smoothing), given their features,

ψ:

Ψ2(li, lj|X, I) ≡ lnP (li = lj|ψ(si, sj, X)). (3.7)

This chapter defines the feature transformation to be

ψ(si, sj) ≡
[
φ(si) + φ(sj)

2
, |φ(si)− φ(sj)|

]
. (3.8)

As with the unary potential, this pairwise potential uses logistic regression.

Because of the loopy structure of the graphical model, it is computation-

ally intractable to solve (3.3) for the exact solution. Therefore, this chapter

uses belief propagation to obtain an approximate MAP assignment, using the

libDAI [77] implementation.

In practice, regions outside of the bounding box around pose estimation are

always background. Therefore, the following experiments fixes these outside

regions to null and runs inference only within the foreground regions.

3.2.4 Pose re-estimation

Clothing-parsing can also be useful in pose estimation, because clothing and

pose are tightly coupled. The next section will have a preliminary study to

answer if the original pose estimations may be improved by estimated cloth-

ing. Given the predicted clothing labels L̂, this re-estimation model tries to
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improve the prior MAP pose assignment X̂ by computing the posterior MAP

conditioned on L̂ in (3.1):

X̂ ∈ arg max
X

P (X|L̂, I) . (3.9)

The model (3.1) is modified to incorporate clothing predictions in the pose

estimation process here. To do this, the appearance feature φ(xp|I) in (3.1)

is updated to φ(xp|L, I), where the new appearance feature includes HOG as

well as normalized histograms of clothing labels computed at the location xp.

3.2.5 Learning a model

Training of the proposed clothing parser includes parameter learning of the

pose estimator P (X|I) and P (X|L, I), learning of potential functions in P (L|X, I),

and learning of CRF parameters in (3.4).

Pose estimator The training procedure of [113] uses separate negative ex-

amples, sampled from scene images to use the pose estimator as a detector.

Since a localization scenario assumes that a person is always shown in a pic-

ture, the following experiments do not use a scene based negative set, but

rather mine hard negative examples using false detections in the Fashionista

dataset. A detection is treated as negative if less than 30% of the body parts

overlap with their true locations with ratio more than 60%.

Clothing parser The probability distributions P (li|φ) and P (li = lj|ψ) in

(3.5) and (3.7) are learned using logistic regression with L2 regularization [32].

28



The distribution given its regional features, P (li|φ) is learned for each possible

clothing item, e.g. shirt or boots. This model is learned using a one-versus-all

approach. In learning, the cost parameter is weighted by the ratio of positive

to negative samples so that the resulting model does not over-fit to the prior

distribution of clothing labels.

The proposed parsing-model (3.4) has two parameters λ1 and λ2. The

best parameters are determined by maximizing cross-validation accuracy over

pixels in the training data using line search and a variant of the simplex method

(fminsearch in Matlab). In the following experiments, typically both λ1 and

λ2 preferred small values (e.g., 0.01-0.1).

3.3 Experimental Results

The performance of the proposed approach is evaluated using 685 annotated

samples from the Fashionista dataset. All measurements use 10-fold cross

validation (9 folds used for training, and the remaining for testing). Since

the pose estimator contains some random components, this cross validation

protocol is repeated 10 times to draw an average and standard deviation.

The remainder of this section discusses quantitative (Sec 3.3.1) and qual-

itative (Sec 3.3.2) evaluations of the proposed clothing-parsing model, and

demonstrates intriguing initial results on incorporating clothing estimates to

improve pose identification (Sec 3.3.3).
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Method Pixel accuracy Mean AGR
Final result 89.0 ± 0.8 69.6 ± 1.7
with truth 89.3 ± 0.8 71.2 ± 1.5
without pose 86.0 ± 1.0 64.6 ± 1.6
Unary only 88.2 ± 0.8 69.8 ± 1.8
Baseline 77.6 ± 0.6 12.8 ± 0.1

Table 3.2: Clothing-parsing performance with standard deviation. Results are
shown for the final model (top), the model using unary terms only (3rd), and
a baseline labeling (bottom). The results of the final model are optimized for
each performance criteria.

Garment Final result with truth without pose
background 95.3± 0.4 95.6± 0.4 92.5± 0.7

skin 74.6± 2.7 76.3± 2.9 78.4± 2.9

hair 76.5± 4.0 76.7± 3.9 69.8± 5.3

dress 65.8± 7.7 67.7± 9.4 50.4±10.2
bag 44.9± 8.0 47.6± 8.3 33.9± 4.7

blouse 63.6± 9.5 66.2± 9.1 52.1± 8.9

shoes 82.6± 7.2 85.0± 8.8 77.9± 6.6

top 62.0±14.7 64.6±13.1 52.0±13.8
skirt 59.4±10.4 60.6±13.2 42.8±14.5
jacket 51.8±15.2 53.3±13.5 45.8±18.6
coat 30.8±10.4 31.1± 5.1 22.5± 8.8

shirt 60.3±18.7 60.3±17.3 49.7±19.4
cardigan 39.4± 9.5 39.0±12.8 27.9± 8.7

blazer 51.8±11.2 51.7±10.8 38.4±14.2
t-shirt 63.7±14.0 64.1±12.0 55.3±12.5
boots 75.2± 6.2 80.2± 5.9 73.8± 7.3

shorts 84.6± 7.9 79.8± 9.1 63.1±11.2
jeans 80.9±10.2 85.3± 9.2 83.4±10.9
pants 78.7±12.3 81.6±11.6 71.5± 8.9

belt 71.3± 7.0 73.0± 8.9 68.6± 7.8

heels 80.9±12.3 82.6±11.9 79.3±13.1
tights 78.5±12.5 77.8±11.3 65.8±13.6
leggings 82.9±13.1 86.9± 8.5 80.7±12.9
stockings 81.0±10.9 83.3±10.9 77.2± 9.5

socks 67.4±16.1 67.8±19.0 74.2±15.0
necklace 51.3±22.5 46.5±20.1 16.2±10.7
bracelet 49.5±19.8 56.1±17.6 45.2±17.0

Table 3.3: Recall for selected garments with standard deviation.
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3.3.1 Clothing parsing accuracy

Performance of clothing-parsing is measured in two ways; using average pixel

accuracy, and using mean Average Garment Recall (Mean AGR). Mean AGR

is measured by computing the average labeling performance (recall) of the

garment items present in an image, and then the mean is computed across

all images. Table 3.2 shows a comparison. Parameters of the final models

are learned to optimize pixel accuracy and Mean AGR respectively. (Note

that the choice of which measure to optimize for is application dependent.)

Since the most frequent label present in the Fashionista dataset is background,

the baseline in the table is a naive prediction of all regions being background,

which already reaches 77% accuracy. The proposed model achieves a much

improved 89% pixel accuracy, close to the result from the case when ground-

truth estimates of pose are used (89.3%). If no pose information is used,

clothing-parsing performance drops significantly (86%). For Mean AGR, the

Unary model achieves slightly better performance (69.8%) over the full model

because smoothing in the full model tends to suppress infrequent (small) labels.

Figure 3.5 shows a garment confusion matrix for clothing label prediction

in the jet color-map. Largest confusions are observed between the null (back-

ground) label and clothing items, but overall good performance is observed

(bright diagonal cells). Clothing items that tend to be more confused are

items that occur on similar body regions, e.g. top confused with blazer, cardi-

gan, or t-shirt. This implies layering produces challenges that have not fully

been solved. Other typical confusions are observed at “spilled” regions nearby

the body, such as a small background region next to a body, or in holes –
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Figure 3.5: A subset of the garment confusion matrix for the 25 most com-
monly occurring clothing-item types.

e.g. between torso and elbow or left and right legs. Another kind of frequent

confusion was skin-color objects in the picture. It was observed that light-

brown garment items or wooden objects in the background were sometimes

misclassified as skin. This color confusion were also seen between hair and

dark garments such as jacket or blazer. Yet another issue is with superpix-

els that they sometimes fail to capture regions with coarse texture, e.g. the

striped dress in fig 3.6b is segmented into regions for each stripe. Confusion is

likely to occur in these cases since the regions will correspond to very difference

appearance models.
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Figure 3.6: Clothing-parsing with garment meta-data (left) and without meta-
data (right). Confusion between garments increases in the detection scenario,
but still improves over the baseline (Table 3.2).

Detection attempt This section also reports performance of the proposed

model in a detection scenario. The model was not designed for detection, but

this is possible by applying the parser assuming all clothing labels are given.

As seen in Fig 3.6, the full parsing problem with all 53 garment possibilities is

quite challenging with this formulation, but the proposed method still obtains

80.8% pixel accuracy, a cross-validated gain of 3% over the baseline method.

3.3.2 Qualitative evaluation

This section reports the proposed clothing-parsing on all 158k un-annotated

samples in the Fashionista dataset. Since there is no ground-truth labels for

these photos, this section just reports qualitative observations. These results

confirm that the proposed parser predicts good clothing labels on this large

and varied dataset. Figure 3.7 shows some good parsing results, even han-
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34



null
purse
boots
sweater
hat
bracelet
hair
skin

(a) Skin-like color

null
t-shirt
shoes
jacket
hair
skin

(b) Failing pose estimate

null
tights
boots
jacket
dress
hat
hair
skin

(c) Spill in the background

null
purse
dress
accessories
belt
heels
hair
skin

(d) Coarse pattern

Figure 3.8: Example of failure cases.

dling relatively challenging clothing (e.g. small hats, and partially occluded

shoes). Generally the parsing problem becomes easier in highly distinguishable

appearance situations, such as on clean backgrounds, or displaying distinctive

clothing regions. Failure cases (Fig 3.8) are observed due to ambiguous bound-

aries between foreground and background, when initial pose estimates are quite

incorrect, or in the presence of very coarse patterns. Other challenges include

pictures with out of frame body joints, close ups of individual garment items,

or when no relevant entities appear at all.

