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Abstract of the Thesis

Digital Implementation of a Synchronous First-in First-out (FIFO) using CAD tools

by

Aseem Gupta

Master of Science

n

Electrical & Computer Engineering

Stony Brook University, New York

2015

Over the past couple of decades, digital design has prospered many miles. The
availability of advanced EDA tools help cut design times, debugging issues and
time-to-market (TTM). Understanding the digital design flow has now become
crucial and many IP cores are being built in no time with use of advanced tools.
The tools for front-end, back-end simulations have given industry freedom to ex-

periment new complex designs.

The productivity of a digital designer is also a function of his ability to step up of a
ramp and use the EDA tools to achieve faster designs and get the job done. Tools
such as for synthesis, place and route, and timing verification have evolved over
times with many variations and different command tools. Thus, the designer has

to adjust with different and multiple UI’s (user interfaces). In general industrial
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design, large CAD (Computer-Aided Design) teams are needed to provide such
smoother flow control and results gathering capabilities via extensive scripting[5].
The thesis is based on learning and getting hands-on experience of new cutting-

edge tools for faster designs.

First-in First-out (FIFO) design is crucial where the data has to be passed across
different clock domains. Synchronous FIFO is used for first-in first-out read /write
operation through a single clock port. This thesis describes the digital imple-
mentation of a synchronous FIFO with front-end and back-end flow using mostly
Cadence Design Systems (CDS) and Mentor Graphics Corporation (MGC) EDA
tools. Front-end involves logic design and simulation, logic synthesis and functional
verification. Floorplanning, automatic placing and routing, clock-tree synthesis,

timing closure and physical verification were performed as back-end design steps.

The ionizing radiations on a semiconductor device can cause bits to flip thereby
changing the functionality of the digital IC causing a phenomenon called Single
Event Upset (SEU). Thus, digital integrated circuits used for applications which
expose them to radiations need to be SEU-tolerant. Many radiation-hardened-
by-design (RHBD) techniques have been developed and one such technique is
discussed in this thesis. This technique is called DICE (Dual-Interlocked Cell
Storage).

As part of my work, drawing layouts and getting familiarized with the Process
Design Kit (PDK) was necessary to complete a SEU-tolerant Flip Flop layout.
In this process, TSMC 65nm, 130nm and IBM 130nm PDK’s were studied and

standard cells layouts were drawn.
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Chapter 1

Digital VLSI Design Flow

1.1 Introduction: RTL-GDSII Design Flow

The gadget world has grown tremendously over last 15 years. Thanks to the ever-
growing silicon industry, we are now living in a much more advanced and safer

world.

The development of a silicon chip used in electronic devices starts with sand (sil-
ica). This silicon, a semiconductor element, along with its compounds primarily

make the transistor we use in integrated circuits.

It is so remarkable that we have been able to use sand to reach to the moon. Elec-
tronic design has been growing with development of automated EDA (Electronic

Design Automation) tools.

With feature size shrinking as per Moore’s Law, the design has grown in function-
ality and complexity. Number of transistors have been increasing giving designers

to play with trade-offs such as power, performance and area.



Chapter 1. Digital VLSI Design Flow

Digital design continues to evolve. The beauty of the digital design is its levels of
abstraction. Today, we can design and simulate functionality at much higher level

of abstraction which gives us more freedom to incorporate complex functionalities.

Figure 1.1 describes the VLSI Design Flow-

Design Specification

< >

Behavioral Description

~~

RTL (HDL) design code [«

~~

Functional Verification

~ >

Logic Synthesis

=~

Gate-Level Netlist

Floorplanning,

Physical Verification

N~

Timing Closure

<~ >

Sign-Off

FiGure 1.1: VLSI Design Flow

The flow shown in figure can be divided into two broad categories-

1. Front-end Design

2. Back-end Design
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Standard-Cell design methodology has been chosen. This methodology uses
EDA tools to automate the design flow.

Standard Cells are logic cells such as inverter, NAND, Flip Flops etc that we
want to treat as black boxes during synthesis (memory blocks, custom body-bias
circuits etc) and 10 pad cells. All standard cells are of same height but different

widths.

1.2 Front-end Steps

Front-end design includes-

A. System Specification & Architecture
B. HDL coding & Behavioral Simulation

C. Synthesis & Gate-level Simulation

Stepl - In any design, specifications of the product are written first. Specifica-
tions describe abstractly the functionality, interface, and overall architecture of

the digital circuit to be designed.

Step2 - A behavioral description is then created to analyze the design in terms of
functionality, performance, compliance to standards, and other high-level issues.
Behavioral descriptions can be written in any Hardware Description Language
(HDL)[6]. High-level synthesis (HLS) design using HLS tools allows us to

build design in C, C++ at much higher level of abstraction.

