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Abstract of the Dissertation 

Selection on the stability of food web building blocks 

by 

Jonathan Joseph Borrelli 

Doctor of Philosophy 

in 

Ecology and Evolution 

Stony Brook University 

2016 

 

Whereas much of ecological research has been focused on enumerating the differences 

among ecological communities, it is equally important to understand their similarities. Food 

webs exhibit remarkably conserved patterns regardless of the type of environment in which they 

are found. Evolutionary and ecological processes are able to generate a variety of community 

configurations, but some of these will have a higher chance of being stable. Selection on these 

configurations based on their stability properties should lead towards an increased representation 

of stable structures. Moreover this selective process will operate the same across different 

environmental contexts. The goal of this dissertation is to examine whether commonly observed 

food web properties may be the result of selection on stability. I have focused on two properties 

in particular: (1) that food chains tend to be short, and (2) three-species food web motifs. For 

both of these properties I detected the signature of a selection on stability process. Food webs 

with short food chains are more likely to be stable. Likewise, the three-species modules that are 

most likely to be stable (tritriphic chains, apparent and exploitative competition) are also those 

that occur more frequently than expected by chance in empirical food webs. To better understand 

how selection on stability may interact with pattern generating mechanisms I used simulated 

species removals and introductions coupled with a bioenergetic model of species dynamics. 

Species removals and introductions that alter food web properties towards unstable structures 

should result in decreased persistence and invasion success respectively. I found some support 

for this hypothesis, although the manner by which dynamics were modeled had a substantial 

impact on the results. Nonetheless the framework of selection on stability may be a simple yet 

powerful tool to aid ecologists in generating an expectation of what should be observed in 

natural communities.     
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Chapter 1: Introduction 
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 “In nature we deal not with arbitrary complex systems, but rather with ones selected by a 

long and intricate process” (May 1973a p. 3-4). An early hypothesis among ecologists was that 

ecological communities must be complex, with many pathways for energy transfer, in order for 

them to be stable. Observations supported this hypothesis, as most natural communities appear to 

be both complex and stable. That complexity begets stability dominating ecological thinking for 

over a decade until May (May 1972, 1973a) demonstrated that, mathematically, there is no 

reason to expect increased complexity in the form of more species, more links among them, or 

stronger interactions, should lead to increased stability. Rather, the opposite appeared to be true, 

and in random communities (composed of multiple interaction types) increased complexity 

decreased stability. Although, later studies showed that when these random systems were 

constrained such that all species had positive equilibrium densities, stability increased with 

complexity (Roberts 1974, Christianou and Kokkoris 2008), May’s (1972) paper sparked over 

four decades of research on ecological networks. 

If complex communities are observed in nature despite reduced stability, then logic 

dictates that there must be some property of these systems that allows them to persist with all 

species coexisting. To quote May (1973a, p174), “[t]he task, therefore, is to elucidate the devious 

strategies which make for stability in enduring natural systems.”  While more recently, research 

interest has expanded to networks of plants and their pollinators (Olesen et al. 2008, Bascompte 

2009) or frugivores (Plein et al. 2013), parasites and their hosts (Lafferty et al. 2006, Poulin 

2010, Dunne et al. 2013), and other types of ecological interactions (Ings et al. 2009, Kéfi et al. 

2012), by far the bulk of research has focused on food webs (Dunne et al. 2002, Vermaat et al. 

2009).  

What is a food web?   



 
 

3 

 
 

Food webs are network representations of the trophic relationships among organisms in a 

community. The nodes of the network are the species and the links indicate that species i is 

preyed upon by species j. There are three main types of food webs; connectedness, energetic, and 

functional (Paine 1980). Connectedness webs show all trophic interactions among species. 

Energetic and functional webs include measures of the strength of the interactions, and 

functional webs only show the strongest interactions. The links in these webs may be either 

binary (connectedness) or weighted (energetic and functional). Most food web datasets include 

only binary descriptions of links, and those that have weights associated with them may indicate 

any number of potential measures of interaction strengths (Berlow et al. 2004). Many are 

familiar with the graphical representation of networks, but these can also be represented in the 

form of a matrix, where in binary data a one indicates that the row species is consumed by the 

column species. Both of these representations allow us to apply mathematical methods to assess 

the structure of the web.  

Early food web datasets were aggregated from a variety of literature sources and 

compiled into a collection of 113 webs (Cohen et al. 1986). They vary in size from as few as 5 

species to as many as 50. Further development of food web theory, and application to these data 

demonstrated that there were serious methodological issues associated with their collection. 

Foremost was the unequal levels of aggregation such that the upper trophic levels were relatively 

well resolved, including single species, yet the lower levels were lumped, with groups of many 

species considered together. Later food web data were collected to specifically address the 

methodological issues associated with the earlier data. The first well-resolved food webs were 

collected from Little Rock Lake, Wisconsin (Martinez 1991) and Coachella Valley Desert, 

California (Polis 1991). Many other data sets have since been collected and a core set of 18 webs 
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(Dunne et al. 2002) has been the focus of a great deal of theoretical development. There are now 

just over 300 food web datasets currently available in the GlobalWeb Database 

(globalwebdb.com).   

Food web patterns 

 Along with better and more realistic models, new and improved data allowed for better 

pattern detection in food webs. For example, Neutel et al. (2002) found that there is a pattern of 

weaker interaction strengths in long trophic loops. Food webs composed of mostly weak and few 

strong interactions tend to be more stable (May 1972, McCann et al. 1998). A number of food 

web structural patterns have also been investigated in order to determine the “deviant strategies” 

by which real communities can be both complex and stable. Two important structural patterns 

are modularity and nestedness (Allesina and Pascual 2008, Fortuna et al. 2010, Thébault and 

Fontaine 2010).  

Modularity, or compartmentalization, is the tendency for groups of species to be more 

connected within the group than between groups (Krause et al. 2003, Kondoh 2008). In a recent 

paper Rezende et al. (2009) showed that in a marine food web, compartments are arranged 

around different shark species and based on phylogeny, body size, and the structure of the 

habitat. Nestedness, on the other hand, is a pattern whereby the more specialized consumers 

utilize a subset of those resources consumed by more generalist species (Bascompte et al. 2003, 

Bastolla et al. 2009, Thébault and Fontaine 2010).   

There is some debate as to whether food webs exhibit patterns of nestedness, with authors 

arguing both for (Bascompte et al. 2003, Bascompte 2010, Fortuna et al. 2010) and against 

(Allesina and Pascual 2008, Thébault and Fontaine 2010) this notion, while others purport that 

food webs consist of nested modules (Kondoh et al. 2010). It is generally thought that these two 
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structural patterns allow food webs and other networks to be more stable (but see Allesina and 

Pascual 2008), and allow for greater diversity and complexity (Thébault and Fontaine 2010). 

Modularity reduces the impact of perturbations throughout the web by isolating them within a 

compartment (Krause et al. 2003, Stouffer and Bascompte 2011). The nested structure of 

networks reduces competition, allowing greater coexistence (Bascompte et al. 2003, Bastolla et 

al. 2009).  

 There are also apparent patterns in the way components of the food web are put together. 

Food webs are composed of a number of different food chains, and energy flows from basal 

species to top predators. Such food chains vary in their length, the number of energy transfers, 

and determine the trophic position of species, defined as one plus the average trophic position of 

their prey (basal species are trophic position one). While food chain length is variable there are 

fairly clear limits to the number of levels in a community. Consumer species typically have a 

trophic position between three and five, and very rarely more than six.  

 Another important structural pattern is the degree of representation of various subgraphs, 

or motifs (Milo et al. 2002, Stouffer et al. 2005, Camacho et al. 2007). A motif in this case is a 

subgraph that is overrepresented in a network (Milo et al. 2002, Bascompte and Melián 2005, 

Stouffer et al. 2007). Food webs in particular tend to have more tritrophic chains and biparallel 

chains than expected at random (Milo et al. 2002). Thus these structural motifs represent the 

building blocks of food webs (Bascompte and Melián 2005), and, as such, are likely to be 

dynamically important with respect to the stability of the network (Prill et al. 2005, Rip et al. 

2010). For computational reasons, only 3- and 4-node subgraphs have been investigated (Milo et 

al. 2002, Stouffer et al. 2007). There are 13 possible 3-node subgraphs and 199 for 4-nodes, for 

example (Stouffer et al. 2007). For 3-nodes it has been shown that the same subgraphs tend to be 
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overrepresented in real food webs regardless of habitat type, and that model food webs exhibit 

similar patterns (Stouffer et al. 2007, Stouffer 2010). Stouffer et al. (2007) used these results to 

validate the prey selection mechanism of the niche model (Williams and Martinez 2000), where 

species are assigned a value along an arbitrary axis and consume prey within a defined range 

whose center is below their own value.    

Food web stability 

 Stability has been a central theme in the study of ecological networks since May (1972) 

sparked an interest in understanding what makes for stability in enduring natural systems. Not 

only have food webs been examined for particular common patterns, but those patterns are 

investigated for how they relate to the stability of the system.  

What is stability? 

 Unfortunately, as with many aspects of ecology, there is a lack of a clear single definition 

of the term stability. Moreover, many definitions do not readily translate from the theoretical 

realm into the empirical and vice versa. Stability may be measured as variability in time and 

space, species turnover, number of extinctions, number of invasions, resistance, resilience, and 

local stability (Pimm 1984, Donohue et al. 2013). Variability refers to the flux in species 

biomasses, either in time or space, and a stable community would be less variable. A more stable 

community should also be relatively unaffected by species extinctions (i.e., if one species goes 

extinct others do not as well; Dunne and Williams 2009, Lafferty and Kuris 2009), they should 

also be resistant to invasions (Fridley et al. 2007, Ives and Carpenter 2007). From both of these 

definitions we can conclude that stable communities should have low species turnover through 

time. Resistance, resilience, and local stability are all measures of stability that rely on 
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equilibrium. A resistant community will tend to remain at equilibrium, a resilient one will return 

from perturbation faster. Local stability simply indicates that given a small perturbation, the 

community will return to equilibrium.   

By far the most commonly used measure of stability, in theoretical studies at least, is that 

of local stability (May 1972, Pimm and Lawton 1977, Allesina and Pascual 2008, Allesina and 

Tang 2012). Local stability is measured as the sign of the eigenvalue with the largest real part of 

the Jacobian matrix, the matrix of effects each species has on the others’ growth. The downside 

to this measure of stability is that it requires both the assumption of some form of the equations 

governing species growth and the ability to properly parameterize those equations. Assuming a 

model structure is not straightforward, as there is some debate as to which of the many proposed 

model structures most closely resembles reality (Abrams and Ginzburg 2000). Regardless of the 

chosen form, for any reasonably realistic number of species there are exponentially many 

parameters that would require estimation, a feat that is not simple given the data currently 

available. Some have gotten around this last issue by using the allometry between body size and 

metabolism to estimate interaction strengths (Brose et al. 2006).    

 An alternative to estimating local stability is the use of a qualitative measure, one that 

does not require estimation of parameter values. Qualitative, or sign-, stability allows one to 

determine whether or not a system will be stable based solely on the sign pattern of the Jacobian 

matrix (e.g., +/- for predator-prey systems) rather than their particular magnitude (May 1973b). 

Given a sign-stable structure, the system will return to equilibrium following a small perturbation 

regardless of the magnitude of the species’ effects on one another. Despite this relatively 

appealing measure of stability, in order for a structure to be sign-stable it must fulfill specific 

conditions that most empirical food webs do not. While food webs in nature are not sign-stable, 
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it is possible to measure the degree to which they are sign-stable. By estimating the distribution 

of relative impacts of species on the others’ growth random Jacobian matrices can be simulated, 

and the proportion of randomly sampled matrices that are locally stable is the degree to which it 

is sign-stable. This measure is called quasi sign-stability (Allesina and Pascual 2008) and is a 

very useful measure of how a system will respond to environmental variation.    

Selection on stability 

 Typically ecologists are interested in the describing the differences among systems, yet, it 

is equally important to understand how similarities develop. The quote of May (1973a) at the 

start of this introduction illustrates a wider view that is held by a number of ecologists, that there 

is some selective process that leads to the preferential observation of stable configurations of 

species. The idea that selection on stability can generate observed patterns in nature requires 

three parts. First, there must be a mechanism that leads to the generation of patterns. Of these 

patterns some will be more likely to be stable than others, and there will thus be some selective 

process (i.e., the preferential loss of unstable configurations). Finally, the selective process leads 

to the observed patterns.  

 This formalized framework for selection on stability can readily be applied to the 

observations made on food web structure. Patterns in food web structure are generated via the 

introduction of species through invasion and speciation, their loss via extinction and migration, 

and/or the rewiring of links as result of foraging decisions and population dynamics. Of the many 

potential food web configurations, some will allow for the stable coexistence of all species, 

others will not. If not, then species loss should result in a configuration that has a higher 

probability of being stable. Those configurations that are most likely to be stable could then be 
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considered to have been selected from the pool of potential configurations, and should then be 

those that are most often observed in natural systems.    

What follows…  

 Chapters 2 and 3 of this dissertation are focused on two particular food web patterns, 

food chain length and three-species subgraphs. In both chapters I investigated the role that 

selection on stability may play in generating the observed patterns in nature. I determined the 

signature that would be expected from the process of selection on stability by comparing the 

stability of these food web components to their observed frequency. While the expected 

signature was found, this does not constitute substantial evidence that the patterns of short food 

chains and three-species motifs develop as a result of selection on stability. Evidence of this 

process could, however, come from models of multi-species dynamics. Chapter 4 describes an R 

package that I developed to simulate the dynamics of multi-species predator prey systems. This 

package offers an easy to use method of simulating food web dynamics as well as functions to 

analyze the output of the simulations. Finally, in Chapter 5 I used this package to simulate the 

dynamics of disassembling and assembling food webs.    
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Chapter 2: Why there are so few trophic levels: selection against instability explains the 

pattern 
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Abstract 

 Food chains are short, rarely more than five trophic levels long. But, the cause of this 

pattern remains unresolved, and no current hypothesis fully explains this phenomenon. I offer an 

explanation based on the stability of food chains that have been shifted away from linearity to be 

more web-like. I start with a simple example of food webs of two to six species arranged so that 

species consume all those with a trophic level less than their own. The probability of stability, for 

such “universal omnivory” chains declined strongly with chain length, and was as low as 1% 

with six level chains but highest for two and three level chains. I further explored the influence 

of chain length on food web stability by testing food webs with varying levels of connectance 

that were constructed either randomly or with the niche model. By additionally altering the 

relative impacts of predators on prey, and vice-versa, I test the role of my assumptions on the 

relationship between chain length and stability. Food webs characterized by low to moderate 

degrees of connectance, asymmetrical interactions, and relatively weak density dependence 

showed a pattern of reduced stability with longer trophic chains. The simple view that food webs 

characterized by long trophic chains are less stable seems to resolve the long-standing question 

of why there are so few trophic levels in nature. 
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Introduction 

Food chains are typically short, often having as few as two steps (Elton 1927, Pimm and 

Lawton 1977) and rarely more than four (Yodzis 1981, Pimm 1982). Food chain length is 

directly related to the number of trophic levels in a food web. A food chain with two steps has 

three trophic levels; a producer, intermediate consumer, and a top predator. By defining trophic 

level this way, however, it becomes difficult to determine the trophic levels of species embedded 

in complex food webs. To better define the trophic level of a given species in a food web, I will 

use two related, but distinct, definitions: trophic position and longest chain. 

The distribution of trophic position, measured as one plus the average trophic position of 

a species’ prey, for 50 published food webs shows that 98.8% of consumer nodes have a trophic 

position less than or equal to four (Figure 2.1a). Very few species have a trophic position higher 

than five in these food webs (see Appendix 1 for details on the webs used). Alternatively, the 

maximum number of steps between a given consumer and a basal species, the longest chain, in 

39 of the 50 published webs (78%) is less than or equal to five levels (Figure 2.1b).  

A recent study by Ulanowicz et al. (2013) demonstrated that by accounting for the 

amount of biomass flowing along the links (links with more biomass flow are weighted more 

heavily) the number of effective trophic levels is approximately three for a set of 16 networks. 

Ulanowicz et al. (2013) speculated that this pattern may result from the elimination of 

configurations of interacting species that are less likely to persist than others.   

The most commonly tested hypotheses for variation in food chain length are associated 

with relatively conflicting support. The earliest explanation for food chain shortness is that the 

efficiency of energy transfer between trophic levels is low. Available energy at a trophic level 

should therefore decrease rapidly going up the chain (Elton 1927, Lindeman 1942, Hutchinson 
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1959). Areas with higher energy availability (often measured as productivity) should then 

support longer chains, a prediction not supported by empirical observations. Up to five trophic 

levels are observed in both the highly productive tropics and the low productivity polar regions 

(Pimm 1982). An alternative explanation is that larger ecosystems allow for longer food chains 

(Post et al. 2000). Ecosystem size has been found to be related to food chain length in lakes and 

some islands (Post 2002, Takimoto et al. 2008) but not on other islands (Young et al. 2013). The 

combination of productivity and ecosystem size, the productive-space hypothesis, has also been 

proposed to explain variation in food chain length (Schoener 1989, Spencer and Warren 1996, 

Vander Zanden et al. 1999, Post et al. 2000). Evidence for the productive-space hypothesis, 

however, is contradictory with an equal number of studies finding support as those failing to find 

support (Post 2002, 2007, Young et al. 2013).  

Longer food chains are also expected to be dynamically fragile. Pimm and Lawton (1977) 

explored the role of dynamic constraints in limiting the length of food chains. Dynamic 

constraints would occur if the number of trophic levels in a community was limited by 

population dynamics of the constituent species. Using analyses of community matrices of four 

species food webs, they found that as the number of trophic levels increased, so too did the time 

it took to return to equilibrium following a small perturbation. A decrease in stability with 

increasing chain length is also supported by evidence from protist microcosm studies (Morin and 

Lawler 1996, Holyoak and Sachdev 1998).  

Sterner et al. (1997), however, found that the theoretical result of Pimm and Lawton 

(1977) was primarily a methodological artifact resulting from differences in the number of 

negative (density-dependence) terms along the diagonal of the community matrix. Following the 

results of Sterner et al. (1997) studies exploring limits to food chain length have generally not 
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explored the role of dynamic constraints. Most argue that dynamic constraints are less important 

to regulating the number of trophic levels compared to other mechanisms such as ecosystem size 

(Post 2002). Dynamic constraints due to colonization and extinction in a spatial context, 

however, have also been suggested as an alternative (Holt 2002) that seems to fit in with 

ecosystem size based hypotheses.  

Nonetheless through systemic selection against dynamically unstable structures as 

suggested by Ulanowicz et al. (2013), dynamic constraints can provide a foundation for 

determining why the number of trophic levels is typically low. Systemic selection occurs when 

unstable food web structures (here referring to patterns of interactions) lead to the loss of some 

or all of the species in a web, thus altering web topology by eliminating nodes (species) and links 

(interactions). Food webs that are unstable are less likely to persist over time and more likely to 

undergo a change in species composition (e.g., through extinction) or interactions (such as by 

prey-switching). If systemic selection against unstable food web configurations leads to shorter 

food chains, food webs made of longer chains (meaning more trophic levels) should be less 

stable. 

Webs of interactions that have a higher degree of stability, measured as quasi sign-

stability (QSS; Allesina and Pascual 2008), should provide a buffer against changes in the 

magnitudes of interaction strengths resulting from stochastic environments, demography, and 

evolutionary change. Food webs that have greater QSS should be more persistent over time 

because the region of potentially stable parameter space will be larger, leading to a higher 

probability that the true values may remain within it. I hypothesize that webs with more trophic 

levels have lower QSS compared to webs with fewer trophic levels. 
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Omnivory, feeding on a range of trophic positions, was found by Pimm and Lawton 

(1978, 1977) to reduce the probability that a food web would be stable. This result, however, was 

given less weight compared to return time to equilibrium. They suggested that omnivory should 

be uncommon because chains that included omnivory were frequently unstable. Thompson et al. 

(2007), however, found that omnivory is common among species that occupy a trophic position 

higher than that of herbivores, with relatively few species occupying an integer trophic position 

(but see Thompson and Hemberg 2009). Likewise, other studies have found that anywhere 

between 46% (Williams and Martinez 2004) and 87% (Arim and Marquet 2004) of taxa in a 

given community feed on more than one trophic level. Furthermore, omnivory does not become 

less common when only looking at the strongest interactions in the web (Figure A1.1).  

Below I examine how increasing food chain length (more trophic levels) impacts the 

degree to which the web is stable. I use food webs constructed at three levels of ecological 

realism; oversimplified chains with omnivory, random webs, and niche model food webs. The 

simplest example of chains with omnivory is used to demonstrate the expected relationship, 

while the random and niche model constructed webs allow us to further explore the impact of my 

assumptions, and determine under what conditions there is a relationship between food chain 

length and stability. 

Methods 

The stability of food chains and food webs is typically determined by calculating the 

eigenvalues of the Jacobian matrix, whose elements aij represent the impact of the population of 

species j on the ith species’ population (May 1972, Pimm and Lawton 1977, Sterner et al. 1997). 

In order to determine eigenvalues the matrix must first be evaluated based on data that most 

often are not available (e.g., interaction strengths, population sizes), a significant drawback. 
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Stability may also be determined based on the particular pattern of signs of the elements 

of the Jacobian matrix regardless of their magnitude. This can be useful for studies of food webs, 

because, while the interaction strengths and population sizes of the constituent species are rarely 

known, it is relatively simple to convert an adjacency matrix (a species by species matrix where 

a one denotes an interaction and a zero is no interaction) to a sign matrix. Food webs that consist 

of predator-prey interactions would assign each pair (aij/aji) a plus/minus. Purely linear food 

chains (where A only eats B, B only eats C, etc.), for example, are stable based solely on the 

signs of the elements of the matrix rather than their magnitude. Such chains or webs are termed 

qualitatively stable or sign-stable (May 1973b). Thus, regardless of the number of levels it 

contains a purely linear food chain will be stable. Hypothetically one could have a stable 

ecosystem with one hundred trophic levels, with species that consumed each other sequentially 

down the food chain.  

A sign-stable food web must fulfill a set of specific conditions (May 1973b) that are not 

met by most webs in nature. For example, a sign-stable web cannot contain trophic loops (A eats 

B, B eats C, C eats A), a feature that is often found in food webs (Neutel et al. 2002). 

Nonetheless, following the very productive idea of Allesina and Pascual (2008), I am able to 

determine the degree to which a given food chain is sign-stable, termed quasi sign-stability 

(QSS). QSS is a measure of how often a matrix with a given sign structure is stable given 

elements (aij) whose magnitudes are randomized. While a sign-stable web will be stable 

regardless of the magnitudes of the elements of the Jacobian matrix (how large an impact each 

species has on those it interacts with), quasi sign-stable webs will only be stable for some range 

of magnitudes.  
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General Model 

The Jacobian matrix is found by taking the partial derivative of species growth equations. 

One of the benefits of using quasi sign-stability to determine the stability of food webs is that I 

do not need to explicitly define a model structure for the predator-prey equations. Rather, the 

elements of the Jacobian matrix can be sampled from an underlying distribution that can be 

based on the predictions from a general model. 

I assumed a general predator dependent functional response (Abrams and Ginzburg 2000) 

where there is mutual interference among consumers. This means that the functional response is 

dependent on both the prey and predator densities, rather than only on prey density (as in prey-

dependent). On the spectrum of interference between prey-dependence (no interference) and 

ratio-dependence (complete interference where the functional response is dependent on the 

number of prey per predator) assumed predator-dependent functional response is not as extreme 

as, but is closer to, ratio-dependence (Arditi and Ginzburg 2012). 

Given “hungry” predators a ratio-dependent functional response is approximately linear 

and the dynamics of the system are donor-controlled (Arditi and Ginzburg 2012). In a donor-

controlled system the mortality imposed by predation is independent of predator abundance 

(when abundance is high) in this idealized example. Predator abundance will therefore have no 

impact on prey abundance. The linear approximation of the ratio-dependent system away from 

saturation as a donor-controlled model can be considered similar to the way in which Lotka-

Volterra equations represent a linear approximation of Hollings’ nonlinear model. 

The sign matrix of a donor-controlled system is triangular, with positive values on one 

side of the diagonal and zeros on the other side. As May (1973) noted, a triangular matrix would 

imply qualitative stability, thus in this ideal scenario any number of trophic levels will create a 
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stable structure, the same as in a purely linear food chain. With the assumption of a predator-

dependent functional response that lies close to, but not at the ratio-dependent end of the 

spectrum in the numerical simulations I relaxed the conditions of a perfect donor-control model. 

Rather than assuming that predators have no impact on their prey I substituted small values 

relative to the impact of prey on predators. Thus the elements of the Jacobian matrix may be 

drawn from distributions that are asymmetrical, meaning that the distribution of the impact of the 

prey on the predator will have a mean that is larger (in absolute magnitude) than the distribution 

of the impact of the predator on the prey. For the random and niche model webs, I altered this 

assumption to test for a wider range of potential distributions varying in asymmetry.  

Web Construction 

Simple webs 

To illuminate the hypothesis I start with a simple example of webs with two to six species 

arranged in a chain. These webs are characterized by universal omnivory, where each species 

consumes from all levels below its own, making the chain more web-like (Figure 2.2). For 

example, the fourth species eats species one, two, and three. Each web was then converted into a 

signed matrix, with (+/-) assigned to each predator prey link, a (+) indicating the positive effect 

of prey consumption on the predator’s population growth and a (-) indicating the negative effect 

of the predator’s consumption on the prey’s population growth. A (-) assigned to the diagonal, 

indicating negative density dependence, to avoid the problems illustrated by Sterner et al. (1997) 

Due to the use of universal omnivory, the sign matrices consist of positives on the upper triangle 

of the matrix, and negatives on the lower triangle.  

Random webs 
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Random ten-species webs were generated with five different levels of connectance (0.12, 

0.16, 0.20, 0.24, and 0.28). Connectance is the proportion of all possible links between species 

that are realized (the number of links divided by the number of species squared). To ensure that I 

was sampling webs with all possible chain lengths the construction of each random web was 

started with a chain of two to ten species (one to nine links). Then, depending on the 

connectance, any remaining links were randomly assigned among species. For example, a ten 

species food web with a connectance (links per species squared) of 0.12 has 12 links. Thus a 

random web initiated with a ten species chain would have three more links randomly distributed, 

while a random web initiated with a five species chain would have eight more links distributed 

among the species. For these random webs, omnivory is included and increases with increasing 

connectance but is not universal as was assumed in the simple webs.  

Each link was given a (+/-) to generate the sign matrix, with zeros indicating no 

interaction. Negatives were assigned to the diagonal. All random webs were constrained so that 

each species either consumed another species directly, or was consumed itself (i.e., no 

unconnected nodes). For each level of connectance 225 webs were generated. 

I chose use a random model to construct these food webs for a thorough exploration of 

the parameter space of potential food web configurations. Food webs built using the cascade or 

niche model have similar structural properties to those that are observed in nature. Both the 

cascade and niche models arrange species along some hypothetical niche axis and use simple 

rules that determine what each species consumes to construct food webs. Using the random 

model I can include webs that one would not expect to find in nature, which is why it is useful to 

test my hypotheses. Additionally, many of the commonly found food web motifs are also found 
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in these webs, such as tritrophic chains, apparent competition, direct competition, and intraguild 

predation. However, due to the way I built these webs there are no trophic loops. 

Niche model webs 

The niche model (Williams and Martinez 2000) uses two parameters, the number of 

species and connectance, to construct food webs. Species are assigned a randomly drawn niche 

value and feeding range. The center of the feeding range is randomly placed at a point lower than 

the species’ own niche value. Each species then feeds on all species whose niche values lie 

within the feeding range. Trophic loops are allowed in this model, because only the center of the 

feeding range must be below the given species’ niche value up to half the feeding range can be 

on species with a greater niche value. It has been shown that the niche model accurately 

reproduces many structural properties of food webs (Stouffer et al. 2005, 2007, Camacho et al. 

2007). As with the random model omnivory is included in these webs, but is not universal.  

For each of five levels of connectance (0.12, 0.16, 0.20, 0.24, and 0.28) 105 ten-species 

niche model webs were generated. Each web was then converted into the corresponding sign 

matrix, and negatives were assigned along the diagonal for all species.   

Simulations 

All simulations were completed in R version 3.1.1 (R Core Team 2014). Once webs were 

constructed, the signs of the interactions were replaced by random draws from predefined 

random uniform distributions. For each randomly drawn matrix the eigenvalue with the largest 

real part was calculated. This process was repeated multiple times for each web (see below for 

details). Quasi sign-stability could then be computed as the proportion of randomly drawn 

matrices with eigenvalues (largest real part) that were all negative. 

Simple webs 
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For the simplified webs I sampled the impact of the predator on the prey from a random 

uniform distribution between -1 and 0. The impact of the prey on the predator was drawn from a 

uniform distribution between 0 and 10. These distributions fulfill expectations based on the 

predictions of the general predator-dependent function response outlined above (asymmetrical 

impacts) but are otherwise not based on empirical data. For the diagonal of the Jacobian matrix, 

negative ones were assigned to all species. Thus density dependence was as large as the 

maximum possible impact of a predator on its prey for all species.  

For each of the five sign matrices constructed I sampled 10000 Jacobian matrices and 

computed the eigenvalue with the largest real part for each. The proportion of these eigenvalue's 

real parts that were negative was then recorded as the web's quasi sign-stability. 

Random webs 

For each of the 225 webs per level of connectance the sign matrix was filled in with 

randomly drawn values from one of nine different pairs of distributions. All distributions were 

uniform, but were varied in their maximum/minimum values. The impact of the prey on the 

predator was set to a minimum of zero and a maximum of either one, five, or ten. The impact of 

the predator on the prey was set to a maximum of zero and a minimum of negative one, five or 

ten. This leads to nine possible combinations of the two distributions, along with the five levels 

of connectance used yields 45 distinct combinations of distributions and connectance. The values 

for the Jacobian matrices in the simple model were drawn from the respective distributions and 

used to compute the eigenvalue with the largest real part. This process was repeated 1000 times 

for each web and distribution combination. Quasi sign-stability was again recorded as the 

number of randomly sampled matrices whose largest real eigenvalue was negative.  

