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Abstract of the Dissertation

Mesh Refinement and High-order Reconstruction for
Finite Element Methods on Unstructured Meshes

by

Xinglin Zhao

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

In large scale simulations of complex partial differential equations (PDE’s) using
finite element methods (FEM), mesh generation, remeshing and linear solver
are the most vital steps to obtain accurate solutions. All these areas have been
explored quite extensively. We seek to develop an integrated framework for these
steps. During simulation it is often desirable to start with a relatively coarse
mesh and then refine the mesh accordingly (since in most cases the criteria for
mesh resolution is not known a priori). The mesh hierarchy generated from mesh
refinement could be utilized by efficient linear solvers like geometric multigrid
methods (GMG), which can theoretically deliver optimal time complexity. Thus,
it would be advantageous to use hierarchical mesh refinement to achieve high-
order of accuracy and computational efficiency.

One effective approach is to refine the mesh uniformly. Successive uniform re-
finement can not only increase the accuracy of solution but also generate a nat-
ural hierarchy which could be further used by GMG. We develop parallel uni-
form refinement-based algorithms to generate multi-degree, multi-dimensional
and multi-level meshes from coarse unstructured meshes, based on the array-
based half-facet (AHF) data structure. We demonstrate its applicability to a
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multigrid finite element solver and the capability is developed under the parallel
mesh framework “Mesh Oriented dAtaBase” (MOAB).

Meanwhile, we make effort to extend this framework to adaptive mesh refine-
ment (AMR) which delivers solution more efficiently by increasing the com-
putational effort near interesting features of the solutions. AMR has gradually
become a vital step in large-scale numerical simulations. We develop a data
structure called Hierarchical AHF to support both refinement and coarsening
effectively.

A key aspect of the refinement algorithm is the positioning of the new vertices
on curved boundaries. Using linear point projection scheme for the new vertices
compromises the accuracy of the geometry and in turn that of the finite element
solver. To address this issue, we develop a discrete geometry module in MOAB
that provides high-order point projection schemes. To improve the robustness of
this method on coarse mesh, we propose two extensions: first, we introduce a
Hermite-style weighted-least squares formulation, to take account of both point
locations as well as surface normals in the surface reconstruction; second we
introduce a new blending technique to ensure G0 continuity along sharp ridges
and corners, while assuring high-order accuracy.
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Chapter 1

Introduction

In the numerical solution of complex partial differential equations (PDE’s) using

finite element methods for unstructured meshes, the two most computationally in-

tensive steps are mesh generation and linear solvers. An initial coarse mesh repre-

senting the computational domain might not be of sufficient resolution to get mean-

ingful results out of the discretizations for physical scales that might be present.

As a result, the capability to refine a mesh is an essential part of any simulation

process. Additionally, it is well known that multi-level methods such as geomet-

ric multigrid methods (GMG) can theoretically deliver optimal time complexity for

solving sparse linear systems from PDE discretizations. Thus, it would be advanta-

geous to use nested multi-level (i.e., hierarchical) meshes to achieve high-degree of

verifiable accuracy and computational efficiency, especially in the context of large-

scale parallel computing, as both the number of processors and the mesh resolution

increase.

Uniform mesh refinement (UMR) provides a simple and efficient way to gen-

erate such hierarchies via successive refinement of the mesh at a previous level. It
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also provides a natural hierarchy via parent and child type of relationship between

entities of meshes at different levels that enables inter-level queries. This hierarchy

also supports computation of projection operators of GMG between levels. While

UMR is a relatively simple process, it is by no means trivial especially in a parallel

setting. Notable challenges include maintenance of mesh quality, multi-level and

multi-degree refinement, and data structure and software design.

Meanwhile, to obtain accuracy some regions need to be refined to reduce dis-

cretization errors while other regions require finer models to approximate. Adap-

tive mesh refinement allows more efficient numerical simulations by increasing the

computational effort near interesting features of the solutions [10, 11, 14]. AMR

has gradually become a vital step in large-scale numerical simulations since it op-

timizes the relationship between accuracy and computational effort. One aspect of

the refinement strategy is whether it requires the refined mesh to be conformal or

not. A mesh is said to be conformal if the pairwise intersection of any two entities is

either a lower-dimensional entity or is empty. Otherwise, a mesh is non-conformal.

The conformal requirement will make no change to the underlying data structure for

the mesh and the formulation of numerical algorithms. A considerable amount of

work has been done in this area [15, 17, 20, 97]. However, to preserve conformity,

some procedures need to be applied which would probably deliver a finer mesh than

needed, or even potentially affect the overall mesh quality which is crucial for the

linear system in FEM [104]. This drives the research on refinement strategies allow-

ing non-conformal meshes, i.e. hanging nodes, in [15, 67, 73, 104]. Non-conformal

refinement will incur extra work in the PDE solver part, but it will be much easier

for the unification of hp-adaptivity for finite element method [15, 16]. Here hp-

adaptivity means that both the mesh size h and the degree p of the approximating
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piecewise polynomials are adapted.

FEM originated as a second-order accurate method, but for several decades,

researchers have been exploring high-order variants. In this dissertation, we use

the term “high-order” to refer to any method of third or greater order accuracy.

Some high-order methods include isoparametric FEM [42], hp-FEM [37], discon-

tinuous Galerkin method [33], spectral element method [26], and isogeometric anal-

ysis [56]. The element quality requirements for high-order methods are even more

stringent. Despite the fact that these methods can reach exponential convergence

under appropriate conditions, high-order methods have remained largely confined

to academic study and has yet to make much of an impact in industry [116]. This is

due to many reasons, not the least of which is that high-order schemes are generally

less robust [120] and generating good quality meshes for high-order methods is still

not fully resolved [90].

Geometry plays an important role in solving PDEs. The use of curved elements

becomes mandatory for using high-order approximations [80]. Even for low-order

methods, when one tries to achieve high accuracy via mesh refinement, the triangu-

lation must be refined along the curved boundary [34, 77]; otherwise the geometric

error will counteract the effect of mesh refinement. High-order reconstruction of the

boundary geometry is effective in preserving the accuracy of solution under mesh

refinement. The numerical results indicate that geometric error matters in solving

PDE.

This dissertation presents an integrated framework for these problems. First,

we develop parallel uniform refinement-based algorithms to generate multi-degree,

multi-dimensional and multi-level meshes from coarse unstructured meshes [94].

The generated mesh hierarchies can be used for a variety of purposes, such as
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convergence studies, multilevel methods, generating large meshes in parallel to

overcome IO bottlenecks, etc. While the multi-degree refinement allows achiev-

ing uniformly greater resolution faster, the multi-dimensional refinement preserves

the hierarchy over explicit lower dimensional entities such as curves in surfaces, or

surfaces embedded in volumes.

Second, we develop an array-based mesh data structure to support adaptive

mesh refinement and derefinement1. It generalizes AHF [40], which provides ef-

ficient mesh queries and modification. The array-based mesh data structure has

many advantages in the context of numerical simulations, in terms of more compact

memory footprint, better interoperability with simulation codes, better efficiency on

modern computer architectures with deep memory hierarchy, and relative simplicity

and higher efficiency for parallel implementations. However, it is more challenging

to support adaptive mesh refinement with array-based mesh data structures, which

require dynamic creation and deletion of entities [122].

A key aspect of the refinement algorithm is the positioning of the new vertices

as entities are refined. A commonly used strategy is linear point projection. How-

ever, using linear point projection for the new vertices compromises the accuracy of

the geometry and in turn that of the finite element solver. To address this issue, we

take advantage of high-order boundary reconstruction strategy called WALF, as de-

scribed in [60, 61]. We also propose two extensions of the WALF framework. First,

we introduce a Hermite-style weighted-least squares formulation, to take both point

locations and surface normals as input for reconstruction. A key advantage of this

approach is that it allows much more compact stencils for local fittings. As a result,

1We use the term “derefinement” instead of “coarsening” because the algorithm would only
undo the refinement selectively, and it would not coarsen beyond the original mesh.
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it can achieve higher accuracy, especially for relatively coarse input meshes. We

prove the consistency and stability of the proposed method, and describe robust nu-

merical method for solving it. Second, we also introduce Hermite-style high-order

reconstruction of ridge curves. In addition, we introduce a new blending technique

to ensure G0 continuity along sharp ridges and corners, while assuring high-order

accuracy.

The reminder of the dissertation is organized as follows. In Chapter 2, we

present some background information and recent development of related data struc-

tures and methods. In Chapter 3, we introduce our work on parallel hierarchical

uniform refinement which was developed in collaboration with Dr. Navamita Ray,

Dr. Iulian Grindeanu, Dr. Vijay Mahadevan from Argonne National Laboratory.

In addition we also developed a high-order surface reconstruction module under

MOAB to handle curved boundaries. Chapter 4 describes our effort on conformal

and non-conformal adaptive mesh refinement on unstructured meshes. In Chap-

ter 5, we discuss the problem of high-order surface reconstruction. We develop a

robust reconstruction method, which delivers high-order accuracy when sharp fea-

tures present. This was developed in collaboration with Dr. Navamita Ray. In

Chapter 6, we present the results of some numerical experiments with mesh refine-

ment and high-order surface reconstruction. Finally, Chapter 7 concludes the paper

with a discussion.

The main contributions of this thesis are as follows. First, we developed paral-

lel hierarchical uniform mesh refinement under the array-based unstructured mesh

framework “Mesh Oriented dAtaBase” a.k.a MOAB [107]). In this work, we devel-

oped a template-based refinement strategy for subdividing each entity into smaller

entities to support multi-degree refinement patterns. To support hierarchy gener-
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ation and efficient mesh traversals, we extended the array-based half-facet (AHF)

data structure [40]. In addition, we developed efficient parallel communication

strategies to resolve shared entities along partition boundaries after refinement. The

developed mesh hierarchy generation supports 1D (edges), 2D (triangles, quadrilat-

erals), and 3D (tetrahedral, hexahedral) meshes and mixed-dimensional meshes.

Second, we introduced a simple data model for adaptive mesh refinement with

hierarchical structure. Our data model is easy to implement and is efficient in both

memory and computational cost. The data structure facilitates both straightforward

refinement and derefinement operations, and also allows both conformal and non-

conformal meshes. In addition, a generic adaptive mesh refinement (AMR) frame-

work on top of Hierarchical AHF is developed and a prototype is implemented for

both 2D triangular and 3D tetrahedral meshes.

Third, to handle complex geometries, we developed a discrete geometry mod-

ule in MOAB, which provides high-order surface projection. The discrete ge-

ometry module provides high-order boundary reconstruction strategies, based on

WALF. Besides, we introduced the FAH-WALF method, Feature-Aware Hermite-

style WALF, which extended the WALF method [61]. By design, FAH-WALF is

useful when an accurate, instead of “exact” geometry is needed, and when access-

ing the CAD software may be inconvenient. In particular, it is especially attractive

for high-order finite element methods, mesh refinement, mesh smoothing, mesh

adaptivity, both in serial and parallel, especially for the solutions of PDEs. An

important advantage of the FAH-WALF methodology, compared to WALF, is that

we can use high-order reconstruction, such as fifth- or sixth-order reconstructions,

instead of only second or third-order reconstructions, on a relatively coarse mesh,

while ensuring the accuracy and stability of the method.
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Chapter 2

Background and Related Work

Mesh data structures are fundamental to meshing algorithms and mesh-based nu-

merical methods. The underlying data structure strongly influences the overall

performance of the algorithms or simulations, since it is used to perform all the

mesh-based combinatorial operations and as a result has been investigated since

the inception of mesh generation and computational geometry. We review some

terminology before describing our data structures and mesh frameworks. Adap-

tive methods for numerical PDEs have been an active research area since the late

1970s [10, 11] and are widely used in practice nowadays, to balance accuracy and

computational efficiency. We briefly review the mesh adaptation methodology for

numerical PDEs.

In addition, we briefly review the weighted least squares approximation on un-

structured surface meshes using point based local polynomial fittings, the criteria

for selecting the neighborhood, the weighting strategy, and the numerical linear al-

gebra techniques for solving them robustly. We also review the WALF approach for

blending the local fittings into a G0 surface.

7



2.1 Array-based Half-Facet (AHF) Data Structure

There are a number of mesh data structures such as entity-based, boundary rep-

resentations, corner table, radial-edge, winged, half- edge/face, incidence graphs,

etc., that are used for mesh representation and queries. The two data structures that

are relevant in our context are the half-edge and half-face data structures. The half-

edge data structure is for 2D and surface meshes. It uses edge as the core object

where the edge within each face is called a directed or half-edge. Typical imple-

mentations (e.g., CGAL [44, 66], OpenMesh [23] and Surface_Mesh [103]) store

mappings from each half-edge to its opposite half-edge, its previous and next half-

edge within its face, its vertices, its incident face, as well as the mapping from each

vertex and each face to an incident half-edge. More compact representations, such

as [7], can be obtained by storing only the mapping between opposite half-edge,

optionally the mapping from each vertex to an incident half-edge, along with the

element connectivity. The half-edge concept was generalized to half-faces (as in

[7] and [72]) for volume meshes where half-faces refer to the oriented faces within

a cell. These basic half-edge and half-face data structures are simple and are re-

stricted to oriented, manifold meshes (with or without boundary) in 2-D and 3-D,

respectively.

In [40], an efficient, compact and general array-based half-facet (AHF) mesh

data structure with support for mixed-dimensional meshes, which may be non-

manifold and/or non-oriented was proposed. The core object of AHF is half-facet

as defined previously and is represented as an implicit entity. The concept of sibling

half-facets unifies the half-vertex, half-edge, and half-face data structures for 1-D,

2-D, and 3-D meshes, which may be manifold or non-manifold with boundary. The
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AHF data structure consists of two key maps:

• sibling half-facets (sibhfs): The mapping between the sibling half-facets us-

ing a cyclic linked list.

• vertex to half-facet (v2hf ): The map of each vertex to its incident half-facet.

This map provides an anchor for each vertex to its locality in the mesh.

An example of the AHF maps for a non-manifold mesh is illustrated in Figure 2.1(a).

For d ≥ 2, AHF provides a compact representation, since the intermediate dimen-

sional entities are not stored but referenced implicitly. This data model stores the

above two maps for each dimension in a modular and self-contained manner and

hence supports mixed-dimensional meshes, which may be composed of sub-meshes

of 1-D, 2-D, and 3-D. Figure 2.1(b) shows a diagram of a typical half-facet data

structure, where the half-vertices and half-edges are only required for explicit edges

and faces in the mesh, respectively. In addition, this data model can also be used

for meshes with high-order elements (such as six-node triangles or 10-node tetra-

hedra), where the mid-edge, mid-face or mid-cell nodes do not affect the definition

and identification of the half-facets. We use the AHF as the underlying mesh data

structure for developing the refinement algorithms.

2.2 Mesh Oriented datABase (MOAB)

To be of any practical use to numerical simulation workflows, the mesh framework

needs to support a wide range of functionalities such as efficient local mesh traver-

sals for matrix assemblies, boundary extraction for boundary conditions, efficiently

support adjacency and connectivity queries, representation of mesh data, etc., in
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5 〈3, 1〉

6 〈4, 2〉

(a) AHF maps for a non-manifold mesh.
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faces

v2hf
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v2he

sibhf sibhe
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(b) AHF maps for mixed-dimensional
meshes.

Figure 2.1: (a) An example of the AHF maps stored for a non-manifold triangular
mesh. (b) Typical AHF for mixed-dimensional meshes is composed of half-vertex
(black, for explicit edges only), half-edge (blue, for explicit faces only), and half-
face (red) data structures.
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a parallel setting. Over the past years, a number of such frameworks have been

developed e.g., FMDB [101], MSTK [49], libMesh [68], etc, with various mesh

representations addressing application specific needs. In such implementations, the

entities are represented as “objects” explicitly, and pointers (or handles) are used to

refer to these explicit objects. In our work, we choose to use array-based, pointer-

free implementations for a number of reasons. First, using arrays can lead to faster

memory access, fewer cache misses and hence better efficiency. Secondly, in an

array-based implementation, we can treat intermediate dimensional entities (such

as half-facets) as implicit entities, and reference them without forming explicit ob-

jects. This can lead to significant savings in storage, especially on computers with

64-bit pointers. In addition, array-based implementations also offer better interop-

erability across application codes, different programming languages, and different

hardware platforms (such as between GPUs and CPUs).

Several array-based mesh libraries have been developed, including STK [41],

PUMI [57], and MOAB [107]. MOAB, the Mesh Oriented datABase is a mesh

data representation designed to support a range of mesh related operations, such

as memory-efficient mesh representation, mesh querying, and representation of ap-

plication specific data. The AHF data structure was implemented in MOAB to

support query-intensive algorithms, especially those involving non-vertex/higher-

dimensional adjacency queries and was found to be extremely efficient (in some

cases over two orders of magnitude improvement [40, 93] ) over the native data

structures. MOAB is also a parallel framework and supports spatial domain-decomposed

view of a parallel mesh where each subdomain is assigned to a processor, lower-

dimensional entities on interfaces between subdomains are shared between proces-

sors, and ghost entities can be exchanged with neighboring processors. We develop
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our hierarchical mesh generation algorithms on top of MOAB’s parallel framework.

In Section 3, we describe the three key components of the proposed hierarchical

mesh generation algorithm.

2.3 Adaptive Mesh Refinement for Numerical PDEs

Adaptive mesh refinement applies strategies to optimize the relation between ac-

curacy and computational effort. In particular, adaptive finite element method

(AFEM) based on the local mesh refinement has the following loops of form:

SOLVE→ ESTIMATE→MARK→ REFINE (2.3.1)

to iteratively improve the accuracy of the numerical approximation. For an intro-

duction to the theory of AFEM, see Nochetto et al. [88].

The step ESTIMATE needs a posteriori error estimator without prior knowl-

edge of the exact solution. In numerical solution of PDEs, often the overall accuracy

of numerical approximation is deteriorated by local singularities such as, e.g, singu-

larities from boundary layers or sharp shock waves. One remedy is to refine regions

where the solution is less regular. Moreover, a posteriori estimates of solution ac-

curacy would be desirable when a priori error is not available. These arise the

need of an error indicator, which could be extracted from the numerical solutions.

In particular, the development of adaptive finite mesh refinement, h-version and

hp-version, requires reliable and computable a posteriori error estimator. Since I.

Babuska and W. Rheinboldt’s pioneering work [10–12] on explicit error estimation

in late 1970s, lots of effort has been devoted to the derivation of effective error es-
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timator. Often estimators with local natures are preferred since they could indicate

the need of local mesh refinement or increase of polynomial degree. Kelly [64],

Ladeveze and Leguillon [74] used the idea of solving element by element comple-

mentary problems together with the important concept of constructing equilibrated

boundary data to obtain error estimates. Demkowicz [36], Bank and Weiser [19] de-

veloped a posteriori error estimation based on the element residual method. Other

methods based on interpolation or extrapolation could be found in [2, 123]. Sur-

veys of the literature on a posteriori error estimation and analysis could be found

in [3, 4, 100, 115].

Given the error estimation, certain marking strategy should be applied to collect

elements in the mesh for further refinement or for increasing polynomial degree.

The step Mark is important for the convergence and optimality of AFEM, as noted

by Stevenson [106]: “any marking strategy that reduces the energy error relative

to the current value must contain a substantial bulk of ET (U,T ), and so it can be

related to Dörfler Marking”. The most popular marking strategies are Maximum

Strategy, Equidistribution Strategy [43], Dörfler’s Strategy [39]. Morin [87] gave

a sufficient and essentially necessary condition on marking for the convergence of

the finite element solutions to the exact one. This condition is not only satisfied

by Dörfler’s strategy, but also by the maximum strategy and the equidistribution

strategy.