Step3 - Logic Design
RTL (Register-Transfer Level) design starts now. A digital RTL design engineer
would look at the behavioral description and manually write the RTL code in

HDL. From this point onwards, the flow is fully automated using CAD tools[6].
3



Chapter 1. Digital VLSI Design Flow

For specific cases and complex designs, a verification engineer would simultane-
ously look at the behavioral description and come up with his own verification

methodology independent of the RTL design created by the RTL designer.

Now, there are various HDL’s to choose from -

1. VHDL (Very High Speed IC Hardware Description Language)
2. Verilog

3. System Verilog

It depends on RTL (Register-transfer level) code writer whichsoever HDL is chosen
for design. Each language has its pros and cons. In this thesis, SystemVerilog has
been chosen in the design of FIFO. The code could be written in any editor window

such as textedit or gedit.

Any code that is synthesizable is the RTL code. Designs using the RTL specify
the characteristics of a circuit by operations and the transfer of data between the
registers. An explicit clock is used.

RTL design contains exact timing bounds:operations are scheduled to occur at

certain times.

The code has to be simulated to verify the correct functionality of the design.
There are many logic simulation tools to see the waveforms of the signals and

simulate the design for which the code has been written such as -

1. ModelSim by Mentor Graphics
2. Incisive Enterprise Simulator (SimVision) by Cadence Design Systems

3. Vivado Design IC Suite by Xilinx
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4. Synopsys VCS

Step4 - Logic Synthesis
Once the design is successfully simulated and verified (Functional Verification) for
its correct functionality, it is ready to be synthesized. This process is called Logic

Synthesis.

Logic Synthesis tools convert RTL description to a gate-level netlist. Some syn-

thesis tools are -

1. Cadence RTL RC Compiler

2. Synopsys Design Compiler

A standard cell design methodology makes use of standard cell library of a particu-
lar process technology and synthesizes the design. Synthesizing the design involves
use of standard cells, constraint file, timing files of the technology used and pro-
duces a gate-level netlist made out of logic gates such as- AND, INV, Flip-Flop,
OR etc.

The gate-level netlist is obtained after running the synthesis. A gate-level netlist
is a description of the circuit in terms of gates and connections between them.
This gate-level netlist is again simulated using simulation softwares to verify the
correct functionality of the design. This sub-step is called post-synthesis gate-

level simulation.

All the above steps are discussed in detail in Chapter2.
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1.3 Back-end Steps

Once the gate-level netlist is obtained, we are ready to layout (physical represen-

tation) the design.
All the steps of Back-end design are performed. These steps include -

1. Design Import - The necessary files such as the gate-level netlist (.v), timing
information files (.1ib), library exchange format (.lef) files, signal integrity (.cdb

files) etc are imported into the back-end tool.

2. Floorplanning - The designer is required to determine die-size by arrangement
of the IO’s on pad frame and padframe to core. This step is a preparation step
for power supplies; placement of IO pads, hard macros (RAM, PLL) and standard

cells.

3. Power Planning and Routing - Power supplies to the core rows and Macros
are specified. Designs vary in the physical location and the width of the supply
lines. The tool will create connections between the core rows and core rings and

the core rows to the core supply pads.

4. Cell Placement - Gate-level netlist is used to place the standard cells on the

floorplan.

5. Clock-Tree Synthesis - After cell placement, placement of registers is known
and the clock tree can be synthesized. Constraints like skew, slew, rise time and
fall time can be specified in the clock-tree specification file (.ctstch). Clock Buffers

and DECAPS are placed in the gaps of the floorplan[7].

6. Signal Routing - Signals as specified in the gate-level netlist need to be

routed to complete physical placement of the design.
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7. Timing Verification- The tool will try to optimize the timing by optimal

routing i.e. the signals will be assembled by wires that span over several layers.

8. Physical Verification - The design is physically verified for DRC, ERC,

antenna and LVS violations.

9. GDS Export - The final design is exported in GDSII format (Graphic Design
Systems) format. This file contains the layout design in form of polygons and is

sent out to the foundry to fabricate the design.

For a fully developed flow, it is recommended to include -
1. RC Extraction

2. Signal Integrity Check

3. Cross-talk

4. IR Drop Analysis

All these above steps are discussed in detail in Chapter 3.

Figure 1.2 shows a simple example of a combinational logic circuit giving an idea

of sample .v, .lef and .lib files.
.v (gate-level netlist) - circuit in terms of gates and connections between them
dib files - contains the timing information (delay of the gates)

def files - contains the geometry of the cells
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Logic: c=laé&b

Gate representation- a

Library Exchange Format .lef - INV  1um WIDTH
AND  2um WIDTH

Liberty/Timing Files dib - INV: 1ns delay;
AND: 2ns delay;

delay (atoc)- 1+2=23ns

Gate-level Netlist v - INV( .in(a), .out(a_inv) );
AND( .in1(a_inv), .in2(b), .out(c) );

Fi1GURE 1.2: Different sample file representations of a simple logic



Chapter 2

Front-end Design

2.1 Synchronous FIFO

A synchronous FIFO is a First-In-First-Out queue consisting of a storage array
with control logic that manages the read and write of data and generates status
flags. The number of rows of the array is called the DEPTH of the FIFO, and
the bit length of each row is called the WIDTH of the FIFO. In this thesis design,

Depth is 64-bit and and Width is 38-bit.