Discussion of superpixels The proposed approach assumes that each su-

perpixel has the same clothing label and encourages over-segmentation to make

this assumption nearly true. However, in some cases the superpixel segmen-
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Method PCP
No clothing (initial) 86.5 ± 1.5
With clothing 86.9 ± 1.4
True clothing 89.5 ± 1.5

Table 3.4: Pose-estimation performance with standard deviation. Initial
state-of-the-art performance (top - trained and evaluated on the Fashionista
dataset), the re-estimate of pose using a model incorporating predicted cloth-
ing estimates (middle), and pose re-estimation performance given ground-
truth clothing parse (bottom).

Part No clothing With clothing True clothing
torso 100.0 ± 0.2 99.9 ± 0.3 100.0 ± 0.1
upper left leg 94.3 ± 2.1 94.3 ± 2.3 94.3 ± 2.9
upper right leg 93.8 ± 2.4 95.3 ± 2.1 96.2 ± 2.0
lower left leg 90.8 ± 3.0 89.4 ± 3.9 90.7 ± 3.3
lower right leg 90.3 ± 3.7 93.3 ± 3.1 94.7 ± 2.7
upper left arm 86.6 ± 3.9 84.7 ± 3.8 87.7 ± 3.6
upper right arm 85.3 ± 3.4 86.6 ± 3.6 89.9 ± 3.1
lower left arm 62.8 ± 6.3 61.8 ± 5.5 70.4 ± 5.0
lower right arm 62.2 ± 6.1 64.9 ± 6.6 71.7 ± 5.9
head 99.5 ± 0.7 99.2 ± 1.1 99.5 ± 0.9

Table 3.5: Limb detection rate with standard deviation.

tation does not correctly separate regions. This is likely to occur in an image

with nearly invisible boundaries, such as a black-haired person wearing a black

jacket with black pants. This issue is an age old segmentation problem and

very difficult to solve. The next chapter will report a pixel-wise formulation

to overcome this issue.

3.3.3 Pose re-estimation accuracy

Finally, this section reports initial experiments on pose re-estimation using

clothing-parsing. Pose estimation is a well-studied problem with very effective
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methods [35, 14, 12, 113, 82, 56]. This experiment measures performance of

pose-estimation by the probability of a correct pose (PCP) [113], which com-

putes the percentage of body parts correctly overlapping with the ground-truth

parts. Table 3.4 and 3.5 summarizes performance. Current methods [113] ob-

tain a cross-validated PCP of 86.5% on the Fashionista data set. Using the

estimated clothing labels, the parsing-conditioned model achieves 86.9%. As

motivation for future research on clothing-parsing, the pose re-estimation sys-

tem reaches a PCP of 89.5% when true clothing labels are given, demonstrat-

ing the potential usefulness of incorporating clothing into pose identification.

The next chapter will revisit this pose re-estimation evaluation with another

clothing-parsing approach.

3.4 Summary

This chapter described a parsing approach to the localization scenario. The

Fashionista dataset is introduced for evaluation of the proposed approach,

which is collected from the online fashion network and crowdsourced annota-

tion tool. The experimental result showed excellent performance in parsing as

well as intriguing implication on using clothing estimates to improve human

pose prediction. Parsing in a detection scenario was also attempted, though

the performance was not satisfying with this approach. The next chapter will

propose a data-driven parsing method for detection.
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Chapter 4

Clothing Parsing: Detection

Approach

This chapter considers clothing parsing in a detection scenario, where there is

no information about clothing categories in a picture. This chapter proposes

a data-driven approach to this challenging scenario, since it is known that

in general non-parametric methods perform better at classification of large

categories when large datasets are available.

The proposed method first collects a large, complex, real-world collection of

outfit pictures from a social network focused on fashion. Using a hand-parsed

dataset described in the previous chapter, it is possible to locate clothing items

in this new, large image database with help from text tags associated with each

image in the collection. Now, given a query image without any associated

text, the proposed method retrieves similar outfits from the parsed collection.

The parsed similar images are then used to detect items by combining three

parsing methods: a direct parse of an image with the same parsing model,
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a local parsing model that takes the specific distribution more into account

in these retrieved similar images, and transferred clothing-masks from the

retrieved samples to the query image. Final iterative smoothing produces the

end result using a conditional random field. In each of these steps the proposed

method takes advantage of the relationship between clothing and body pose

to constrain prediction and produce a more accurate parse. This dissertation

calls the proposed method Paper Doll parsing, because it essentially transfers

predictions from retrieved samples to the query, like laying paper cutouts of

clothing items onto a paper doll.

This approach uses an over-segmentation algorithm in part of the parsing

pipeline and does not rely on superpixels for the final parsing. As discussed

in Section 3.3.2, the per-pixel approach does not suffer from the irrecoverable

error produced by the superpixel approximation. Although this increases the

computational cost, it is empirically observed that the implementation can

achieve the same level of computational time.

Given a new image to parse, the proposed approach consists of two major

steps:

1. Retrieve similar images from the parsed database.

2. Use retrieved images and tags to parse the query.

Figure 4.1 depicts the overall parsing pipeline. In particular, in the second

parsing stage, this dissertation proposes a retrieval-based approach to clothing

parsing that combines;

• pre-trained global models of clothing items,
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Figure 4.1: Data-driven parsing pipeline.

• local models of clothing items learned on the fly from retrieved examples,

• parse mask predictions transferred from retrieved examples to the query

image, and

• iterative label smoothing.

4.1 Paper Doll Dataset

This chapter uses the Fashionista dataset from the previous chapter and a

new, weakly-supervised set of images named the Paper Doll dataset. This

chapter uses the Fashionista dataset for supervised training and performance

evaluation, 456 for training and 229 for testing. The training samples are used

for learning feature transforms, building global clothing models, and adjusting

parameters. The testing samples are reserved for evaluation.

The Paper Doll dataset is a large collection of tagged fashion pictures from

chictopia.com. Over 1 million pictures are downloaded with associated meta-

data tags denoting characteristics such as color, clothing item, or occasion.
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Since the Fashionista dataset also uses Chictopia, the data-collection process

automatically excludes any duplicated pictures from the Paper Doll dataset.

From the remaining, the data-collection process selects pictures tagged with

at least one clothing item and runs a full-body pose detector [113] on them,

keeping those that have a person detected. This process results in 339,797

pictures weakly annotated with clothing items and estimated pose in the fol-

lowing experiments. Though the annotations are not always complete – users

often do not label all depicted items, especially small items or accessories – it

is rare to find images where an annotated tag is not present. The proposed

parsing-approach uses the Paper Doll dataset for style retrieval.

4.2 Low-level Features

This section details low-level image features used in the proposed parsing

method.

For a new image, the pre-processing step first runs a pose estimator [113]

and normalizes the full-body bounding box to a fixed size. The pose estimator

is trained using the Fashionista training split and negative samples from the

INRIA dataset. During parsing in the later steps, all computations are done

in this fixed frame size, and warped back to the original image afterward,

assuming regions outside the bounding box are background.

The proposed methods draw from a number of dense feature types (each

parsing method uses some subset):

RGB : RGB color of the pixel.

41



Lab : L*a*b* color of the pixel.

MR8 : Maximum Response Filters [106].

Gradients : Image gradients at the pixel.

HOG : HOG descriptor at the pixel [26].

Boundary Distance : Negative log-distance from the boundary of an image.

Pose Distance : Negative log-distance from 14 body joints and any body

limbs.

Skin-hair Detection : Likelihood of skin, hair, other foreground, and back-

ground of the pixel.

Whenever a statistical model built upon these features is used in this chap-

ter, the pre-processing step first normalizes features by subtracting their mean

and dividing by their 3 standard deviation for each dimension. Also, when

logistic regression is used in this chapter, regression models use these nor-

malized features and their squares, along with a constant bias. So, for an

N -dimensional feature vector, logistic regression always gets 2N + 1 parame-

ters.

4.3 Style Retrieval

The proposed parsing algorithm starts by retrieving similar images in the

Paper Doll dataset for an input. The purpose of retrieving similar pictures is

two-fold:
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Figure 4.2: Spatial descriptors for style representation.

1. to predict depicted clothing items, and

2. to obtain information helpful for parsing clothing items.

4.3.1 Style descriptor

This section describes the design of a comprehensive fashion image descriptor,

which is named Style Descriptor, specifically useful for finding styles with

similar appearance. For this purpose, the style descriptor is built upon pose

estimation, and reflects information about the items a person is wearing, their

arrangement on the body, and their appearance.

The style descriptor is computed as follows.

1. Apply a pose estimator [113] to obtain estimates for 24 body part loca-

tions (centered around head, torso, joints, etc.).

2. For local image regions around each detected body part, calculate a

vector of the following features at each pixel: RGB, Lab, MR8, HOG,
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Boundary Distance, and Skin-hair Detection.

3. Calculate a 4 × 4 grid of mean-std pooling of the above features. That

is, an image patch of 32 × 32 pixels around the body part location is

extracted first, and this patch is split into 4 × 4 cells. The mean and

standard deviation of features are calculated within each of the cell. The

result is concatenated to form a single vector.

4. Concatenate the pooled features and apply PCA to reduce dimensional-

ity.

Skin-hair Detection is computed using generalized logistic regression for

skin, hair, background, and clothing at each pixel. this logistic regression uses

RGB, Lab, MR8, HOG, Boundary Distance, and Pose Distance for input.

The logistic regression is learned from the Fashionista dataset using one-vs-all

approach. Note that the style descriptor does not include Pose Distance in the

low-level features, but instead uses Skin-hair Detection to indirectly include

pose-dependent information in the representationThis is because the purpose

of the style descriptor is to find similar styles independent of pose.

Figure 4.2 illustrates the process of extracting style descriptors. The above

process resulted in a 441 dimensional representation for each fashion picture

in the experiments in this Chapter. This chapter use the Fashionista training

split to build the Skin-hair detector and also to train the PCA model. In-

cluding pose estimation, it takes 3-4 seconds to calculate the descriptor in the

implementation.

44



4.3.2 Retrieval

The retrieval of similar styles uses L2-distance over the style descriptors to

find the K nearest-neighbors (KNN) in the Paper Doll dataset. For efficiency,

the retrieval system builds a KD-tree [107] to index samples. In this chapter,

the retrieval size is fixed to K = 25 for all the experiments. Figure 4.3 shows

two examples of nearest-neighbor (NN) retrievals.

