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Abstract of the Dissertation

Sequential and Non-Sequential Licensing of Innovation with Potential Entrants

by

Chang Zhao

Doctor of Philosophy

in

Economics

Stony Brook University

2016

This dissertation consists of two essays that study the economic impact of in-
novations when the buyers are not symmetric. Namely, when potential licensees
involves both entrants and incumbent �rms. In Chapter 2, a non-sequential licens-
ing approach is analyzed. Licenses in this chapter are sold simultaneously by auction
aiming to maximize the revenue of the innovator. The post innovation market struc-
ture, the di�usion of the innovation and the incentive to innovate are analyzed and
compared with the case where licenses are sold only to incumbent �rms and not
to entrants. In Chapter 3, a sequential licensing approach is analyzed in a speci�c
industry with one incumbent �rm. An outside innovator holds a patent that allows
him to bring in entry and the incumbent �rm is willing to buy the ownership of the
patent either to use it himself or to limit further entry. The innovator sells licenses
(or patent right) to entrants (or incumbent �rm) sequentially. It is shown, quite sur-
prisingly, that before bargaining with the incumbent regarding the sale of the patent
right, the innovator may bene�t from selling a few licenses to new entrants. Such
action reduces the total industry pro�t to be allocated but enables a better credible
threat on the incumbent �rm and hence may increase the innovator's payo�. As a
result, the bargaining outcome is not ex-ante Pareto-e�cient.
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Chapter 1

1 Introduction

The analysis of optimal licensing strategies of an innovator, the post innovation
market structure as well as the incentive to innovate has been extensively studied
in the literature, starting with Katz and Shapiro (1985), Katz (1986), Kamien and
Tauman (1984), Kamien and Tauman (1986), Kamien, Oren, and Tauman (1992).
A review of the �rst decade results on this topic is Kamien (1992). The literature
on the optimal market structure which provides the highest incentive to innovate
starts with Arrow (1962) showing that the revenue of an innovator who sells licenses
by means of a per unit royalty is maximized in a competitive market. Kamien and
Tauman (1986) and the extended analysis in Sen and Tauman (2007) show that the
revenue of an innovator who sells licenses by either an upfront fee determined by an
auction or by a per unit royalty (or by a combination of the two) is maximized in an
oligopoly market of a size which depends on the magnitude of innovation, demand
intensity and the marginal cost of production. In these papers as well as most other
papers on optimal licensing of new innovations it is assumed that incumbent �rms
are the only potential licensees. This dissertation analyzes the economic impact of
innovations when the buyers are not symmetric. Namely, when potential licensees
involves both entrants and incumbent �rms.

In Chapter 2, a non-sequential licensing approach is analyzed. Licenses in this
chapter are sold simultaneously by auction aiming to maximize the revenue of the
innovator when �rms are compete à la Cournot. It is shown, quite surprisingly, that
opening the market to entrant licensees, the incentive to innovate is maximized in a
monopoly market rather than oligopoly or competitive markets and this is true for
drastic as well as non-drastic innovations. This result is consistent with the obser-
vation in Schumpeter (1942) that monopolistic industries, those in which individual
�rms have a measure of control over their products price, provide a more hospitable
atmosphere for innovation than purely competitive ones. We doubt however that
Schumpeter visioned an outside innovator who may bene�t from creating a compe-
tition by selling licenses for the use of his invention to new entrants, in addition to
the monopolist incumbent. But as we show this option makes a monopolist market
more attractive for the innovator than any oligopoly or competitive market.

For innovations of signi�cant magnitude the innovator chooses to sell licenses only
to incumbent �rms and not to entrants and the di�usion of the innovation is the same
as in the case where entry is excluded. Although entrants are willing to pay for a
license typically more than incumbent �rms, the competition e�ect on the revenue
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of the innovator dominates the revenue he can obtain from additional entrant. For
less signi�cant innovations the innovator sells licenses to some entrants and to all
incumbent �rms. Furthermore, we show that the post-innovation market size is
larger the smaller is the magnitude of the innovation. Namely smaller innovations
di�use more.

As expected, opening the market to entrant licensees yields the innovator a higher
revenue compared with the case where entry is excluded. The marginal e�ect of the
entry market on the innovator's revenue is higher, the smaller is the magnitude of
the innovation and the smaller is the pre-innovation market size. In particular, a
monopoly not only provides the highest incentive to innovate but also maximizes the
incremental incentive to innovate due to entry. It is also shown that opening the
market to new entrants has positive e�ect on social welfare, which is decreasing in
the magnitude of the innovation.

In Chapter 3, a sequential licensing approach is analyzed. We consider a speci�c
industry with one incumbent and many potential entrants. It is assumed that ini-
tially the high entry cost does not enable a pro�table entry and the incumbent is a
monopoly. Suppose that an outside innovator obtains a patent on a new technology
that eliminates the entry cost but has a marginal cost which is di�erent from the
current one. The innovator can sell his intellectual property (IP) to the incumbent
through bargaining. Even though the technology itself maybe useless for the incum-
bent, he may purchase the IP to limit or exclude further entry. However, before
approaching the incumbent, the innovator may sell a few licenses to new entrants.
A licensing contract with an entrant speci�es the license fee together with the maxi-
mum number of licenses that can be sold. The contracts are signed sequentially and
they are bound by previous commitments.

Selling licenses before bargaining (with the incumbent) reduces the total industry
pro�t to be allocated but enables a better credible threat on the incumbent �rm and
hence may increase the innovator's payo�. As a result, the bargaining outcome is not
ex-ante Pareto-e�cient. We show that such ine�ciency occurs when the bargaining
time takes a large proportion of the patent right life; or when there is a constraint
on the number of times the two bargainers can meet. Furthermore, we show that
the ine�ciency is less signi�cant when the innovator has a higher bargaining power;
when the new technology is less e�cient; or when the patent lasts for a longer period.
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Chapter 2

2 Non-Sequential Licensing of Innovation

2.1 Introduction

Licenses in our model are sold by auction aiming to maximize the revenue of
the innovator when �rms are compete à la Cournot. The post innovation market
structure, the di�usion of the innovation and the incentive to innovate are compared
with the case where licenses are sold only to incumbent �rms and not to entrants.

It is shown, quite surprisingly, that opening the market to entrant licensees, the
incentive to innovate is maximized in a monopoly market rather than oligopoly or
competitive markets and this is true for drastic as well as non-drastic innovations.
This is because the total number of licensees is no longer constrained by the number
of incumbent �rms and each licensee's willingness to pay for a license is higher the
smaller is the pre-innovation market size. This result is consistent with the obser-
vation in Schumpeter (1942) that monopolistic industries, those in which individual
�rms have a measure of control over their products price, provide a more hospitable
atmosphere for innovation than purely competitive ones. We doubt however that
Schumpeter visioned an outside innovator who may bene�t from creating a compe-
tition by selling licenses for the use of his invention to new entrants, in addition to
the monopolist incumbent. But as we show this option makes a monopolist market
more attractive for the innovator than any oligopoly or competitive market.

We show that for innovations of signi�cant magnitude the innovator chooses to
sell licenses only to incumbent �rms and not to entrants and the di�usion of the
innovation is the same as in the case where entry is excluded. Although entrants
are willing to pay for a license typically more than incumbent �rms, the competition
e�ect on the revenue of the innovator dominates the revenue he can obtain from
additional entrant. For less signi�cant innovations the innovator sells licenses to some
entrants and to all incumbent �rms. Furthermore, we show that the post-innovation
market size is larger the smaller is the magnitude of the innovation. Namely smaller
innovations di�use more. To clarify this point notice that adding an entrant licensee
on one hand reduces the willingness to pay for a license of each licensee, but on the
other hand the innovator adds to his payo� the entire pro�t of this entrant. For small
number of entrants the latter e�ect exceeds the former e�ect. The net e�ect (which
depends on the original market size) while positive in the beginning, it decreases with
the number of entrant licensees. For the innovator, the optimal number of entrant
licensees is the one for which this net e�ect vanishes. In the Cournot model this
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net e�ect is larger the smaller is the magnitude of innovation. Hence, the optimal
number of entrant licensees is larger the less signi�cant is the innovation.

As expected, opening the market to entrant licensees yields the innovator a higher
revenue compared with the case where entry is excluded. The marginal e�ect of the
entry market on the innovator's revenue is higher, the smaller is the magnitude of
the innovation and the smaller is the pre-innovation market size. In particular, a
monopoly not only provides the highest incentive to innovate but also maximizes the
incremental incentive to innovate due to entry. It is also shown that opening the
market to new entrants has positive e�ect on social welfare, which is decreasing in
the magnitude of the innovation.

We are aware of only few papers which deals with the licensing of innovations
to both incumbent �rms and potential entrants. The one closest to this paper is
Hoppe, Jehiel, and Moldovanu (2006), (HJM here after). In HJM the innovator
sells licenses through a uniform auction (UA). The innovator in UA decides on the
number k of licenses to sell. The auction welcomes bids from both incumbent �rms
and entrants. Each one of the k highest bidders (whether incumbent �rm or entrant)
obtains a license and all licensees pay the same amount which is the (k + 1)th
highest bid. Externality plays an important role in UA. Incumbent �rms and entrants
have di�erent willingness to pay for a license and both of them depend not only
on the number of licensees but also on the distribution of entrants and incumbent
licensees. The problem however with UA is that it has multiple equilibrium points
and multiple equilibrium payo�s of the innovator even if bidders do not use dominated
strategies. This paper extends the analysis of HJM, who deals with a general setup
and focuses on whether entrants can be winners of licenses in an auction which is
open to both incumbent �rms and entrants. Their study mostly deals with the sale
of an exclusive license as well as some special cases involving multiple licenses. Our
paper provides a general analysis of the optimal licensing strategy of the innovation,
the post-innovation market structure and the incentive to innovate but in a speci�c
set-up: Cournot oligopoly market, linear demand and a constant per-unit cost. We
show that for any number of licenses, k ≥ 1, every partition (k1, k2) of k (k1+k2 = k)
can be supported as an equilibrium outcome where k1 is the number of incumbent
licensees and k2 is the number of entrant licensees. While the innovator controls k
he has no control over the partition of k to incumbent and entrant licensees, making
it di�cult to predict the outcome of the UA. In particular, it is not clear what
should be the innovator's choice of k. To have some UA benchmark we compute the
highest equilibrium payo� of the innovator in UA and compare it with the equilibrium
outcomes of the alternative auctions o�ered in this paper.

In attempt to escape the multiplicity problem we o�er two alternative non-
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uniform auctions, NUA and SUA (semi-uniform auction). The innovator in both
auctions chooses in addition to k the exact partition (k1, k2) of k. The winners of
the auctions are the k1 highest incumbent bidders and the k2 highest entrant bidders
(ties are resolved at random). The license fee is the same across licensees in SUA
and to ensure the participation of incumbent �rms in SUA the license fee is set to be
the k-th highest bid1. The license fee is not uniform across licensees in NUA. Each
incumbent licensee in NUA pays the (k1 + 1)th highest bid among the incumbents'
bids while each entrant licensee pays the (k2 + 1)th highest bid among the entrants'
bids2. Externalities do not play a role in both NUA and SUA since the post innova-
tion market structure is determined by (k1, k2) regardless of the bids. Given (k1, k2),
the equilibrium outcome in undominated strategies is unique, for both NUA and
SUA.

We �rst analyze NUA. In the �rst glance it seems that the ability to choose
(k1, k2) and di�erentiating the license fee of entrants from incumbent �rms should
always yield the innovator a higher payo� than his payo� in UA. But this may not
be the case. Indeed every entrant licensee pays in NUA her entire pro�t (assuming
zero entrant's opportunity cost) while in UA it is (like any incumbent licensee) only
the incremental pro�t of an incumbent licensee. However, an incumbent �rm may
be willing to pay more in UA if he can limit entry. While every incumbent licensee
in NUA takes the place of some other incumbent �rm and thus does not change the
number of active �rms, in UA an incumbent �rm may take the place of an entrant
and thus reduces the number of active �rms by 1. In this case his willingness to
pay for a license in UA maybe higher. We show that the most optimistic innovator
(who expects to obtain his highest equilibrium payo� in UA) prefers NUA on UA if
and only if the magnitude of the innovation is relatively small. We provide general
analyses for NUA and SUA and use them to study the impact of the innovation
on the market structure and the incentive to innovate when entry is allowed. The
multiplicity of equilibrium payo�s of the innovator in UA makes it basically impos-
sible to predict which equilibrium will emerge. On the other hand each of the NUA
and SUA has a unique equilibrium outcome in undominated strategies and as such
provide sharp predictions.

1If (as in UA) every licensee pays the highest losing bid, it may happen that the bids of all
incumbent licensees fall below the (k+1)th highest bid. This is the case if the (k+1)th highest bid
is submitted by an entrant who bids her entire industry pro�t. Such bid exceeds the willingness to
pay of incumbent �rms and incumbents are best o� not participating in the auction.

2We will obtain the same equilibrium outcome if the license fee incumbents (entrants) pay is
the k1-th (k2-th) highest bid among the incumbent (entrant) bids. Setting the license fee to be the
(k1+1)th highest bid among incumbent bids guarantee that bidding truthfully (the true willingness
to pay) is a weakly dominant strategy of every incumbent �rm (similar for entrants).
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The analysis of the semi-uniform auction (SUA) shows that irrespective of the
market size and the magnitude of innovation the innovator extracts in NUA at least
as much as in SUA. Like in NUA, a monopoly market provides the highest incentive
to innovate in SUA. Moreover, like in NUA, for relatively signi�cant innovation the
total number of licenses the innovator sells in SUA is decreasing in the magnitude
of the innovation and if the innovator sells some licenses to entrants, it is only
if he also sells licenses to all (but 1) incumbent �rms. In contrast to NUA, for
relatively small innovation the innovator in SUA sells licenses only to new entrants
and not to incumbent �rms. The reason is the ability of the innovator to extract
the entire industry pro�t of every entrant licensee, as opposed to the case where
he sells some licenses also to incumbent �rms. In the latter case the license fee
an entrant pays is equal to the willingness to pay of an incumbent licensee which
decreases to zero as the magnitude of innovation decreases to zero. In contrast, the
innovator in NUA can discriminate the entrant licensees and can extract their entire
industry pro�t whether or not he sells licenses to incumbent �rms. Therefore in
NUA the innovator sells licenses to both new entrants and incumbent �rms, even
for less signi�cant innovation and the di�usion of the innovation is higher in NUA
than in SUA. We conclude that the ability to charge entrant licensees di�erent fee
than the fee incumbent licensees pay has positive e�ect on welfare for less signi�cant
innovations: it induces higher di�usion of innovation as well as lower post innovation
market price.

Another related paper studying the innovator's optimal licensing strategy in the
presence of potential entrants is Tauman, Weiss, and Zhao (2016). It deals with a
pre-innovation monopoly industry where the innovator sells his intellectual property
to the incumbent through bargaining. The paper shows that before approaching
the incumbent, the innovator may sell a few licenses to new entrants. This on one
hand reduces the total industry pro�t but enables a better credible threath on the
incumbent and hence may increase the innovator's payo�.

2.2 The Model

Consider an industry with a set N = {1, ..., n} of incumbent �rms who produce
one product with marginal cost c > 0. Potential entrants are unable to enter the
market either because of high �exed cost or since the current technology is protected
by patent. An outside innovator (Inn) comes along with an innovation which elimi-
nates the �xed cost and reduces the constant per unit cost from c to c−ε, 0 < ε ≤ c3.

3In principle even ε ≤ 0 may be valuable, and entrants may be willing to pay for ine�cient
technology if it allows them a pro�table entry. We con�ne in this paper to ε > 0.
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The number of potential entrants is assumed to be su�ciently large and it exceeds
the optimal number of licenses sold by Inn.

The inverse demand function is linear, p = max(a−Q, 0). Denote by π1(m0,m1)
and π0(m0,m1) the Cournot pro�t of a licensee and a non-licensee, respectively, when
there are m0 �rms producing at a unit cost c and m1 �rms producing at a unit cost
c− ε. It can be veri�ed that

π0(m0,m1) =

{ ( (a−c)−εm1

m0+m1+1

)2
if m1 ≤ a−c

ε

0 if m1 >
a−c
ε

(1)

π1(m0,m1) =

{ ( (a−c)+(m0+1)ε
m0+m1+1

)2
if m1 ≤ a−c

ε( (a−c)+ε
m1+1

)2
if m1 >

a−c
ε

Without loss of generality we normalize a − c, the quantity demanded at the price
c, to be 1. We make the following assumption throughout the paper.

Assumption 1. Training and installing the new technology is costly and paid only
by the innovator. This cost is su�ciently small for any licensee and has no e�ect on
the optimal number of licenses the innovator sells. The training cost is smaller for
incumbent licensees than entrant licensees.

This assumption simpli�es the tie breaking rule. If a tie involves both entrants
and incumbent �rms, the innovator prefers to sell a license to an incumbent �rm. If
a tie involves only one type of bidders, the tie is resolved at random.

In UA the players are engaged in a three-stage game, Gu. In the �rst stage
Inn chooses and announces the number k of licenses to be auctioned o� to both
incumbent �rms and new entrants. In the second stage the licenses are allocated to
the winners of a uniform auction where each one of the k highest bidders obtains
a license and pays the (k + 1)th highest bid. In the third and last stage the �rms
(incumbents and entrant licensees) compete à la Cournot. Let Gu(k) be the subgame
of Gu which starts in the second stage.

Let Gnu be the game associated with NUA. In the �rst stage Inn chooses and
announces (k1, k2), where 0 ≤ k1 ≤ n − 1 and k2 ≥ 0 are the number of licenses he
auctions o� to incumbent �rms and entrants, respectively. Let Gnu(k1, k2) be the
subgame of Gnu which starts in the second stage of Gnu. In Gnu(k1, k2), licenses are
sold through a non-uniform auction. Let E be the set of entrant bidders. Each of the
k1 highest incumbent bidders obtains a license and pays the bid of (k1 + 1)th highest
bidder in N . Similarly, each of the k2 highest entrant bidders obtains a license and
pays the bid of the (k2 + 1)th highest bidder in E. In the third stage the �rms in the
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industry (the licensees and the non-licensees) engage in Cournot competition. Note
that the auction is not well de�ne for k1 = n. Thus we limit k1 to n− 1.

In Gnu(k1, k2), the value of a license is uniquely determined for each bidder. This
is not the case in UA where the value of a license depends on the distribution of
incumbent and entrant licensees. One exception is when the number of licenses the
innovator sells is su�ciently large to drive down the Cournot price below the pre-
innovation marginal cost. As a result all non-licensee �rms are driven out of the
market and the value of the license for each bidder is uniquely determined even in
UA. Finally note that bidders do not usually have dominant strategies in UA.

Proposition 1. Suppose bidders do not use dominated strategies. (i) If the innovator
auctions o� a total of 1

ε
licenses (using either UA or NUA), then the Cournot price

is c, the pre-innovation marginal cost, and every non-licensee �rm is driven out of
the market. Each licensee pays his entire pro�t and the innovator obtains the total
industry pro�t. (ii) It is never optimal for the innovator in both UA and NUA to
auction o� more than 1

ε
licenses.

It will be shown (see Proposition 3 and Proposition 5, below) that for ε > 2
n+1

the optimal number of licenses for the innovator is k = 1
ε
in both UA and NUA .

Proof. Part (i) is a straight forward consequence of (1). Part (i) asserts that when
k = 1

ε
only licensees are active �rms in the market, and this is obviously true for

all k ≥ 1
ε
. Since the total industry pro�t is decreasing in k for k ≥ 1

ε
, part (ii)

follows.

By Proposition 1, without loss of generality we only consider the case where in
both UA and NUA the total number k of licenses does not exceed 1

ε
. In case ε ≥ 1

(drastic innovation) even if the innovator sells an exclusive license, every non-licensee
�rm is driven out of the market and the innovator extracts the monopoly pro�t under
the new technology. It is left to analyze only the non-drastic innovation case, namely
ε < 1.

2.2.1 Uniform Auction

Consider the subgame Gu(k) of Gu, for 1 ≤ k ≤ 1
ε
. Suppose (k1, k2) is an

equilibrium outcome of Gu(k), where k1, 0 ≤ k1 ≤ n, is the number of incumbent
licensees and k2 = k − k1 is the number of entrant licensees. Let b(i) be the ith
highest bid in UA (b(i) = b(i+1) if more than one bidder bids b(i)).

The willingness to pay of an incumbent �rm for a license is the di�erence between
his pro�t π1(n−k1, k) as a licensee and his pro�t as a non-licensee. The latter depends
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on which type of licensee replaces him if he drops out, an entrant or an incumbent
�rm. If it is an entrant, the total number of �rms increases by 1 and his willingness
to pay is

wkih(k1) = π1(n− k1, k)− π0(n− k1 + 1, k). (2)

If it is an incumbent �rm, his willingness to pay is

wkil(k1) = π1(n− k1, k)− π0(n− k1, k). (3)

Note that wkih can be regarded as an incumbent's willingness to pay for both, limiting
entry and using the superior technology.