A synchronous FIFO has a single clock port for both data-read and data-write
operations. These FIFO’s are the ideal choice for high-performance systems due to
high-operating speed. They also offer many other advantages that improve system
performance and reduce complexity. These include status flags: synchronous flags,
half-full, programmable almost-empty and almost-full flags. These FIFOs include
features such as width expansion, depth expansion, and retransmit. Synchronous
FIFOs are easier to use at high speeds because they use free-running clocks to time
internal operations whereas asynchronous FIFOs require read and write pulses to

be generated without an external clock reference[8].
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2.2 FIFO: Front-end Design

After the design specifications and the behavioral description is written, the design

is ready to be converted to RTL code.
Front-end design broadly includes following steps-

A. Logic Design
B. Logic Synthesis

C. Formal Verification

After synthesis, we perform gate-level simulation. In digital design, we do not go

deep into transistor-level simulations unlike the analog design.

A. Logic Design

As the word says, this step deals with writing the RTL logic of the functionality
we want in our chip. In digital design, a HDL (Hardware Description Language)
code is written while analog designers make transistor-level schematics. Both are

logic representations.

As previously explained, common hardware languages are - VHDL, Verilog and
SystemVerilog. The written source code is simulated for correct functionality.

This is called logic simulation.

For simulation, just as we draw testbenches for schematic design, we need a test-
bench to simulate the written HDL code. The testbench can be written in any

language (software or hardware).

Logic Simulators available to simulate the written HDL and see waveforms are -

10



Chapter 2. Front-end Digital Design

1. ModelSim by Mentor Graphics
2. Incisive Enterprise Simulator (SimVision) by Cadence Design Systems
3. Vivado Design IC Suite by Xilinx

4. Synopsys VCS

B. Logic Synthesis

After verifying the correct functionality of the design, it is ready to be synthe-
sized if a synthesizable code has been written. The code has to be written very

efficiently so that it does not have inferred latches while it is being synthesized.

The common EDA tools used for logic synthesis are -

1. Synopsys Design Compiler
2. Cadence RTL (RC) Compiler

The logic synthesis tool (RTL RC Compiler in this case) will take in the timing
information (obtained from the characterization of the library technology) and
synthesize our design with certain area, frequency and power. We can put our

own constraints into synthesis step as per our requirement.
Input files to a logic synthesis tool -

1. .v (verified source verilog code) or .vhd (vhdl) or .sv (systemverilog) - This file

is analogous to the schematic in analog design

11



Chapter 2. Front-end Digital Design

2. .lib models (timing library information) - Slow, typical or fast (whatever mode
we want the design to run). This step is analogous to choosing model libraries

while performing simulation in ADE (Analog Design Environment)

3. Technology file - This file is very crucial as it specifies what technology (or
process) the design has to build/synthesized with. We did not say for what tech-
nology we wrote the code. And this is exactly the beauty of digital design. If
we want the same functionality for a different technology, we just need to change
the path to new technology and the new technology timing library files. There
is no need to write the HDL code again. On the contrary, schematics have to be

redrawn for the new technology.

4. Constraint File (.sdc) - This is called the Synopsys Design Constraint file. Any
constraint on clock, input delay, output delay, area, frequency etc can be included
in this file. This file will be read by the logic synthesis tool and it will synthesize

the design keeping in mind all the constraints specified in this file.
Output Files to a logic synthesis tool-

1. .v (Gate-level Netlist) - This file contains the synthesized circuit only in terms

of gates such as AND, OR etc and the connection between them.

2. .sdc - The tool again generates a constraint file which is used in the back-end

flow.

3. Power and area report - The tool reports the power and the approax area taken
by the design (area of the cells only not of the wires as we have not routed the

physical wires yet).

The results of logic synthesis steps have been shown in the figures below.

12
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[ NON ) |x| Report Area

Generated by: Encounter(R) RTL Compiler RC14.13 - v14.10-s027_1 (Nov 17 2014)
Generated on: Aug 11 2015 18:33:06

Medule: FIFO v

IBM_CMOS8RF_STD_SLOW_V110_T125

physical_cells

Operating conditions: T125_V110_Pwc

Interconnect mode: ple

Technology libraries:

FIFO_ v | 1208| 33912.95) 31818.68|  65731.64<none> (s)

‘ Close H Help ‘

FIGURE 2.1: Area after synthesis

The tool reports area of the design. The total cell area and the nets area approax

65000 sq um.