4.3.3 Tag prediction

The retrieved samples are first used to predict clothing items potentially

present in a query image. The purpose of tag prediction is to obtain a set

of tags that might be relevant to the query, while eliminating definitely irrel-

evant items for consideration. Later stages can remove spuriously predicted

tags, but tags removed at this stage can never be predicted. Therefore, it is

preferable to obtain the best possible predictive performance in the high recall

regime.

Tag-prediction is based on a simple voting approach from KNN. Each tag

in the retrieved samples provides a vote weighted by the inverse of its distance

from the query, which forms a confidence for presence of that item. The

prediction is made by thresholding this confidence.

This simple KNN prediction is experimentally selected among other mod-

els because it turns out KNN works well for the high-recall prediction task.

Figure 4.4 shows performance of linear vs KNN with retrieval size at 10 and

25. While linear classification (clothing item classifiers trained on subsets of

body parts, e.g. pants on lower body keypoints), works well in the low-recall
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Figure 4.3: Retrieval examples. The leftmost column shows query images with
ground-truth item annotation. The rest are retrieved images with associated
tags in the top 25. Notice retrieved samples sometimes have missing item tags.
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Figure 4.4: PR-plot of tag-prediction.

high-precision regime, KNN outperforms the linear model in the high-recall

range. KNN at 25 retrievals also outperforms 10. The effect of retrieval size

in parsing is discussed more in Section 4.5.1.

Since the goal here is only to eliminate obviously irrelevant items while

keeping most potentially relevant items, the threshold is tuned to give 0.5 recall

in the Fashionista training split. Due to the skewed item distribution in the

Fashionista dataset, the same threshold is applied to all items to avoid over-

fitting the predictive model. After tag-prediction, the parsing stage always

includes background, skin, and hair, in addition to the predicted clothing tags.
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Figure 4.5: Parsing outputs at each step. The labels are the MAP assignments
of the scoring functions.

4.4 Clothing Parsing

Following tag-prediction, the Paper Doll pipeline proceeds to parse a query

image in a per-pixel fashion. Parsing has two major phases:

1. Compute pixel-level likelihood from three methods: global clothing mod-

els, nearest-neighbor clothing models, and soft-mask transfer.

2. Apply iterative label smoothing to get a final parse.

Figure 4.5 illustrates outputs from each parsing stage.
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4.4.1 Pixel likelihood

Let us denote yi as the clothing item label at pixel i. The first step in parsing

is to compute likelihood of assigning clothing item l to yi. This likelihood

function S is modeled as a mixture of three functions.

S(yi|xi, D) ≡ Sglobal(yi|xi, D)λ1 ·

Snearest(yi|xi, D)λ2 ·

Stransfer(yi|xi, D)λ3 , (4.1)

where xi denotes pixel features, Λ ≡ [λ1, λ2, λ3] are mixing parameters, and D

is a set of nearest-neighbor samples.

Global parse

The first term in the model is a global clothing likelihood, trained for each

clothing item on the hand-parsed Fashionista training split. This is modeled

as logistic regression that computes a likelihood of a label assignment to each

pixel for a given set of possible clothing items:

Sglobal(yi|xi, D) ≡ P (yi = l|xi, θgl ) · 1[l ∈ τ(D)], (4.2)

where P is logistic regression given feature xi and model parameter θgl , 1[·]

is an indicator function, and τ(D) is a set of predicted tags from nearest-

neighbor retrieval. This logistic regression uses RGB, Lab, MR8, HOG, and

Pose Distances as features. Any unpredicted items receive zero probability.

The model parameter θgl is trained on the Fashionista training split. To
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train each θgl , negative pixel-samples are selected only from those images hav-

ing at least one positive pixel. That is, the model gives localization probability

given that a label l is present in the picture. This could potentially increase

confusion between similar item types, such as blazer and jacket since they

usually do not appear together, in favor of better localization accuracy. This

approach relies on the tag-prediction τ to resolve such confusion.

Because of the tremendous number of pixels in the dataset, pixels are sub-

sampled in the training of each logistic regression. The subsampling method

tries to draw pixel-samples so that the resulting label distribution is close to

uniform in each image, preventing learned models from only predicting large

items.

Nearest-neighbor parse

The second term in the model is also logistic regression, but trained only on the

retrieved nearest-neighbor images. Unlike the global model, the NN model is

trained on examples that are similar to the query, e.g. blazers that look similar

to the query blazer because they were retrieved via style similarity. These local

models are considerably better models for the query image than those trained

globally (because blazers in general can take on a huge range of appearances).

The model is defined:

Snearest(yi|xi, D) ≡ P (yi = l|xi, θnl ) · 1[l ∈ τ(D)]. (4.3)

The model parameter θnl is locally learned from the retrieved samples D,

using RGB, Lab, Gradient, MR8, Boundary Distance, and Pose Distance.
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In this step, predicted pixel-level annotations from the retrieved samples

are used (computed during pre-processing detailed in Section 4.4.3) to learn

local appearance models. NN models are trained using any pixel (with sub-

sampling) in the retrieved samples in a one-vs-all fashion.

Transferred parse

The third term in the parsing-likelihood is obtained by transferring the like-

lihoods estimated by the global parse Sglobal from the retrieved images to the

query image (Figure 4.6 visualizes an example). This approach is similar in

spirit to approaches for general segmentation that transfer likelihoods using

over-segmentation and matching [8, 59, 62, 74], but here a parsing-algorithm

can take advantage of pose estimation during transfer because segmentation

is performed on human body.

This approach finds dense correspondence based on superpixels instead of

pixels (e.g., [101]) to overcome the difficulty in naively transferring deformable,

often occluded clothing items pixel-wise. The approach first computes an

over-segmentation of both query and retrieved images using a fast and simple

segmentation algorithm [33], then finds corresponding pairs of super-pixels

between the query and each retrieved image based on pose and appearance:

1. For each super-pixel in the query, find the 5 nearest super-pixels in each

retrieved image using L2 Pose Distance.

2. Compute a concatenation of bag-of-words from RGB, Lab, MR8, and

Gradient for each of those super-pixels.

3. Pick the closest super-pixel from each retrieved image using L2 distance
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Figure 4.6: Transferred parse. Likelihoods in nearest-neighbors are transferred
to the input via dense matching.

on the bag-of-words feature.

Denoting the super-pixel of pixel i by si, the selected corresponding super-

pixel from image r by si,r, and the bag-of-words features of super-pixel s by

h(s), the transferred parse is expressed by:

Stransfer(yi|xi, D) ≡ 1

Z

∑
r∈D

M(yi, si,r)

1 + ‖h(si)− h(si,r)‖
, (4.4)

where M(yi, si,r) is defined:

M(yi, si,r) ≡
1

|si,r|
∑
j∈si,r

P (yi = l|xi, θgl ) · 1[l ∈ τ(r)], (4.5)

which is a mean of the global parse over the super-pixel in a retrieved image.

Here a set of tags of image r is denoted by τ(r), and Z is the normalization

constant.
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Combined likelihood

After computing the three likelihoods, they are combined according to param-

eter Λ to get the final pixel likelihood S as described in Equation 4.1. The

best mixing parameter is chosen such that the MAP assignment of pixel labels

gives the best foreground accuracy in the Fashionista training split, by solving

the following optimization (on foreground pixels F ):

max
Λ

∑
i∈F

1

[
ỹi = arg max

yi

SΛ(yi|xi)
]
, (4.6)

where ỹi is the ground-truth annotation of pixel i. The nearest-neighbors D

in S are dropped in the notation for simplicity. A simplex-search algorithm

is employed to solve for the optimum parameter starting from uniform values.

In the experiment, the obtained result was (0.41, 0.18, 0.39).

This optimization excludes background pixels because of the skew in the

label distribution – background pixels in Fashionista dataset represent 77%

of total pixels, which tends to direct the optimizer to find meaningless local

optima; i.e., predicting everything as background.

4.4.2 Iterative label smoothing

The combined likelihood gives a rough estimate of item localization. However,

it does not respect boundaries of actual clothing items since it is computed per-

pixel and ignores any relationship between spatially local neighbors. Therefore,

the next step introduces an iterative smoothing approach that considers all

pixels together to provide a smooth parse of an image. Following the approach
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of [93], this smoothing approach is formulated by considering the joint labeling

of pixels Y ≡ {yi} and item appearance models Θ ≡ {θsl } in a conditional

random field, where θsl is a model for a label l. The goal is to find the optimal

joint assignment Y ∗ and item models Θ∗ for a given image.

The smoothing approach starts by initializing the current predicted pars-

ing Ŷ0 with the MAP assignment under the combined likelihood S. Then,

the approach treats Ŷ0 as training data to build initial image-specific item

models Θ̂0 (from logistic regressions). These models only use RGB, Lab, and

Boundary Distance since otherwise the models easily over-fit. Also, the models

use a higher regularization parameter for training instead of finding the best

cross-validation parameter, assuming the initial training labels Ŷ0 are noisy.

After obtaining Ŷ0 and Θ̂0, the smoothing method solves for the optimal

assignment Ŷt at the current step t with the following optimization problem:

Ŷt ∈ arg max
Y

∏
i

Φ(yi|xi, S, Θ̂t)
∏
i,j∈V

Ψ(yi, yj|xi,xj), (4.7)

where the potential functions are defined:

Φ(yi|xi, S, Θ̂t) ≡ S(yi|xi)λ · P (yi|xi, θsl )1−λ, (4.8)

Ψ(yi, yj|xi,xj) ≡ exp
{
γe−β‖xi−xj‖2 · 1 [yi 6= yj]

}
. (4.9)

Here, V is a set of neighboring pixel pairs, λ, β, γ are the parameters of the

model, which is experimentally determined. This method uses the graph-cut

algorithm [16, 15, 53] to find the optimal solution.