Niche model webs 
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The same simulation procedure was completed for the niche model webs as for the 

random webs. I used the same uniform distributions for the relative impacts as well, from zero to 

one, five, or ten for the impact of the prey on their predator (and the same, but negative for the 

predator on the prey). For each pair of distributions I sampled values to fill in the sign matrix of 

each web 1000 times. Quasi sign-stability was determined as the proportion of those 1000 

iterations that were stable, whose eigenvalue with the largest real part was negative.  

Results 

Simple webs 

As the number of trophic levels in the chain increased, the probability of the chain being 

stable (QSS) decreased (Figure 2.3). The two-species case is a qualitatively stable food chain 

given my assumptions; it is a pure chain that is always stable. The largest decrease in QSS 

occurred between three (85.7%) and four levels (41.4%), dropping by 44%. Adding an additional 

level, to five species reduced the probability of a chain being stable by 31%, to nearly 10%. The 

chance that a chain of six species would be stable was only approximately 1%. 

Random webs 

Asymmetry in interaction strength, and number of interactions impact the relationship of 

QSS and food chain length in random webs (Figure 2.4). As long as there is some degree of 

asymmetry in the interactions (10/-1, 5/-1, 1/-5, 1/-10), whether it leans toward the impact of the 

prey on the predator or vice versa, webs with longer chains on average are less likely to be stable 

at equilibrium (lower QSS).  When the relative impacts are drawn from symmetrical distributions 

the negative relationship of QSS and trophic level disappeared. Drawing from a symmetrical 

distribution (1/-1) that is equal in magnitude to the strength of density dependence, however, an 

increase in the longest trophic chain slightly increases quasi sign stability. Increasing the total 
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number of interactions (connectance) always decreased stability with respect to any given 

maximum trophic position.  

Niche model webs 

There is a negative relationship between the longest food chain length and quasi sign-

stability in for most of the simulated niche model webs (Figure 2.5). In webs with asymmetrical 

distributions there tends to be a negative trend that appears more consistently across different 

connectance levels when average interaction strength is lower. Asymmetrical webs with 

comparatively high interaction strength (e.g., 10/-5, 5/-10) the negative trend is not consistent 

across connectance levels. Drawing from a symmetrical distributions (10/-10, 5/-5) there was no 

clear trend between longest chain length and quasi sign-stability. Again, when density 

dependence was strong relative to the impacts of predation (1/-1) webs were consistently stable.    

Discussion 

My results support the hypothesis that webs with more trophic levels are less likely to be 

stable. I argue that quasi sign-stability is a good predictor of the observed pattern of food chain 

lengths in nature. Food webs with fewer trophic levels have a larger range of parameter space 

(magnitudes of the elements of the Jacobian matrix) within which they exhibit stability; they 

have a greater buffer against perturbation due to environmental and demographic stochasticity. 

The ability to buffer against change has long-term consequences for the dynamics and structure 

of food webs observed in nature. Over time species participating in webs that are unstable will 

have a higher likelihood of going extinct, changing the structure of the web. In contrast webs that 

have a higher probability of being stable will likely persist, increasing the chances that they are 

observed in nature.  



 
 

24 

 
 

Here I have demonstrated that quasi sign-stability declines with increasing number of 

trophic levels in food chains made more reticulate by omnivory and in webs, reinforcing the 

results of Pimm and Lawton (1977). I found that two- and three-level webs should be most 

prevalent, with four- and five-level webs less likely, while webs with chains greater than six 

levels should be rare. Thus, my predictions closely mirror reality, where most non-basal species 

occupy trophic positions between two and three, and very few occupy a position higher than five 

(Vander Zanden et al. 1999, Beaudoin et al. 2001). Furthermore, in most scenarios webs whose 

longest chain length was high were typically much less likely to be stable than webs with shorter 

chains.  

The primary focus of prior work on the impact of omnivory on the stability of food 

chains (Pimm and Lawton 1978, Morin and Lawler 1996, Holyoak and Sachdev 1998, Long et 

al. 2011) has been on whether or not omnivory should be observed in nature due its destabilizing 

impact on food chain dynamics. Alternatively, I have chosen to assume omnivory, in the sense of 

feeding on prey occupying a range of trophic positions, is prevalent, and investigate how that 

will impact the probability of observing food chain length patterns in food webs. I would not 

expect that predictions pertaining to purely linear food chains should match the observation of 

short food chains, and for the most part it has not (Sterner et al. 1997). While omnivory may not 

be as ubiquitous as I have assumed in for the simple webs (Thompson and Hemberg 2009), I 

propose that chains with universal omnivory are a more useful abstraction than linear chains 

because in nature food chains are embedded in reticulate webs. The predictions from the simple 

webs are reflected in the results of the analysis of random and niche model food webs.    

My choice for the distributions from which values for the impact of species on each other 

were drawn was not based on empirical evidence. By using multiple different distributions for 
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the relative impacts of the predator and prey, however, I showed that the results are relatively 

robust to the choice of the magnitudes of the impact of the predator on the prey and vice versa. 

When there is asymmetry in interaction strengths, and moderate levels of connectance the pattern 

is maintained. It is not surprising that simulations with weak asymmetry but relatively strong 

interaction strength (10/-5, 5/-10) showed a weak trend towards decreasing QSS with more 

trophic levels, following May’s (1972) result. 

May (1972) showed that highly connected random webs were less stable than those that 

were less connected. Similarly when the total number of interactions was high (24 and 28 

interactions, connectance of 0.24, 0.28) all webs had a low probability of stability, with the 

exception of webs with high density dependence. As I have suggested for webs with more 

trophic levels, webs with high connectance values should be selected against. It is unlikely 

however, that systemic selection against highly connected communities is resulting in the 

observed pattern of food chain length. Highly connected webs are typically characterized by 

shorter food chains on average, and thus fewer trophic levels. One may then consider that the 

observed limitation of food chain length to three or four is the result of a balancing of dynamic 

constraints operating on both the number of trophic levels and the overall connectance of the 

web. Such a balance would need to be struck by shorter food chains, but lower connectance.           

Dynamic constraints seem to offer a reasonable explanation for the observed pattern of 

food chain length in nature. I anticipate that the results of these simulations merely offer 

qualitative descriptions of the relationship between food chain length and stability rather than 

precise quantitative estimates. Nonetheless previous studies (Post et al. 2000, Post 2002, Young 

et al. 2013) have demonstrated that other possible mechanisms may be at work by finding 

relationships between chain length and productivity or ecosystem size. However, in these studies 
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food chain length does not exceed 6 as predicted by the dynamic constraints hypothesis and their 

results often conflict.   

Post et al. (2000) found that maximum trophic position increased with ecosystem size 

(measured as lake volume), but not productivity in lake ecosystems. In contrast, Young et al. 

(2013) found that food chain length increased with productivity but not ecosystem size 

(measured as island area) for tropical islands. The variation in trophic chain length in both 

studies, however, ranged between two and six. In a thorough analysis of food chain length 

variation in freshwater springs, Glazier (2012) showed that, for a biologically tolerable range of 

temperatures, food chain length does not change significantly and has a mean around 3.2. The 

systemic selection hypothesis eliminates many of these apparent contradictions by proposing a 

mechanism that predicts the distribution of food chain lengths observed most often in nature 

(Figure 2.1).  

Ecosystem size and productivity influence population dynamics. It is somewhat intuitive 

that larger areas should support larger populations, on average. Similarly, theory based on 

predator interference predicts that with increasing basal productivity I would expect proportional 

increases in equilibrium population sizes for all trophic levels (Ginzburg and Akçakaya 1992). 

Larger populations are less susceptible to extirpation resulting from stochastically varying 

demography or environments. Thus, gains in the stability of populations through larger numbers 

of individuals may buffer against losses in QSS resulting from increased length of chains. 

Different types of environment (e.g., lakes or islands) may also differ in the relative importance 

of variables such as ecosystem size and productivity for population size. Alternatively 

ecosystems of greater size may offer a greater opportunity for patch dynamics where longer 

chains may exist in a spatial context (e.g., by top predators being present in some patches but not 
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others; Holt 1996, 2002, Polis et al. 1997). The contradictory patterns observed by Post et al. 

(2000) and Young et al. (2013) may therefore be explained by slight modification to the general 

hypothesis of dynamic constraints and systemic selection I have outlined above.  
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Figure 2.1: The trophic position of each species in 50 published food webs (a) and the length of 

the single longest chain in each web (b). The data sources and code for generating this figure can 

be found in Appendix 1. 

 

 

  

a b 
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Figure 2.2: The five simple food webs with two to six trophic levels. The measured longest 

chain is highlighted in bold. Code for making these webs and generating this figure can be found 

in Appendix 1.  
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Figure 2.3: The quasi sign-stability of the simple webs with two to six trophic levels, pictured in 

Figure 2.2. Quasi sign-stability (QSS) is the proportion of matrices with randomly sampled 

elements (aij) that have an eigenvalue whose largest real part is negative. Code for the simulation 

and producing this figure can be found in Appendix 1.   
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Figure 2.4: Plot of quasi sign-stability against longest chain length in random food webs. Gray 

dots are individual data points (data have been jittered to avoid overlap) while black dots are the 

mean. Error bars are 95% confidence intervals calculated as the mean plus/minus 1.96 times the 

standard error. Columns represent different levels of connectance (labelled across the top) while 

rows represent the different parameters used to create the distributions of relative impacts. The 

rows are labelled according to impact of the prey on the predator/impact of the predator on their 

prey with each value being the maximum/minimum of the uniform distribution used. The code to 

create this figure can be found in Appendix 1. 
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Figure 2.5: Plot of quasi sign-stability against longest chain length in niche model food webs. 

Gray dots are individual data points (data have been jittered to avoid overlap) while black dots 

are the mean. Error bars are 95% confidence intervals calculated as the mean plus/minus 1.96 

times the standard error. Columns represent different levels of connectance (labelled across the 

top) while rows represent the different parameters used to create the distributions of relative 

impacts. The rows are labelled according to impact of the prey on the predator/impact of the 

predator on their prey with each value being the maximum/minimum of the uniform distribution 

used. The code to create this figure can be found in Appendix 1. 
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Chapter 3: Selection against instability: stable subgraphs are most frequent in empirical 

food webs 
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Abstract 

Food web structure can be characterized by the particular frequencies of subgraphs found 

within them. Although there are thirteen possible configurations of three species subgraphs, 

some are consistently over-represented in empirical food webs. This is a robust pattern that is 

found across marine, freshwater, or terrestrial environments. The preferential elimination of 

unstable subgraphs during the assembly of the food web can explain the observed pattern. It 

follows from this hypothesis that there should be differences in the stability of different 

subgraphs, and that stability should be positively correlated to their frequency in food webs. 

Using 50 food webs collected from a variety of databases I determined the frequency of each of 

the thirteen possible subgraphs with respect to randomized webs. Then by numerical simulation I 

determined the quasi sign stability (QSS) of each subgraph. My results clearly show a positive 

correlation between QSS and over-representation of the different subgraphs in empirical food 

webs.  
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Introduction 

Much of the past 40 years of food web ecology has focused on finding the “devious 

strategies which make for stability in enduring natural systems,” to quote Robert May (1973a). 

There is a clear link between those structures observed in ecological networks (e.g., modularity 

in food webs and nestedness in mutualistic webs) and the population dynamics of the species that 

make them up (Drossel et al. 2004, Bastolla et al. 2009, Thébault and Fontaine 2010). While 

large scale emergent properties of networks (modularity, nestedness, connectance, etc.) have 

been the focus of much research in the past, there are many other ways to characterize the 

structure of an ecological network. Here I assess the substructural composition of food webs in 

light of the stability of their basic building blocks (three-node subgraphs).  

Larger networks are made up of many smaller subnetworks (hereafter subgraphs) that are 

assembled together. Any large network with N nodes can be decomposed into smaller networks 

of size 1 to N-1. There are thirteen possible (connected, directed) configurations of three nodes, 

five of which require only single direction links and 8 which combine single and bi-directional 

links (Figure 3.1). Milo et al. (2002)  showed that the observed frequency of these three node 

configurations varies in different types of networks (e.g., food webs, neural networks, electronic 

networks, etc.). For example, in food webs the tritrophic chain tends to be over-represented 

compared to random. Subgraphs that tend to be over-represented are commonly termed motifs.  

In a study of 16 food webs Stouffer et al. (2007) showed that there were two distinct 

patterns of the frequency of subgraphs in food webs. Most webs (10 of 16) were characterized by 

over-representation of intra-guild predation and under-representation of apparent and direct 

competition. The other 6 webs were characterized by the opposite pattern. Overall most webs 

tended to have similar relative frequencies of the different subgraphs.  
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The two prevailing hypothesis for the pattern of subgraph frequencies are: (1) that there 

are constraints in the assembly of a network, and (2) that there is some advantage to motifs that 

make them more likely to become over-represented (Prill et al. 2005, Camacho et al. 2007). 

While these two hypotheses are not mutually exclusive, Camacho et al. (2007) and Prill et al. 

(2005) offer different perspectives on which is more important for generating the observed 

pattern. Camacho et al. (2007) found that because food web models are able to reproduce 

observed subgraph patterns, constraints on food web generation are most important. 

Alternatively, because structure is related to function, Prill et al. (2005) hypothesize that it is the 

properties of the subgraph that lead to its abundance in a network. I suggest that a combination of 

the two hypotheses in the form of selection against unstable structures offers the simplest 

explanation for the occurrence of particular motifs. Such a process would eliminate those 

subgraphs that are unstable with greater frequency than expected by chance, while increasing the 

relative abundance of those that are more likely to be stable.  

 Many definitions of stability have been used in the ecological literature (Pimm 1984, 

Donohue et al. 2013). Here I focus on the unity of two forms of mathematical stability, local (or 

eigenvalue) stability and qualitative stability. A system is locally stable if all of the eigenvalues 

of the Jacobian matrix (evaluated at equilibrium) have negative real parts. Functionally this 

means that following a small perturbation from equilibrium, the system will return to the original 

equilibrium state. Local stability has been frequently used in the theoretical ecology literature to 

understand the relationship between structure and stability (May 1972, Pimm and Lawton 1977, 

Sterner et al. 1997, Allesina and Tang 2012). Determining local stability, however, requires 

knowledge of the magnitudes of the elements of the Jacobian matrix (where each element 

represents the impact that species i has on the jth species). A qualitatively stable system is one 
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that is stable based only on the signs of the elements of the Jacobian matrix, rather than their 

magnitudes (May 1973b). In order for a food web to be qualitatively stable the Jacobian matrix 

must fulfill certain conditions, such as having at least one negative term along the diagonal. Most 

ecological communities do not fulfill the conditions for qualitative stability (May 1973b), for 

example many food webs contain trophic loops of three or more species. 

 Allesina and Pascual (2008) linked these two concepts with the development of quasi 

sign-stability (QSS). QSS is a measure of how robust a system is to changes in the magnitude of 

the elements of its corresponding Jacobian matrix. Thus, the more quasi sign-stable a system is, 

the closer it is to being qualitatively stable. If a number of matrices are created by sampling the 

values of the Jacobian from a distribution (preserving the sign structure) the proportion that are 

locally stable is the system’s QSS. Using this measure I can determine the tendency of a given 

sign structure, determined by the configuration of the subgraph, to be stable.  

In this study I asked whether the commonly observed pattern of subgraph frequency fits 

with what is expected based on the hypothesis of selection against unstable configurations. To 

answer this question I examined the variation in both frequency and the QSS of the thirteen 

different three-node subgraphs. Where other studies comparing subgraph frequency to their 

dynamic properties have used absolute frequencies (Prill et al. 2005), I computed frequency 

relative to a null model. If there is a systemic selection against unstable subgraphs in nature, then 

there should be a positive correlation between the frequency of a given subgraph and the 

probability that that subgraph will be stable.  

Methods 

Data 
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I used 50 food webs collected from a variety of sources. Three food webs were 

downloaded from the Dryad Digital Repository (Roopnarine and Hertog 2012a, b). Another 

seven were available from Ecological Archives (Hechinger et al. 2011, Thieltges et al. 2011, 

Zander et al. 2011, Mouritsen et al. 2011, Preston et al. 2012). These seven webs all included 

parasitic links, so to compare these webs to food webs without parasites only predator-prey links 

were considered. Fourteen webs were also provided by Jennifer Dunne of the PEaCE Lab (Baird 

and Ulanowicz 1989, Warren 1989, Polis 1991, Hall and Raffaelli 1991, Martinez 1991, 

Christensen and Pauly 1992, Havens 1992, Goldwasser and Roughgarden 1993, Opitz 1996, 

Waide and Reagan 1996, Yodzis 1998, 2000, Martinez et al. 1999, Christian and Luczkovich 

1999, Memmott et al. 2000, Link 2002). The remaining 26 food webs were downloaded from the 

Interaction Web Database (Townsend et al. 1998, Jaarsma et al. 1998, Thompson and Townsend 

1999, 2000, 2003, 2005, Thompson and Edwards 2001). 

Subgraph Frequency 

The frequency of each subgraph was found using the triad.census function from the 

igraph  package (Csárdi and Nepusz 2006) in R version 3.0 (R Core Team 2014). Counts of each 

of the thirteen subgraphs were determined for each of the 50 food webs described above. The 

frequency of each subgraph was then compared against a null distribution. 

To create the null distribution each of the fifty adjacency matrices (each food web) was 

permuted using the recently described Curveball algorithm (Strona et al. 2014). This algorithm 

maintains both the number of predators of a species has and the number of prey a species has 

(maintaining row and column sums) and has been shown to be unbiased in the creation of null 

distributions (Strona et al. 2014). As a second null model additional constraints were added to 

the Curveball algorithm to maintain not only the row and column sums, but also the number of 
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single, double, and self (cannibalistic) links in each web. This is similar to the null model used 

by Stouffer et al. (2007), but, where they preserve the number of single, double, and cannibal 

links per species, the modified Curveball algorithm I use preserves the number of each type of 

link per web.   

The frequency of each subgraph was determined in each of thirty thousand permuted 

matrices that were generated for each food web using both null models. Z-scores were computed 

using the formula: 

𝑧𝑖 =  
𝑋𝑖 − 𝑋𝑖̅

𝜎𝑙
                                                                                                                                       (𝑒𝑞. 3.1), 

where 𝑋𝑖 is the frequency of the ith subgraph in each empirical food web, 𝑋𝑖̅ is the mean 

frequency of the ith subgraph in the permuted matrices, and σl is the standard deviation. The z-

scores were then normalized by dividing by the square root of the sum of the squared z-scores 

for that food web following previous studies of motifs by Milo et al. (2002) and Stouffer et al. 

(2007), 

𝑛𝑖 =  
𝑧𝑖

√∑ 𝑧𝑗
2

                                                                                                                                        (𝑒𝑞. 3.2). 

The code for determining subgraph frequency can be found in Appendix 2. 

Subgraph Stability 

Using numerical simulations in R version 3.0 (R Core Team 2014) I determined the 

probability that a given subgraph would be stable (quasi sign-stability, QSS). The adjacency 

matrix of each subgraph was translated into its corresponding sign-structured matrix. Only 

predator-prey interactions were considered, so if aij = 1 then aij will be a positive while aji is 

negative. When interactions were bidirectional, both aij and aji were positive (if negative then 
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quasi sign-stability is increased, see Appendix 2). Positive elements of the matrix were given a 

random value drawn independently from a uniform distribution between 0 and 10, while negative 

elements were given a value drawn independently from a uniform between -1 and 0.  

These distributions were chosen to reflect asymmetry in the relative impact of the prey on 

the predator (positive) and the predator on the prey (negative). Asymmetry can be derived from a 

general predator-dependent functional response (a functional response that is dependent on both 

prey and predator densities) where the predator is not saturated (“hungry predators”). Note that 

the particular structure of the equations governing population dynamics was not defined. Instead, 

assumptions about the values of the Jacobian matrix were made based on what may be predicted 

from the general form of the function.  

Diagonal elements have a large impact on the stability of the matrix (Sterner et al. 1997), 

so each diagonal element was assigned a random value drawn from a uniform distribution 

between -1 and 0. Thus the average intraspecific effect on population growth rate was 

approximately the same as the effect of predation. By including density dependence for each 

species I allow the greatest chance of stability.  

This process was repeated 10,000 times for each subgraph. Quasi sign stability was then 

calculated as the proportion of randomly sampled matrices whose eigenvalue with the largest 

real part (Max(Re(λ))) was negative (Allesina and Pascual 2008). See Appendix 2 for details on 

the code used for simulations.  

Results 

Subgraphs differed in how frequently they were observed relative to permuted webs 

(Figure 3.2). Tritrophic chains (s1), apparent competition (s4), and direct competition (s5) all 

tended to be over-represented in food webs based on both null models. Intra-guild predation (s2) 
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was typically under-represented, more so when compared to webs generated by the modified 

Curveball algorithm, but was over-represented in some webs. The three-species trophic loop (s3) 

was under-represented in all webs, as were most subgraphs that include bidirectional links (A 

eats B, B eats A). When the numbers of each link type were preserved the d1, d2, and d6 

subgraphs were over-represented in the twelve webs that had double links.    

There was also variation in the quasi sign-stability of each subgraph (Figure 3.3). The 

three subgraphs that tended to be over-represented were all very likely to be stable, a result that 

is robust to the choice of sampling distributions for the randomized matrices (see Figure A2.1). 

Intra-guild predation was also moderately likely to be stable (approximately 0.5). The remaining 

subgraphs were all unlikely to be stable, with quasi sign-stability less than 0.2. Subgraphs with a 

higher quasi sign-stability occurred more frequently than expected by chance, while those with 

lower quasi sign-stability tend to occur less frequently than expected by chance.  

Discussion 

If there is a selection against unstable food web configurations, then those configurations 

that are most likely to be stable in a varying environment should be those that are most 

commonly observed in nature. In order for such a process to work, different food web 

configurations must be variable in their stability. A signature of this selection against instability 

should then be if variability in the stability of different food web configurations is correlated 

with their observed frequency.  

 The signature of selection against unstable configurations is clearly seen by comparing 

the observed frequencies of three-node subgraphs and their quasi sign-stability. Those subgraphs 

that are most quasi sign-stable are also those that are observed more frequently than expected by 

random chance. Subgraphs that are less quasi sign-stable are typically either under-represented 
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(observed less frequently than expected by chance) or observed about as frequently as expected 

by random chance, although this depends on the null model to some extent. A similar finding of 

a relationship between subgraph frequency and contraction loss (a measure of stability) mirrors 

my results (Angulo et al. 2014). While this does not provide concrete proof that there is a 

selection against unstable subgraphs in nature, it does offer convincing evidence that such a 

process could affect the way food webs are structured. 

 The null model used to generate the subgraph frequencies does have an effect. In part this 

explains why the pattern of frequencies is different from those determined by Stouffer et al. 

(2007). Additional differences may also be the result of the larger sample of food webs, 50 

compared to 16. The frequency of subgraphs that include double links is especially of interest 

when comparing the outcome from the two different null models used (Figure 3.2). In particular, 

the d1, d2, and d6 subgraphs occur more frequently than expected at random when the number of 

single, double, and self links are constrained. However, while this is true for those webs that 

have double links, the occurrence of double links is rare with only 12 of 50 webs having them. In 

both null models the tritrophic chain, apparent competition, and direct competition are 

consistently over-represented.       

This study represents the third case in which quasi sign-stability has shown to be a useful 

measure to help explain observed food web patterns (Allesina and Pascual 2008, Borrelli and 

Ginzburg 2014). Quasi sign-stability is a simple yet powerful measure when considering stability 

in a stochastic environment. As a result of environmental and/or demographic stochasticity any 

given parameterization of the community matrix (to determine local stability) is not likely to be 

informative. Yet, quasi sign-stability can reveal a considerable amount about the system, given 

just the sign-structure of the community.  
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The simplicity of the argument underlies its usefulness to ecologists. Given knowledge of 

the quasi sign-stability of community configurations an expectation of what should be observed 

in nature can be built. In their study introducing the concept of quasi sign-stability Allesina and 

Pascual (2008) found that when predator-prey links dominate the community, the community 

should be more stable. My results show that tritrophic chains, direct competition, and apparent 

competition should be expected more frequently; while Borrelli and Ginzburg (2014) 

demonstrated that short food chains should be more frequent than longer ones. The results of this 

study show that these expectations match what is actually observed in nature, as was shown for 

food chains by Borrelli and Ginzburg (2014). 

If observed pattern does not match my expectation based on quasi sign-stability, it may 

be an indication of some underlying biologically interesting phenomenon. For example, while 

the intra-guild predation subgraph (A eats B, A eats C, B eats C) is moderately quasi sign-stable, 

the expectation is that it should be somewhat over-represented in the data. Yet I found that intra-

guild predation is mostly under-represented, albeit with a large variance. Likewise, in a few food 

webs apparent competition is under-represented yet is very likely to be stable.  

One potential explanation for the lack of intra-guild predation subgraphs is one of 

feasibility. An equilibrium point would be feasible if all species had positive densities. In the 

present study I have not considered feasibility constraints, as I chose not to impose any particular 

equation structure, rather relying on the general case of a predator dependent functional 

response. It is possible that for species to maintain positive densities in an intra-guild predation 

framework there are constraints on the magnitude of the elements of the Jacobian, and that 

region of “parameter space” could be smaller than the region that is considered stable.    
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Alternatively, constraints could be imposed at higher levels of organization. As different 

subgraphs are assembled into larger networks, there could be interactions among them, which 

alter their probability of being stable. The next step in understanding the relationship between 

motifs and stability will be to learn how the stability properties of the three-node configurations 

scale up to larger networks. I expect that, in general, networks with subgraph patterns that show 

over-representation of subgraphs that are more quasi sign-stable should themselves be more 

stable.  

Recent work has highlighted the role of trophic coherence in stabilizing large food webs 

(Johnson et al. 2014). Trophic coherence is a measure of the homogeneity of the distribution of 

the trophic distances between predators and their prey. A linear food chain, where species A eats 

B, B eats C, and C eats D, is a perfectly coherent web. Johnson et al. (2014) showed that stability 

increases with size and complexity in food webs that are trophically coherent. Therefore it is 

worth noting that those subgraphs that are most stable, the tritrophic chain, apparent competition, 

and direct competition are those that are trophically coherent. If webs that are more coherent are 

more stable, then webs built with coherent components should be more stable.  

Like the pattern of subgraphs in food webs, trophic coherence may be explained by the 

two hypotheses of constraints on the assembly of the web, or intrinsic benefits of the structure. 

Johnson et al. (2014) suggest that adaptations for feeding on a given species may be more helpful 

for preying upon other species at a similar trophic level, evoking the idea of constraints on 

assembly of the web. The observed frequency of subgraphs may then be the result of such 

feeding preferences and the apparent relationship between stability and frequency only 

coincidental. One could also imagine that species vary in how they choose prey and when 

species feeding preferences lead to the increase of s1, s4, and s5 subgraphs the coherence of the 
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web and therefore its stability increases. The observed pattern would then result from a 

combination of constraints on assembly and the intrinsic properties of the subgraphs (stability).   

 An ideal test of the hypothesis of selection against unstable configurations would involve 

food web assembly data. During food web assembly, new species enter the food web and 

establish feeding links with the species that are present. This establishment alters the structure of 

the food web, and can be measured as changes in the relative frequency of the different three-

node subgraphs. Following the introduction of the new species one of two events could occur; 

(1) the new species becomes integrated into the network and the food web grows (in terms of the 

number of species), or (2) the introduction of the new species leads to extinction events and the 

food web shrinks. The selection against instability hypothesis would predict that when the 

addition of new species increases the relative frequency of more stable subgraphs compared to 

less stable ones, the web should grow. If the frequency of less stable subgraphs is increased more 

than the stable ones, then extinctions would be more likely to occur.  
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Figure 3.1: Graphical representations of the thirteen possible configurations of 3 species ordered 

by decreasing quasi sign-stability. The five with single links only have the “s” designation while 

those including double links have a “d”. 

 

  



 
 

47 

 
 

Figure 3.2: The normalized profile of the 13 possible 3-node subgraphs in a set of 50 food webs 

arranged in order of decreasing quasi sign-stability. Boxplots represent the median and 

interquartile range of the normalized z-scores generated using the Curveball algorithm (red) and 

the modified Curveball algorithm (blue). Whiskers extend to the most extreme point within 1.5 

times the interquartile range.  
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Figure 3.3: Quasi sign-stability for each subgraph, determined as the proportion of randomly 

parameterized sign matrices that were locally stable. Subgraphs have been ordered along the x-

axis from greatest to least quasi sign-stability.  
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Chapter 4: rend: An R package for Ecological Network Dynamics 
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Abstract 

The structure of ecological communities determines how they respond to environmental 

impacts such as global climate change and anthropogenic disturbance. Despite continually 

changing environments and numerous different habitat types, the structure of observed 

ecological communities exhibit some remarkable similarities. Food web structure is generated by 

the introduction of new species through invasion and speciation, species loss from extinction, 

and the altering of interactions through foraging decisions and population dynamics. Many 

resources currently exist to describe the structure (topology) of networks using the R 

programming languages, but there are none that implement any of the variety of models 

developed to understand the dynamics of these systems. In this Chapter I introduce a new (in-

development) R-package rend that allows users to apply a bioenergetic model of multispecies 

predator-prey dynamics to trophic networks. The rend package is being developed with the goal 

of providing stronger links between the structure and dynamics of complex ecological systems. 
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Introduction 

The structure of an ecological network is both the product and driver of the dynamics of 

the interacting species. How many species there are, the manner in which they are connected, as 

well as the strength of those connections make up the structure of the network. This also then 

defines how different species impact each other’s population growth and decline. As a direct 

result of these individual population dynamics, the structure of the network can change. Species 

can be lost via local extinction, new species can be gained via introduction/invasion, and 

connections among species can be altered as a result of prey-switching and adaptive foraging. An 

important question in ecology is how to go about enumerating this intimate link between 

structure and dynamics of ecological networks.  

Perhaps the most obvious answer to this question is to go out and collect data. This 

requires time-series data of ecological networks. The problem is that these data are very difficult 

to acquire and require a great deal of effort, time, and money. There have been some studies, 

however, that have focused on the change in network structure through time, primarily in plant-

pollinator systems ( Alarcón et al. 2008, Olesen et al. 2008, Dupont et al. 2009, Albrecht et al. 

2010). There are fewer data available on changes in the structure of food webs over time, 

although Fahimpour and Hein (2014) used a mesocosm approach to quantify the food web at 

different time points during food web assembly. In order to circumvent the problem of difficult 

data collection, many ecologists have turned to models of multi-species communities to generate 

more easily testable predictions.  