The willingness to pay of an entrant for a license is simply her Cournot pro�t,

wke (k1) = π1(n− k1, k). (4)

By Proposition 1, for any k1, 0 ≤ k1 ≤ min(k, n), if k ≥ 1
ε
wke (k1) = wkih(k1) =

wkil(k1). If k <
1
ε
then π0(n− k1, k) > π0(n− k1 + 1, k) > 0 and wke (k1) > wkih(k1) >

wkil(k1).
For k < 1

ε
any entrant licensee is willing to pay for a license more than any

incumbent licensee. Nevertheless it is possible that in equilibrium some incumbent
�rm wins a license. To clarify this point observe that an entrant with no license who
outbids an incumbent licensee not only increases the number of active �rms by 1 but
also increases the license fee from b(k+1) to b(k). This may reduce the pro�t of each
licensee to a level below the new license fee, causing the deviant entrant a loss.

By Proposition 1, when the innovator chooses k = 1
ε
(or actually k ≥ 1

ε
), the

willingness to pay of each bidder is independent of the distribution of licensees be-
tween entrants and incumbent �rms and each bidder's willingness to pay in Gu(k)
is his Cournot pro�t. If, however, k < 1

ε
, each bidder's willingness to pay depends

in addition to k on the distribution of winners. We next analyze the innovator's
equilibrium payo� in this case.

Proposition 2. Let 1 ≤ k < 1
ε
. Then (i) any (k1, k2), 0 ≤ k1 ≤ n and k2 ≥ 0 s.t.

k1 +k2 = k, is an equilibrium outcome of Gu(k). (ii) For k1 = 0, π is an equilibrium
payo� of the innovator in Gu(k) if and only if π ∈ [0, kwke (0)]. (iii) For 1 ≤ k1 ≤ n,
π is an equilibrium payo� of the innovator in Gu(k) if and only if π ∈ [0, kwkih(k1)].

Proof. (i) Let k ≥ 1 and let (k1, k2) s.t. 0 ≤ k1 ≤ n − 1 and k2 = k − k1 (the case
where k1 = n will be dealt separately). Let us show that (k1, k2) is an equilibrium
outcome of Gu(k). Denote b = π1(n− k1 − 1, k) (b is well de�ned since k1 ≤ n− 1)
and b = π1(n− k1, k)− π0(n− k1 + 1, k). Suppose that exactly k1 incumbent �rms
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and k2 entrants bid b and only one entrant bids b. All other incumbents or entrants
bid below b. Clearly b(1) = ... = b(k) = b, b(k+1) = b and b ≤ b. We claim that these
bid pro�le constitutes an equilibrium of Gu(k). Any incumbent licensee, i, obtains

π1(n− k1, k)− b(k+1) = π0(n− k1 + 1, k).

If i lowers his bid below b the entrant who bids b will become a licensee and will
replace i. As a result there will be n − k1 + 1 �rms producing with the inferior
technology and i will obtain π0(n − k1 + 1, k), the same as his payo� as a licensee.
Since the opportunity cost of any entrant is zero, an entrant licensee (when k2 ≥ 1)
has no incentive to lower her bid. Next let us show that a non-licensee (incumbent
or entrant) can not bene�t from outbidding a licensee. Suppose j (incumbent or
entrant) outbids a licensee i. Then he/she will increase the license fee from b to b.
We claim that the industry pro�t of j is at most b and hence he has no incentive to
become a licensee. Indeed, if both j and i are incumbent �rms the industry pro�t
of j as a licensee will be π1(n − k1, k) which is smaller than b = π1(n − k1 − 1, k).
If j is an incumbent �rm and i is an entrant, the number of �rms using the inferior
technology will reduce to n − k1 − 1. The gross pro�t of j as a licensee will be b
and his payo�, net of the new license fee, is zero. If j is an entrant, j will obtain an
industry pro�t of π1(n−k1 + 1, k) < b if i is an incumbent �rm and π1(n−k1, k) < b
if i is an entrant. In both cases j's net payo� is negative. To complete the proof of
part (i) suppose that k1 = n and hence k2 = k − n. Suppose every incumbent �rm
and exactly k2 entrants bid b = π1(0, k), one entrant only bids b = π1(0, k)−π0(1, k)
and every other bidder bids below b. The license fee is b and it is easy to verify that
these bids constitute an equilibrium of Gu(k).

(ii) Let k1 = 0, b̃ ∈ [0, π1(n, k)] and b = π1(n− 1, k). Suppose exactly k entrants
bid b, only one entrant bids b̃ and every other bidder bids below b̃. The license fee
is b(k+1) = b̃. Since π1(n, k)− b̃ ≥ 0, no (entrant) licensee bene�ts from lowering his

bid below b̃. Suppose next that a non-licensee j (incumbent or entrant), bids above
b. Then the new license fee will increase to b = π1(n − 1, k) and j's industry pro�t
is π1(n− 1, k) if j is an incumbent �rm, or π1(n, k) if j is an entrant. In both cases
the industry pro�t does not exceed the license fee. Finally, there is no equilibrium
of Gu(k) with k1 = 0 and s.t. b(k+1) > π1(n, k). Otherwise, the industry pro�t of a
licensee does not cover the license fee.

(iii) Suppose 1 ≤ k1 ≤ n− 1 and let b̃ ∈ [0, wkih(k1)], where w
k
ih = π1(n− k1, k)−

π0(n− k1 + 1, k). Denote b = π1(n− k1 − 1, k). Suppose exactly k1 incumbent �rms
and k2 entrants bid b, only one entrant bids b̃ and every other bidder bids below b̃.
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Then b(k+1) = b̃ is the license fee. An incumbent licensee obtains

π1(n− k1, k)− b̃ ≥ π0(n− k1 + 1, k). (5)

If he lowers his bid below b̃ he will obtain π0(n−k1+1, k). By (5) this will not bene�t
him. A non-licensee j (incumbent or entrant) who outbids a licensee i (incumbent
or entrant) will increase the license fee from b̃ to b = π1(n − k1 − 1, k). It is easy
to verify that independently of the identity of j and i, j's industry pro�t will not
exceed π1(n− k1 − 1, k).

Next suppose k1 = n. Let b̃ ∈ [0, π1(0, k)−π0(1, k)] and let b = π1(0, k). Suppose
every incumbent �rm and exactly k2 = k− n entrants bid b. Suppose also that only
one entrant bids b̃ and all other bidders bid below b̃. Then the license fee is b(k+1) = b̃.
A licensee obtains

π1(0.k)− b̃ ≥ π0(1, k) ≥ 0. (6)

If an incumbent licensee lowers his bid below b̃ he will obtain π0(1, k) and by (6)
he does not improve his payo�. If a non-licensee entrant j outbids a licensee i the
new license fee will be b = π1(0, k) and again, independent of the identity of i, the
industry pro�t of j will not exceed π1(0, k).

Finally, for k ≥ 1 the willingness of an incumbent �rm to pay for a license is
at most wkih(k1). Thus there is no equilibrium b∗ of Gu(k) s.t. 1 ≤ k1 ≤ n and
b∗(k+1) > wkih(k1).

Proposition 2 asserts that there are multiple equilibrium points in Gu(k) (1 ≤ k <
1
ε
). There are two types of multiplicity. First, any (k1, k2) s.t. k1 +k2 = k is an equi-

librium outcome of Gu(k). Second, every (k1, k2) generates continuum of equilibrium
payo�s of the innovator. In fact for every equilibrium outcome

(
b∗(1), ..., b

∗
(k), b

∗
(k+1)

)
and for every b, 0 ≤ b ≤ b∗(k+1),

(
b∗(1), ..., b

∗
(k), b(k+1) = b

)
is also an equilibrium

outcome. By parts (ii) and (iii) of Proposition 2 for any (k1, k2), the innovator's
equilibrium payo� can be as low as zero, and as high as kwke (0) = kπ1(n, k) if k1 = 0
and as high as kwkih(k1) = k[π1(n− k1, k)− π0(n− k1 + 1, k)] if 1 ≤ k1 ≤ n.

The multiplicity of equilibrium outcomes is a problem even if dominated strategies
are eliminated. HJM dealt with the game Gu with this restriction. The equilibrium
analysis of Gu then is very complicated. HJM analyzed only the case k = 1 and some
other special cases. They too found multiple equilibrium points. The conclusion is
that there is no obvious way to predict the outcome of Gu nor the choice k of the
innovator. To provide some comparison between the innovator's payo� in UA and
in NUA, we focus here on a speci�c equilibrium of UA, the one where for any k the
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innovator is lucky to obtain his highest equilibrium payo� in Gu(k). Namely, we
focus in UA on the payo� of the "luckiest" innovator. We next analyze the optimal
number of licenses of the "luckiest" innovator in Gu.

Lemma 1. For any 1 ≤ k ≤ 1
ε
, the innovator's highest equilibrium payo� in Gu(k)

is obtained when either k1 = 0 or k1 = min(k, n).

Proof. By Proposition 2, given an arbitrary 1 ≤ k ≤ 1
ε
, any 0 ≤ k1 ≤ min(k, n) can

emerge as an equilibrium outcome. In addition the highest payo� of the innovator
is kπ1(n, k) if k1 = 0 and kwkih(k1) if 1 ≤ k1 ≤ n. It is shown in the Appendix (see
A.1.2) that wkih(k1) is increasing in k1. Thus the innovator obtains the highest payo�
for k1 = min(k, n).

Proposition 3. Suppose the innovator obtains for every k the highest equilibrium
payo� in Gu(k). (i) The corresponding equilibrium number of licensees in Gu is

k∗u(n, ε) =


n+ 1 if 0 < ε < g(n)
n if g(n) ≤ ε ≤ f(n)

k̃(n, ε) if f(n) < ε < 2
n+1

1
ε

if 2
n+1
≤ ε < 1.

(ii) If 0 < ε < g(n), all licensees are entrants and if g(n) < ε < 1, all licensees are
incumbent �rms.

The formulas of f(n), g(n) and k̃(n, ε) are quite complicated and not revealing.
This is the reason they all appear in the Appendix (A.1.1).

Remark: Let 2
n+1
≤ ε < 1 and suppose bidders do not use dominated strategies..

Then the unique optimal strategy of the innovator is to auction o� k = 1
ε
licenses.

In this case he sells at most n+1
2

licenses, the Cournot price reduces to the pre-
innovation marginal cost c, and every non-licensee �rm is driven out of the market.
Consequently, the multiplicity of equilibrium points of UA occurs only when ε < 2

n+1
.

Proof. See A.1.3 of the Appendix.

Proposition 3 shows that for relatively small innovation the innovator obtains the
highest equilibrium payo� when all licensees are entrants. Indeed an entrant licensee
increases the number of active �rms by 1 causing the Cournot pro�t of each �rm to
shrink. However when selling licenses only to entrants each entrant licensee is willing
to pay all her pro�t for a license as opposed to the case where the innovator sells some
licenses to incumbent �rms (in the latter case the license fee is only the incremental
pro�t of an incumbent licensee). When the innovation is relatively small the e�ect
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of the additional license fee from entrant licensees exceeds the higher competition on
the revenue of the innovator and innovator's highest equilibrium payo� is obtained
when all licensees are entrants.

Corollary 1. The highest equilibrium payo� of the innovator in Gu is

π∗u(n, ε) =


(n+ 1)π1(n, n+ 1) if 0 < ε < g(n)
n
(
π1(0, n)− π0(1, n)

)
if g(n) ≤ ε ≤ f(n)

k̃
(
π1
(
n− k̃, k̃

)
− π0

(
n− k̃ + 1, k̃

))
if f(n) < ε < 2

n+1

ε if 2
n+1
≤ ε < 1.

where k̃ = k̃(n, ε).

Proof. Follows immediately from Proposition 3.

2.2.2 Non-Uniform Auction

In this section we allow the innovator to choose and announce both the number
of licenses to be sold to incumbent �rms (0 ≤ k1 ≤ n−1) and the number of licenses
to be sold to potential entrants (k2 ≥ 0). Each incumbent licensee pays the (k1+1)th
highest bid among the incumbents' bids. Each entrant licensee pays the (k2 + 1)th
highest bid among the entrants' bids. In Gnu(k1, k2) the willingness to pay of each
incumbent �rm is π1(n− k1, k1 + k2)− π0(n− k1, k1 + k2) and the willingness to pay
of each entrant is π1(n− k1, k1 + k2). Since bidding the true valuation is a (weakly)
dominant strategy for each bidder, it is assumed that bidders bid truthfully in NUA.
The innovator's equilibrium payo� in Gnu(k1, k2) is uniquely determined and it is
given by

πnu(k1, k2) = k1
(
π1(n−k1, k1 +k2)−π0(n−k1, k1 +k2)

)
+k2π1(n−k1, k1 +k2). (7)

The analysis of the highest incentive to innovate does not require the characteri-
zation of the equilibrium licensing strategy of the innovator in NUA.

Proposition 4. A monopoly industry maximizes the revenue of the innovator if he
sells licenses by NUA.

Proposition 4 asserts that a monopoly industry provides the highest incentive
to innovate if licenses are sold by NUA. The proof does not make use of the linear
structure of our demand and it applies to any demand function.
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Proof. Suppose there are n, n ≥ 2 incumbent �rms. Denote by (k∗1, k
∗
2) the optimal

licensing strategy in Gnu. Let K
∗
nu = k∗1 + k∗2. The innovator's highest payo� is

α ≡ k∗1
(
π1(n− k∗1, K∗nu)− π0(n− k∗1, K∗nu)

)
+ k∗2π1(n− k∗1, K∗nu). (8)

Suppose one of the incumbent �rms drops out and only (n − 1) incumbent �rms
remain.

Case 1. k∗1 ≥ 1. Using the licensing strategy (k∗1−1, k∗2 +1), the innovator obtains

β ≡ (k∗1 − 1)
(
π1(n− k∗1, K∗nu)− π0(n− k∗1, K∗nu)

)
+ (k∗2 + 1)π1(n− k∗1, K∗nu). (9)

Clearly for K∗nu = 1
ε
, π0(n − k∗1, K∗nu) = 0 and α = β. For K∗nu <

1
ε
, β > α. The

innovator obtains more in Gnu(n− 1, ε) compare with Gnu(n, ε).
Case 2. Suppose k∗1 = 0. Using the licensing strategy (0, k∗2), the innovator

obtains
γ ≡ k∗2π1(n− 1, k∗2) ≥ k∗2π1(n, k

∗
2) ≡ α. (10)

Again for k∗2 = 1
ε
, γ = α. For k∗2 <

1
ε
, γ > α

Combining Cases 1 and 2, if K∗nu < 1
ε
the innovator extracts strictly higher

revenue with n − 1 than with n incumbent �rms. For K∗nu = 1
ε
, when the market

size is n− 1 the innovator obtains a payo� which is at least as high as in case where
the market size is n. Since this is true for all n ≥ 2, the proof is complete.

We next characterize the equilibrium of Gnu.

Proposition 5. Consider the game Gnu. The unique equilibrium licensing strategy
of the innovator is

(i) For n ≥ 3

kn∗1 (n, ε) =


n− 1 if 0 < ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1,

kn∗2 (n, ε) =

{
2(n+2ε)
2nε+1

− (n− 1) if 0 < ε ≤ 1
2n−4

0 if 1
2n−4 ≤ ε < 1.

(ii) For n = 2
kn∗1 (2, ε) = 1,

kn∗2 (2, ε) =

{
3

4ε+1
if 0 < ε ≤ 1

2
1
ε
− 1 if 1

2
≤ ε < 1.
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Proof. See A.1.4 of the Appendix.

By Proposition 5 for n ≥ 3 the total number of licenses the innovator sells is
decreasing in ε. For small ε he sells 2n licenses (n−1 licenses to all (but 1) incumbent
�rms and n+1 licenses to new entrants). As ε grows the number of licenses decreases
continuously to 1, as the innovation becomes closer to a drastic innovation (ε→ 1).
The innovator sells at least one license to incumbent �rm and for ε > 1

2n−4 he sells
no licenses to new entrants. Let K∗nu = kn∗1 + kn∗2 .

Corollary 2. For n ≥ 2 the number of licenses decreases continuously in ε with a
maximum of 2n for small magnitude of innovation and minimum of one license when
the innovation becomes drastic. In particular

For n ≥ 3

K∗nu(n, ε) =


2(n+2ε)
2nε+1

if 0 < ε ≤ 1
2n−4

n− 1 if 1
2n−4 ≤ ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1,

For n = 2

K∗nu(n, ε) =

{
3

4ε+1
+ 1 if 0 < ε ≤ 1

2
1
ε

if 1
2
≤ ε < 1

Proof. It follows immediately by Proposition 5.

Remark 1: The NUA where k1 = n is not de�ned (the formal de�nition of NUA
assigns the incumbent winners license for the highest losing bid among all incumbent
bidders). We could extend our de�nition to the case k1 = n if we allow the innovator
to charge a minimum reservation price. For n = 1 the minimum reservation price
should be π1(0, k2)−π0(1, k2).With this de�nition it is easy to verify that the optimal
(k1, k2) in case n = 1 is k1 = 1 and k2 = 0.

Corollary 3. In equilibrium of Gnu (i) the innovator sells licenses to entrant only if
he also sells licenses to all (but one) incumbent �rms. (ii) The post-innovation market
size is larger the smaller is the magnitude of innovation. The post-innovation market
size is at most double the size of the pre-innovation market. (iii) For a signi�cant
innovation (ε ≥ 1

2
), regardless of the pre-innovation market size, the optimal number

of licenses for the innovator is the minimum number needed to drive any non-licensee
�rm out of the market.

Proof. (i) For n ≥ 3, the claims follow from Proposition 5 part (i), the inequality
1

2n−4 ≤
2

3n−5 , and from k∗1(n, ε) being decreasing in ε. If n = 1 or n = 2 the claim
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is an immediate consequence of part (ii) of Proposition 5. Parts (ii) and (iii) are
straightforward again from Proposition 5.

Part (i) of Corollary 3 asserts that if K∗nu > n − 1 Inn sells n − 1 licenses to
incumbent �rms and the remaining K∗nu − (n − 1) licenses he sells to entrants. If
K∗nu ≤ n − 1 he sells all K∗nu licenses just to incumbent �rms.. On one hand each
entrant is willing to pay all her pro�t for a license (while each incumbent is willing to
pay only his incremental pro�t), but on the other hand an entrant licensee increases
the number of active �rms by 1 causing the Cournot pro�t of each �rm to shrink.
The e�ect of a smaller competition on the revenue of the innovator is larger and the
innovator prefers incumbent �rms on entrants. Part (ii) asserts that the di�usion of
technology is higher for smaller magnitude of innovation. The (negative) competition
e�ect of additional licensee on the innovator's revenue is more signi�cant the higher
is the magnitude of the innovation and as a result the innovator is more reluctant to
issue a large number of licenses.

Proposition 6. Consider the game Gnu. (i) the innovator's equilibrium payo� is:
For n ≥ 3

π∗nu(n, ε) =


4ε2+4nε+1
4(n+1)

if 0 < ε ≤ 1
2n−4

(n−1)
(
−(n−3)ε2+2ε

)
n+1

if 1
2n−4 < ε ≤ 2

3n−5
(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1.

For n = 2

π∗nu(n, ε) =

{
4ε2+4nε+1
4(n+1)

if 0 < ε ≤ 1
2

ε if 1
2
≤ ε < 1.

(ii) The post innovation market price is:
For n ≥ 3

p∗nu(n, ε) =


c+ 1−2ε

2(n+1)
if 0 < ε ≤ 1

2n−4

c+ 1−(n−1)ε
n+1

if 1
2n−4 ≤ ε ≤ 2

3n−5
c+ 2−(n+1)ε

4(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

c if 2
n+1
≤ ε < 1,

(11)

For n = 2

p∗nu(n, ε) =

{
c+ 1−2ε

2(n+1)
if 0 < ε ≤ 1

2

c if 1
2
≤ ε < 1
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Proof. See A.1.5 of the Appendix.

By Proposition 6 p∗nu(n, ε) ≥ c for 0 < ε < 1. For signi�cant innovations ( 2
n+1
≤

ε < 1 for n ≥ 3 and 1
2
≤ ε < 1 for n = 2) the post innovation market price is c, the

pre-innovation marginal cost. If the innovation is drastic (ε > 1) then the market
price, c− ε−1

2
, is the monopoly price under the new technology and it is smaller than

c. The innovator sells in this case an exclusive license to an incumbent �rm and all
other incumbent �rms or entrants are out of the market.

Corollary 1 and Corollary 6 allow us to compare the payo� of the luckiest inno-
vator in UA with the payo� of the innovator in NUA.

Proposition 7. Let n ≥ 3. Then π∗nu(n, ε) > π∗u(n, ε) i� ε < h(n).

Here h(n) ≥ g(n) ≥ 0. The formula of h(n) is given in A.1.1 of the Appendix.

Proof. See A.1.6 of the Appendix.

When the innovation is less signi�cant, the innovator in both UA and NUA sells
relatively large number of licenses (propositions 3 and 5). In particular, in NUA
the innovator sells large number of licenses to entrants, in addition to all (but one)
incumbent �rms (Proposition 5). In this case (i) the level of competition in UA is
already high and the additional willingness to pay of every incumbent licensee for
further entry prevention is relatively small and (ii) the number of entrant licensees in
NUA is relatively large and the innovator's gain from collecting the entire pro�t of
entrant licensees (as opposed to UA where he can extract only a portion of this pro�t)
is large. The net e�ect of less signi�cant innovations on the revenue of the innovator
is in favor of NUA. This net e�ect is opposite for signi�cant innovations, in which
case the innovator in both UA and NUA sells relatively small number of licenses
(in NUA he sells fewer, sometimes even 0, licenses to entrants). The additional
willingness to pay of every incumbent licensee in UA for further entry prevention is
high compare with the innovator's gain in NUA from collecting the entire pro�t of
entrant licensees, especially since their number is relatively small.