With the updated estimate of the labels Ŷt, the smoothing approach trains
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logistic regressions Θ̂t and repeat each step. Note that this iterative approach

is not guaranteed to converge. Therefore, in the implementation, the iteration

terminates either when 10 iterations pass, when the number of changes in label

assignment is less than 100, or the ratio of the change is smaller than 5%.

4.4.3 Offline processing

The retrieval techniques require the large Paper Doll Dataset to be pre-processed

(parsed), for building nearest-neighbor models on the fly from retrieved sam-

ples and for transferring parse masks. Therefore, each sample in the Paper

Doll dataset is parsed beforehand using pose estimation and the tags associ-

ated with the image by the photo owner. This parse makes use of the global

clothing models (constrained to the tags associated with the image by the

photo owner) and the iterative smoothing.

Although these training images are tagged, there are often clothing items

missing in the annotation. This will lead iterative smoothing to mark fore-

ground regions as background. To prevent this, this pre-processing step adds

an unknown item label with uniform probability and initialize Ŷ0 together with

the global clothing model at all samples. This effectively prevents the final

estimated labeling Ŷ to mark missing items with incorrect labels.

Offline processing of the Paper Doll Dataset took a few of days with the

Matlab implementation in a distributed environment. For an unseen query

image, the full parsing pipeline takes 20 to 40 seconds, including pose estima-

tion. The major computational bottlenecks are in nearest-neighbor parse and

in iterative smoothing.
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4.5 Experimental Results

Parsing performance is evaluated on the 229 testing samples from the Fash-

ionista dataset. The task is to predict a label for every pixel where labels

represent a set of 56 different categories – a very large and challenging variety

of clothing items.

Performance is measured in terms of standard metrics: accuracy, average

precision, average recall, and average F-1 over pixels. In addition, foreground

accuracy (See eqn 4.6) is included as a measure of how accurately each method

is at parsing foreground regions (those pixels on the body, not on the back-

ground). Note that the average measures are over non-empty labels after cal-

culating pixel-based performance for each since some labels are not present in

the test set. Since there are some empty predictions, F-1 does not necessarily

match the geometric mean of average precision and recall.

Table 4.1 summarizes predictive performance of the parsing method, in-

cluding a breakdown of how well the intermediate parsing steps perform. For

comparison, the performance of the CRF model described in the previous

chapter (for the detection scenario) is included in the table. The Paper-

Doll approach outperforms the CRF approach in overall accuracy (84.68%

vs 77.45%). It also provides a huge boost in foreground accuracy. The pre-

vious approach provides 23.11% foreground accuracy, while the Paper-Doll

parsing obtains 40.20%. The new approach also obtains much higher preci-

sion (10.53% vs 33.34%) without much decrease in recall (17.2% vs 15.35%).

The reason for lower recall is further discussed in Section 4.5.3.

Figure 4.7 shows examples from the Paper-Doll parsing method, with
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Table 4.1: Parsing performance for final and intermediate results (MAP as-
signments at each step) in percentages.

Foreground Avg Avg Avg
Method Accuracy Accuracy Precision Recall F-1
CRF 77.45 23.11 10.53 17.20 10.35
1. Global 79.63 35.88 18.59 15.18 12.98
2. Nearest 80.73 38.18 21.45 14.73 12.84
3. Transferred 83.06 33.20 31.47 12.24 11.85
4. Combined 83.01 39.55 25.84 15.53 14.22
5. Final 84.68 40.20 33.34 15.35 14.87

ground-truth annotation and the CRF method. It is observed that the Paper

Doll approach produces a parse that respects the actual item boundary, even

if some items are incorrectly labeled; e.g., predicting pants as jeans, or jacket

as blazer. However, often these confusions are due to high similarity in ap-

pearance between items and sometimes due to non-exclusivity in item types,

i.e., jeans are a type of pants.

Figure 4.8 plots F-1 scores for non-empty items (items predicted on the

test set) comparing the CRF method with the Paper Doll method. The Paper

Doll method outperforms the prior work on many items, especially major

foreground items such as dress, jeans, coat, shorts, or skirt. This results in

a significant boost in foreground accuracy and perceptually better parsing

results.

4.5.1 Big data influence

To see the effect of retrieval in the Paper Doll pipeline in detail, the final

parsing performance over retrieval-size and data-size is plotted in Figure 4.9,

4.10, and 4.11.
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Input Truth CRF Paper doll

background blouse clogs hat loafers sandals socks tie

skin bodysuit coat heels necklace scarf stockings tights

hair boots dress intimate pants shirt suit top

accessories bra earrings jacket pumps shoes sunglasses vest

bag bracelet flats jeans purse shorts sweater wallet

belt cape glasses jumper ring skirt sweatshirt watch

blazer cardigan gloves leggings romper sneakers t-shirt wedges
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Input Truth CRF Paper doll

background blouse clogs hat loafers sandals socks tie

skin bodysuit coat heels necklace scarf stockings tights

hair boots dress intimate pants shirt suit top

accessories bra earrings jacket pumps shoes sunglasses vest

bag bracelet flats jeans purse shorts sweater wallet

belt cape glasses jumper ring skirt sweatshirt watch

blazer cardigan gloves leggings romper sneakers t-shirt wedges

Figure 4.7: Parsing examples. The method sometimes confuses similar items,
but gives overall perceptually better results.
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Figure 4.8: F-1 score of non-empty items.
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Figure 4.9: Parsing performance over retrieval size when items are unknown.
Larger retrieval size results in slightly better parsing, but also takes longer
computation time.

61



0.76

0.78

0.8

0.82

0.84

0.86
Accuracy

 

 

256
512

1024
2048

4096
8192

16384
32768

65536
131072

262144

CRF

Global

Nearest

Transferred

Combined

Final

0.2

0.25

0.3

0.35

0.4

0.45
Foreground accuracy

 

 

256
512

1024
2048

4096
8192

16384
32768

65536
131072

262144

CRF

Global

Nearest

Transferred

Combined

Final

0.1

0.15

0.2

0.25

0.3

0.35
Average precision

 

 

256
512

1024
2048

4096
8192

16384
32768

65536
131072

262144

CRF

Global

Nearest

Transferred

Combined

Final

0.08

0.1

0.12

0.14

0.16

0.18
Average recall

 

 

256
512

1024
2048

4096
8192

16384
32768

65536
131072

262144

CRF

Global

Nearest

Transferred

Combined

Final

Figure 4.10: Data size and parsing performance when items are unknown
(Detection). While average recall tends to converge, average precision grows
with data size.
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Figure 4.11: Data size and parsing performance when items are known (Lo-
calization).
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Query Data size = 262,144

bag belt blouse bracelet cardigan dress necklace shoes skirt

Data size = 256

bag blazer heels jeans shirt shoes top

Query Data size = 262,144

shirt shoes skirt t-shirt top

Data size = 256

accessories bag boots dress necklace shoes skirt t-shirt

Figure 4.12: Retrieval example for different data sizes. Predicted items are
shown at the bottom. Notice at small data size, even a major item like dress
or shirt can be missed in prediction.
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Figure 4.9 shows the influence of the number of nearest-neighbors to fore-

ground accuracy, average precision, and average recall for each parsing stage

as well as CRF as a baseline performance. It is noted that there is a big gap

between retrieving 1 image and 2 images, which is mostly due to the missing

items appearing in the first nearest-neighbor. When there are more than one

nearest-neighbors, the retrieval can prevent a major item such as dress from

missing in the tag prediction. Beyond that, the quality of tag prediction grad-

ually increases and that results in performance improvement, with a major

effect in average precision. However, this performance increase comes with

computational cost – Retrieving 1 image takes 8 seconds to parse one image,

while retrieving 32 image takes 25 seconds to parse in the implementation.

This is largely due to the increase in computation time at the NN parse and

the transfer parse.

Also, to study how performance scales with data size, parsing performance

is examined when images are randomly dropped from the Paper Doll dataset

for various sizes. The number of retrieval is fixed to 25 in this experiment.

Figure 4.10 shows the performance plot against the data size. All measures

increase as the data size grow, but their rate differs; Foreground accuracy

and average recall shows a moderate increase with respect to the data size,

while average precision shows a major improvement at a large data size. This

result shows the benefit of big data in the clothing parsing. Figure 4.12 shows

examples of retrieval at data sizes = 256 and = 262,144. Clearly, a larger data

size improves retrieval quality as well as item-prediction.

The results demonstrate the effectiveness of the big-data approach to cloth-

ing parsing. The drawback of this approach, though, is that it requires a lot
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of storage space. In the implementation in this study, the Paper Doll dataset

required about 71GB of disk space to keep the preprocessed images. Also the

performance improvement is proportional to the exponential growth of the

data size. However, the emphasis here is that the Paper Doll parsing does not

require any manual annotation to the big data – the Paper Doll parsing can

take advantage of big data from the online social network only for the cost of

disk storage.

4.5.2 Localization and detection

The major motivation of using retrieval is to overcome the difficulty of the

detection problem. In case of localization, items are known before parsing,

and the goal is to locate items in a picture. Whereas in detection, the goal is

to identify what kind of items in a picture in addition to localization. To see

how much the retrieval approach helps in detection, this section examines a

localization scenario when a list of ground-truth tags are given as input, and

compares the performance with the detection case. In this scenario, the global

model is given the ground-truth tags, the NN model only learns items included

in the ground-truth tags, whereas the transfer parse does not get affected.

Figure 4.11 shows parsing performance vs. data size when items are known

before parsing. This plot also adds a parsing result for the case of iterative

smoothing applied directly to the global parse (Global+Smooth), in addition

to other intermediate results. Note that the CRF model is specifically designed

for this localization scenario and constitutes a strong baseline. The final result

is performing better at average precision, with comparable result to the base-
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line in foreground accuracy and average recall. However, the most effective

model in the localization scenario is the global model with iterative smooth-

ing. Note that this result is outperforming the CRF model of the previous

chapter in all measures: foreground accuracy (70.32% vs. 63.14%), average

precision (52.24% vs. 47.63%), and average recall (53.25% vs. 45.54%).