Multi-species interaction models have been used to assess a variety of hypotheses related 

to the structure and stability of ecological communities. Fundamental research has focused on the 

equilibrium dynamics of communities by assessing the Jacobian matrix, which is a matrix of the 



 
 

52 

 
 

partial derivatives of species population growth equations reflecting their relative impact on one 

another. Following May’s (1972, 1973) pioneering approach, these studies focus either on 

stability alone (Allesina and Tang 2012, Tang and Allesina 2014, Borrelli 2015) using random 

matrix theory (James et al. 2015), or on the stability of communities constrained to be feasible 

(Roberts 1974, Christianou and Kokkoris 2008, Saavedra et al. 2016). 

In food web studies, non-equilibrium approaches are utilized through assembly- 

(Lockwood et al. 1997, Côté and Parrott 2006) or evolution- (Caldarelli et al. 1998, Loeuille and 

Loreau 2010, Stegen et al. 2012) based models of community development. In these studies 

researchers build food webs by the introduction of random species from some predefined species 

pool, or by "speciation" whereby new species are introduced as modified versions of already 

present species. Multi-species predator-prey models are then employed to determine whether 

these newly introduced species are able to persist in the web as is, or whether they cause 

extinctions or go extinct themselves (Romanuk et al. 2009, Baiser et al. 2010, Lurgi et al. 2014).  

Assembly-based and evolution-based models are typically run until the system reaches 

some kind of steady-state or equilibrium, and the resultant community can then be analyzed and 

compared to existing empirically described communities. In one study, Drossel et al. (2001) 

found that the form of the functional response in the predator-prey equations has an effect on the 

final structure of the community, and that non-linear functional responses (especially a ratio-

dependent response) result in more realistic food webs (Drossel et al. 2004). Loeuille and Loreau 

(2005), using another evolution-based model, showed that the size-structure often observed in 

natural communities is an emergent property of community development.    

A problem with many current modeling approaches is that the theoreticians that are 

developing them offer a mathematical black box. Models are run in a variety of languages, such 
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as Java (Romanuk et al. 2009), C/C++ (Thébault and Fontaine 2010), R (Lurgi et al. 2014), and 

Mathematica (Baiser et al. 2010). The source code, however, rarely gets included with these 

publications. The standard information given is the mathematical equation describing the model. 

For many biologists this is not useful (e.g., Fawcett and Higginson 2012), especially as it is not 

always straightforward how to implement these equations in a computer language.  

In ecology, the use of the R programming language is rapidly outpacing other languages. 

This growth is likely tied to the increasing number of packages available in R for the analysis of 

ecological data. Many of the R packages associated with ecology are related to new statistical 

methods. For networks, there is a range of packages available to assess the topological properties 

of networks. One of the most widely used packages to assess network structure is igraph (Csárdi 

and Nepusz 2006), which is not ecologically focused but offers many of the mathematical tools 

developed to detect structural features of networks. The bipartite package (Dormann et al. 2008) 

is focused on two-level networks, like plant-pollinator or host-parasite networks (Dormann et al. 

2009). The betalink package was designed to assess the beta-diversity of species interaction 

networks (Poisot 2015). Ecosystem networks, which are networks of nutrient and energy flows, 

can be analyzed using enaR (Borrett and Lau 2014). Packages like foodweb (Perdomo et al. in 

press) and cheddar (Hudson et al. 2012) were developed to explicitly compute the structure of 

food webs, and include metrics specific to food web theory (e.g., trophic level, and predator-prey 

ratios). Other packages related to the analysis of ecological networks were developed for fairly 

specific functions, including NetIndices (Kones et al. 2009), which provides functions to 

determine whole network properties and trophic indices for each species, and rnetcarto (Doulcier 

and Stouffer 2015) for determining modularity and module participation.    
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It is abundantly apparent that the use of models of multi-species dynamics has yielded 

great insight into why we observe certain patterns in natural communities. These models are 

useful tools to find what Robert May called the "devious strategies which make for stability in 

enduring natural systems" (May 1973, p.174). To gain further insight we must integrate these 

dynamic-model-based approaches with the many tools that have been developed to assess the 

static structure (topology) of ecological communities. While there are many packages designed 

to determine the structure of networks using R, there is a dearth of R packages available to apply 

dynamic models to network structures. To my knowledge, only one package is available to 

model multispecies predator-prey dynamics on food webs, the now outdated gruyere package, 

which was developed to work in conjunction with the cheddar package, but is no longer available 

in current versions of R.      

In this Chapter I present an in-development R package, rend, for the simulation and 

analysis of ecological network dynamics. The package is still in-development because the 

current version limits the user to the simulation of food web (trophic) dynamics. Future versions 

will incorporate additional functionality (discussed below). My goal is to make it easier for 

researchers to apply models of multi-species dynamics as well as analyze the resulting changes 

in the community structure. Below I describe the model and variations currently implemented in 

this package, and describe how the simulation of multi-species predator-prey dynamics works. I 

also describe examples of the package usage, with both a simple two-species system, to 

demonstrate how altering parameters affects the dynamics, and an example of a simulation that 

uses a niche model (Williams and Martinez 2000) food web as a starting point. The niche model 

example additionally includes example code for the analysis of the simulation output to describe 
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changes in the food web structure. I conclude by discussing the future development of the R 

package to extend simulation and analysis beyond trophic community dynamics. 

Package Overview  

There are three core components of the rend package: simulation, visualization, and 

analysis. Below I describe the model used to simulate trophic dynamics and its implementation 

in code, as well as the modifications to the model structure and parameter changes the user can 

make. The visualization aspect of the package is focused on creating dynamic network visuals by 

generating an html movie of the simulation. This package also includes functions to aid in the 

analysis of community dynamics. Users are able to assess changes in nine commonly used food 

web metrics, change in the sub-structure of the food web (motif analysis), and change in the 

trophic structure of the food web. All of the required code for this package can be found in 

Appendix 3.  

Food Web Dynamics Simulation 

The current implementation of the rend package allows the user to take a food web, or 

any binary adjacency matrix, and simulate the trophic dynamics of the constituent species. The 

model is a bioenergetic model that was adapted from a version presented by Williams and 

Martinez (2005). The user may choose between two model structures: one that allows for a 

Holling functional response, or one that allows for consumer interference. The Holling functional 

response can be parameterized such that it may be either Type II or Type III to varying degrees 

(see below). There are also a number of other parameters the user may choose to alter, although 

they are currently set to default values suggested by Williams and Martinez (2005). 

Consumer-Resource Model 
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A bioenergetic consumer-resource model is at the core of the food web dynamics 

simulator function. The model was originally developed for two species by Yodzis and Innes 

(1992), and generalized to multiple species by McCann et al. (1998). The model structure 

included in this version of rend was first presented in Williams and Martinez (2005) and used 

again in Romanuk et al. (2009) to predict success of invaders in model communities. The change 

in species’ total biomass over time is defined as 

𝑑𝐵𝑖(𝑡)

𝑑𝑡
= 𝐺𝑖(𝐵) −  𝑥𝑖𝐵𝑖(𝑡) +  ∑(𝑥𝑖𝑦𝑖𝑗𝐹𝑖𝑗(𝐵)𝐵𝑖(𝑡)

𝑛

𝑗=1

−  𝑥𝑗𝑦𝑗𝑖𝐹𝑗𝑖(𝐵)𝐵𝑗(𝑡)/𝑒𝑖𝑗)                  (𝑒𝑞. 4.1). 

There are four basic parts to the model: growth, death, consumption of prey, and being 

consumed by predators. The first term, Gi(B), is the function describing primary production of 

producer species in the absence of predation. Producers grow exponentially with density 

dependence according to  

𝐺𝑖(𝐵) = 𝑟𝑖𝐵𝑖(𝑡) (1 −  
𝐵𝑖(𝑡)

𝐾𝑖
)                                                                                                         (𝑒𝑞. 4.2), 

where ri is the intrinsic rate of increase, Bi(t)is the biomass of population i at time t, and Ki is the 

carrying capacity of population i. Natural death in the population is modeled as xiBi(t), where xi 

is the mass specific metabolic rate of species i.  The consumption of species i by species j is 

modeled as 

∑ (𝑥𝑖𝑦𝑖𝑗𝐹𝑖𝑗(𝐵)𝐵𝑖(𝑡))                                                                                                                    (𝑒𝑞. 4.3)

𝑛

𝑗=1

, 

with yij as the maximum rate at which species i assimilates species j per unit metabolic rate of 

species i, and Fij is the functional response, which gives the fraction of the maximum rate of 

ingestion of species j by species i. Likewise, 
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∑(

𝑛

𝑗=1

𝑥𝑗𝑦𝑗𝑖𝐹𝑗𝑖(𝐵)𝐵𝑗(𝑡)/𝑒𝑖𝑗)                                                                                                               (𝑒𝑞. 4.4), 

represents the consumption by species j of species i. The parameter eij is the energetic efficiency 

of biomass transfer from species j to i. Dividing by this parameter converts the biomass 

assimilated by the consumer into biomass lost by the resource.  

 There are a number of possible functional response types ranging from the traditional 

Lotka-Volterra through predator-dependence to ratio-dependence. In the model presented by 

Williams and Martinez (2005), they suggest two types of functional responses; one based on 

Holling’s Type II and III (Holling 1959a, b), and another based on consumer interference 

(Beddington 1975, DeAngelis et al. 1975). The Holling functional response (FHij) takes the form,  

𝐹𝐻𝑖𝑗(𝐵) =  
𝐵𝑗

1+𝑞

∑ 𝐵𝑘
1+𝑞𝑛

𝑘 +  𝐵0
1+𝑞                                                                                                           (𝑒𝑞. 4.5). 

Here, Bj is the biomass of the consumed resource, in the denominator the summed biomass 

across all k resources, and B0 is the half saturation density. The parameter q is a tuning parameter 

that lets the modeller shift the functional response between a Type II (q = 0) and a Type III (q = 

1). Values of q greater than one alter the lag time in the Type III response (Figure 1), effectively 

increasing the size of the prey refuge.  

Alternatively the functional response with consumer interference (FBDij) follows  

𝐹𝐵𝐷𝑖𝑗(𝐵) =  
𝐵𝑗

∑ 𝐵𝑘(𝑡)𝑛
𝑘=1 + (1 + 𝑐𝑖𝑗𝐵𝑖(𝑡)𝐵0𝑗𝑖)

                                                                           (𝑒𝑞. 4.6), 

where cij is the strength of predator interference (Skalski and Gilliam 2001). As with FHij when c 

= 0 the functional response is a standard Holling Type II. The strength of interference has been 

estimated in nature to be approximately 1 (Skalski and Gilliam 2001, Williams and Martinez 
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2005). Increasing values of cij leads to reductions in the fraction of the maximum ingestion rate 

of prey biomass (Figure 4.1).  

Implementation 

The model is implemented in the code as a numerical integration using the deSolve R 

package (Soetaert et al. 2010). Currently, the primary function is CRsimulator, which allows the 

user to specify all parameter values and the desired functions for the growth of basal species and 

the functional response. Inputs to CRsimulator are described in Table 1. This function can be 

broken down into four main parts: growth rates, parameter collecting, simulation, and 

visualization.  

 The first part creates a vector of whether or not species are basal using the getR function 

to assess the column sums of the adjacency matrix. If there are no basal species, the function will 

return a warning ("No basal species in simulation"). This action only occurs when the user elects 

not to supply a vector of growth rates. 

The second part gathers all required parameters of the consumer resource model into a 

single list. The default values for these parameters are given in Table 2. By default, the function 

for growth is Gi (an internal package function describing growth according to the bioenergetic 

model above), functional response is Fij (the Holling-based functional response), extinction 

events is goExtinct (checks biomasses to see if they are below an extinction threshold), and the 

default method is CRmod (function describing the full bioenergetic model). All species initially 

start with a random total biomass drawn from a uniform distribution between 0.5 and 1.  

The third part of the CRsimulator function is numerical integration using deSolve::ode. 

This integration requires the method function CRmod, which codes the bioenergetic model. This 

function interacts with the event function, which by default is goExtinct, and determines whether 
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a species has gone extinct at each time step by checking whether the species' abundance has 

passed below the threshold level for extinction. By default the extinction threshold is 10-10, 

although this is arbitrary and based on Williams and Martinez (2005). Alternative extinction 

thresholds may also be implemented based on species’ characteristics.     

There are two functions for the functional responses, one for each type. Both functions 

take the same input parameters: B is the vector of biomasses, A is the adjacency matrix, B0 is the 

half saturation constant, and xpar is either the q parameter of the Holling functional response or 

the consumer interference parameter c.  The functions Fij (Holling) and Fbd (consumer 

interference) also both return a matrix reflecting the impact of species i on species j.  

The last part of CRsimulator will plot the output of the integration when the argument 

plot = TRUE. This is just a very simple way of visualizing the biomass dynamics through time. 

Each species is represented as a line on the plot, where the x-axis is time and the y-axis is 

biomass.   

Food Web Dynamics Visualization 

To create a visualization of the dynamics of the food web through time, the rend package 

relies on the animation package. With the current version of rend, the user is able to take the 

output of the CRsimulator function and generate a video representation of the dynamics of the 

time series. Both biomass and interaction dynamics are visualized. Visualization is done by the 

netHTML function, which serves as a wrapper for the animation package's saveHTML. The 

function output is an HTML video of the food web at each time step. 

Analysis 

In addition to the functions for simulation, the rend package also has several functions to 

analyze the output of the simulations. The three main analyses that can be run are: (1) changes in 
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food web indices through time, (2) change in motif structure through time, and (3) change in 

trophic position for each species through time. The function WEBind takes the output of 

CRsimulator and the initial adjacency matrix that was fed into the simulation as input. From this, 

new adjacency matrices are created for each time step and nine indices (defined in Table 3) are 

computed for each matrix. The output is the number of species, number of links, link density, 

connectance, diameter, average path length, clustering coefficient, modularity, and number of 

modules. 

Change in three-species motif structure through time can be found by using the function 

motifCounter3. Just like with WEBind, the inputs for the motif counting function are the output 

of the simulation and the initial adjacency matrix. The function then converts the adjacency 

matrices for each time step into igraph (Csárdi and Nepusz 2006) graph objects, which are then 

fed into the igraph function triad.census to get the frequency of three node configurations for 

each time step. The third analysis function, trophicChange, takes the same inputs: the output of 

the simulation and initial web. Then, trophicChange outputs a species x time matrix where each 

row is the trophic position for each species at a given time step (and 0 represents extinction). 

Trophic position is found using the TrophInd function from the NetIndices R package (Kones et 

al. 2009). 

Examples 

Here I outline two examples of the rend package in action. The first example is a two-

species predator-prey system. I use this simple example to highlight the differences in the 

dynamics produced by the two model structures, Holling and consumer interference. The second 

example is primarily used to highlight the analytical functions used to assess changes to 

topology, motifs, and trophic positions. Thus it offers a more realistic use of the package, where 
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the dynamics of a model food web are simulated and analyzed. I chose to use a well-studied 

model of food web topology, the niche model (Williams and Martinez 2000). 

Two-Species Dynamics 

Two species, a basal resource and a consumer, provide a simple example for this 

package. The adjacency matrix is two rows and two columns. All that is required is to feed this 

adjacency matrix into the CRsimulator function, and choose whether to alter any of the default 

parameter settings. The first six rows of the output are shown in Table 3. Column one is the time 

step, column two is the biomass of species 1 (the basal species), and column three is the biomass 

of species 2 (the consumer). The resulting biomass dynamics are shown in Figure 4.2. The two 

species reach equilibrium rather quickly, within 100 time steps, following damped oscillations. 

The example in Figure 4.2 simply used the default settings for the CRsimulator function. 

An important setting for the user to select is the form of the functional response. Depending on 

whether the functional response is Holling or based on consumer intereference, one would expect 

to observe differences in the dynamics of the two species. The result of altering the functional 

response, and preserving the other default settings is shown in Figure 4.3. Looking at the 

difference between Holling (Fij) and consumer interference (Fbd) it appears that the dynamics of 

the two species with Lotka-Volterra dynamics equilibrate faster. The pair of species with 

consumer interference are still exhibiting damped oscillations at time step 200, while the other 

pair with a Holling functional response are no longer oscillating. 

One would also expect that differences in the tuning parameter (q in the Holling 

functional response or c for consumer interference) will also alter the dynamics of the interacting 

species. The results of the two species simulation with xpar equal to 0, 0.2, 1, and 5 for each 

functional response type (all else set to default) are shown in Figure 4.4. By altering the tuning 
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parameter (xpar in CRsimulator) the dynamics associated with each functional response type 

change.   

As the parameter q increases, the two species reach equilibrium faster and the equilibrium 

biomass of the prey (species A) is higher. With increasing consumer interference the two species 

also reach equilibrium faster, but there is a smaller difference in equilibrium biomasses. At the 

highest level of consumer interference (c = 5), however, the equilibrium abundances of both 

species are higher than at lower levels of interference. 

Dynamics on a Niche Model Food Web 

Most models of food webs generate a binary adjacency matrix A (Figure 4.5) where aij = 

1 indicates that species i is consumed by species j. This allows for convenient pairing with the 

rend package. The CRsimulator function can take the output of these models as input and 

simulate the dynamics of the participating species. In this example I demonstrate how the 

package can be used to simulate the dynamics of a niche model food web. The niche model is a 

food web model that arranges S species along some hypothetical niche axis. Each species 

consumes other species based on a randomly sampled feeding range with mean ci sampled from 

a uniform distribution from 0 to the species' niche value. The range is dependent on the user 

specified connectance C (proportion of realized links; Links/(S*(S-1))). 

Figure 4.6 shows the output that would be given if plot = TRUE in the CRsimulator 

function, with an additional inset showing the last 25 time steps for clarity. It is clear that 

following a short period of highly oscillatory behavior the system reaches equilibrium with 8 of 

the initial 20 species in the food web having gone extinct (Figure 4.7, N). All measured food web 

indices exhibit changes through time during the simulation (Figure 4.7), which indicates that the 
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extinctions caused by population dynamics in the model have an effect on the structure of the 

food web.  

The most obvious change in structure resulting from species extinction is a reduction in 

the number of species (N), and therefore the number of total links in the food web (Ltot). 

Concomitantly, the average number of links per species is reduced overall, however there is a 

bump around time step 50, suggesting that the extinctions in that time step were species with 

relatively few links. The initial sharp decline in LD was likely caused by the loss of species with 

many links. Connectance (C) increases through time, which is likely because the reduction in the 

number of species is large compared to the number of interactions lost. Decreases in food web 

diameter (D) and average path length (APL) are most likely to be caused by the loss of higher 

trophic level species (see also Figure 4.8). The clustering coefficient (CC) and modularity (M) 

show opposite patterns, with CC increasing and M decreasing. There is no change in the number 

of modules (nMod), and with the decrease in modularity the three modules get more strongly 

connected to one another. 

As would be expected with the decline in both D and APL, the individual trophic position 

of each species declines through time (Figure 4.8). Species starting at higher trophic positions 

(close to 6) declined more than mid-level consumers. Likewise, there were sharp declines in 

three-species configurations as a result of species extinctions (Figure 4.9). Of course, there is 

relatively little information that can be obtained from simply describing changes. To move from 

description to inference, the changes in trophic position and three-species configurations must be 

compared to a null model. Ideally the changes in trophic position and/or three-species 

configurations could be compared to sequences of random extinctions (i.e., irrespective of 
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dynamics) although a suitable alternative would be to compare the network at each time step to a 

niche model web with the same S and C.  

Food Web Dynamics Explorer 

 Accompanying this package is a web-based application 

(https://jjborrelli.shinyapps.io/FW_Dynamics/) that allows users to simulate biomass dynamics 

on niche model and random networks using the rend package. The benefit of this application is 

that people can explore the predictions of the bioenergetic model with absolutely no coding 

experience. This would be especially useful as a teaching tool for students to use in order to 

explore and learn how the dynamics of many species can be different from those of just two 

species. 

Users can manipulate the initial properties of the food web by first selecting either niche 

or random models. For each of those models food webs can have as few as 5 and as many as 30 

species, and connectance values can range from 0.05 to 0.3, which is the range found for real 

food webs. The number of basal species can also be set between 1 and 5. The simulation 

parameters (inputs to the CRsimulator function under the hood) that can be changed are the 

number of time steps (50 to 300), the functional response type (Holling or consumer-

interference), and the tuning parameter (q or c respectively).   

 The Food Web Dynamics Explorer application consists of five web pages. The first page 

(“The Model”) gives information about the underlying model. The same information can be 

found above in the Consumer-Resource Model section. On this page the model is outlined and 

the parameters and their default values are described, along with a description of what the user 

can manipulate. The second page (“Food Web”) displays the structure of the initial food web as 

both a network and an adjacency matrix. On the third page (“Simulation”) the output of the 
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simulation is presented as a plot of biomass dynamics through time. The last two pages display 

output analysis. The “Web Structure” page displays a figure similar to Figure 4.7, with the 

changes in food web indices through time. There is also a table listing descriptions of what each 

index means. The “Subgraphs” page gives the same information as Figure 4.9, the change in 

frequency of three-species subgraphs over time.   

Conclusions 

The rend package allows for the simulation of biomass dynamics on any potential food 

web structure. This ability will allow for further enumeration of the relationship between 

ecological network structure and dynamics. At this point the package grants the ability to 

measure the impact of predator-prey dynamics on food web structure, without allowing structure 

to change beyond species extinction. Nonetheless it would be relatively straightforward to use 

rend in conjunction with additional code for the generation of new and additional network 

structure. From there, the two-way relationship could be explored further.  

Moreover, that rend is easily usable with a small amount of skill in R makes it a valuable 

tool.  Anyone who is interested may download the package from GitHub, where it is currently 

being hosted. Simply type devtools::install_github(“jjborrelli/rend”) into the R console and it is 

ready to go.  

Future Directions 

There are a number of different directions further development of this package could take 

in terms of increasing performance and functionality. Below I highlight several directions I plan 

to take in further developing the rend package. 

The current functions for assessing the output of the simulation are descriptive in nature. 

They simply show the change in some index through simulated time. An important addition to 
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this suite of functions will be ways to test hypotheses through the implementation of null models. 

One null model would be to assume species extinctions are random. By comparing the network 

structure following random extinction orders to the food web following the simulation, one could 

determine if certain structures were more or less likely to be stable. 

Currently this package only supports a narrow range of model structures. Users can 

simulate dynamics with a Holling Type II, II.2, or III function response (Holling 1959a, b, 

Williams and Martinez 2004, Romanuk et al. 2009), or they can use the consumer-interference 

functional response (Beddington 1975, DeAngelis et al. 1975, Skalski and Gilliam 2001). This is 

only a small subset of the proposed functional response types and does not include both simpler 

and more complex forms.  

Drossel et al. (2004) demonstrated that ratio-dependent functional responses lead to more 

realistic food web structures. Therefore, in order to more properly assess how population 

dynamics impacts the structure of food webs using this package, this type of functional response 

should be included. However, currently there is no implementation of a ratio-dependent 

functional response for bioenergetic models. There has, however, been work in this direction for 

population-abundance based models.  

Additional options for simulation of trophic dynamics would be to incorporate 

abundance-based models in addition to the current bioenergetic model. This would allow for an 

expanded selection of functional forms and more flexibility for the user. 

Currently the models I have implemented in the rend package are deterministic. Multiple 

runs with the same food web adjacency matrix will result in the same equilibrium community, 

and the only source of randomness in the model is the initial biomasses of species, which are 

selected from a random uniform distribution. Any differences in initial biomass, however, are 
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rarely large enough to alter the final community structure. The reason that these models must be 

deterministic is because the deSolve package, which allows for the numerical integration, does 

not support stochastic differential equations. An alternative will be to use the sde package (Iacus 

2015), which is a package for the numerical integration of stochastic differential equations.   

Incorporating stochasticity in the simulation would allow for risk-based assessment of 

community configurations. Analysis of the dynamics resulting from stochastic models could 

proceed probabilistically rather than as binary outcomes (either a species goes extinct or it does 

not). Furthermore, as species in nature typically display stochastic dynamics, any predictions 

made from stochastic models would generate more realistic outcomes. 

The rend package was initially imagined for ecological network dynamics, which extends 

beyond food webs and predator-prey interactions (Ings et al. 2009, Kéfi et al. 2012). The 

umbrella of ecological networks includes other interaction types, and mutualistic or competitive 

networks are becoming increasingly popular areas of research (Medan et al. 2007, Bascompte 

2009, Johnson and Amarasekare 2013, Rohr et al. 2014). In addition to providing support for 

simulations of alternative interaction type networks, I would like to allow for dynamic 

simulations of whole communities. Natural communities are never made up of species 

interacting only one way, and there should be a way to integrate models of different interactions 

into a single simulation (Kéfi et al. 2012). 
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Figure 4.1: How resource biomass consumed changes with the tuning parameter (q or c) for both 

the Holling and consumer-interference functional responses (all other parameters set to default; 

states = NULL, t = 1:200, G = Gi, method = CRmod, K = 1, x.i = 0.5, yij = 6, eij = 1, B.o = 0.5, 

r = NULL, ext = goExtinct).  
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Figure 4.2: Biomass dynamics of a two-species predator prey system given default settings for 

the CRsimulator function (states = NULL, t = 1:200, G = Gi, method = CRmod, FuncRes = Fij, 

K = 1, x.i = 0.5, yij = 6, eij = 1, xpar = 0.2, B.o = 0.5, r = NULL, ext = goExtinct) displayed 

both in state space (Consumer vs. Resource Biomass) and as a trajectory through time.  
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Figure 4.3: Differences in dynamics of a two-species predator-prey system as a result of 

alternative functional responses (Holling, Fij; Consumer Interference, Fbd) displayed as 

Resource and Consumer trajectories. Simulation uses default parameters except for functional 

response (states = NULL, t = 1:200, G = Gi, method = CRmod, K = 1, x.i = 0.5, yij = 6, eij = 1, 

xpar = 0.2, B.o = 0.5, r = NULL, ext = goExtinct). 
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Figure 4.4: How varying the tuning parameter affects the dynamics of a two-species predator-

prey system with alternative functional responses. Simulation uses default parameters except for 

functional response (states = NULL, t = 1:200, G = Gi, method = CRmod, K = 1, x.i = 0.5, yij = 

6, eij = 1, xpar = 0.2, B.o = 0.5, r = NULL, ext = goExtinct). 

 

  



 
 

72 

 
 

Figure 4.5: One example of a species by species adjacency matrix for a simulated niche model 

food web with 20 species and a connectance of 0.15, constrained to have 5 basal species. A black 

square indicates that the row species is predated by the column species. This is interpreted as a 

matrix of 0s (white squares) and 1s (black squares) and then used to define the trophic structure 

for the bioenergetic model.  
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Figure 4.6: Simulated biomass dynamics through time of a niche model web with S = 20, C = 

0.15, and 5 basal species. Inset shows an expanded view of the last 25 time steps. Simulation 

parameters are: states = NULL, t = 1:200, G = Gi, method = CRmod, FuncRes = Fij, K = 1, x.i 

= 0.5, yij = 6, eij = 1, xpar = 0.2, B.o = 0.5, r = NULL, ext = goExtinct.  
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Figure 4.7: Plot of changes in a set of nine food web indices as a result of biomass dynamics on 

a niche model food web with S = 20, C = 0.15, and 5 basal species; number of species (N), 

number of links (Ltot), link density (LD), connectance (C), diameter (D), average path length 

(APL), clustering coefficient (CC), modularity (M), and number of modules (nMod). Simulation 

parameters are: states = NULL, t = 1:200, G = Gi, method = CRmod, FuncRes = Fij, K = 1, x.i 

= 0.5, yij = 6, eij = 1, xpar = 0.2, B.o = 0.5, r = NULL, ext = goExtinct. 
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Figure 4.8: Plot of changes in the trophic position of the species (each panel representing a 

single species) in a niche model food web with S = 20, C = 0.15, and 5 basal species as a result 

of biomass dynamics. Simulation parameters are: states = NULL, t = 1:200, G = Gi, method = 

CRmod, FuncRes = Fij, K = 1, x.i = 0.5, yij = 6, eij = 1, xpar = 0.2, B.o = 0.5, r = NULL, ext = 

goExtinct. 
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Table 4.1: Definitions of the parameters of the CRsimulator function 

Parameter Definition 

Adj Adjacency matrix 

states Biomass values for the species 

t Sequence of time steps 

G Function for basal resource growth 

method Function to input into the ode solver 

FuncRes Functional response 

K Carrying capacity 

x.i Mass specific metabolic rate 

yij 
Maximum rate at which species i assimilates species j per unit metabolic rate of 
species i 

eij Conversion efficiency 

xpar Tuning parameter either q or c depending on the functional response 

B.o Half saturation density of species j when consumed by species i 

r Vector of growth rates (1 for basal, 0 otherwise) 

ext Function describing extinction events during the simulation 

plot Whether or not to generate a plot of biomass against time 
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Table 4.2: Default parameter values input to the CRsimulator function, adopted from Williams 

and Martinez (2005). 

Parameter Value 

K 1 

x.i 0.5 

yij 6 

eij 1 

xpar 0.2 

B.o 0.5 
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Table 4.3: Description of the nine food web indices measured by the WEBind function; number 

of species (N), number of links (Ltot), link density (LD), connectance (C), diameter (D), average 

path length (APL), clustering coefficient (CC), modularity (M), and number of modules (nMod). 

Index Definition 

N The number of species wih positive biomass 

Ltot The total number of links among species with positive biomass 

LD The average number of links per species 

C The number of realized links as a fraction of the number of possible links 

D The longest shortest path between two species 

APL The average number of links between two species 

CC The probability of intraguild predation 

M 
The degree to which species are more connected to other species in their compartment 
than in others 

nMod The number of modules in the food web 
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Table 4.4: Sample output, the first six rows, of the CRsimulator function. 

time 1 2 

1 0.7754 0.733 

2 0.0304 0.988 

3 0.0053 0.6214 

4 0.0029 0.3801 

5 0.0025 0.2318 

6 0.0028 0.1414 
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Chapter 5: Influence of topology on the dynamic disassembly and assembly of food webs 
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Abstract 

A longstanding question in community ecology is what makes for a stable community. 