We obtain the report of the full list of the mapped gates in our design.

| NoN [X| Report Mapped Gates

Generated by: Encounter(R) RTL Compiler RG14.13 - v14.10-s027_1 (Nov 17 2014)
Generated on: Aug 11 2015 18:33:33
Module: FIFO v

IBM_CMOSBRF_STD_SLOW_V110_T125
physical_cells

Operating conditions: T125_V110_Pwe
Interconnect mode: ple

Technology libraries:

| =
(AND2_C 38| 364.80|BM_CMOSBRF_STD_SLOW_V110_T125
AND2_E 29 278.40|BM_CMOS8RF_STD_SLOW_¥110_T125 =
(AND2_H 4 46.08|BM_CMOSBRF_STD_SLOW_¥110_T125
AND3_E 3 40.32|BM_CMOSBRF_STD_SLOW_¥110_T125
AO21_D 1 13.44|BM_CMOS8RF_STD_SLOW_W110_T125
AO21_F 2 26.88|BM_CMOS8RF_STD_SLOW_W110_T125
(AO2222_D 76  2042.88|BM_CMOS8BRF_STD_SLOW_V110_T125
(AO222 D 3 63.36|BM_CMOS8RF_STD_SLOW_VW110_T125
(AO22 F 10 153.60|BM_CMOS8RF_STD_SLOW_V110_T125
(ACI21_B 47 451.20|BM_CMOS8RF_STD_SLOW_W110_T125
(AOI2222_F 38 1167.36|BM_CMOS8RF_STD_SLOW_V110_T125 ||

‘ Close ‘ ‘ Help ‘

FIGURE 2.2: Mapped Gates

We have to make sure the Slack is not negative in Static Timing Analysis (STA).

Slack is defined as the difference of the required time and the arrival time of the

13



Chapter 2. Front-end Digital Design

timing path.

At the frequency we provided in the constraint file, if the slack is positive, it is
good as it means the signal was able to reach/arrive on time traversing the com-
binational path on time. The arrival time was less than the required (as specified
in the slow/fast timing files).

If the slack comes out to be negative, we have to increase the time period (or
reduce frequency) to get the timing meet in STA.

After the logic synthesis, the gate-level netlist obtained is again simulated for cor-

rect functionality of design. This is called post-synthesis simulation.

e0e . Timing Report - (id: 1) Physical: main

Options Endpoint: [mem_array_regl14](8}/SE Close
mem_array_reg[14][8)/SE 22242.00 1325,50] 879.70

(clock 40MHz) launch 0.00 R
rcl_ptr_regi0)/CLK 0.00 0.00 R
rd_ptr_reg[0)/Q SDFF_E 8 62.40/ 276.50 31330 313.30 F
j36343/A 0.00| 313.30

jREUTZ OR2E 2| 1550, 11240 194.40 507.70 G
j36920/A 0.00 507.70
369207 NOR2 B 4| 34.60| 753.60 3510 89280 R
j3687IA 0.00 89280
j3687HZ NOR2 B 4| 54.10] 759,60 51520 1408.00 G
j36735/8 010 1408.10
j36735/Z NOR2_E 38 24040 132550 751.90 2160.00 R
[mem_amay_regl14][8]/SE SDFF_E 0.00 2160.00
[mem_aay_reg|14](8]/CLK setup 000 598.00 2758.00 R
(clock 40MHz) apture 25000,00 R

F1cURrE 2.3: Timing Report

And we see that the Slack is positive.

We also see the statistics giving clear picture of number and area of logic and

sequential cells given by the statistics report.

C. Formal Verification

14
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[ NON [%| Report Statistics

Generated by: Encounter(R) RTL Compiler RC14.13 - v14.10-s027_1 (Nov 17 2014)
Generated on: Aug 11 2015 18:36:11

Module: FIFO v

IBM_CMOS8RF_STD_SLOW_V110_T125

physical_cells

Operating conditions: T125 V110_Pwc

Interconnect mode: ple

Technology libraries:

ls equential 566 26231. 04 77.30
inverter 19 109.44 0.30
logic 523 T572.48 22.30
TOTAL 1208 33912.98 99,90

‘ Close ‘ | Help ‘

A
e —

FIGURE 2.4: Statistics Report

A verification step is performed called Formal verification. The step is for logical
equivalence checking through a tool. Gate-level netlist obtained after synthesis is

checked against the RTL code.
This gate-level netlist is again simulated to verify functionality. This is called

post-synthesis gate-level simulation.

This completes the Front-end part of the design.

15
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Back-end Design

3.1 FIFO: Back-End Physical Design

Tool- Cadence Encounter EDI141

Broadly, the following steps were performed-
Netlist Import

Floorplanning

Power Routing

Placement of standard cells

Clock-Tree synthesis (CTS)

Routing of standard cells

Timing verification

Physical DRC/LVS verification
Sign-off/GDSII Export

16



Chapter 3. Back-end Design

3.1.1 A short Introduction about the tool

Cadence Encounter EDI is a complete tool for back-end design by Cadence De-
sign Systems,Inc (CDS). It is an automated tool for placing & routing, clock-tree

synthesis (CTS) and timing verification.