If however the innovator is not too lucky, UA could emerge with an equilibrium
outcome where all winners are entrant �rms. In this case if 0 < ε < 2

n+1
, the

innovator obtains in UA strictly less than in NUA. Note that the innovator obtains
the same payo� in both auctions if 2

n+1
≤ ε < 1. A less optimistic innovator therefore

may prefer the non-uniform auction irrespective of the magnitude of innovation. We
illustrate the above in the following example.

Example: Suppose ε = 0.2 and n = 5. In NUA, the innovator's unique equilibrium
payo� is 4

(
π1(1, 4) − π0(1, 4)

)
= 0.213 which is obtained when he auctions o� 4
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licenses only to incumbent �rms. In UA the innovator's highest equilibrium payo�
is 4
(
π1(1, 4) − π0(2, 4)

)
= 0.214. It is obtained when he auctions o� 4 licenses and

all winners happen to also be incumbent �rms. Interestingly enough, to support
this equilibrium in UA the 5th highest bid of 0.214 has to be submitted by entrants
only. In this case each of the 4 incumbent licensees pays more in UA than in NUA
in attempt to limit entry. However, there are other equilibrium points in UA which
yields the innovator a much lower payo�. For instance there is an equilibrium in
which all of the 4 winners are entrants (this follows by Proposition 2). In this case
the innovator obtains only 4π1(5, 4) = 0.1944.

2.2.3 Semi-Uniform auction

We introduce another auction mechanism, a semi-uniform auction (SUA), with
a weaker asymmetry requirement than the non uniform auction. In this auction the
innovator chooses (k1, k2), 1 ≤ k1 ≤ n − 1 and k2 ≥ 0. The k1 highest incumbent
bidders and the k2 highest entrant bidders win the auction and all of them pay
the same license fee which is the lowest winning bid5. Note that the willingness to
pay of an incumbent is 0 if k1 = n. This is the reason we restrict our analysis to
k1 ≤ n − 1. In SUA, like in NUA, the innovator controls the number of incumbent
and the number of entrant licensees, but unlike NUA the innovator charges the same
amount to every licensee.

Let Gsu be the game associated with SUA. In the subgame Gsu(k1, k2) of Gsu

each incumbent is willing to pay

wl(k1, k2) = π1(n− k1, k1 + k2)− π0(n− k1, k1 + k2).

Each entrant is willing to pay

we(k1, k2) = π1(n− k1, k1 + k2).

It is easy to verify that the innovator's equilibrium payo� in Gsu(k1, k2) is (k1 +
k2)wl(k1, k2) for k1 > 0 and k2we(0, k2) for k1 = 0.

Remark: Notice that some entrants that bid above the SUA license fee do not
obtain license. Yet in equilibrium the innovator has no incentive to increase k2 since

4This is the highest equilibrium payo� when 4 winners are all entrants. There are other equi-
librium in which the innovator ends up with zero equilibrium payo�.

5Note that in SUA the highest losing bid, if submitted by an entrant, may be higher than the
willingness to pay of an incumbent winner. To avoid this problem we de�ne the license fee as the
lowest winning bid.
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it will increase competition and will lower his total revenue.
Let π∗su(n, ε) be the innovator's equilibrium payo� in Gsu.

π∗su(n, ε) = max
(
π0
su(n, ε), π̂su(n, ε)

)
(12)

where
π0
su(n, ε) = max

k2≥1
k2we(0, k2)

and
π̂su(n, ε) = max

1≤k1≤n−1
0≤k2

(k1 + k2)wl(k1, k2). (13)

Note that when k1 = 0 each entrant licensee pays her entire pro�t for a license.
But when k1 > 0 each entrant licensee pays less, only the willingness to pay of an
incumbent licensee.

Proposition 8. (i) π∗su(n, ε) ≤ π∗u(n, ε) and (ii) π∗su(n, ε) ≤ π∗nu(n, ε).

Proof. (i) In UA the highest equilibrium payo� of the innovator is

π∗u(n, ε) = max
(
π0
u(n, ε), π̂u(n, ε)

)
where π0

u(n, ε) = maxk≥1 kwe(0, k) and π̂u(n, ε) = max1≤k1≤n−1
0≤k2

(k1 + k2)wh(k1, k2).

Part (i) follows from wh(k1, k2) ≥ wl(k1, k2) for any (k1, k2).
(ii) Follows from the fact that for any (k1, k2), NUA yields the innovator a higher

payo� than SUA.

The innovator in UA can choose only k while in SUA he can choose in addition the
partition of k. In the �rst glance the innovator should always obtain a higher payo�
in SUA than in UA. But this is not necessarily the case. There are cases in which UA
yields the innovator a higher payo� than SUA since an incumbent licensee is willing
to pay more in UA for further entry prevention. As for the comparison between SUA
and NUA, note that the innovator can charge the entrant and incumbent licensees
di�erent fee, therefore for any (k1, k2), k2 > 0, NUA yields the innovator a higher
payo� than SUA.

Like in NUA also in SUA the innovator obtains the highest payo� in a monopoly
market. This is stated in the next proposition.

Proposition 9. Suppose the innovator sells licenses by SUA. Then monopoly indus-
try provides the innovator with the highest incentive to innovate.

Proof. The proof is similar to that of Proposition 4, and hence omitted.
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We next analyze for any industry size n the optimal licensing strategy of the
innovator in SUA, as a function of ε. Unlike NUA this strategy is discontinuous for
one value of ε. The equilibrium revenue of the innovator is however, continuous for
all ε > 0. We will discuss this point after we state our next proposition.

Proposition 10. Consider the equilibrium of Gsu. For n ≥ 3 there exists r(n),
r(n) > 0, such that (i) if r(n) < ε ≤ 1 then the innovator sells positive number
of licenses to entrants only if he sells n − 1 licenses to all (but 1) incumbent �rms.
In this region the total number of licensees is larger, the smaller is the magnitude
of innovation. (ii) At ε = r(n) the innovator has two optimal licensing strategies:
either selling n − 1 licenses to incumbent �rms and some licenses to entrants, or
selling n+ 1 licenses to only entrants. (iii) if 0 < ε < r(n), the innovator sells n+ 1
licenses to only entrants.

Proof. See A.1.10 of the Appendix.

The maximizer of π∗su(n, ε) is given by

ks∗1 (n, ε) =

{
0 if 0 < ε < r(n)

k̂1(n, ε) if r(n) ≤ ε < 1

and

ks∗2 (n, ε) =

{
n+ 1 if 0 < ε < r(n)

k̂2(n, ε) if r(n) ≤ ε < 1.

Where for n ≥ 3

k̂1(n, ε) =


n− 1 if 0 < ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1

k̂2(n, ε) =

{
2
√

2 + 1
ε
− (n+ 1) if 0 < ε ≤ 4

n2+2n−7
0 if 4

n2+2n−7 ≤ ε < 1.

For n = 2
k̂1(2, ε) = 1

k̂2(2, ε) =

{
2
√

2 + 1
ε
− 3 if 0 < ε ≤ 1

2
1
ε
− 1 if 1

2
≤ ε < 1.

It is shown in the Appendix that for 3 ≤ n ≤ 16, 0 < r(n) < 4
n2+2n−7 . Therefore

for 3 ≤ n ≤ 16

18



ks∗1 (n, ε) =


0 if 0 < ε ≤ r(n)
n− 1 if r(n) < ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1

and

ks∗2 (n, ε) =


n+ 1 if 0 < ε ≤ r(n)

2
√

2 + 1
ε
− (n+ 1) if r(n) < ε ≤ 4

n2+2n−7
0 if 4

n2+2n−7 ≤ ε < 1.

For 3 ≤ ε ≤ 16, when ε = 1 the innovator sells an exclusive license to incumbent
�rm and he increases the number of licenses he sells to incumbent �rms as ε decreases
as long as ε ≥ 4

n2+2n−7 . At this point he sells n− 1 licenses, all of them to incumbent

�rms. When r(n) < ε < 4
n2+2n−7 , the innovator sells 2

√
2 + 1

ε
− (n + 1) to new

entrants in addition to the licenses he sells to incumbent �rms. When 0 < ε < r(n)
he sells n+ 1 licenses, all of them to entrants.

The reason for selling licenses only to entrant in SUA for less signi�cant innovation
is the ability of the innovator to extract the entire industry pro�t of every entrant
licensee, as opposed to the case where he sells some licenses also to incumbent �rms.
In the latter case the license fee an entrant pays is equal to the willingness to pay
of an incumbent licensee which decreases to zero as ε → 0. To illustrate this point
suppose that ε = 06. In this case if the innovator sells some licenses to incumbent
�rms, every licensee in SUA will pay zero license fee to the innovator. If instead, the
innovator sells licenses only to entrants, he obtains the entire industry pro�t of all
new entrant licensees (entrants would not be able to enter the market otherwise). If
there are n incumbent �rms the linear demand assumption implies that the innovator
maximizes his revenue if the number of entrant licensees is n+ 1.

Let us compare the outcome of SUA with the outcome of NUA. First observe
that for ε > r(n) in both SUA and NUA the total number of licenses the innovator
sells is decreasing in the magnitude of the innovation and the innovator may sell
licenses to entrants, only if he also sells licenses to all (but 1) incumbent �rms.
The main di�erence between SUA and NUA is when ε < r(n). In this case, unlike
NUA, the innovator in SUA sells licenses only to new entrants and not to incumbent
�rms. This shift in the innovator's optimal strategy generates a discontinuity in the
number of licenses at ε = r(n). In contrast, the innovator in NUA can discriminate

6This is the case where the innovator provides no improvement in cost but his technology allows
free entry.

19



the entrant licensees and can extract their entire industry pro�t whether or not he
sells licenses to incumbent �rms. Therefore in NUA the innovator sells licenses to
both new entrants and incumbent �rms, even for small ε.

Let K∗su and K∗nu be the total number of licenses the innovator sells in SUA and
NUA, respectively.

Proposition 11. Suppose n ≥ 2. There exists l(n), 0 < l(n) < 1, such that if
0 < ε ≤ l(n), K∗nu(n, ε) > K∗su(n, ε).

Proof. See A.1.13 of the Appendix.

Proposition 11 shows that comparing with SUA, for relatively small innovation,
NUA results in a higher di�usion of technology. As shown in Proposition 10 for
less signi�cant innovation, the innovator in SUA does not sell licenses to incumbent
�rm while in NUA he sells licenses to entrants in addition to all (but 1) incumbent
�rms. Therefore the ability to charge new entrant licensees di�erent than incumbent
licensees has positive e�ect for less signi�cant innovation as it induces higher di�usion
of innovation. This also implies lower post innovation market price and higher social
welfare in NUA as compare to SUA7.

2.3 Entry Vs. No Entry

Most of the literature on optimal licensing of process innovations ignore possible
entry. Our next goal is to compare our results with the existing literature on optimal
licensing where entry is excluded. As shown in the previous section, UA has contin-
uum of equilibrium points and there is no obvious way to predict which equilibrium
will emerge. SUA and NUA both have unique equilibrium outcome but SUA always
yields a lower payo� of the innovator compared to NUA (Proposition 8). Therefore
we base our study on the comparison between G0 and Gnu, where G0 is the game
de�ned similarly to Gnu, but where entry is excluded.

Suppose bidders do not use dominated strategies. The willingness to pay of each
bidder in G0(k), k ≥ 1, is uniquely determined and so is the innovator's equilibrium
payo�. The next proposition characterizes the innovator's optimal licensing strategy
in G0.

Proposition 12. The unique equilibrium licensing strategy of the innovator in G0

is:

7When ε ≤ l(n) the market price in SUA is c+ 1−(n+1)ε
2(n+1) (easy to verify) while the market price

in NUA is c+ 1−2ε
2(n+1) (Proposition 6).
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(i) For n ≥ 3

k∗0(n, ε) =


n− 1 if 0 < ε < 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε < 2

n+1
1
ε

if 2
n+1
≤ ε < 1.

(14)

(ii) For n ≤ 2
k∗0(n, ε) = n− 1.

For a proof see Kamien, Oren, and Tauman (1992).
Observe that by Proposition 12, k∗0(n, ε) = k∗1(n, ε) where k∗1(n, ε), the optimal

number of incumbent licensees in Gnu, is given in Proposition 5. This is not very
surprising in light of part (i) of Corollary 3.

Corollary 4. Allowing entry will not change the innovator's revenue nor the social
welfare if either (i) ε > 0 and n is su�ciently large, or (ii) n ≥ 3 and ε is su�ciently
large.

Proof. By propositions 5 and 12 (i) k∗0(n, ε) = k∗1(n, ε) for any n and ε and (ii)
k∗2(n, ε) = 0 for n ≥ 3 and 1

2n−4 ≤ ε < 1.

By propositions 5 and 12 for less signi�cant innovations (0 < ε ≤ 1
2n−4), k

∗
0(n, ε) =

k∗1(n, ε) and k∗2 > 0. In this case Gnu results in a higher di�usion of technology and
larger post-innovation market size. The di�erence in market size is larger for smaller
magnitude of innovation.

The next proposition characterizes the innovator's revenue and the post-innovation
market price in G0.

Proposition 13. Consider the game G0. (i) the innovator's equilibrium payo� is
For n ≥ 3

π∗0(n, ε) =


(n−1)

(
−(n−3)ε2+2ε

)
n+1

if 0 < ε ≤ 2
3n−5

(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1.

For n ≤ 2

π∗0(n, ε) =
(n− 1)

(
− (n− 3)ε2 + 2ε

)
n+ 1

.

(ii) The post-innovation market price is
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For n ≥ 3

p∗0(n, ε) =


c+ 1−(n−1)ε

n+1
if 0 ≤ ε ≤ 2

3n−5
c+ 2−(n+1)ε

4(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

c if 2
n+1
≤ ε < 1.

For n ≤ 2

p∗0(n, ε) = c+
1− (n− 1)ε

n+ 1
.

Proof. Follows from Proposition 12

Corollary 5. Suppose n ≥ 3. π∗nu(n, ε) − π∗0(n, ε) and p∗0(n, ε) − p∗nu(n, ε) are both
decreasing to 0 if either n is increasing inde�nitely or ε is increasing to 1

2
.

Proof. See A.1.7 of the Appendix.

Corollary 5 asserts that for any ε > 0 the di�erence in price and in the innova-
tor's payo� between Gnu and G0 are decreasing in n. The innovator sells licenses
to entrants only if he sells licenses to all (but one) incumbent �rms (Corollary 3).
Therefore the larger is the pre-innovation market size the more reluctant is the in-
novator to sell licenses to entrants and the smaller is the di�erence between Gnu and
G0. Corollary 5 also asserts that for any n ≥ 3 this di�erence is decreasing in ε,
when the magnitude of innovation is relatively large, the innovator is best o� selling
smaller number of licenses (Proposition 5) and entrants are less likely to become
licensees. The di�erence between Gnu and G0 is larger for relatively less signi�cant
innovation.

Next we characterize the market structure that provides the highest incentive to
innovate in G0.

Proposition 14. An oligopoly industry with size n = max
(
3, 2
√

2 + 1
ε
− 1
)
maxi-

mizes the revenue of the innovator in G0.

Proof. See A.1.8 of the Appendix.

When entry is excluded, the incentive to innovate is maximized when the market
is oligopoly (with at least 3 �rms). This is not the case where the market is open
to entry. In this case the incentive to innovate is maximized in a monopoly market
(Proposition 4).
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Chapter 3

3 Sequential Licensing of Innovation

3.1 Introduction

Keurig holds the patent for the packaging lines used to manufacture k-cups. Green
Mountain is the �rst and the only licensee of this patent until 2000. In 2000 and 2001,
Keurig issued four additional licenses8. Soon after this, Green Mountain increased
its percentage ownership of Keurig (by 2003 it had a 43% ownership) and �nished
the full acquisition in 2006. In principle, the total industry pro�t is maximized
under a monopolistic market compared to oligopoly since more �rms induces more
competition which damages the total revenue. Therefore it is puzzling why did Keurig
took an action which damages the total industry pro�t to be shared (selling four
additional licenses) before bargaining with the current incumbent, Green Mountain.
It worth notice that in addition to this example, the action of an innovator to sell
licenses to entrants in a pre-innovation monopolistic market is not rarely observed.
This paper provides a novel explanation to the ine�cient outcome in bargaining
under the patent licensing context. The main idea is that the option of licensing an
innovation can be used by innovators strategically to raise their bargaining power
with incumbent �rms. The action of selling licenses to entrants on one hand reduces
the total industry pro�t to be shared, while on the other hand makes a more severe
threat on the incumbent credible.

We consider a speci�c industry with one incumbent and many potential entrants.
It is assumed that initially the high entry cost does not enable a pro�table entry and
the incumbent is a monopoly. Suppose that an outside innovator obtains a patent
on a new technology that eliminates the entry cost but has a marginal cost which
is di�erent from the current one. The innovator can sell his intellectual property
(IP) to the incumbent through bargaining. Even though the technology itself maybe
useless for the incumbent, he may purchase the IP to limit or exclude further entry.
However, before approaching the incumbent, the innovator may sell a few licenses to
new entrants. A licensing contract with an entrant speci�es the license fee together
with the maximum number of licenses that can be sold. The contracts are signed
sequentially and they are bound by previous commitments.

Selling licenses before bargaining (with the incumbent) reduces the total industry
pro�t to be allocated but enables a better credible threat on the incumbent �rm and

8To Tully's co�ee, Timothy's World Co�ee, Diedrich Co�ee and Van Houttee
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hence may increase the innovator's payo�. As a result, the bargaining outcome is not
ex-ante Pareto-e�cient. We show that such ine�ciency occurs when the bargaining
time takes a large proportion of the patent right life; or when there is a constraint
on the number of times the two bargainers can meet. Furthermore, we show that
the ine�ciency is less signi�cant when the innovator has a higher bargaining power;
when the new technology is less e�cient; or when the patent lasts for a longer period.

3.2 Model

We consider an economy with one good that is initially produced by a single
monopoly at marginal cost c. Total demand is �xed at p = a − q, a > c. There
are many potential entrants who are currently unable to enter the market due to
the high current �xed entry cost. An innovator holds a patent that eliminates the
entry cost but with a di�erent marginal cost c + ε. Here ε can be either positive or
negative. The patent right expires after T periods. Denote x = ε

a−c . Throughout
this paper, we assume a− c to be �xed and normalize it to be one.

The innovator (Inn) may sell his intellectual property (IP) to the incumbent (Inc)
through bargaining but may sell licenses to new entrants before approaching Inc. If
licenses are sold to new agents Cournot competition arises at the end of each period.
Selling licenses to entrants takes no time while the bargaining between Inn and Inc
takes one period. In the appendix we relax this assumption and allow an agreement
to be reached earlier if both bargainers agree to do so. It turns out that Inc is always
best o� delaying making the agreement and the bargaining always takes the full
period.

After the bargaining stage, the owner of the IP chooses the number of additional
licenses to sell, and exclusively collects all corresponding license fees. Namely if the
an agreement between Inn and Inc was reached, the new owner of the IP, Inc, chooses
the number of additional entrants to bring in. If, however, previous bargaining fails,
Inn chooses the number of additional licenses to sell.

The licensing contract given to entrants and the bargaining procedure between
Inn and Inc will be speci�ed later on. Note that here we assume Inc has some power
on the bargaining with Inn, while the entrants have none. The reason follows from
the assumption that there are many potential entrants, so that each one of them
has negligible bargaining power related to the innovator, which enables the innova-
tor to give a take-it-or-leave-it o�er when selling them the license. The monopoly
incumbent, on the other hand, stands in a better bargaining position.

The goal of Inn is to divide the total industry pro�t with Inc, through bargaining.
In the main part of the paper, we assume the bargaining between Inn and Inc can take
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place only once. Such assumption �ts the scenario in which either Inc can credibly
commit not to meet with Inn again if the �rst bargaining fails, or the bargaining
takes a large proportion of the patent right life so that it's not pro�table for Inn to
approach Inc for a second time. One of the interesting outcome of our model is that
Inn may bene�t from selling licenses to new entrants before approaching Inc. Such
action, although brings more competition to the market and thus reduces the total
industry pro�t, increases the threatening position of Inn in the subsequent bargaining
game.

We then relax the assumption that Inn and Inc can bargain only once and allow
Inn to approach Inc even before he carries out the action that causes the ine�ciency.
It is shown that even if the bargainers can meet twice and anticipate the ine�cient
outcome, there is no credible way to avoid it. This is because under some parameters,
it is best o� for Inn to bring in some entrants even before the �rst meeting.

It worth notice that the model described in this section is of a hybrid one, which
combines the strategic choice of Innovator together with the cooperative concept
generalized Nash bargaining solution. The hybrid model can be transformed into a
pure non-cooperative game by introducing a mediator who makes o�ers to Inc on
behalf Inn and collects a fee if a deal is reached. This non-cooperative approach is
shown in the appendix for the special case T = 2 and ε ≥ 0. The result remains the
same despite the di�erent set-up.