The study of food webs has sought to answer this question by assessing how different food web 

architectures impact community stability. Food web structure not only impacts the dynamics of 

the community, the population dynamics in the community, in turn, alter food web structure. 

Structure may change as a result of altered interactions through prey switching or through the 

local extinction/invasion of participating species. Previous work has suggested that some food 

web structures (e.g., short trophic chains, and motifs) are so commonly observed because they 

are more likely to be stable and thus less likely to be lost via extinction of participating species, 

or be preferentially retained during community assembly, but to date, this hypothesis has not 

been tested. I assessed how species deletions and introductions alter food web structure and 

determined how those changes affected either the persistence of the web or the success of the 

invasion using principle components regression. I found that the model structure and 

parameterization caused substantial variation in the results. The properties of individual species 

had significant effects on the outcome, and a change in the motif profile had significant impacts 

for both persistence following deletion as well as for invasion success.  
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Introduction 

Ecologists have been interested in the link between the complex structure of natural 

communities and their dynamics for over sixty years, beginning in the 50’s when ecologists such 

as McArthur (1955), Elton (1958), and Paine (Paine 1966, 1969) hypothesized that complex 

communities should be more stable as a result of redundancies in the system. This simple 

observation was turned on its head when May (1972) demonstrated that there was, 

mathematically, no reason to suspect a link between increased complexity and stability. In fact, 

the opposite pattern was true in in silico model ecosystems constructed at random (May 1972, 

1973), and not constrained to have a feasible equilibrium (Roberts 1974, Christianou and 

Kokkoris 2008). May suggested that ecologists should seek to “elucidate the devious strategies 

which make for stability in enduring natural systems” (May 1973, p 72), launching forty years of 

research on ecological networks (e.g., Cohen and Newman 1985, 1988, Lockwood et al. 1997, 

Dunne et al. 2002, Guimarães et al. 2007, Vermaat et al. 2009, Bascompte 2009, Eklöf et al. 

2013).  

Research into the link between structure and stability has taken three major paths: 

description of the structure of empirical networks (e.g., Cohen and Newman 1985, Dunne et al. 

2002, Vermaat et al. 2009), analyses of random matrices (May 1972, Pimm and Lawton 1977, 

Allesina and Pascual 2008, Allesina and Tang 2012, Tang and Allesina 2014), and analysis of 

the behavior of dynamical models of species interactions (McCann et al. 1998, 2005, Drossel et 

al. 2004, Williams and Martinez 2005, Romanuk et al. 2009, Petchey et al. 2010). The majority 

of research has historically been focused on food webs, networks of feeding interactions. 

Recently, however, there has been increased interest in other interaction types such as 

mutualisms (Olesen et al. 2008, Alarcón et al. 2008, Albrecht et al. 2010, Rohr et al. 2014), 
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parasitism (Lafferty et al. 2006, 2008, Dunne et al. 2013), competition (Allesina and Levine 

2011, Allesina and Tang 2012), and mixed interactions (Proulx et al. 2005, Ings et al. 2009, Kéfi 

et al. 2012). 

Early studies of food webs focused on their topological structure, especially the 

relationship between the number of species and the number of links in the web. The first 

collections of food web datasets were used to demonstrate scale-invariance, that the average 

number of links per species remains constant with increasing numbers of species (Briand 1983, 

Briand and Cohen 1984). Following the collection of food webs with higher resolution and more 

taxa (e.g., Martinez 1991, Polis 1991), the notion of scale-invariance was scrapped. Many other 

food web properties have been explored, including predator-prey ratios , proportion of top, 

intermediate, and basal species as well as proportions of links between each group, intervality in 

consumer diets, and food chain length (Post 2002, Dunne 2005, Stouffer et al. 2006).  

These studies of food web structure guided the development of phenomenological models 

like the cascade (Cohen and Newman 1985), niche (Williams and Martinez 2000), and nested-

hierarchy (Cattin et al. 2004) models. Each of these models takes as input the number of species 

and the connectance (proportion of realized links) and uses a set of heuristic rules to govern the 

placement of links within a modeled food web. Typically species are arranged along some 

hypothetical niche axis, and then prey are chosen (with rules dependent on the model) from 

species whose niche value is (typically) lower. Stouffer et al. (2005) proved that there were two 

key components required to predict food web properties using these models. First, the niche 

values of the species must form an ordered set, and second species have a probability of preying 

on species with a lower niche value (drawn from an exponential distribution).  
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Random matrices link the equilibrium dynamics of ecological communities to their 

structure, and research in this area has expanded on the observations of May (1972). The matrix 

of interest is the Jacobian, or community matrix, which describes how each species impacts the 

growth of the other species. Finding the eigenvalues of this matrix allows one to determine how 

the community will respond to a small perturbation away from equilibrium. If all eigenvalues are 

negative, the system will return to equilibrium. The magnitude and signs of the values in the 

Jacobian matrix are defined by both the equations governing the dynamics of the system and by 

the structure of the interactions among species. The behavior of the community around the 

equilibrium can then be described by randomly filling in the Jacobian matrix and finding the 

distribution of eigenvalues. Recent research has shown that increasing the proportion of 

predator-prey interactions (relative to other interaction types) can help to stabilize communities 

(Allesina and Pascual 2008, Allesina and Tang 2012), and that correlations between the strengths 

of reciprocal interactions may be more important to stability than the structure of the network 

(Tang et al. 2014). However, the use of random matrices may lead to underestimation of the 

stability of real communities (James et al. 2015).   

Where random matrices can be used to explore the link between structure and dynamics 

around equilibrium, the application of dynamical models to ecological communities allows for 

an understanding under non-equilibrium conditions. Using this approach ecologists can 

determine the impact of the type of dynamics (Drossel et al. 2004) and model parameterization 

(McCann et al. 1998) on food web stability. Additionally, models of population dynamics can be 

paired with models of community assembly (Pawar 2009), metacommunity dynamics (Baiser et 

al. 2012), and evolution (Loeuille and Loreau 2005). In simulations of assembly, food webs grow 

and change with introductions of new species and loss through extinction and/or migration. Over 
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time these simulated food webs reach an equilibrium number of species and their final structure 

can be compared to empirical food webs.  Different dynamical model equations and 

parameterizations may yield equilibrium webs that differ from what is observed in nature 

(Drossel et al. 2001, 2004, Drossel and Mckane 2003, Allhoff and Drossel 2013).       

 The hypothesis of selection on stability suggests that the dynamics of interacting 

populations creates a selective process that leads to observed food web structure via the 

preferential loss of unstable configurations (Borrelli and Ginzburg 2014, Borrelli 2015, Borrelli 

et al. 2015). As food web structure changes via the introduction of new species through 

migration and invasion, or through loss of species from local extinction, new food web structures 

either will or will not persist through time.  

 Two patterns found in real food webs have been hypothesized to have been produced by 

selection on stability: short food chains (Borrelli and Ginzburg 2014) and three-species motif 

profiles (Borrelli 2015). These patterns represent a signature of the selection process because 

they are structures that both have a high probability of being stable and a high frequency in 

observed food webs. Much stronger evidence that these patterns are generated via selection on 

stability of food webs would come from dynamical models applied to food webs. If this selective 

process is occurring, the observed patterns should emerge from the dynamics of food webs 

whose structure is generated from a reasonable mechanism. 

 I applied a bioenergetic model of multispecies predator-prey dynamics to food webs 

generated from disassembly (species removal) and assembly (species introduction) processes.  

Patterns of short chains and three species motifs could result from the preferential establishment 

of species contributing to them, or the preferential loss of species that do not contribute to these 

patterns.  I looked at the relative importance of the loss of species from destabilizing links, the 
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loss of species that contribute more towards short food chains and three-species configurations, 

or the addition of species that are more likely to create stable links, in overall food web stability.  

Methods 

Population Dynamics Model 

I took advantage of a well-studied model of multispecies predator-prey dynamics 

(McCann et al. 1998, Williams and Martinez 2005, Romanuk et al. 2009). This model was 

originally proposed by Yodzis and Innes (1992) and later extended to more than two species 

(McCann et al. 1998). The impacts of varying the model structure and parameterization on food 

web persistence has also been explored (Williams and Martinez 2005). Williams and Martinez 

(2005) and Romanuk (Romanuk et al. 2009) also suggest a simplified version of this model to 

reduce the size of parameter space that needs to be explored. It is this simplified version that I 

used to investigate food web disassembly and assembly. The model takes the form, 

𝑑𝐵𝑖(𝑡)

𝑑𝑡
= 𝐺𝑖(𝐵) −  𝑥𝑖𝐵𝑖(𝑡) + ∑(𝑥𝑖𝑦𝑖𝑗𝐹𝑖𝑗(𝐵)𝐵𝑖(𝑡)

𝑛

𝑗=1

− 𝑥𝑗𝑦𝑗𝑖𝐹𝑗𝑖(𝐵)𝐵𝑗(𝑡)/𝑒𝑖𝑗)                  (𝑒𝑞. 5.1) 

Here basal species increase in biomass according to Gi, which is density-dependent 

growth expressed as riBi(1-(Bi/Ki)). For non-basal species, ri is equal to 0. All species in the 

model die at a rate equal to xi, which represents the metabolic rate of species i. Consumers 

increase in total biomass with consumption, and intermediate consumers lose total biomass from 

being consumed. In this model consumption can be modeled using one of two functional 

responses: one based on Holling’s Type II and III (Holling 1959a, b), and another based on 

consumer interference (Beddington 1975, Skalski and Gilliam 2001). The Holling functional 

response, FHij,  
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𝐹𝐻𝑖𝑗(𝐵) =  
𝐵𝑗

1+𝑞

∑ 𝐵𝑘
1+𝑞 +  𝐵0

1+𝑞
𝑘

                                                                                                          (𝑒𝑞. 5.2), 

can be tuned to represent either the standard Type II (q = 0) or Type III (q = 1), with other values 

of q > 0 being varying strength of the Type III response (i.e., larger values of q represent larger 

prey refugia). Alternatively, the Beddington-DeAngelis functional response, FBDij,  

𝐹𝐵𝐷𝑖𝑗(𝐵) =  
𝐵𝑗

∑ 𝐵𝑘(𝑡)𝑛
𝑘=1 + (1 + 𝑐𝑖𝑗𝐵𝑖(𝑡)𝐵0𝑗𝑖)

                                                                           (𝑒𝑞 5.3), 

takes the shape of a Holling Type II functional response when c = 0, but the strength of intra-

specific consumer interference can be increased by setting c > 0. Additional constraints on 

consumption come from the the maximum ingestion rate (yij), the half-saturation constant (B0), 

and energetic efficiency (eij). The energetic efficiency parameter here is used to convert the 

biomass lost by species j into biomass of species i.        

This bioenergetic model offers several benefits over alternative dynamical model 

structures. For example, many studies of food web assembly and dynamics have used a multi-

species Lotka-Volterra model (e.g., Baiser et al. 2010). Drossel et al. (2001, 2004) showed that 

population dynamics models with non-linear functional responses allow for the generation of 

more realistic food webs via evolution-based models of assembly than models with linear 

functional responses (e.g., Holling Type I). The preference of predator j for prey i can also be 

incorporated into a bioenergetic type model relatively easily as well, although for this study I 

assumed that predators had no prey preferences.    

Simulation 

 A 1000 species regional food web with connectance of 0.15 was generated using the 

niche model (Williams and Martinez 2000). I sampled 200 local food webs by randomly 
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selecting 50 species from the regional food web. Local webs were constrained to have 5 basal 

species and no unconnected species, meaning that all consumers were required to have at least 

one resource and all basal species had at least one consumer. Population dynamics of the species 

in each local web were simulated for 1000 time steps using the bioenergetic model described 

above. Dynamics were simulated with either a Holling functional response (FHij) or one with 

consumer interference (FBDij). For each model structure, three values of the tuning parameter (q 

and c respectively) were applied: 0, 0.2, and 1. Additional model parameters were kept constant 

(Table 5.1) following Williams and Martinez (2005) and Romanuk (2009). This gave me six 

scenarios, one for each combination of model structure and tuning parameter. The number of 

resulting equilibrium webs (“equilibrium webs” refers to the local web at the end of the 1000 

time steps) that had no unconnected species were 19, 133, 94, 30, 53, and 76 respectively.  Food 

web disassembly and assembly processes were applied to each of these resultant communities. 

The code used for each part of this simulation is provided in Appendix 4.  

Disassembly 

Disassembly was simulated by removing each species from the initial equilibrium food 

web one at a time. Following the deletion, the new web was compared to the full web to 

determine the change in a set of 13 food web properties (described in Table 5.2) and 13 three-

species subgraphs. In addition to the change in food web properties, I measured the generality, 

vulnerability, trophic position, and omnivory index of the deleted species. The dynamics of the 

remaining species were simulated using the bioenegetic model described above with the same 

functional response and tuning parameter combination that was used for the initial simulation 

that generated equilibrium webs from local webs. Initial abundances for each species were set to 

their equilibrium abundance found at the end of the initial 1000 time steps. Simulations then 
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proceeded for 500 time steps, after which I determined the persistence of the web (the number of 

species whose biomass was greater than 0). All species whose biomass fell below 10-10 were 

considered extinct and their biomass was set to 0.  

Assembly  

A new species was randomly chosen from the regional food web (the original 1000 

species niche model food web) to invade the equilibrium food webs. The newly introduced 

species was required to have at least one resource existing in the community, unless it was a 

basal species, in which case it had to have at least one consumer in the web. This ensured that all 

introduced species had a non-zero chance of becoming established. Following the selection of a 

species and introducing it into the web, I compared the invaded web to the pre-invasion initial 

equilibrium web to determine how the introduced species altered a set of 13 food web properties 

(Table 5.2) and the frequency of 13 three-species configurations. For each initial food web, 300 

different species introductions were made.  

The bioenergetics model was then applied to the invaded web, with the same structure 

and tuning parameter combinations as were used to generate the initial web. The simulated 

dynamics were used to determine if the introduced species survived for all 500 time steps 

(establishment). If it did not survive for 500 time steps, I recorded how long the introduced 

species persisted (time to extinction). Additionally, I determined how many secondary 

extinctions occurred as a result of the introduction as the change in species from the initial 

invaded to the final web. I also recorded the introduced species’ trophic specialization, 

vulnerability, trophic position, and omnivory index.        

Analysis 
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To determine how deleted or introduced species impacted the structure of the food web, I 

computed the change in a set of food web properties; number of species (N), number of links (L), 

connectance (C), mean trophic generality (meanGen), mean vulnerability (meanVul), standard 

deviation of generality (sdGen), standard deviation of vulnerability (sdVul), mean trophic 

position (meanTP), standard deviation of trophic position (sdTP), mean omnivory index 

(meanOI, where omnivory index is the standard deviation of the trophic position of all prey for 

the target species), standard deviation of omnivory index (sdOI), average path length (APL), and 

diameter (D).  In addition to the food web properties, I computed the change in the substructure 

of the web as the change in frequencies of three-species configurations.  

To get a general overview of how species’ roles affected food web disassembly, I split 

the data into two groups: deletions that led to no change in persistence (no secondary 

extinctions), and deletions that reduced persistence. For these two groups I compared the mean 

change in food web properties, mean change in three-species modules, and the mean value for 

deleted species characteristics.  

Species introductions in food web assembly could result in one of four outcomes. The 

introduced species could either become established in the web or go extinct, and it could either 

cause other species to go extinct or not. When the introduced species was able to establish in the 

food web and cause no extinctions the food web grew. If the introduced species established and 

caused extinctions, the food web either shrank or stayed the same (depending on the number of 

extinctions). Alternatively if the introduced species went extinct, it could either cause additional 

extinctions while it persisted, or it could go extinct without causing additional extinctions. To 

determine if the change in web properties or substructure affected the result of species 
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introduction, I compared the mean change in these properties across all four possible scenarios. I 

also compared the mean characteristics of successful and unsuccessful invaders.       

Many of the food web properties I measured are correlated. In order to compensate for 

the inflated variance caused by multicollinearity, I used principle components regression with 

linear mixed effects models to determine the effect of species’ roles on the dynamics of the 

system (persistence in the case of disassembly and invasion success for assembly). Principle 

components were separately determined for the 13 food web properties and for the 13 three-

species configuration frequencies.  

I tried to predict the results of species addition or subtraction for each of the six 

combinations of functional response and tuning parameters.  Three separate sets of predictor 

variables were used, including changes to whole web properties, changes to subgraph structure, 

or properties of the deleted/invaded species. For each set of predictor variables, a principle 

components analysis was used to determine the linear combination of weighted predictor 

variables that explained the largest amount of the variance in the predictors. The first principle 

component of web properties (PCweb), subgraph structure (PCsub), and species properties of 

removoved or added species (PCsp) was then used to predict either persistence of remaining 

species, in the case of species removals, or invasion success, in the case of species additions.  

The identity of the local web was included in each model as a random effect. This resulted in a 

total of 36 models (3 subsets of predictors x 2 model structures x 3 parameterizations x 2 

simulated scenarios).     

Results  

Disassembly 
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 Most webs were persistent following deletions that had large effects on most food web 

properties.  There were few consistent differences among the relatively few webs where 

secondary extinctions occurred and webs that were unaffected by species deletions. However, 

secondary extinctions were more common when deletions altered food web structure in specific 

ways. In particular, when there was a large change in the frequency of tritrophic chains following 

the initial removal of a species, the resulting webs were not persistent (Figure 5.1). In scenarios 

with weak consumer interference, persistent webs were those that lost more modules with double 

links (Figure 3.1) after species deletion. Under conditions of strong consumer interference, webs 

that were persistent lost more competition (apparent and exploitative) modules.  The attributes of 

the deleted species were consistently different between persistent and non-persistent food webs 

(Figure 5.2). Specifically, secondary extinctions followed the deletion of species that had more 

predators (higher vulnerability) and occupied lower trophic levels. Non-persistent webs also 

resulted from the deletion of species that had more prey (higher generality) and less omnivory, 

although these results were more variable. There was also an apparently large effect of functional 

response and parameterization (Figures 5.1-3), as the effect of changes in each of the measured 

properties varied across scenarios.  

 PCweb_del varied among the six different bioenergetic model combinations, and explained 

80-99% of the variation in these properties. The change in links was present in the first axis for 

all combinations, and was the sole variable for 3 combinations. Of the remaining combinations, 

mean generality and vulnerability contributed to the first principle component, and in two of the 

combinations diameter was included. The loadings on PCsub_del were more consistent across 

combinations: with the tritrophic chain, apparent competition, and exploitative competition 

consistently included. The intraguild predation module was also correlated with the first 
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principle component in four of the six combinations. This principle component explained 48-

65% of the variation. PCsp_del was comprised of the removed species’ generality and trophic 

position, and explained 60-83% of the variation,    

 PCweb_del did not have a significant effect on persistence in most cases (Table 5.3). The 

only exception being a statistically significant negative effect of PCweb_del on persistence when 

consumer interference in the functional response was very weak (c = 0).  PCsub_del had a positive 

effect on persistence given a weak Type III functional response (q = 0.2) or weak consumer 

interference (c = 0, c = 0.2). The removed species’ properties had the most consistent positive 

effect on persistence. When both subgraph structure and species properties were found to have 

effects on persistence (FHij, 0.2; FBDij, 0.2), the model based on subgraph structure explained 

more of the variation. In one of those two cases (FBDij, 0.2) the subgraph structure model had the 

lowest AIC as well.  

Assembly  

 Successful invaders added more links to the web than unsuccessful ones in all scenarios, 

except when consumer interference was weak (Figure 5.4). Additionally, successful invaders 

increased mean generality and vulnerability, as well as the variability in those properties. When 

there was a Type II or weak Type III functional response unsuccessful invaders increased mean 

trophic position more, although in other scenarios the same effect was shown by successful 

invaders. Unsuccessful invaders always caused a larger increase in the mean and standard 

deviation of the omnivory index, as well as increased average path length and diameter.  

Successful invaders in scenarios with a consumer interference functional response 

contributed more tritrophic chains, exploitative and apparent competition, and intraguild 

predation modules (Figure 5.5). Scenarios with a weak Type III or Type II functional response 
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had the opposite pattern for tritrophic chains, but similar patterns for exploitative, apparent 

competition, and intraguild predation. In some scenarios successful invaders added more 

modules that include double links (e.g., d2, d6, and d7 with strong consumer interference; Figure 

5.5), although in most cases invaders adding more of these modules was unsuccessful.     

 The characteristics of successful invaders also varied with the functional response and 

parameterization. One consistent difference was that a successful invasion was accompanied by 

fewer secondary extinctions than unsuccessful invasions (Figure 5.6). With Type II or weak 

Type III functional responses invaders also had lower trophic positions when they were 

successful, although with strong Type III and moderate consumer interference the reverse was 

true. Successful invaders were also always less omnivorous than unsuccessful ones, although 

their generality did not show consistent patterns. With either a strong Type III or at least some 

consumer interference, successful invaders had more prey species and fewer predators. 

One difference between successful invaders that cause secondary extinctions and those 

that do not was that the latter tended to add more links to the web. Invaders that caused 

extinctions also tended to increase the number of tritrophic, apparent competition, exploitative 

competition, and intraguild predation modules in the web. In most scenarios invaders that did not 

cause extinctions tended to increase the average path length, diameter, and mean trophic 

position.  Every unsuccessful invader caused secondary extinctions. 

 PCweb_inv was most strongly correlated with the change in the number of links for all 

scenarios. In the two scenarios with functional responses in which q = c = 0, mean generality, 

vulnerability and the standard deviation in generality were also correlated with the first principle 

component. Tritrophic chains, intraguild predation, apparent competition, and exploitative 

competition were all correlated with the first principle component for the change in subgraph 
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structure for all scenarios. This component explained 47-70% of the variation in the predictors. 

Variation explained by PCsp_inv ranged from 50-55%. Introduced species’ generality and trophic 

position were correlated with the first principle component across all scenarios. Vulnerability of 

the introduced species was correlated with the first principle component in four of the six 

scenarios, and omnivory only in one.  

 Introduced species’ success was consistently significantly related to changes in web 

structure or characterstics of invading species, with the exception of the model of subgraph 

structure for the Holling functional response with c = 0 (Table 5.3). Among the 18 models 

predicting success of the introduced species, the lowest AIC values (best fit) were those based on 

properties of the introduced species (PCsp_inv). Models using PCweb_inv as a predictor had the 

second lowest AIC values while those using PCsub_inv had the highest. However, models using 

PCsub_inv as a predictor consistently explained a greater proprotion of the variation (higher r2).  

The effect of species properties were dependent upon the form of the functional response. 

In scenarios with a Holling-based functional response, regardless of parameterization, PCsp_inv 

had a negative effect on establishment, but in scenarios with consumer interference, the effect 

was positive. PCsub_inv typically had a negative effect on establishment and in most scenarios, 

increases in PCweb_inv led to an increase in the introduced species success. However, with a 

scenario of a weak Type III functional response (q = 0.2) the effects of PCsub_inv and PCweb_inv 

were positive and negative respectively.  

Discussion 

 Based on the idea of selection on stability, the presence of species that contribute to food 

web configurations believed to be more stable should increase whole food web stability. Thus, 

their loss from an equilibrium food web should have a larger effect on persistence of remaining 



 
 

97 

 
 

species than would the removal of other species. These species likewise should have a higher 

chance of becoming integrated into the food web as successful invaders and cause fewer 

secondary extinctions after invasion. The results of the simulations described here were actually 

far more complex as the impact of food web structure on stability was dependent on both the 

functional response type and model parameterization.  

Model food webs with shorter food chains have a higher probability of being stable 

(Borrelli and Ginzburg 2014).  As a result, when species are deleted from the higher trophic 

levels there should be smaller effects on persistence because larger reductions in mean trophic 

position, average path length, and food web diameter should result in more persistent webs. In 

this study, the removal of species at higher trophic positions did typically produce webs that 

were persistent. When a weak type II functional response was used in the simulation, persistent 

webs were also associated with a larger decrease in mean trophic position, matching 

expectations. In other scenarios, however, there were no differences between persistent and non-

persistent webs with respect to the reduction in mean trophic position. There were no differences 

between persistent and non-persistent webs with respect to the reduction in diameter or average 

path length in any scenarios tested.     

 I also expected that invading species at low trophic levels should be more likely to 

become established. Comparing successful and unsuccessful invasions, introduced species that 

increased the average path length (by either participating at higher trophic levels or causing other 

species to increase their trophic position) were less likely to become established in the 

community. However, in some cases, successful introduced species still increased mean trophic 

position and had higher generality and vulnerability, suggesting that these successful 

introductions were mid-level well-connected consumers with both many prey and many 
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predators. This pattern matches the ambivalent results of the regression models based on invader 

species’ properties. In scenarios with Holling-based dynamics, greater trophic position, 

vulnerability, and generality decreased invasion success. However, in scenarios with consumer 

interference these properties increased success.    

 The motif profile of food webs has also been suggested to arise via selection on stability 

(Borrelli 2015). A selective process could occur via either the disassembly of webs with the 

preferential loss of species contributing to unstable three-species configurations, or from 

assembly processes favoring the establishment of species whose interactions increase the 

occurrence of stable subgraphs (Borrelli et al. 2015). The configurations that I expected to 

increase the stability of the web are the tritrophic chain, apparent competition, and exploitative 

competition (Prill et al. 2005, Borrelli 2015).   

In this study, webs were less persistent with the deletion of species participating in many 

tritrophic chains. For apparent and exploitative competition, the removal of species from these 

modules had a variable effect on persistence, depending on the dynamical model structure. With 

Holling dynamics, non-persistent webs typically lost more exploitative competition modules, and 

when there was Type II or weak Type III functional response, they lost fewer apparent 

competition modules. With consumer interference, non-persistent webs tended to lose fewer 

apparent and exploitative competition modules. Although modules with double links were rare, 

persistent webs often lost more of them, which is what I expect because webs with fewer of them 

should be more stable.   

The results of principle components regression were affected by the type of dynamics as 

well. There was a significant positive effect of tritrophic chain, apparent and exploitative 

competition modules with a weak Type III functional response and a negative effect with weak 
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consumer interference. In other scenarios the loss of some of the stable modules may not have 

had a large impact on the stability of the whole web because of the relative rarity of unstable 

modules. Thus losing some stable modules would not have substantially altered the ratio of 

stable to unstable modules.  

 PCsub_inv included tritrophic chains, apparent competition, exploitative competition and 

intraguild predation. With increasing the frequency of these stable modules, I expected the 

invader to have increased chances of successful establishment, but this was only the case with a 

weak Type III functional response. For most scenarios there was a negative effect of this 

principle component on invader success. Comparing the differences in the mean change in 

frequencies, however, in most scenarios with a consumer interference functional response 

successful invaders added more tritrophic chains, intraguild predation, and apparent and 

exploitative competition modules. However, contrary to expectation, in some scenarios 

successful invaders added more of the unstable modules. This again could result from the 

module frequencies being heavily weighted towards those that are stable, compared to those that 

are unstable.   

 The success or failure of establishment for an introduced species in a community is not 

the only possible outcome of invasion. Three out of the four possible impacts of invaders were 

represented in these simulations: establishment with no secondary extinctions, establishment 

with secondary extinctions, and no establishment with secondary extinctions. Whenever the 

introduced species failed to establish it always caused additional species to go extinct. Once 

again, however, comparing the mean change in frequencies across scenarios, there was no clear 

pattern distinguishing invaders that did or did not cause extinctions, or successful and 

unsuccessful invaders that caused extinctions.  
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 The lack of any apparent pattern in the differences and effects of the frequencies of three-

species modules may reflect the fact that food webs are more than the sum of their parts (Cohen 

et al. 2009). There may be emergent properties resulting from the interactions among the 

modules, for example, that alter their probability of being stable. Thus it may not be best to 

determine whether the addition of a module may lead to increased success based on its 

probability of stability in isolation, rather it may depend on both its internal stability and the 

context in which it is embedded.  

For example, the intraguild predation module in isolation may be either stable or unstable 

(Borrelli 2015), and has been part of a larger debate over the stabilizing or destabilizing 

influence of omnivory in food webs (Pimm and Lawton 1978). Conventional wisdom states that 

when two consumers feed on the same resource and one consumer (the intraguild predator) feeds 

on its competitor (the intraguild prey), the only way for that configuration to be stable is if the 

consumed predator is a more efficient consumer of the shared resource. Kondoh (2008), 

however, demonstrated that the context in which an intraguild predation module is embedded, 

whether there are external interactions that are favorable for the intraguild predator or the 

intraguild prey, will impact its stability.   

Moreover, there was a lack of consistency in my results for how changes in whole web 

properties affected stability. One possibility is that correlations among the different web 

properties have an affect on their relationship with food web stability. For example, increased 

mean generality or vulnerability of species in a web is directly a result of increased exploitative 

and apparent competition. Likewise, increased mean trophic position and average path length are 

related to the number of tritrophic chains in the food web.  
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 Other studies that have attempted to predict the success or failure of invasions using 

similar models have found results similar to those found here. These studies have focused on 

either the properties of the web that is being invaded or the properties of the invader itself, rather 

than the change in web structure as a result of the introduction (Romanuk et al. 2009, Baiser et 

al. 2010). Baiser et al. (2010) found that connectance of the food web has a variable effect on 

invasion success that is dependent upon the trophic level of the introduced species. Alternatively, 

Romanuk et al. (2009) demonstrated that the best explanation for invasion success tended to be 

properties such as generality and vulnerability, although in some cases the particular properties 

of the invader made for better predictors. Unlike these previous studies, I did not categorize my 

predictions depending on the trophic category of the invader (basal, herbivore, carnivore), which 

may have caused some of the complex results. Additionally, where other studies used only a 

single model of dynamics, I looked at a range of model structures and parameterizations to gauge 

whether there were any differences caused by how dynamics are simulated. I found that model 

structure and parameterization can influence the properties that are the best predictors of 

invasion success.    

  Principle components regression, applied here, is a first step. Like previous studies that 

have utilized logistic regression (Baiser et al. 2010) and discriminant analysis (Romanuk et al. 

2009), I found the best combination of variables to be used to predict an outcome. The indices 

that are being measured, however, are clearly related to one another (Vermaat et al. 2009). A 

more useful approach may be to use structural equation modeling. This would allow one to tease 

apart the various correlations among the measured indices to determine which are truly important 

for the stability of the food web during disassembly and assembly and how each one influences 
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how the others affect the outcome. It would also allow for better predictive ability, as principle 

components as predictor variables in a model are not easily interpreted.    