The REFINE step refines all marked elements of a given initial triangulation.

In 2D, during the mid of the 1980s Rivara introduced an effective mesh refinement

algorithm based on longest edge bisection [96]. Mitchell developed a recursive al-

gorithm for the newest vertex bisection [84]. Bank adopted regular refinement with

selected temporary bisections [8], which was used in software package PLTMG
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[17]. In the beginning of 1990s, Rivara and Levin extended the longest edge re-

finement algorithm to tetrahedra meshes [97]. However, it is not known that if this

algorithm would degrade the mesh quality. At the same time, Bänsch generalized

the newest vertex bisection method to 3D [20], which preserves the mesh quality

under refinement. Similar approaches are developed by Liu and Joe [79], Arnold

et al. [9]. Moreover, Kossaczky [71] derived a recursive variant of Bänsch’s algo-

rithm, with bisection rule for tetrahedra using local order of vertices and element

type. This concept is convenient for implementation and generalization to any space

dimension. Besides, anisotropic adaptive mesh refinement could be more desirable

for physical problems exhibit anisotropic phenomena; see [32, 78] and the refer-

ences therein. For a more completed discussion of mesh refinement, see [63, 88].

The SOLVE step is critically important for the optimal efficiency of AFEM. For

a quasi-uniform mesh with hierarchy, V-cycle multigrid and BPX-preconditioner

[24] can obtain desired accuracy with a number of operations proportional to degree

of freedom. For a multiple-level method on an adaptively refined mesh, performing

smoothing only on the newly added nodes would be crucial for optimal complex-

ity. Such local multiple level methods include multiple level adaptive technique

[25], Rivara’s local multigrid method on adaptive triangular girds [95], and Bank’s

HB multigrid [18] on the red-green regular-refined mesh. In particular for graded

bisection meshes, see [31, 121], which have linear complexity.

Convergence of the loops of AFEM is well studied theoretically for Poisson

equation and its variants. The pioneering work started from Dörfler [39], which

introduced the Dörfler’s marking Strategy and proved the strict energy error re-

duction with a fineness assumption on the initial mesh. Then it was followed by

Morin et al. [85, 86] who proved convergence without restriction on initial mesh.
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Mekchay and Nochetto [82] proved a contraction property of AFEM for general

elliptic PDEs. For more recent result, see [87, 102]. Binev, Dahmen and DeVore

[22] (requiring coarsening), Stevenson [106] (no requirement of coarsening)and

Cascon [29] gave important optimal error decay result, or the optimal cardinality

of AFEM. Results of the convergence on adaptive nonconforming and mixed FEM

could be found in [27, 28, 30]. For other equations, such as Stoke equation, due to

the lack of Galerkin-orthogonality or quasi-orthogonality for such saddle problem,

techniques used for typical AFEM analysis could not be applied; see discussions in

[21, 55, 69, 70].

The convergence rate of the p version of the finite element method is exponential

when the solution has no singularities. When singularities are present, the perfor-

mance of p version FEM depends on the mesh. “Performance will be better when

the mesh has been graded near singularity” [46]. This suggests that hp-adaptivity

would be the optimal strategy. The results in [52, 53] suggest that the conver-

gence rate is exponential if proper hp-adaptivity is applied, but the results rely on

generating correct initial mesh, which is only known for model problems. Tech-

niques of optimal mesh “refinement” strategies are still underdeveloped. Most of

the adaptive finite element algorithms simply subdivide the elements where a pos-

teriori error is large, or an h-refinement is applied. As it is well known, if the exact

solution is sufficiently smooth, a p-refinement typically is much more effective in

improving accuracy. Automatic hp-adaptivity has been an active research area in

the high order finite element technology. Demkowicz and his coauthors developed

fully automatic hp-adaptivity for elliptic problems and demonstrated optimal con-

vergence rate predicted by the theory of hp method [35, 37]. Šolín et al. designed

an automatic adaptivity algorithm based on arbitrary-level hanging nodes and lo-

15



cal element projections [104]. However, as mentioned in [16], “there is no simple

and widely accepted a posteriori indicator applicable to an already computed solu-

tion that would tell us whether we should refine any given cell of a finite element

mesh or increase the polynomial degree of the shape functions defined on it.” More

discussion in [54] and the reference cited therein.

As mentioned in [37], most commercial implementations of hp-FEM rely on

a-priori information about corner and edge singularities, or boundary layers, and

they generate an initial mesh like the geometrically graded meshes of Babuska, or

Shiskin type mesh for handling the boundary layers. Once the mesh is known,

uniform p-refinement are used, since generally for linear elliptic boundary-value

problem with piecewise analytic coefficients, on a domain with a piecewise analytic

boundary surface, the solution will be analytic everywhere except in the neighbor-

hood of singularities in the data where h-refinement could be applied. If the nature

of the singularity is known a priori, these techniques could be effective, and opti-

mal meshes may deliver exponential rates of convergence. Generating mesh aware

of singularities and boundary layers is crucial.

If the regularity results are not available, it is nearly impossible to get an optimal

mesh. Then p-refinement may lead to meshes that deliver results worse than h-

adaptive method; see [37] and references there in. Various algorithms have been

developed with the aim to estimate the optimal choice of hp-refinement. The Texas

Three Step strategy [89] performs h and p-refinement alternately, but it does not

lead to optimal results. The method in [5] monitors the local h-convergence rates

to choose h or p refinement. The authors in [92] introduced the idea of obtaining

optimal mesh via minimizing a local projection error for a reference solution. For

related work, we refer to [13, 37, 98]. Some methods estimate the smoothness of
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the solutions. For example, Mavriplis [81] proposed the method of calculating the

decay rate of Legendre expansion coefficients of the solution to determine whether

the solution is locally smooth or not. On the other hand, local Sobolev regularity

index could be approximated and further used as indicator for the choice of h and p-

refinement [6]. The authors in [54] extended this idea and also gave a nice survey of

other methods and more recent development. For simple representative problems,

some of these strategies illustrate exponential rates of convergence [6, 54].

A vast amount of FEM software packages have been developed; see [1] for a

complete list. However, implementations of hp finite element method are hard,

and a few of them are accessible, such as [15, 35, 67, 105]. deal.II [15], a C++

finite element library, supports hp-finite element in 1D, 2D (quadrilaterals) and

3D(hexahedra), and allows hanging nodes introduced in hp-refinement. Hang-

ing nodes will be eliminated according to continuity constraints [16]. Likewise,

libMesh [67] is also a C++ library for serial/parallel adaptive algorithms. libMesh

supports h-refinement, coarsening (by h restitution of subelements), and h-refinement

with uniformly high degree elements. Moreover, the developmental branch of

libMesh now supports adaptively p refined and hp refined meshes with some el-

ement types. Hermes2D [105] supports adaptive FEM in 2d based on algorithm in

[104]. According to the author’s knowledge, Hermes does not have 3D hp-FEM

accessible to public now but the algorithm has been developed in [73].
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2.4 Weighted Least Squares and High-order Surface

Reconstruction

Surface meshes and their manipulations are critical for geometric modeling, mesh-

ing, numerical simulations, and many other related problems. Some example prob-

lems that involve manipulating surface meshes include mesh generation and mesh

enhancement for finite element or finite volume computations [48], mesh smoothing

in ALE methods [38], and mesh adaptation in moving boundary problems [59]. In

many of the applications, a continuous CAD model may not be available. Instead,

only a surface mesh, typically with piecewise linear or bilinear faces, is available.

We consider the problem of reconstructing a highly accurate, continuous geo-

metric support from a given surface mesh. We refer to this problem as high-order

surface reconstruction (or simply high-order reconstruction). By “high-order,” we

mean the method should be able to deliver more than second order accuracy, and

preferably fifth, sixth, and even higher order, compared to just first or second order

accuracy of the traditional techniques. The high-order reconstruction is important

in geometric modeling [118] and meshing [61] for scientific applications, computer

graphics [47], etc.

In [61], four requirements were posed for high-order reconstruction:

Geometric accuracy: The reconstruction should be accurate and asymptotically

convergent to the exact surface to certain order under mesh refinement.

Continuity: The reconstructed surface should be continuous to some degree (e.g.,

G0, G1, or G2 continuous, depending on applications).

Feature preservation: The reconstruction should preserve sharp features (such as
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ridges and corners) in the geometry.

Stability: The reconstruction should be numerically stable and must not be oscil-

latory under noise.

Two methods, called Weighted Averaging of Local Fittings (WALF) and Continuous

Moving Frames (CMF), were also proposed in [61], for reconstructing a feature-

preserving, high-order surface from a given surface mesh. Both methods were

based on weighted least squares approximations and piecewise polynomial fittings,

and they could achieve third- and even higher order accuracy, while guaranteeing

globalG0 continuity. In contrast, most existing methods could achieve only first- or

second-order accuracy. Between WALF, and CMF, the WALF was preferred for its

simplicity and higher efficiency, and it has been shown to be particularly effective

to moderately fine input meshes. However, WALF also had two limitations. First,

if the input mesh is relatively coarse, then the methods may be inaccurate, due to

the lack of points in the stencil. While some safeguards were added against oscilla-

tions by degrading to lower-order accuracy [61], the resulting accuracy would not

be optimal. Second, the methods could not guarantee G0 continuity along sharp

features (ridges and corners), so the reconstructed surface may not be “watertight,”

which can be problematic if one need to sample some points very close to the sharp

features.

For more systematic treatment of sharp features, we amend the preceding re-

quirements with the following additional considerations for the reconstructed sur-

face at and near sharp features:

High-order Feature Reconstruction: The ridge curves must be reconstructed to

high-order accuracy. In addition, the reconstructed surface near the sharp
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features must also achieve high-order accuracy.

Continuity at Features: The reconstructed surface must satisfyG0 continuity next

to sharp features.

Robustness: The technique must be robust and numerically stable. In particular,

it must not involve computing intersections of high-order surfaces, which are

notoriously unstable.

In this thesis, we propose two extensions of the WALF framework. First, we in-

troduce a Hermite-style weighted-least squares formulation, which takes advantage

of both point locations and surface normals for surface reconstruction. A key ad-

vantage of this approach is that it allows much more compact stencils. As a result,

it can achieve higher accuracy, especially for relatively coarse input meshes. We

prove the consistency and stability of the proposed method, and describe robust

numerical method for solving it. Second, we introduce a new blending technique

to ensure G0 continuity along sharp ridges and corners, while assuring high-order

accuracy.

Using both point and normal is not a new idea. It is analogous to Hermite

interpolation in numerical analysis. For surface modeling, Walton [118] defined

an approach to reconstruct G1 continuous surfaces. Another example is the curved

PN-triangles [117]. Other related work includes [50], in which points and normals

are used together for estimating curvatures. However, to the best of our knowledge,

our proposed technique is among the first that leverage both points and normals

to deliver high-order accuracy in surface reconstructions. As a result, it provides

a valuable alternative to the traditional CAD models, such as NURBS [45] and T-

splines [99], especially for scientific applications that require accurate instead of
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exact geometry, such as the solutions of PDEs.

Note that another approach for surface reconstruction, which is orthogonal to

high-order reconstruction, is high-degree-continuity reconstruction, such as the mov-

ing least squares (MLS) approximation for point clouds [47, 76]. The MLS is the-

oretically G∞ when global weighting schemes are used. However, note that in

practice, the small weights in MLS are truncated to zeros for efficiency, leading to

loss of continuity in MLS. More importantly, MLS provides no guarantee the or-

der of accuracy. Although its convergence was conjectured in [76], in practice it

is found to be nonconvergent even for simple geometries such as a torus [61]. In

addition, it is difficult to treat sharp features in the framework of MLS. In contrast,

FAH-WALF, similar to WALF, achieves onlyG0 continuity, but they ensuring high-

order accuracy in the normals and curvatures along edges and at vertices, and can

treat sharp features in a systematic fashion.
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Chapter 3

Hierarchical Uniform Refinement for

Unstructured Meshes

The uniform refinement based mesh hierarchy generation has three key design com-

ponents. First, entity type and degree-specific refinement templates are defined that

are used to subdivide an entity into its children. The templates are also used to

update the underlying data structures for all the new children. The second key

design component is the use of array-based half-facet data structures for efficient

mesh traversal during refinement. Finally, the newly created meshes are stored in

level-wise contiguous array to provide memory compactness.

3.1 Multi-degree Refinement Templates

The standard refinement strategy divides each d dimensional entity to 1 → 2d

subentites. However, a desired mesh resolution can be reached much faster if a

higher degree of refinement is used. In such cases, the length of the mesh hierar-
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chies is also small, which might be preferable from some multigrid methods such as

GMGs. Another motivation to use high degree refinement patterns is that it allows

straightforward extension to high-order entities and thus support hp-refinements.

By multi-degree refinement we mean a refinement pattern following vertex posi-

tions analogous to high-order (degree p where p ≥ 2 ) Lagrangian elements. Thus,

for a d dimensional entity, a degree p refinement divides the entity to 1→ pd suben-

tites. We support prime number degrees as any higher degree refinements can be

obtained by applying a sequence of such prime degree refinements. Table 3.1 lists

the currently supported degrees for each dimension. We note that in uniform refine-

ment the same modification operation of dividing an entity into a specific number

of entities is applied to each entity of the mesh. Thus defining static templates w.r.t

a reference entity that contains certain entity type and degree specific information

could aid the refinement process. The template mainly stores the following infor-

mation for each entity type and supported degree of refinement :

• Numbering convention of new vertices: The new vertices are assigned local

indices through which they are uniquely identified within a reference entity.

• Connectivity of new child entities: The connectivity of the new entities us-

ing the local indices of the new vertices. Each such child is also uniquely

identifiable by a local id w.r.t reference.

• Half-facet maps for new child entities: The local sibling half-facet (sibhfs)

and vertex to incident half-facet (v2hf) maps are stored.

Figure 3.1 shows the templates for triangle and quadrilateral reference entities for

degrees 2 and 3. The numbering convention of the reference entity follows the
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MOAB canonical numbering. Apart from these three pieces of data, the template

also stores some other auxiliary information to aid tracking of new vertices intro-

duced on the entity boundary to avoid vertex duplication during refinement. An

example of a degree 3 refinement template for a reference triangle is illustrated in

Tabl 3.2.

Except for tetrahedron entity, the templates are static for all other entities (trian-

gles, quads, hexes) in the sense that they do not need to refer to the physical entity in

order to refine the parent entity. The refinement schemes for a tetrahedron involves

division into smaller congruent tetrahedra and octahedrons which are subsequently

divided into four tetrahedra. Figure 3.2 shows how refining a tetrahedron leads to

congruent smaller tetrahedra and octahedra. The right side of the figure shows the

three possible diagonal choices for each such octahedron to be divided into four

tetrahedra. To deliver a good mesh quality, each such octahedra is divided into

sub-tetrahedra by connecting the shortest diagonal [112]. Thus, for higher-degree

refinements, each octahedron has to find the shortest diagonal using the physical

entity. However, we note that though the smaller tetrahedra obtained by tessellat-

ing an octahedron are not congruent to the parent tetrahedron, all the octahedra are

congruent to each other. Therefore, the shortest diagonal is unique and hence each

octahedron would be divided using the same pattern. We use this fact to define

three static templates for each degree. During refinement, each tetrahedron makes

a choice of the appropriate template based on the smallest diagonal of the physical

tetrahedron. Currently, the template generation is not automatic. Effort is being

made to make it automatic so that higher-degrees, such as 7, 11, etc., can also be

supported.
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Table 3.1: The degrees of refinement currently supported and the corresponding
number of children.

Dimension Degrees #Children

1 2, 3, 5 2, 3, 5

2 2, 3, 5 4, 9, 25

3 2, 3 8, 27

Table 3.2: An example for the degree 3 template of a triangle reference entity.
Children entity connectivity and the template v2hf and sibhfs maps.

Child Entity Connectivity sibhfs v v2hf

1 〈0, 3, 8〉 〈0, 0〉 〈2, 2〉 〈0, 0〉 0 〈1, 0〉

2 〈3, 9, 8〉 〈3, 2〉 〈6, 0〉 〈1, 1〉 1 〈5, 1〉

3 〈3, 4, 9〉 〈0, 0〉 〈4, 2〉 〈2, 1〉 2 〈9, 2〉

4 〈4, 5, 9〉 〈5, 2〉 〈8, 0〉 〈3, 1〉 3 〈3, 0〉

5 〈4, 1, 5〉 〈0, 0〉 〈0, 0〉 〈4, 0〉 4 〈5, 0〉

6 〈8, 9, 7〉 〈2, 1〉 〈7, 2〉 〈0, 0〉 5 〈8, 1〉

7 〈9, 6, 7〉 〈8, 2〉 〈9, 0〉 〈6, 1〉 6 〈9, 1〉

8 〈9, 5, 6〉 〈4, 1〉 〈0, 0〉 〈7, 0〉 7 〈6, 2〉

9 〈7, 6, 2〉 〈7, 1〉 〈0, 0〉 〈0, 0〉 8 〈1, 2〉

9 〈8, 0〉
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3.2 Multi-dimensional Mesh Data Structure

During refinement, one of the key tasks is to avoid introducing duplicate vertices

for shared boundaries between entities. This requires frequent calls to adjacency

routines to get entities connected through entity boundaries. Since AHF stores the

half-facet maps between entities, these types of queries are the most efficient ones

it can support. As a result, it is natural to use AHF as the underlying data structure.

As each level of the mesh hierarchy is generated by refinement of the previous level,

it is necessary to update the appropriate AHF maps for the new level so that the new

mesh can be queried later. The process of updating the AHF maps for the new level

is aided both by the refinement templates (defined in the previous subsection) and

also by the fact that the topology of the domain does not change during refinement.

Thus, children of manifold entities remain manifold for all levels, and no new non-

manifold entities are introduced. The AHF maps are updated in two stages:

1. Update maps for children of an entity: After an entity is refined, the sibling

half-facet (sibhfs) and vertex-to-incident half-facet (v2hf) maps are updated

only for the child entities of the working entity by using the same from the

refinement templates.

2. Update maps between children of parent siblings: After all the entities of

the mesh have been refined, the maps are now updated to connect the child

entities incident on boundaries of the parents.

Figure 3.3 illustrates the above two steps during refinement of a triangle mesh with

two entities. Algorithms 1 and 2 outline the procedure for updating local and global

AHF maps. For mixed-dimensional meshes, the maps for each lower dimensional
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Degree-3 Refinement

Local Update: 
AHF maps for child entities

Global Update: 
AHF maps for children 
on shared facet of parents

Figure 3.3: Updating the AHF maps for the refined mesh takes place in two stages.
First, maps for the children of each triangle are updated. After, both the triangles
have been refined, the maps are now updated to connect the children entities sharing
a parent facet.

submesh are updated in a similar manner.