These results indicate that localization performance is not significantly

affected by retrieval. This is an expected result, because the primary role

of retrieval in the Paper Doll pipeline is to narrow down the list of potential

items and to prevent confusion in parsing. When items are known, the retrieval

process no longer serves this role in parsing. Eventually, the global model is

sufficient for producing a good result in the localization scenario. In other

word, a big-data approach is particularly effective to fill the performance gap

between detection and localization scenarios.

4.5.3 Discussion

Though the Paper Doll approach is successful at foreground prediction over-

all, there are a few drawbacks. By design, the style descriptor is aimed at

representing whole outfit style rather than specific details of the outfit. Con-

sequently, small items like accessories tend to be less weighted during retrieval

and are therefore poorly predicted during parsing. However, prediction of

small items is an inherently and extremely challenging task because small

items provide limited appearance information.

Another issue is the prevention of conflicting items from being predicted for

the same image, such as dress and skirt, or boots and shoes which tend not to
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be worn together. Iterative smoothing is effectively reducing such confusion,

but the parsing result sometimes contains one item split into two conflicting

items.

These two problems are root of the error in tag prediction – either an

item is missing or incorrectly predicted – and increase the performance gap

between detection and localization. One way to resolve these problems would

be to enforce constraints on the overall combination of predicted items, but

this leads to a difficult optimization problem.

Lastly, the results suggest that it is still difficult to predict items with

skin-like color or coarsely textured items, as discussed in the previous chapter.

Because of the variation in lighting condition in pictures, it is very hard to

distinguish between actual skin and clothing items that look like skin, e.g. slim

khaki pants, even if a similar style is found from the large-scale dataset. Also,

it is very challenging to differentiate, for example, between bold stripes and a

belt, using low-level image features alone. These cases will require higher-level

knowledge about outfits to be correctly parsed.

4.6 Parsing for Pose Estimation

This section revisits the effect of introducing clothing parsing in pose estima-

tion using the Paper Doll approach. Using the pose estimator of [113], this

section compare three estimation scenarios.

• Baseline: using only HOG feature at each part.

• Clothing: using a histogram of clothing in addition to HOG feature.
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Table 4.2: Pose-estimation performance with or without conditional parsing
input.

Average precision of keypoints (APK)

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
Baseline 0.9956 0.9879 0.8882 0.5702 0.7908 0.8609 0.8149 0.8440
Clothing 1.0000 0.9927 0.8770 0.5601 0.8937 0.8868 0.8367 0.8639
- Items known 1.0000 0.9966 0.9119 0.6411 0.8658 0.9063 0.8586 0.8829
Foreground 1.0000 0.9926 0.8873 0.5441 0.8704 0.8522 0.7760 0.8461
- Items known 0.9976 0.9949 0.9244 0.5819 0.8527 0.8736 0.8118 0.8624

Percentage of correct keypoints (PCK)

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
Baseline 0.9956 0.9891 0.9148 0.7031 0.8690 0.9017 0.8646 0.8911
Clothing 1.0000 0.9934 0.9127 0.6965 0.9345 0.9148 0.8843 0.9052
- Items known 1.0000 0.9978 0.9323 0.7467 0.9192 0.9367 0.9017 0.9192
Foreground 1.0000 0.9934 0.9148 0.6878 0.9127 0.8996 0.8450 0.8933
- Items known 0.9978 0.9956 0.9389 0.7183 0.9105 0.9214 0.8734 0.9080

• Foreground: using a histogram of figure-ground segmentation in addi-

tion to HOG feature.

In all scenarios, this experiment uses 5 mixture components for all body parts.

The foreground model is computed by simply treating non-background

regions in clothing parsing as foreground. Comparing the clothing model and

the foreground model reveals how semantic information helps pose estimation

given non-semantic segmentation. For clothing and foreground cases, this

experiment also checks the performance of ground-truth pixel annotation used

as input, which serves as the performance limit of each model given a perfect

segmentation.

Table 4.2 summarizes average precision of keypoints (APK) and percentage

of correct keypoints (PCK) using the Fashionista dataset. Clearly, introducing

clothing parsing improves the quality of pose estimation. Furthermore, the

improvement of the clothing model over the foreground model indicates that
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the contribution is coming from the inclusion of semantic parsing, not from a

simple figure-ground segmentation.

Note that clothing parsing is particularly effective for body extremities of

the body, such as wrist, as the difference between the baseline and the upper-

limit suggests. Perhaps this is due to items specific to certain body parts, such

as skin for wrist and shoes for ankle. Note that a figure-ground segmentation

cannot provide such semantic context. This result gives an important insight

into the pose estimation problem, since improving estimation quality for such

body extremities is the key challenge in pose estimation, while state-of-the-

art methods can already accurately locate major parts such as head or torso.

Semantic parsing perhaps gives a strong context to improve localization of

minor parts that often suffers from part articulation.

4.6.1 Iterating parsing and pose estimation

The previous subsection showed that pose estimation can benefit from parsing.

Since clothing parsing depends on pose estimation, this subsection also evalu-

ates the effect of iterating between pose estimation and clothing parsing. This

iterative process starts by clothing parsing with the baseline pose estimator,

followed by the pose estimation conditioned on clothing parsing. Then, the

iterative approach replaces the pose estimation input to the parsing pipeline

with the output of the conditional pose estimator, and continue the same pro-

cess for a couple of iterations. Denoting parsing by Y and pose configuration
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Figure 4.13: Pose-estimation performance over iterations.

by Z, the process can be described in the following for iteration t = 0, 1, ..., n:

Z0 ≡ arg max
Z

P (Z), (4.10)

Yt ≡ arg max
Y

P (Y |Zt), (4.11)

Zt+1 ≡ arg max
Z

P (Z|Yt), (4.12)

where P (Z) is the baseline pose estimator, P (Y |Z) is the parsing model, and

P (Z|Y ) is the conditional pose estimator.

The performance is evaluated for pose estimation and parsing over iter-

ations using the Fashionista dataset. Figure 4.13 and 4.14 plots the perfor-

mance. The plot shows that the performance starts to oscillate after the first

pose re-estimation by the conditional pose model, and there is no benefit of

the iterative process in parsing. This result reflects that a slight change in

pose estimation does not affect too much the final parsing quality.
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Figure 4.14: Parsing performance over iterations.

Oscillation happens because the iterative model does not guarantee con-

vergence. The approach in this section independently solves pose estimation

and clothing parsing, and thus there is a discrepancy in the objective in this

iterative process. To make the iterative approach converge, it is necessary to

consider a joint model of pose and parsing, and try to optimize for the global

objective. Such an approach is an interesting future direction [56].

In the end, this result suggests that 1) the conditional pose estimator can

improve the performance in the first pose re-estimation, but 2) further iteration

may not improve the performance.
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4.7 Summary

This chapter described a clothing-parsing approach in a detection scenario.

The proposed parsing framework consists of nearest-neighbor style-retrieval

and a pixel-wise parsing approach using global clothing models, local models

computed on the fly from retrieved samples, and a transfer of clothing likeli-

hood from the nearest-neighbors. Experimental evaluation showed successful

results, demonstrating a significant boost of overall accuracy and especially

foreground parsing-accuracy over the CRF model designed for a localization

scenario. Also, experimental evaluation indicated that the data-driven ap-

proach is key to resolve the difficulty involved in detection of large item cat-

egories. While an iterative approach does not help, pose re-estimation with

the Paper Doll approach showed the effectiveness of semantic parsing in pose

estimation.
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Chapter 5

Popularity Analysis

This chapter focuses on the other aspect of the understanding problem in on-

line visual networks, namely, behavior understanding. Specifically, this chapter

studies how much visual, textual, and social factors contribute to the popu-

larity of a picture in the real-world network. To analyze the social popularity

phenomena, this study makes use of computer vision techniques to characterize

visual content related to outfits in addition to social network factors, as well

as textual meta data and network information. Then, regression and classifi-

cation analyses are applied in both in-network and out-of-network scenarios.

The empirical results indicate significant statistical evidence that social factors

dominate within-network popularity while this dominance does not occur out

of network. This result suggests the study of image popularity should carefully

consider the strong affect of social factors in the visual network.
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5.1 Motivation

Nearly every blog or social network utilizes a combination of images, text, and

other modalities (e.g., location) to convey information and promote interac-

tion. In many online communities the amount of visual data is quite vast,

sometimes representing the main source of content. For example, Instagram

has 40 million daily uploads with a total of 16 billion pictures, Flickr hosts 8

billion photos, newcomer Pinterest already has over 70 million users, and Face-

book boasts 350 million photos uploaded daily with over 240 billion pictures

total.

Despite the underlying multi-modal nature of the data in many online so-

cial communities, many social network analyses have only focused on a single

modality, such as examining network structure, or using text processing tech-

niques to access linguistic content. Developing algorithms that make use of

image and video information is a clear next step toward exposing the currently

unstudied dark visual matter for improved social network understanding.

To date very few research has used visual recognition techniques for net-

work analysis, with the only exception of the very recent work by Khosla et

al. [49]. This is perhaps because computer vision is a very challenging problem

and the results of automatic computer vision techniques are often extremely

noisy. However, for specific settings or more constrained visual recognition

problems, visual analysis may be feasible and useful; Stone et al [99] demon-

strate improved facial recognition when computer vision algorithms are com-

bined with network structure information, Crandall et al [24] use scene based

image and text content analysis combined with location-based structure to
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organize a large collection of geo-tagged photos. Recently some attempts are

made to evaluate the influence of indirect forms of visual information on pop-

ularity or behavior [7, 20, 4].

This chapter studies behavior in an online fashion network using visual,

textual, and social factors. In particular, the study examines the influence of

content and social factors on post popularity. The study purposely chooses a

social fashion-network, Chictopia, where fashion pictures are the main form of

content, for the following reasons; 1) the network is large and real-world, with

over 175k users and 600k pictures; 2) content in this network is mainly visual,

consisting of “outfit of the day” pictures uploaded by users; 3) the community

is focused on a single topic (fashion), which yields relatively consistent user-

based popularity; 4) the relevant data is publicly and readily available online;

and 5) the analysis can employ mature computer vision techniques – for person

detection and pose estimation – as tools to help extract the visual content most

relevant to style and popularity.