 Future work could also expand on this study by incorporating additional realism into the 

bioenergetic model. The model used here is simplified in order to be more computationally 

tractable. Parameters such as metabolic rate, energetic efficiency, and the tuning parameter were 

kept constant for all species. The model could be modified to include variation in these 

parameters, possibly based on allometric relationships. Alternatively, additional parameters 

could be incorporated to relax the assumption of no prey preferences among predators. It is 

possible that incorporating additional complexity to the model could help to reconcile some of 

the conflicting results. 
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Figure 5.1: The mean change in three-species module frequency following the deletion of a 

species for webs that were persistent following species removal (red) and webs that were not 

(blue). Error bars represent 95% confidence intervals. Modules (rows) identified with an “s” are 

those with single directional links only, and include tritrophic chains (s1), intraguild predation 

(s2), three-species loops (s3), apparent competition (s4), and exploitative competition (s5). 

Modules with a “d” are the eight different modules that include bi-directional links (e.g., A eats 

B and B eats A). Columns represent the two functional response types used in the simulation; 

Holling (Fij) and consumer interference (Fbd). The x-axis is the value used for the tuning 

parameter (q or c).  
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Figure 5.2: The mean species-level properties of the removed species for webs that were 

persistent following species removal (blue) and webs that were not (red). Error bars represent 

95% confidence intervals. Measured species characteristics (rows) include generality (delGen), 

vulnerability (delVul), trophic position (delTP), and omnivory index (delOI). Figure columns 

represent the two functional response types used in the simulation; Holling (Fij) and consumer 

interference (Fbd). The x-axis is the value used for the tuning parameter (q or c). 
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Figure 5.3: The mean change in food web properties following the deletion of a species for webs 

that were persistent following species removal and webs that were not. Error bars represent 95% 

confidence intervals.  Food web properties measured (rows) are the number of links (L), mean 

generality (meanGen), mean vulnerability (meanVul), standard deviation of generality (sdGen), 

standard deviation of vulnerability (sdVul), mean trophic position (meanTP), standard deviation 

of trophic position (sdTP), mean omnivory index (meanOI), standard deviation of the omnivory 

index (sdOI), average path length (APL), and diameter (D). Figure columns represent the two 

functional response types used in the simulation; Holling (Fij) and consumer interference (Fbd). 

The x-axis is the value used for the tuning parameter (q or c). 
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Figure 5.4: The mean change in food web properties following the introduction of a new species 

for successful (blue) and unsuccessful invasions (red). Error bars represent 95% confidence 

intervals. Food web properties measured (rows) are the number of links (L), mean generality 

(meanGen), mean vulnerability (meanVul), standard deviation of generality (sdGen), standard 

deviation of vulnerability (sdVul), mean trophic position (meanTP), standard deviation of trophic 

position (sdTP), mean omnivory index (meanOI), standard deviation of the omnivory index 

(sdOI), average path length (APL), and diameter (D). Figure columns represent the two 

functional response types used in the simulation; Holling (Fij) and consumer interference (Fbd). 

The x-axis is the value used for the tuning parameter (q or c). 
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Figure 5.5: The mean change in three-species module frequency following the introduction of a 

species for successful (blue) and unsuccessful invasions (red). Error bars represent 95% 

confidence intervals. Modules (rows) identified with an “s” are those with single directional links 

only, and include tritrophic chains (s1), intraguild predation (s2), three-species loops (s3), 

apparent competition (s4), and exploitative competition (s5). Modules with a “d” are those that 

include bi-directional links (e.g., A eats B and B eats A). Figure columns represent the two 

functional response types used in the simulation; Holling (Fij) and consumer interference (Fbd). 

The x-axis is the value used for the tuning parameter (q or c). 
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Figure 5.6: The mean introduced species characteristics for successful (blue) and unsuccessful 

invaders (red). Error bars represent 95% confidence intervals. Measured species characteristics 

(rows) include generality (delGen), vulnerability (delVul), trophic position (delTP), omnivory 

index (delOI), and number of secondary extinctions (dN). Figure columns represent the two 

functional response types used in the simulation; Holling (Fij) and consumer interference (Fbd). 

The x-axis is the value used for the tuning parameter (q or c). 
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Table 5.1: Fixed parameters for all simulations using the bioenergetics model. 

Parameter Value 

K 1 

x.i 0.5 

yij 6 

eij 1 

B.o 0.5 
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Table 5.2: Definitions of measured food web properties. 

Property Definition 

Links 
The number of connections made between the focal species and all other 
species in the food web. 

Generality The number of prey species a focal species has 

Vulnerability The number of predators a focal species has 

Trophic Position 
One plus the average trophic position of a species’ prey, such that basal 
species have a trophic position of one. 

Omnivory Index The standard deviation of the trophic positions of a species’ prey 

Average Path Length The average number of links between two species 

Diameter The longest shortest path from a basal species to a top predator 
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Table 5.3: Outcomes of all 36 principle components regressions with linear mixed effects 

models (significant effects are in bold). Rows are grouped by functional response and parameter 

combination (q for Holling or c for consumer interference) scenario by shading.   

Simulation 

Principle 

Components 

Predictor 

Estimate P value AIC r2 
Functional 

Response 

q or 

c 

Deletion Subgraph -0.0716 0.3011 285 0.784 Fij 0 

Deletion Web Property -0.0873 0.3764 285 0.7991 Fij 0 

Deletion Species Property 0.1086 0.149 284 0.801 Fij 0 

Deletion Subgraph 0.0035 0.0042 8472 0.9054 Fij 0.2 

Deletion Web Property -0.0056 0.3302 8479 0.9077 Fij 0.2 

Deletion Species Property 0.0964 0 8236 0.8685 Fij 0.2 

Deletion Subgraph -0.0044 0.1128 5018 0.7398 Fij 1 

Deletion Web Property 0.0093 0.2792 5019 0.7396 Fij 1 

Deletion Species Property 0.2261 0 4458 0.5879 Fij 1 

Deletion Subgraph 0.1037 0.0281 421 0.8216 Fbd 0 

Deletion Web Property -0.0244 0 426 0.8406 Fbd 0 

Deletion Species Property 0.082 0 424 0.8375 Fbd 0 

Deletion Subgraph -0.1872 0 703 0.6808 Fbd 0.2 

Deletion Web Property -0.0667 0.1842 726 0.6928 Fbd 0.2 

Deletion Species Property 0.2046 0.0001 710 0.6452 Fbd 0.2 

Deletion Subgraph -0.0007 0.9611 1700 0.7442 Fbd 1 

Deletion Web Property -0.0322 0.1714 1698 0.7378 Fbd 1 

Deletion Species Property 0.1231 0 1674 0.7064 Fbd 1 

Invasion Subgraph 0.0239 0.0822 6612 0.8821 Fij 0 

Invasion Web Property 0.0906 0.0001 6599 0.8801 Fij 0 

Invasion Species Property -0.1185 0 6593 0.8804 Fij 0 

Invasion Subgraph 0.0072 0 30940 0.9333 Fij 0.2 

Invasion Web Property -0.0541 0 30865 0.9304 Fij 0.2 

Invasion Species Property -0.1759 0 30193 0.9057 Fij 0.2 

Invasion Subgraph -0.0146 0 18497 0.8987 Fij 1 

Invasion Web Property 0.0403 0 18501 0.8983 Fij 1 

Invasion Species Property -0.2267 0 18055 0.8744 Fij 1 

Invasion Subgraph -0.6154 0 10051 0.8135 Fbd 0 

Invasion Web Property 1.2347 0 9157 0.7247 Fbd 0 

Invasion Species Property 1.2816 0 8870 0.6984 Fbd 0 

Invasion Subgraph -0.3765 0 15772 0.7927 Fbd 0.2 

Invasion Web Property 0.8308 0 14885 0.7446 Fbd 0.2 

Invasion Species Property 1.3282 0 13624 0.6639 Fbd 0.2 

Invasion Subgraph -0.1536 0 17699 0.8626 Fbd 1 

Invasion Web Property 0.5911 0 16358 0.7798 Fbd 1 

Invasion Species Property 0.7479 0 16294 0.7784 Fbd 1 
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Chapter 6: Conclusion 
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The idea of selection on stability is one of three components of a theoretical framework 

for understanding similarity among different systems. First, there must be some pattern 

generating mechanism. In food webs this is likely the familiar processes of invasion, migration 

(speciation and extinction over longer timescales), and adaptive foraging altering the 

configuration of the food web. Second, there must be some selective process. Because population 

dynamics and stability have been major areas of research on food webs, a likely selection process 

would be selection against unstable configurations. Finally, this selective process should lead to 

observed patterns. Comparing food web structures that are more likely to be stable, those with a 

higher degree of quasi sign-stability, seem also to be those that are more commonly observed in 

empirical networks.  

Model food webs composed of short food chains on average are more quasi sign-stable 

than those composed of longer food chains, all else being equal (Chapter 2). Given that food 

chains of varying lengths are generated via community assembly, species participating in longer 

food chains should be more likely to go extinct as they are in less stable configurations. Selection 

against unstable longer food chain lengths should then tend to generate a higher frequency of 

short food chains. Analysis of a collection of fifty empirically described food webs showed that 

species tend to have trophic positions, one plus the mean trophic position of their prey, between 

three and five, and none had a trophic position higher than six. Likewise, food webs most often 

had a diameter, the longest shortest path from basal species to top predator, less than 5 (Chapter 

2).  

Food webs may also be decomposed into smaller n-species components. The most 

dynamically interesting components (that are still computationally tractable) are three-species 

configurations. Of the thirteen possible three-species modules, three are very likely to be stable, 
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one is equally likely to be stable or not, and the rest are very unlikely to be stable. Using the 

collection of 50 empirical food webs, I assessed whether those modules that were more quasi 

sign-stable are also those that are more common than expected by chance, motifs. Using two null 

models of varying constraint I demonstrated that the stable modules are also the motifs in 

empirical food webs (Chapter 3).  

That there is a link between the stability of certain food web components and their 

frequency in real food webs does not exactly constitute proof that selection on stability generates 

the observed patterns. It may, however, be a signature of such a process, as the predictions made 

by the theoretical framework are matched by the data. The observed patterns may also be 

generated by alternative mechanisms. For example, some three-species configurations may be 

more likely to occur in networks with some kind of hierarchy or ordering, like size structure in 

food webs (Paulau et al. 2015). A null model that incorporates these probabilities, like the niche 

model, is essential in differentiating the roles of these mechanisms. In order further explore the 

signature of selection on stability, I chose to analyze dynamical models of multispecies predator-

prey systems. As there are currently no freely available resources to apply any of the many I 

developed an R package to simulate the biomass dynamics of species in food webs (Chapter 4).  

Selection on stability presupposes two potential mechanisms to generate food web 

patterns that can then be selected, the extinction and introduction of new species. Given that the 

signature of the selective process is the prevalence of a given pattern over others, species that 

contribute to food web structures that have low stability should be less important to the stability 

of the whole web. In other words, if the loss of species leads to a food web configuration that is 

composed of stable elements, there should be fewer secondary extinctions. Alternatively, new 
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species that are added to the food web should be more likely to become established in the 

community if they contribute to food web components that are stable.  

Based on Chapters 2 and 3, both short food chains and network motifs exhibit the 

signature of selection on stability. Thus, when species removals lead to longer chains or fewer 

stable subgraphs, the expectation is that the resulting web should be less stable. Likewise, newly 

introduced species that lead to shorter average food chains and stable subgraph frequency should 

be more likely to successfully invade the community. In Chapter 5 I tested the idea that changes 

in food web properties, like average chain length and module frequency, had an effect on food 

web persistence or the success of invasion. 

There were substantial differences in the effects of changes in food web properties that 

were dependent on the type and parameterization of functional response. The removal of species 

from higher trophic levels and reducing mean trophic position often resulted in persistent webs, 

which matches the prediction. When the functional response included interference, the removal 

of species contributing to unstable modules was also associated with persistent food webs. 

Successful invaders often had a higher trophic position, but did not increase average path length 

as much, suggesting that they acted to increase the frequency of short chains as well. However, 

the expectation with respect to three-species modules did not match predictions; successful 

invaders added fewer stable modules and occasionally more unstable modules.     

A mismatch between predictions and results for three-species modules may be caused by 

context dependence. Unstable configurations may be supported by being embedded within a web 

of stable configurations. Kondoh (2008) demonstrated that three-species modules that are not 

internally persistent (not all species have positive equilibrium densities), may persist given 

appropriate external interactions. These unstable configurations may also be able to persist if 
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their constituent interactions are weak relative to stronger interactions in stable configurations. 

To test this would require food webs with measured interaction strengths. The subset of the web 

with the stronger interactions should be composed only of stable three-species configurations, 

while subsets with weak interactions may include configurations that are less likely to be stable.   

It may be worthwhile to reexamine these results in the context of species’ roles (Stouffer 

et al. 2012) rather than via module frequency. Stouffer et al. (2012) showed that species’ roles, 

quantified as both how they are embedded in the network and their dynamical importance, are 

conserved spatially and phylogenetically. Moreover, in their examination of 32 food webs they 

found that in many webs relatively few unique roles were represented, suggesting that 

redundancy may play a part in stabilizing the community. Species with dynamically important 

roles in food webs may be more likely to successfully invade. Alternatively, a community’s 

resistance to invasion may depend on the diversity of roles it contains.   

In the future, I intend to further develop the theoretical foundation of selection on 

stability in food webs by both addressing the limitations of the model used in this dissertation 

and expanding on my work. Many of the parameters in the bioenergetic model described in 

Chapter 4 and used in Chapter 5 are constants instead of varying among the different species. For 

example, all basal species have the same growth rate (ri), and all species have the same 

metabolic rate (xi) and extinction threshold. These parameters could instead be based on either 

species’ trophic position or niche value (if based on the niche model). For example, species 

higher in the food web or with larger niche value (i.e., body size) could have a higher threshold 

for extinction such that they would be considered extinct at higher biomasses. Additionally 

predators do not have prey preferences, which could be included in either functional response 
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used in Chapters 4 and 5. I think it will be important to explore how additional complexity can 

affect the predictions made in Chapter 5.    

 Moving forward I will also incorporate stochasticity into the bioenergetic model. 

Currently, the R package described in Chapter 4 only allows for the deterministic model. Adding 

stochasticity will allow me to generate results as probabilistic outcomes as opposed to binary 

success or failures. A stochastic model would also allow me to determine the risk of extinction 

for species based on how they contribute to food web structure. I will expand on the results of 

Chapter 3 using the stochastic model, by first assessing extinction risk for species based on their 

position in each of the three-species configurations. The next step would then be to assess risk 

for species in four-species configurations to determine how risk changes when species participate 

in larger networks. Based on the results of Chapter 3, I would expect risk to be higher for species 

in unstable three-species configurations, and lower in tritrophic chains, apparent competition, 

and exploitative competition. Likewise in larger webs when species participate primarily in 

stable three-species subgraphs they should have lower risk.   

 In Chapter 5 species were added or removed from equilibrium food webs to determine 

how food web structure emerges from selection on stability. A better approach may be to use 

community assembly models. Starting from one or few species, new species would be added to 

the community from a larger species pool. By varying the order of introductions I could examine 

how the context a species is introduced into may alter the probability of a successful invasion or 

lead to alternative equilibrium communities. I would expect that despite leading to communities 

composed of different species, selection on the stability of these communities should generate 

similar structures among them.    
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The idea of selection on stability can be a simple, yet powerful tool for explaining 

ecological similarity. Moreover, that there is some selection process operating based on the 

stability of community configurations is widespread in ecology, but has only recently been 

formalized into a theoretical framework (Borrelli et al. 2015). Examples can be found at multiple 

scales in ecology. At the level of predator-prey pairs, selection on stability may be responsible 

for the observed lack of combinations of high attack rates and high handling times (Kidd and 

Amarasekare 2012, Novak 2013, Johnson and Amarasekare 2015). Such high-high combinations 

in models of predator-prey dynamics lead to increased oscillations in abundances (Rosenzweig 

1971). Oscillatory dynamics lead to increased risk of stochastic extinctions during periods of low 

abundance. Thus pairs of species exhibiting this behavior should be observed fairly infrequently 

(Borrelli et al. 2015), a prediction that is borne out by empirical data (Gilpin 1975, Kendall et al. 

1998).  

Within populations, selection on stability may be used to explain the generation of social 

hierarchies. Many species exhibit a particular type of hierarchy in small groups. This hierarchy 

of dominance among individuals is typically linear in structure. There is a dominant individual to 

whom all others are subordinate, and among the subordinates there is a dominant individual, and 

this continues throughout the group (Chase et al. 2002, Chase and Lindquist 2009, Lindquist and 

Chase 2009). Considering triads of individuals, linear hierarchies are transitive in structure. 

Experimental evidence demonstrates that when triads become intransitive (i.e., a subordinate 

attacks a more dominant individual) the intransitivity does not last long and a linear hierarchy is 

rapidly recovered (Chase and Lindquist 2009). Thus the observation of linear dominance 

hierarchies may be a result of the preferential loss of unstable configurations (Borrelli et al. 

2015). 



 
 

119 

 
 

While the idea of selection on stability offers an enticing theoretical framework, and 

indeed is often implicitly recognized in ecology, there is yet to be clear empirical evidence 

supporting it. The large amount of variability found in the modeling approach that I used in 

Chapter 5 suggests that these ideas should be tested against empirical observations. 

Unfortunately, this seems to be a serious obstacle due to the difficulty in obtaining food web 

data. More promising avenues may be through investigating selection on stability operating on 

networks of plants and their pollinators, for which there are richer temporal data (e.g., Olesen et 

al. 2008, Petanidou et al. 2008, Dupont et al. 2009). Using time-series network data we may be 

able more explicitly test whether species that are more prone to extinction or invasion depending 

on how they alter the structure of the system. For example, species contributing to the nestedness 

of plant-pollinator webs may be less likely to go extinct, as nestedness is thought to increase the 

feasibility and stability of the system (Rohr et al. 2014). 
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Appendix 1: Data and annotated code for Chapter 1  



 
 

135 

 
 

Data Sources for Chapter 1 

Three food webs were downloaded from the Dryad Digital Repository (Roopnarine & Hertog 

2012a, 2012b). Another seven were available from Ecological Archives (Hechinger et al. 2011; 

Mouritsen et al. 2011; Thieltges et al. 2011; Zander et al. 2011; Preston et al. 2012). Fourteen 

webs were provided by Jennifer Dunne of the PEaCE Lab (Baird & Ulanowicz 1989; Warren 

1989; Polis 1991; Hall & Raffaelli 1991; Martinez 1991; Christensen & Pauly 1992; Havens 

1992; Goldwasser & Roughgarden 1993; Opitz 1996; Waide & Reagan 1996; Yodzis 1998, 

2000; Christian & Luczkovich 1999; Martinez et al. 1999; Memmott et al. 2000; Link 2002) that 

were analyzed in (Dunne et al. 2002, 2004). The remaining 26 food webs were downloaded from 

the Interaction Web Database (Jaarsma et al. 1998; Townsend et al. 1998; Thompson & 

Townsend 1999, 2000, 2003, 2005; Thompson & Edwards 2001). We also used a subset of 

sixteen ecosystem networks provided by Robert Ulanowicz through his website, and used most 

recently in Ulanowicz et al. 2014. 
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Code to assess impact of interaction strength on the degree of omnivory 

Required libraries 

library(igraph) 

library(NetIndices) 

library(data.table) 

library(ggplot2) 

library(reshape2) 

Import the Ulanowicz data 

Determine the threshold flow weight above which we call "strong" interactions. Here we subset 

the Ulanowicz webs by taking just the top 50%, 40%, 30%, 20%, and 10%. 

q50 <- sapply(ulanEDGE, function(x){quantile(x[,3], .5)}) 

q60 <- sapply(ulanEDGE, function(x){quantile(x[,3], .6)}) 

q70 <- sapply(ulanEDGE, function(x){quantile(x[,3], .7)}) 

q80 <- sapply(ulanEDGE, function(x){quantile(x[,3], .8)}) 

q90 <- sapply(ulanEDGE, function(x){quantile(x[,3], .9)}) 
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uEDGE.50 <- list() 

uEDGE.60 <- list() 

uEDGE.70 <- list() 

uEDGE.80 <- list() 

uEDGE.90 <- list() 

for(i in 1:length(ulanEDGE)){ 

  uEDGE.50[[i]] <- ulanEDGE[[i]][which(ulanEDGE[[i]][,3] >= q50[i]),] 

  uEDGE.60[[i]] <- ulanEDGE[[i]][which(ulanEDGE[[i]][,3] >= q60[i]),] 

  uEDGE.70[[i]] <- ulanEDGE[[i]][which(ulanEDGE[[i]][,3] >= q70[i]),] 

  uEDGE.80[[i]] <- ulanEDGE[[i]][which(ulanEDGE[[i]][,3] >= q80[i]),] 

  uEDGE.90[[i]] <- ulanEDGE[[i]][which(ulanEDGE[[i]][,3] >= q90[i]),] 

} 

 

uGRAPH <- lapply(uEDGE.50, function(x){graph.edgelist(as.matrix(x[,1:2]))}) 

uGRAPH6 <- lapply(uEDGE.60, function(x){graph.edgelist(as.matrix(x[,1:2]))}) 

uGRAPH7 <- lapply(uEDGE.70, function(x){graph.edgelist(as.matrix(x[,1:2]))}) 

uGRAPH8 <- lapply(uEDGE.80, function(x){graph.edgelist(as.matrix(x[,1:2]))}) 

uGRAPH9 <- lapply(uEDGE.90, function(x){graph.edgelist(as.matrix(x[,1:2]))}) 

 

uMAT <- lapply(uGRAPH, get.adjacency, sparse = F) 

uMAT6 <- lapply(uGRAPH6, get.adjacency, sparse = F) 

uMAT7 <- lapply(uGRAPH7, get.adjacency, sparse = F) 

uMAT8 <- lapply(uGRAPH8, get.adjacency, sparse = F) 

uMAT9 <- lapply(uGRAPH9, get.adjacency, sparse = F) 

tind <- lapply(uMAT, TrophInd) 

tind6 <- lapply(uMAT6, TrophInd) 

tind7 <- lapply(uMAT7, TrophInd) 

tind8 <- lapply(uMAT8, TrophInd) 

tind9 <- lapply(uMAT9, TrophInd) 

 

prop.omn <- sapply(tind, function(x){(1 - sum(x$OI == 0)/nrow(x)) * 100}) 

prop.omn6 <- sapply(tind6, function(x){(1 - sum(x$OI == 0)/nrow(x)) * 100}) 

prop.omn7 <- sapply(tind7, function(x){(1 - sum(x$OI == 0)/nrow(x)) * 100}) 

prop.omn8 <- sapply(tind8, function(x){(1 - sum(x$OI == 0)/nrow(x)) * 100}) 

prop.omn9 <- sapply(tind9, function(x){(1 - sum(x$OI == 0)/nrow(x)) * 100}) 

 

p.omn <- matrix(c(prop.omn, prop.omn6, prop.omn7, prop.omn8, prop.omn9), ncol = 5) 

colnames(p.omn) <- seq(50, 90, 10) 
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omn.dat <- data.frame(prop = seq(50, 90, 10), omn = colMeans(p.omn),  

                      upper = apply(p.omn, 2,  

                                    function(x){mean(x) + 1.96 * (sd(x)/sqrt(length(x)))}),  

                      lower = apply(p.omn, 2,  

                                    function(x){mean(x) - 1.96 * (sd(x)/sqrt(length(x)))})) 

ggplot(omn.dat, aes(x = prop, y = omn)) + geom_errorbar(aes(x = prop, ymax = upper, ymin = 

lower), width = 1) + geom_point(data = data.frame(melt(p.omn)), aes(x = Var2, y = value), 

alpha = .25, position = "jitter") + geom_point() + theme_bw() + xlab("Flow Weight Percentile 

Cutoff (percentage)") + ylab("Percent Omnivorous Species") 

 

Figure A1.1 The proportion of omnivorous species in 15 ecosystem flow networks that have 

been subset by flow weight. Values along the x-axis represent removal of the bottom 50, 60, 70, 

80, and 90 percentiles of flow weights. Data for making this figure are available from 

http://www.cbl.umces.edu/~ulan.  

Note that there is still at least 20% omnivory even when only looking at the top 10% of 

interactions. I say "at least" because this simple analysis does not remove from consideration 

species who are disconnected from the web (i.e. they do not have any interactions whose flow is 

above the threshold). 

Code for Chapter 1 simulations 

http://www.cbl.umces.edu/~ulan
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All code here can also be found on GitHub 

Loading required packages 

library(RCurl) 

library(igraph) 

library(reshape2) 

library(ggplot2) 

library(grid) 

library(data.table) 

library(devtools) 

library(NetIndices) 

Functions for eigenvalue analysis and food web generation 

The function analyze.eigen randomly fills a signed matrix and calculates the eigenvalue with the 

largest real part. This function takes in a sign matrix (a matrix of +1s, -1s, and 0s) and replaces 

the 𝑎𝑖𝑗 with values randomly drawn from predefined uniform distributions. This is the function 

used for the simple food webs. 

analyze.eigen<-function(m){ 

  for(i in 1:nrow(m)){ 

    for (j in 1:nrow(m)){ 

      ifelse(m[i,j]==1,m[i,j]<-runif(1,0,10),NA) 

      ifelse(m[i,j]==-1,m[i,j]<-runif(1,-1,0),NA) 

    } 

  } 

  for(i in 1:nrow(m)){ 

    if(m[i,i]<0){m[i,i]<--1} 

  } 

  ev<-eigen(m)$values[1] 

  return(ev) 

} 

The following functions are used for the random and niche model webs. 

The ran.unif function fills in a sign structured matrix with random values drawn from a random 

uniform distribution. The impact of the prey on the predator population is drawn from a 

distribution between 0 and pred, while the impact of the predator on the prey is distributed 

between prey and 0. 

https://github.com/jjborrelli/Food-Chain-Length
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ran.unif <- function(motmat, pred = 10, prey = -1, random = F){ 

  newmat <- apply(motmat, c(1,2), function(x){ 

    if(x==1){runif(1, 0, pred)}else if(x==-1){runif(1, prey, 0)} else{0} 

  }) 

  if(random){ 

    diag(newmat) <- runif(length(diag(newmat)), -1, 0) 

  }else{diag(newmat) <- -1} 

   

  return(newmat) 

} 

The maxRE computes the largest eigenvalue and returns the real part. 

maxRE <- function(rmat){ 

  lam.max <- eigen(rmat)$values[which.max(Re(eigen(rmat)$values))] 

  return(lam.max) 

} 

The eig.analysis function takes an imput of a list of matrices and randomly fills it according to 

ran.unif (above) n times and computes maxRE for each iteration. 

eig.analysis <- function(n, matrices, params){ 

  require(data.table) 

  dims <- dim(matrices[[1]]) 

  cols <- length(matrices) 

  rows <- n 

  eigenMATRIX.re <- matrix(nrow = rows, ncol = cols) 

  eigenMATRIX.im <- matrix(nrow = rows, ncol = cols) 

  samps <- list() 

  for(i in 1:n){ 

    ranmat <- lapply(matrices, ran.unif, pred = params[,1], 

                     prey = params[,2], random = T) 

    sampvals <- matrix(nrow = length(ranmat), ncol = dims[1]^2) 

    for(j in 1:length(ranmat)){ 

      sampvals[j,] <- ranmat[[j]] 

    } 

    eigs <- sapply(ranmat, maxRE) 

    eigenMATRIX.re[i,] <- Re(eigs) 

    eigenMATRIX.im[i,] <- Im(eigs) 

    samps[[i]] <- as.data.frame(sampvals)  

  } 
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  svals <- cbind(web = rep(1:length(matrices), n), n = rep(1:n, each = cols), rbindlist(samps)) 

  return(list(samples = svals, ematrix.re = eigenMATRIX.re, ematrix.im = eigenMATRIX.im)) 

} 

The conversion function takes in an adjacency matrix and converts it into sign matrix, assuming 

all interactions are predator/prey (+/-). 

conversion <- function(tm){ 

  for(i in 1:nrow(tm)){ 

    for(j in 1:ncol(tm)){ 

      if(tm[i,j] == 1){tm[j,i] <- -1} 

    } 

  } 

  return(tm) 

} 

The randomWEBS function generates numweb random webs of S species and total interactions. 