Input Files to Cadence Encounter -

1. Gate-level netlist(.v)

2. Library Exchange Format( .lef)

3. Timing Files/Liberty Files ( .lib)

4. Synopsys Design Constraint (.sdc)

5. I/O pad file (.io)

6. Power and Ground Nets (VDD/VSS)

Output Files out of Cadence Encounter-

1. strmOutMap (GDSII ) file - This file has design in polygons and is understood
by the foundry.
2. Design Exchange Format (DEF) File - The file is to import the design to vir-

tuoso for a mixed-signal design or DRC/LVS physical verification.

The design in Cadence Encounter can be seen in three views-

1. Floorplan view

2. Amoeba view
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Chapter 3. Back-end Design

3. Placement view

Figure 3.1 below shows a basic Encounter EDI flow.

tech.lef
tech.lib

Design Import

< verilog netlist(.v)

s

Floorplanning

¢

Power Routing

s

Cell Placement

.

Clock-tree synthesis

~~

Signal Routing

s

Timing Verification

N~

Physical Verification

N~

GDSII Export

~ >

Tape-out

FiGURrE 3.1: Basic Encounter EDI Flow

3.1.2 Importing Files

1. Gate-level netlist of the design (.v file) - The gate-level netlist obtained

from logic synthesis tools (RC compiler) containing the circuit in terms of logic-

gates and connections between them.
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2. Library Exchange Format (.lef file) - These are the files which contains
the technology information of a particular process technology. These files include
the design rules for routing and abstract of the cells. These files do not contain

any information about the internal netlist of the design.

Abstract- An abstract is a high-level representation of a layout view. An ab-
stract contains information about the type and size of the cells, position of pins
or terminals and the overall sizes of blockages. Standard cells are often saved in
abstract format.

The abstracts are used in place of full layouts to improve the performance of place
and route tools. After place and route is complete, the abstracts are replaced back
with the layouts.

The information contained in the LEF file is the text version of the Virtuoso cell
view abstract and includes layer names, layer widths and layer usage. LEF file

can be obtained using abstract generator tool in Virtuoso.

LEF file has two different categories -

A. Technology/Tech LEF - contains physical information about routing layers,
design rules, metal vias definitions, width, pitch, sheet resistance and sheet metal
capacitance of the process technology

B. MACROS/Cell LEF - cells descriptions, cells dimensions, layout of pins and

blockages, routing information of the each circuit block in the design library.

Note - Always Tech LEF is imported first and then the Macro LEF.
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3. Timing Library Files/ Liberty Files ( .lib file) - These files are very
important and specify the timing characteristics of each standard cell drawn in
the technology. Each cell is separately wire-modelled against different load ca-
pacitances and PVT (Process, voltage and temperature) conditions. All these
calculated experimental values are stored in timing files (.lib files). The bc(best
case) and we (worst case) conditions during design are tested by these max and

min timing libraries. Liberate Altos is a tool for Library Characterization.

4. Pad file- This is the 10 file which places the pad all around the die. This file
is not included here as this digitally implemented block would become a part of a

bigger layout design.

5. Power Information - This relates to the power nets to use in the layout.

Power net names are those defined in the LEF technology file.

File - Import Design, this inputs all the files to the Encounter. The first one
is the gate-level netlist obtained from RTL Compiler which is imported into En-

counter EDI tool. Encounter only supports verilog-netlist(.v) .

Also, our MMMC (Multi-Mode Multi Corner) configuration is setup by importing

all the relevant subsidiary files.

6. Captable File - The capacitance value at different process parameters for
130nm technology.

7. Extraction File (.qrc) - he file is used to extract parasitic capacitances and
resistances.

8. Signal Integrity (.cdb) -CDB ( CeltIC dB) noise files are to prevent crosstalk.
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eoe [X! Design Import
Hetlist:
© verilog
Files, | _v.enc.dalFIF
Top Cell:_ Auto Assign @ By User: FIFO_v
o oa
Library
Cell
View

TechnologyfPhrysical Libraries:
oA
Reference Libraries |
Abstract View Nates
Layout View Names

® LEF Files Tdesign_ts/en counter2 FIF O_y_testcase/ibs/IoiiEM_CMOSBRF_CMIOSERF_SC ef ..
Floorplan

10 Assignment File =]
Power

Pawer Nets: VDD
Ground Nets: GND
CPF File =

Analysis Configuration

MMMC View Definition File: 2/design_kits/encounterarFIFO_y_testcase/design/FIF O_y enc. datrviewDefiniton.icl

Create Analysis Configuraion ..