The proposed popularity analysis builds on a multimodal content modeling

approach. The analysis first quantifies various available information from a

fashion picture, including content metadata, computer vision features, natural

language features, and social network information. Then statistical analyses

are applied to these data to reason about how those factors may affect post-

popularity prediction performance. To incorporate useful visual information,

a new comprehensive style descriptor is developed in this chapter on top of

body pose estimates that captures the visual characteristics of an outfit.

This study revealed concrete statistical evidence of a strong potential for

the existence of an inherent “social bias” in the real-world social network.
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Finally, the study also looks at how user behavior changes in an out-of-network

environment where no social factors are present by design.

The following list summarizes the major focuses of this study.

• A multimodal approach to quantify fashion pictures including visual,

network, metadata, and textual factors, using state-of-the-art computer-

vision techniques

• A new computer-vision feature for representing outfit style based on

clothing parsing

• An empirical study of social vs. content influence on popularity in a

large-scale fashion network

• A comparison between out-of-network (i.e., socially-isolated) and in-

network popularity modeling through a large crowdsourcing effort

In a network focused around fashion, and style, one might predict visual

content to be the most influential factor for popularity. However, this study

suggests that social factors actually dominate both visual and textual factors in

prediction models, even in a network where outfits are purportedly rated based

on their fashion style. This perhaps illustrates how strongly the rich-get-richer

phenomenon [5] affects content evaluation in a social network. Furthermore,

the results of the study of the content effects outside of the social network

suggest that the dominant social bias does not appear in the out-of-network

scenario, but rather the social and content information provide complementary

information to explain popularity. This result may provide potentially useful

insights to domain experts or researchers studying human behavior and the
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Figure 5.1: An example of a Chictopia post.

100 101 102 103 104100

101

102

103

104

105

Popularity measure

N
um

be
r o

f p
os

ts

 

 
votes
comments
bookmarks

Figure 5.2: Popularity distribution.

popularity of visual content in social networks, and to engineers seeking to

exploit user behavior characteristics in social-network applications.

5.2 Dataset

This chapter uses data from chictopia.com. In Chictopia, users post not only

pictures of their daily outfits but also various textual metadata, including a

title, description, and several labels: general style category, occasion, colors, or
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free-form tags. Users can also list individual clothing items with color, brand,

and one free-form word. The tagging is a self tagging model [73] where only

the uploader can associate tags. Figure 5.1 shows an example data item.

In this network users can interact with other users through voting, com-

menting, or bookmarking posts. Also, users can follow other users (fanship

= unidirectional relationship) or request others to be a friend (friendship =

bidirectional relationship). The friendship is analogous to the Facebook-style

relationship, while the fanship is analogous to the Twitter-style relationship.

Users can subscribe to feeds from the connections in their user page.

The data collection from Chictopia reached 617,708 posts in total. To

compare visual features consistently across images, the pre-processing step

runs a state of the art pose detector [113] on all images, which automatically

estimates the body pose (i.e., location of arms, legs, torsos, etc.) of people

depicted in photos. This leaves us with 328,604 pictures in which a standing

person is found, dating from March 2008 to Dec 2012, with 34,327 unique

users. Note that the number of users in the website was over 175K at data

collection time, but many users follow the website without posting.

The popularity measures considered in this chapter are the number of votes,

comments, and bookmarks associated with each post. As is the case with any

web content, Chictopia popularity reveals a long-tailed distribution. Figure

5.2 shows the log-log plot of the popularity histogram from all 617K posts. We

note that the number of votes shows a slight kink in the distribution perhaps

due to front-page highlighting or a special promotion by the website.
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Type Name Modality Vector Size

Social
User identity Network Sparse up to 1,000
Node degrees Network Dense 6
Previous posts Metadata Dense 1

Content

Tag TF-IDF Textual Sparse up to 1,000
Style descriptor Visual Dense 441
Parse descriptor Visual Dense 1060
Color entropy Visual Dense 6
Image composition Visual Dense 6

Other Date bias Metadata Sparse up to 58

Table 5.1: Summary of the content models.

5.3 Content Representation

The representation of a user-post is a vector of the quantized information-

sources available for the post. Social factors (Sec 5.3.1) and content factors

(Sec 5.3.2) are the two major components of the model. Additionally, a date

term is added to model popularity-bias due to season and growth of the net-

work over time (Sec 5.3.3). Table 5.1 summarizes all of the terms of the model.

5.3.1 Social factors

Social factors capture information related to the user and their social status

within the network – factors related to the user’s identity, their node degrees,

and posting frequency. Note that although social factors only quantify the

network information, they are certainly correlated to the content quality. For

example, posts from the same user tend to be similar in quality.

User identity The identity of users is represented as a sparse indicator

vector. To constrain feature dimensionality, this indicator vector is restricted
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Figure 5.3: Distribution of node degrees in Chictopia.

to the top-1000 most frequent users. Users not in the top-1000 receive a feature

vector with all zero elements. Posts from the same user will all have the same

feature vector.

Node degrees A six-element feature vector is constructed from the counts

and log-counts of friends, followers, and followees of the user. Posts from

the same user will all have the same feature vector. Figure 5.3 plots the

distribution of node degrees from all 175K users in Chictopia. The distribution

displays a long tail, very characteristic of social networks in general.

Note that due to limitations imposed by the network information available,

the node degree is calculated at the time of data collection rather than at the

time of posting. The same applies to the popularity data. Although this

may incur a slight difference in context for older posts, because this number

is almost always monotonically increasing over time, the assumption is that

they are all under the same condition in the experiments.

This chapter uses only node degrees as social features related to network

structure. Other network-related features, such as the identity of friends,
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followers, and followees, were not chosen after empirical testing due to their

less reliable prediction compared to node degrees.

Previous posts A scalar feature is built from the number of previous posts

from the same user. This number is calculated based on the post’s timestamp.

5.3.2 Content factors

This section proposes to apply natural-language processing and computer-

vision techniques to model textual and image information for post content.

Textual features employ a language model based on n-grams and TF-IDF

(term frequency - inverse document frequency) [71]. Visual features combine

general color measures and two high-level features.

Tag TF-IDF First, a post is represented as a text document using unigrams

and bigrams from all the text labels. Then, TF-IDF weights are calculated as

a language-based feature representation for posts [71].

In Chictopia, a user can label each individual post with tags indicating

general style, occasion, colors, or free-form keywords. In addition, there are

structured tags describing individual clothing items: one clothing item has a

tuple of associated tags consisting of a color, a brand, or a free-form tag word.

Unigrams are computed from all of these user-provided labels. Additionally,

bigrams are computed from the listed items by concatenating the item type

with any other word in the tuple. For example, for an item described as

“white h&m printed t-shirt”, bigrams will be white t-shirt, h&m t-shirt,

and printed t-shirt.
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As in the case of user identity, to constrain the dimensionality of this

feature, this chapter only considers the 1000 most frequent n-grams found in

the training samples and ignore other words appearing at test time for the

analysis.

Note that the model does not use title and description of a post because

they are often missing, fairly irrelevant to the content, or simply a duplicate

of one of the structured tags.

Style descriptor The content model includes the style descriptor described

in Sec 4.3.1 for this study. The style descriptor is not only useful for im-

age retrieval but also considered a comprehensive visual representation of the

clothing a person is wearing.

Parse descriptor In addition to the style descriptor, this section proposes

a new fashion-focused image descriptor based on clothing parsing (Chapter

4), which is named parse descriptor. The parse descriptor represents the ap-

pearance of individual garment items found in a picture, and is experimentally

verified to give a strong prediction in combination with the style descriptor.

The parse descriptor is considered to be the most important representation

in content analysis, because the parse descriptor specifically captures the ap-

pearance of a person’s garment items. Figure 5.4 illustrates both the style and

parse descriptors.

The parse descriptor is computed using the following steps;

1. compute clothing parse using the method in Chapter 4, and obtain 10

masks corresponding to specific garment groups, such as outer top, dress,
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Figure 5.4: Style descriptor (left) and parse descriptor (right). The style
descriptor extracts visual information from patches while the parse descriptor
extracts information from the predicted clothing parse (semantic assignment
of pixels to garment labels).

or footware. Note that the original 56 garment categories are mapped to

10 garment sets to improve robustness,

2. extract RGB color, Lab color, Texture response, HOG descriptor, dis-

tance from image border, and probability of skin and hair at every pixel,

3. compute mean-std pooling of the extracted features in each region,

4. concatenate all pooled features over 10 regions (1060 dimensions).

Color entropy The entropy of RGB and Lab color is calculated from the

image, which yields a 6-element vector. This feature helps distinguish drawings

which sometimes occur on Chictopia from natural photos.

Image composition Given a bounding box encompassing a person (esti-

mated by the pose detector), this feature measures the overall composition of

how the person is depicted relative to the image frame. The following infor-

mation is extracted from a bounding-box for each image:
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1. normalized width, height, and area;

2. normalized x and y displacement from the center of the image; and

3. normalized distance from the image center.

5.3.3 Other factor

Date bias This is a sparse indicator vector to represent which month the

picture is posted. This feature has up to 58-elements in the collected data from

Chictopia. The date bias is used in all models in the experiments, because this

is designed to take into account the popularity difference due to the site growth

and the seasonal influence.

5.3.4 Preprocessing

The following normalization procedures are applied to the data set before any

of the statistical analysis;

• every element of the dense factors is scaled so that the mean is zero and

±3σ range is rescaled to (−1, 1) in the training samples, and

• elements of sparse factors are scaled by their maximum value in the

training samples without adjusting by the mean value.

This pre-processing improves numerical stability in the statistical analyses.
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5.4 In-Network Popularity

This section provides statistically significant evidence indicating existence of

“social bias” in popularity in the network. In this section, the Chictopia posts

are analyzed using three approaches: correlation, regression, and classification.

Note that the main interest in this section is not to identify which individ-

ual features within a particular class of factors are most informative, but to

reason at the general class level. Hence, this section uses a prediction-based

analysis because it allows us to differentiate the predictive power of each class

of factors, social vs. content, without having to explicitly consider the spe-

cific features within each factor that most contribute to the corresponding

prediction performance, or the possible correlations among those features.