The connectance of these webs would then be total/S^2. The chain parameter can be modified to 

change the maximum chain length in the web. For example, the default chain = 9 means that the 

webs have at least one chain of ten species. 

randomWEBS <- function(S = 10, numweb = 200, chain = 9, total = 14){ 

  require(NetIndices) 

  require(igraph) 

  mywebs <- list() 

  for(j in 1:numweb){ 

     

    check <- 1 

    while(!check == 0){ 

      myweb <- matrix(0, nrow = S, ncol = S) 

      for(i in 1:chain){ 

        myweb[i,i+1] <- 1 

      } 

      tophalf <- which(myweb[upper.tri(myweb)] == 0) 

      newones <- sample(tophalf, total-chain) 

      myweb[upper.tri(myweb)][newones] <- 1 

      mywebs[[j]] <- myweb 

       

      indeg <- apply(myweb, 1, sum) 

      outdeg <- apply(myweb, 2, sum) 

      deg <- indeg + outdeg 
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      if(sum(deg == 0) >= 1){check <- 1}else{check <- 0} 

       

    } 

     

  } 

  return(mywebs) 

} 

The two functions below are the niche model (niche.model), and a function that uses the niche 

model code to generate a list of niche model food webs with a given connectance C and and 

number of species S (niche_maker). 

niche.model<-function(S,C){ 

  require(igraph) 

  connected = FALSE 

  while(!connected){   

    new.mat<-matrix(0,nrow=S,ncol=S) 

    ci<-vector() 

    niche<-runif(S,0,1) 

    r<-rbeta(S,1,((1/(2*C))-1))*niche 

     

    for(i in 1:S){ 

      ci[i]<-runif(1,r[i]/2,niche[i]) 

    } 

     

    r[which(niche==min(niche))]<-.00000001 

     

    for(i in 1:S){ 

       

      for(j in 1:S){ 

        if(niche[j]>(ci[i]-(.5*r[i])) && niche[j]<(ci[i]+.5*r[i])){ 

          new.mat[j,i]<-1 

        } 

      } 

    } 

     

    new.mat<-new.mat[,order(apply(new.mat,2,sum))] 

     

    connected <- is.connected(graph.adjacency(new.mat)) 
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  } 

  return(new.mat) 

} 

 

niche_maker <- function(n, S, C){ 

  niche.list <- list() 

  for (i in 1:n){ 

    niche.list[[i]]<- niche.model(S, C) 

  } 

  return(niche.list) 

} 

The randomQSS function takes in a list of webs (as adjacency matrices) with the mywebs 

paramater, and a 1 row by 2 column matrix of parameters to feed into the eig.analysis function. It 

then outputs a list of two data frames. The first, web.dat contains information on quasi sign-

stability, max, mean and median trophic level, standard deviation of trophic level, and the 

diameter (longest food chain) of the web. The second data frame, iter.dat contains information on 

each random sampling of each matrix. iter.dat has each sampled value for each link, and the real 

and imaginary parts of the largest eigenvalue. 

randomQSS <- function(mywebs, params){ 

  require(NetIndices) 

  require(igraph) 

   

  mywebs1 <- lapply(mywebs, conversion) 

  myweb.tl <- lapply(mywebs, TrophInd) 

  emat <- eig.analysis(1000, mywebs1, params)  

   

  qss <- apply(emat$ematrix.re, 2, function(x){sum(x<0)/1000}) 

  maxtl <- sapply(myweb.tl, function(x){max(x$TL)}) 

  meantl <- sapply(myweb.tl, function(x){mean(x$TL)}) 

  medtl <- sapply(myweb.tl, function(x){median(x$TL)}) 

  sdtl <- sapply(myweb.tl, function(x){sd(x$TL)}) 

  diam <- sapply(lapply(mywebs, graph.adjacency), diameter) 

   

  web.dat <- data.frame(qss, diam, maxtl, meantl, medtl, sdtl) 

  iter.dat <- cbind(par = rep(paste(params, collapse = "_"), nrow(emat$samples)), 

                    emat$samples, reals = as.vector(emat$ematrix.re), 

                    im = as.vector(emat$ematrix.im)) 
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  return(list(web.dat, iter.dat)) 

} 

The getQSS function is the main function for the simulation, putting together all previous 

functions. The webiter, maxchain, and totalINT paramaters are fed into the functions that 

generate the food webs. The params parameter should be a matrix with two columns, one for the 

impact of the prey on the predator, and one for the impact of the predator on the prey. This 

function is designed to run in parallel, and will run a set of webs on each core. The output is 

written to file according to filepath. This function will generate either random webs or niche 

model webs according to whether niche is TRUE or FALSE. It calls a separate script 

robustnessFUNC.R that holds the functions described above and allows each node of the cluster 

to complete the analysis. 

getQSS <- function(webiter = 100, maxchain = 9, totalINT = 14, params, filepath, niche = 

FALSE){ 

  require(doSNOW) 

  require(parallel) 

  require(data.table) 

   

  #make the cluster 

  cl <- makeCluster(detectCores()-1) 

  registerDoSNOW(cl) 

  

  RESULT <- foreach(i = 1:maxchain) %dopar% { 

    source("C:/Users/jjborrelli/Desktop/GitHub/Food-Chain-Length/robustnessFUNC.R") 

     

    #cat(i, "\n") 

    if(!niche){ 

      rwebs <- randomWEBS(S = 10, numweb = webiter, chain = i, total = totalINT) 

    }else{ 

      rwebs <- niche_maker(15, 10, totalINT) 

    } 

   

    rqss <- list() 

    for(j in 1:nrow(params)){ 

      rqss[[j]] <- randomQSS(mywebs = rwebs, params = params[j,1:2]) 

       

      rqss[[j]][[1]] <- cbind(C = rep(totalINT, nrow(rqss[[j]][[1]])), 

                                      mxch = rep(i, nrow(rqss[[j]][[1]])),  

                              rqss[[j]][[1]], 
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                              par = rep(paste(params[j,], collapse = "/"), 

                                        nrow(rqss[[j]][[1]]))) 

       

      rqss[[j]][[2]] <- cbind(C = rep(totalINT, nrow(rqss[[j]][[2]])),  

                              mxch = rep(i, nrow(rqss[[j]][[2]])), 

                              rqss[[j]][[2]], 

                              par = rep(paste(params[j,], collapse = "/"), 

                                        nrow(rqss[[j]][[2]]))) 

      cat("--", j, "\n") 

    } 

    rqss <- unlist(rqss, recursive = F) 

    web.dat.ls <- rbindlist(rqss[seq(1, length(rqss), 2)]) 

    iter.dat.ls <- rbindlist(rqss[seq(2, length(rqss), 2)]) 

     

    return(list(web.dat.ls, iter.dat.ls)) 

     

  } 

   

  stopCluster(cl) 

   

 

  RESULT <- unlist(RESULT, recursive = F) 

  chain.data <- rbindlist(RESULT[seq(1, length(RESULT), 2)]) 

  iter.data <- rbindlist(RESULT[seq(2, length(RESULT), 2)]) 

  rm(RESULT) 

  write.csv(chain.data, file = paste(filepath, "/webdata-",  

                                     totalINT, ".csv", sep = ""), 

            row.names = F) 

   

  #Code to generate dataframes of sampled matrices (note this can create very large files) 

  #write.csv(iter.data, file = paste(filepath, "/iterdata-",  

  #                                  totalINT, ".csv", sep = ""), 

  #          row.names = F) 

   

  return(chain.data) 

} 

Code for simulation of food webs 

Simple webs 
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The code below will create the sign matrix structure for each perturbed chain of 2, 3, 4, 5, and 6 

levels. A -1 indicates the impact of a predator on its prey (negative), while a 1 indicates the 

impact of the prey on the predator (positive). 

sign2<-matrix(c(-1,-1,1,0),nrow=2,ncol=2) 

diag(sign2)<--1 

 

sign3<-matrix(c(-1,-1,-1,1,0,-1,1,1,0),nrow=3,ncol=3) 

diag(sign3)<--1 

 

sign4<-matrix(nrow=4,ncol=4) 

sign4[lower.tri(sign4)]<--1 

sign4[upper.tri(sign4)]<-1 

diag(sign4)<--1 

 

sign5<-matrix(nrow=5,ncol=5) 

sign5[lower.tri(sign5)]<--1 

sign5[upper.tri(sign5)]<-1 

diag(sign5)<--1 

 

sign6<-matrix(nrow=6,ncol=6) 

sign6[lower.tri(sign6)]<--1 

sign6[upper.tri(sign6)]<-1 

diag(sign6)<--1 

These matrices are combined into a list for simplicity: 

sign.matrices<-list(sign2,sign3,sign4,sign5,sign6) 

names(sign.matrices)<-c("2 sp","3 sp","4 sp","5 sp","6 sp") 

sign.matrices 

The following code applies the analyze.eigen function to each of the 5 sign matrices created 

above. It then stores the max(Re(lambda)), or the eigen value with the largest real part in the 

eigenvalues list. Quasi sign-stability (qss) can then be calculated by determining the proportion 

of the max(Re(lambda)) that are negative out of the 10000 that are calculated. 

eigenvalues<-list() 

qss<-list() 

for(i in 1:5){ 

  eigenvalues[[i]]<-replicate(10000,analyze.eigen(sign.matrices[[i]])) 

  qss[[i]]<-sum(Re(eigenvalues[[i]])<0)/10000 
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} 

 

names(eigenvalues)<-c("2 sp","3 sp","4 sp","5 sp","6 sp") 

names(qss)<-c("2 sp","3 sp","4 sp","5 sp", "6 sp") 

qss 

Stability analysis of random and niche model webs 

Set the parameters for the simulation, and the desired levels of connectance. 

pars <- data.frame(pred = c(10, 10, 10, 5, 5, 5, 1, 1, 1), prey = c(-1, -5, -10, -1, -5, -10, -1, -5, -

10)) 

ints <- c(12, 16, 20, 24, 28) 

Use the getQSS function to create webs and determine quasi sign-stability for a range of 

parameters. 

For random webs 

for(con in 1:length(ints)){ 

  getQSS(25, maxchain =7, totalINT = ints[con], params = pars,  

         filepath = myfilepath1, niche = F) 

  cat(con/length(ints)*100, "%", "\n") 

} 

For niche model webs 

for(con in 1:length(ints)){ 

  getQSS(25, maxchain =7, totalINT = ints[con]/100, params = pars,  

         filepath = myfilepath2, niche = T) 

  cat(con/length(ints)*100, "%", "\n") 

} 

Code for Chapter 1 figures 

Code for Figure 1 

Code for Figure 1a 

path <- getURL("https://raw.githubusercontent.com/jjborrelli/Food-Chain-

Length/master/Tables/webDiameters.csv", 

               ssl.verifypeer=0L, followlocation=1L) 

 

web.diameters <- read.csv(text = path, row.names = 1) 
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diam.plot <- ggplot(web.diameters, aes(x = Diameter + 1)) 

diam.plot <- diam.plot + geom_histogram(binwidth = 1) 

diam.plot <- diam.plot + theme(axis.title.x = element_text(size = 20)) 

diam.plot <- diam.plot + theme(axis.title.y = element_text(size = 20)) 

diam.plot <- diam.plot + theme(axis.text.x = element_text(size = 15)) 

diam.plot <- diam.plot + theme(axis.text.y = element_text(size = 15)) 

diam.plot <- diam.plot + scale_y_continuous(name = "Density", limits = c(0,.55)) 

diam.plot <- diam.plot + scale_x_continuous(name = "Longest Chain Length", breaks = 0:9) + 

theme_bw() 

Code for Figure 1b 

path2 <- getURL("https://raw.githubusercontent.com/jjborrelli/Food-Chain-

Length/master/Tables/NodeProperties.csv", ssl.verifypeer=0L, followlocation=1L) 

trophic.properties <- read.csv(text = path2, row.names = 1) 

 

consumers <- which(round(trophic.properties$TL, 6) >= 2) 

 

# ggplot of distribution of trophic positions equal or higher than 2 

tc.plot <- ggplot(trophic.properties[consumers,], aes(x = TL)) + theme_bw() 

tc.plot <- tc.plot + geom_histogram(binwidth = 1) + xlab("Trophic Position") + ylab("Density") 

tc.plot <- tc.plot + scale_x_continuous(limits = c(2,6),name = "Trophic Position") + 

scale_y_continuous(name = "Density", limits = c(0,.55)) 

tc.plot 

Code for Figure 2 

The simple web matrices can be visualized with the following code (note: requires the igraph 

library): 

But first the sign matrices need to be converted to graph objects 

graph.chains<-lapply(sign.matrices, graph.adjacency) 

The layout is defined for each node of each chain: 

twospec2<-matrix(c(1,1, 

                  2,2),nrow=2,ncol=2,byrow=T) 

threespec2<-matrix(c(1,1, 

                    3,1, 

                    2,2),nrow=3,ncol=2,byrow=T) 
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fourspec2<-matrix(c(1,1, 

                   2,2, 

                   0,2, 

                   1,3),nrow=4,ncol=2,byrow=T) 

fivespec2<-matrix(c(2,1, 

                   3,2, 

                   1,2, 

                   3,3, 

                   1,3),nrow=5,ncol=2,byrow=T) 

sixspec2<-matrix(c(2,1, 

                  3,2, 

                  1,2, 

                  3,3, 

                  1,3, 

                  2,4),nrow=6,ncol=2,byrow=T) 

 

layouts<-list(twospec2,threespec2,fourspec2,fivespec2,sixspec2) 

Setting the plotting options to highlight the longest chain in each web: 

for(i in 1:5){ 

  E(graph.chains[[i]])$color = "darkslategray4" 

  E(graph.chains[[i]], path = c(1:(i+1)))$color = "black" 

} 

Create the plot 

par(mfrow=c(5, 1),mar=c(.1, .1, .1, .1)) 

for(i in 1:5){ 

  plot.igraph(graph.chains[[i]], layout = layouts[[i]], 

              vertex.size = 40, 

              vertex.color = "white", 

              vertex.label.color = "black", 

              vertex.label.cex = .8, 

              edge.width = 1, 

              edge.arrow.size = .35, 

              frame = T, 

              margin = 0) 

} 

Code for Figure 3 
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qss.plot <- qplot(2:6, unlist(qss), xlab = "Longest Chain Length", ylab = "Quasi Sign-Stability", 

margin = T) 

qss.plot <- qss.plot + geom_point(size = 2) 

qss.plot <- qss.plot + geom_line() + theme_bw() 

qss.plot 

Code for Figure 4 

First import the data from the random webs 

web.files <- list.files(path = filepath1, pattern = "web") 

temp.ls <- list() 

for(i in 1:length(web.files)){ 

  temp.ls[[i]]<- fread(paste(filepath1,  

                             web.files[i], sep = "")) 

} 

webdata <- rbindlist(temp.ls) 

webdata$C <- factor(webdata$C) 

 

# Formulas for upper and lower confidence limits 

sem.l <- function(x){mean(x) - 1.96*sqrt(var(x)/length(x))} 

sem.u <- function(x){mean(x) + 1.96*sqrt(var(x)/length(x))} 

 

sub1 <- subset(webdata, par == "1/-10" | par == "10/-1" | par == "1/-5" | par == "5/-1") 

sub2 <- subset(webdata, par == "5/-10" | par == "10/-5") 

sub3 <- subset(webdata, par == "1/-1" | par == "10/-10" | par == "5/-5") 

Plots of the different subsets of data. The final plot is what appears in the paper. 

ggplot(sub1, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 

  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability") 

 

 

ggplot(sub2, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 
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  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability") 

 

 

ggplot(sub3, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 

  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability") 

 

 

ggplot(webdata, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 

  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability") 

Code for Figure 4 

First import the data from the niche model webs 

web.files <- list.files(path = filepath2, pattern = "web") 

temp.ls <- list() 

for(i in 1:length(web.files)){ 

  temp.ls[[i]]<- fread(paste(filepath2,  

                             web.files[i], sep = "")) 

} 

webdata <- rbindlist(temp.ls) 

webdata$C <- factor(webdata$C) 

 

# Formulas for upper and lower confidence limits 

sem.l <- function(x){mean(x) - 1.96*sqrt(var(x)/length(x))} 

sem.u <- function(x){mean(x) + 1.96*sqrt(var(x)/length(x))} 
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sub1 <- subset(webdata, par == "1/-10" | par == "10/-1" | par == "1/-5" | par == "5/-1") 

sub2 <- subset(webdata, par == "5/-10" | par == "10/-5") 

sub3 <- subset(webdata, par == "1/-1" | par == "10/-10" | par == "5/-5") 

Plots of the different subsets of data. The final plot is what appears in the paper. 

ggplot(sub1, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 

  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability") 

 

 

ggplot(sub2, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 

  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability") 

 

 

ggplot(sub3, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 

  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability") 

 

 

ggplot(webdata, aes(x = factor(diam+1), y = qss)) +  

  geom_point(alpha = .25, position = position_jitter(w=0.2), col = "grey58") +  

  stat_summary(fun.y="mean", geom="point") + 

  stat_summary(fun.ymin = sem.l, fun.y = "mean", fun.ymax = sem.u, 

               geom="errorbar", width = .2) +  

  facet_grid(par~C) + theme_bw() + 

  xlab("Longest Food Chain Length") + ylab("Quasi sign-stability")  
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Appendix 2: Annotated code for Chapter 2 simulations 
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Generating a Subgraph Library 

The following code defines the sign matrix for each of the thirteen possible three-node 

subgraphs. Here, the "s" in the object name indicates that only single links are used, while a "d" 

indicates the presence of double links. 

s1 <- matrix(c(0, 1, 0, -1, 0, 1, 0, -1, 0), nrow = 3, ncol = 3) 

s2 <- matrix(c(0, 1, 1, -1, 0, 1, -1, -1, 0), nrow = 3, ncol = 3) 

s3 <- matrix(c(0, 1, -1, -1, 0, 1, 1, -1, 0), nrow = 3, ncol = 3) 

s4 <- matrix(c(0, 1, 1, -1, 0, 0, -1, 0, 0), nrow = 3, ncol = 3) 

s5 <- matrix(c(0, 0, 1, 0, 0, 1, -1, -1, 0), nrow = 3, ncol = 3) 

 

d1 <- matrix(c(0, 1, 1, -1, 0, 1, -1, 1, 0), nrow = 3, ncol = 3) 

d2 <- matrix(c(0, 1, 1, 1, 0, 1, -1, -1, 0), nrow = 3, ncol = 3) 

d3 <- matrix(c(0, 1, -1, 1, 0, 0, 1, 0, 0), nrow = 3, ncol = 3) 

d4 <- matrix(c(0, 1, 1, -1, 0, 0, 1, 0, 0), nrow = 3, ncol = 3) 

d5 <- matrix(c(0, 1, 1, -1, 0, 1, 1, -1, 0), nrow = 3, ncol = 3) 

d6 <- matrix(c(0, 1, 1, 1, 0, 1, 1, 1, 0), nrow = 3, ncol = 3) 

d7 <- matrix(c(0, 1, 1, 1, 0, 1, 1, -1, 0), nrow = 3, ncol = 3) 

d8 <- matrix(c(0, 1, 1, 1, 0, 0, 1, 0, 0), nrow = 3, ncol = 3) 

 

mot.lst <- list(s1, s2, s3, s4, s5, d1, d2, d3, d4, d5, d6, d7, d8) 

names(mot.lst) <- c("s1", "s2", "s3", "s4", "s5", "d1", "d2", "d3", "d4", "d5",  

    "d6", "d7", "d8") 

Code to define required functions 

Functions for counting motifs 

The motif_counter function takes in a list of graph objects and applies triad.census to each. It 

returns a data frame of the frequency of each connected three-node digraph. 

motif_counter <- function(graph.lists) { 

    require(igraph) 

     

    if (!is.list(graph.lists)) { 

        stop("The input should be a list of graph objects") 

    } 

     

    triad.count <- lapply(graph.lists, triad.census) 

    triad.matrix <- matrix(unlist(triad.count), nrow = length(graph.lists),  

        ncol = 16, byrow = T) 
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    colnames(triad.matrix) <- c("empty", "single", "mutual", "s5", "s4", "s1",  

        "d4", "d3", "s2", "s3", "d8", "d2", "d1", "d5", "d7", "d6") 

     

    triad.df <- as.data.frame(triad.matrix) 

     

    motif.data.frame <- data.frame(s1 = triad.df$s1, s2 = triad.df$s2, s3 = triad.df$s3,  

        s4 = triad.df$s4, s5 = triad.df$s5, d1 = triad.df$d1, d2 = triad.df$d2,  

        d3 = triad.df$d3, d4 = triad.df$d4, d5 = triad.df$d5, d6 = triad.df$d6,  

        d7 = triad.df$d7, d8 = triad.df$d8) 

     

    rownames(motif.data.frame) <- names(graph.lists) 

    return(motif.data.frame) 

} 

The Curveball algorithm is available as supplemental information as part of the original 

publication. Note if you want to use this code please cite the paper in which it was introduced: 

Strona, G. et al. 2014. A fast and unbiased procedure to randomize ecological binary matrices 

with fixed row and column totals. -Nat. Comm. 5: 4114. doi: 10.1038/ncomms5114 

Their function takes a matrix and makes a swap (process descirbed in their paper) and returns the 

new matrix. 

curve_ball <- function(m) { 

    RC = dim(m) 

    R = RC[1] 

    C = RC[2] 

    hp = list() 

    for (row in 1:dim(m)[1]) { 

        hp[[row]] = (which(m[row, ] == 1)) 

    } 

    l_hp = length(hp) 

    for (rep in 1:(5 * l_hp)) { 

        AB = sample(1:l_hp, 2) 

        a = hp[[AB[1]]] 

        b = hp[[AB[2]]] 

        ab = intersect(a, b) 

        l_ab = length(ab) 

        l_a = length(a) 

        l_b = length(b) 

        if ((l_ab %in% c(l_a, l_b)) == F) { 

http://www.nature.com/ncomms/2014/140611/ncomms5114/full/ncomms5114.html
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            tot = setdiff(c(a, b), ab) 

            l_tot = length(tot) 

            tot = sample(tot, l_tot, replace = FALSE, prob = NULL) 

            L = l_a - l_ab 

            hp[[AB[1]]] = c(ab, tot[1:L]) 

            hp[[AB[2]]] = c(ab, tot[(L + 1):l_tot]) 

        } 

         

    } 

    rm = matrix(0, R, C) 

    for (row in 1:R) { 

        rm[row, hp[[row]]] = 1 

    } 

    rm 

} 

The curving function is used to iteratively apply the Curveball algorithm to a single matrix. This 

function takes an adjacency matrix and number of iterations as inputs and returns a dataframe of 

motif frequencies. 

curving <- function(adjmat, n) { 

    mot <- motif_counter(list(graph.adjacency(adjmat))) 

    newmat <- adjmat 

     

    for (i in 1:n) { 

        newmat <- curve_ball(newmat) 

        m <- motif_counter(list(graph.adjacency(newmat))) 

        mot <- rbind(mot, m) 

    } 

    return(mot[-1, ]) 

} 

I added the additional constraints of maintaining the number of single, double, and self links in 

each matrix to the original curveball algorithm in the function dblcan.curve. This function takes a 

matrix and desired number of iterations as inputs and returns a dataframe of motif frequencies. 

library(plyr) 

 

nd <- function(gl) nrow(gl) - nrow(unique(aaply(gl, 1, sort))) 

# determines the number of double links 
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dblcan.curve <- function(mat, iter) { 

    mot <- motif_counter(list(graph.adjacency(mat))) 

     

    el <- get.edgelist(graph.adjacency(mat)) 

    Ne <- nrow(el) 

    dbl <- nd(el) 

    can <- sum(diag(mat)) 

     

    for (i in 1:iter) { 

        ed = TRUE 

        dub = TRUE 

        ca = TRUE 

        while (ed || dub || ca) { 

            mat2 <- curve_ball(mat) 

             

            el2 <- get.edgelist(graph.adjacency(mat2)) 

            el3 <- unique(el2) 

            Ne2 <- nrow(el3) 

            dbl2 <- nd(el3) 

            can2 <- sum(diag(mat2)) 

             

            ed <- Ne != Ne2 

            dub <- dbl != dbl2 

            ca <- can != can2 

             

        } 

        mat <- mat2 

         

        mot <- rbind(mot, motif_counter(list(graph.adjacency(mat)))) 

    } 

    return(M = mot[-1, ]) 

} 

Functions for determining quasi sign-stability 

There are two main functions for determining quasi sign-stability, and a third that wraps them 

together to generate the desired number of iterations. 

The function ran.unif takes an input of a signed matrix. It will then check each cell to see if there 

is a 1 or -1. Each 1 will be replaced by a value drawn from the random uniform distribution 
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between 0 and 10, while each -1 is replaced by a value from the random uniform distribution 

between -1 and 0. The ran.unif function also assigns values to the diagonal from a random 

uniform distribition between -1 and 0. The resulting randomly sample matrix is returned. 

ran.unif <- function(motmat) { 

    newmat <- apply(motmat, c(1, 2), function(x) { 

        if (x == 1) { 

            runif(1, 0, 10) 

        } else if (x == -1) { 

            runif(1, -1, 0) 

        } else { 

            0 

        } 

    }) 

    diag(newmat) <- runif(3, -1, 0) 

    return(newmat) 

} 

Given the input matrix maxRE will compute the eigenvalues and return the largest real part. 

maxRE <- function(rmat) { 

    lam.max <- max(Re(eigen(rmat)$values)) 

    return(lam.max) 

} 

The above two functions are combined in eig.analysis. Given the number of desired sampling 

iterations, n, and a list of sign matrices to analyze, matrices, the eig.analysis function will return 

an n by length(matrices) matrix of eigenvalues. Specifically it is returning the max(Re(λ)) for 

each sampled matrix. From this matrix quasi sign-stability can be calculated as the proportion of 

values in each column that are negative. 

eig.analysis <- function(n, matrices) { 

    cols <- length(matrices) 

    rows <- n 

    eigenMATRIX <- matrix(0, nrow = rows, ncol = cols) 

    for (i in 1:n) { 

        ranmat <- lapply(matrices, ran.unif) 

        eigs <- sapply(ranmat, maxRE) 

        eigenMATRIX[i, ] <- eigs 

    } 
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    return(eigenMATRIX) 

}  

Code for motif counting  

Load required packages 

library(igraph) 

library(ggplot2) 

library(reshape2) 

library(parallel) 

library(doSNOW) 

Determining motif frequency 

Load in web data from GitHub. Click here to download the .Rdata file. This file is a list of igraph 

graph objects for each of the 50 webs used in the analysis. Once you have downloaded the file 

into your working directory: 

load(paste(getwd(), "webGRAPHS.Rdata", sep = "/")) 

The frequencies of each of the different subgraphs can now be determined easily with 

motif_counter. 

motfreq <- motif_counter(web.graphs) 

kable(motfreq, format = "pandoc") 

The following code runs the null model analysis for the 50 food webs. First, each of the fifty 

webs are converted into binary adjacency matrices (web.matrices). 

web.matrices <- lapply(web.graphs, get.adjacency, sparse = F) 

The first null model, the Curveball algorithm can be applied to all 50 webs in parallel. This code 

starts by registering a cluster utilizing 1 less than the number of cores on the computer (for this 

paper it was 7 cores). It then creates set of 30000 matrices and returns a list (length equal to the 

number of webs, 50 in this case) of dataframes of motif frequences. 

cl <- makeCluster(detectCores() - 1) 

clusterExport(cl, c("web.adj", "motif_counter", "curve_ball", "curving")) 

registerDoSNOW(cl) 

randos <- parLapply(cl, web.adj, curving, n = 30000) 

stopCluster(cl) 

https://github.com/jjborrelli/Subgraph-Stability/blob/master/webGRAPHS.Rdata?raw=true
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Once subgraph counts have been obtained, the mean and standard deviation for each subgraph 

are computed. Z-scores are then computed as described in the methods section: 

 

zi =
xi − x

σ
 

The normalized profile was then computed (as desribed in the methods): 

 

ni =
zi

√∑zj
2

 

means <- t(sapply(randos, colMeans)) 

stdevs <- t(sapply(randos, function(x) { 

    apply(x, 2, sd) 

})) 

 

motfreq <- motif_counter(web.graphs) 

 

zscore <- (motfreq - means)/stdevs 

 

# Normalized z-scores 

zscore.norm <- t(apply(zscore, 1, function(x) { 

    x/sqrt(sum(x^2, na.rm = T)) 

})) 

Below is the code used to run the Curveball algorithm with the additional constraints described 

above. Note this can take a very long time to run 

# Use the filepath.sink variable to set the path for storing the sink 

# information 

filepath.sink <- my.sink.path 

# Use the filepath.data variable to set the location for storing the 

# dataframes of motif frequencies for each web 

filepath.data <- my.data.path 

 

cl <- makeCluster(detectCores() - 1) 

clusterExport(cl, c("web.adj", "motif_counter", "curve_ball", "nd", "aaply",  

    "filepath")) 

registerDoSNOW(cl) 
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system.time(randos.t3 <- foreach(i = 1:length(web.adj)) %dopar% { 

    sink(file = paste(filepath.sink, names(web.adj[i]), ".txt", collapse = "")) 

    motfreq <- dblcan.curve(web.adj[[i]], iter = 30000) 

    print(motfreq) 

    sink() 

    write.csv(motfreq, file = paste(filepath.data, names(web.adj[i]), ".csv",  

        collapse = "")) 

    return(motfreq) 

}) 

stopCluster(cl) 

The normalized z-score profile can be calculated the same as above: 

means.t <- t(sapply(randos.t3, colMeans)) 

stdevs.t <- t(sapply(randos.t3, function(x) { 

    apply(x, 2, sd) 

})) 

 

motfreq <- motif_counter(web.graphs) 

 

zscore.t <- (motfreq - means.t)/stdevs.t 

 

# Normalized z-scores 

zscore.N <- t(apply(zscore.t, 1, function(x) { 

    x/sqrt(sum(x^2, na.rm = T)) 

})) 

Figure 1 is then a boxplot of the above normalized z-scores, reordered according to decreasing 

quasi sign-stability (see below). When using the modified Curveball algorithm, those webs that 

have no double links produce NaN when computing the z-score for those motifs. These are 

ignored in Figure 1, and the z-scores presented are with the NaNs removed. 

Code for determining quasi sign-stability 

The first step to get quasi sign stability is to get the largest eigenvalues from a series of randomly 

parameterized sign matrices. In the following code I generate 10000 random parameterizations 

for each of the 13 subgraphs's sign matrices (mot.lst). The eig.analysis function will return a 

matrix where each column is a different subgraph and each row is the largest eigenvalue of a 

particular randomization. 

set.seed(5) 
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n <- 10000 

mot.stab <- eig.analysis(n, mot.lst) 

colnames(mot.stab) <- names(mot.lst) 

From that matrix, quasi sign-stability is calculated as the proportion of rows with a negative 

value. In other words, how many random parameterizations of the sign matrix were locally 

stable? 

mot.qss <- apply(mot.stab, 2, function(x) { 

    sum(x < 0)/n 

}) 

sorted <- sort(mot.qss, decreasing = T) 

sorted 

    s1     s4     s5     s2     d3     d4     s3     d2     d1     d5  

1.0000 1.0000 1.0000 0.5345 0.0891 0.0866 0.0561 0.0428 0.0370 0.0101  

    d7     d6     d8  

0.0021 0.0000 0.0000  

Code to determine the robustness to assumption of double link positives 

I assumed that if there was a double link in the subgraph, that both the effect of the predator on 

the prey and the effect of the prey on the predator were positive, a (+/+) rather than a (+/-). Here 

I repeat the analysis described above, but instead assuming that the relative effects correspond to 

a (-/-). 

mot.lst2 <- lapply(mot.lst, function(x) { 

    for (i in 1:nrow(x)) { 

        for (j in 1:ncol(x)) { 

            if (x[i, j] == 1 && x[j, i] == 1) { 

                x[i, j] <- x[i, j] * -1 

                x[j, i] <- x[j, i] * -1 

            } else { 

                next 

            } 

        } 

    } 

    return(x) 

}) 

 

set.seed(15) 
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n <- 10000 

mot.stab2 <- eig.analysis(n, mot.lst2) 

colnames(mot.stab2) <- names(mot.lst2) 

 

mot.qss2 <- apply(mot.stab2, 2, function(x) { 

    sum(x < 0)/n 

}) 

sorted2 <- sort(mot.qss2, decreasing = T) 

sorted2 

    s1     s4     s5     d4     d3     s2     d2     d1     d7     d5  

1.0000 1.0000 1.0000 0.8924 0.8914 0.5339 0.5042 0.5038 0.4890 0.3946  

    d6     d8     s3  

0.2440 0.2163 0.0558  

Code to determine robustness to assumption of matrix fill distributions 

I also tested how quasi sign-stability of the different subgraphs changed when varying the 

assumption of the relative impact of the predator on its prey and the prey on its predator. 