«-» sove. Lo

Help

FiGure 3.2: Importing files

9. Design Constraint File ( .sdc) - A constraint file outputted by RTL RC

Compiler.

eoe X MMMC Browser
Analysis View List MC Objects Wizard Help
Analysis Views Tihrary Sefs This wizard will assist you
= S(c et Mo - s 'é‘ﬂT specifying the necessary
- Constraint Moe - sic ining
B Sdc Files - fulhome/aguptacadenc | MCMation 10 configure the
© unomeraguptarcan asl system far RC extraction, delay
lim Sde Files £.. fufhomesaguptarcadenc | Galculation, and timing analysis.
Delay Camer: fast slow
B slow RC Comers It you have all the necessary
Constraint Mode - sdc data available, it is recommenied
/Ff':“” /aguptarcad that you canfigure the system as
.. juhomeragupta/cad | -
sk gup! Deley Comers completely as possible for al
Delay Cormer : slow Tast steps of the implementation flow -
Setup Analysis Yiews Library Set : fast through signoff.
Opcond Lirary If not, you can ahways update the
Constraint Mode - sdc - Opcond canfiguration, if necessary, as
B 50t Files RC Cormer : fast yau proceed through the flow.
fufhomeraguptarcad Indrop File
‘QU CSS:”;"E;UW S\EUWE' Dormain List If you are comfartable using the
Hold Analysis Views - Constraint Modes IINIC Emotasen, o Eem v
B fast o8dc the Wizand Off button to remove
Constraint Mode - sic & Soc Files the help dialog, and proceed at
B Sdc Files - fuhome/aguptarcaden | your own pace
- /uhomeragupta/car Iim Sd Files
lim Sdc Files
Delay Comer - fast

For additional assistance with
design import, press the Next  hd

hutton il
T | T o et

[Save&ost Load Delete Beset | | Preferences Wizard Off Close

Help
kit Ry (aisitle) Glacess aiizadOle \eile akiker

FIGURE 3.3: Creating Configuration Files

3.1.3 Specifying Floorplan

After the configuration files are created, the original loaded floorplan looks like in

the figure. The die area has been appended all around the core.
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e0e X/ Encounter(R) RTL-to-GDSII System 14.18 - | - FIFO_v
File Edit Yiew Pariion Floorplan Power Place Optimize Clock Route Timing Veriiy Optians Tools Flows Help cadence

== |OEAM MW IQ QAR QO &P 16 6ER&MIFNS

(Rl 0SB LEEY =% Lk =Y )T -

Al Colors

v
~
v
~
~
~
v
~
~
~
¥
v
~
~
I~
v
I~

FIGURE 3.4: Initial Floorplan

Specify customized Floorplan

We specify the Aspect Ratio = 1, Core utilization = 70. Die Size (Width, Height)
and Core Size (Width, Height) as per the area value of the design given out by
the logic synthesis tool RTL Compiler. We can also change the die area around

the core area of the chip.

Size the Floorplan - 60 micron X 1090 micron, this dimension is a
requirement for the project.

The initial floorplan was sized-customized as per the area report given by the RTL
compiler in the logic synthesis step. The Encounter EDI tool automatically size

the floorplan seeing the area but we could apply our own constraints.

22



Chapter 3. Back-end Design

[ ] [ ] X/ Specify Floorplan
Basic | Advanced
Design Dimensions
Specify By & Size _ Died0/Core Coordinates

e Core Size by: _ Aspect Ratio:

o Bimension : Width: 1100.0
Height 60.0
_ Die Size by:

Core Margins by: e Core to 10 Boundary
_ Core to Die Boundary

Core to Left 40 Core to Top: 40
Caore to Right 4.0 Core to Eottom: 4.0
Die Size Calculalion Use: _  Max IO Height @ Min IO Height
Floorplan Origin at: ® Lower Left Corner _ Center
Unit: Micran

@D ey o gwce e

FiGURE 3.5: Loading Floorplan

e0e X Encounter(R) RTL-to-GDSII Systern 14.18 - ) - FIFO_v
Eile Edit Wiew Paition Floorplah Power Place Optimize Clock Boute Tiking Verify Options Tools Flows Help :éden(e
(=N~ 1O E@ 2340 QA R ABQOIGY &£ 0ERNRYIF @

(M o C @@ LEL% == 40k | & []oners @
_All Colors
Hinstance
Instance
Block

Std. Cell
Cover Cell
Physical Cell

KKK KRR KR KR K

ee————————————— EHCongestion
EMultiple Color
EMiscellaneous

R

F C(MD)
cavOl)
11 v11)
GIGE]
M2 (v12)
ve(ved)
113 (113)

KRR KRR R KRR KR KK <R

L (ME)

KKKRK KKK
RS

|
Click to select single abject ShifClick to de/select multiple abjects Q|[seinumn 333202, 202.400)  n Memory 1

FIGURE 3.6: Sized (customized) Floorplan

3.1.4 Power Ralils

Its time to specify the power rails. We have to add the Global Net Connection.
We will add two rails. VDD and GND.

Adding Power Rings all around the design.
By browsing Power-Add Power Rings, we can add VDD and GND all around
the Floorplan Core. Make sure you route low metal layers for power rails. The
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Global Net Connections (on asicdesign.inst.bnl.gov)

Connection List Power Ground Connection
VDD FIN: . VDDA Connect

& Fin

_ Tie High

o Tie Low

Instance Basenane: *
Fin Name(s): GND
_ Net Basenarme

Scope
Q||| Csingemstance: T
O UnderModule: —
_ Under Power Domain: ~

O Under Region: 1< 0.0 Jiy00 u=D0 w00 5
® Apply Al

To Global Net: GND
__ Qverride prior connection

_ Verhase Output

A0 List Update Delete

LAdiI L (Lpdate ) (pelete )
[ cpply ] Check Resel Cancel Help ‘

FiGUrE 3.7: Adding Power Rails

higher metal layers are wider and thus have more resistance resulting in greater

IR drop.