3.3 Multi-level Mesh Storage

An array-based mesh storage leads to increased efficiency, but it requires careful

consideration to maintain it for operations involving a change in the contiguity of

the memory space. By virtue of the uniform refinement of the mesh, it is possible

to estimate the total number of entities that will be created for a given degree of

refinement. Table 3.3 shows the estimates for new entities created after a single level

of refinement for a 3D mesh with embedded curves and surfaces. Once the storage
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Algorithm 1 Updating AHF maps for children of an entity
Require: : childEnts: ordered child entities of a parent, childVerts: ordered new

vertex indices of childEnts, refTemplate: refinement template for entity type
and degree

Ensure: sibhfs: update sibling half-facets for childEnts, v2hf: update vertex to
half-facet for childVerts

1: for each vertex v in childVerts do
2: if v2hf(v) = 0 then
3: cid← child id from refTemplate→v2hf ;
4: lid← half-facet id from refTemplate→v2hf ;
5: v2hf(v) = (childEnts[cid], lid);
6: end if
7: end for
8: for each child c in childEnts do
9: for each facet f in c do

10: if sibhfs(f is not set then
11: cid← sibling child id from refTemplate→sibhfs;
12: lid← sibling half-facet id from refTemplate→sibhfs;
13: sibhfs(c, f ) = (childEnts[cid], lid);
14: sibhfs(childEnts[cid], lid) = (c, f );
15: end if
16: end for
17: end for
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Algorithm 2 Updating AHF maps between children of sibling parents sharing a
facet.
Require: : PE: entities of previous level, CE: entities of current level, PV: vertex

indices of PE, CV: vertex indices of CE, refTemplate: refinement template for
entity type and degree entity type and degree

Ensure: sibhfs: update sibling half-facets for CE, v2hf: update vertex to half-facet
for duplicates of PV in CV

1: for each vertex v in PV do
2: lvid← local id of v in pid;
3: pid← parent entity from incident half-facet v2hf(v);
4: cid← child id from refTemplate→v2hf ;
5: lid← half-facet id from refTemplate→v2hf ;
6: curvid← current id of v in CV;
7: v2hf(curvid) = (CE[cid], lid);
8: end for
9: for each entity e in PE do

10: for each facet f in e do
11: childs← children entities of e incident on f ;
12: sibeids← sibling entities from sibhfs(e, f);
13: siblids← sibling facet ids from sibhfs(e, f);
14: for each sibling seid in sibeids do
15: sibchilds← children entities of seid incident on siblids[seid];
16: find orientation of f and siblids[seid];
17: update sibhfs(childs,f ) with matching (sibeids, siblids);
18: end for
19: end for
20: end for
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Degree
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L p

Mesh Storage

Figure 3.4: The data layout of meshes at each level. For example, starting with
the first quad of the sphere mesh, after each level of refinement, the children are
stored in a pre-decided order as defined in the refinement templates. This local
order uniquely identifies each child of the parent.

requirement for a new level is estimated, the memory is allocated in contiguous

blocks. During refinement, as each entity is subdivided, the new entities are stored

according to the local order specified in the refinement template. Thus, children of

the first entity in previous level are stored first, then the children of the second and so

on. This data layout supports straightforward index based inter-level (i.e., parent-to-

child or child-to-parent) queries, which are vital to multi-level methods. Figure 3.4

illustrates this memory layout. To provide mesh independence at each level, we

duplicate vertices from the previous level to create the new mesh along with new

vertices. As a result, the mesh hierarchy generation would return a sequence of

meshes that are independent of each other while providing inter- and intra-level

mesh access. If necessary, the vertices at a specific level can be renumbered to

maintain small bandwidths for the assembled matrices.
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Table 3.3: Estimates for new entities that will be created after a refinement of degree
p. These estimates are for a 3D mesh with explicit curves and surfaces. Here | · |
denotes the number of entities in a particular entity set. Ep and F p are the total
number of edges and faces in the 3D mesh at the previous level, respectively.

#Entities at previous level #Entities after refinement of degree p

Vertices |V p| |V | = |V p| + nve ∗ |Ep| + nvf ∗ |Fp| + nvc ∗ |C|

Explicit Edges
∣∣∣Ep

exp

∣∣∣ ∣∣Eexp
∣∣ = p ∗

∣∣∣Ep
exp

∣∣∣
Explicit Faces

∣∣∣Fp
exp

∣∣∣ ∣∣Fexp
∣∣ = p2 ∗

∣∣∣Fp
exp

∣∣∣
Cells |C| |C| = p3 ∗ |Cp|

3.4 Parallel Hierarchical Mesh Generation

Generating mesh hierarchies using uniform refinement in parallel may seem to be

a relatively straightforward process, since each processor refines its local mesh. If

the initial mesh distribution is balanced, then uniform refinement would not in-

troduce any additional imbalance. Thus, there is no need to move mesh entities

between processors. However, generation of each level of the hierarchy also in-

troduces new entities on the shared interface between processors. Unless these

new entities are resolved, the generated hierarchies are only useful for local opera-

tions. More complicated algorithms requiring shared information such as exchang-

ing ghost-layers, solver setups that rely on knowing owned/ghosted entities for DoF

distribution would break down. In this section, we discuss two parallel communi-

cation algorithms that resolves such new entities on the shared interface between

processors. We also describe the refinement algorithm to generate multi-degree,

multi-dimensional hierarchies of unstructured meshes in parallel.
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3.4.1 Parallel Communication to Resolve Shared Entities

The MOAB library implemented with array-based data-structures have been de-

signed to be scalable in memory layout and access. There are several optimized

one-sided communication algorithms that make use of aggregation strategies to

minimize total data transferred between processors. Using this parallel framework,

the mesh hierarchy generation can be performed in a series of optimal steps. Once

each processor loads a part of the distributed coarse mesh, local refinement for all

the entities can be performed. However, the new entities on the shared interface

created by the refinement have to resolved, so that other communication algorithms

requiring shared mesh or data can take place. We discuss the following two ap-

proaches to communicate and resolve these new shared entities:

• The first approach uses a parallel merge algorithm using geometric proximity

of the mesh vertices to resolve first the shared vertices and subsequently the

subentities.

• The second approach uses a combinatorial matching algorithm using the coarse

mesh to match local handles of new entities with their remote handles.

Merge based resolve interface algorithm

Since the refinement is based on pre-defined templates, the co-ordinates for the

new vertices and entities on the shared interface between processors will be the

same. We utilize this information to design a communication algorithm to resolve

the newly created entities in preparation for synchronization of ghost layers and ex-

change of meta-data (MOAB tags[107]). The first approach to resolve shared new

entities as each level is created based on parallel merge algorithm using geometric
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proximity of the mesh vertices. This parallel merge of the interface mesh algorithm

first matches mesh vertices based on geometric proximity and then uses connec-

tivity matching algorithm to decipher the corresponding entity in the local mesh.

The merging algorithm derives its motivation from the vertex-matching algorithm

described in [58, 110]. The algorithm proceeds by first partitioning the geometric

bounding box of all vertices over processors, with each processor responsible for a

distinct geometric region (plus a small epsilon layer whose thickness is twice the

distance tolerance of the merge). Then, each processor retrieves the vertices on the

skin of the local mesh and assembles a tuple list [110] that holds the coordinate po-

sitions of the vertices and the destination processor. Finally, the higher-dimensional

entities on the skin are resolved using the connectivities. One disadvantage of the

above merge algorithm is that it does not use the communication pattern that is al-

ready available from the coarsest mesh, leading to use of global communications

instead of one-sided communication.

Combinatorial matching based resolve interface algorithm

To overcome the shortcoming of multiple rounds of global communications in the

merge-based approach, we design an optimized algorithm for the resolution of the

shared entities by taking into account the communication pattern of the coarsest

mesh. In MOAB, the shared interface of a distributed mesh is resolved during

the mesh loading step, which involves creating the following parallel information

(stored using tags) for any entity:

• PSTATUS: This is a flag classifying the type of sharing information for an

entity, and there are five types (owned, interface, ghost, shared, and multi-
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shared).

• SHARED: In the case an entity is shared with only one other process, the

entity is classified as shared, and its remote handle and the remote processor

rank is stored.

• MULTISHARED: In the case an entity is shared with more than one other

process, the entity is classified as shared, and all of its remote handles in

remote processors are stored including the current processor and local handle.

Any algorithm for resolution of entities on the shared interface has to create or

update these three kind of information correctly. Now, we note that the local and

remote representation of any shared interface entity may differ as shown in Fig-

ure 3.5. However, the remote interface entity can be oriented to match the local

representation via a combination of its connectivity and subsequently, its local and

remote child entities. For example, in 2D (Figure 3.6), the local child edges can be

matched with the remote child edges depending on the orientation difference be-

tween the coarsest local edge and its remote edge. This observation along with the

fact that the communication pattern for each processor does not change during and

after hierarchy generation forms the basis of the optimized resolve shared entities

algorithm.

The optimized algorithm starts by gathering a list of shared processors with the

current processor. For each shared processor, a list of coarsest level entities are col-

lected along with their children entities and their connectivities. This information

is then send to the sharing processor while ensuring that the local handles of the

coarsest entities are replaced with their remote handles on the receiving processor.

On the receiving processor, the connectivity of the coarsest entities now follows the
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Processor P0 Processor P1

v0 v1

v2v3

nv0

nv1
nv2

nv3

nv4

V2 V1

V0V3

NV1

NV0
NV2

NV3

NV4

Local : Remote

  v0         V2

  v1         V1

  v2         V0

  v3         V3

Local : Remote

  V0         v2

  V1         v1

  V2         v0

  V3         v3

Shared Vertices

 <v0, v1, v2, v3>  <V0, V1, V2, V3>

 To Match

nv0 = NV1

nv1 = NV4

nv2 = NV2

nv3 = NV0

nv4 = NV3

Shared

Face

Local Connectivities

Figure 3.5: A shared face between two processors. After one level of refinement
the new vertices and faces have to be matched.

order on the sending processor leading to detection of the combination difference

between the local and remote representations. After this single round of one-sided

communication, each process contains all the remote handles of new entities from

its sharing processors. The algorithm then proceeds to decipher the type and match

the local and remote handles of the new entities and finally updating the parallel

information as described above. The outline of the optimized algorithm is given in

Algorithms 3,4 and 5.
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Figure 3.6: For a shared edge, there can be two options: either the remote edge has
the same orientation or opposite orientation. Depending on the orientation, the new
vertices and child edges can be appropriately matched.

Algorithm 3 The optimized resolve shared algorithm using coarse mesh informa-
tion.
Require: : meshSets for N levels: Each meshSet contain the mesh for a level in

the hierarchy.
Ensure: pstatus: update parallel status flag for entities in meshSets,

shared/multishared: update shared or multishared tags for entities in meshSets.

1: Obtain the list of shared processors SP = Ps[i], i = 1,..,nsharedProcs with the
current processor Pc;

2: Create localBuffs and remoteBuffs for sending to and receiving data from
SP;

3: for each processor Ps[i] in SP do
4: Obtain sharedEnts→list of coarsest shared entities;
5: Obtain EntList→collect_sending_data(Ps[i], sharedEnts);
6: Add to localBuffs[i]→EntList;
7: end for
8: Send localBuffs to SP and receive data into remoteBuffs;
9: Obtain (remote_procs, remote_handles)→
match_remote_handles(SP, localBuffs, remoteBuffs);

10: Call update_parallel_info(remote_procs, remote_handles);
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Algorithm 4 Algorithm collect_sending_data to collect sending data to a shared
processor based on the coarsest shared entities.
Require: : to_proc: sending processor, sharedEnts: list of coarsest entitites

shared with to_proc
Ensure: EntList: list of entities including children at all levels to be sent to

to_proc
1: Obtain from sharedEnts the sets F0, E0, V0 where
2: F0 = list of shared coarsest faces,
3: E0 = list of shared coarsest edges that are not part of the entities in F0,
4: V0 = list of shared coarsest vertices that are not part of entities in F0 and E0;
5: Create Flist = <F0, F1, .., FN , FE0,FE1,..,FEN ,FC0,FC1,..,FCN> where
6: Fl = list of children entities of F0 at level l,
7: FEl = list of bounding edges of entities at level l,
8: FCl = list of connectivities of entities at level l;
9: Create Elist = <E0, E1, .., EN ,EC0,EC1,..,ECN> where

10: El = list of children entities of E0 at level l,
11: ECl = list of connectivities of entities at level l;
12: Create V list = <V0, V1, .., VN> where
13: Vl = list of duplicates of V0 at level l;
14: Add to EntList→<Flist,Elist,V list>;

3.4.2 Refinement Algorithm

Figure 3.7 shows the flowchart of the refinement algorithm to generate a hierarchy

of unstructured meshes in parallel. We have also developed a tool to expose this

functionality in MOAB that can read in a mesh, generate the hierarchies in parallel

for a given number of levels and a sequence of degree of refinements, and then write

back to a HDF5 file for consumption of the mesh hierarchy in PDE solvers..
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Algorithm 5 Algorithm match_remote_handles to decipher remote handles for
new entities in the mesh hierarchy.
Require: : SP = Ps[i], i = 1,..,nsharedProcs: list of shared processors,

localBuffs and remoteBuffs: local and remote handles to be resolved.
Ensure: pinfo→(remote_procs, remote_handles)

1: for each processor Ps[i] in SP do
2: Obtain <locF list,locElist,locV list> from localBuffs[i];
3: Obtain <remFlist,remElist,remV list> from remoteBuffs[i];
4: Match children faces, their edges and vertices of shared faces
5: for each coarsest face fL0 in locF list→F0 do
6: Find fR0 in remFlist→F0 corresponding to fL0 ;
7: Find the orientation difference Od between fL0 and fR0 ;
8: for level l=1:N do
9: Find childrens CH(fL0 ) of fL0 at current level;

10: Find parent PL of CH(fL0 ) at level l − 1;
11: Find corresponding parent PR from pinfo→PL;
12: Find childrens CH(PR) at current level;
13: Using Od match handles of children faces, edges and vertices;
14: Push to pinfo→(CH(fL0 ),Ps[i],CH(PR));
15: end for
16: end for
17: Match children edges and vertices of shared edges
18: for each coarsest edge eL0 in locElist→E0 do
19: Find eR0 in remElist→E0 corresponding to eL0 ;
20: Find the orientation difference Od between eL0 and eR0 ;
21: for level l=1:N do
22: Find childrens CH(eL0 ) of eL0 at current level;
23: Find childrens CH(eR0 ) of eR0 at current level;
24: Using Od match handles of children edges and vertices;
25: Push to pinfo→(CH(eL0 ),Ps[i],CH(eR0 ));
26: end for
27: end for
28: Match vertices
29: for each coarsest vertex vL0 in locV list→V0 do
30: Find vR0 in remV list→V0 corresponding to vL0 ;
31: Match duplicates of vL0 and vR0 at current level;
32: Push to pinfo→(dup(vL0 ),Ps[i],dup(vR0 ));
33: end for
34: end for
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Figure 3.7: The flowchart for generation of mesh hierarchy with length num_levels.
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Chapter 4

Conformal and Non-conformal

Adaptive Mesh Refinement

In this chapter, we present a generalization of the Array-based Half-Facet (AHF)

mesh data structure, called Hierarchical AHF, for hierarchical unstructured meshes

generated from adaptive mesh refinement for solving PDEs. This data structure

extends the AHF data structure [40] to support meshes with hierarchical structure,

which often are generated from adaptive mesh refinement (AMR). The design goals

of our data structure include generality to support efficient neighborhood queries,

refinement and derefinement (conformal and non-conformal), and hp-FEM with

mesh smoothing. Our data structure utilizes the sibling half-facets as a core ab-

straction, coupled with a tree structure for hierarchical information.
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4.1 Adaptive Mesh Refinement and Hierarchical AHF

In this data model, we assume that each element has a standard numbering conven-

tion for its vertices and its facets. For standard elements, we follow the convention

of the CGNS (CFD General Notation System) [91, 111]. We do not require explicit

representation of intermediate dimensional entities between 1 and d−1. Instead, we

treat the half-facets as implicit entities, and refer to a half-facet using the element

ID and its local ID within the element.

In the process of AMR, to avoid the duplication of new vertices introduced by

refinement, efficient adjacency queries are critical. The AHF data structure provides

efficient query operations with nice memory performance. A hierarchical structure

is generally necessary for multi-level methods for the linear system of numerical

PDEs. In our data model the hierarchy is stored in an array-based tree-like structure.

We refer to this data model as the Hierarchical AHF.

4.1.1 Hierarchical Structure

The design of the mesh data structure for adaptive mesh refinement assumes that we

start with a conformal manifold mesh. An initial conformal mesh is easy to generate

and it is natural to form a hierarchical structure by mesh adaptation. The refinement

and derefinement requires efficient adjacency queries, which are provided by AHF.

The initial mesh is adaptively refined and the results will be stored in a hierar-

chical structure. The resulting elements from a subdivision of element K will be

referred as the child elements of K, which in turn is called the parent. If element K
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is refined, then it is said to be inactive. Elements generated from subsequent refine-

ment of the children ofK will be called the descendants ofK. On the first level, the

original mesh is stored. Then some elements of the mesh are marked for refinement.

The second level would be the child elements of these elements; see Figure 4.1. On

each level, the child elements of the upper level will form a conformal mesh (which

might not be manifold). This is analogous to quad-tree. For instance, in Figure

4.1, on level 1, element e1
1, e1

2, e1
3 form the initial conformal mesh. On the second

level, the children of e1
1 and e1

2 , i.e. e2
1, . . . , e

2
8 will also form a conformal mesh.

To traverse the tree, we store e2ce for each element, which is the mapping from the

elements to the IDs of their child elements on the next level. On each level, e2ce is

represented as an array. For regular refinement, e2ce will only store the ID of the

first child element, since all children are stored in consecutive order in an array.

4.1.2 Hierarchical AHF

In the hierarchical mesh data structure, the topological information, i.e., the connec-

tivity table of elements will be stored for each level of the mesh. The original mesh

is treated as the first level of the mesh. During the refinement, some elements of the

mesh are marked to be refined. The second level would be the child elements; see

Figure 4.1. On each level, the connectivity will be stored in conn of the mesh data

structure. Each level of the sub-mesh will contain vertices both from the current

level and previous levels, thus storing vertices for each level would be a waste of

memory. Therefore we store the geometric data, i.e. coordinates of all vertices, in

a separate array. The Hierarchical AHF representation is illustrated in Figure 4.1.

To support efficient intra- and inter-level queries, auxiliary information is nec-
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NULL
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new vertices by refinement
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Ω

e11 e12 e13

e21 e25

e31

Figure 4.1: Hierarchical array-based half-facet data structure for a multi-level mesh.

essary. For the intra-level queries, the neighboring information, i.e. AHF data will

be stored in an array for each level sub-mesh. Since the sub-mesh is conformal on

each level, AHF data can be built in a natural way and the data is represented as sib-

hfcs (sibling half-facets) in the mesh data structure in Figure 4.1. In the process of

mesh adaptation, the neighbor information sibhfcs will be updated incrementally.

For inter-level queries, extra information (like e2pe and e2ce) is stored in arrays.

For each element on a certain level, e2ce is the ID of the first child element on the

next level. On the next level, other child elements of this element will be stored next

to the first child element. e2ce is stored in an array for each level and it is necessary

for inter-level traversals. e2pe, element to parent element, is the ID of the parent

element on previous level of this element and it is optional.

To support efficient queries to the parent element for each new vertex, a separate
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mapping v2pe is stored. For each new vertex, v2pe is an array of tuples: level, eid,

lid, where level is the level of its parent element, eid is the ID of the parent element

in level, lid is the canonical ID of this vertex in its parent ID. If the 1-irregularity

rule is applied, the lid would be the same as the local ID of the refined edge. v2pe is

generally necessary for multi-level methods. Also we could use v2pe to determine

which vertex is a hanging node on which level. Generally, if the 1-irregularity rule is

applied, vertex v could only be a hanging node on level v2pe(v).level+1. This could

be further determined by checking if v2pe(v).eid’s sibling elements are refined. If

not, then v is a hanging node.