I tested 7 additional distributions (all uniform) with different magnitudes. 

params.u <- data.frame(pred1 = c(0, 0, 0, 0, 0, 0, 0, 0), pred2 = c(10, 10,  

    10, 10, 10, 5, 3, 1), prey1 = c(-10, -5, -1, -0.1, -0.01, -1, -1, -1), prey2 = c(0,  

    0, 0, 0, 0, 0, 0, 0)) 

parvals <- factor(paste(params.u[, 2], params.u[, 3], sep = "/"), levels = c("1/-1",  

    "3/-1", "5/-1", "10/-1", "10/-0.01", "10/-0.1", "10/-1", "10/-5", "10/-10")) 

Below is a function to take in the different parameters for the distributions and fill a matrix 

accordingly. 

eigen_unif <- function(m, iter, params, self = -1) { 

    # For when I want to use uniform distribution Params is dataframe of min and 

    # max for relative impact of prey on pred and pred on prey 

    ev <- c() 

    for (i in 1:iter) { 

        m1 <- apply(m, c(1, 2), function(x) { 

            if (x == 1) { 

                runif(1, params$pred1, params$pred2) 

            } else if (x == -1) { 

                runif(1, params$prey1, params$prey2) 

            } else { 
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                0 

            } 

        }) 

        diag(m1) <- self 

        ev[i] <- max(Re(eigen(m1)$values)) 

    } 

    return(ev) 

} 

The following code loops through the dataframe of distributions and computes quasi sign-

stability 

test <- matrix(nrow = nrow(params.u), ncol = length(mot.lst)) 

for (i in 1:nrow(params.u)) { 

    eigen.test <- lapply(mot.lst, eigen_unif, iter = 10000, params = params.u[i,  

        ], self = runif(3, -1, 0)) 

    qss.test <- lapply(eigen.test, function(x) { 

        sum(x < 0)/length(x) 

    }) 

    test[i, ] <- unlist(qss.test) 

} 

Code for Figure A2.1 

colnames(test) <- c("s1", "s2", "s3", "s4", "s5", "d1", "d2", "d3", "d4", "d5",  

    "d6", "d7", "d8") 

test <- data.frame(test, parvals) 

dat1 <- melt(test[, c(names(sorted), "parvals")]) 

 

ggplot(dat1, aes(x = variable, y = value)) + geom_point() + facet_wrap(~parvals,  

    ncol = 4) + theme_bw() + xlab("Subgraph") + ylab("Quasi Sign-Stability") 
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Figure A2.1: Robustness of quasi sign-stability to different distributions used to fill the random 

Jacobian matrix. Facet labels represent the maximum impact of the prey on the predator 

population (positive number) and maximum impact of the predator on the prey population 

(negative number) 

Code for the figures 

Code for Figure 1 

par(mfrow = c(1, 13), mar = c(0.2, 0.2, 0.2, 0.2)) 

for (i in 1:13) { 

    plot.igraph(graph.adjacency(mot.lst[[which(names(mot.lst) == names(sorted[i]))]]),  

        layout = layout.circle, edge.arrow.size = 0.5, vertex.size = 30, vertex.color = "black",  

        vertex.label = NA, frame = T, edge.width = 2, edge.color = "darkslategray4") 

    text(-0.25, 0, names(sorted[i]), cex = 1.5) 

} 

 

Code for Figure 2 



 
 

167 

 
 

z1 <- cbind(Model = factor("Curveball"), melt(zscore.norm[, names(sorted)])) 

z2 <- cbind(Model = factor("Double"), melt(zscore.N[, names(sorted)])) 

 

z.both <- rbind(z1, z2) 

ggplot(z.both, aes(x = Var2, y = value, fill = Model)) + geom_boxplot() + xlab("Subgraph") +  

    ylab("Normalized Profile") + theme_bw() 

Warning: Removed 308 rows containing non-finite values (stat_boxplot). 

 

Code for Figure 3 

sort.df <- melt(sorted) 

 

qssplot <- ggplot(sort.df, aes(x = 1:13, y = value)) + geom_point(shape = 19,  

    size = 3) + theme_bw() 

qssplot + xlab("Subgraph") + ylab("Quasi Sign-Stability") + scale_x_discrete(limits = 

names(sorted)) 
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Appendix 3: Annotated code for the rend package  
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The following is the code developed for the rend R package. To install and use this package 

simply run: 

devtools::install_github("jjborrelli/rend") 

This package is modular in nature, and centered around a single simulation function, 

CRsimulator. The only required user input for this function is the adjacency matrix (Adj), a 

binary representation of directed links, of the food web. All of the other parameters can remain 

as default, or be altered by the user. The states argument is an optional input (i.e., may be left 

null) of the initial biomasses for all species in the system. The t argument is the sequence of time 

steps. G is the function to be used for basal species growth. The method argument gives the 

function to be integrated with deSolve::ode. FuncRes is the functional response function, which 

in this package can be either a Holling (Fij) or Beddington-DeAngelis (Fbd; consumer 

interference). The K, x.i, yij, and eij arguments are all parameters of the bioenergetic model, they 

default to values set by Williams and Martinez (2005). The argument xpar is the tuning 

parameter for the functional response, either q for Fij or c for Fbd. B.o is the half saturation 

constant. The r argument, like states, is an optional argument of growth rates. If left null the 

function will assign a growth rate of 1 to all species that lack prey. The ext argument is the 

extinction function to be used to determine when species go extinct. The last argument defines 

whether a plot (using matplot) of biomasses against time should be produced following the 

simulation. 

CRsimulator <- function(Adj, states = NULL, t = 1:200, G = Gi, method = CRmod, FuncRes = F

ij, K = 1, x.i = .5, yij = 6, eij = 1, xpar = .2, B.o =.5, r = NULL, ext = goExtinct, plot = FALSE){ 

 

  if(is.null(r)){grow <- getR(Adj)}else{grow <- r} 

 

  par <- list( 

    K = K, 

    x.i = x.i, 

    yij = yij, 

    eij = 1, 

    xpar = xpar, 

    B.o = B.o, 

    r.i = grow, 

    A = Adj, 

    G.i = G, 

    FR = FuncRes 

  ) 

 

  if(is.null(states)){states <- runif(nrow(Adj), .5, 1)} 

 

  out <- deSolve::ode(y=states, times=t, func=method, parms=par, events = list(func = ext, time 
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= t)) 

 

  if(plot) print(matplot(out[,-1], typ = "l", lwd = 2, xlab = "Time", ylab = "Biomass")) 

 

  return(out) 

} 

The function getR is applied when the r argument above is left NULL. It simply takes the 

adjacency matrix and outputs a vector of 1s and 0s, where a 1 indicates the growth rate of basal 

species. A species is considered basal if it has no prey, and so r should be supplied when there is 

a scenario including predators with no prey. If there are no basal species the function will warn 

the user, but will not stop the simulation. 

getR <- function(amat){ 

  r.i <- c() 

  r.i[colSums(amat) == 0] <- 1 

  r.i[colSums(amat) != 0] <- 0 

 

  if(sum(r.i) == 0){ 

    warning("No basal species in simulation") 

  } 

  return(r.i) 

} 

The basal growth function Gi is simply exponential growth with density dependence. Its 

arguments are the vector of growth rates (r), the vector of current biomasses (B), and the carrying 

capacity (K). 

Gi <- function(r, B, K){return(r * B * (1 - (B/K)))} 

There are two options for a functional response; one based on Holling's Type II and III (Fij), and 

another based on Beddington and DeAngelis' consumer interference functional response (Fbd). 

Both functions take the same set of parameters, the vector of current biomasses (B), the 

adjacency matrix (A), the half saturation constant (B.0), and the tuning parameter (xpar). 

Fij <- function(B, A, B.0, xpar){ 

  sum.bk <- rowSums(sapply(1:nrow(A), function(x){B[x] * A[x,]}))^(1+xpar) 

  denom <- sum.bk + B.0^(1+xpar) 

 

  F1 <- sapply(1:nrow(A), function(x){(B[x] * A[x,])^(1+xpar)})/denom 

 

  return(F1) 

} 

Fbd <- function(B, A, B.0, xpar){ 

  sum.bk <- rowSums(sapply(1:nrow(A), function(x){B[x] * A[x,]})) 
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  denom <- sum.bk + (1 + (xpar * B)) * B.0 

 

  F1 <- sapply(1:nrow(A), function(x){(B[x] * A[x,])})/denom 

 

  return(F1) 

} 

CRmod is the function describing the bioenergetic model, and is used as input to deSolve::ode. 

The inputs to the function are the sequence of time steps, the initial values for the state variables 

(in this case the biomasses of each species), and a list of named parameter values. To make this 

model more flexible, included in the parameter list are all of the specific functions used for 

growth and consumption, so that user defined functions may be used as well as those provided in 

the package. 

CRmod <- function(t,states,par){ 

 

  with(as.list(c(states, par)), { 

    dB <- G.i(r = r.i, B = states, K = K) -                                   # growth 

      x.i*states +                                                            # death 

      rowSums((x.i * yij * FR(states, A, B.o, xpar = xpar) * states)) -       # consumption 

      rowSums((x.i * yij * t(FR(states, A, B.o, xpar = xpar)* states))/eij)   # death by predation 

 

    list(c(dB)) 

  }) 

 

} 

The goExtinct function checks each biomass to see if it is below the threshold of 10−10. If it is 

below the threshold, then that species' biomass is reset to 0, simulating extinction. This function 

is also supplied as an event function argument to deSolve::ode. The times argument allows the 

function to be evaluated at each time step. 

goExtinct <- function(times, states, parms){ 

  with(as.list(states), { 

    for(i in 1:length(states)){ 

      if(states[i] < 10^-10){states[i] <- 0}else{states[i]} 

    } 

    return(c(states)) 

  }) 

} 

The rend package also has a function for the visualization of food web dynamics. With the initial 

adjacency matrix (mat), and the output of the CRsimulator function (dyn) this function computes 

both the species that remain extant at each time step, and the strength of their interactions. 
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Interaction strength is computed by the functional response at each time step, which requires the 

additional arguments of FR for the functional repsonse and xpar. 

netHTML <- function(mat, dyn, FR = Fij, xpar = .2, path1 = getwd()){ 

  if(!requireNamespace("animation", quietly = TRUE)){stop("This function requires the 'animat

ion' package to be installed and loaded", call. = FALSE)} 

 

  lay <- matrix(c(layout.sphere(graph.adjacency(mat))[,1], TrophInd(mat)$TL), ncol = 2) 

  s <- matrix(0, nrow = nrow(dyn), ncol = ncol(mat)) 

 

  ani.options(interval = .25) 

  saveHTML( 

    { 

      for(i in 1:50){ 

        fr <- FR(dyn[i,-1], mat, .5, xpar) 

        strength <- melt(fr)[,3][melt(fr)[,3] > 0] 

        fr[fr > 0 ] <- 1 

 

        g.new <- graph.adjacency(t(fr)) 

        E(g.new)$weight <- strength/max(strength)*10 

        s[i,c(which(dyn[i,-1] > 0))] <-log(dyn[i, c(which(dyn[i,] > 0)[-1])])+abs(min(log(dyn[i, c(

which(dyn[i,] > 0)[-1])]))) 

 

        plot.igraph(g.new, vertex.size = s[i,], edge.width = E(g.new)$weight, layout = lay) 

      } 

    }, 

    img.name = paste(path1, "fwdyn", sep = ""), htmlfile = paste(path1, "fwdyn.html", sep = ""), 

    interval = .25, nmax =500, ani.width = 500, ani.height = 500, outdir = path1 

  ) 

} 

There are three functions for computing the change in food webs over time during the 

simulation: WEBind, motifCounter3, and trophicChange. All three functions take in the initial 

food web adjacency matrix, web, and the output of the CRsimulator function (dyn) as arguments. 

Each function then generates a list of adjacency matrices, one for each time step, and then 

computes the respective network properties. 

WEBind returns, for each time step, number of species, number of links, link density, 

connectance, diameter, average path length, clustering coefficient, modularity, and number of 

modules. The motifCounter3 returns the frequency of thirteen three-species modules for each 

time step. Finally, trophicChangereturns the computed trophic position of each species at every 

time step. 

WEBind <- function(dyn, web){ 

  if(!requireNamespace("rnetcarto", quietly = TRUE)){ 
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    stop("This function requires the 'rnetcarto' package to be installed and loaded", call. = FALSE

) 

    } 

 

  adj.list <- lapply(1:nrow(dyn), function(x){web[dyn[x, -1] > 0, dyn[x, -1] > 0]}) 

  g.list <- lapply(adj.list, graph.adjacency) 

 

  # Number of species 

  N <- sapply(adj.list, nrow) 

  # Number of links 

  Ltot <- sapply(adj.list, sum) 

  # Link Density 

  LD <- sapply(adj.list, function(x) sum(x)/nrow(x)) 

  # Connectance: Links / (N * (N - 1)) 

  C <- sapply(adj.list, function(x){sum(x)/(nrow(x) * (nrow(x) - 1))}) 

  # Web diameter 

  D <- sapply(g.list, diameter) 

  # Average path length 

  APL <- sapply(g.list, average.path.length) 

  # Clustering coefficient 

  CC <- sapply(g.list, transitivity) 

  # Modularity 

  mod <- lapply(lapply(adj.list, conversion), function(x){ 

    if(nrow(x) > 2 && sum(x) > 2){rnetcarto::netcarto(x)}else{list(data.frame(module = c(0,0)

),0)} 

  }) 

  M <- sapply(mod, "[[", 2) 

  nMod <- sapply(lapply(mod, "[[", 1), function(x) max(x$module) + 1) 

 

  indices <- matrix(c(N, Ltot, LD, C, D, APL, CC, M, nMod), nrow = nrow(dyn)) 

  colnames(indices) <- c("N", "Ltot", "LD", "C", "D", "APL", "CC", "M", "nMod") 

  return(indices) 

} 

motifCounter3 <- function(dyn, web){ 

  adj.list <- lapply(1:nrow(dyn), function(x){web[dyn[x, -1] > 0, dyn[x, -1] > 0]}) 

  g.list <- lapply(adj.list, graph.adjacency) 

 

  triad.count <- lapply(g.list, triad.census) 

  triad.matrix <- matrix(unlist(triad.count), nrow = length(g.list), ncol = 16, byrow = T) 

  colnames(triad.matrix) <- c("empty", "single", "mutual", "s5", "s4", "s1", "d4", 

                              "d3", "s2", "s3","d8", "d2", "d1", "d5", "d7", "d6") 

 

  triad.df <- as.data.frame(triad.matrix) 
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  motif.data.frame <- data.frame(s1 = triad.df$s1, s2 = triad.df$s2, s3 = triad.df$s3, s4 = triad.df

$s4, 

                                 s5 = triad.df$s5, d1 = triad.df$d1, d2 = triad.df$d2, d3 = triad.df$d3, d4 = tri

ad.df$d4, 

                                 d5 = triad.df$d5, d6 = triad.df$d6, d7 = triad.df$d7, d8 = triad.df$d8) 

 

  return(motif.data.frame) 

} 

trophicChange <- function(dyn, web){ 

  if(!requireNamespace("NetIndices", quietly = TRUE)){ 

    stop("This function requires the 'NetIndices' package to be installed and loaded", call. = FALS

E) 

    } 

 

  adj.list <- lapply(1:nrow(dyn), function(x){web[dyn[x, -1] > 0, dyn[x, -1] > 0]}) 

  til <- lapply(adj.list, NetIndices::TrophInd) 

 

  m <- matrix(0, ncol = (ncol(dyn) - 1), nrow = nrow(dyn)) 

  for(x in 1:nrow(dyn)){ 

    m[x, dyn[x, -1] > 0] <- til[[x]]$TL 

  } 

  return(m) 

} 
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Appendix 4: Annotated code for Chapter 5 simulations 
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The code for all simulations can be found at https://github.com/jjborrelli/fw_dyn. The 

simulations are defined by four components (four R scripts); the base functions used, the higher 

level wrapper functions, the simulations themselves, and the analysis. 

The required libraries for the following code: 

library(igraph) 

library(NetIndices) 

library(rend) 

library(data.table) 

library(ggplot2) 

library(parallel) 

library(doSNOW) 

library(dplyr) 

library(lme4) 

library(reshape2) 

Base Functions 

The first function is the niche model for food webs, with an additional condition that requires the 

model web to be connected (i.e., no species that neither consume nor is consumed). Species (the 

number of which is defined by S) are arranged along a single dimensional axis. Each species has 

a feeding center and range, and consumes all species within its range. The feeding center is 

randomly sampled to be less than the value the species holds on the niche axis, and the range is 

sampled according to a beta distribution. 

niche.model<-function(S,C){ 

  connected = FALSE 

  while(!connected){   

    new.mat<-matrix(0,nrow=S,ncol=S) 

    ci<-vector() 

    niche<-runif(S,0,1) 

    r<-rbeta(S,1,((1/(2*C))-1))*niche 

     

    for(i in 1:S){ 

      ci[i]<-runif(1,r[i]/2,niche[i]) 

    } 

     

    r[which(niche==min(niche))]<-.00000001 

     

    for(i in 1:S){ 

       

      for(j in 1:S){ 

        if(niche[j]>(ci[i]-(.5*r[i])) && niche[j]<(ci[i]+.5*r[i])){ 

          new.mat[j,i]<-1 

https://github.com/jjborrelli/fw_dyn
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        } 

      } 

    } 

     

    new.mat<-new.mat[order(apply(new.mat,2,sum)), order(apply(new.mat,2,sum))] 

     

    connected <- is.connected(graph.adjacency(new.mat)) 

  } 

  return(new.mat) 

} 

The initialNiche function is designed to sample local food webs of size S.local from a pre-

defined regional web (niche). An additional constraint is the number of basal species in the local 

web (nbasal). 

initialNiche <- function(niche, S.local, nbasal){ 

  sppNAMES <- as.character(1:nrow(niche)) 

  colnames(niche) <- sppNAMES 

  rownames(niche) <- sppNAMES 

  cond <- FALSE 

  #get a connected initial network 

  while(!cond){ 

    #initial basal spp 

    inBAS <- sample(which(colSums(niche) == 0), nbasal) 

    #initial consumer spp 

    inCON <- sample((1:1000)[-which(colSums(niche) == 0)], S.local) 

    #all spp 

    inSPP <- c(inBAS, inCON) 

    #intial matrix 

    inN <- niche[inSPP, inSPP] 

    cond <- sum(colSums(inN)[names(colSums(inN)) %in% as.character(inCON)] == 0) == 0 

  } 

   

  return(inN) 

} 

The initialize function takes as arguments the desired number of species and connectance 

(Sregion, Cregion) for the regional food web, the number of local food webs to sample (n.initial), 

the number of non-basal species to have in the local web (Slocal), the number of basal species in 

the local webs (Sbasal), the number of time steps to simulate the dynamics of the local webs to 

get equilibrium webs (times), and the functional response and tuning parameter for the dynamics 

(fr and frtune). This function generates a regional food web and then samples n.initial local webs. 

The dynamics of each local web are simulated (using rend::CRsimulator) for times time steps 

with the desired combination of functional response type and tuning parameter. The function 
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outputs a list that includes the regional web adjacency matrix, a list of the local web adjacency 

matrices, and the matrices of biomass dynamics for each local web. 

initialize <- function(Sregion, Cregion, n.initial, Slocal = 45, Sbasal = 5, times = 1000, fr = Fij, fr

tune = 0.2){ 

  n.regional <- niche.model(Sregion, Cregion) 

   

  in.n <- lapply(1:n.initial, function(x) initialNiche(n.regional, S.local = Slocal, nbasal = Sbasal)

) 

   

  cl <- makeCluster(detectCores() - 1) 

  registerDoSNOW(cl) 

  in.dyn <- parLapply(cl, in.n, CRsimulator, t = 1:times, FuncRes = fr, xpar = frtune) 

  stopCluster(cl) 

   

  return(list(REGIONAL = n.regional, INITIAL = in.n, DYNAMICS = in.dyn)) 

} 

The motif_counter function takes a list of graphs and returns the frequency of three-species 

modules. 

motif_counter <- function(graph.lists){ 

  require(igraph) 

   

  if(!is.list(graph.lists)){ 

    stop("The input should be a list of graph objects") 

  } 

   

  triad.count <- lapply(graph.lists, triad.census) 

  triad.matrix <- matrix(unlist(triad.count), nrow = length(graph.lists), ncol = 16, byrow = T) 

  colnames(triad.matrix) <- c("empty", "single", "mutual", "s5", "s4", "s1", "d4", 

                              "d3", "s2", "s3","d8", "d2", "d1", "d5", "d7", "d6") 

   

  triad.df <- as.data.frame(triad.matrix) 

   

  motif.data.frame <- data.frame(s1 = triad.df$s1, s2 = triad.df$s2, s3 = triad.df$s3, s4 = triad.df

$s4,  

                                 s5 = triad.df$s5, d1 = triad.df$d1, d2 = triad.df$d2, d3 = triad.df$d3, d4 = tri

ad.df$d4, 

                                 d5 = triad.df$d5, d6 = triad.df$d6, d7 = triad.df$d7, d8 = triad.df$d8) 

   

  return(motif.data.frame) 

} 

The wprop function takes in an adjacency matrix and computes a number of food web properties: 

number of species, number of links, connectance, mean generality, mean vulnerability, standard 
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deviation of generality and vulnerability, mean and standard deviation of trophic position, mean 

and standard deviation of omnivory index, average path length, diameter, and the frequencies of 

the thirteen three-species modules. 

wprop <- function(m){ 

   

  N <- nrow(m) 

  L <- sum(m) 

  C <- L/(N*(N-1)) 

   

  meanGen <- mean(colSums(m)) 

  meanVul <- mean(rowSums(m)) 

  sdGen <- sd(colSums(m)) 

  sdVul <- sd(rowSums(m)) 

  ti <- TrophInd(m) 

  meanTP <- mean(ti$TL) 

  sdTP <- sd(ti$TL) 

  meanOI <- mean(ti$OI) 

  sdOI <- sd(ti$OI) 

   

  g <- graph.adjacency(m) 

  APL <- average.path.length(g) 

  D <- diameter(g) 

   

  mc <- motif_counter(list(g)) 

   

  return(data.frame(N, L, C, meanGen, meanVul, sdGen, sdVul, meanTP, sdTP, meanOI, sdOI, 

APL, D, mc)) 

} 

The netdiff function compares two adjacency matrices and computes the difference in their web 

properties as defined by wprop. 

netdiff <- function(mat1, mat2){ 

  w.in <- wprop(mat1) 

  w.fi <- wprop(mat2) 

   

  return(w.fi - w.in) 

} 

Two functions are defined to compute the properties of individual species. One, iprop is defined 

for species newly introduced to a food web, and delpropis defined for species removed from a 

web. Both take in the adjacency matrix and the identity of the introduced or deleted species. Both 

return the same properties of the focal species. 
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iprop <- function(m, invader){ 

  invGen <- sum(m[,ncol(m)]) 

  invVul <- sum(m[nrow(m),]) 

  ti <- TrophInd(m) 

  invTP <- tail(ti$TL, 1) 

  invOI <- tail(ti$OI, 1) 

   

  return(data.frame(invID = invader, invGen, invVul, invTP, invOI)) 

} 

 

delprop <- function(m, d){ 

  delGen <- sum(m[,d]) 

  delVul <- sum(m[d,]) 

  ti <- TrophInd(m) 

  delTP <- ti$TL[d] 

  delOI <- ti$OI[d] 

   

  return(data.frame(delID = d, delGen, delVul, delTP, delOI)) 

} 

The invading2 function describes the introduction of a single species. It takes as arguments the 

biomass dynamics of the local food web and its adjacency matrix, the regional web adjacency 

matrix, and the function response with its tuning parameter. The function defines the equilibrium 

local web, and then samples a new species from the regional web. The new species is constrained 

to be either basal, or have at least one resource in the extant community. Following the 

introduction of the new species the change in web properties is calculated and biomass dynamics 

are simulated for 500 time steps. The web at 500 time steps is then used to determine whether the 

new species has established or not, and if not how long before it went extinct. The number of 

secondary extinctions is also computed. 

invading2 <- function(dyn1, initial, regional, FR = Fij, frtune = 0.2){ 

  extant <- which(tail(dyn1, 1)[,-1] > 0)  

  extantSPP <- as.numeric(colnames(initial)[extant]) 

  eqABUND <- tail(dyn1, 1)[,-1][extant] 

   

  eq.n <- initial[extant, extant] 

  intro <- sample((1:nrow(regional))[-extantSPP], 1) 

  invaded <- c(extantSPP, intro) 

   

  newN <- regional[invaded, invaded] 

   

   

  if(sum(regional[,intro]) != 0){ 

    while(sum(newN[,nrow(newN)]) == 0){ 
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      intro <- sample((1:nrow(regional))[-extantSPP], 1) 

      invaded <- c(extantSPP, intro) 

      newN <- regional[invaded, invaded] 

    } 

  } 

  colnames(newN) <- as.character(invaded) 

  rownames(newN) <- as.character(invaded) 

   

  nd1 <- netdiff(eq.n, newN) 

   

  r.in <- as.numeric(colnames(newN) %in% which(colSums(regional) == 0)) 

  inABUND <- c(as.vector(eqABUND), 0.5) 

   

  dyn <- CRsimulator(newN, states = inABUND, r = r.in, t = 1:500, FuncRes = FR, xpar = frtun

e) 

   

  ext1 <- which(tail(dyn, 1)[,-1] > 0) 

  eq.n2 <- newN[ext1, ext1] 

   

  in.success <- intro %in% colnames(eq.n2) 

  sp.change <- nrow(eq.n2) - nrow(newN)  

   

  invdyn <- dyn[,(nrow(newN) + 1)] 

  if(invdyn[500] != 0){inv.tte <- 500}else{inv.tte <- min(which(invdyn == 0))} 

  

  inv.prop <- iprop(newN, intro) 

  inv.prop$dN <- sp.change 

  inv.prop$tte <- inv.tte 

  inv.prop$I <- in.success 

   

  return(list(nd1, inv.prop)) 

} 

The deleting2 function describes the removal of a single species. It takes as arguments the 

biomass dynamics of the local food web and its adjacency matrix, the regional web adjacency 

matrix, and the function response with its tuning parameter. The function defines the equilibrium 

local web, and then removes each species one at a time. Following removal, the change in web 

properties is computed and the dynamics of the resulting web are simulated for 500 time steps. 

The simulated dynamics are then examined to determine how many species have gone extinct. 

deleting2 <- function(dyn1, initial, regional, FR = Fij, frtune = 0.2){ 

  extant <- which(tail(dyn1, 1)[,-1] > 0)  

  extantSPP <- as.numeric(colnames(initial)[extant]) 

  eqABUND <- tail(dyn1, 1)[,-1][extant] 
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  eq.n <- initial[extant, extant] 

   

  d.ch <- list() 

  nd1 <- list() 

  persist <- c() 

  s.initial <- c()  

  s.final <- c() 

  for(i in 1:nrow(eq.n)){ 

    d.ch[[i]] <- delprop(eq.n, i) 

    newN <- eq.n[-i,-i] 

    nd1[[i]] <- netdiff(eq.n, newN) 

    r.in <- as.numeric(colnames(newN) %in% which(colSums(regional) == 0)) 

    inABUND <- eqABUND[-i] 

     

    dyn <- CRsimulator(newN, states = inABUND, r = r.in, t = 1:500, FuncRes = FR, xpar = frtu

ne) 

     

    ext1 <- which(tail(dyn, 1)[,-1] > 0) 

    persist[i] <- length(ext1)/nrow(newN) 

    s.initial[i] <- nrow(newN) 

    s.final[i] <- length(ext1) 

  } 

   

  nd2 <- data.frame(persist = persist, do.call(rbind, nd1), do.call(rbind, d.ch))   

  nd2$s.in <- s.initial 

  nd2$s.fi <- s.final  

  return(nd2) 

} 

Wrapper functions 

The two wrapper functions apply the invading2 and deleting2 in parallel. For each initial 

network that comes from a regional network sp.addition applies the invading2 function 300 

times, and sp.deletion applies the deleting2 function. 

sp.addition <- function(in.dyn, in.n, n.regional, funcres = Fij, x = 0.2, init){ 

  cl <- makeCluster(detectCores() - 1) 

  registerDoSNOW(cl) 

   

  INVASION <- foreach(i = 1:length(in.n)) %dopar% { 

    source("../../../Dropbox/dis-assem.R") 

    sink(file = paste0(filepath.sink, "invasion/", init, "/", "invading-web", i,".txt", collapse = "")) 

     

    # SIMULATION 

    numinvs = 300 
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    invaded <- lapply(1:numinvs, function(x) invading2(in.dyn[[i]], in.n[[i]], n.regional, FR = fu

ncres, frtune = x)) 

     

    webi.props <- do.call(rbind, lapply(invaded, "[[", 1)) 

    inv.props <- do.call(rbind, lapply(invaded, "[[", 2)) 

     

    webi.props <- data.frame(webi.props, inum = 1:numinvs, locweb = i) 

    inv.props <- data.frame(inv.props, inum = 1:numinvs, locweb = i) 

     

     

    print(list(webi.props, inv.props)) 

     

    sink() 

     

    return(list(webi.props, inv.props)) 

  } 

   

  stopCluster(cl) 

   

  wpdf <- rbindlist(lapply(INVASION, "[[", 1)) 

  ipdf <- rbindlist(lapply(INVASION, "[[", 2)) 

   

  return(list(wpdf = wpdf, ipdf = ipdf)) 

} 

 

 

sp.deletion <- function(in.dyn, in.n, n.regional, funcres = Fij, x = 0.2, init){ 

  cl <- makeCluster(detectCores() - 1) 

  registerDoSNOW(cl) 

   

  DELETION <- foreach(i = 1:length(in.n)) %dopar% { 

    source("../../../Dropbox/dis-assem.R") 

    sink(file = paste0(filepath.sink, "deletion/", init, "/", "deleting-web", i,".txt", collapse = "")) 

     

    # SIMULATION 

     

    deleted <- deleting2(in.dyn[[i]], in.n[[i]], n.regional, FR = funcres, frtune = x) 

    del.props <- data.frame(deleted, locweb = i) 

     

    print(del.props) 

     

    sink() 

     

    return(del.props) 
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  } 

   

  stopCluster(cl) 

   

   

  dels <- rbindlist(DELETION) 

   

  return(dels) 

} 

Simulations 

Six scenarios were simulated, defined by the functional response type and the tuning parameter. 