3.3 T = 2

First we analyze the special case T = 2 and show that ine�cient outcome may
arise as a result of Inn bringing in entrants before bargain with Inc. We show that Inn
is less willing to bring in entrants before bargaining if (i) Inn has a higher bargaining
power; (ii) the innovation is less e�cient or (iii) the patent lasts longer. It is then
shown that if there is a probability of the patent being obsolete at the end of each
period, then Inn is more willing to bring in entrants before meeting with Inc. It is
shown later that these results hold also for T > 2.

3.3.1 ε ≥ 0

It is assumed that the patent right expires after two periods and that Cournot
competition takes place at the end of each period. The technology held by Inn has
a higher marginal cost compared to that held by Inc thus the technology itself is
useless for Inc, though he may purchase the IP to limit or exclude further entry.

The innovator �rst decides on the number of entrants to bring into the market
(denoted by t), as well as the contract that is o�ered to each one of them. Each
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contract is of the form (α, δ), where α is an upfront license fee and δ is a commitment
of Inn to sell no more than δ licenses in total.

Then Inn and Inc engage into a bargaining in which the Pareto frontier is de�ned
as the subsequent optimal industry pro�t; while the disagreement payo�s are de�ned
as Inn's (or Inc's) payo� in case the bargaining fails (to be speci�ed below). The
generalized Nash bargaining solution is adopted as the outcome of this bargaining
problem.

(i) The constrained optimal total industry pro�t to be shared in the bargaining
game is de�ned as

v2 = m(x, t)πe(m(x, t) + t) + π0(m(x, t) + t) (15)

Here
m(x, t) = argmax

m≤δ,m∈N0

[mπe(m+ t) + π0(m+ t)] (16)

represents the number of additional licenses Inc will sell in order to maximize his
subsequent pro�t if he obtains the IP. This maximized subsequent pro�t of Inc is in
turn de�ned as the size of the "cake" to be shared in the bargaining process.

(ii) The disagreement payo�s are de�ned as

dinn = n(t)πe(t+ n(t)) (17)

and
dinc = π0(t+ n(t)) (18)

Here
n(t) = argmax

n≤δ,n∈N0

nπe(t+ n) (19)

represents the number of additional licenses Inn will sell in order to maximize his
subsequent pro�t if bargaining fails. In turn, Inn's disagreement payo� is de�ned as
the Cournot pro�t of all these additional licensees, and Inc's disagreement payo� is
de�ned as his Cournot pro�t facing n(t) additional competitors. Note that although
a second bargaining between Inn and Inc is allowed, Inn cannot bene�t from such
action in the case T = 2. This is because the value of the patent goes to zero at the
end of the second bargaining.

To summarize, given any choice of t, a bargaining game is de�ned by v2(t) and
(dinn(t), dinc(t)). The generalized Nash bargaining solution is adopted to this bar-
gaining game. Namely, let

s = v2 − (dinn + dinc) (20)
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be the surplus. If s < 0, Inn and Inc each obtains dinn and dinc from the bargaining
process. If s ≥ 0, from the bargaining process, Inn and Inc each obtains

binn = βs+ dinn (21)

binc = (1− β)s+ dinc (22)

Here β is an exogenously given parameter which captures the relative bargaining
power of the innovator. When β = 0.5, their payo�s coincide with that of the Nash
bargaining solution.

It is assumed that for each of the t entrants that are brought into the market
before the bargaining stage, he is willing to pay up to πe(t)+πe(m(x, t)+t) if s(t) ≥ 0,
and πe(t) + πe(n(t) + t) if s(t) < 0. Namely each entrant is willing to pay up to his
total Cournot pro�t for the license.

It is easy to verify that s(t) ≥ 0 for all t (under any x ∈ [0, 0.5] and β ∈ [0, 1]).
Thus, each of the �rst t entrants is willing to pay α = πe(t) + πe(m(x, t) + t) for
the license. The total payo�s of Inn and Inc are decided by the summation of their
respective bargaining payo� and the fee or pro�t collected prior to the bargaining
stage.

πinn = t
[
πe(t) + πe(m(x, t) + t)

]
+ binn (23)

πinc = π0(t) + binc

The innovator then maximizes over t his payo� πinn where

πinn(x, β, t) =β[tπe(t) + π0(t)

+ (t+m(x, t))πe(t+m(x, t)) + π0(t+m(x, t))

− t(πe(t) + πe(m(x, t) + t))− n(t)πe(t+ n(t))

− π0(t)− π0(t+ n(t))]

+ t(πe(t) + πe(t+m(x, t))) + n(t)πe(t+ n(t))

(24)

After simpli�cation

πinn(x, β, t) =

part 1︷ ︸︸ ︷
β[(m(x, t) + t)πe(m(x, t) + t) + π0(m(x, t) + t)] + (1− β)tπe(m(x, t) + t)

+ (1− β)n(t)πe(t+ n(t))− βπ0(t+ n(t))︸ ︷︷ ︸
part 2

+tπe(t)

(25)

27



Note that by de�nition, the value of m(x, t) and n(t) depends on the quantity
commitment δ. Let m̃(x, t) (or ñ(t)) be the number of additional licenses Inn (or Inc)
will choose if there are no constraint on the quantity of total licensees. It is shown in
the appendix that δ < t+ ñ(t) can never be an optimal choice. First note that if Inn
sets t+ m̃(x, t) ≤ δ < t+ ñ(t), then the constraint only reduces the �threat" Inn can
impose on Inc during bargaining while keep the size of the total �cake" to be shared
the same - which is not bene�cial for Inn. If instead, Inn sets δ < t + m̃(x, t), then
the same number of additional licenses will be sold in the second period, irregardless
of the ownership of the IP. In this case Inn can get nothing from bargaining with
Inc so the problem reduced to the one in which Inn chooses the number of entrants
to maximizes the two periods' license fee, which is shown to be less pro�table for
Inn compare to relaxing such quantity constraint. As a result, Inn always commits
on some δ ≥ t + ñ(t) to each of the �rst t entrants. In other words, in the contract
signed with the �rst t entrants, the quantity commitment δ is not binding. Which
δ ≥ t+ ñ(t) Inn chooses doesn't a�ect our result below.

The optimal choice of t is summarized in Figure 1. Note that when x ≥ 0.5, the
technology held by Inn is so ine�cient that its licensee can make no pro�t, which
case is trivial to analyze. Thus we concentrate our analysis on x ∈ [0, 0.5].

Figure 1

The result is a obtained simply by comparing the value of πinn(x, β, 0), πinn(x, β, 1)
and πinn(x, β, 2). It is left to be shown that t ≥ 3 can not be an optimal choice of
Inn, which is degraded into the appendix.

It worth notice that the disconnection of the pink area in Figure 1 results from
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the restriction that m(x, t) being an integer. If such restriction is removed, namely if
Inc is allowed to sell a fraction of licenses once obtaining the IP, Figure 1 transforms
into Figure 2. The detailed argument is given in the appendix.

Figure 2

Clearly, when �xing x and increasing β, Inn is best o� bringing in less entrants
before bargaining with Inc. This is because when Inn obtains a bigger share of the
total "cake", his bene�t from introducing more competition (which increases the
threat on the incumbent) does not compensate for the loss of shrinking the size of
the "cake". As a result, when Inn has a bigger bargaining power, he is best o� selling
fewer licenses prior to the bargaining stage.

Next, assume β is �xed. Note �rst that if we assume Inc will sell no additional
licenses after obtaining the IP (which is true for t = 0, 1, 2 under 1

6
< x ≤ 1

2
), Inn

is best o� bringing in more entrants before bargaining when for smaller x. This is
because when the innovation is more e�cient, by bringing in one additional entrant,
the �damage" imposed on the size of the total �cake" increases, and the increment
on the severity of the threat9 on Inc also increases. The damage of sharing a smaller
size of the �cake" is divided by both bargainers, while the increment on the severity
of the threat bene�ts Inn exclusively. As a result, when x decreases, the bene�t for
Inn to bring in more competition exceeds the loss on the size of the �cake", thus he
is more willing to bring in more entrants before bargaining with Inc.

9The severity of the threat on Inc is de�ned as the negation of the interception of the line
containing the disagreement point and the bargaining solution, which formal de�nition is given in
the appendix.
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When we take the e�ect of x on m(x, t) into account, recall that

m∗(x, 0) = 0

m∗(x, 1) =

{
−8x+ 1 0 ≤ x ≤ 1

8

0 1
8
< x ≤ 1

2

m∗(x, 2) =

{
−12x+ 2 0 ≤ x ≤ 1

6

0 1
6
< x ≤ 1

2

The above argument of Inn's trade o� still holds for 1
6
< x ≤ 1

2
, while it is inverted

for 0 ≤ x ≤ 1
6
. This is because for big enough innovation (small enough x), after

obtaining the IP, Inc who maximizes his subsequent pro�t sells more additional
licenses if there are more entrants already in the market. Clearly, the more licenses he
sells the less is the cake to be divided ex-ante since each entrants brings in additional
competition. After taking this into account, Inn sells less licenses than he would
have.

As an example, Figure 3 shows Inn's total payo� for t = 0, 1 and 2 when β = 0.15.
The green, red and black line represent Inn's payo� πinn|t=1, πinn|t=2 and πinn|t=0

respectively.

Figure 3
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Extension - Nash Variable Threat In the previous section when Inn and Inc
bargain, no one has the power to commit on an action in case bargaining fails. In
case bargaining fails, the number of additional licenses to sell is de�ned as the one
that maximizes the patent holder's subsequent payo�; while the quantity to produce
is de�ned as the one that maximizes the �rm's Cournot pro�t. We show that Inn
can make the disagreement action more harmful to Inc by strategically bringing in
entrants prior to the bargaining stage. In this section we assume that each player can
commit to a disagreement strategy which will be carried out in case bargaining fails.
Inn commits to the number n of entrants to bring in; Inc commits to the quantity
qI to produce.

Let ci and ce be the marginal cost of the incumbent and the new entrants, re-
spectively. It is assumed that a ≥ ci, a ≥ ce and ce = ci + ε with ε ≥ 0. It can be
easily veri�ed that

(i) if a−ci
2
≥ a − ce, the marginal cost of any entrant is so high that producing

any positive amount is not pro�table. Inc commits to the quantity qI = a−ci
2
, which

is the quantity that maximizes his monopoly pro�t; while Inc commits to any n ≥ 0.
The disagreement payo� of Inn is 0, the disagreement payo� of Inc is (a−ci

2
)2. In this

case, Inc obtains all the monopoly pro�t.
(ii) if a−ci

2
< a − ce, Inc commits to the quantity a − ce. This quantity drives

the price of the product below ce, so that entrants are best o� producing nothing;
while Inn commits to any n ≥ a−ce

ce−ci − 1. The disagreement payo� of Inn is 0, the
disagreement payo� of Inc is (a− ce)(ce− ci). The �nal payo�s of the two bargainers
are

πnvtinn =
1

8
(a− ci − 2ε)2

πnvtinc =
1

4
(a− ci)2 −

1

8
(a− ci − 2ε)2

Clearly πnvtinn < πnvtinc

Next we compare this solution with the one obtained in the previous section, in
which case commitment on the disagreement action is not allowed. Assume β = 0.5.
If a−ci

2
> a−ce, again, since there is no pro�table entry, Inc obtains all the monopoly

pro�t. If a−ci
2

< a− ce, for the bargaining game in which Inn approaches Inc without
bringing in any entrant in advance

π0
inn =

1

32
(a− ci)2

( 2ε

a− ci

)( 2ε

a− ci
− 1
)

It's easy to verify that πnvtinn < π0
inn for all ε satisfying

a−ci
2

< a−ce. Thus, Inn is worse
o� when commitment on the disagreement action is allowed for both bargainers.
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3.3.2 ε < 0

In this section we analyze the game for ε < 0. That is, the new technology does
not only eliminate the entry cost but also reduce the marginal cost.

In this case, upon obtaining the IP, Inc will use the technology himself instead of
putting it on the shelf. Denote the number of new entrant �rms by b. Let k ∈ {0, 1}
be an indicator. It is 1 if the incumbent uses the new technology and 0 otherwise.
Let π0(k, b) and πe(k, b) be the Cournot pro�t of the incumbent and each entrant,
respectively. Note that πe(1, b) represents the entrant's payo� when there are in total
b+ 1 �rms producing at cost c− ε.

Denote x = ε
a−c . Assume a− c to be �xed and normalize it to be one. Whenever

x < −1/b, the incumbent is driven out of the market if he does not have an access
to the new technology. It is easy to verify that the Cournot pro�t of the incumbent
and the entrant are:

π0(1, b) = πe(1, b) = (a− c)2(1− x
b+ 2

)2

πe(0, b) =

{
(a− c)2(1−x

b+1
)2 if b ≥ − 1

x

(a− c)2(1−2x
b+2

)2 if b < − 1
x

π0(0, b) =

{
0 if b ≥ − 1

x

(a− c)2(1+bx
b+2

)2 if b < − 1
x

Given the t entrants which are already in the market and the quantity commit-
ment δ Inn made to them, in the bargaining stage Inn and Inc bargain on the surplus
which is the di�erence between (i) constrained optimal total industry pro�t in case
an agreement is reached and (ii) the total payo�s of the two bargainers in case the
bargaining fails.

(i) the constrained optimal total industry pro�t to be shared in the bargaining
game is de�ned as

v2 = m(t)πe(1,m(t) + t) + π0(1,m(t) + t) (26)

Here
m(t) = argmax

m≤δ,m∈N0

[mπe(1,m+ t) + π0(1,m+ t)] (27)

represents the number of additional licenses Inc will sell in order to maximizes his
subsequent pro�t if he obtains the IP. It can be easily veri�ed that m(t) = t.
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(ii) The disagreement payo�s are de�ned as

dinn = n(t, x)πe(0, t+ n(t, x)) (28)

and
dinc = π0(0, t+ n(t, x)) (29)

Here
n(t, x) = argmax

n≤δ,n∈N0

nπe(0, t+ n) (30)

represents the number of additional licenses Inn will sell in order to maximize his
subsequent pro�t if bargaining fails (provided that no previous contract is violated).
Again, for the case T = 2, Inn has no incentive to engage into a second bargaining
since at the end of this bargaining the value of the patent goes to zero.

Let
s = v2 − (dinn + dinc) (31)

It is assumed that if s ≥ 0 an agreement will be reached where the innovator and the
incumbent each obtains a proportion of the surplus s together with their disagree-
ment payo�. Suppose that the relative bargaining power of the innovator and the
incumbent are β and 1− β respectively where 0 ≤ β ≤ 1. Their �nal payo�s in case
s ≥ 0 are

πinn = tα +
[
βs+ d1

]
(32)

πinc = π0(0, t) +
[
(1− β)s+ d2

]
(33)

It is assumed that α = πe(0, t) + πe
(
1, t + m(t)

)
if s ≥ 0, while α = πe(0, t) +

πe
(
0, t + n(t, x)

)
if s < 0. Namely each entrant is willing to pay up to his total

Cournot pro�t for the license.

Lemma 2. Given t entrants are already in the market and the bargaining between
Inn and Inc fails, if there is no constraint on the number of total licenses Inn can
sell, it's best o� for him to sell additional n(t, x) licenses, which satis�es

n(t, x) =

{
t+ 1 if t ≥ f(x)
t+ 2 if t < f(x)

with f(x) = − 2x2−1
x(3x−2) .

The graphical interpretation of Lemma 1 is shown below. The blue curve repre-
sents function f(x). The proof is given in the appendix.
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First we analyze Inn's optimal choice of t under the constraint that δ ≥ t+ n(t).
Namely when the quantity commitment made to the �rst t entrants are not binding.

Lemma 3. Once Inc obtains the IP, he uses the technology himself.

This is not a trivial question since when using the technology himself Inc increases
his own Cournot pro�t but in the meanwhile brings in more severe competition which
damages the Cournot payo� of the additional licenses he brings in. The proof is
shown in the appendix.

Lemma 4. Once engaging into bargaining, an agreement between Inn and Inc is
always reached.

Proof. From 3, once obtaining the IP, Inc is best o� using it himself in addition to
licensing to others. Thus

Inc not use tech︷ ︸︸ ︷
max
k

(
kπe(0, t+ k) + π0(0, t+ k)

)
≤

Inc use tech︷ ︸︸ ︷
max
m

(
mπe(1, t+m) + π0(1, t+m)

)
(34)
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Using this result we have

dinn + dinc = n(t, x)πe(0, t+ n(t, x)) + π0(0, t+ n(t, x))

≤ max
k

(
kπe(0, t+ k) + π0(0, t+ k)

)
≤ max

m

(
mπe(1, t+m) + π0(1, t+m)

)
= v2

(35)

Thus once engaging into a bargaining, an agreement between Inn and Inc is always
reached.

Lemma 5. If the quantity commitment Inn made to the �rst t entrants are not
binding, namely δ ≥ t+n(t), Inn is best o� bringing in one entrant and bargain with
Inc for all (x, β) with x ≤ 0.

Proof. The action of bringing in one additional entrant before approaching Inc has
three e�ects on Inn's payo�. It (i) changes the amount of license fee Inn collects prior
to bargaining. This e�ect is positive when bringing in the �rst entrant; it is negative
thereafter. (ii) decreases the size of the "cake" to be shared and (iii) decreases the
severity of the threat on the incumbent.

Clearly t ≥ 2 cannot be an optimal choice, since all three e�ects are negative in
such cases. To �nd the optimal choice of t, we need only to compare t = 0 and t = 1.
It turns out that when bringing in the �rst entrant, the magnitude of the �rst e�ect
exceeds that of the later two, thus it is always best o� for Inn to bringing in one
entrant before bargaining. It worth notice that when x < −1/b, Inc is driven out of
the market so that Inn can charge the only entrant his monopoly pro�t.

Next we analyze the case when Inn making the quantity commitment δ < t+n(t).

Lemma 6. If the quantity commitment Inn made to the �rst t entrants are binding,
namely δ < t + n(t), Inn is best o� committing on δ = t in which case he obtains
only the licensing fee from entrants and does not bargain with Inc. In particular, he
sells one license for x < −

√
2
2

and sells two licenses for x ≥ −
√
2
2
.

Proof. It's easy to verify that m(t) < n(t, x). Denote b = δ− t. If m(t) ≤ b < n(t, x)
then the quantity constraint only decreases the severity of the threat on Inc while
keep the size of the �cake" to be shared intact. Clearly making the commitment
t+m(t) ≤ δ < t+ n(t, x) is not bene�cial for Inn.

Now consider b < m(t). In this case the same number of licenses will be sold
irregardless of the bargaining result (this is shown in the previous section), thus Inn
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cannot bene�t from bargaining with Inc. The problem is then degraded into the one
that Inn chooses the number of licenses to maximize the total licensing fee. In other
words, if Inn chooses to make a binding quantity commitment to the �rst t entrants
(δ < t+ n(t)), then he is best o� committing on δ = t and chooses t that maximizes
the Cournot pro�t of all entrants. By Lemma 2, Inn's payo� is maximized with one
entrant for x < −

√
2
2

and with two entrants for x ≥ −
√
2
2
. Note that for x < −1

2
Inc

is driven out of the market with two entrants and for x < −1 Inc is driven out of the
market with one entrant.

Combining the above two Lemmas and comparing Inn's payo� for δ ≥ t + n(t)
and δ < t + n(t), Inn's optimal licensing strategy is summarized in the following
proposition.

Proposition 15. Inn's optimal licensing strategy for T = 2 and ε < 0 is shown in
the following graph.

The following graph summarizes Inn's optimal licensing strategy for both positive
and negative ε. Note that as long as Inn and Inc engage into bargaining, the quantity
commitment Inn made to the �rst t entrants are not binding.

3.4 T ≥ 3

In this section, under the assumption of Inn and Inc can meet only once, the
e�ect of the duration of the patent on Inn's behavior is analyzed. We show that
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Inn is less willing to bring in entrants before bargaining with Inc when k increases.
This is because the licensing fee collects during the bargaining stage accounts for a
smaller proportion in Inn's total payo�, which decreases Inn's willingness to bring in
entrants prior to the bargaining with Inc. However, it still increases the severity of
the threat on Inc thus the range of parameters under which Inn brings in entrants
prior to bargaining does not vanish even when k →∞.

Formally, if the bargaining takes place at the �rst period and it fails, Inn chooses
n(t) that

n(t) = argmax
n≤δ,n∈N0

(k − 1)nπe(t+ n) (36)

Clearly the optimal choice of n remains the same irregardless of k. The disagree-
ment payo�s are

dinn = (k − 1)n(t)πe(t+ n(t)) (37)

and
dinc = (k − 1)π0(t+ n(t)) (38)

If an agreement is reached, Inc chooses the number m(x, t) of additional entrants
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to bring in, which satis�es

m(x, t) = argmax
m≤δ,m∈N0

(k − 1)[mπe(m+ t) + π0(m+ t)] (39)

Clearly the choice of m(x, t) doesn't depend on k. The total "cake" to be shared in
the bargaining game is given as

v2 = (k − 1)
[
m(x, t)πe(m(x, t) + t) + π0(m(x, t) + t)

]
(40)

in which
Given any choice of t, a bargaining game is de�ned by v2(t) and (dinn(t), dinc(t)).