Add Rings (on asicdesign.inst.bnl.gov)

Basic | Advanced = ia Generafion

Nei(s): |GND vDD ]
Ring Type
& Core ring(s) contouring
® Around core baundary _ Alang O boundary
__ Exclude selected objects
. Black ring(s) arounc
& Each block
Each reef
Selected power domain/fences/reefs
Each selected block and/or group of core rows
Clusters of selected blocks and/or groups of core rows
With shared ring edges
 User defined coordinates:
& Corering Block ring

Ring Configuration

Top Eottom: Lef: Right:
Layer: M1 H » M1 H ¥ hAZ W » M2 W
Width: 1 1 1 1
Spacing: 0.8 [iki} 0a [Ik:} Update
Offset. . Center in channel @ Specify
0z 0z nz o0z
Option Set
‘ A\ EditbAdd Bing@ption) |
- Set Mode {”Bppiy Defaulis Cancel Help ‘

FiGURrE 3.8: Power Rings

We see power rails on all 4 sides of our floorplan.

We see power rails on all 4 sides of our customized floorplan in Figure 3.10
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[ ] [ ) X/ Encounter(R) RTL-to-GDSI| System 14.18 - | - FIFO_v

Eile Edit Wiew FParition Floorplan Power Flace Optimize Clock Route Timing Verify Options Tools Flows Help cadence
@ N Q@ @3 o ‘ o @

2l |0 ERMPLHYIARQLAARQRO|E 1406 BRsYIFLH 6

ch 0 CHE LA LR =D R |B8 & [
777777777777777777777777777 &Il Colors

Hinstance
Instance O
Block
St Cell
Cover Cell
Physical Cell

)

KIKKIKK KKK

Evirezvia
P C(MD)
cA(val)
M1 1)
Vi¥12)
M2 (vi2)
ve(ves)
M3 (M13)
VL(v34)
Ma(Ma)

(Click to select single abject. Shift-Click to defselect multiple abjects a|[ssinuma

) - Z
4555, 41.937) i Memory

FicURE 3.9: Power Rings on design

e0e X/ Encounter(R) RTL-to-GDSI| System 14.18 - ign_kit - FIFO_v
File Edit View Parfiion Flooplan Power Place Opfimize Clack Route Timing Verlfy Options Tools Flows Help cadence
B E s o | OEBMAILYIAREERQOIED (4 HEDRNIFEN S

0% EE W LR e [orinenep B

KK KKK KKK

KKk [ KKK KK

FiGURE 3.10: Power Rings- customized floorplan
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3.1.5 Power Stripes

Adding Power Stripes By browsing to Power -Add Power Stripes we could run

VDD and GND lines through the floorplan of the core.

- Add Stripes (on asicdesign.inst.bnl.gov) SlEIES

Basic | Advanced | Via Generation

Set Configuration

Met(s) GND VDD
Layer. ;"M.Z"D"/ Direction: & Vertical . Horizontal

Width: 4 Spacing 5 Mpdate
Set Pattem

® Seto-set distance: 100

 Mumber of sets

 Bumps

_ Over F/G pins »

Stripe Boundary

& Core ring

. Pad ring

_ Design boundary v

 Each selacted block/domainfence
— All domaing

Specify rectangular area
Specify rectilinear area
First/Last Stripe
Start from. e left  _ right
® Relalive from core or selected area
K irom left 0 A from right: 80
_ Ahsolute locations

Option Set

[ ok ] Set Made, _apply Defauils _Cancel _ Help

FiGURE 3.11: Power Stripes

We see a M2 (Vertical) and M1(Horizontal) power stripes in the Floorplan design.

ece X| Encounter(R) RTL-to-GDSII System 14.18 - X - FIFO_v
| Elle Edit Wiew Partifon Flooplan Power Place Optimize Clack Route Tming Veriiy Options Tools Flows Help cadence
dlo O @ERMAHYIQQAABQOIEF aoBBhaY T @

R TR T Y [EEET -

_All Colors

¥
v
v
v
v
v
~
v

Click to select single abject ShiftrClick o devselect multiple abjects Q|[seinumn [244 270, 83.858)  in Memory )|

FIGURE 3.12: Power Stripes on design
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The thickness and the placement of these power rings and power stripes are in

designers’ hand and can be controlled through the tool.

e0e X/ Encounter(R) RTL-to-GDSII System 14.18 - | - FIFO_v
File Edit Wiew Pariion Floorplan Powsr Place Opfimize Clock Route Tming Verify Options Tools Flows Help cadence
FEls O ERtAHY QAR R0 &Y s B niYIPL e