In Figure 4.2, we illustrate the data structure by refining a simple mesh. First, a

user specifies refinement of e1. The new elements will be created and e2ce in level

1 will be updated. Then the user specifies e4 on the second level to be refined. Here

the 1-irregularity rule is applied to keep the mesh graded. This will introduce an

implicit refinement of e2 on the first level. Correspondingly, data on level 2 will be

updated. v2pe will be stored in a separate array.

4.2 Construction and Modification of Hierarchical AHF

In this section, we describe some detailed algorithms for the construction of Hi-

erarchical AHF, as well as some query and modification operations. Since AHF

is array-based, these algorithms can be implemented in many programming lan-

guages, including MATLAB, C/C++, FORTRAN, etc. We will also describe our

implementation in MATLAB.
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Figure 4.2: Example of Hierarchical AHF under refinement.

4.2.1 Construction of Hierarchical AHF

In the half-facet data structure, there are two components: sibhfcs (sibling half-

facets) and v2hf (vertex to half-facet). The former is central to AHF, as nearly all

adjacency queries require it. These sibling half-facets should map to each other and

form a cycle. The latter array, v2hf, is optional for many operations; for Hierarchical

AHF, it is not built for new vertices. Instead, v2pe (vertex to parent element) is

constructed to store information of new vertices.

In a hierarchical mesh, the AHF for the initial mesh will be constructed first and

then the sub-mesh of each level is constructed incrementally, taking advantage of

ancestor information. In general, the refinement and derefinement require different

algorithms. In the following, we describe these two parts in a manner independent

of the dimension of the mesh.
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Hierarchical AHF: Refinement

Algorithm 6 outlines the steps for mesh refinement, which is applicable to half-

facets in arbitrary dimensions, and is particularly efficient in 1 to 3 dimensions.

New elements are created and appended in corresponding levels. Meanwhile, the

adjacency information, sibhfcs, is updated. This step requires the input of elements

that are marked for refinement:

refTags: arrays stored in a hierarchical structure, which store the elements to be

refined on each level.

The computational cost of Algorithm 6 is linear, assuming that the number of

elements incident on an edge is bounded by a small constant c. For the storage re-

quirement, let |Cr| denote the number of elements to be refined in a certain level of

the mesh. The amortized memory storage increased by refinement will be approxi-

mately (2dvc + 2dfc + 2d)|Cr| integers, for the connectivity, the neighbor informa-

tion, and inter-level maps, with extra space for new vertices coordinates and v2pe

map. Here vc and fc are the numbers of vertices per cell and the number of faces

per cells, 2d is the number of children per element.

Hierarchical AHF: Derefinement

During the second step, we update the sibling half-facets during derefinement. This

step requires the input of elements that are marked for derefinement:

derefTags: a hierarchical structure which stores elements to be derefined on each

level. For each element e in derefTags, we assume that e is refined and the

derefinement operation will remove all children of e and set e to be active.
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Algorithm 6 Update Sibling Half-Facets for Refinement.
Require: hielems: hierarchical mesh data, refTags
Ensure: sibhfcs: cyclic mappings of sibling half-facets for each level of mesh

1: for each level in hielems do
2: for each element e in refTags(level) do
3: for each edge in element e do
4: Loop through elements in level incident to edge to check if edge is

refined
5: if edge is not refined then
6: Refine edge by inserting vertex v in the middle;
7: Update v2pe for vertex v, v2pe(v) = 〈level, e, edge〉;
8: end if
9: end for

10: Refine element e by predefined strategy and update e2ce(e)
11: Construct sibhfcs for children of element e;

{Update sibhfcs for submesh on level+1:}
12: for each facet in element e do
13: Check opposite element of facet on level of submesh
14: if opposite element is refined then
15: Update sibhfcs for children of element e;
16: Update sibhfcs for children of opposite element;
17: else
18: Update sibhfcs for children of element e;
19: end if
20: end for
21: end for
22: end for
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Algorithm 7 Update Sibling Half-Facets for Derefinement.
Require: hielems: hierarchical mesh data, derefTags
Ensure: sibhfcs: cyclic mappings of sibling half-facets for each level of mesh

1: for each level in hielems do
2: for each element e in derefTags(level) do
3: for each edge in element e do
4: Loop through elements in level incident to edge;
5: if none of incident elements is refined then
6: Derefine edge by removing vertex v which is in the middle;
7: Update v2pe for vertex v, v2pe(v) = 〈0, 0, 0〉;
8: else
9: edge cannot be derefined;

10: vertex v which is in the middle is still active
11: end if
12: end for
13: Derefine element e and set e2ce(e) = 0;
14: Set all its children mute;

{Update sibhfcs for submesh on level + 1:}
15: for each facet in element e do
16: Check opposite element of facet on level of submesh
17: if opposite element is refined then
18: Update sibhfcs for children of opposite element;
19: end if
20: Set sibhfcs for children of element e to zeros;
21: end for
22: end for
23: end for

Algorithm 7 outlines the procedure for this stage, which is applicable to half-facets

of arbitrary dimensions. Particularly, a vertex is active if and only if it has incident

cells. A hanging node will be set as inactive if all incident elements are removed

during derefinement.

Similar to Algorithm 6, the computational cost of Algorithm 7 is also linear,

assuming that the number of elements incident on an edge is bounded by a small

constant c. To analyze the storage requirement, let |Cd| denote the number of el-
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ements to be coarsened in a certain level of the mesh. The update will introduce

approximately (2dvc + 2dfc + 2d)|Cd| “holes” in the element connectivity, sibhfcs

arrays and the map e2pe. Dynamic memory management could be utilized to reuse

such holes, for instance, by building a queue to record the holes in the correspond-

ing array introduced by deletion and having any new insertion reuse the memory.

4.2.2 Mesh Adaptation

Mesh refinement and derefinement can be implemented relatively easily in AHF.

For hierarchical meshes, AHF is particularly attractive because the adaptivity could

be performed efficiently and AHF can be modified incrementally. This leads to very

modular adaptivity strategies. To avoid excessive memory copying, we expand the

array by a small percentage (e.g. by 20%) each reallocation, so that the amortized

cost for the local modifications is constant.

The data structure could support a refinement strategy whether the mesh is re-

quired to be conformal or not. In our MATLAB implementation, we support both

regular refinement and red-green refinement (Figure 4.3). Particularly, we enforce

the 1-irregularity rule for the non-conformal refinement. The Kelly error indicator

[65] is utilized for estimating accuracy and marking elements. The AHF code [40]

is used to generate sibling half facet data for the initial mesh.
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Figure 4.3: Red-Green Refinement

4.3 Adaptive Finite Element Method

4.3.1 Continuity Constraints

For FEM over non-conformal meshes, certain constraints need to be applied for

hanging nodes to guarantee continuity. One simple of such constraints is averaging.

For instance, in Figure 4.4(a), we assume the degree of freedom(DOF) of node i

with coordinates xi is ui, then for hanging nodes 4, 5, 6, constraints will be applied

as: u4 = 1
2
u1 + 1

2
u2, u5 = 1

2
u2 + 1

2
u3, u6 = 1

2
u1 + 1

2
u3. Then after the stiffness

matrix is assembled, the DOFs for hanging nodes like 4, 5, 6 will be eliminated

according to the constraints. If the original system is AU = b, A is the stiffness

matrix, U is the vector of DOFs, and b is the load vector. Then the constraints could

be represented as

U = ΠT × UR (4.3.1)

Here UR is the vector of DOFs for regular nodes, then each ui is a linear combina-

tion of UR, no matter node i is a regular node or hanging nodes. Π is the constraints

relation matrix: if πi is the i-th column of Π, then we have ui = πTi ∗ UR, i.e. πi is
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Figure 4.4: hanging nodes

the “global” constrained vector. More specifically, if node i is a regular node, then

πi is a unit vector with 1 at position i and zeros otherwise; if node i is a hanging

node, πi corresponds to the continuity constraints. For example, in h-refinement

with one irregular rule, if node i is a hanging node, then it should be the averaging

of two regular nodes, say vertices l and r, then

πi = [0 · · · 0 1/2 0 · · · 0 · · · 0 1/2 0 · · · 0]T

lth ith rth .

From this, we could get a reduced system, still symmetric

ΠAΠTUR = Πb. (4.3.2)

4.3.2 Hanging Nodes in FEM

When the mesh is refined, though hanging nodes are allowed, some of them will

turn into regular nodes in the process, like node 5 in Figure 4.4(b). Regular nodes
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have their own DOFs and therefore they could actually improve the local resolution

by introducing extra DOFs over the original mesh. This means the mesh is getting

finer by regular nodes. But what actually do hanging nodes introduce?

For h-refinement, the answer is that if all the nodes introduced by refining the

same element stay as hanging nodes, then these irregular nodes simply introduce

nothing! Lets discuss this with the example in Figure 4.4(a).

Assume the nodal basis functions on a triangle ∆ijk with nodes i, j, k are Ti,jk,

Tj,ki, Tk,ij such that Ti,jk is 1 at node i and 0 at nodes j, k, similarly for the rest two.

Then over the coarse mesh without hanging nodes 4, 5, 6, the element solution for

∆123 is

u1T1,23 + u2T2,13 + u3T3,12 (4.3.3)

If the mesh is refined, introducing hanging nodes 4, 5, 6, then the element solu-

tion for ∆123 should be

ũ1T1,46+ ũ2T2,45+ ũ3T3,56 +

ũ4N4+ ũ5N5+ ũ6N6

Here ũi is the DOF of node i under refined mesh,

N4 =





T4,25

T4,56

T4,61

0

on ∆425

on ∆456

on ∆461

else

(4.3.4)
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Similarly for N5, N6. Apply the constraints, we get

ũ1T1,46+ 1
2
ũ1N4+

1

2
ũ1N6 +

ũ2T2,45+ 1
2
ũ2N4+

1

2
ũ2N5 +

ũ3T3,56+ 1
2
ũ3N5+

1

2
ũ3N6

Then we could assemble a new vertex basis function for node 1 as

T̃1,23 = T1,46 +
1

2
N4 +

1

2
N6 (4.3.5)

T1,46, N4, N6 are hat functions so T̃1,23 = 1 on node 1, T̃1,23 = 1/2 on nodes 4, 6,

T̃1,23 = 0 on nodes 2, 3, 5, the same as T1,23. Over ∆146,

T̃1,23 = T1,46 +
1

2
T4,61 +

1

2
T6,41 (4.3.6)

This is a linear function on ∆146 which means it could be determined by its values

on nodes 1, 4, 6. From this we could get

T1,23 = T̃1,23 on ∆146 (4.3.7)

Similarly apply the same argument, we could get

T1,23 = T̃1,23 on ∆123 (4.3.8)

and further over ∆123

T2,31 = T̃2,31 (4.3.9)
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T3,12 = T̃3,12 (4.3.10)

When we apply the constraints on the linear system, the DOFs of hanging nodes

are distributed to the parent nodes. This in fact corresponds to use the assembled

nodal basis function(see Appendix A). In this simple case, hanging nodes introduce

nothing since the assembled nodal basis functions are the same as the ones in the

original mesh.

Let’s take another example in Figure 4.4(b). On the refined mesh, nodes 4, 6

are hanging nodes and the element solution for ∆123 should be

ũ1T1,46+ ũ2T2,45+ ũ3T3,56 +

ũ4N4+ ũ5N5+ ũ6N6

Apply the constraints for nodes 4, 6, we get the element solution

ũ1T1,46+ 1
2
ũ1N4+

1

2
ũ1N6 +

ũ2T2,45+ 1
2
ũ2N4 +

ũ3T3,56+ 1
2
ũ3N6 +

ũ5N5

We could tell that the nodal basis for node 1 introduced by this element solution is
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the same as 4.3.6. But for nodes 2, 3, the situation is different. For example

T̃2,31 = T2,45 +
1

2
N4 (4.3.11)

Thus

T̃2,31 =





T2,45 + 1
2
T4,25

1
2
T4,56

0

1
2
T1,46

on ∆254

on ∆456

on ∆536

on ∆461

(4.3.12)

which means that T̃2,31 6= T2,31 on ∆456, ∆536, ∆461. Similarly for node 3,

T̃3,12 6= T3,12. In this case, node 5 will introduce something new. On the other

hand, when eliminating the DOFs of hanging nodes 4, 6, the stiffness matrix will

be altered.

Therefore, only the introduced regular nodes by refinement would affect the

linear system! The continuity constraints reflects only the information of solution

on the refined element, while neglecting information from its neighbors. Thus,

hanging nodes contribute little to the accuracy.

Remark 1. For quad tree, the center node after refinement will serve as regular node,

so the refined element will alway introduce new DOF.

Remark 2. In 3-D, the refined tetrahedron, like refined triangle, does not always

introduce new DOFs. For Octree, similar as quad tree, new DOF will be introduced

when hexahedron is refined.
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4.4 Rules for Refinement

4.4.1 Introduction

Definition 3. An element is called a Phantom Element if it is illusional and has

no real effect, if its introduction does not change the linear system and in turn the

accuracy of the finite element approximation.

Clearly, phantom elements should be eliminated, since they waste computa-

tional resources without introducing anything useful. In Figure 4.5(b), the original

mesh is refined with ∞-irregularity rule and results in phantom elements whose

nodes are marked as hollow. According to our analysis in Section 4.3.2, these hang-

ing nodes will all be eliminated and the resulted system is the same as the original

mesh in Figure 4.5(a).

Theorem 4. An element is phantom if and only if all its nodes are hanging nodes.

Proof. If an element is not phantom, its regular nodes would appear in the linear

system would change. On the other hand, If an element is phantom, then all its

hanging nodes will be removed from the linear system. In addition, for the nodes

of a phantom element, the constraints ensure that removing them would produce

the exactly the same shape functions and test functions as if the phantom elements

were not introduced. This completes the proof.

What’s the best k for k-irregularity rule? To answer this question, note that any

k-irregular mesh can be converted into a 1-irregular mesh. During the conversion,

we convert some existing hanging nodes into regular nodes and introduce some new

hanging nodes. These new hanging nodes would not appear in the resulting linear

system.
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The question is how the error would behave for the hanging nodes into regular

nodes? We can think of it in the following three aspects:

1) Condition numbers: We can reduce any k-irregular meshes into a 1-irregular

mesh. In this step, h would not be reduced if the original mesh is well shaped.

The dominating part of the condition number is O(1/h2). Therefore, 1-irregularity

should have similar condition number as 2-irregularity when there are no phantom

elements.

2) Accuracy: Since we converted some hanging nodes into regular nodes, the

local errors at those points may be reduced. For functions with a smooth distribution

of errors, this is desirable.

3) Efficiency: Since we have regular nodes, the number of DOFs increases dur-

ing the conversion by a small fraction. For a direct solver, this can increase the

cost of solving the linear system. However, for multigrid solvers, this increase is

negligible. On the other hand, having k-irregularity would make it more expensive

to perform local searches in the data structure. The local searches involve indi-

rect memory access and has no memory locality, so in practice its adverse impact

on performance will likely be much more than the increased cost of matrix-vector

multiplication, which has good locality.

Overall, 1-irregularity is preferred since it produces smoother distributions of

errors, and also have comparable condition numbers and efficiency as k-irregularity,

especially when multigrid methods are used. When the original mesh is bad, then

probably the important regions fall into isolated elements. Moreover, if we allow

arbitrary levels of refinement, then the refinement would result of phantom elements

which contribute little to improve accuracy.
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4.4.2 Refine Strategy

In order to increase accuracy via introducing new DOFs, not just phantom elements,

we should define the error measures along facets (edges in 2-D and facets in 3-D).

If the error is relatively large along a facet, we would ensure the new vertices on the

facets are regular nodes. In triangular mesh, when one triangle is refined according

to error indicator, not necessarily all new nodes serving as regular nodes, thus local

resolution improves little. This contradicts to our expectation. Instead of refining

elements, if we refine facets according to error indicator, then new nodes would be

regular and they have their own DOFs. After refining facets then we refine elements

sharing these facets. At last we could regularize by k-irregularity rule, k-neighbor

rule. Actually, for each element the Kelly error indictor computes the gradient

change along each facet and simply sums up these errors to serve as the error of the

element. Therefore Kelly error works fine for this refine strategy.

4.4.3 Condition Number of Π in h-refinement

From the formulation, we could tell that Π should have the form

Πn×m =

[
In×n Cn×s

]
=




1 0 · · · 0 0

0 1 · · · 0 0

...
... . . . ...

...

0 0 · · · 1 0

0 0 · · · 0 1

|

|

|

|

|

1/2 1/2 · · ·

1/2 0 · · ·
...

...
...

0 0 · · ·

0 1/2 · · ·




(4.4.1)
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n is the number of regular nodes and s = m − n is the number of hanging nodes.

Here we assume that the first n nodes are regular nodes, and the rest are hanging

nodes. Here we assume that the first n nodes are regular nodes, and the rest are

hanging nodes. If not, suppose original constraint matrix is Πo and we always

could find a unitary matrix E such that Πo × E = Π which has above form. Then

the linear system could reduced to Π(E−1AE−T )ΠTUR = Π(E−1b).

To get the condition number of Π, we compute the eigenvalues of ΠΠT and get

ΠΠT = I + CCT (4.4.2)

Suppose CCT = UΣUT , then ΠΠT = U(I + Σ)UT . This means that the eigenval-

ues λ1(ΠΠT ) ≥ λ2(ΠΠT ) ≥ · · · ≥ λn(ΠΠT ) of ΠΠT satisfies

λi(ΠΠT ) = 1 + λi(CC
T ), i = 1, · · ·n. (4.4.3)

Thus if we have the estimation of eigenvalues of CCT , it trivial for ΠΠT .

For a hanging node j, we could find its parent nodes. If any one of its parent

nodes is not regular, than we can find parent nodes of node j’s parent nodes. Keep

tracing back and these nodes appearing are called ancestor nodes of node j. Con-

tinue until the ancestors are regular. Those regular ancestor nodes of hanging node

j are called root nodes of j and node j is called descendant node of these root

nodes. For instance, in Figure 4.4(a), node 1 and 2 are the parent nodes and root

nodes of node 4. In Figure 4.5, the nodes marked circle inside ∆125 are descen-

dants of nodes 1, 2, 5.

Note that non-zeros ofj-th column in C = {cij}n×s correspond the weights of
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Figure 4.5: Irregularity rules

hanging node j against their ancestor nodes, i.e. xn+j =
∑n

i=1 cijxi, j = 1, · · · , s.

Since hanging nodes are generated by inserting nodes at the middle of an edge,

cij ≥ 0 and
∑b

i=1 cij = 1. Non-zeros of i-th row of C correspond to descendant

nodes of regular node i, and the values are descendant nodes’s weights over node i.

Suppose M = CCT , then the diagonal entry of M is
∑s

j=1 c
2
ij, i = 1, · · ·n which is

the squared sum of contribution from descendants of node i in terms of weights. The

off-diagonal (i, k) entry of M is
∑s

j=1 cijckj . We could tell that
∑s

j=1 cijckj 6= 0 if

and only if there is at least one hanging node whose root nodes include both node i

and k.