5.4.1 Network-popularity correlation

As a preliminary study, this subsection shows the correlation between network

structure and the observed popularity. Table 5.2 shows the Pearson and Spear-

man correlation coefficients between the node degrees and observed popularity

measures in Chictopia, using 328K posts.

These correlation measurements reveal that from among the social factors

(measures of node degree) the number of fans has an unignorable correlation to

all of the popularity measures. However, note that this does not immediately

mean that popularity is a function only of social factors as other content based

factors could also be important.
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Pearson

friends 1.00
fans 0.58 1.00

followees 0.12 0.24 1.00
votes 0.21 0.49 0.06 1.00

log-votes 0.28 0.45 0.09 0.75 1.00
comments 0.18 0.37 0.02 0.58 0.44 1.00

bookmarks 0.32 0.40 0.10 0.56 0.61 0.73 1.00
fri. fans fol. vot. log. com. boo.

Spearman

friends 1.00
fans 0.65 1.00

followees 0.39 0.45 1.00
votes 0.47 0.64 0.28 1.00

comments 0.39 0.52 0.14 0.64 1.00
bookmarks 0.50 0.57 0.28 0.80 0.61 1.00

fri. fans fol. vot. com. boo.

Table 5.2: Pearson and Spearman correlation coefficients between the node
degrees in the network and the observed popularity. All values are non-zero
(p < 10−6). Notice the relative strength of correlation between fans and pop-
ularity measures.

5.4.2 Regression analysis

A regression analysis is applied on the votes and log-votes of the posts using

social, content, and a combination of social and content factors.

The analysis uses a linear regression model. Let us denote the popularity

measure with y (votes or log-votes), model parameters with θ, and a factor

representation with x. The regression model is described by:

y = θTx . (5.1)

In the following experiments, x is a concatenation of various factors explained
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Factors
R2 Spearman

votes log-votes votes log-votes

Social
0.372 0.491 0.591 0.682
±0.012 ±0.005 ±0.005 ±0.004

Content
0.132 0.248 0.418 0.485
±0.005 ±0.005 ±0.005 ±0.005

Social+Content
0.341 0.493 0.572 0.685
±0.010 ±0.005 ±0.005 ±0.004

Content: Textual
0.115 0.166 0.314 0.388
±0.005 ±0.004 ±0.006 ±0.005

Content: Visual
0.119 0.212 0.395 0.450
±0.004 ±0.004 ±0.006 ±0.005

Table 5.3: Regression results on the observed popularity with accompanying
95% confidence intervals on error. For cleaner presentation, the tiny asym-
metric difference in bootstrapped confidence intervals is rounded.

in the previous sections.

L2-regularized support vector regression is used to learn a model [32], which

is the default regression model in this package. The free parameters of the

learning algorithm are searched over a grid with 10-fold cross validation on

the training samples.

This analysis measures how social factors affect on the votes and log-votes

of posts by comparing the fitness of the regression models consisting of social

factors only, content factors only, or a combination of both. This study mea-

sures two fitness criteria: R2 and Spearman coefficients. These measures are

evaluated on a statistical bootstrapping protocol with the 328K posts; posts

are randomly resampled with replacement and subsampled to 10,000 posts

(for computational tractability), and the above measures are evaluated with a

9,000 / 1,000 train / test split. This process is repeated 100 times to derive

statistical significance.
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Table 5.3 shows the results of the regression analysis. The regression mod-

els fit significantly better when a regression model contains social factors, sug-

gesting that a user’s social connections largely dominate the popularity of their

posts over the post’s particular content. Additionally, the difference between

votes and log-votes indicates that the distribution of popularity is better mod-

eled in log-scale, which is consistent with the long-tailed distribution observed

in Figure 5.2. The difference of the social-only model and the combined model

indicates that even explicitly incorporating content factors gives a worse fit

with a linear model when the distribution follows such a long-tail.

The result implies that the popularity of the content is dominantly de-

termined by the network regardless of the picture quality or clothing / dress

aesthetic appeal. However, note that social factors can be highly correlated

with content quality – users with many followers may tend to wear highly

fashionable outfits. Nevertheless, the results indicate that the effect of content

quality is likely to be considerably smaller than network influence.

Table 5.3 also shows the effect of using only textual or visual factors from

the content model. The combination of both (Content) gives a better fit.

5.4.3 Classification analysis

Next, this section applies a classification-based analysis for predicting popu-

larity. In this case, instead of predicting the exact popularity values y, the

predicted value is a binary indicator z = 1 [y > α] for some threshold α, pop-

ular vs. unpopular, using a linear classifier. This approach can reveal the

effect at various definitions of popularity. The model is equivalent to (5.1),
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Factors
Popularity thresholds

Top 25% Top 50% Top 75%

Social
0.847 0.761 0.779
±0.002 ±0.003 ±0.003

Content
0.778 0.664 0.737
±0.003 ±0.003 ±0.003

Social+Content
0.845 0.754 0.775
±0.002 ±0.003 ±0.002

Table 5.4: Accuracies from the social-only model, the content-only model, and
the combined model on top K% prediction of the observed popularity with
accompanying 95% confidence intervals on error.

but learned using L2-regularized logistic regression.

This experiment varies the threshold value α for 25%, 50%, and 75% quan-

tiles of the votes in the training samples. The predictive performance is mea-

sured in terms of accuracy (i.e., 1 minus the 0/1 misclassification error). The

experimental protocol is the same as for the regression analysis – performance

evaluation consists of a statistical bootstrapping procedure: 100 random re-

sampling with replacement, followed by random subsampling to 10,000 sample

size with a 1,000 / 9,000 split in each batch.

Table 5.4 shows prediction accuracies. Classification reveals an asymmetry

between top 25% and top 75% prediction, indicating the prediction of the most

popular posts is easier than predicting the least popular posts. This is perhaps

partly due to the consistently better quality of top-rated pictures and partly

due to social bias more strongly affecting popular posts. Also, the slightly

smaller difference between the social-only and the content-only model in top

75% prediction suggests that popularity is less affected by social influence in

least-popular regime.
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5.5 Out-of-Network Popularity

Given these findings of social bias in social network based popularity, this

section studies popularity without social influence. Toward this goal, the study

in this section utilizes crowdsourcing to emulate the voting process in a content

network without social relationships. Then, the same statistical analyses are

applied to the voting data using the collected “out-of-network” popularity

votes.

5.5.1 Crowdsourced popularity

The crowdsourced post-popularity is collected using Amazon Mechanical Turk.

Task design

Here the goal is to design a task that resembles the voting environment of

Chictopia but without the social network. The task-design consists of two

steps. The first step exposes users to a reasonably large set of pictures indi-

vidually and at close range (at a similar resolution to what they would observe

on Chictopia), to more closely emulate the environment of Chictopia, where

users are likely to have browsed through many pictures while interacting with

the website. The second step of the task takes advantage of the first step

experience. The following describe each step in more detail. Figure 5.5 shows

the task interface.

Binary decisions The first step of the task shows the worker 50 random

large-resolution images in sequence, and asks them to vote on the picture if
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Binary votes

Top-K votes

Figure 5.5: Crowd-voting interface.
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they find it “chic”1,

For quality control, the task measures how long it takes each worker to

complete this first step and rejects a worker’s votes if they completed the step

too quickly or did not display enough variation in their voting procedure.

Top K selections After the first step, the task shows the worker an array of

thumbnails for the 50 pictures they saw in step one, and ask them to select the

5 most “chic” pictures. To facilitate the worker’s choice from this relatively

large collection of images, the interface orders the thumbnail pictures so that

those pictures where the worker voted “chic” in the first step appear at the

top of the array (ranking).

Voting data

The crowd experiment is performed by randomly selecting 3,000 posts (from

the dataset of 328k) and instantiating the above tasks 60 times. Each of the

60 resulting tasks assigns 25 workers. Thus, any post on each task obtains up

to 25 “chic” votes in both binary decisions and top-K selections.

Prior to starting the MTurk tasks, workers are also asked to answer general

demographics information such as gender, age group, and their degree of fash-

ion interest. Even though the crowdsourcing website does not permit precise

control over population, according to the answers collected, this experiment

attracted young, female workers with interests in fashion, a group likely to

overlap / align well with, and thus be generally representative of, the typical

Chictopia user population. Figure 5.6 depicts the statistics.

1Chictopia uses the term chic for popularity voting.
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Figure 5.6: Worker demography. The crowdsourced task attracted young,
female workers with interests in fashion.

Figure 5.7 shows the distribution of the number of votes obtained from

MTurk. For binary decisions, the mode / peak is around 8 votes, while for

top-K selections, the mode is at 0. Though this experimental protocol tried to

emulate the environment of Chictopia, the distribution does differ from Chic-

topia’s (Figure 5.2). One possible reason for this difference may be the scale

(number of samples) of this experiments vs Chictopia. Another possibility is

the lack of social-network structure.

5.5.2 Network-crowd correlation

Similarly to Section 5.4.1, this section first studies the correlation between

network-based popularity and crowd-based popularity. Table 5.5 shows Pear-

son and Spearman correlation coefficients between votes and log-votes from

Chictopia, and both binary and top-K voting from the crowds. The relative

weakness of correlation between Chictopia and the crowd suggests that the
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Figure 5.7: Crowd-votes distribution. Binary voting resulted in each post
getting varying number of votes while the top-K voting resulted in a long tail.

votes 1.00
log-votes 0.75 1.00

crowd-bin 0.26 0.36 1.00
crowd-top 0.26 0.32 0.78 1.00

votes log-votes crowd-bin crowd-top

Pearson

votes 1.00
crowd-bin 0.36 1.00
crowd-top 0.33 0.77 1.00

votes crowd-bin crowd-top

Spearman

Table 5.5: Pearson and Spearman correlation coefficients between network
popularity and crowd popularity. All values are non-zero (p < 10−6).
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Factors
R2 Spearman

binary top-K binary top-K

Social
0.423 0.387 0.634 0.597
±0.011 ±0.014 ±0.007 ±0.008

Content
0.428 0.348 0.647 0.560
±0.012 ±0.013 ±0.011 ±0.008

Social+Content
0.473 0.389 0.686 0.598
±0.014 ±0.014 ±0.008 ±0.008

Table 5.6: Regression results on crowd popularity with accompanying 95%
confidence intervals on error.

crowds disagree with what Chictopia users believe to be chic. Granted, such

disagreement can come from different interpretations of the word chic in the

two communities.