The generalized Nash bargaining solution (to be speci�ed later) is adopted to this
bargaining game. To be precise, let

s = v2 − (dinn + dinc) (41)

be the surplus. If s < 0, Inn and Inc each obtains dinn and dinc from the bargaining
process. If s ≥ 0, from the bargaining process, Inn and Inc each obtains

binn = βs+ dinn (42)

binc = (1− β)s+ dinc (43)

It is assumed that for each of the t entrants that are brought into the market
before the bargaining stage, he is willing to pay up to πe(t) + (k − 1)πe(m(x, t) + t)
if s(t) ≥ 0, and πe(t) + (k − 1)πe(n(t) + t) if s(t) < 0.

It is easy to verify that s(t) ≥ 0 for all t (under any x ∈ [0, 0.5] and β ∈ [0, 1]).
Thus, each of the �rst t entrants is willing to pay α = πe(t)+(k−1)πe(m(x, t)+t) for
the license. The total payo�s of Inn and Inc are decided by the summation of their
respective bargaining payo� and the fee or pro�t collected prior to the bargaining
stage.

πinn = t
[
πe(t) + (k − 1)πe(m(x, t) + t)

]
+ binn (44)

πinc = π0(t) + binc
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The innovator then maximizes over t his payo� πinn where

πinn(x, β, t) =(k − 1)
[
β
[
m(x, t)πe

(
t+m(x, t)

)
+ π0

(
t+m(x, t)

)
− n(t)πe

(
t+ n(t)

)
− π0

(
t+ n(t)

)]
+ tπe

(
t+m(x, t)

)
+ n(t)πe

(
t+ n(t)

)]
+ tπe(t)

(45)

When k increases, for any given (x, β), the optimal choice of t decreases. If k is
very large, the e�ect of tπe(t) becomes negligibly small. Then Inn chooses t that

max
t

[
β
[
m(x, t)πe

(
t+m(x, t)

)
+ π0

(
t+m(x, t)

)
− n(t)πe

(
t+ n(t)

)
− π0

(
t+ n(t)

)]
+ tπe

(
t+m(x, t)

)
+ n(t)πe

(
t+ n(t)

)] (46)

Relaxing the assumption that m(x, t) has to be an integer The following graph
shows the optimal choice of t when k = 2, k = 3 and k →∞.
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A Appendix

A.1 Appendix for Chapter 2

A.1.1 Formula

f(n) =
n3 + n2 + 2n+ 4 +

√
n6 + 8n5 + 30n4 + 56n3 + 50n2 + 20n+ 4

3n4 + 8n3 + 10n2 + 4n− 4

k̃(n, ε) = 2n3ε+10n2ε+16nε+4n+8ε+6−
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε

g(n) = max
(

0,
3n4 + 6n3 + 7n2 + 4n− 4− 2

√
n8 + 9n7 + 31n6 + 49n5 + 29n4 − 9n3 − 16n2 − 4n

5n5 + 15n4 + 19n3 + 9n2 + 4

)

h(n) = max
(

0,
n4 + n3 + 2n2 + 4n−

√
3n7 + 14n6 + 18n5 + 7n4 + 24n3 + 40n2 − 16

n5 + 2n4 + n3 + n2 + 4n+ 4

)

r(n) =

{
e1(n) if n ≥ 17
f−11 (n) if 2 ≤ n ≤ 16

where

e1(n) =
3n− 5− 2

√
n2 − 4n+ 3

5n2 − 14n+ 13

and

f1(ε) = −8
√
1+2 εε3/2−11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2−3 ε

ε2

Figure 4 shows that the inverse function of f1(ε) exists for 0 < ε < 1
2
.

A.1.2 Let us prove that π1(n− k1, k)− π0(n− k1 + 1, k) is increasing in k1

Let m = n− k1, we will show that π1(m, k)− π0(m+ 1, k) is decreasing in m.

π1(m, k)− π0(m+ 1, k) =

(
1 + (m+ 1)ε

)2
(m+ k + 1)2

− (1− kε)2

(m+ k + 2)2
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Figure 4: The value of f1(ε)

The �rst order condition (using Maple) is

∂
(
π1(m, k)− π0(m+ 1, k)

)
∂m

= Gε2 +Hε+ I

where

G = 2 k5+8 k4m+12 k3m2+8 k2m3+2 km4+8 k4+30 k3m+36 k2m2+14 km3+18 k3+54 k2m+36 km2+26 k2+40mk+16 k
(m+k+1)3(m+2+k)3

> 0

H = −2 k4−8 k3m−12 k2m2−8 km3−2m4−2 k3−18 k2m−30 km2−14m3−36mk−36m2−12 k−40m−16
(m+k+1)3(m+2+k)3

and
I = −6 k2−12mk−6m2−18 k−18m−14

(m+k+1)3(m+2+k)3

Therefore
∂
(
π1(m,k)−π0(m+1,k)

)
∂m

is in quadratic in ε with G > 0.

The equation
∂
(
π1(m,k)−π0(m+1,k)

)
∂m

= 0 has two solutions in ε.

ε1 = − 3 k2+6mk+3m2+9 k+9m+7
k4+4 k3m+6 k2m2+4 km3+m4+4 k3+15 k2m+18 km2+7m3+9 k2+27mk+18m2+13 k+20m+8

< 0

and

ε2 =
1

k
> 0

Therefore for 0 < ε ≤ 1
k
,
∂
(
π1(m,k)−π0(m+1,k)

)
∂m

< 0 and π1(m, k) − π0(m + 1, k) is
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decreasing in m. Since m = n− k1, π1(n− k1, k)− π0(n− k1 + 1, k) is increasing in
k1.

A.1.3 Proof of Proposition 3

By Lemma 1 the highest equilibrium payo� of the innovator in Gu is

π∗u(n, ε) = max
(
π0(n, ε), π̂(n, ε)

)
where π0(n, ε) = maxk≥1 kπ1(n, k) and π̂(n, ε) = maxk≥1 k

(
π1
(
n − min(k, n), k

)
−

π0
(
n−min(k, n) + 1, k

))
.

Let k∗u(n, ε), k
0(n, ε) and k̂(n, ε) be maximizers of π∗u(n, ε), π

0(n, ε) and π̂(n, ε),
respectively. Clearly either k0(n, ε) or k̂(n, ε) is a maximizer of π∗u(n, ε).

Lemma 7. k(π1(0, k)− π0(1, k)) is decreasing in k.

Proof. Let

J = k
(
π1(0, k)− π0(1, k)

)
= k
(( 1 + ε

1 + k

)2 − (1− kε
2 + k

)2)
Then

∂J

∂k
= Aε2 +Bε+ C

where A, B and C are functions of k. In particular,

A = −k
6 + 9 k5 + 22 k4 + 24 k3 + 12 k2 − 4 k − 8

(1 + k)3 (2 + k)3

B = −−6 k4 − 14 k3 − 12 k2 − 16 k − 16

(1 + k)3 (2 + k)3

C = −4 k3 + 9 k2 + k − 6

(1 + k)3 (2 + k)3

and

B2 − 4AC =
−16(k3 + k2 − 2k − 1)

(k + 2)4(1 + k)2

Clearly A < 0 for k ≥ 1 and B2 − 4AC < 0 for k ≥ 2. Therefore ∂J
∂k
< 0 for k ≥ 2

and J is maximized either at k = 1 or at k = 2.
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Since J |k=1 = 1
36

(ε+ 5)(5ε+ 1) and J |k=2 = − 1
72

(10ε+ 1)(2ε− 7), for every ε

J |k=1 − J |k=2 =
5

12
ε2 − 2

9
ε+

1

24
> 0

Thus J = k
(
π1(0, k)− π0(1, k)

)
is decreasing in k for k ≥ 1.

Lemma 8. (i) k0(n, ε) ≤ n+ 1 and (ii) k̂(n, ε) ≤ n.

Proof. (i) By (1) and Proposition 1

π0(n, ε) = max
1≤k≤ 1

ε

k
(
1 + (n+ 1)ε

)2
(n+ k + 1)2

and it is maximized at k = min(n+ 1, 1
ε
). Hence k0(n, ε) ≤ n+ 1.

(ii) Let
π̂1(n, ε) = max

1≤k<n
k
(
π1(n− k, k)− π0(n− k + 1, k)

)
and

π̂2(n, ε) = max
k≥n

k
(
π1(0, k)− π0(1, k)

)
Then π̂(n, ε) = max

(
π̂1(n, ε), π̂2(n, ε)

)
. But k

(
π1(0, k)− π0(1, k)

)
is decreasing in k

(Lemma 7). This implies k̂(n, ε) ≤ n.

The next lemma characterizes both k0(n, ε) and k̂(n, ε).

Lemma 9.

k0(n, ε) =

{
n+ 1 if 0 < ε < 1

n+1
1
ε

if 1
n+1
≤ ε < 1

(47)

and

k̂(n, ε) =


n if 0 < ε < f(n)

k̃(n, ε) if f(n) ≤ ε ≤ 2
n+1

1
ε

if 2
n+1

< ε < 1
(48)

where

f(n) =
n3 + n2 + 2n+ 4 +

√
n6 + 8n5 + 30n4 + 56n3 + 50n2 + 20n+ 4

3n4 + 8n3 + 10n2 + 4n− 4
,

k̃(n, ε) = 2n3ε+10n2ε+16nε+4n+8ε+6−
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε

and 1
ε
≤ k̃(n, ε) ≤ n for f(n) ≤ ε ≤ 2

n+1
.
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Proof. (47) follows from the proof of part (i) of Lemma 8. We next analyze k̂(n, ε).
By part (ii) of Lemma 8, k̂(n, ε) ≤ n. Then

π̂(n, ε) = max
1≤k≤n

k
(
π1(n− k, k)− π0(n− k + 1, k)

)
= k
((1 + (n− k + 1)ε)2

(n+ 1)2
− (1− kε)2

(n+ 2)2

)
The �rst order condition is

∂π̂(n, ε)

∂k
= Dk2 + Ek + F (49)

where

D =
6nε2 + 9 ε2

(n+ 1)2 (n+ 2)2
> 0,

E =
−4n3ε2 − 20n2ε2 − 32nε2 − 8nε− 16 ε2 − 12 ε

(n+ 1)2 (n+ 2)2
,

F =
n4ε2 + 6n3ε2 + 2n3ε+ 13n2ε2 + 10n2ε+ 12nε2 + 16nε+ 4 ε2 + 2n+ 8 ε+ 3

(n+ 1)2 (n+ 2)2

and

E2 − 4DF = 4
ε2(4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28 ε2+12n+24 ε+9)

(n+1)4(n+2)4
> 0

Let c1 and c2 be the solution in k of the quadratic function ∂π̂(n,ε)
∂k

= 0. Then

c1 = 2n3ε+10n2ε+16nε+4n+8ε+6−
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε

c2 = 2n3ε+10n2ε+16nε+4n+8ε+6+
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε

It can be easily veri�ed that when ε ≥ 0 and n ≥ 1, c1 > 0. Next we compare c1
with 1

ε
.

1

ε
− c1 =

s(n, ε)− t(n, ε)
3(2n+ 3)ε

(50)

where

s(n, ε) =
√

4n6ε2 + 34n5ε2 + 119n4ε2 + 4n4ε+ 220n3ε2 + 26n3ε+ 227n2ε2 + 62n2ε+ 124nε2 + 4n2 + 64nε+ 28ε2 + 12n+ 24ε+ 9
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and
t(n, ε) = 2n3ε+ 10n2ε+ 16nε+ 8ε− 2n− 3 (51)

For ε ≥ 0, s(n, ε) > 0 and it can be easily veri�ed that t(n, ε) ≤ 0 i� ε ≤
2n+3

2(n+1)(n+2)2
. By (50) for ε ≤ 2n+3

2(n+1)(n+2)2
, c1 ≤ 1

ε
. If, however, ε > 2n+3

2(n+1)(n+2)2
by (51)

t(n, ε) > 0. It can be easily veri�ed that(
s(n, ε)

)2 ≥ (t(n, ε))2 i� 0 ≤ ε ≤ 2

n+ 1
(52)

and for all n ≥ 1, in which case, again, c1 ≤ 1
ε
. It can also be veri�ed that 2

n+1
>

2n+3
2(n+1)(n+2)2

for n ≥ 1. Therefore c1 >
1
ε
i� ε > 2

n+1
. Since the optimal k is bounded

above by 1
ε
(Proposition 1), for ε > 2

n+1
, k̂(n, ε) = 1

ε
. Next we analyze the case

0 ≤ ε ≤ 2
n+1

(or equivalently c1 ≤ 1
ε
). We �rst compare the value of 1

ε
and c2.

1

ε
− c2 =

−s(n, ε)− t(n, ε)
3(2n+ 3)ε

as shown above, t(n, ε) ≥ 0 i� ε ≥ 2n+3
2(n+1)(n+2)2

. For 2n+3
2(n+1)(n+2)2

≤ ε ≤ 2
n+1

, c2 ≥ 1
ε
.

Since
(
s(n, ε)

)2 ≥ (t(n, ε))2 for 0 ≤ ε < 2n+3
2(n+1)(n+2)2

, again c2 ≥ 1
ε
. Thus for any

ε ≤ 2
n+1

, c2 ≥ 1
ε
. This together with (49) imply that π̂(n, ε) is maximized at k = c1.

Finally we compare the value of c1 with n.

n− c1 =
s(n, ε)− (2n3ε+ 4n2ε+ 7εn+ 4n+ 8ε+ 6)

3(2n+ 3)ε

It can be easily veri�ed that(
s(n, ε)

)2 − (2n3ε+ 4n2ε+ 7εn+ 4n+ 8ε+ 6)2 =

(18n5 + 75n4 + 132n3 + 114n2 + 12n− 36)ε2 − (12n4 + 30n3 + 42n2 + 84n+ 72)ε− (12n2 + 36n+ 27)

Thus c1 ≥ n i� the last term ≤ 0. The solution of this quadratic inequality is

n3+n2+2n+4−
√
n6+8n5+30n4+56n3+50n2+20n+4

3n4+8n3+10n2+4n−4 ≤ ε ≤ n3+n2+2n+4+
√
n6+8n5+30n4+56n3+50n2+20n+4

3n4+8n3+10n2+4n−4 ≡ f(n)

It can be easily veri�ed that n3+n2+2n+4−
√
n6+8n5+30n4+56n3+50n2+20n+4

3n4+8n3+10n2+4n−4 < 0 for n ≥ 1.

It can also be veri�ed that f(n) ≤ 2
n+1

for n ≥ 1.

Consequently, for 0 ≤ ε ≤ f(n), n ≤ c1 ≤ 1
ε
and k̂(n, ε) = n; for f(n) < ε ≤ 2

n+1
,

45



c1 < n, c1 <
1
ε
and k̂(n, ε) = c1; for

2
n+1
≤ ε ≤ 1, 1

ε
< c1 < n and k̂(n, ε) = 1

ε
, and

the proof of Lemma 9 is complete.

We are now ready to characterize the equilibrium number of licensees in Gu, for
the "lucky" innovator.

Case 1: Suppose 0 ≤ ε ≤ min
(

1
n+1

, f(n)
)
, then k0(n, ε) = n+ 1 and k̂(n, ε) = n.

π0(n, ε)− π̂(n, ε) = (n+ 1)π1(n, n+ 1)− n
(
π1(0, k)− π0(1, k)

)
= (5n5+15n4+19n3+9n2+4)ε2−(6n4+12n3+14n2+8n−8)ε+n3−3n2−4n+4

4(n+1)2(n+2)2

(53)

It is easy to verify that π0(n, ε) ≤ π̂(n, ε) i�

3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
≤ ε ≤ 3n4+6n3+7n2+4n−4+2

√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4

Let d1 = 3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
and

d2 = 3n4+6n3+7n2+4n−4+2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
. We next show that

d1 < min
(

1
n+1

, f(n)
)
< d2. First observe that

d2 − 1
n+1

= (n+1)
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n−(n5+3n4+3n3+4−n2)

1
2
(5n5+15n4+19n3+9n2+4)(n+1)

It can be easily veri�ed that d2 >
1

n+1
for n ≥ 1. Thus d2 ≥ min

(
1

n+1
, f(n)

)
. Next

observe that

1
n+1
− d1 = (n+1)

√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n+(n5+3n4+3n3+4−n2)

1
2
(5n5+15n4+19n3+9n2+4)(n+1)

> 0

thus d1 < 1
n+1

. The analytical comparison between the value of d1 and f(n) is
complicated. The numerical comparison is shown in Figure 6. Form the �gure, d1
(blue) is less than f(n) for 1 ≤ n ≤ 100.

Since d1 < min
(

1
n+1

, f(n)
)
< d2, for 0 ≤ ε < d1, π

0(n, ε) ≥ π̂(n, ε) and k∗2(n, ε) =

k0(n, ε) = n + 1. For d1 ≤ ε ≤ min
(

1
n+1

, f(n)
)
, π0(n, ε) < π̂(n, ε) and k∗2(n, ε) =

k̂(n, ε) = n.
Case 2: Suppose 2

n+1
≤ ε < 1, then k0(n, ε) = k̂(n, ε) = 1

ε
and π0(n, ε) =

π̂(n, ε) = ε. Clearly k∗2(n, ε) = 1
ε
.

Case 3: Suppose min
(

1
n+1

, f(n)
)
< ε < 2

n+1
. Consider �rst the case 1

n+1
≤ f(n).

By Lemma 9 k̂(n, ε) < 1
ε
thus π̂(n, ε) > ε. Since k0(n, ε) = 1

ε
and π0(n, ε) = ε,

π̂(n, ε) > π0(n, ε).
Consider next the case 1

n+1
> f(n). (i) Suppose 1

n+1
≤ ε < 2

n+1
, then the previous
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Figure 5: Comparison between d1 and f(n)

argument applies and π̂(n, ε) > π0(n, ε). (ii) Suppose f(n) < ε < 1
n+1

, k0(n, ε) = n+1

and k̂(n, ε) = k̃(n, ε). We next compare π0(n, ε) and π̂(n, ε) in this case. First observe
that k̃(n, ε) < n for f(n) < ε < 1

n+1
, thus π̂(n, ε) > n

(
π1(0, n)− π0(1, n)

)
. If we can

show that
n
(
π1(0, n)− π0(1, n)

)
> (n+ 1)π1(n, n+ 1) (54)

then the proof is complete. This is indeed true since (54) holds i� d1 ≤ ε ≤ d2 and
we have shown that d1 ≤ f(n) and d2 ≥ 1

n+1
. Denote g(n) = max(d1, 0), Proposition

3 is complete.

A.1.4 Proof of Proposition 5

By Proposition 1, we focus only on the case where k1 + k2 ≤ ε. The innovator
solves

max
k1,k2

πD︷ ︸︸ ︷
k1
(
π1(n− k1, k1 + k2)− π0(n− k1, k1 + k2)

)
+ k2π1(n− k1, k1 + k2)
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s.t.

0 ≤ k1 ≤ n− 1

0 ≤ k2

k1 + k2 ≤
1

ε

(55)

πD = − (k2ε2+2nε2+2ε2)k21
(n+k2+1)2

− (k22ε
2+2k2nε2−n2ε2+2k2ε2−2nε2−2nε−ε2−2ε)k1

(n+k2+1)2
+ k2n2ε2+2k2nε2+2k2nε+k2ε2+2k2ε+k2

(n+k2+1)2

Note �rst that πD is continuous on k1 and k2. Moreover, for any k2, πD is
quadratic in k1. Denote (k∗1, k

∗
2) the optimal choice of the innovator. Given any k2,

let k1(k2) be the maximizer of πD. Then

k1(k2) = min{−k
2
2ε+ (2nε+ 2ε)k2 − n2ε− 2nε− 2n− ε− 2

2ε(k2 + 2n+ 2)︸ ︷︷ ︸
ks1

, n− 1,
1

ε
− k2}

It can be easily veri�ed that

ks1 < n− 1 i� k2 >
−2nε+

√
ε(n2ε+ 2nε+ 2n+ 5ε+ 2)

ε︸ ︷︷ ︸
c1

and

ks1 <
1

ε
− k2 i� k2 <

2− nε− ε
ε︸ ︷︷ ︸
c2

It can also be veri�ed that c1 ≤ c2 i� ε ≤ 1
2
. We �rst analyze the case 0 < ε ≤ 1

2
.

Case 1. 0 < ε < 1
2

Subcase 1.1: Suppose k2 ≤ c1, then n − 1 < ks1 <
1
ε
− k1 and

k1(k2) = n− 1. Substituting k1 in πD with n− 1,

π1
D = −(n− 1)ε2k22 + (2n2ε2 − 4nε2 − 2nε− 2ε2 − 2ε− 1)k2 + ε(n− 1)(n+ 1)(nε− 3ε− 2)

(n+ k2 + 1)2
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It can be easily veri�ed that
∂π1
D

∂k2
is decreasing in k2. Let k̃2 be the solution of

∂π1
D

∂k2
= 0.

Then

k̃2 =
2nε+ n+ 4ε+ 1− 2n2ε

2nε+ 1

It can be veri�ed that k̃2 ≤ c1 i� ε ≤ 1
2
thus πD is maximized at k2 = k̃2 for k2 ≤ c1.

Subcase 1.2: Suppose c1 ≤ k2 ≤ c2, then k
s
1 < n− 1, ks1 <

1
ε
− k2 and k1(k2) = ks1.