We define regular node i and k are directly connected if
∑s

j=1 cijckj 6= 0,

which implies that nodes i and k share one descendent node. A path is an ordered

sequence of nodes {i1, i2, · · · , il} such that each node is directly connected to next

node. Node i and k are connected if there is a path between i and k. Then by

this definition a graph is formed over the mesh, such that regular nodes without

descendants are isolated nodes in graph, nodes i and k are connected by an edge

if they are directly connected. One connected component of this graph is a group

of nodes such that any two of such nodes are connected, and any other node is not
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connected to any node in this group. A regular node without descendant is isolated

and a trivial connected component. For example in Figure 4.4(b), nodes 1, 2 are

directly connected, and one connected component is {1, 2, 7, 3}. In Figure 4.5,

nodes 1, 2, 5 form a connected component, nodes 3, 4 are isolated.

Suppose the nontrivial connected components are G1, · · · , Gnc, with ni regular

nodes in each and if reorder the regular nodes as G1, · · · , Gnc, and then regular

nodes without descendant, thenCCT will be transformed to a block diagonal matrix




M1 0 · · · 0 0 · · · 0

0 M2 · · · 0 0 · · · 0

...
... . . . 0 0 · · · 0

0 0 · · · Mnc 0 · · · 0

0 0 · · · 0 0 · · · 0

...
...

...
...

... . . . ...

0 0 0 0 0 · · · 0



n×n

(4.4.4)

WhereM1, · · · ,Mnc correspond to nodes in groupsG1, · · · , Gnc. This is due to the

fact that nodes sharing the same descendant node must lie in the same group and
∑s

j=1 cijckj 6= 0 if and only if there is at least one hanging node whose root nodes

include both node i and k.

For each Mi, i = 1, · · · , nc we estimate its eigenvalues. Since M = CCT , so

there exists block Ci ∈ Rni×si
+ of C such that Mi = CiC

T
i . For Ci, similarly as C,
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the rows and columns have the same meaning as the ones of C. Thus

(1, · · · , 1)1×ni
CiC

T
i = (1, · · · , 1)1×siC

T
i

= (ωi1, · · · , ωini
)

Since non-zeros of k-th row of C correspond to descendant nodes of regular node

k, and the values are descendant nodes’s weights over node k, thus similarly for

Ci, ωil is the sum of weights from descendent nodes of l-th regular node in group

Gi, l = 1, · · · , ni, ωil ≥ 0. Magnitude of {ωil} depend on if the hanging nodes is

well distributed: if hanging nodes are clustered, then {ωil} will be large. Especially

when 1-irregularity rule is applied, ωi will be small. In Figure 4.4(b), for connected

component {1, 2, 7, 3}, the weights contributed by hanging nodes are (1, 1, 1, 1). In

Figure 4.5, connected component {1, 2, 5} has contribution from clustered hanging

nodes (1.9375, 1.9375, 11.125).

Suppose ωi is the maximum, construct M̂i as

M̂i = Mi + diag(ωi − ωi1, · · · , ωi − ωini
) (4.4.5)

Then

(1, · · · , 1)1×ni
M̂i = (ωi, · · · , ωi)1×ni

(4.4.6)

This means that M̂i/ω
i ∈ Rni×si

+ is a symmetric column stochastic matrix which

has the property that maximum eigenvalue is 1.

Therefore,

Mi = M̂i − diag(ωi − ωi1, · · · , ωi − ωini
) (4.4.7)
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M̂i is symmetric thus normal, according to Exercise 26.3(b) in [113], we get for the

maximum eigenvalue λ1(Mi) of Mi, there exist an eigenvalue λ(M̂i) of M̂i such

that

|λ1(Mi)− λ(M̂i)| ≤ ||diag(ωi − ωi1, · · · , ωi − ωini
)||2

=
ni

max
l=1

(|ωi − ωil |)

which gives us

λ1(Mi) ≤ ωi +
ni

max
l=1

(|ωi − ωil |) (4.4.8)

Notice that if {ωil}ni
l=1 are the same then λ1(Mi) = ωi. If hanging nodes are well

distributed and 1-irregularity rule is applied, λ1(Mi) will be small. This is the

case in Figure 4.4(b), for component {1, 2, 7, 3}, λ1(M) = 1. In Figure 4.5,

λ1(M) = 9.4563 for component {1, 2, 5}.

For the maximum eigenvalue λ1(M) of M = CCT , it’s easy to get

λ1(M) ≤ nc
max
i=1

(ωi +
ni

max
l=1

(|ωi − ωil |))

≤ 2
nc

max
i=1

ωi

Since M is symmetric semidefinite, the minimum λn(M) ≥ 0. For adaptive mesh

refinement, typically λn(M) = 0 due to the fact that most of the regular nodes
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result in having no descendent nodes. This implies that

cond(Π) =

√
λ1(ΠΠT )

λn(ΠΠT )

≤
√

1 + λ1(M)

≤
√

1 + 2
nc

max
i=1

ωi

For 1-irregularity rule, since ωi ≤ 1, cond(Π) ≤
√

1 + maxnk=1Hkk, here Hkk is

the number of edges which are incident to node k and have hanging nodes on them.

In this case, it seems cond(Π) is related to the smallest angle θmin in the sense that

Hkk ≤ 2π
θmin

,∀k.

In conclusion, the condition number of Π is determined by distribution of hang-

ing nodes and arbitrary level of hanging node could possibly enlarge the condition

number of Π unnecessarily.
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Chapter 5

High-order Reconstruction

In this chapter, we first introduce our implementation of WALF [61] in MOAB un-

der the Discrete Geometry Module. This could be further utilized by PDE solvers to

handle curved boundaries. Then we present a novel method, FAH-WALF: Feature-

Aware Hermite-style High-order Surface Reconstruction, for robust reconstructions

of unstructured surface meshes to provably high-order accuracy, including the re-

construction of sharp features in the geometry. Our method utilizes a Hermite-style

least-squares approximations to achieve high-order accuracy. FAH-WALF signif-

icantly extends the scope of WALF by supporting coarser input meshes and also

guaranteeing G0 continuity near sharp features.

5.1 Parallel WALF for Curved Boundary Reconstruc-

tion

A key aspect of the refinement algorithm is the positioning of the new vertices as

entities are refined. Using a linear point projection scheme for the new vertices
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1.5 ring

2.5 ring

1 ring

2 ring

Fig. 1. Examples of 1-, 1.5-, 2-, and 2.5-ring vertices for typical vertex in triangle mesh. Each
image depicts the neighborhood of the center black vertex.

of V . It is desirable to assign lower priorities to points that are farther away from
the origin or whose normals differ substantially from the w direction of the local
coordinate frame, such as that defined in (8).

The formulation (4) is equivalent to the linear least squares problem

Ṽ X ⇡ B, where Ṽ = ⌦V and B = ⌦F . (5)

In general, Ṽ is m ⇥ n and m � n. A technical difficulty is that this linear system
may be very ill-conditioned (i.e., the singular values of Ṽ may differ by orders of
magnitude) due to a variety of reasons, such as poor scaling, insufficient number of
points, or degenerate arrangements of points [14]. The conditioning number of Ṽ
can be improved by using a scaling matrix S and changing the problem to

min
Y
kAY �Bk2, where A = Ṽ S and Y = S�1X. (6)

We chose S to be a diagonal matrix. Let ṽi denote the ith column of Ṽ . The ith diag-
onal entry of S is chosen to be kṽik2, which approximately minimizes the condition
number of Ṽ S [7, p. 265].

2.3 Accuracy and Stability of Least Squares Polynomial Fittings

The local least squares polynomial fitting provides us the theoretical foundation for
high-order reconstruction of surfaces, established by the following proposition [13]:

(a) neighbors chosen for fitting on triangular
mesh

~t
u3u20

f(u) = c0 + c1u+ c2u
2

V1

(b) A curve fitting

Figure 5.1: vertex-based polynomial fittings

would compromise the accuracy of the geometry and in turn that of the finite ele-

ment solver. To address this issue, we incorporate a polynomial based high-order

boundary reconstruction strategy, Weighted Averaging of Local Fittings (WALF), in

[61]. WALF constructs third and even higher order accuracy, while guaranteeingC0

continuity. There are two essential parts for WALF: vertex based local polynomial

fittings and high-order continuous surface reconstruction via weighted averaging.

5.1.1 WALF: Weighted Averaging of Local Fittings

Vertex-based polynomial fittings

The first step of WALF is constructing high-order vertex based fittings. Given one

vertex, a local coordinates system is formed and the surface/curve will be repre-

sented as a height function in the local system. Carefully choose the neighbor

vertices and a least square polynomial fitting problem will be formed, see Figure

5.1:
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1. Local parameterization around vertex V: local uv-plane is chosen as the es-

timated tangent plane, and the surface could be represented as a local height

function [u, v, f(u, v)]. The uv-plane is chosen to be perpendicular to the

estimated normal at vertex V.

2. Approximate f(u, v) around a neighborhood of V, using polynomial fitting,

up to degree d:

2 Preliminaries: Vertex-Based Polynomial Fittings

Our high-order reconstruction is based on local polynomial fittings and weighted
least squares approximations. We have successfully used these techniques previously
to compute differential quantities of discrete surfaces (such as normals and curva-
tures) to high-order accuracy; see e.g. [13, 18]. However, due to their local nature,
those approaches for computing differential quantities do not provide a continuous,
global reconstruction of a surface. We hereafter briefly review these techniques and
then adapt them to high-order reconstruction in the next section. For more details on
the theoretical background, readers are referred to [13] and references therein.

2.1 Local Polynomial Fitting

Local polynomial fittings, also known as Taylor polynomials in numerical analysis
[8], are based on the well-known Taylor series expansions about a point. We are
primarily concerned with surfaces, so the local fitting is basically an interpolation
or approximation to a neighborhood of a point P under a local parameterization
(say, with parameters u and v), where P corresponds to u = 0 and v = 0. The
polynomial fitting may be defined over the global xyz coordinate system or a local
uvw coordinate system. In the former, the neighborhood of the surface is defined by
the coordinate function f(u, v) = [x(u, v), y(u, v), z(u, v)]. In the latter, assuming
the uv-plane is approximately parallel with the tangent plane of the surface at P , each
point in the neighborhood of the point can be transformed into a point [u, v, f(u, v)]
(by a simple translation and rotation), where f is known as the local height function.

Let u denote [u, v]T . Let '(u) denote a smooth bivariate function, which may be
the local height function or the x, y, or z component of the coordinate function for
a parametric surface. Let cjk be a shorthand for @j+k

@uj@vk '(0). Let d be the desired
degree of the polynomial fitting, and it is typically small, say  6. If '(u) has d + 1
continuous derivatives, it can be approximated to (d + 1)st order accuracy about the
origin u0 = [0, 0]T by

'(u) =

dX

p=0

j+k=pX

j,k�0

cjk
ujvk

j!k!
| {z }
Taylor polynomial

+

j+k=d+1X

j,k�0

@j+k

@uj@vk
'(ũ, ṽ)

ũj ṽk

j!k!
| {z }

remainder

, (1)

where 0  ũ  u and 0  ṽ  v.

Suppose we have a set of data points, say [ui, vi, 'i]
T for i = 1, . . . ,m�1, sampled

from a neighborhood near P on the surface. Substituting each given point into (1),
we obtain an approximate equation

dX

p=0

j+k=pX

j,k�0

 
uj

iv
k
i

j!k!

!
cjk ⇡ 'i, (2)

3. The formed system is a rectangular linear system. Weighted least square

approximation is applied to obtain solution.

Continuous, high-order surface reconstruction

Consider a triangle composed of vertices xi, i = 1, 2, 3 and a point x in the triangle.

Suppose the barycentric coordinates for x is x =
∑3

i=1 ξixi and we have obtain the

three local fittings qi(ui) around {xi}i=1,2,3. For each local fitting, we could obtain

an estimation of exact geometry of x, qi, by projecting it onto local frame uiviwi

and apply local fitting qi(ui). The we defined the weighted averaging of local

fitting for x is

q(x) =
3∑

i=1

ξiqi (5.1.1)

WALF constructs a G0 continuous surface [61], as illustrated in Figure 5.2.

Remark 5. Note that high-order surface reconstruction could create invalid ele-

ments. When such cases are detected, we could either simply cancel the high order
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p

x2x1 q1 q2

n1 n1 n2n2
q

Fig. 2. 2-D illustration of weighted averaging of local fitting. The black curve indicates the
exact curve. The blue and green curves indicate the fittings at vertices x1 and x2, respectively.
q is the WALF approximation of point p and is computed as a weighted average of the points
q1 and q2 on the blue and green curves, respectively.

the barycentric coordinates of the vertices over each triangle. Consider a triangle
composed of vertices xi, i = 1, 2, 3, and any point p in the triangle. For each vertex
xi, we obtain a point qi for p from the local fitting in the local uvw coordinate frame
at xi, by projecting p onto its uv-plane. Let ⇠i, i = 1, 2, 3 denote the barycentric
coordinates of p within the triangle, with ⇠i 2 [0, 1] and

P3
i=1 ⇠i = 1. We define

q(u) =

3X

i=1

⇠iqi(u) (7)

as the approximation to point p. Figure 2 shows a 2-D illustration of this approach,
where ⇠i are the barycentric coordinates of point p within the edge x1x2.

WALF constructs a C0 continuous surface, as can be shown using the properties
of finite-element basis functions: The barycentric coordinates at each vertex of a
triangle corresponds to the shape function of the vertex within the triangle, and the
shape function of the vertex in all elements forms a C0 continuous basis function
(i.e., the linear pyramid function for surfaces or the hat function for curves). Let �i

denote the basis function associated with the ith vertex of the mesh, and it is zero
almost everywhere except within the triangles incident on the ith vertex. Therefore,
q can be considered as a weighted average of the polynomials at all the vertices,

q(u) =

nX

i=1

�i(u)qi(u),

and then it is obvious that q is C1 within each triangle and C0 over the whole mesh.

The idea of WALF is intuitive, but the analysis of its accuracy is by no means straight-
forward. If the coordinate systems were the same at all vertices, then the analysis
would have been easy, as q would have inherited the accuracy of qi. However in our
case, the local fittings at the three vertices of a triangle are in different coordinate
systems in general, and this discrepancy of coordinate systems can lead to additional

Figure 5.2: 2-D illustration of weighted averaging of local fitting

projection or apply strategies such as the one in [77] to improve geometric approx-

imation.

5.1.2 High-order Surface Reconstruction in MOAB

The reconstruction algorithm has been implemented as a submodule, Discrete Ge-

ometry, under the framework of MOAB. It supports high-order surface reconstruc-

tion in serial and parallel. It could take a mesh set as input and all reconstruction

will be performed on this mesh. This mesh set could be a mesh in MOAB (Fig-

ure 5.3(a)), or only subset of it (Figure 5.3(b)), or a mesh subset with proper ghost

layers in parallel environment (Figure 5.3(c)).

Local polynomial fitting

Given an degree d for vertex V , proper stencil around V will be selected and a

polynomial fitting is applied for the height function which is zero at V1. The fitting

could be interpolation or lease square fitting. For a given degree d for fitting, the

required rings of neighborhood for each vertex in triangular mesh is (d + 1)/2 for

interpolation and (d + 2)/2 for least square fitting. During the fitting process, cer-
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(a) Sphere mesh (b) Inner circle for reconstruction (c) Mesh in parallel

Figure 5.3: Mesh set for reconstruction

tain neighbor points probably will be removed if they might make the local height

function folded in uv-plane.If the stencil is too small after removing, the degree will

be downgraded. If the degree d is too large for current stencil, the resulted linear

system may be ill-conditioning and the fitting could be over-fitting. Certain strat-

egy is adopted to downgrade degree d, thus the output of reconstruction might have

lower degree than user input d.

Preprocessing under parallel environment

The local polynomial fitting requires n-ring neighbor vertices of the given vertex

V. In parallel environment, mesh is partitioned into different processors. In each

processor, for vertices on partition boundary, ghost layers should be retrieved before

performing the local fittings. In parallel environment, if the required n-ring stencils

for local fittings of each vertex could be obtained, including nodes on partition

boundary, then reconstruction on each processor gives the same result as in serial

environment, even for the shared vertices. In such case therefore no communication

is required during or after surface reconstruction. To guarantee this, the number of

layers of ghost elements is determined according to the degree of fittings. If the
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Figure 5.4: Work flow of local fitting
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degree of fitting requires k-ring stencil, then we will retrieve k+1 layers of ghost

elements, to guarantee that one each processor, not only vertices on the partition

boundary get the same stencils, but also the ghost vertices has exact the same normal

estimation as in serial.

5.2 Hermite-style High-order Surface Reconstruction

The WALF method described in the Section 5.1.1 has two main issues. First, the

method may be inaccurate (due to lack of points in the stencils) or return lower-

order accuracy (degradation due to safeguards against oscillations) [61] for rela-

tively coarse meshes. Secondly, it does not guarantee G0 continuity along sharp

features (ridges and corners) leading to leaks near such features. In this section, we

address the first issue by extending the purely point-based least-squares fitting to in-

clude normal-based information, similar to Hermite interpolation. We describe the

extended formulation, including new criteria for selecting the neighborhood and the

weighting schemes, and present the proof of consistency and stability for Hermite-

style approach. When coupled with the weighted-averaging scheme in WALF, we

then obtain Hermite-style WALF method.

Point and Normal based Local Polynomial Fittings

Given a smooth surface defined in the global xyz coordinate system, it can be

transformed into a local uvw coordinate system by translation and rotation. Let

the origin of the local frame be at x0 = [x0, y0, z0]T (note that for convenience
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we treat points as column vectors) on the surface. Both coordinate frames are or-

thonormal right-hand systems. Suppose the exact normal direction of the surface

is given. Let n0 be an approximate normal direction with unit length at the origin,

then the uv-plane is the tangent plane of the surface at the origin. t1
0 and t2

0 are

the unit vectors in the global coordinate system along the positive directions of the

u and v axes, respectively. For each point x, it could be transformed to a point

p(u) = [u, v, f(u)] = QT
0 (x− x0), u = (u, v), where

Q0 =

[
t1

0 t2
0 n0

]
(5.2.1)

In general, f is not a one-to-one mapping over the whole surface, but if the uv

plane is close to the tangent plane at a point x0, then f would be one-to-one in a

neighborhood of x0. We refer to this function f(u) : R2 → R as a local height

function at x0 in the uvw coordinate frame. The Jacobian of p(u) with respect to

u, denoted by J is then

J =

[
pu pv

]
=




1 0

0 1

fu fv



. (5.2.2)

The first fundamental form of the surface is given by the quadratic form I(du) =

duTGdu where

G = JTJ =




1 + f 2
u fufv

fufv 1 + f 2
v


 . (5.2.3)
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Let g = det(G) = 1 + f 2
u + f 2

v , and ` =
√
g. Then, ` = ‖pu × pv‖. In the local

coordinate system, the unit normal to the surface is then

w =
pu × pv

`
=

1

`




−fu
−fv

1



. (5.2.4)

Given the normal direction ni at point xi (in global coordinate) or [ui, vi, fi]
T

(in local coordinate) , we have the following equation

(QT
0 · ni)× w̃i ≈ 0. (5.2.5)

Here wi =
pu×pv

`
(ui) = 1

`




−fu(ui)

−fv(ui)

1




is the normal at xi in the local coordinate

system, and w̃i is its approximation by the degree d polynomial fitting. Let QT
0 ·

ni = [αi, βi, γi]
T . Then, using 5.2.5 we obtain

γi · fu(ui) ≈ −αi,

γi · fv(ui) ≈ −βi.