For each scenario there was a regional web from which 200 initial webs were sampled. 

######################## 

## Get starter webs 

 

init1 <- initialize(Sregion = 1000, Cregion = 0.15, n.initial = 200, Slocal = 45, Sbasal = 5, times 

= 1000, fr = Fij, frtune = 0) 

in1.eqS <- sapply(init1[["DYNAMICS"]], function(x){sum(x[1000, -1] > 0)}) 

init2 <- initialize(Sregion = 1000, Cregion = 0.15, n.initial = 200, Slocal = 45, Sbasal = 5, times 

= 1000, fr = Fij, frtune = 0.2) 

in2.eqS <- sapply(init2[["DYNAMICS"]], function(x){sum(x[1000, -1] > 0)}) 

init3 <- initialize(Sregion = 1000, Cregion = 0.15, n.initial = 200, Slocal = 45, Sbasal = 5, times 

= 1000, fr = Fij, frtune = 1) 

in3.eqS <- sapply(init3[["DYNAMICS"]], function(x){sum(x[1000, -1] > 0)}) 

 

init4 <- initialize(Sregion = 1000, Cregion = 0.15, n.initial = 200, Slocal = 45, Sbasal = 5, times 

= 1000, fr = Fbd, frtune = 0) 

in4.eqS <- sapply(init4[["DYNAMICS"]], function(x){sum(x[1000, -1] > 0)}) 

init5 <- initialize(Sregion = 1000, Cregion = 0.15, n.initial = 200, Slocal = 45, Sbasal = 5, times 

= 1000, fr = Fbd, frtune = 0.2) 

in5.eqS <- sapply(init5[["DYNAMICS"]], function(x){sum(x[1000, -1] > 0)}) 

init6 <- initialize(Sregion = 1000, Cregion = 0.15, n.initial = 200, Slocal = 45, Sbasal = 5, times 

= 1000, fr = Fbd, frtune = 1) 

in6.eqS <- sapply(init6[["DYNAMICS"]], function(x){sum(x[1000, -1] > 0)}) 

 

######################## 

## Deletion simulations 

allstrt <- Sys.time() 

 

spdel1 <- sp.deletion(in.dyn = init1[["DYNAMICS"]][in1.eqS> 5], in.n = init1[["INITIAL"]][in

1.eqS > 5], n.regional = init1[["REGIONAL"]], funcres = Fij, x = 0, init = "ini1") 

spdel2 <- sp.deletion(in.dyn = init2[["DYNAMICS"]][in2.eqS> 5], in.n = init2[["INITIAL"]][in

2.eqS> 5], n.regional = init2[["REGIONAL"]], funcres = Fij, x = 0.2, init = "ini2") 
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spdel3 <- sp.deletion(in.dyn = init3[["DYNAMICS"]][in3.eqS> 5], in.n = init3[["INITIAL"]][in

3.eqS> 5], n.regional = init3[["REGIONAL"]], funcres = Fij, x = 1, init = "ini3") 

spdel4 <- sp.deletion(in.dyn = init4[["DYNAMICS"]][in4.eqS> 5], in.n = init4[["INITIAL"]][in

4.eqS> 5], n.regional = init4[["REGIONAL"]], funcres = Fbd, x = 0, init = "ini4") 

spdel5 <- sp.deletion(in.dyn = init5[["DYNAMICS"]][in5.eqS> 5], in.n = init5[["INITIAL"]][in

5.eqS> 5], n.regional = init5[["REGIONAL"]], funcres = Fbd, x = 0.2, init = "ini5") 

spdel6 <- sp.deletion(in.dyn = init6[["DYNAMICS"]][in6.eqS> 5], in.n = init6[["INITIAL"]][in

6.eqS> 5], n.regional = init6[["REGIONAL"]], funcres = Fbd, x = 1, init = "ini6") 

 

allend <- Sys.time() 

 

allend - allstrt 

 

######################## 

## Invasion simulations 

allstrt1 <- Sys.time() 

 

spadd1 <- sp.addition(in.dyn = init1[["DYNAMICS"]][in1.eqS> 5], in.n = init1[["INITIAL"]][i

n1.eqS> 5], n.regional = init1[["REGIONAL"]], funcres = Fij, x = 0, init = "ini1") 

end1 <- Sys.time() 

end1 - allstrt1 

 

spadd2 <- sp.addition(in.dyn = init2[["DYNAMICS"]][in2.eqS> 5], in.n = init2[["INITIAL"]][i

n2.eqS> 5], n.regional = init2[["REGIONAL"]], funcres = Fij, x = 0.2, init = "ini2") 

end2 <- Sys.time() 

end2 - end1 

spadd3 <- sp.addition(in.dyn = init3[["DYNAMICS"]][in3.eqS> 5], in.n = init3[["INITIAL"]][i

n3.eqS > 5], n.regional = init3[["REGIONAL"]], funcres = Fij, x = 1, init = "ini3") 

end3 <- Sys.time() 

end3 - end2 

spadd4 <- sp.addition(in.dyn = init4[["DYNAMICS"]][in4.eqS> 5], in.n = init4[["INITIAL"]][i

n4.eqS> 5], n.regional = init4[["REGIONAL"]], funcres = Fbd, x = 0, init = "ini4") 

end4 <- Sys.time() 

end4 - end3 

spadd5 <- sp.addition(in.dyn = init5[["DYNAMICS"]][in5.eqS> 5], in.n = init5[["INITIAL"]][i

n5.eqS> 5], n.regional = init5[["REGIONAL"]], funcres = Fbd, x = 0.2, init = "ini5") 

end5 <- Sys.time() 

end5 - end4 

spadd6 <- sp.addition(in.dyn = init6[["DYNAMICS"]][in6.eqS> 5], in.n = init6[["INITIAL"]][i

n6.eqS> 5], n.regional = init6[["REGIONAL"]], funcres = Fbd, x = 1, init = "ini6") 

 

allend1 <- Sys.time() 

 

allend1 - allstrt1 
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Analysis 

# How many webs in each  

 

nweb1 <- sum(in1.eqS > 5) 

nweb2 <- sum(in2.eqS > 5) 

nweb3 <- sum(in3.eqS > 5) 

nweb4 <- sum(in4.eqS > 5) 

nweb5 <- sum(in5.eqS > 5) 

nweb6 <- sum(in6.eqS > 5) 

 

n.eqwebs <- c(nweb1, nweb2, nweb3, nweb4, nweb5, nweb6) 

 

# How many species were deleted from each web 

 

ndel1 <- sum(in1.eqS[in1.eqS > 5]) 

ndel2 <- sum(in2.eqS[in2.eqS > 5]) 

ndel3 <- sum(in3.eqS[in3.eqS > 5]) 

ndel4 <- sum(in4.eqS[in4.eqS > 5]) 

ndel5 <- sum(in5.eqS[in5.eqS > 5]) 

ndel6 <- sum(in6.eqS[in6.eqS > 5]) 

 

n.deletions <- c(ndel1, ndel2, ndel3, ndel4, ndel5, ndel6) 

 

# How many invasions events for each set 

 

n.invasions <- c(nweb1, nweb2, nweb3, nweb4, nweb5, nweb6)*300 

n.invasions 

 

 

# Is the web connected 

 

iscon1 <- sapply(1:200, function(x){is.connected(graph.adjacency(init1[["INITIAL"]][[x]][init

1[["DYNAMICS"]][[x]][1000,-1] > 0,init1[["DYNAMICS"]][[x]][1000,-1] > 0]))}) 

iscon2 <- sapply(1:200, function(x){is.connected(graph.adjacency(init2[["INITIAL"]][[x]][init

2[["DYNAMICS"]][[x]][1000,-1] > 0,init2[["DYNAMICS"]][[x]][1000,-1] > 0]))}) 

iscon3 <- sapply(1:200, function(x){is.connected(graph.adjacency(init3[["INITIAL"]][[x]][init

3[["DYNAMICS"]][[x]][1000,-1] > 0,init3[["DYNAMICS"]][[x]][1000,-1] > 0]))}) 

iscon4 <- sapply(1:200, function(x){is.connected(graph.adjacency(init4[["INITIAL"]][[x]][init

4[["DYNAMICS"]][[x]][1000,-1] > 0,init4[["DYNAMICS"]][[x]][1000,-1] > 0]))}) 

iscon5 <- sapply(1:200, function(x){is.connected(graph.adjacency(init5[["INITIAL"]][[x]][init

5[["DYNAMICS"]][[x]][1000,-1] > 0,init5[["DYNAMICS"]][[x]][1000,-1] > 0]))}) 

iscon6 <- sapply(1:200, function(x){is.connected(graph.adjacency(init6[["INITIAL"]][[x]][init

6[["DYNAMICS"]][[x]][1000,-1] > 0,init6[["DYNAMICS"]][[x]][1000,-1] > 0]))}) 
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# How many species in each web set 

 

l1 <- list(in1.eqS[in1.eqS > 5 & iscon1], in2.eqS[in2.eqS > 5 & iscon2], in3.eqS[in3.eqS > 5 & i

scon3], in4.eqS[in4.eqS > 5 & iscon4], in5.eqS[in5.eqS > 5 & iscon5], in6.eqS[in6.eqS > 5 & isc

on6]) 

ggplot(melt(l1), aes(x = factor(L1), y = value)) + geom_boxplot() 

 

 

######################################################## 

#### DATA SELECTION 

 

# get deletion data from each connected web 

 

spd1 <- spdel1[spdel1$locweb %in% which(iscon1[in1.eqS > 5]),] 

spd2 <- spdel2[spdel2$locweb %in% which(iscon2[in2.eqS > 5]),] 

spd3 <- spdel3[spdel3$locweb %in% which(iscon3[in3.eqS > 5]),] 

spd4 <- spdel4[spdel4$locweb %in% which(iscon4[in4.eqS > 5]),] 

spd5 <- spdel5[spdel5$locweb %in% which(iscon5[in5.eqS > 5]),] 

spd6 <- spdel6[spdel6$locweb %in% which(iscon6[in6.eqS > 5]),] 

 

# get invasion data from each connectd web 

 

spa1 <- lapply(spadd1, function(x) x[x$locweb %in% which(iscon1[in1.eqS > 5]),]) 

spa2 <- lapply(spadd2, function(x) x[x$locweb %in% which(iscon2[in1.eqS > 5]),]) 

spa3 <- lapply(spadd3, function(x) x[x$locweb %in% which(iscon3[in1.eqS > 5]),]) 

spa4 <- lapply(spadd4, function(x) x[x$locweb %in% which(iscon4[in1.eqS > 5]),]) 

spa5 <- lapply(spadd5, function(x) x[x$locweb %in% which(iscon5[in1.eqS > 5]),]) 

spa6 <- lapply(spadd6, function(x) x[x$locweb %in% which(iscon6[in1.eqS > 5]),]) 

Plotting functions for the subsets of the data. 

wplot.del <- function(spdlist){ 

  dyn <- expand.grid(c("Fij", "Fbd"), c("0", "0.2", "1")) 

  df <- list() 

  for(i in 1:length(spdlist)){ 

    spd <- spdlist[[i]] 

    spdP <- spd$persist == 1 

    spdNP <- spd$persist != 1 

    wp.spd1 <- dplyr::select(spd, L:D, -C) 

    t1 <- melt(wp.spd1[spdNP,], measure.vars = names(wp.spd1[spdNP,]))  

    df1 <- data.frame(values = t1$value, metric = factor(t1$variable, levels = names(wp.spd1)), 

                          L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "not persistent") 

    t2 <- melt(wp.spd1[spdP,], measure.vars = names(wp.spd1[spdP,])) 

    df2 <- data.frame(values = t2$value, metric = factor(t2$variable, levels = names(wp.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "persistent") 
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    df[[i]] <- rbind(df1, df2) 

  } 

  

  return(rbindlist(df)) 

} 

 

mplot.del <- function(spdlist){ 

  dyn <- expand.grid(c("Fij", "Fbd"), c("0", "0.2", "1")) 

  df <- list() 

  for(i in 1:length(spdlist)){ 

    spd <- spdlist[[i]] 

    spdP <- spd$persist == 1 

    spdNP <- spd$persist != 1 

    mo.spd1 <- dplyr::select(spd, s1:d8) 

    t1 <- melt(mo.spd1[spdNP,], measure.vars = names(mo.spd1[spdNP,]))  

    df1 <- data.frame(values = t1$value, metric = factor(t1$variable, levels = names(mo.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "not persistent") 

    t2 <- melt(mo.spd1[spdP,], measure.vars = names(mo.spd1[spdP,])) 

    df2 <- data.frame(values = t2$value, metric = factor(t2$variable, levels = names(mo.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "persistent") 

    df[[i]] <- rbind(df1, df2) 

  } 

   

  return(rbindlist(df)) 

} 

 

dplot.del <- function(spdlist){ 

  dyn <- expand.grid(c("Fij", "Fbd"), c("0", "0.2", "1")) 

  df <- list() 

  for(i in 1:length(spdlist)){ 

    spd <- spdlist[[i]] 

    spdP <- spd$persist == 1 

    spdNP <- spd$persist != 1 

    dp.spd1 <- dplyr::select(spd, delGen:delOI) 

    t1 <- melt(dp.spd1[spdNP,], measure.vars = names(dp.spd1[spdNP,]))  

    df1 <- data.frame(values = t1$value, metric = factor(t1$variable, levels = names(dp.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "not persistent") 

    t2 <- melt(dp.spd1[spdP,], measure.vars = names(dp.spd1[spdP,])) 

    df2 <- data.frame(values = t2$value, metric = factor(t2$variable, levels = names(dp.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "persistent") 

    df[[i]] <- rbind(df1, df2) 

  } 

   

  return(rbindlist(df)) 

} 
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wplot.inv <- function(spalist){ 

  dyn <- expand.grid(c("Fij", "Fbd"), c("0", "0.2", "1")) 

  df <- list() 

  for(i in 1:length(spalist)){ 

    spd <- spalist[[i]] 

    spdP <- spd[[2]]$I == TRUE 

    spdNP <- spd[[2]]$I == FALSE 

    wp.spd1 <- dplyr::select(spd[[1]], L:D, -C) 

    t1 <- melt(wp.spd1[spdNP,], measure.vars = names(wp.spd1[spdNP,]))  

    df1 <- data.frame(values = t1$value, metric = factor(t1$variable, levels = names(wp.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "not invaded") 

    t2 <- melt(wp.spd1[spdP,], measure.vars = names(wp.spd1[spdP,])) 

    df2 <- data.frame(values = t2$value, metric = factor(t2$variable, levels = names(wp.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "invaded") 

    df[[i]] <- rbind(df1, df2) 

  } 

   

  return(rbindlist(df)) 

} 

 

mplot.inv <- function(spalist){ 

  dyn <- expand.grid(c("Fij", "Fbd"), c("0", "0.2", "1")) 

  df <- list() 

  for(i in 1:length(spalist)){ 

    spd <- spalist[[i]] 

    spdP <- spd[[2]]$I == TRUE 

    spdNP <- spd[[2]]$I == FALSE 

    mo.spd1 <- dplyr::select(spd[[1]], s1:d8) 

    t1 <- melt(mo.spd1[spdNP,], measure.vars = names(mo.spd1[spdNP,]))  

    df1 <- data.frame(values = t1$value, metric = factor(t1$variable, levels = names(mo.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "not invaded") 

    t2 <- melt(mo.spd1[spdP,], measure.vars = names(mo.spd1[spdP,])) 

    df2 <- data.frame(values = t2$value, metric = factor(t2$variable, levels = names(mo.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "invaded") 

    df[[i]] <- rbind(df1, df2) 

  } 

   

  return(rbindlist(df)) 

} 

 

dplot.inv <- function(spdlist){ 

  dyn <- expand.grid(c("Fij", "Fbd"), c("0", "0.2", "1")) 

  df <- list() 
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  for(i in 1:length(spdlist)){ 

    spd <- spdlist[[i]] 

    spdP <- spd[[2]]$I == TRUE 

    spdNP <- spd[[2]]$I == FALSE 

    dp.spd1 <- dplyr::select(spd[[2]], invGen:dN) 

    dp.spd1$dN <- dp.spd1$dN * -1 

    t1 <- melt(dp.spd1[spdNP,], measure.vars = names(dp.spd1[spdNP,]))  

    df1 <- data.frame(values = t1$value, metric = factor(t1$variable, levels = names(dp.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "not invaded") 

    t2 <- melt(dp.spd1[spdP,], measure.vars = names(dp.spd1[spdP,])) 

    df2 <- data.frame(values = t2$value, metric = factor(t2$variable, levels = names(dp.spd1)), 

                      L1 = i, FR = dyn[i,1], par = dyn[i,2], stability = "invaded") 

    df[[i]] <- rbind(df1, df2) 

  } 

   

  return(rbindlist(df)) 

} 

 

max.se <- function(x){mean(x) + 1.96*(sd(x)/sqrt(length(x)))} 

min.se <- function(x){mean(x) - 1.96*(sd(x)/sqrt(length(x)))} 

Plotting the figures. 

spdl <- list(spd1, spd2, spd3, spd4, spd5, spd6) 

 

ggplot(wplot.del(spdl), aes(x = par, y = values, fill = stability)) +  

  geom_bar(stat = "summary", position = "dodge") +  

  stat_summary(fun.y = "mean", fun.ymin = min.se, fun.ymax = max.se, geom = "errorbar", pos

ition = "dodge") +  

  facet_grid(metric~FR, scales = "free_y") + 

  theme_bw() + #theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust = 0)) + 

  xlab("Model Parameter") + ylab("Change in Value Following Species Removal") 

#ggsave("./Figs/wplotDEL.png") 

 

ggplot(mplot.del(spdl), aes(x = par, y = values, fill = stability))  +  

  geom_bar(stat = "summary", position = "dodge") +  

  stat_summary(fun.y = "mean", fun.ymin = min.se, fun.ymax = max.se, geom = "errorbar", pos

ition = "dodge") +  

  facet_grid(metric~FR, scales = "free_y") + 

  theme_bw() + 

  xlab("Model Parameter") + ylab("Change in Frequency Following Species Removal") 

#ggsave("./Figs/mplotDEL.png") 

 

ggplot(dplot.del(spdl), aes(x = par, y = values, fill = stability))  +  

  geom_bar(stat = "summary", position = "dodge") +  

  stat_summary(fun.y = "mean", fun.ymin = min.se, fun.ymax = max.se, geom = "errorbar", pos
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ition = "dodge") +  

  facet_grid(metric~FR, scales = "free_y") + 

  theme_bw() + 

  xlab("Model Parameter") + ylab("Value For Removed Species") 

#ggsave("./Figs/dplotDEL.png") 

 

 

spal <- list(spa1, spa2, spa3, spa4, spa5, spa6) 

 

ggplot(wplot.inv(spal), aes(x = par, y = values, fill = stability)) +  

  geom_bar(stat = "summary", position = "dodge") +  

  stat_summary(fun.y = "mean", fun.ymin = min.se, fun.ymax = max.se, geom = "errorbar", pos

ition = "dodge") +  

  facet_grid(metric~FR, scales = "free_y") + 

  theme_bw() + #theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust = 0)) + 

  xlab("Model Parameter") + ylab("Change in Value Following Species Introduction") 

#ggsave("./Figs/wplotINV.png") 

 

ggplot(mplot.inv(spal), aes(x = par, y = values, fill = stability)) +  

  geom_bar(stat = "summary", position = "dodge") +  

  stat_summary(fun.y = "mean", fun.ymin = min.se, fun.ymax = max.se, geom = "errorbar", pos

ition = "dodge") +  

  facet_grid(metric~FR, scales = "free_y") + 

  theme_bw() + 

  xlab("Model Parameter") + ylab("Change in Frequency Following Species Introduction") 

#ggsave("./Figs/mplotINV.png") 

 

ggplot(dplot.inv(spal), aes(x = par, y = values, fill = stability)) +  

  geom_bar(stat = "summary", position = "dodge") +  

  stat_summary(fun.y = "mean", fun.ymin = min.se, fun.ymax = max.se, geom = "errorbar", pos

ition = "dodge") +  

  facet_grid(metric~FR, scales = "free_y") + 

  theme_bw() + 

  xlab("Model Parameter") + ylab("Value for Introduced Species") 

#ggsave("./Figs/dplotINV.png") 

Principal components regression with linear mixed effects models for species deletions 

get_pc <- function(spdeldata){ 

  subg1 <- select(spdeldata, s1:d8) 

  webp1 <- select(spdeldata, L:D, -C) 

  webp1$APL[is.na(webp1$APL)] <- 0 

  delp1 <- select(spdeldata, delGen:delOI) 

   

  pcsub <- princomp(subg1) 

  pcweb <- princomp(webp1) 
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  pcdel <- princomp(delp1) 

   

  return(list(pcsub, pcweb, pcdel)) 

} 

 

 

get_df_glms <- function(spdeldata, pcomplist){ 

  pcsub <- pcomplist[[1]] 

  pcweb <- pcomplist[[2]] 

  pcdel <- pcomplist[[3]] 

 

  persisted <- select(spdeldata, persist) 

  persisted.bin <- matrix(c(spdeldata$s.fi, (spdeldata$s.in - spdeldata$s.fi)), ncol = 2) 

 

   

  df1 <- data.frame(pc1 = pcsub$scores[,1], pc2 = pcsub$scores[,2], pc3 = pcsub$scores[,3], dI

D = spdeldata$delID, lweb = spdeldata$locweb) 

  df2 <- data.frame(pc1 = pcweb$scores[,1], pc2 = pcweb$scores[,2], pc3 = pcweb$scores[,3], d

ID = spdeldata$delID, lweb = spdeldata$locweb) 

  df3 <- data.frame(pc1 = pcdel$scores[,1], pc2 = pcdel$scores[,2], pc3 = pcdel$scores[,3], dID 

= spdeldata$delID, lweb = spdeldata$locweb) 

   

  return(list(df1, df2, df3)) 

} 

 

SS <- function(x, y){ 

  ssr <- sum((fitted(x) - y)^2) 

  sst <- sum((y- mean(y))^2) 

  return(c(r2 = ssr/sst, SSR = ssr)) 

} 

 

 

spd1pc <- get_pc(spd1) 

spd2pc <- get_pc(spd2) 

spd3pc <- get_pc(spd3) 

spd4pc <- get_pc(spd4) 

spd5pc <- get_pc(spd5) 

spd6pc <- get_pc(spd6) 

 

load1sD <- lapply(list(spd1pc, spd2pc, spd3pc, spd4pc, spd5pc, spd6pc), function(q) lapply(q, f

unction(x) loadings(x)[,1])) 

subloadingD <- round(sapply(load1sD, "[[",1), 3) 

webloadingD <- round(sapply(load1sD, "[[",2), 3) 

delloadingD <- round(sapply(load1sD, "[[",3), 3) 

#write.csv(subloadingD, "D:/jjborrelli/AssemblyDATA/invdel/subloadD.csv") 
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#write.csv(webloadingD, "D:/jjborrelli/AssemblyDATA/invdel/webloadD.csv") 

#write.csv(delloadingD, "D:/jjborrelli/AssemblyDATA/invdel/delloadD.csv") 

 

 

spd1gm <- get_df_glms(spd1, spd1pc) 

spd2gm <- get_df_glms(spd2, spd2pc) 

spd3gm <- get_df_glms(spd3, spd3pc) 

spd4gm <- get_df_glms(spd4, spd4pc) 

spd5gm <- get_df_glms(spd5, spd5pc) 

spd6gm <- get_df_glms(spd6, spd6pc) 

 

allspD <- list(spd1, spd2, spd3, spd4, spd5, spd6) 

allgmdf <- list(spd1gm, spd2gm, spd3gm, spd4gm, spd5gm, spd6gm) 

 

allgmtab <- list() 

for(i in 1:6){ 

  # glm web prop 

  persisted.bin <- cbind(allspD[[i]]$s.fi, (allspD[[i]]$s.in - allspD[[i]]$s.fi)) 

  gm1 <- glmer(persisted.bin ~ pc1 + (1 | lweb), data = allgmdf[[i]][[1]], family = "binomial") 

  ss <- getME(gm1,c("theta","fixef")) 

  gm1.1 <- update(gm1,start=ss,control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfu

n=2e5))) 

  gm.sum <- summary(gm1.1) 

  gm.ss <- SS(gm1, allspD[[i]]$persist) 

  subg.gm <- c(gm.sum$coefficients[2,], gm.sum$AICtab, gm.ss) 

   

  gm2 <- glmer(persisted.bin ~ pc1 + (1 | lweb), data = allgmdf[[i]][[2]], family = "binomial") 

  gm.sum <- summary(gm2) 

  gm.ss <- SS(gm2, allspD[[i]]$persist) 

  webp.gm <- c(gm.sum$coefficients[2,], gm.sum$AICtab, gm.ss) 

   

  gm3 <- glmer(persisted.bin ~ pc1 + (1 | lweb), data = allgmdf[[i]][[3]], family = "binomial") 

  gm.sum <- summary(gm3) 

  gm.ss <- SS(gm3, allspD[[i]]$persist) 

  delp.gm <- c(gm.sum$coefficients[2,], gm.sum$AICtab, gm.ss) 

   

  allgmtab[[i]] <- rbind(subg.gm, webp.gm, delp.gm) 

  print(i) 

} 

 

allgmtab 

Principal components regression with linear mixed effects models for species invasions. 

get_pc_inv <- function(spinvdata){ 

  subg1 <- select(spinvdata[[1]], s1:d8) 
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  webp1 <- select(spinvdata[[1]], L:D, -C) 

  webp1$APL[is.na(webp1$APL)] <- 0 

  invp1 <- select(spinvdata[[2]], invGen:invOI) 

   

  pcsub <- princomp(subg1) 

  pcweb <- princomp(webp1) 

  pcinv <- princomp(invp1) 

   

  return(list(pcsub, pcweb, pcinv)) 

} 

 

 

get_df_glmsI <- function(spdeldata, pcomplist){ 

  pcsub <- pcomplist[[1]] 

  pcweb <- pcomplist[[2]] 

  pcdel <- pcomplist[[3]] 

   

   

  df1 <- data.frame(pc1 = pcsub$scores[,1], pc2 = pcsub$scores[,2], pc3 = pcsub$scores[,3], lwe

b = spdeldata[[1]]$locweb) 

  df2 <- data.frame(pc1 = pcweb$scores[,1], pc2 = pcweb$scores[,2], pc3 = pcweb$scores[,3], l

web = spdeldata[[1]]$locweb) 

  df3 <- data.frame(pc1 = pcdel$scores[,1], pc2 = pcdel$scores[,2], pc3 = pcdel$scores[,3], lweb 

= spdeldata[[1]]$locweb) 

   

  return(list(df1, df2, df3)) 

} 

 

 

 

spa1pc <- get_pc_inv(spa1) 

spa2pc <- get_pc_inv(spa2) 

spa3pc <- get_pc_inv(spa3) 

spa4pc <- get_pc_inv(spa4) 

spa5pc <- get_pc_inv(spa5) 

spa6pc <- get_pc_inv(spa6) 

 

load1s <- lapply(list(spa1pc, spa2pc, spa3pc, spa4pc, spa5pc, spa6pc), function(q) lapply(q, fun

ction(x) loadings(x)[,1])) 

subloadingI <- round(sapply(load1s, "[[",1), 3) 

webloadingI <- round(sapply(load1s, "[[",2), 3) 

invloadingI <- round(sapply(load1s, "[[",3), 3) 

#write.csv(subloadingI, "D:/jjborrelli/AssemblyDATA/invdel/subloadI.csv") 

#write.csv(webloadingI, "D:/jjborrelli/AssemblyDATA/invdel/webloadI.csv") 

#write.csv(invloadingI, "D:/jjborrelli/AssemblyDATA/invdel/invloadI.csv") 
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spa1gm <- get_df_glmsI(spa1, spa1pc) 

spa2gm <- get_df_glmsI(spa2, spa2pc) 

spa3gm <- get_df_glmsI(spa3, spa3pc) 

spa4gm <- get_df_glmsI(spa4, spa4pc) 

spa5gm <- get_df_glmsI(spa5, spa5pc) 

spa6gm <- get_df_glmsI(spa6, spa6pc) 

 

allspI <- list(spa1[[2]], spa2[[2]], spa3[[2]], spa4[[2]], spa5[[2]], spa6[[2]]) 

allgmdfI <- list(spa1gm, spa2gm, spa3gm, spa4gm, spa5gm, spa6gm) 

 

allgmtabI <- list() 

for(i in 1:6){ 

  # glm web prop 

  invading <- allspI[[i]]$I 

  gm1 <- glmer(invading ~ pc1 + (1 | lweb), data = allgmdfI[[i]][[1]], family = "binomial") 

  gm1.1 <- update(gm1,start=ss,control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfu

n=2e5))) 

  gm.sum <- summary(gm1.1) 

  gm.ss <- SS(gm1, invading) 

  subg.gm <- c(gm.sum$coefficients[2,], gm.sum$AICtab, gm.ss) 

   

  gm2 <- glmer(invading ~ pc1 + (1 | lweb), data = allgmdfI[[i]][[2]], family = "binomial") 

  gm.sum <- summary(gm2) 

  gm.ss <- SS(gm2, invading) 

  webp.gm <- c(gm.sum$coefficients[2,], gm.sum$AICtab, gm.ss) 

   

  gm3 <- glmer(invading ~ pc1 + (1 | lweb), data = allgmdfI[[i]][[3]], family = "binomial") 

  gm.sum <- summary(gm3) 

  gm.ss <- SS(gm3, invading) 

  invp.gm <- c(gm.sum$coefficients[2,], gm.sum$AICtab, gm.ss) 

   

  allgmtabI[[i]] <- rbind(subg.gm, webp.gm, invp.gm) 

  print(i) 

} 

 

allgmtabI 

 