Substituting k1 in πD with ks1,

π2
D =

k22ε
2 + (2nε2 + 2ε2)k2 + n2ε2 + 2nε2 + 4nε+ ε2 + 4ε+ 4

4(k2 + 2n+ 2)

It can be veri�ed that π2
D is decreasing in k2 for 0 ≤ k2 ≤ c2, thus πD is maximized

at k2 = c1 for c1 ≤ k2 ≤ c2.
Subcase 1.3: Suppose c2 ≤ k2, then

1
ε
− k2 < ks1 < n − 1 and k1(k2) = 1

ε
− k2.

Since Inn's payo� is the same for all (k1, k2) s.t. k1 + k2 = 1
ε
, for any k2 ≥ c2 Inn

obtains the same payo�. By Assumption 1 in this case πD is maximized at k2 = c2
in the region k2 ≥ c2.

To summarize, for k2 ≤ c1, πD is maximized at (k1 = n − 1, k2 = k̃2); for
k2 ∈ [c1, c2], πD is maximized at (k1 = ks1, k2 = c1); for k2 ≥ c2, πD is maximized
at (k1 = 1

ε
− c2, k2 = c2). Since πD is continuous in k2, πD is maximized at k2 =

max(k̃2, 0).
For n ≥ 3, it can be easily veri�ed that k̃2 ≥ 0 i� ε ≤ 1

2n−4 . Then

k∗2(n, ε) =

{
2nε+n+4ε+1−2n2ε

2nε+1
if 0 < ε < 1

2n−4
0 if 1

2n−4 ≤ ε

Next we analyze k∗1. Suppose 0 < ε < 1
2n−4 . Since k∗2 = k̃2 and k̃2 < c1 (for

0 ≤ ε < 1
2
), k∗2 < c1. Following the analysis in subcase 1.1, k1(k

∗
2) = n− 1. Suppose

next 1
2n−4 ≤ ε, k1(k

∗
2) then depends on the relation between 0, c1 and c2. (i) If

0 ≤ c1 ( 1
2n−4 ≤ ε ≤ 2

3n−5), following the analysis of subcase 1.1, k1(k
∗
2) = n − 1.

(ii) If c1 < 0 ≤ c2 (
2

3n−5 ≤ ε ≤ 2
n+1

), following the analysis of subcase 1.2, k1(k
∗
2) =

ks1|k2=0 = n+1
4

+ 1
2ε
. (iii) If c2 < 0 ( 2

n+1
< ε), following the analysis of subcase 1.3,

k1(k
∗
2) = 1

ε
. Thus for n ≥ 3

k∗1(n, ε) =


n− 1 if 0 < ε < 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1

< ε < 1
2
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k∗2(n, ε) =

{
2nε+n+4ε+1−2n2ε

2nε+1
if 0 < ε < 1

2n−4
0 if 1

2n−4 ≤ ε < 1
2

Consider next n = 2. It can be easily veri�ed that k̃2 > 0. Therefore k∗2(2, ε) = k̃2
and k∗2(2, ε) < c1 (since k̃2 < c1 for 0 ≤ ε < 1

2
). Following subcase 1.1 k∗1(2, ε) = 1.

The innovator's optimal payo� is obtained for k∗1 = 1 and k∗2 = k̃2|n=2 = 3
4ε+1

.
Finally consider n = 1. Clearly k∗1 = 0. It is easy to verify that k∗2 = 2.

Case 2. 1
2
≤ ε < 1 In this case c1 > c2, k̃2 >

1
2
and k̃2 > c1.

Subcase 2.1: Suppose k2 ≤ c2, then n − 1 < ks1 ≤ 1
ε
− k2 and k1(k2) = n − 1.

Following similar argument as in Subcase 1.1, πD is maximized at min(k̃2, c2). Since
k̃2 > c1 and c1 > c2, k̃2 > c2. Therefore πD is maximized at k1 = n− 1 and k2 = c2.

Subcase 2.2: Suppose c2 ≤ k2 ≤ c1, then k
s
1 ≥ n − 1, ks1 ≥ 1

ε
− k2 and k1(k2) =

min(n − 1, 1
ε
− k2). It can be easily veri�ed that c2 ≤ 1

ε
− n + 1 ≤ c1 for ε ≥ 1

2
. (i)

Suppose �rst c2 ≤ k2 ≤ 1
ε
−n+1 (or equivalently n−1 ≤ 1

ε
−k2). Then k1(k2) = n−1.

Following similar argument as in Subcase 1.1, πD is maximized at min(k̃2,
1
ε
−n+ 1).

Since k̃2 > c1 ≥ 1
ε
− n + 1, πD is maximized at (k1 = n − 1, k2 = 1

ε
− n + 1). (ii)

Suppose next 1
ε
−n+1 ≤ k2 ≤ c1 (or equivalently n−1 ≥ 1

ε
−k2) then k1(k2) = 1

ε
−k2.

The innovator's payo� is maximized at k1 + k2 = 1
ε
.

Subcase 2.3: Suppose k2 ≥ c1, then
1
ε
− k2 < ks1 < n − 1 and k1(k2) = 1

ε
− k2.

The innovator's payo� is maximized again at k1 + k2 = 1
ε
.

Consider �rst n ≥ 3. Since ε ≥ 1
2
, n − 1 ≥ 1

ε
holds. Therefore Subcase 2.1 and

part (i) of Subcase 2.2 are irrelevant. In this case πD is maximized at k1 + k2 = 1
ε
.

By Assumption 1, k∗1 = 1
ε
and k∗2 = 0.

Consider next n ≤ 2. Since 1
2
≤ ε ≤ 1, n − 1 ≤ 1

ε
holds. Therefore Part (ii) of

Subcase 2.2 and Subcase 2.3 are irrelevant. Since πD is continuous on k2, combining
Subcases 2.1 and Part (i) of Subcase 2.2 πD is maximized at (k1 = n − 1, k2 =
1
ε
− n+ 1). Proposition 5 follows.

A.1.5 Proof of Proposition 6

(i) Follows from (7) and Proposition 5.
(ii) Let q1(m0,m1) and q0(m0,m1) be the equilibrium quantity produced by a

licensee and a non-licensee, respectively, when there are m0 �rms producing at a
unit cost c and m1 �rms producing at a unit cost c− ε. It can be veri�ed that

q0(m0,m1) =

{
1−εm1

m0+m1+1
if m1 ≤ a−c

ε

0 if m1 >
a−c
ε

(56)
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q1(m0,m1) =

{
1+(m0+1)ε
m0+m1+1

if m1 ≤ a−c
ε

1+ε
m1+1

if m1 >
a−c
ε

(57)

Since p∗nu(n, ε) = (c+1)−
(

(n−k∗1)q0(n−k∗1, k∗1+k∗2)+(k∗1+k∗2)q1(n−k∗1, k∗1+k∗2)
)
,

by (56), (57) and Proposition 5, part (ii) of Proposition 6 follows.

A.1.6 Proof of Proposition 7

Lemma 10. Consider the case n ≥ 3. (i) If ε ≤ g(n), π∗nu(n, ε) > π∗u(n, ε). (ii) If
1

2n−4 ≤ ε < 2
n+1

, π∗nu(n, ε) < π∗u(n, ε). (iii) If
2

n+1
≤ ε < 1, π∗nu(n, ε) = π∗u(n, ε).

Proof. (i) If ε < g(n), in UA the innovator's highest payo� is π̂ = (n+ 1)π1(n, n+ 1)
which is obtained when he auctions o� n+1 licenses and all winners are entrants. In
NUA if the innovator chooses k1 = 0 and k2 = n+ 1 he obtains π̂. But he can obtain
more by choosing other combinations of (k1, k2). It can be shown that g(n) < 1

2n−4
for n ≥ 3 (the analytic proof is di�cult, see Figure 6 for a numerical comparison).
Thus by Proposition 5 when ε < g(n), k∗1(n, ε) > 0 and π∗nu > π̂.

Figure 6: Comparison between 1
2n−4 and g(n)

(ii) If 1
2n−4 ≤ ε < 2

n+1
then in NUA k∗2(n, ε) = 0. Since the advantage of NUA on

UA lies only on the innovator's ability to charge for a license a higher price to entrants
than to incumbent �rms, this advantage disappears when k∗2(n, ε) = 0. Moreover, for
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any (k1, k2) an incumbent's willingness to pay in NUA is π1(n− k1, k1 + k2)−π0(n−
k1, k1 +k2) while it can be as high as π1(n−k1, k1 +k2)−π0(n−k1 +1, k1 +k2) in UA
(incumbent may be willing to pay more to limit entry). Thus π∗nu(n, ε) ≤ π∗u(n, ε).
Since K∗nu <

1
ε
, π∗nu(n, ε) < π∗u(n, ε).

(iii) If 2
n+1
≤ ε < 1 the innovator auctions o� in total 1

ε
licenses in both UA and

NUA. By Proposition 1, the innovator obtains the same payo� which is the total
industry pro�t ε in both auctions.

Next we focus on the analysis of g(n) < ε < 1
2n−4 . Clearly

1
2n−4 <

2
3n−5 <

2
n+1

for

n ≥ 3. Thus in Gnu, k
∗
1(n, ε) = n− 1 and k∗2(n, ε) = 2nε+n+4ε+1−2n2ε

2nε+1
. In Gu, π

∗
u(n, ε)

depends on whether ε ≤ f(n) or ε > f(n).
Case 1: Suppose f(n) ≤ 1

2n−4 (this inequality holds for n ≤ 8). Then

π∗u(n, ε) =

{
n
(
π1(0, n)− π0(1, n)

)
if g(n) ≤ ε ≤ f(n)

k̃
(
π1
(
n− k̃, k̃

)
− π0

(
n− k̃ + 1, k̃

))
if f(n) < ε < 1

2n−4

We �rst analyze g(n) ≤ ε ≤ f(n).

π∗nu − π∗u = (4n5+8n4+4n3+4n2+16n+16)ε2

4(n+1)2(n+2)2
− (4n4+4n3+8n2+16n)ε

4(n+1)2(n+2)2
+ n3−3n2−4n+4

4(n+1)2(n+2)2

It can be easily veri�ed that π∗nu < π∗u i�

3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
< ε < 3n4+6n3+7n2+4n−4+2

√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4

Let e1 = 3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
and

e2 = 3n4+6n3+7n2+4n−4+2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
. Figure 7 compare the

value of f(n), g(n), e1 and e2. Note that n ∈ [3, 8] since in this section we deal with
n ≥ 3 and f(n) ≤ 1

2n−4 .
It can be easily veri�ed that g(n) and e1 intersect at g(n) = e1 = 0. Thus

π∗nu > π∗u for g(n) ≤ ε < e1 and π
∗
nu ≤ π∗u for e1 ≤ ε ≤ f(n).

Next consider the case f(n) < ε < 1
2n−4 . Again, the analytic comparison between

π∗u and π
∗
nu is di�cult and Figure 8 shows that π∗u(n, ε)− π∗nu(n, ε) ≥ 0 numerically.

To summarize, in case f(n) ≤ 1
2n−4 , π

∗
nu > π∗u for g(n) ≤ ε < e1 and π

∗
nu ≤ π∗u for

e1 ≤ ε ≤ 1
2n−4 .

Case 2: Suppose f(n) > 1
2n−4 (this inequality holds for n ≥ 9). Clearly for

g(n) < ε < 1
2n−4 , π

∗
u(n, ε) = n

(
π1(0, n) − π0(1, n)

)
. Again π∗nu < π∗u i� e1 < ε < e2.

Figure 9 shows that e2 > 1
2n−4 > e1 > g(n) numerically. Clearly π∗nu > π∗u for
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Figure 7: Comparison between f(n), g(n), e1 and e2

g(n) ≤ ε < e1 and π
∗
nu ≤ π∗u for e1 ≤ ε < 1

2n−4 . Let h(n) = max(0, e1), Proposition 7
follows.

A.1.7 Proof of Corollary 5

(i) For n ≥ 3

π∗nu(n, ε)− π∗(n, ε) =


(
1−(2n−4)ε

)2
4(n+1)

if 0 ≤ ε ≤ 1
2n−4

0 if 1
2n−4 ≤ ε < 1,

(58)

Let E =

(
1−(2n−4)ε

)2
4(n+1)

.

∂E

∂ε
=

(
(2n− 4)ε− 1

)
(n− 2)

n+ 1

Observe that (58) is continuous in ε and ∂E
∂ε
≤ 0 for 0 < ε ≤ 1

2n−4 . Thus for any
n ≥ 3, π∗nu − π∗ is non-increasing in ε for 0 < ε < 1.

Next observe that for 0 < ε < 1
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Figure 8: The value of π∗u(n, ε)− π∗nu(n, ε)

π∗nu(n, ε)− π∗(n, ε) =


(
1−(2n−4)ε

)2
4(n+1)

if 3 ≤ n ≤ 1
2ε

+ 2

0 if 1
2ε

+ 2 ≤ n,
(59)

and (59) is continuous in n. Since

∂E

∂n
=

(
(2n− 4)ε− 1

)
(2nε+ 8ε+ 1)

4(n+ 1)2
,

π∗nu − π∗ is non-increasing in n for n ≥ 3.
(ii) For n ≥ 3

p∗(n, ε)− p∗nu(n, ε) =

{
1−(2n−4)ε
2(n+1)

if 0 ≤ ε ≤ 1
2n−4

0 if 1
2n−4 ≤ ε < 1,

(60)

Clearly for any n ≥ 3, p∗(n, ε)− p∗nu(n, ε) is non-increasing in ε.
For 0 < ε < 1,

p∗(n, ε)− p∗nu(n, ε) =

{
1−(2n−4)ε
2(n+1)

if 3 ≤ n ≤ 1
2ε+2

0 if 1
2ε

+ 2 ≤ n,
(61)
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Figure 9: Comparison between 1
2n−4 , g(n), e1 and e2

Let F = 1−(2n−4)ε
2(n+1)

It can be easily veri�ed that

∂F

∂n
= − 6ε+ 1

(n+ 1)2

Since (61) is continuous in n and ∂F
∂n

< 0, (61) is non-increasing in n for n ≥ 3.

A.1.8 Proof of Proposition 14

By Proposition 13, for n ≥ 3

π∗0(n, ε) =


(n−1)

(
−(n−3)ε2+2ε

)
n+1

if 0 < ε ≤ 2
3n−5

(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1.

For n ≤ 2

π∗0(n, ε) =
(n− 1)

(
− (n− 3)ε2 + 2ε

)
n+ 1

. (62)

Consider �rst n ≥ 3. First note that for any ε ≥ 1
2
, π∗0 = ε regardless of the value
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of n. We next focus on 0 < ε < 1
2
.

Subcase 1: Suppose n < 2
3ε

+ 5
3
(or equivalently 0 < ε < 2

3n−5). Denote

π∗10 =
ε(n− 1)(3ε+ 2− nε)

n+ 1
.

It can be easily veri�ed that

∂π∗10
∂n

=
ε(−n2ε− 2nε+ 7ε+ 4)

(n+ 1)2
,

∂π∗10
∂n

> 0 if 0 ≤ n < 2

√
2 +

1

ε
− 1

and
∂π∗1D
∂n
≤ 0 if n ≥ 2

√
2 +

1

ε
− 1

Denote n∗1 = 2
√

2 + 1
ε
− 1. It can be easily veri�ed that 3 < n∗1 < 2

3ε
+ 5

3
if

0 < ε < 1
2
. Therefore 3 < n∗1 < 2

3ε
+ 5

3
for 0 < ε ≤ 1

3n−5 and n∗1 is the maximizer of

π∗0 for 3 < n < 2
3ε

+ 5
3
.

Subcase 2: Suppose 2
3ε

+ 5
3
≤ n ≤ 2

ε
− 1 (or equivalently 2

3n−5 ≤ ε ≤ 2
n+1

). Deonte

π∗20 =
(nε+ ε+ 2)2

8(n+ 1)
.

It can be easily veri�ed that

∂π∗20
∂n

=
ε2n2 + 2ε2n+ ε2 − 4

8(n+ 1)2

and
∂π∗20
∂n

< 0 for 0 ≤ n <
2

ε
− 1.

Therefore n∗2 = 2
3ε

+ 5
3
is the maximizer of π∗20 for 2

3ε
+ 5

3
≤ n ≤ 2

ε
− 1.

Subcase 3: Suppose 2
ε
− 1 ≤ n ( 2

n+1
≤ ε ≤ 1

2
). Then π∗0(n, ε) = ε and the

innovator's payo� is the same for any 2
ε
− 1 ≤ n.

Combining subcases 1-3, for n ≥ 3, since π∗0 is continuous in n, n
∗ = 2

√
2 + 1

ε
−1
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is the maximizer of π∗0. Let π
∗
D be the innovator's equilibrium payo� when n = n∗.

π∗D =

 2ε
(
2ε+1−

√
ε(2ε+1)

)(√
ε(2ε+1)−ε

)
√
ε(2ε+1)

if 0 < ε < 1
2

ε if 1
2
≤ ε < 1

Consider next n = 2. By (62), π∗0|n=2 = 1
3
ε2 + 2

3
ε. Finally consider the case

n = 1. By (62) the innovator obtains 0 since we restrict k ≤ n − 1. To provide
a more reasonable comparison we assume in this case that the innovator sells the
license to the incumbent �rm by �xed fee. The innovator's payo� is then π∗

′
0 |n=1 =

π1(0, 1)− π1(1, 0) = 1
4
ε2 + 1

2
ε.

Figure 10 provides the comparison of the innovator's payo� when n∗ = 2
√

2 + 1
ε
−

1, n = 2 and n = 1. Clearly in G0 the innovator obtains the highest payo� in an

oligopoly market with n∗ = 2
√

2 + 1
ε
− 1 �rms.

Figure 10: The innovator's payo� under di�erent n

A.1.9 The maximizer of π∗su(n, ε)

Let (ks∗1 (n, ε), ks∗2 (n, ε)) be the maximizer of π∗su(n, ε).
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For n ≥ 3

ks∗1 (n, ε) =


0 if 0 < ε < r(n)
n− 1 if r(n) ≤ ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1

and

ks∗2 (n, ε) =


n+ 1 if 0 < ε < r(n)

2
√

2 + 1
ε
− (n+ 1) if r(n) ≤ ε ≤ 4

n2+2n−7
0 if 4

n2+2n−7 ≤ ε < 1.

For n = 2

ks∗1 (2, ε) =

{
0 if 0 < ε < r(2)
1 if r(2) ≤ ε ≤ 1

and

ks∗2 (2, ε) =


3 if 0 < ε < r(2)

2
√

2 + 1
ε
− 3 if r(2) ≤ ε ≤ 1

2
1
ε
− 1 if 1

2
≤ ε < 1.

For n = 1, ks∗1 (1, ε) = 0 and ks∗2 (1, ε) = 2.10

A.1.10 Proof of Proposition 10

Let (0, k02) and (k̂1, k̂2) be maximizers of π0
su(n, ε) and π̂su(n, ε), respectively.

Clearly either (0, k02) or (k̂1, k̂2) is a maximizer of π∗su(n, ε).

Proposition 16.

k02(n, ε) =

{
n+ 1 if 0 < ε < 1

n+1
1
ε

if 1
n+1
≤ ε < 1

Proof. Easy to verify.

Next we focus on the analysis of π̂su(n, ε). Note that n = 1 does not apply here
since k1 = 0 in this case.

10In Gsu we restrict k1 ≤ n − 1 therefore ks∗1 (1, ε) = 0. If, instead, an auction with minimum
reservation price is conducted to the monopoly incumbent, there are parameters under which the
innovator sells licenses to the incumbent �rm in addition to entrants.
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Proposition 17. (i) For n ≥ 3

k̂1(n, ε) =


n− 1 if 0 < ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1

k̂2(n, ε) =

{
2
√

2 + 1
ε
− (n+ 1) if 0 < ε ≤ 4

n2+2n−7
0 if 4

n2+2n−7 ≤ ε < 1

(ii) For n = 2
k̂1(2, ε) = n− 1

k̂2(2, ε) =

{
2
√

2 + 1
ε
− (n+ 1) if 0 < ε ≤ 1

2
1
ε
− (n− 1) if 1

2
≤ ε < 1

Note that 4
n2+2n−7 ≤

2
3n−5 for n ≥ 3.

Proof. See A.1.11 of the Appendix.

To �nd the optimal licensing strategy of the innovator, we next compare π0
su(n, ε)

and π̂su(n, ε).

Lemma 11. For n ≥ 2, π0
su(n, ε) > π̂su(n, ε) i� ε < r(n).

The formula of r(n) is quite complicated and it appears in the Appendix (A.1.1).

Proof. See A.1.12 of the Appendix.

We are now ready to characterize the optimal licensing strategy of the innovator.

Proposition 18. For n ≥ 2

k∗1(n, ε) =

{
0 if 0 < ε < r(n)

k̂1(n, ε) if r(n) ≤ ε < 1

and

k∗2(n, ε) =

{
n+ 1 if 0 < ε < r(n)

k̂2(n, ε) if r(n) ≤ ε < 1.

Proof. Follows immediately from propositions 16, 17 and Lemma 11.
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A.1.11 Proof of Proposition 17

We �rst shows that the innovator in SUA sells licenses to entrants i� he sells
licenses to all (but one) incumbent �rms.