Given a positive integer d, a function f(u) can be approximated to d+1 order

accuracy around the origin u0 as

f(u) =
d∑

p=0

j+k=p∑

j,k≥0

cjk
ujvk

j!k!
+O(‖u‖d+1), (5.2.6)
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assuming f has d + 1 continuous derivatives.

We have the point location based approximation

d∑

p=0

j+k=p∑

j,k≥0

cjk
ujiv

k
i

j!k!
≈ fi. (5.2.7)

along with the normal direction based approximation

d∑

p=0

j+k=p∑

j,k≥0

cjk · j ·
uj−1
i vki
j!k!

≈ −αi
γi
,

d∑

p=0

j+k=p∑

j,k≥0

cjk · k ·
ujiv

k−1
i

j!k!
≈ −βi

γi
. (5.2.8)

Using these three equations, we get the following linear system

V X ≈ F , (5.2.9)

where X is an n-vector composed of cjk, and V is 3m × n (n is determined by

degree of fitting polynomial), and F is a 3m-vector. For example, a degree 2 fitting
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over m points in the local stencil results in the following V and F

V =




1 u1 v1 u2
1 u1v1 v2

1

1 u2 v2 u2
2 u2v2 v2

2

· · · · · ·

1 um vm u2
m umvm v2

m

0 1 0 2u1 v1 0

0 1 0 2u2 v2 0

· · · · · ·

0 1 0 2um vm 0

0 0 1 0 u1 2v1

0 0 1 0 u2 2v2

· · · · · ·

0 0 1 0 um 2vm




,F =




f1

f2

...

fm

−α1

γ1

−α2

γ2

...

−αm

γm

−β1
γ1

−β2
γ2

...

−βm
γm




. (5.2.10)

Remark. If γi is zero, then it means f(u) will have foldings around xi. This could

be avoided by carefully choosing the weights for each neighboring vertices, such

that all the vertices that cause the foldings will have zero weights and thus will be

eliminated from the system; see following discussion.

Remark. The Hermite-style fitting is interpolatory, if the local polynomial passes

through the origin of fittings, i.e.,

f(u0) = 0;

fu(u0) = 0;

fv(u0) = 0.
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Thus, the local fitting polynomial must be at least second order:

f(u) =
∞∑

p=2

j+k=p∑

j,k≥0

cjk
ujvk

j!k!
. (5.2.11)

Weighted Least Squares Formulation

Equation (5.2.9) could be solved under the framework of weighted linear least

square to minimize the weighted norm,

min
X
‖Ω(V X − F )‖2 , (5.2.12)

where Ω = diag(w1, w2, . . . , w3m) is the weighting matrix of size 3m × 3m. The

weighting matrix Ω assigns priorities to different rows of the linear system corre-

sponding to different points that are being fit. Note that Ω has no effect on the

solution if V is a nonsingular square matrix, but different Ω would lead to different

solutions for rectangular matrices. In general, for the ith (i ≤ m) row correspond-

ing to the ith point xi, it is desirable to assign its weight wi to some larger value

if xi is close to the origin of the local coordinate system x0, or a smaller value (or

even zero) of xi is far away from x0 or its normal ni is too far from the normal n0

at x0. In particular, we choose the weight at the ith vertex as

wi =
γ+
i

(‖ui‖2/h+ ε)d/2
, (5.2.13)

where γ+
i ≡ max(0,nT

i n0), h ≡ ∑m
i=1 ‖ui‖2/m, and ε ≈ 0.01. The factor γ+

i

serves as a safeguard against drastically changing normals for coarse meshes or

nonsmooth areas. The denominator (‖ui‖2/h+ ε)
d/2 prevents the weights from
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becoming too large at points that are too close to u0 and is approximately equal to

wi ≈ (‖ui‖2/h)
−d/2. Because Ω allows the flexibility to underweight (and even

filter out) undesirable points, we use a simple procedure to select points based on

mesh connectivity when constructing the linear system.

For equations of type (5.2.7), we could use weight ωi like (5.2.13) to assign a

priority to the ith vertex in local stencil, by scaling the ith row of V , i = 1, · · ·m.

However, for equations of type (5.2.8), applying the same weights {ωi}would cause

numerical instability issue. Since equations (5.2.8) correspond to the derivatives

of the local fitting polynomial, their magnitude are one order lower than equation

(5.2.7) in terms of local step size. Thus, the linear system could be ill-conditioned if

we directly apply the same weights. This could be avoided if we scale the weights

with local step size. For (5.2.8) of derivative against u, we apply weight as ωihu,

where hu is the step size along the direction of u. Similarly we apply ωihv to

equations corresponding to derivatives against v.

As suggested in [61], the weighting matrix Ω scales the rows of V and hence

cannot improve the scaling of the columns. This issue is resolved by introducing a

column scaling matrix T and then impose the minimization as

min
x
‖ΩV TY −ΩF ‖2, (5.2.14)

where X = TY . Unlike Ω, the scaling matrix T does not change the exact solution

of X . However, T can significantly improve the conditioning of the linear system

and in turn improve the accuracy in the presence of rounding errors. In general,

given a weighting matrix Ω, let vi denote the ith column vector of ΩV . We choose
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T to be the diagonal matrix with entries

Tii = 1/‖vi‖2 (5.2.15)

for i = 1, . . . , n. Let A = ΩV T . This scaling matrix approximately minimizes the

condition number of A (see [51, p. 265] and [114]). Note that the scaling matrix T

cannot improve the condition number of V if the ill-conditioning is caused by the

lack of points or some unfortunate selection of points, which is a well-known issue

[75]. It can be alleviated by including additional points in the fitting if possible.

However, if the number of points is fixed, solving this ill-conditioned system is

similar to solving an under-constrained linear system. Instead of using the truncated

SVD to solve this linear system, we use the QR factorization. Let the QR of A be

A = QR, (5.2.16)

where Q is 3m×n with orthonormal column vectors, R is a n×n upper-triangular

matrix. If A has full-rank, the condition number of A is the same as that of R,

which can be estimated accurately and efficiently using a variant of back substitu-

tion. If the condition number R is large (e.g., ≥ 106), we then reduce the degree of

the fitting by removing the last few columns in R that correspond to highest deriva-

tives. Let Q̃ and R̃ denote the reduced matrices. The final solution of X is given

by

X = TR̃−1Q̃TΩF , (5.2.17)

where R̃−1 denotes a back substitution step. Compared to the solution based on

SVD, this procedure is more accurate asymptotically, as it gives highest priority
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to the lower-order coefficients of the polynomial while maintaining good scaling

of the matrix, and at the same time it is more efficient than SVD. If the degree of

fitting is reduced due to either an ill-conditioned R̃ or insufficient number of points

in the stencil, a cure could be increasing the size of the stencil so that the system is

more stable.

Stencil Selection

The stencil selection is important for the accuracy and efficiency of the local poly-

nomial fittings, since a too large stencil tends to cause overfitting, while a too small

stencil delivers low order accuracy. For a degree d polynomial fitting for 3D imbed-

ded surface, we have n = (d + 1)(d + 2)/2 unknowns to determine, which means

we need at least n equations. The WALF method generally chooses a (d+1)/2 ring

stencil for origin interpolatory fittings. For coarse meshes, fitting over a large stencil

could lose certain local features, which implies that WALF could over-smooth the

underlying surface if high-order reconstruction is applied. However, Hermite-style

fitting requires a much more compact local stencil due to extra information from

normal directions. For a 3D imbedded surface, three independent equations could

be established from each vertex: one from vertex position, and two from normal

direction. As a result, only one-third of the vertices required by WALF are good

enough for FAH-WALF. We typically choose 1-ring for FAH-WALF interpolation

with degree under 4. In case of insufficient vertices, our local stencil selection

procedure follows an adaptive approach such that at least nvertices are selected.

Table 5.1 shows a typical stencil selection for WALF and FAH-WALF, where the

number of vertices in local stencil is calculated as an average of vertices in local
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Table 5.1: Comparison of average stencil sizes for WALF and FAH-WALF.
degree 2 degree 3 degree 4 degree 5 degree 6

#unknowns 6 10 15 21 28
#rings #verts #rings #verts #rings #verts #rings #verts #rings #verts

WALF 1.5 12.6 2 18.4 2.5 29.6 3 37.5 3.5 52.7
FAH-WALF 1 6.8 1 6.8 1 6.8 1.5 12.6 2 18.4

stencil of a random sampled vertices of an unstructured triangular torus mesh with

336 triangles.

5.3 Accuracy and Stability of Hermite-style Fittings

The theoretical foundation for Hermite-style surface is based on that of the local

least squares polynomial fitting. Let h denote the average edge length of the mesh.

We consider the errors in terms of h. Then, the following proposition could be

established:

Theorem 6. Given a set of points [ui, vi, f̃i] that interpolate a smooth height func-

tion f or approximate f with an error of O(hd+1) and the corresponding gradients

are approximated to O(hd). Assume the point distribution and the weighting matrix

are independent of the mesh resolution, and the condition number of the scaled ma-

trix V T is bounded by some constant. The degree-d weighted least squares fitting

approximates cjk to O(hd−j−k+1).

The proof of this proposition could be obtained following the analysis of [62].

Note that Hermite-style interpolation satisfies the assumption of this proposition if

the nodal position could be approximated to O(hd+1) and the normals are approxi-

mated to O(hd). This means that Q0 · ni = [αi, βi, γi]
T is approximated in O(hd).
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The gradient of local height function equals−αi/γi or−βi/γi. We assume that γi is

bounded away from zero, so fu and fv are approximated to O(hd). Note that a nec-

essary condition for the accuracy is that the condition number of the scaled matrix

A must be bounded. We achieve well-conditioning by either expanding the neigh-

borhood or reducing the degree of fitting if the condition number is determined to

be large, and in turn guarantee both accuracy and stability.

Continuous, High-order Surface Reconstruction

Hermite-style reconstruction delivers high-order accuracy. To construct a G0 con-

tinuous surface, we use the same strategy as in WALF, by averaging of local fittings

by equation (5.1.1). Under the same assumption as Proposition 6, we obtain the

following property of FAH-WALF.

Proposition 7. Given a mesh whose vertices approximate a smooth surface Γ with

an error of O(hd+1) and the normal directions are also approximated to O(hd),

then distance between each point on the WALF reconstructed surface and its clos-

est point on Γ is O(hd+1 + h6).

We refer the readers to [61] for the proof of the proposition. The bound of h6 is

due to the discrepancy of local coordinate systems at different vertices.
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5.4 High-order Curve Reconstruction

Point-based Curve Reconstruction

The high-order curve reconstruction follows the same underlying principles as the

high-order surface reconstruction as described in previous section. For complete-

ness, we provide a brief description here. Given a smooth curve in the global

xyz coordinate system, each of its coordinates (x, y, z) can be parameterized as

(x(t), y(t), z(t)) where t is a parameter in the tangent direction t at the origin of

fitting x0 = [x0, y0, z0]T . The Taylor series expansion of any coordinate function

f about the origin t0 = 0 is

f(t) =
∞∑

j=0

cj
tj

j!
(5.4.1)

where cj = dj

dtj
f(0). Given a positive integer d, the function f(t) can be approxi-

mated to d+1 order accuracy about the origin t0 as

f(t) =
d∑

j=0

cj
tj

j!
+O(‖t‖d+1) (5.4.2)

assuming f has d + 1 continuous derivatives. We can find the coefficients cj’s of the

approximated polynomial f(t) by fitting it to a set of points sampling a small patch

of the smooth curve. For purely point based fitting, plugging in each given point

[ti, fi] into the fitting, we obtain an approximate equation

d∑

i=0

cj
uji
j!
≈ fi. (5.4.3)
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Here we have n = d + 1 unknowns, i.e. cj for 0 ≤ j ≤ d . The rectangular

linear system formed is solved using a robust QR factorization as described in the

previous section. To obtain a G0 continuity of the reconstructed curve, we perform

a weighted averaging of the local fittings (WALF) at the vertices. In particular,

consider an edge composed of vertices xi, i = 1, 2, and any point p in the edge. For

each vertex xi, we obtain a point qi for p from the local fitting at xi, by projecting

p onto its tangent direction. Let ξi, i = 1, 2 denote the barycentric coordinates of p

within the edge, with ξi ∈ [0, 1] and
∑2

i=1 ξi = 1. We define

q(u) =
2∑

i=1

ξiqi(u) (5.4.4)

as the approximation to point p. WALF constructs a G0 continuous curve, as can

be shown using the properties of finite-element basis functions.

Hermite-style Curve Reconstruction

At a point p0 (x0, y0,z0) on the curve Υ , let Q =
[
t̂0, n̂0, b̂0

]
be a local coordinate

system. One option is to use the trio: tangent, principal normal, bi-normal. Another

option is to start with the tangent direction to find two orthogonal vectors. The

initial tangent could be an input or an approximation from the curve mesh. Now,

any point p (x, y,z) near p0 (x0, y0,z0) can be parameterized as
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p (x, y, z)
Q−→ p (u, s(u), t(u)) (5.4.5)

i.e.,




x

y

z




= Q




u

s(u)

t(u)




+




x0

y0

z0




(5.4.6)

where u = (x− x0) .t̂0 . The local tangent is

t =
1√

1 + (s′(u))2 + (t′(u))2




1

s′(u)

t′(u)




(5.4.7)

We want to approximate s(u) and (t(u) to high-order by using degree q Taylor

series i.e.,

s(u) ≈
q∑

k=0

ck
uk

k!
(5.4.8)

t(u) ≈
q∑

k=0

dk
uk

k!
(5.4.9)

The standard point based formulation finds the coefficients ck and dk for k =

0, . . . , q by fitting 5.4.8 and 5.4.9 to a set of points pi (xi, yi,zi) in the vicinity of p0

i.e.,
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q∑

k=0

ck
uki
k!

= si (5.4.10)

q∑

k=0

dk
uki
k!

= ti (5.4.11)

where

ui = (xi − x0) .t̂0

si = s(ui) = (xi − x0) .n̂0

ti = t(ui) = (xi − x0) .b̂0

Let ti be the given (in global coordinates) tangent at pi (xi, yi,zi) and t̃ibe the

local approximated tangent. Thus, QT ti × t̃i ≈ 0. Let QT ti = [αi, βi, γi]
T . Thus,

su ≈ βi
αi

and tu ≈ γi
αi

. Including the first order derivatives information into the

Taylor series approximation, we get

q∑

k=0

ck
uki
k!

= s(ui)

q−1∑

k=0

ck+1
uki
k!

= su(ui)

and
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q∑

k=0

dk
uki
k!

= t(ui)

q−1∑

k=0

dk+1
uki
k!

= tu(ui)

.

The coefficients ck and dk can be obtained by solving the system A

[
c | d

]
=

[
s | t

]
.

5.5 Feature-aware Reconstruction

In the presence of ridge vertices or feature curves embedded in a curve/surface

mesh (see Figure 5.5), one-sided WALF reconstructions are required since the

curve/surface is no longer smooth along such ridge vertices and/or feature curves.

These different reconstruction results along the same ridges/features would intro-

duce gaps which leads to ambiguity in point projections for points very near or

on the ridges/features. If we could one of these reconstruction results as projec-

tion method, then this would cause discontinuity along the ridges/features. In this

section, we propose a linear correction based approach to blend the reconstructed

curves and neighboring surfaces to recover G0 continuity, while preserving the

high-order of accuracy.
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(a) Ridge vertices in curve (b) Feature curves in surface

Figure 5.5: Ridges and Features

5.5.1 Ridge-aware Curve Reconstruction

For 1D curve mesh, if we assume that the input vertices have accurate coordinates

and therefore enforce the local fitting to pass the center, then the reconstructed curve

is guaranteed to be G0 continuous. To see this, for example in Figure 5.6(a), v1 is

a ridge vertex. Since the curve is no longer smooth at v1, we need one-sided local

polynomial fittings centered at v1 along the directions of v1 → v2 and v1 → v3.

Assume the fitting results centered at v1 are pv1,v2 and pv1,v3 . Then for any point x

in edge 〈v1,v2〉, we have reconstruct

p〈v1,v2〉(x) = (1− α)pv1,v2 + αpv2,v1 (5.5.1)

where x = (1− α)v1 + αv2. Similarly for any point y in edge 〈v1,v3〉, we have

p〈v1,v3〉(y) = (1− β)pv1,v3 + βpv3,v1 (5.5.2)
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v1

v2 v3

(a) Weighted least square fittings (b) Multiple incident smooth curves

Figure 5.6: Ridge-aware Reconstruction

where y = (1 − β)v1 + βv3. Since the local polynomials are all smooth, so both

p〈v1,v2〉(x) and p〈v1,v3〉(y) are smooth. Since we enforce pv1,v2(v1) = v1 and

pv1,v3(v1) = v1, then

p〈v1,v2〉(v1) = p〈v1,v3〉(v1) = v1. (5.5.3)

Thus the reconstruction is continuous at ridge vertex v1. It’s easy to see that the

reconstruction is continuous everywhere. For accuracy, the weighted average pre-

serves the accuracy of local fittings.

However, when the coordinates of vertices in initial mesh are noisy, it’s reason-

able to apply least square fittings rather then to enforce local fittings to pass the

centers. In such situation, then Equation 5.5.3 no longer holds which means we

may lose G0 continuity at ridge vertices. Since we have two different estimations

of location of v1, p〈v1,v2〉(v1) and p〈v1,v3〉(v1), one fair estimation for v1 is

v̄1 =
1

2
(pv1,v2(v1) + pv1,v3(v1)). (5.5.4)
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Although a more general form of v̄1 is v̄1 = (1 − ω1 − ω2)v1 + ω1p〈v1,v2〉(v1) +

ω2p〈v1,v3〉(v1)), for simplicity we use the above form. For regular vertex like v2 in

Figure 5.6(a), then we use the following estimation

v̄2 = pv2,v1(v2) (5.5.5)

Assume δp〈v1,v2〉(v1) = v̄1 − pv1,v2(v1), δp〈v1,v2〉(v2) = v̄2 − pv2,v1(v2), then

we have the following correction for p〈v1,v2〉:

p̄〈v1,v2〉(x) = (1− α)pv1,v2 + αpv2,v1 +

(1− α)δp〈v1,v2〉(v1) + αδp〈v1,v2〉(v2).

Apparently p̄〈v1,v2〉 is continuous along edge 〈v1,v2〉 since p〈v1,v2〉(x) is continu-

ous, δp〈v1,v2〉(v1) and δp〈v1,v2〉(v2) are constant. Similarly we have the correction

of p〈v1,v3〉:

p̄〈v1,v3〉(x) = (1− β)pv1,v3 + βpv3,v1 +

(1− β)δp〈v1,v3〉(v1) + βδp〈v1,v3〉(v3)

where δp〈v1,v3〉(v1) = v̄1 − pv1,v3(v1), δp〈v1,v3〉(v3) = v̄3 − pv3,v1(v3).

Proposition 8. The ridge aware correction is continuous and preserves accuracy

when non-interpolatory local fittings are used.

Proof. We could tell

p̄〈v1,v2〉(v1) = p̄〈v1,v3〉(v1) = v̄1. (5.5.6)
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Therefore the corrected reconstruction is continuous at ridge vertex v1. Since for

regular node v2, p̄〈v1,v2〉(v2) = v̄2 = pv2,v1(v2) the continuity preserves at v2,

similarly for v3. Even if v̄2 is also a ridge vertex, the continuity is still preserved

at v2 since we apply correction δp〈v1,v2〉(v2). The accuracy is preserved since the

correction part is the difference of high-order estimations.