5.5.3 Regression analysis

Using the voting data from the crowd, the regression analysis is applied as in

Section 5.4.2. The main interest of this experiment is, however, the influence

of the social factors observed in Chictopia on the regression based on crowd

popularity. This experiment uses the same bootstrap method from the 3,000

posts to compare the social-only, content-only, and combined models in this

experiment. Here, social factors are taken from Chictopia dataset which has

no direct relationship to crowd popularity. Table 5.6 shows the results of the

social-only model, the content-only model, and the combined model.

Given the in-network results, the social factors from Chictopia are initially

expected to lead to weaker predictors. However, the results suggest that social

factors (from Chictopia) still lead to comparable predictors in binary voting,

and stronger predictors in top-K voting, even if the voting data come from the
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out-of-network environment. The difference between binary and top-K voting

seems to be from the difference in distribution – the distribution of top-K

votes look more similar to the long-tail of Chictopia. However, there is no

social network in this experiment. It is likely that the solid regression result

obtained from the social factors is due to the function of social factors serving

as a content evaluation; i.e., user and content quality correlation. But clearly

there needs to be more research to parse this out.

Also, the result of the combined model (social + content) is significantly

better than the social-only model for binary voting. One possible explanation

may be that the content factors are providing complementary information to

the social factors in predicting the unbiased popularity from the crowd, as

opposed to the biased popularity in the network where social influence is by

far the stronger predicator of popularity.

5.5.4 Classification analysis

Table 5.7 summarizes the results of classification analysis. Interestingly, here

the content-only model gives a much stronger predictive performance than the

social-only model, in contrast to the mixed results obtained from the regression

analysis in Table 5.6.

Also, the asymmetry of popularity prediction (25% vs. 75%) still holds

in this results, which was observed in the in-network analysis in the previous

section. Clearly this result indicates the importance of looking at various

definitions of popularity.

In summary, the out-of-network popularity analysis yields insights that
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Vote Factors
Popularity thresholds

Top 25% Top 50% Top 75%

Binary

Social
0.845 0.740 0.787
±0.004 ±0.005 ±0.005

Content
0.888 0.835 0.862
±0.004 ±0.004 ±0.004

Soc.+Con.
0.884 0.825 0.858
±0.004 ±0.005 ±0.004

Top-K

Social
0.861 0.743 0.728
±0.004 ±0.005 ±0.004

Content
0.896 0.834 0.826
±0.003 ±0.004 ±0.004

Soc.+Con.
0.890 0.813 0.806
±0.004 ±0.005 ±0.004

Table 5.7: Accuracies of the social-only model, the content-only model, and
the combined model on top K% prediction of the crowd popularity with ac-
companying 95% confidence intervals on error.

suggest that

• social factors contain not only network information but also some aspect

of content evaluation,

• content factors probably capture different aspects of popularity than

social factors, and

• their combination yields better performance depending on the distribu-

tion of popularity.

5.6 Discussion

Apart from factorizing content and social influence, the learned models can

be used to predict the popularity of photos. Figure 5.8 shows an example of
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Most popular

Least popular

Figure 5.8: Prediction examples.

the most and least popular pictures predicted by one of the in-network models

with both social and content factors. There is clearly a distinction in visual

quality between the most and the least popular pictures. Perhaps it is also

possible to build a system that can predict unbiased content popularity. Such

prediction could be useful for many e-commerce applications, such as auto-

matic outfit quality feedback [64] and socially-aware fashion recommendation

[66]. Stable popularity prediction can benefit in online ad optimization and

traffic balancing. It is an interesting future work to use this insight to build a

socially-aware multimedia system.

The findings of strong social-influence on popularity implies that any at-

tempt to learning subjective measures such as aesthetics or interestingness

from an online community should explicitly consider social bias in the data.
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For example, learning a regression function to evaluate content quality that

incorporates social information leads to a much better model for popularity

prediction. It also indicates that researchers should be careful to learn general

content-quality measures useful outside of a particular social network, to learn

from data free of social influence.

5.7 Summary

This chapter presented a multimodal approach to quantitatively model a pic-

ture shared on an online fashion network and analyzed its usefulness for pre-

dicting network popularity. The content model takes advantage of various

sources of information, including computer vision, natural language processing,

social network information, and other content metadata. Through correlation,

regression, and classification analyses in both in-network and out-of-network

conditions, it was shown that there is statistical evidence that content popular-

ity under network is mostly the outcome of the social network itself regardless

of content quality. With the in-depth analysis under out-of-network condition,

the study also finds that social factors can actually serve as a predicate of un-

biased content popularity that is rather complementary to the direct content

representation provided by computer-vision and natural-language processing.

The study suggests that social factors should be carefully considered for

research involving social network photos. It would be interesting to apply the

insights from this study in various applications, including analyzing tempo-

ral trends of user fashion contents, combining sentiment analysis in reasoning

about user behavior, and building a retrieval system that explicitly takes into
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account both socially biased and unbiased popularity. Another possible direc-

tion is to infer individual preferences from user behavior and content popu-

larity, e.g., using regression and classification techniques to learn and model

preference functions implicit in clothing choices and popularity votes, to pre-

dict group behavior. Once popularity is predicted, predictions can be used

in optimizing Web traffic or advertisement. Popular posts naturally attract

more traffic. Thus, popularity prediction benefits in load balancing or online

advertisement.
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Chapter 6

Conclusion

This dissertation studied the computational approach to understand online

social visual networks focused on fashion. The study explored two distinct

aspects of the computational understanding of online visual networks.

The first was a computational approach to visual content understanding in

fashion images. The goal in this problem was recognition of clothing items. To

this goal, two approaches were explored; one that tries to locate items knowing

the kind of clothing appearing in the picture (localization), and the other that

also detects items without any information about the picture (detection). The

first approach formulates the recognition problem using a conditional random

field, where human pose estimation is explicitly modeled as an conditional

input to the image segmentation problem. The detection approach takes ad-

vantage of a large scale dataset of fashion images from the online fashion net-

work, where users provide noisy text annotations of their garment items. This

data-driven method showed a successful result in clothing parsing under the

challenging detection scenario. The extended experimental results also showed
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that the proposed clothing recognition framework helps human pose estima-

tion, by considering clothing recognition as an contextual input. This clothing

recognition framework serves as a fundamental component in building wide

range of applications, including clothing retrieval, fashion recommendation,

social identity recognition, person identification, or fashion trend analysis.

This dissertation also studied the other understanding problem, behav-

ior understanding in the network, in the form of photo-popularity analysis.

One might think visual content is the trigger for user action in online visual

networks. However, the study in this dissertation statistically revealed that

the network itself is the dominant factor in user decision, and visual content

has quantitatively a much smaller impact on photo popularity. To get more

insights from this observation, additional popularity data are collected by em-

ulating out-of-network condition using crowdsourcing. The results indicated

that under no network influence, user behavior depends more on visual content.

However, the results also suggested that social factors contain information that

is not captured by content-only modeling. The insights obtained in this study

are useful in building many applications, such as automatic fashion feedback,

estimation of unbiased popularity, or load balancing or advertisement opti-

mization based on popularity prediction.

The computational framework proposed in this dissertation establishes the

fundamental methodology in analyzing online visual networks.
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[95] Gautam Singh and Jana Košecká. Semantic context for nonparametric

scene parsing and scene classification. CVPR, 2013.

[96] J. Sivic, C. L. Zitnick, and R. Szeliski. Finding people in repeated shots

of the same scene. In BMVC, 2006.

[97] Malcolm Slaney. Web-scale multimedia analysis: does content matter?

MultiMedia, IEEE, 18(2):12–15, 2011.

116



[98] Zheng Song, Meng Wang, Xian-sheng Hua, and Shuicheng Yan. Pre-

dicting occupation via human clothing and contexts. In ICCV, pages

1084–1091, 2011.

[99] Zak Stone, Todd Zickler, and Trevor Darrell. Autotagging facebook:

Social network context improves photo annotation. In Computer Vision

and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer

Society Conference on, pages 1–8. IEEE, 2008.

[100] Gabor Szabo and Bernardo A Huberman. Predicting the popularity of

online content. Communications of the ACM, 53(8):80–88, 2010.

[101] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonpara-

metric image parsing with superpixels. ECCV, pages 352–365, 2010.

[102] Joseph Tighe and Svetlana Lazebnik. Finding things: Image parsing

with regions and per-exemplar detectors. CVPR, 2013.

[103] Michele Trevisiol, Luca Chiarandini, Luca Maria Aiello, and Alejandro

Jaimes. Image ranking based on user browsing behavior. In SIGIR,

pages 445–454. ACM, 2012.

[104] Hang M Ung. Social influence, popularity and interestingness of online

contents. In ICWSM, 2011.

[105] Roelof van Zwol, Adam Rae, and Lluis Garcia Pueyo. Prediction of

favourite photos using social, visual, and textual signals. In Multimedia,

pages 1015–1018. ACM, 2010.

117



[106] Manik Varma and Andrew Zisserman. A statistical approach to texture

classification from single images. Int. J. Computer Vision, 62(1-2):61–81,

2005.

[107] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of

computer vision algorithms, 2008.

[108] Nan Wang and Haizhou Ai. Who blocks who: Simultaneous clothing

segmentation for grouping images. In ICCV, pages 1535–1542, 2011.

[109] Xianwang Wang, Tong Zhang, D.R. Tretter, and Qian Lin. Personal

clothing retrieval on photo collections by color and attributes. Multime-

dia, IEEE Transactions on, 15(8):2035–2045, Dec 2013.
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