Lemma 12. For any n ≥ 2 and 0 < ε < 1, k̂2(n, ε) > 0 i� k̂1(n, ε) = n− 1.

Proof. Denote k = k1 + k2. Suppose �rst k = 1
ε
the innovator obtains the entire

industry pro�t and by Assumption 1 he sells licenses to incumbent �rms and only
when he exhausts all (but 1) incumbents will he sell licenses to entrants. Suppose
next 1 ≤ k < 1

ε
,

∂wl(k1, k − k1)
∂k1

= −2
ε (kε− 1)

(n− k1 + k + 1)2
> 0. (63)

For any k, 1 ≤ k < 1
ε
, the license fee paid by each licensee is increasing in the

number of incumbent licensees in k. Therefore the innovator in this case also sells
licenses to incumbents �rst. Lemma 12 follows.

By Lemma 12, if k ≤ n−1, k1 = k and k2 = 0. If, however, k > n−1, k1 = n−1
and k2 = k − (n− 1). Therefore

π̂su(n, ε) = max
(

max
1≤k≤n−1

kwl(k, 0),max
k2

(
(n− 1 + k2)wl(n− 1, k2)

))
(64)

Suppose �rst n ≥ 3. It can be veri�ed that the maximizer of max1≤k≤n−1 kwl(k, 0)
is

k̃1(n, ε) =


n− 1 if 0 < ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1

(65)

and the maximizer of maxk2
(
(n− 1 + k2)wl(n− 1, k2)

)
is

k̄2(n, ε) =

{
2
√

2 + 1
ε
− (n+ 1) if 0 < ε ≤ 4

n2+2n−7
0 if 4

n2+2n−7 ≤ ε < 1
(66)

(66) states that for 4
n2+2n−7 ≤ ε < 1, the innovator is best o� selling 0 licenses to

entrants even if he sells n− 1 licenses to incumbent �rms. By Lemma 12 k̂1(n, ε) =
k̃1(n, ε) and k̂2(n, ε) = 0 in this case. As for 0 < ε ≤ 4

n2+2n−7 , the innovator is best o�
selling positive number of licenses to entrants if he sells n− 1 licenses to incumbent
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�rms. Since 4
n2+2n−7 ≤

2
3n−5 by (65) the innovator in this case is best o� selling

n − 1 licenses to incumbent �rms even if k2 = 0. Therefore k̂1(n, ε) = n − 1 and
k̂1(n, ε) = k̂2(n, ε) in this case. Part (i) of Lemma 17 follows.

Suppose next n = 2. By Lemma 12, k̂1(2, ε) = 1. It can be easily veri�ed that

k̂1(2, ε) = min(2
√

2 + 1
ε
− 3, 1

ε
− 1).

A.1.12 Proof of Lemma 11

By Proposition 16 it is easy to verify that

π0
su(n, ε) =

{
(ε(n+1)+1)2

4(n+1)
if 0 < ε < 1

n+1

ε if 1
n+1
≤ ε < 1

(67)

By Proposition 17 it is easy to verify that For n ≥ 3

π̂su(n, ε) =


2 ε
(√

1 + 2 ε−
√
ε
)2

if 0 < ε ≤ 4
n2+2n−7

(n−1)
(
−(n−3)ε2+2ε

)
n+1

if 4
n2+2n−7 < ε ≤ 2

3n−5
(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1

For n = 2

π̂su(n, ε) =

{
2 ε
(√

1 + 2 ε−
√
ε
)2

if 0 < ε ≤ 1
2

ε if 1
2
≤ ε < 1

Suppose ε ≥ 1
n+1

, then π0
su(n, ε) = ε and π̂su(n, ε) ≥ ε. In this case π̂su(n, ε) ≥

π0
su(n, ε). We next focus on the case 0 < ε ≤ 1

n+1
.

Case 1: Consider �rst n ≥ 7. In this case 1
n+1
≥ 2

3n−5 .

Subcase 1.1: Suppose 2
3n−5 ≤ ε ≤ 1

n+1
.

π̂su(n, ε)− π0
su(n, ε) = −(n+ 1)2ε2 − 2

8(n+ 1)

where π̂su(n, ε) ≥ π0
su(n, ε) i� −

√
2

n+1
≤ ε ≤

√
2

n+1
. Therefore π̂su(n, ε) ≥ π0

su(n, ε) holds

for 2
3n−5 ≤ ε ≤ 1

n+1
.
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Subcase 1.2: Suppose 4
n2+2n−7 ≤ ε ≤ 2

3n−5 .

π0
su(n, ε)− π̂su(n, ε) =

(5n2 − 14n+ 13) ε2

4(n+ 1)
+

(−6n+ 10) ε

4(n+ 1)
+ (4n+ 4)−1

Note that 5n2−14n+13
4(n+1)

> 0 for n ≥ 7. It can be easily veri�ed that π0
su(n, ε) > π̂su(n, ε)

i� ε < 3n−5−2
√
n2−4n+3

5n2−14n+13
or ε > 3n−5+2

√
n2−4n+3

5n2−14n+13
.

Denote e1 = 3n−5−2
√
n2−4n+3

5n2−14n+13
and e2 = 3n−5+2

√
n2−4n+3

5n2−14n+13
. Figure 11 compares the

value of e1, e2,
4

n2+2n−7 and 2
3n−5 numerically. Note that e1 and

4
n2+2n−7 intersects at

n = 16.19. Thus in case 4
n2+2n−7 ≤ ε ≤ 2

3n−5 , for 7 ≤ n ≤ 16.19, π̂su(n, ε) > π0
su(n, ε)

holds. For n > 16.19, π0
su(n, ε) > π̂su(n, ε) i�

4
n2+2n−7 ≤ ε < e1.

Figure 11: Comparison between e1, e2,
4

n2+2n−7 and 2
3n−5

Subcase 1.3: Suppose 0 < ε ≤ 4
n2+2n−7 .

π0
su(n, ε)− π̂su(n, ε) =

n2ε2+(16
√
1+2 εε3/2−22 ε2−6 ε)n+16

√
1+2 εε3/2−23 ε2−6 ε+1

4n+4

It can be easily veri�ed that π0
su(n, ε) ≤ π̂su(n, ε) i�

−8
√
1+2 εε3/2−11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2−3 ε

ε2
≤ n ≤ −8

√
1+2 εε3/2+11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2+3 ε

ε2
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Denote f1 = −8
√
1+2 εε3/2−11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2−3 ε

ε2

and f2 =
−8
√
1+2 εε3/2+11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2+3 ε

ε2
.

Note that for n ≥ 7, 0 < ε ≤ 4
n2+2n−7 i� n ≤ 2

√
2 + 1

ε
− 1. Figure 12 shows that

f2 > 2
√

2 + 1
ε
− 1 always holds. Note that ε is constraint to 1

14
since we are dealing

in this subcase ε ≤ 4
n2+2n−7 and n ≥ 7.

Figure 12: Comparison between f2 and 2
√

2 + 1
ε
− 1

Figure 13 compares the value of f1 and 2
√

2 + 1
ε
−1. Note that f1 and 2

√
2 + 1

ε
−1

intersects at ε = 0.0139 and n = 16.19. By Figure 13, π0
su(n, ε) > π̂su(n, ε) i� either

ε < 0.0139 or ε > 0.0139 and n < f1(ε). Or equivalently, when 0 < ε ≤ 4
n2+2n−7 ,

π0
su(n, ε) > π̂su(n, ε) i� either n > 16.19 or n ≤ 16.19 and ε < f−11 (n) (the existence

of f−11 (n) is shown in Figure 4).
Combining subcases 1.1-1.3, for n ≥ 17, π0

su(n, ε) > π̂su(n, ε) i� 0 < ε < e1. For
7 ≤ n ≤ 16, π0

su(n, ε) > π̂su(n, ε) i� 0 < ε < f−11 (n).
Case 2: Consider next 1 + 2

√
3 ≤ n < 7. In this case 4

n2+2n−7 ≤
1

n+1
< 2

3n−5 .

Subcase 2.1: Suppose 4
n2+2n−7 ≤ ε ≤ 1

n+1
.

π0
su(n, ε)− π̂su(n, ε) =

(5n2 − 14n+ 13) ε2

4(n+ 1)
+

(−6n+ 10) ε

4(n+ 1)
+ (4n+ 4)−1

where 5n2−14n+13 > 0 for 1+2
√

3 ≤ n < 7. By the same argument as in Subcase
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Figure 13: Comparison between f1 and 2
√

2 + 1
ε
− 1

1.2, π0
su(n, ε) ≤ π̂su(n, ε) i� e1 ≤ ε ≤ e2. Figure 14 shows that π0

su(n, ε) ≤ π̂su(n, ε)
for 4

n2+2n−7 ≤ ε ≤ 1
n+1

.

Subcase 2.2: Suppose 0 < ε ≤ 4
n2+2n−7 , or equivalently 1+2

√
3 ≤ n ≤ min

(
7, −ε+2

√
2 ε2+ε
ε

)
.

Clearly ε ≤ 1
2(1+

√
3)
. By the same argument as in Subcase 1.3, π0

su(n, ε) ≤ π̂su(n, ε)

i� f1 ≤ n ≤ f2. It can be easily veri�ed that f2 > 7 for 0 < ε ≤ 1
2(1+

√
3)
. Fig-

ure 15 compares the value of f1 and −ε+2
√
2 ε2+ε
ε

. Therefore for 1 + 2
√

3 ≤ n ≤
min

(
7, −ε+2

√
2 ε2+ε
ε

)
, π0

su(n, ε) > π̂su(n, ε) i� either 0 < ε < f−11 (7) or f−11 (7) ≤ ε and

n < f1. Or equivalently,π
0
su(n, ε) > π̂su(n, ε) i� ε < f−11 (n).

Combining subcases 2.1-2.2, for 1 + 2
√

3 ≤ n < 7, π0
su(n, ε) > π̂su(n, ε) i� ε <

f−11 (n).
Case 3: Suppose 3 ≤ n ≤ 1 + 2

√
3. In this case 1

n+1
≤ 4

n2+2n−7 . Consider

0 < ε ≤ 1
n+1

(or equivalently, 3 ≤ n ≤ min
(
1 + 2

√
3, 1

ε
− 1
)
). Clearly ε ≤ 1

4
. By the

same argument as in Subcase 1.3, π0
su(n, ε) ≤ π̂su(n, ε) i� f1 ≤ n ≤ f2. Figure 16

compares the value of f1, f2 and
1
ε
− 1.

Figure 16 shows that for 3 ≤ n ≤ 1 + 2
√

3, π0
su(n, ε) > π̂su(n, ε) i� ε < f−11 (n).

Finally suppose n = 2. Clearly for 1
3
≤ ε < 1, π0

su(2, ε) ≤ π̂su(2, ε) since π
0
su(2, ε) =

ε and π̂su(2, ε) ≥ ε. For 0 < ε ≤ 1
3
, π0

su(2, ε) > π̂su(2, ε) i� either f1(ε) > 2 or
f2(ε) < 2. It can be easily veri�ed that f2(ε) > 2 for any 0 < ε ≤ 1

3
. Therefore

π0
su(2, ε) > π̂su(2, ε) i� either f1(ε) > 2. Or equivalently, π0

su(2, ε) > π̂su(2, ε) i�
ε < f−11 (2).
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Figure 14: Comparison between e1, e2,
4

n2+2n−7 and 1
n+1

To summarize, for any n ≥ 2, π0
su(n, ε) ≤ π̂su(n, ε) i� 0 < ε < r(n) where

r(n) = e1 for n ≥ 16.19 and r(n) = f−11 (n) for 1 ≤ n < 16.19.

A.1.13 Proof of Proposition 11

For n ≥ 3,

K∗su(n, ε) =



n+ 1 if 0 < ε < r(n)

2
√

1 + 1
ε
− 2 if r(n) ≤ ε ≤ 4

n2+2n−7
n− 1 if 4

n2+2n−7 ≤ ε ≤ 2
3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1

K∗nu(n, ε) =


2(n+2ε)
2nε+1

if 0 < ε ≤ 1
2n−4

n− 1 if 1
2n−4 ≤ ε ≤ 2

3n−5
n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1
1
ε

if 2
n+1
≤ ε < 1

Observe that K∗nu(n, ε)
ε→0−−→ 2n > n + 1. Since K∗nu(n, ε) is continuous on ε and

K∗su(n, ε) = n+ 1 for 0 < ε < r(n), Proposition 11 follows. The case n = 2 is easy to
verify following the same argument.
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Figure 15: Comparison between f1, f2 and
−ε+2

√
2 ε2+ε
ε

A.2 Appendix for Chapter 3

A.2.1 A non-cooperative approach

Here we study the case T = 2 and ε ≥ 0 under a non-cooperative set up.
It is assumed that the patent right expires after two periods and that Cournot

competition takes place at the end of each period. At the beginning of the �rst
period, the innovator chooses the number t1 ≥ 0 of licenses to sell to new entrants
as well as the contract that is o�ered to each one of them. Each contract is of the
form (α, δ), where α is an upfront license fee and δ is a commitment of Inn to sell
no more than δ licenses in total. Selling licenses to entrants takes no time.

Next, the innovator brings in a Mediator (M), who o�ers the incumbent (Inc) to
purchase the IP from the innovator (Inn) with price y. That is, M o�ers Inn and
Inc to share the future "cake". Note that M can choose the o�er contingent on the
number t1. Inn and Inc simultaneously announce whether they accepts M's o�er or
not. The deal is signed if and only if both accept. Otherwise the deal fails. The
process of M making an o�er, Inn and Inc deciding on to accept or to reject takes
one period.

At the beginning of the second period, the owner of the IP (Inn if the deal fails
and Inc if the deal is signed) decides on the number of additional licenses to sell.
Denote tinn2 and tinc2 as the number of additional licenses chosen by Inn and Inc
respectively.

The payo�s depend on whether or not a deal was reached. If the deal fails, Inn

66



Figure 16: Comparison between f1, f2 and
1
ε
− 1

obtains the total license fees he extracts from the t1 + tinn2 entrants. Inc obtains his
two periods' Cournot pro�t where in the �rst period he competes with t1 entrants
and in the second period with t1 + tinn2 entrants. M obtains nothing.

If a deal is signed, Inn obtains the license fees from the �rst t1 licensees as well as
the payment y made by Inc. Inc obtains his two periods' Cournot pro�t in addition
to the Cournot pro�ts of the tinc2 future new entrant licensees he brings to the market
at the second period, subtracts the payment y for purchasing the IP. As for M, he
obtains a payo� u(t1, y).

If u(t1, y) = y, M fully represents Inn and his best o�er is equivalent to a take-
it-or-leave-it o�er to Inc by Inn. If u(t1, y) = 1/y the best o�er of M is equivalent
to a take-it-or-leave-it o�er of Inc to Inn. If u(t1, y) = 1 then M is only interested in
making a deal rather than in the terms of the deal.

Payo�s If M's o�er was rejected, in the second period the innovator is best o�
bringing in additional tinn2 entrants that satis�es

tinn2 = argmax
t2∈N0

[
t2πe(t1 + t2)

]
In which case the second period payo�s of the innovator and the incumbent are

dinn2 = tinn2 πe(t1 + tinn2 )

dinc2 = π0(t1 + tinn2 )
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Clearly, the innovator rejects any o�er

y < dinn2

If an o�er was singed, in the second period it is best o� for the incumbent, who
becomes the new owner of the IP, to choose tinc2 new entrants to bring in which
satis�es

tinc2 = argmax
t2∈N0

[
t2πe(t1 + t2) + π0(t1 + t2)

]
By paying y for the IP, in the second period the incumbent instead of obtaining dinc2 ,
obtains

v2 = tinc2 πe(t1 + tinc2 ) + π0(t1 + tinc2 )

Thus the incumbent rejects any payment y which exceeds his additional bene�t from
obtaining the IP. Namely Inc rejects any

y > v2 − dinc2

To summarize, under equilibrium, the o�er y will be accepted by both Inn and
Inc if and only if

dinn2 ≤ y ≤ v2 − dinc2

Such o�er exists if and only if

dinn2 + dinc2 ≤ v2 (68)

By the de�nition of tinc2 , inequality (68) always holds.
It is easy to show that irrespective of the value of x

tinn2 |t1 = t1 + 2

On the contrary, the optimal choice of tinc2 depends on both t1 and x. It is easy
to verify that

tinc2 |t1=0 = 0

and

tinc2 |t1=1 =

{
1 0 ≤ x ≤ 1

14

0 1
14
< x ≤ 1

2

tinc2 |t1=2 =


2 0 ≤ x ≤ 1

22

1 1
22
< x ≤ 7

54

0 7
54
< x ≤ 1

2
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As shown in the appendix, in the following two sections, t1 ≥ 3 can never be in
equilibrium. Thus we do not need the formula for tinc2 |t1 when t1 ≥ 3 for now.

Case u(y) = y In this case, the mediator o�ers y = v2 − dinc2 . It is equivalent to
a take-it-or-leave-it o�er made by the innovator to the incumbent. It is shown in
the previous section that both players accept the o�er under equilibrium. The total
payo� of the innovator is

πinn = t1
( α1︷ ︸︸ ︷
πe(t1) + πe(t1 + tinc2 |t1)

)
+ y

(69)

Here α1 is the license fee charged to each of the t1 entrants under equilibrium.
Rewrite

πinn =t1
(
πe(t1) + πe(t1 + tinc2 |t1)

)
+ tinc2 πe(t1 + tinc2 |t1) + π0(t1 + tinc2 |t1)− π0(t1 + tinn2 |t1)

(70)

The next graph shows the total payo� of the innovator under di�erent choices of
t1. The magnitude of the technology x is plotted on the horizontal axis, with πinn on
the vertical axis. The blue, red and green line represents the case for t1 = 0, t1 = 1
and t1 = 2 respectively. The discontinuity of the red and the green line results from
the discontinuity of tinc2 |t1=1 and t

inc
2 |t1=2.

As shown in the graph, for 0.29 < x < 1/2, it is best o� for the innovator to
approach the mediator directly (without bringing in an entrant �rst). For 0 ≤ x ≤
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0.29, it is best o� for the innovator to �rst bring in one entrant then to approach
the mediator, even though in this section the mediator fully represents the innovator
(the o�er made by M equivalents to a take-it-or-leave-it o�er made by Inn to Inc).

The action of bringing in one entrant before approaching the mediator introduces
competition to the market thus reduces the total industry pro�t to be allocated. But
on the other hand it has two positive e�ects on the innovator's total payo�. (i) it
enables the innovator to collect pro�t through out the bargaining process. (ii) it
changes the optimal subsequent choice of tinn2 |t1 , which a�ects the disagreement pay-
o�s of the two bargainers. To be more speci�c on the second e�ect, if the innovator
approaches the mediator directly (without bringing in any entrants �rst), the dis-
agreement payo� of the incumbent is his Cournot pro�t when facing two competitors
(tinn2 |t1=0 = 2). However, if the innovator brings in one entrant before approaching
the mediator, the disagreement payo� of the incumbent is his Cournot pro�t when
facing four competitors (one entrant is already in the market, plus tinn2 |t1=1 = 3
subsequent entrants). Clearly the incumbent faces a more severe threat under the
second case, thus he is willing to give up a larger size of the cake to prevent the
failing of reaching an agreement.

Case u(y) = 1/y In this case, the mediator is best of o�ering the smallest accept-
able y. It is equivalent to a take-it-or-leave-it o�er made by Inc to Inn. The mediator
o�ers

y = dinn2

which is accepted by both Inn and Inc under equilibrium. The total payo� of the
innovator is

πinn =t1α1 + y

=t1
(
πe(t1) + πe(t1 + tinc2 |t1)

)
+ tinn2 |t1πe(t1 + tinn2 |t1)

(71)

The next graph shows the total payo� of the innovator under di�erent choices of
t1. The magnitude of technology x is plotted on the horizontal axis, with πinn on
the vertical axis. The blue, red and green line represents the case t1 = 0, t1 = 1 and
t1 = 2 respectively.

For 0 < x < 1/22 and 1/14 < x < 7/54, it is best o� for Inn to bring in one
entrant before approaching the mediator. For 1/22 < x < 1/14 and 7/54 < x < 1/2,
it is best o� for Inn to bring in two entrants before approaching the mediator.

Combining the results for both cases, note that no matter which bargainer has
the full bargaining power, for 0 ≤ x ≤ 0.29 it is best o� for the innovator to bring in
some entrants before approaching the mediator. In other words, when the technology
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is relatively e�cient, the ine�cient outcome appears no matter whom the mediator
represents.

It worth notice that in the above graph, the range of x under which t1 = 2 is the
optimal choice is ( 1

22
, 1
14

) ∪ ( 7
54
, 1
2
), which is disconnected. This disconnection results

from the restriction that tinc2 |t1 has to be an integer. If we relax such assumption,
the disconnection disappears and above graph transforms into the following one
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u(y)=1 In this case the mediator only interested in striking a deal rather than the
term of the deal. He is indi�erent making the o�er y as long as it is accepted, namely

dinn2 ≤ y ≤ v2 − dinc2

which can be written as

tinn2 πe(t1 + tinn2 ) ≤ y ≤ tinc2 πe(t1 + tinc2 ) + π0(t1 + tinc2 )− π0(t1 + tinn2 ) (72)

Since the Cournot pro�t of each entrant decreases with the total number of en-
trants in the market, the left hand side decreases with t1. It is shown in the appendix
that the right hand side also decreases with t1. As a result, the range of acceptable
o�ers shifts to the left when t1 increases.