Remark 9. In general, for a ridge vertex v0, there could be multiple (>2) incident

smooth curves (see Figure 5.6(b)). In such case, one correction for v0 is

v̄0 =
1

n

n∑

i=1

pv0,vi
(v0). (5.5.7)

For each edge 〈v0,vi〉, we should apply the following k-order correction at v0, that

is

p̄〈v0,vi〉(x) = (1− αi)pv0,vi
+ αipvi,v0 +

(1− αi)kδp〈v0,vi〉(v0) + αikδp〈v0,vi〉(vi)

where δp〈v0,vi〉(v0) = v̄0 − pv0,vi
(v0), and δp〈v0,vi〉(vi) = 0 if vi is regular vertex.

5.5.2 Feature-aware Surface Reconstruction

To recover continuity in surface reconstruction, it will be more challenging since

both ridge vertices and feature curves could be present in surface. Here we first

introduce correction along features to recover G0 continuity under the assumption

that the input vertices coordinates are accurate. We will reduce the continuity re-

covery problem to this situation when the input coordinates are noisy.
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v1

v2v3
v4

Figure 5.7: The lack of continuity across feature edge 〈v1,v2〉

Interpolatory fittings

When the input coordinates are accurate, it’s necessary to enforce the local curve

and surface polynomial fittings to pass the center. Thus as abovementioned, the

reconstructed feature curves are continuous. As proved in Section , the surface

reconstruction is continuous both inside each triangle and along the non-feature

edges. However, the continuity might not be guaranteed along feature edges. As

illustrated in Figure 5.7, along feature edge 〈v1,v2〉, if we take the fitting from

feature curve p〈v1,v2〉(x) as reconstruction of 〈v1,v2〉, then the reconstruction is

no longer continuous since reconstruction of ∆v1v2v3 and ∆v1v2v4 could give

different result than p〈v1,v2〉(x) along 〈v1,v2〉.

Assume that pv1,v2v3(x) is the local fitting centered at v1 which fits the mesh

on the side of ∆v1v2v3. Similarly we define pv2,v3v1(x), pv3,v1v2(x). Then the

reconstruction on ∆v1v2v3 is

p∆v1v2v3(x) = ξpv1,v2v3(x) + ηpv2,v3v1(x) + (1− ξ − η)pv3,v1v2(x) (5.5.8)

where x = ξv1 + ηv2 + (1− ξ − η)v3 and the reconstruction on ∆v1v2v4 is

p∆v1v2v4(y) = ξpv1,v2v4(y) + ηpv2,v4v1(y) + (1− ξ − η)pv4,v1v2(y). (5.5.9)

This means we have three estimations for points along edge 〈v1,v2〉. For simplicity,
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one fair reconstruction for 〈v1,v2〉 is

p̄〈v1,v2〉(x) =
1

3
(p〈v1,v2〉(x) + p∆v1v2v3(x) + p∆v1v2v4(x)). (5.5.10)

Here x = (1− α)v1 + αv2, and

p〈v1,v2〉(x) = (1− α)pv1,v2(x) + αpv2,v1(x)

p∆v1v2v3(x) = (1− α)pv1,v2v3(x) + αpv2,v3v1(x)

p∆v1v2v4(x) = (1− α)pv1,v2v4(x) + αpv2,v4v1(x).

For the fitting on triangle ∆v1v2v3, the following correction along edge 〈v1,v2〉

is required:

δp〈v1,v2〉(z) = p̄〈v1,v2〉(z)− p∆v1v2v3(z) (5.5.11)

where z = (1−α)v1+αv2. Since we enforce all local fittings to pass the center, we

have δp〈v1,v2〉(v1) = δp〈v1,v2〉(v2) = 0. However, the correction defined above has

compact support only on 〈v1,v2〉. We need to extend the correction on ∆v1v2v3

by the following:

δp〈v1,v2〉,v3(x) = (ξ + η)δp〈v1,v2〉(
ξ

ξ + η
v1 +

η

ξ + η
v2) (5.5.12)

where x = ξv1 + ηv2 + (1 − ξ − η)v3 in ∆v1v2v3. It’s easy to see δp〈v1,v2〉,v3 =

δp〈v1,v2〉 on edge 〈v1,v2〉 since x = ξv1 + ηv2 and ξ + η = 1. Moreover,
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δp〈v1,v2〉,v3(x) has the following properties:

δp〈v1,v2〉,v3(x) = 0 where x in 〈v1,v3〉

δp〈v1,v2〉,v3(x) = 0 where x in 〈v1,v4〉
(5.5.13)

since for point in 〈v1,v3〉, x = ξv1 + (1− ξ)v3, δp〈v1,v2〉,v3(x) = ξδp〈v1,v2〉(v1) =

0, similarly for edge 〈v1,v4〉. Meanwhile, the correction is continuous and graded:

when x is close to v3, δp〈v1,v2〉,v3(x) goes to zero. Actually we could apply k-order

correction:

δp〈v1,v2〉,v3(x) = (ξ + η)kδp〈v1,v2〉(
ξ

ξ + η
v1 +

η

ξ + η
v2) (5.5.14)

to allow less correction inside ∆v1v2v3. Similarly we could define δp〈v2,v3〉 and

δp〈v3,v1〉, then we have

δp〈v2,v3〉,v1(x) = (1− ξ)δp〈v2,v3〉(
η

1− ξv2 +
1− ξ − η

1− ξ v3)

δp〈v3,v1〉,v2(x) = (1− η)δp〈v3,v1〉(
1− ξ − η

1− η v3 +
ξ

1− ηv1).

These edge-based corrections share the same type of properties: continuous, graded,

and don’t affect corrections on other edges. Notice that if 〈v2,v3〉 is not a feature

edge, then δp〈v2,v3〉 = 0 and thus δp〈v2,v3〉,v1(x) = 0 for any x in ∆v1v2v3. There-

fore we could have the following corrected reconstruction for ∆v1v2v3:

p̄∆v1v2v3(x) = p∆v1v2v3(x) + δp〈v1,v2〉,v3(x) + δp〈v2,v3〉,v1(x) + δp〈v3,v1〉,v2(x).

(5.5.15)

Proposition 10. The feature aware correction for surface mesh is continuous and
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preserves accuracy when interpolatory local fittings are used.

Proof: p̄∆v1v2v3(x) is continuous inside ∆v1v2v3 since p∆v1v2v3(x) and all

corrections are continuous inside ∆v1v2v3. The continuity along edge 〈v1,v2〉 is

apparent also since p̄∆v1v2v3(x) = p∆v1v2v3(x) + δp〈v1,v2〉,v3(x) = p̄〈v1,v2〉(x) for

x in 〈v1,v2〉. For regular edges like 〈v2,v3〉, since all the corrections are zero along

the regular edges, then p̄∆v1v2v3(x) = p∆v1v2v3(x) then the continuity is obvious.

Since p∆v1v2v3(x) is high-order accurate and the corrections are difference between

high-order estimations, the corrected reconstruction is of high-order accuracy. The

above argument could be applied to ∆v1v2v4 in a similar way.

Non-interpolatory fittings

When the input coordinates are inaccurate, it’s better to infer the coordinates of

input vertices from least square fittings. For vertices on feature curve, we not only

get the fitting for curve, but also a couple of one sided surface fittings centered

at these vertices, like pv1,v2(x), pv1,v2v3(x) and pv1,v2v4(y) for v1 in Figure 5.7.

For ridge vertices, we could get several one-sided curve fittings, and probably also

a couple of one sided surface fittings. One straightforward way to estimate the

coordinates of vertices on feature curves and ridge vertices is by averaging:

v̄ =
1

n
(
k∑

i=1

pv,v
ci
2

(v) +
n−k∑

j=1

p
v,v

sj
2 v

sj
3

(v)) (5.5.16)

where ci is the i-th incident smooth curve to v (k = 0 if v is not a ridge vertex) and

sj is the j-th incident surface to v (for a manifold surface, we could have two such

incident surfaces). For regular vertex, we use the least square fitting result of v as

95



estimation:

v̄ = pv,vs
2v

s
3
(v). (5.5.17)

After the above correction, even the local polynomial fittings (curve and/or sur-

face) are no longer continuous at vertex v. To fix this, we apply the following

corrections for local fittings:

• for each smooth curve c incident to v, we have

p̃v,vc
2
(x) = pv,vc

2
(x) + δpv,vc

2
(x) (5.5.18)

where δpv,vc
2
(x) = (1 − α)(v̄ − pv,vc

2
(v)) for any x in 〈v,vc2〉 and x =

(1 − α)v + αvc2. Notice that p̃v,vc
2
(v) = v̄, p̃v,vc

2
(x) is continuous along

〈v,vc2〉 and preserves accuracy.

• for each smooth surface s incident to v, we have

p̃v,vs
2v

s
3
(x) = pv,vs

2v
s
3
(x) + δpv,vs

2v
s
3
(x) (5.5.19)

where δpv,vs
2v

s
3
(x) = ξ(v̄ − pv,vs

2v
s
3
(v)) for any x in ∆vvs2v

s
3 and x = ξv +

ηvs2 + (1 − ξ − η)vs3. Notice that p̃v,vs
2v

s
3
(v) = v̄, p̃v,vs

2v
s
3
(x) is continuous

along ∆vvs2v
s
3 and preserves accuracy.

From now on, all the local fittings centered at the same vertex v have the same es-

timation v̄. In addition, all the corrected local fittings are continuous and preserves

high-order accuracy. This reduces the problem of recovering continuity to the same

one as in the interpolation section. We could apply the same strategy mentioned

above to recover G0 continuity while preserving accuracy.
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Proposition 11. The feature aware correction for surface mesh is continuous and

preserves accuracy when non-interpolatory local fittings are used.

Proof: After corrections at ridge vertices and vertices on feature curves, all the

local fittings are continuous along their compact support and pass the corrected

center vertices. In addition, they all preserve the high-order accuracy of original

local fittings. Therefore we could reduce the G0 recovery problem to the one when

the local fittings are interpolatory. After the same type of corrections as above

for interpolatory fittings, the reconstruction is continuous and preserves accuracy

according to Proposition 10.
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Chapter 6

Numerical Results and Applications

6.1 Numerical Results of Uniform Mesh Refinement

We present numerical results to demonstrate the effectiveness of uniform mesh re-

finement, in terms of computational efficiency of the parallel framework and its

effect on mesh quality. We also demonstrate the application of the developed ca-

pability to study convergence properties of different point projection schemes for

various mesh hierarchies as well as its application to multigrid method.

6.1.1 Mesh Quality Under Uniform Mesh Refinement

We first study the effect of uniform mesh refinement on the mesh quality. Since

uniform refinement of tetrahedral meshes do not produce congruent sub-tetrehedra,

we use it as our test case. An initial coarse tetrahedral sphere mesh with 23636

tets and 4793 vertices (shown in Fig. 6.1(a)) was refined using three strategies all

starting with the coarse mesh:
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(a)

(b)

Figure 6.1: Left: A tetrahedral mesh. Right: Distribution of mesh quality for an
initial coarse mesh and various degree of refinements.

1. one degree-2 refinement,

2. one degree-3 refinement, and

3. first a degree-3 refinement followed by a degree-2 refinement.

We use scaled Jacobian as the mesh quality measure. Figure 6.1(b) shows the distri-

bution of the mesh quality measure for the meshes obtained using the three strate-

gies along with the initial mesh. In all the three cases, the overall mesh quality

improved with the shortest-diagonal approach [112], and degree-3 refinement de-

livers similar and even slightly better quality improvement because there are more

intermediate octahedra in degree-3 refinement.
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(a) Triangle Meshes (b) Hexahedral Meshes

Figure 6.2: Time taken to generate hierarchies in serial for different degree of re-
finements.

6.1.2 Computational Efficiency

We now report the computational efficiency results of the mesh hierarchy generation

algorithm. In Figure 6.2, the serial run times for generating hierarchies using differ-

ent supported degree of refinements on two representative meshes for two and three

dimensions are shown. In Figure 6.2(a), we start with a triangle mesh with 1000 en-

tities and generate hierarchies with degrees 2, 3 and 5. Clearly, the results confirm

that higher-degree of refinement reach greater resolution much faster. Similarly,

in Figure 6.2(b), an initial hexahedral mesh with 2048 entities is used to generate

hierarchies with degrees 2 and 3. We conclude that if a deep hierarchy is required,

a degree 2 refinement per level would give a gradually increasing mesh with more

levels. On the other hand, high resolution can be reached very quickly with small

hierarchies using high-degree refinement. These serial tests were performed on a

Mac computer with 2.3 GHz Intel Core i7 processor and 16GB RAM.

In order to perform the weak scaling studies of the uniform refinement algo-

rithm, we use the Reactor Geometry (and mesh) Generator (RGG [58]) tool de-

veloped as part of the generic mesh generation framework MeshKit [109], which
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encapsulates the workflow of creating a nuclear reactor core geometry and meshes

ready for computational analysis in state-of-art physics solvers. Designed with the

nuclear engineer in mind, RGG guides the engineer through the process of design-

ing fuel pins, ducts, and assemblies, and then the layout of the reactor core and

mesh generation process. We designed a simple unit rectangular lattice based as-

sembly consisting of four fuel pins with six boundary layers around them as shown

in Figures 6.3(a) and 6.3(b). The total assembly generation including the geome-

try and mesh generation was done only once, which took about 29 seconds. The

mesh generation was performed using Cubit. These unit assemblies were used to

create composite assemblies increasing linearly with the number of processors in a

pre-decided pattern as shown in Figure 6.3(c) and Figure 6.3(d) with two levels of

degree 2 of further refinement to increase the resolution. The initial mesh contained

about 19,800 hexahedrons with approximately 158K and 1.27M hexes in the subse-

quent refinement levels. The tests were performed on the Blues cluster at Argonne

National Laboratory, which has 310 nodes, 16 cores/node with Intel Sandy Bridge

processor and 64GB RAM per node.

The weak scalability results are shown in Figure 6.4. The merge based shared

interface resolution algorithm for UMR scales similar to the ideal case for up to 512

processors. However, we see a drop in the efficiency around 1024 processors which

might be due to an overloaded test platform and needs further investigation. The

time taken to resolve the shared entities for the initial mesh is almost an order of

magnitude faster than those taken for the two levels of refinement. This is because

the time for shared interface resolution for UMR involves resolution of approxi-

mately 4 and 16 times of the initial number of entities on the shared entities. The

mesh refinement by itself scales perfectly.
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(a) Unit assembly geometry. (b) Unit assembly mesh.

(c) 2x2 configuration. (d) 4x4 configuration

Figure 6.3: The initial mesh on each processor and creation of the whole assemblies
from the unit.

Figure 6.4: Weak scaling studies for the mesh hierarchy generation algorithm us-
ing the RGG tool with two levels of uniform refinement on Blues. The left and
right figure shows the time in seconds and efficiency as the number of processors
increases with fixed problem size.
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Figure 6.5: An example torus mesh with eight partitions used for the scalability
study of mesh hierarchy generation.

Table 6.1: The times in seconds for the refinement, resolution of shared entities
using the merge and optimized algorithms as the number of processors increases.

Times in Seconds
#Partitions Refine Merge Optimized

1 9.98 0 0
2 5.31 14.13 0.078
4 2.45 7.4 0.063
8 1.3 3.8 0.073
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Next, we present preliminary results comparing the merge-based and optimized

resolve shared interface algorithms. We use a torus with approximately 2.6M ver-

tices and 5.3M triangles as an initial mesh with one level of degree-2 refinement.

Figure 6.5 shows an example mesh with eight partitions. Table 6.1 lists the times

taken in seconds by the refinement and the two interface resolution algorithms for

up to eight cores. Clearly, the optimized resolve shared algorithm shows a perfor-

mance improvement of almost two orders of magnitude. However, we see no scal-

ing as the core counts are increased as observed for the merge-based algorithm. The

underlying reason behind is that the communication pattern (2 shared processors)

and the total number of entities (approx. 2K edges) on the shared interface does

not change for these lower core counts. As a result, for the optimized algorithm,

the amount of work remains exactly the same compared to the merge-based algo-

rithm. Currently, more rigorous tests are being performed for different distribution

patterns on more number of processors on Blues.

6.1.3 Demonstration of UMR Capabilities in Discrete Solvers

The parallel UMR capability is useful in generating hierarchy of meshes to per-

form convergence studies and for creating optimal multigrid preconditioners for

elliptic PDE solvers. A multigrid Poisson solver written using the PETSc-MOAB

(DMMoab) interface that leverages the scalability of both the codes and specifically

utilizing UMR is presented here for computing order of accuracy efficiently. Fig-

ure 6.6 shows that the Poisson solver with an inhomogeneous source term in 2-D

and using a Method of Manufactured Solution (sinusoidal exact solution sin (πx)·

sin (πy)) yields the expected second order convergence (linear Lagrange continu-

104



ous Galerkin FEM). These results were generated by successively refining the mesh

through UMR and solved with Geometric Multigrid (GMG). As a proof of princi-

ple, we have performed some preliminary experimental study on the impact of high-

order projection on the accuracy of the PDE solutions on curved geometries. From

our experimental using MATLAB (Figure 6.14, 6.15), we have observed significant

improvements in the overall accuracy with high-order reconstructions compared to

using only piecewise linear reconstructions during mesh refinement.

In terms of computational efficiency, the iteration convergence of geometric

multigrid-based preconditioner for a Poisson solver using a Generalized Finite Dif-

ference (GFD) method is also shown in Figure 6.7 and comparison to standard

black-box algebraic preconditioners including AMG, shows optimal reduction in

iteration error independent of the mesh resolution or degrees-of-freedom when us-

ing Geometric multigrid preconditioners. Figure 6.7 also shows that GMG with 3

and 5 levels are comparable to a Full Multigrid (FMG) scheme, which is theoreti-

cally optimal for solving such elliptic PDE systems.

6.2 Numerical Results of Adaptive Mesh Refinement

6.2.1 Adaptive Finite Element Method (AFEM)

We implemented AMR for the re-entrant corner problem from [83] with the Kelly

error indicator. The equation is

− ∂2u

∂x2
− ∂2u

∂y2
= 0 (6.2.1)
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Figure 6.6: Mesh convergence of
a 2D Poisson and 3D Diffusion-
Reaction problem.

Figure 6.7: Comparison of con-
vergence of multigrid and standard
black-box preconditioners.

on domain [−1, 1]× [−1, 1]\{0 ≤ x ≤ 1, y = 0}. The boundary condition is u = g

and the exact solution is

u = r
1
2 sin

(
θ

2

)
(6.2.2)

where r =
√
x2 + y2, θ = tan−1(y/x) ∈ [0, 2π).

We apply 6 adaptive refinements over the original mesh and compare it with

FEM on a mesh with uniform regular refinement. The results are shown in Fig-

ure 6.8, 6.9. The original mesh has a crack {0 ≤ x ≤ 1, y = 0} along which

the solution is not smooth. The refinement is centralized along the crack due to

the non-smoothness of the solution, see Figure 6.8(b). The result in Figure 6.9(a)

shows that the adaptive FEM approach delivers a better convergence rate than FEM

over a uniformly refined mesh. The L2 error is computed as
´

Ω
|u − uh|2dA. The

numerical results indicate that the same accuracy could be achieved with many less

DOFs or number of elements.

106



(a) Original Mesh (b) 6th AMR (c) Zoomed-In Mesh Around
Center

Figure 6.8: AFEM: Mesh adaptation for re-entrant corner problem
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Figure 6.9: AFEM: Numerical results for re-entrant corner problem
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6.2.2 Comparison with Pointer-based Data Structure

We will compare the storage for Hierarchical AHF with the pointer-based data

structure in libMesh, as it is the most closely related to our data structure. Let

C and V represent the set of cells and vertices of the given mesh, and let |·| denote

the size of a set. For Hierarchical AHF, let C1 and V1 denote the cells and vertices,

respectively, in the original, unrefined mesh. We will consider an implementation of

Hierarchical AHF that includes the element connectivity (elements), vertex to par-

ent element mapping (v2pe), sibling half-facet mapping (sibhfcs), element to parent

element (e2pe) and element to child element mapping (e2ce). Since the vertex to

incident half-facet mapping (v2hf ) is optional, we will not include it in this analysis.

Therefore, we have the following five maps which require the following number of

entities:

element connectivity: nc = vc |C|

vertex to parent element map: np = |V | − |V1|

sibling half-facet map: ns = fc |C|

element to parent map: nep = |C| − |C1|

element to child map: nec = |C|

where vc and fc are the numbers of vertices per cell and the number of faces per

cells, respectively. In general, the entities are stored as 32-bit integers. For the

half-facet ID 〈eid, lfid〉, we encode it in a 32-bit integer. For the vertex to parent

element map we store 〈level, eid, lid〉 as two 32-bit integers, one for level and one
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for 〈eid, lfid〉. Thus the storage in bytes is

SAHF32 = 4nc + 8np + 4ns + 4nep + 4nec

= 4 (2 + vc + fc) |C| − 4 |C1|+ 8 |V | − 8 |V1|
(6.2.3)

If we were to store the entities as 64-bit integers, the storage would effectively

double.

For each cell, libMesh stores the element connectivity and the “face neighbors”

of the cells. Two cells are face neighbors if they share a side; in 1D a side is a vertex,

in 2D a side is an edge, and in 3D a side is a face. Like Hierarchical AHF, adaptive

mesh refinement and coarsening is central to libMesh and hence the cells and their

ancestors are stored in a tree. Specifically, a pointer to the parent of an element and

an array of pointers to its children (if any) are stored. In general, a d-dimensional

element is refined into 2d children of the same type except when dealing with pyra-

mids, which are refined into pyramids and tetrahedra. For the sake of simplicity,

we will use 2d as the number of children of an element. Note that the level of

an element is not stored in libMesh, since this can be found recursively from the

parents. To store nodal information, libMesh has a node class. Each object in the

node class stores the coordinates of the node, a unique global ID number and the

degree of freedom indices. Since we are comparing the storage for the topological

information of the mesh, we will consider the storage cost of the global ID number.

Therefore we have 4 maps requiring the following number of entities:

element connectivity: nc = vc|C|

neighboring objects: nn = fc|C|
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Table 6.2: Comparison of storage requirements in kilobytes of Hierarchical AHF
and libMesh for a mesh in various stages of refinement on 32-bit and 64-bit ar-
chitectures. On 64-bit architecture, one may store Hierarchical AHF with 32-bit
integers or 64-bit integers.

32-Bit Architecture 64-Bit Architecture

Hier AHF libMesh Hier AHF (32-Bit) Hier AHF (64-Bit) libMesh
Original Mesh 57.867 59.535 57.867 115.734 119.070
Refinement 1 85.070 86.105 85.070 170.141 172.210
Refinement 2 142.742 142.441 142.742 285.484 284.882
Refinement 3 233.516 231.266 233.516 467.031 462.531
Refinement 4 332.398 328.051 332.398 664.797 656.102
Refinement 5 446.680 440.180 446.680 893.359 880.359

hierarchical: nh = |C|+ 2d|Cr|

nodal: nv = |V |

where Cr is the number of refined cells in the mesh. Since all these mappings

are stored as pointers, if we assume 32-bit architecture, then we can estimate the

storage in bytes as

SlibMesh32 = 4nc + 4nn + 4nh

= 4 (1 + vc + fc) |C|+ 4 · 2d |Cr|+ 4 |V |
(6.2.4)

On 64-bit architectures, the storage would double.

As an example, Table 6.2 shows the storage required by the first six meshes

used in Section 6.2.3 for Hierarchical AHF and libMesh. It can be seen that the

memory cost of the two approaches is comparable if an integer has the same length

as a pointer. However, Hierarchical AHF would require about half of the storage

on modern 64-bit architectures for meshes with less than two billion elements per

processor.
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(a) Position 1: Before Adaptation (b) Position 1: After Adaptation

(c) Position 2: After Adaptation (d) Position 5: After Adaptation

Figure 6.10: Example triangular mesh during adaptive mesh refinement.

6.2.3 Mesh Adaptation

Hierarchical AHF supports both efficient refinement and derefinement. Here we

illustrate the results in Figure 6.10. A function from [63], i.e. x(x − 1)y(y −

1)e−100((x−0.5)2+(y−0.117)2) over the domain [0, 1] × [0, 1] and its counter-clockwise

rotations serve as a series of numerical solutions. The Kelly error estimator is used

to drive the AMR algorithm to mark and adapt the mesh. The function is rotated

4 times, thus it has 5 positions, referred to as position 1 (i.e. original function),

position 2, and so on. Starting from position 1, the original mesh (Figure 6.10(a))

is adapted by the solution at this position. Then the solution is rotated to position 2

and AMR is applied over the mesh in position 1 (Figure 6.10(b)), and a new mesh
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Figure 6.11: AMR for 2D triangular
mesh: number of active cells
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Figure 6.12: AMR for 3D tetrahedra
mesh: number of active cells

(a) Position 1: Before Adapta-
tion

(b) Position 1: After Adapta-
tion

(c) Position 6: After Adapta-
tion

Figure 6.13: Example AMR in 3D: cross-sections of tetrahedral mesh.

(Figure 6.10(c)) is obtained in position 2, so on and so forth. At each position we

make 5 adaptations. The number of active elements at each adaptation can be found

in Figure 6.11.

To demonstrate the mesh adaptation in 3D, we define a function e−1000((x−xc)2+(y−yc)2+(z−zc)2)

over the unit cube [0, 1]3, and rotate its center (xc, yc, zc) along the plane zc = 0.5

for five times. We perform AMR based on the approximation errors to this series of

functions. Figure 6.13 shows the cross-sections of the initial mesh and the mesh at

three different stages. Similar to the 2D results, the number of elements remained

approximately constant during the adaptation process; see Figure 6.12.
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6.3 Numerical Results of High-order Reconstruction

In this section, we explore the importance of geometry in the accuracy of numerical

PDE under mesh refinement, see related numerical result in Section 6.3.1. In addi-

tion, we present some preliminary numerical results with our parallel implementa-

tion of WALF in MOAB. We also conduct numerical experiment with FAH-WALF,

especially in comparison with point-based WALF.

6.3.1 Geometry and PDE

Geometry plays an important role in solving PDEs. When one tries to achieve

high-order accuracy via mesh refinement, the triangulation must be refined along

the curved boundary, otherwise the geometric error will counteract the effect of

mesh refinement. High-order reconstruction of the boundary geometry is effective

in preserving the accuracy of solution under refinement. The numerical results

indicate that geometric error matters in solving PDE.

To measure the effect of geometry in solving PDEs, we conduct the following

experiment. The geometry is two intersecting sphere as illustrated in Figure 6.15(a).

The initial mesh 7551 vertices and 47086 tetrahedra while the surface has 668 tri-

angles, 22 feature edges. The mesh is refined 3 times recursively with final mesh

has 4024977 vertices and 24108032 tetrahedra. The new vertices introduce by re-

finement are first placed linearly interpolated boundary and then repositioned via

high-order reconstruction of the boundary, or the exact geometry. Here, we adopt

FAH-WALF method with degree 1 to 6 to reconstruct geometry from the original

mesh. For each new mesh, the geometric error is measured along the boundary in

L∞ norm and plotted in Figure 6.15(b). Under uniform refinement, the reconstruc-
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(c) L∞ errors of WALF reconstruction

0 1 2 3 4 5
10

−6

10
−5

10
−4

10
−3

10
−2

Uniform refinement

L
2
 E

r
r
o

r

 

 

Linear

Degree 2

Degree 3

Degree 4

Degree 5

Degree 6

Exact

(d) L2 error of Poisson equation solution under var-
ious reconstructed boundary and exact boundary

Figure 6.14: Convergence studies for Poisson equation with linear interpolated
boundary, WALF reconstructed boundaries and exact boundary

tion error stays the same since we could only estimate geometry from original mesh.

We have 8 sets of mesh sequences, corresponding to linear interpolation, degree 1

to 6 reconstruction and exact geometry.

On each mesh sequence, Poisson equation with analytical solution u(x, y, z) =

ex
2+y2+z2 is solved on the successively refined mesh and Dirichlet boundary con-

dition is assumed. Since in practice, boundary condition is only available on exact

surface geometry, so for the cases of inexact geometry the boundary condition is set

as u(x) = f(x̂). Here x is on the boundary of inexact geometry, x̂ is its projection
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Figure 6.15: Geometry and PDE: geometric error affects the accuracy of PDE so-
lution

onto exact geometry and f is the Dirichlet boundary condition. The solution error

is calculated in terms of energy norm
√´

Ω
|u− ũ|2 dx where ũ is the numerical

solution and is plotted in Figure 6.15(c). We could observe that if the approxima-

tion of geometry is good enough, the convergence rate of FEM is recovered even if

exact geometry is not known beforehand.

Remark. For completeness and readers’ interest, we also conducted the same test

for Poisson equation with solution ex2+y2 on a 2-D mesh for 3-quarters disk; see

Figure 6.14.

6.3.2 Parallel Surface Reconstruction in MOAB

The reconstruction algorithm WALF is implemented under submodule Discrete Ge-

ometry in MOAB and it supports high-order surface reconstruction in serial and par-

allel. We performed our experiment using a sequence of refined sphere meshes and

torus meshes (mesh sizes are listed in Table 6.3). In this test, we randomly generate

10 points on each element of the mesh and then project them onto the high-order

surface using WALF. We compute the error as the shortest distance from each ap-
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Table 6.3: Mesh sizes of the sequence of sphere and torus meshes used for conver-
gence studies.

Sphere Meshes

#Vertices #Triangles
210 416
834 1664

3330 6656
13314 26624
53250 106496
212994 425984

Torus Meshes

168 336
672 1344

2688 5376
10752 21504
43008 86016
172032 344064

proximation to the exact geometry.

Figures 6.16(a), 6.16(b), 6.16(c) and 6.16(d) show the L∞ errors of WALF for

the sequence of sphere and torus meshes in serial and parallel. In the legend, the

degree indicates the degree of polynomial fittings used by WALF, and “linear” in-

dicates the error of linear interpolation. The average convergence rates are shown

along the right of the plots, which was calculated as log(error5/error0)/ log(h5/h0),

where errori denotes the L∞ error on ith mesh and hi is the maximum edge length

of the corresponding mesh.

It is obvious that WALF could achieve high-order accurate geometry approx-

imation, especially compared with the linear interpolation. WALF utilizes local

polynomial fittings thereby the reconstruction algorithm could be easily parallelized.

As long as sufficient ghost layers are provided, the reconstruction algorithm needs
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(a) Sphere-Serial
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(c) Torus-Serial
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Figure 6.16: Convergence studies for point projection using high-order surface re-
construction using a sphere and torus mesh in serial and parallel.

117



Table 6.4: Numbers of ghost layers for WALF in parallel.
Degree of WALF 1 2 3 4 5 6

#Ghost Layers 2 2 3 3 4 4

only local computation without any parallel communication. The required numbers

of ghost layers for various degrees of WALF are listed in Table 6.4.

6.3.3 Accuracy of Hermite-style High-order Reconstructions

We report the convergence study of FAH-WALF and its comparison with WALF.

The study is performed on a sequence of unstructured meshes of the same object.

The sequence is obtained via uniformly refining original mesh recursively, and a k

levels of refinement delivers k+1 levels of mesh. Each mesh has exact geometry

and normals (tangent vectors if the geometry is curve). In the test, 10 points on

each facet of the mesh are randomly generated and then projected onto a high-order

surface constructed using FAH-WALF or WALF.

The error of projection is measured as the distance from the projection onto

estimated geometry to the projection onto exact geometry. The geometric error of

high-order reconstruction is defined in L∞ norm as maxvi=1 ‖x̃i − x̂i‖2, where x̃i

is the projection by FAH-WALF or WALF, and x̂i is the projection onto the exact

geometry, and v is the number of test vertices. We show the average convergence

rates along the right of the plot of reconstruction errors. The rate was calculated as

log(errorend/errorbase)/ log(hend/hbase). Here base stands for the initial mesh and

end stands for the finest mesh in sequence.

In current tests, exact vertex position and normal/tangent direction are given as
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(c) Hermite-style reconstruction

Figure 6.17: Curve Reconstruction

input for FAH-WALF. In practice, WALF does not require exact normal/tangent

direction. Here, in our comparison, WALF also utilizes the exact normal direction.

The first study is performed using a conical helix as in Figure 6.17(a) as ge-

ometry. The sequence of meshes in the test is obtained via 4 levels of refinement

of a helix mesh with 50 vertices. From Figure 6.17(b),6.17(c), we could tell that

both WALF and FAH-WALF could achieve the asymptotical convergence rate of

(d+1). However, Hermite-style reconstruction tends to be more accurate. Espe-

cially, Hermite-style reconstruction is more robust for coarse meshes.

The following test is performed using a torus with in-radius of 0.7 and outer-

radius 1.3 as geometry. Figure 6.18 shows the L∞ error of FAH-WALF for a torus

mesh which has 304 vertices and 608 triangles, and 3 levels of refinement which

gives the finest mesh which has 19456 vertices and 38912 triangles. From the figure,

it is obvious that quadratic and higher-degree fittings produce far more accurate

results than linear interpolation.

Both WALF and FAH-WALF could achieve the convergence rate of (d+1) if the

mesh is well resolved. However, for coarse mesh, FAH-WALF give smaller errors

than WALF, as shown in Figure 6.17(b),6.17(c),6.19, although asymptotically they

delivered similar convergence rate. From our observation, the reason for the better
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(a) Initial torus mesh: 304 vertices, 608 trian-
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1)st accuracy for degree-d polynomials.

Figure 6.18: Convergence study of FAH-WALF

0 1 2 3

level of refinement

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

L
∞

 e
rr

o
r

FAH-WALF:Degree 2
FAH-WALF:Degree 4
FAH-WALF:Degree 6
WALF:Degree 2
WALF:Degree 4
WALF:Degree 6

(a) L2 error of two methods for initial torus
mesh with 336 triangles

0 1 2 3

level of refinement

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

L
∞

 e
rr

o
r

FAH-WALF:Degree 2
FAH-WALF:Degree 4
FAH-WALF:Degree 6
WALF:Degree 2
WALF:Degree 4
WALF:Degree 6

(b) L2 error of two methods for initial torus
mesh with 608 triangles

Figure 6.19: Comparison with WALF

accuracy and robustness for FAH-WALF is that it requires a more compact stencil

for local fitting which reduces the risk of overfitting.
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Chapter 7

Conclusion and Further Directions

In this dissertation, we presented a method for generating a hierarchical unstruc-

tured meshes in parallel for efficient solution of PDE’s using finite element methods

and multigrid solvers. A multi-degree, multi-dimensional and multilevel framework

is designed to generate the nested hierarchies from an initial mesh that can be used

for a number of purposes from multi-level methods to generating large meshes.

Two parallel communication algorithms are designed to aid in resolution of shared

interface. We presented numerical results for computational efficiency of the re-

finement strategy in a parallel set up as well as the effect on mesh quality. We also

demonstrated the applicability of the developed capability for multilevel and finite

element methods as well as provide access to different point projection strategies

that can effect the solution accuracy.

One of our primary contribution is that we developed a simple but general

array-based half-facet mesh data structure, called Hierarchical AHF, for hierarchi-

cal meshes under adaptive mesh refinement. We described the algorithms and a

prototype implementation in MATLAB for both refinement and derefinement for
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2D triangular and 3D tetrahedral meshes. We demonstrate that Hierarchical AHF is

efficient in terms of both storage and computational costs. Our framework could be

easily integrated with finite element codes that support nonconformal meshes. The

numerical results indicate the effectiveness of the adaptive procedures. In addition,

our data structure is easily extended to support red-green refinement, so that it can

also be used with finite element codes that require conformal meshes.

Hierarchical AHF stores all the information using arrays instead of pointers.

Due to its array-based nature, it is well suited for parallel computations and is rel-

atively easier to port onto GPUs. In addition, it facilitates easier interoperability

with application codes. This tree hierarchy could be further utilized by multigrid

or multilevel methods, which are often used as solvers of the arising linear systems

for large scale simulations. We plan to explore these aspects in our future research.

In addition, we considered the problem of high-order surface reconstruction

from surface meshes, which is important for meshing and geometric modeling. We

introduced the FAH-WALF method, which extended the WALF method [61] in two

ways. First, we introduced a Hermite-style least-squares approximation, which

leverages both points and normals of the input mesh. Second, we described the

high-order reconstruction of feature curves, as well as a blending strategy to ensure

G0 continuity of the reconstructed surface at sharp features, while preserving the

order of accuracy. We proved the high-order of convergence of our proposed tech-

niques. The experimental results verified the high-order convergence rates FAH-

WALF and its robustness, especially for coarse input meshes.

By design, FAH-WALF is useful when an accurate, instead of “exact” geometry

is needed, and when accessing the CAD software may be inconvenient. In particu-

lar, it is especially attractive for high-order finite elements, mesh refinement, mesh
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smoothing and mesh adaptivity, both in serial and parallel, especially for the solu-

tions of PDEs. In such applications, it is desirable for the discretization errors to

be balanced for those from the PDE discretizations and from the geometric repre-

sentations. In this aspect, FAH-WALF is similar to WALF. However, an important

advantage of the FAH-WALF methodology, compared to WALF, is that we can use

high-order reconstruction, such as fifth- or sixth-order reconstructions, instead of

only second or third-order reconstructions, on a relatively coarse mesh, while en-

suring the accuracy and stability of the method. Therefore, with FAH-WALF, an

application can start from a mesh that may be two to four times coarser in each di-

rection while achieving the same accuracy of the reconstruction compared to using

WALF. This leads to a reduction by a factor of 4 to 16 of the input mesh for a sur-

face mesh, and a factor of 8 to 64 for a 3-D volume mesh. This advantages broadly

expand the scope of applicability of high-order surface reconstruction to practical

applications.

For geometric modeling applications, FAH-WALF methodology provides a valu-

able technique to complement the CAD techniques, such as NURBS and T-splines.

Even though FAH-WALF enforces onlyG0 continuity, the jumps in the normals and

curvatures can be guaranteed to be high-order for smooth surfaces, which may suf-

fice for many applications. In addition, our treatment of feature curves also makes

the technique more convenient, and potentially also more robust, than traditional

CAD techniques from the applications’ point of view. However, FAH-WALF is

by no means a replacement of traditional CAD techniques. In particular, if G1 or

G2 continuity is needed, such as geometric modeling with just few control points,

then the traditional G1 or G2 continuous CAD models, such as NURBS and T-

splines may be advantageous. In addition, for high accuracy, the input points and
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normals must be accurate, preferably obtained from an analytic description of the

surface, such as a CAD model. As a future research direction, we will investigate

the noise-resistance of the proposed technique when the normals are imperfect, such

as when they are estimated from the input mesh, similar to the techniques presented

in [62, 119].
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