A.2.2 Allow Bargainers to Reach an Agreement Immediately

Let's assume for the bargaining between Inn and Inc, an agreement can be reached
immediately if both of them want to do so. However, if either one wants to waste
time and delay reaching an agreement, he can delay it for a maximum of one period.

Given the number of entrants already in the market, Inn intends to share part
of the cake originally belongs to the incumbent through bargaining. First note that
Inn has no incentive delay reaching the agreement since whatever he can obtain prior
to bargaining, he can guarantee in the bargaining process (otherwise he is best o�
not engaged in bargaining at all). Since the size of the cake to be shared remains
the same, and Inn bene�t from the bargaining procedure, Inc will end up worse o�.
Namely, Inc has to cut part of his "cake" to Inn to set an agreement. As a result,
Inc is always best o� delaying reaching the agreement. Thus, even though we allow
bargaining to end immediately, it will always take the full period.

A.2.3 Optimal δ for T = 2, ε ≥ 0

In principle we could allow Inn signing di�erent contracts with the �rst t entrants
specifying di�erent number of total licensees to be sold. But the commitment that
really binding is the minimum number speci�ed. Thus there is no point introducing
such complication.

First, we show how does δ a�ects the choice of n(t) and m(x, t). Denote b = δ− t,
which represents the constraint on the number of licenses can be sold in addition to
the t licensees already in the market. Recall that in the case negotiation fails, Inn
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chooses n that maximizes the pro�t of the subsequent licensees

nπe(t+ n) (73)

Since
∂[nπe(t+ n)]

∂n
=

(a− c)2(2x− 1)2(t+ 2− n)

(t+ n+ 2)3

If there are no constraint on n, (73) is maximized when n = t+2. Denote ñ(t) = t+2.
If, however, b < t+ 2, then (73) is maximized at n = b. Thus n(t) = min{b, ñ(t)}.

Next, given the �rst t licenses and assuming an agreement has been reached, the
incumbent chooses to sell additional m licenses where m is the maximizer of

M(m, t) = mπe(m+ t) + π0(m+ t) (74)

Since

∂[mπe(m+ t) + π0(m+ t)]

∂m
=

(a− c)2[m(2x− 1) + 8tx2 − 6tx+ 8x2 + t− 4x]

(m+ t+ 2)3

(75)
If there are no constraint on m, (73) is maximized when

∂[mπe(m+ t) + π0(m+ t)]

∂m
= 0

since the right-hand side of (75) is decreasing in m. It is easy to verify that the
solution is t(1− 4x)− 4x. Denote s(x, t) = t(1− 4x)− 4x and note that it may not
be a non-negative integer. Denote m̃(x, t) as the non-negative integer that maximizes
(75) when there are no constraint on m. It can be easily veri�ed that

m̃(x, 0) = 0 for 0 ≤ x ≤ 1/2

and

m̃(x, 1) =

{
1 0 < x < 1/14
0 1/14 < x < 1/2

etc. In case there is a constraint on the number of total licensees, since (75) is bell
shape, we have

m(x, t) = min{b, m̃(x, t)}

Next we prove by contradiction that the optimal δ has to satisfy δ ≥ t + ñ(t). The
case t = 0 is not relevant since no contract is signed prior to bargaining. For t ≥ 1,
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�rst note that if δ ≥ t+ñ(t) (which imply δ ≥ t+m̃(x, t) since clearly ñ(t) ≥ m̃(x, t)),
rewrite (25), Inn's total pro�t becomes

πinn(x, β, t) =

part 3︷ ︸︸ ︷
β[(m̃(x, t) + t)πe(m̃(x, t) + t) + π0(m̃(x, t) + t)] + (1− β)tπe(m̃(x, t) + t)

+ (1− β)ñ(t)πe(ñ(t) + t)− βπ0(ñ(t) + t)︸ ︷︷ ︸
part 4

+tπe(t)

(76)

Case 1: suppose t+ m̃(x, t) ≤ δ < t+ ñ(t). Since b = δ − t we have

m̃(x, t) ≤ b < ñ(t)

By de�nition
n(t) = b

m(x, t) = m̃(x, t)

Rewrite (25), the total pro�t of Inn is

π1
inn(x, β, t, b) =

part 5︷ ︸︸ ︷
β[(m̃(x, t) + t)πe(m̃(x, t) + t) + π0(m̃(x, t) + t)] + (1− β)tπe(m̃(x, t) + t)

+ (1− β)bπe(t+ b)− βπ0(t+ b)︸ ︷︷ ︸
part 6

+tπe(t)

(77)

Note that part 5 of (77) coincides with part 3 of (76). But part 6 is smaller than
part 4. To see this recall that kπe(k + t) is maximized for k = ñ(t) and π0(k + t) is
decreasing in k. Thus, if Inn restricts the number of licenses he can sell in a manner
such that (i) the optimal number of additional licenses to sell if bargaining fails cannot
be met, but (ii) the number if bargaining succeeds is intact, then such restriction
cannot bene�t Inn because it moves the disagreement point to the direction that
is disadvantageous to him while keep the size of the �cake" to be shared the same.
Thus m(t) ≤ b < n(t) cannot be an optimal choice.

Case 2: suppose δ ≤ t+ m̃(x, t). Namely

b ≤ m̃(x, t)

By de�nition
n(t) = b
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m(x, t) = b

Here the restriction on the number of licenses imposed by Inn on one hand de-
creases the severity of the threat on Inc, on the other hand limits the number of
additional competitors can be brought in by Inc if he obtains the IP. In other words,
as the result of this restriction, the disagreement point moves to the direction that is
not bene�cial for Inn while the size of the �cake" to be shared increase. We'll show
below that as a combination of these two e�ects, Inn is worse o�.

If an agreement is reached, the surplus is

v2 − [dinn + dinc] = [bπe(t+ b) + π0(t+ b)]− [bπe(t+ b) + π0(t+ b)]

= 0
(78)

Inn's total payo� is

π2
inn(x, β, t, b) = t

[
πe(t) + πe(t+ b)

]
+ bπe(t+ b)

= tπe(t) + (t+ b)πe(t+ b)
(79)

Which is maximized when b = 0 and t = 2. Intuitively, since no matter who is the
new owner of the IP in the second period, the same number of additional licenses
will be sold, Inn can get nothing from the bargaining process. Now the maximization
problem faced by Inn is equivalent to the one assuming he doesn't approach Inc at
all and chooses the number of entrants to maximizes the license fee from the two
periods. Next we compare the maximum payo� Inn can obtain in the case with the
payo� if he doesn't impose a tight constraint on the total number of licensees.

πinn(x, β, 1)− π2
inn(x, β, 2, 0) =

{
1
36
x2 − 1

36
x+ 1

144
− 5

18
βx2 + 1

9
βx+ 1

72
β 0 ≤ x ≤ 1

14
2
9
x2 − 2

9
x+ 1

18
− 2

3
βx2 + 1

3
βx 1

14
< x ≤ 1

2

(80)

It can be easily veri�ed that (80) is non-negative for 1 ≤ x ≤ 1
2
. Thus Inn is worse

o� setting the constraint b < m̃(x, t). As a summary of these two cases, we conclude
that δ < t+ ñ(t) can never be an optimal choice of Inn. In other words, Inn always
chooses δ ≥ t+ ñ(t), in which case by de�nition

m(x, t) = m̃(x, t)

n(t) = ñ(t)
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A.2.4 Relaxing the assumption of m(x, t) being an integer

The "disconnection" of the pink region in Figure 1 disappears if we relax the
assumption of m(x, t) being an integer. Recall that

m(x, t) = argmax
m≤δ,m∈N0

[mπe(m+ t) + π0(m+ t)] (81)

Since δ is not binding, as is proved in the previous section, we have

m(x, 0) = 0

m(x, 1) =

{
1 0 ≤ x ≤ 1

14

0 1
14
< x ≤ 1

2

m(x, 2) =


2 0 ≤ x ≤ 1

22

1 1
22
< x ≤ 7

54

0 7
54
< x ≤ 1

2

If we replace the assumption of m ∈ N0 by m ∈ R+. Let

m∗(x, t) = argmax
m≤δ,m∈R+

[mπe(m+ t) + π0(m+ t)] (82)

It is easy to verify that
m∗(x, 0) = 0

m∗(x, 1) =

{
−8x+ 1 0 ≤ x ≤ 1

8

0 1
8
< x ≤ 1

2

m∗(x, 2) =

{
−12x+ 2 0 ≤ x ≤ 1

6

0 1
6
< x ≤ 1

2

Once replacing the m(x, t) in (24) with m∗(x, t), the optimal choice of t is sum-
marized in the following graph.

A.2.5 Severity of the Threat on Inc

Suppose the relative bargaining power of Inn and Inc is �xed. Recall that

πinn =t
[
πe(t) + πe

(
m(x, t) + t

)]
+ β(v2 − dinn − dinc) + dinn

= t
[
πe(t) + πe

(
m(x, t) + t

)]︸ ︷︷ ︸
license fee collected prior to bargaining

+β( v2︸︷︷︸
"cake"

+
1− β
β

dinn − dinc)︸ ︷︷ ︸
severity of threat on Inc

(83)
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The severity of threat on Inc given any β is de�ned as

−
[
dinc −

1− β
β

dinn

]
which is the negation of the interception of the line containing the disagreement
point and the bargaining solution. It is shown next that �xing the Pareto frontier
and Inn's relative bargaining power, any point lies on the same line yields the same
bargaining outcome. Moreover points lies on the line that has a smaller interception
yields Inn a higher payo� (or equivalently yields Inc a lower payo�).

In Figure 17, the Pareto frontier is determined by the size of the "cake" v2. The
line containing [A,B] can be written as

{(x1, x2)|x1 + x2 = v2)}

Given the relative bargaining power of the innovator, β, let [C, S] be on the line

{(x1, x2)|x2 −
1− β
β

x1 = k̂}

for some k̂. It's easy to check that any disagreement point D that lies on [C, S] yields
the same bargaining solution. Thus, Inn is better o� (and Inc is worse o�) when
the disagreement point D′ = (dinn, dinc) lies on a line, parallel to [C, S], but with a
smaller interception k̂′. Namely, the threat on the incumbent is more severe when

dinc − 1−β
β
dinn is smaller. Or equivalently, when −

[
dinc − 1−β

β
dinn

]
is bigger.
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Figure 17

A.2.6 t ≥ 3 can not be an Optimal Choice of Inn

Denote
π̄inn = max{πinn(x, β, 0), πinn(x, β, 1), πinn(x, β, 2)}

The following graph plots Inn's total payo� under di�erent choices of t. The
multicolored plane corresponds to the value of π̄inn; while the green, red, black, blue
plane represents the value of πinn(x, β, 3), πinn(x, β, 4), πinn(x, β, 5) and πinn(x, β, 6)
respectively.

A clear trend can be observed, namely Inn's payo� decreases in t for t ≥ 3.
Recall that bringing in entrants before bargaining has two e�ects on Inn's payo�. It
on one hand enables Inn to collect license fee through the long bargaining process
(the number t of entrants that yields Inn the optimal total licensing fee is t = 2);
on the other hand changes the bargaining game. In the bargaining game, although
a larger number of established licenses enables a more severe credible threat on Inc,
but it also damages more the total �cake" to be shared. As a result Inn will not bring
in more than 2 entrants prior to the bargaining. This being said, a formal proof is
still needed.
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A.2.7 Proof for Lemma 2

Let g(n, t, x) = nπe(0, t+ n). Given t and x, the innovator chooses n that maxi-
mizes g(n, t, x)

g(n, t, x) =

{
n

(t+n+2)2
(a− c)2(1− 2x)2 if n < − 1

x
− t

n
(t+n+1)2

(a− c)2(1− x)2 if n ≥ − 1
x
− t

It's easy to verify that n
(t+n+2)2

(a− c)2(1− 2x)2 is maximized with n = t + 2, while
n

(t+n+1)2
(a− c)2(1− x)2 is maximized with n = t+ 1. Note that with n = − 1

x
− t,

n

(t+ n+ 2)2
(a− c)2(1− 2x)2 =

n

(t+ n+ 1)2
(a− c)2(1− x)2 = (−1

x
− t)x2

Thus g(n, t, x) is continues with respect to n. The relation between n, t and x can
be divided into the following three cases
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Case 1: Suppose t+2 ≤ − 1
x
−t (or equivalently t ≤ − 1

2x
−1), then n(t, x) = t+2.

Case 2: Suppose t+1 ≥ − 1
x
−t (or equivalently t ≥ − 1

2x
− 1

2
), then n(t, x) = t+1.

Case 3: Suppose t+ 1 < − 1
x
− t < t+ 2 (or equivalently − 1

2x
− 1 < t < − 1

2x
− 1

2
),

then g(n, t, x) is maximized with n = − 1
x
− t. Since n(t, x) has to be a non-negative

integer11, we need to compare g(t+ 1, t, x) and g(t+ 2, t, x).

g(t+ 1, t, x)− g(t+ 2, t, x) =
tx(3x− 2) + 2x2 − 1

(2t+ 3)2
(84)

Denote f(x) = − 2x2−1
x(3x−2) . It's easy to check that (84) is positive when t ≥ f(x),

and it is negative otherwise. Thus, n(t, x) = t + 1 for t ≥ f(x), and n(t, x) = t + 2
for t < f(x). Last note that − 1

2x
− 1 < f(x) < − 1

2x
− 1

2
for x < 0. The result in

Lemma 1 follows immediately.

A.2.8 Whether Inc Uses the New Technology Once Obtaining the IP

It is not clear after obtaining the IP, if Inc should use the technology himself or
not12. Although Inc obtains less Cournot pro�t when using the inferior technology,
but he can charge a higher license fee to each of the additional entrants. Note that
this requires Inc to be able to commit on using a technology with a higher marginal
cost and such action is veri�able to the others. In most cases such requirement is not
appropriate and it is convincing to assume Inc always uses the superior technology
once obtaining it. In this section we show that in our model even if Inc can commit
to use the inferior technology, he is better o� use the superior one.

First, if Inc uses the new technology himself, he then chooses the number m of
additional licenses to sell which satis�es

m(t) = argmax
m∈N0

[mπe(1,m+ t) + π0(1,m+ t)] (85)

It can be easily veri�ed that m(t) = t. Inc's payo� is

vnew2 = m(t)πe(1,m(t) + t) + π0(1,m(t) + t)

= (a− c)2 (1− x)2

4(t+ 1)

(86)

If instead, Inc commits on not using the new technology himself (whether such

11It's easy to verify that n(t,x) can be either t+ 1 or t+ 2
12Similarly for case ε ≥ 0 it is not clear if Inc should use his old technology or use the new but

inferior one
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commitment is reliable and veri�able is another question we do not address here),
he then chooses m to solve the following optimization problem

vold2 = max
m

[

Part A︷ ︸︸ ︷
mπe(0,m+ t) + π0(0,m+ t)] (87)

Note that

Part A =

 (a− c)2m
(

1−x
t+1+m

)2
if t+m ≥ − 1

x

(a− c)2
[
m
(

1−2x
t+m+2

)2
+
(

1+(t+m)x
t+m+2

)]
if t+m < − 1

x

It's easy to verify that (a − c)2m
(

1−x
t+1+m

)2
is maximized when m = t + 1 and (a −

c)2
[
m
(

1−2x
t+m+2

)2
+
(

1+(t+m)x
t+m+2

)]
is maximized when m = −4tx + t− 4x. In addition,

(a− c)2m
(

1−x
t+1+m

)2
= (a− c)2

[
m
(

1−2x
t+m+2

)2
+
(

1+(t+m)x
t+m+2

)]
when m = − 1

x
− t.

Thus, if Inc chooses m < − 1
x
− t, Part A is maximized at m = min{− 1

x
−

t, t − 4x − 4tx}. If instead, Inc chooses m ≥ − 1
x
− t, Part A is maximized at

m = max{− 1
x
− t, t+ 1}.

It's easy to verify that

−1

x
− t > t− 4x− 4tx i� x > − 2

4t+ 4

−1

x
− t > t+ 1 i� x > − 2

4t+ 3

(i) for x > − 2
4t+4

, − 1
x
− t > t − 4x − 4tx and − 1

x
− t > t + 1. The optimal m

under the restriction of m < − 1
x
− t is m = min{− 1

x
− t, t−4x−4tx} = t−4x−4tx;

the one under the restriction of m ≥ − 1
x
− t is m = max{− 1

x
− t, t + 1} = − 1

x
− t.

Since Part A is continues, it is maximized when m = t− 4x− 4tx.

vnew2 − vold2 =
−x(4tx+ 3x+ 2)

4(t+ 1)

This di�erence is non-negative when − 2
3+4t
≤ x ≤ 0, which is automatically satis�ed

in this case. Thus here Inc is better o� using the new technology.
(ii) for − 2

3+4t
< x < − 2

4t+4
, − 1

x
−t < t−4x−4tx and − 1

x
−t > t+1. The optimal
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m under the restriction of m < − 1
x
− t is m = min{− 1

x
− t, t− 4x− 4tx} = − 1

x
− t;

the one under the restriction of m ≥ − 1
x
− t is m = max{− 1

x
− t, t + 1} = − 1

x
− t.

When Inc chooses m = − 1
x
− t.

vold2 = (a− c)2(−1

x
− t)

( 1− x
t+ 1 + (− 1

x
− t)

)2
vnew2 − vold2 =

(2tx+ x+ 1)2

4(t+ 1)
≥ 0

Thus Inc is better o� using the new technology.
(iii) for x < − 2

3+4t
, − 1

x
− t < t − 4x − 4tx and − 1

x
− t < t + 1. The optimal m

under the restriction of m < − 1
x
− t is m = min{− 1

x
− t, t− 4x− 4tx} = − 1

x
− t; the

one under the restriction of m ≥ − 1
x
− t is m = max{− 1

x
− t, t+ 1} = t+ 1. Again,

since Part A is continues, Inc chooses m = t+ 1. Since

t+m = 2t+ 1 > −1

x

with the old technology the Incumbent �rm is driven out of the market. Here vnew2 =
vold2 . Namely Inc is indi�erent between using the new technology himself or not.

As a conclusion, in our model, after obtaining the IP for the new technology, in
addition to issue additional licenses, Inc is always better o� using it himself.

A.2.9 The r.h.s. of (72) Decreases with t1

Since tinn2 |t1 = t1 + 2, we only need to prove that

tinc2 |t1πe(t1 + tinc2 |t1) + π0(t1 + tinc2 |t1)− π0(2t1 + 2)

≥tinc2 |t1+1πe(t1 + 1 + tinc2 |t1+1) + π0(t1 + 1 + tinc2 |t1+1)− π0(2t1 + 4)
(88)

It is equivalent to prove

π0(2t1 + 2)− π0(2t1 + 4) ≤[
tinc2 |t1πe(t1 + tinc2 |t1) + π0(t1 + tinc2 |t1)

]︸ ︷︷ ︸
Part C

−
[
tinc2 |t1+1πe(t1 + 1 + tinc2 |t1+1) + π0(t1 + 1 + tinc2 |t1+1)

]︸ ︷︷ ︸
Part D

(89)
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First, the following 3d graph plotted the value

Part A︷ ︸︸ ︷[
t∗2|t1πe(t1 + t∗2|t1) + π0(t1 + t∗2|t1)

]
−

Part B︷ ︸︸ ︷[
t∗2|t1+1πe(t1 + 1 + t∗2|t1+1) + π0(t1 + 1 + t∗2|t1+1)

]
−
[
π0(2t1 + 2)− π0(2t1 + 4)

]
(90)

With

t∗2 = argmax
t2≥0

[
t2πe(t1 + t2) + π0(t1 + t2)

]
= max{0, t1(1− 4x)− 4x}

(91)

Clearly, the following inequality holds.

π0(2t1 + 2)− π0(2t1 + 4) ≤[
t∗2|t1πe(t1 + t∗2|t1) + π0(t1 + t∗2|t1)

]︸ ︷︷ ︸
Part A

−
[
t∗2|t1+1πe(t1 + 1 + t∗2|t1+1) + π0(t1 + 1 + t∗2|t1+1)

]︸ ︷︷ ︸
Part B

(92)

Next, substitute the tinc2 |t1 in Part C with t∗2|t1 + 1 and denote it as Part E;
substitute the tinc2 |t1+1 in Part D with t∗2|t1+1 + 1 and denote it as Part F. By the
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de�nition of tinc2 and t∗2, clearly
E ≤ C

F ≤ D

We already shown that

A−B ≥ π0(2t1 + 2)− π0(2t1 + 4)

If we can show that

|(C −D)− (A−B)| ≤ (A−B)−
[
π0(2t1 + 2)− π0(2t1 + 4)

]
(93)

Then it follows easily

C −D ≥ π0(2t1 + 2)− π0(2t1 + 4)

To show (93), observe that

|(C−D)− (A−B)| = |(A−C)+(D−B)| ≤ |A−C|+ |B−D| ≤ (A−E)+(B−F )

The following graph plotted the value[
(A−B)−

[
π0(2t1 + 2)− π0(2t1 + 4)

]]
−
[
(A− E) + (B − F )

]
(94)

Clearly, (94) is non-negative. Thus inequality (93) holds true. The prove is thus
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�nished.
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