Rk 0 LW E 1LEER=® Lk |8 & [G)fornerer B

Layer Control 8 X

FIGURE 3.13: Power Stripes- customized floorplan

3.1.6 Placing Cells

The Encounter reads in the Tech LEF and the MACRO LEF file and places the
standard cells in the rows of the floorplan as per the rules information contained

in the LEF. All cells have the same height and but are different in width.

o0 e X Place

& Run Full Flacement _ Run Incremental Flacement _ Run Placement In Floorplan Mode

Optimization Options
 Include Pre-Place Optimization
__ Incluide In-Place Optimization

Murber of Lacal CPU(s): 1 Set Multiple CPU

m Apply _ Mode Defaults _Cancel _ Help

FIGURE 3.14: Placing Standard Cells

Placement of standard cells in the rows of the floorplan shown in the Figure 3.15

27



Chapter 3. Back-end Design

eo0e X| Encounter(R) RTL-to-GDSI System 14.18 - _FIFO_v
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FIGURE 3.15: Placement of Standard Cells
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FIGURE 3.16: Placement of Standard Cells- customized floorplan
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Turn off the visibility of the nets in the design and just have a look at the placed

standard cells (Figure 3.17).

FIGURE 3.17: Placed cells without Nets

Now we will tell the tool what process technology we are using.

setDesignMode -process 130
The above command is to specify the process technology because it sets capacitive
filters and extraction effort level based on the process node. This is done through

command line.

3.1.7 Trial Route

Trial Route is run to check the congestion. We can specify how many maximum
number of routing metal layers we want to use in our design. After running trial
route, we look for congestion in the design through congestion markers. There
might be numbers in the form of H: -top/bottom or V: -top/bottom. H

stands for horizontal congestion and V stands for vertical congestion. The - top
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is for the required number of routing tracks used in this area and - bottom is the
available routing tracks.
Note- This is only a trial route for Global Assignments. The signals are routed by

Nano Route engine later.

'm Trial Route (on asicdesign.ins — | 8%

Trial Route Effort Level
 prototyping

_ low effort

& medium effort

. high effort

__ use routing guide  FIFO v guide
__ save routing to FIFO v route
__ Ignore routing obstruct

__ handle partition
max. route layer: ;o bk

klode Cancel Help ‘

FI1GURE 3.18: Trial Route Run

3.1.8 RC Extraction

The capacitance and resistance values for all the nets in the design are extracted
by the extract RC form.
Extraction is run in pre-route mode prior to signal routing and in post-route mode

after the signals are routed with the NanoRoute license of the tool.

The RC extraction mode can be changed by the Options-Set Mode- Specify
Extraction Mode

Select Timing-Extract RC
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|'-- Extract RC (on asicdesign.inst.bnl.gc

Save RC

_ Save Setload to FIFO_v setlnad

__ Save Set Resistance to FIFO_v setres

| Save SPF to FIFO_w spf

wiSave SPEF fo) FIFO_v.spef =
FC Corner to Qutput | fast n

Apply Cancel Help

Ficure 3.19: Extracting RC

3.1.9 Timing Analysis

One thing to ponder here, how are we running Timing Analysis without having
a clock in the design. The tool is smart enough to assume an ideal clock with

transition delay value of 0.1 ps (pico second).

‘- Timing Analysis (on asicdesign.inst.bnl.gov)

Basic || Advanced
__ Use Existing Extraction and Timing Data
Design Stage
‘  Pre-Place @ Pre-CTS _ Post-CTS  PostRoute . Sign-Off ‘

Include 51

Analysis Type
‘ & Setup _ Hold ‘

Reporting Options
MNumber of Paths 50

Report file(s) Prefix. FIFO_v_preCTS
Output Directary timingReports

Apply Cancel Help

F1cURE 3.20: Timing Analysis

3.1.10 Pre-CTS Optimization

Before we do clock tree synthesis (CTS), it is better to optimize the design to fix

all the timing violations. There may be violations in the design such as -
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1. Setup and Hold Violations

2. DRV (Design Rule Violations - max transitions and max capacitance violations)

Therefore, timing optimization is run several times during the implementation flow

to fix the above issues.

|'-- Optimization (on asicdesign.inst.bnl.gov) |=|0|%|
Design Stage
& Pre-CTS w Post-CTS . Post-Route — Sign-Off

Optimization Type

W Setup Hald
_ Incremental
& Design Rules Yialations

v H

__ Max Fanout
Include 31 | Sl Options...

[ ok N hMade Default Close Help

F1cUre 3.21: Timing Optimization

After running this, all the violating paths would go away as the tool runs opti-

mization many times till we the design is free from any kind of violation.

Here, its a screenshot from the command terminal window of the design-

3.1.11 Clock Tree Synthesis (CTS)

Its time to route the clock in the design. For this, we have to generate clock

specification file(.ctstch). There are two ways to generate a clock specification file

1. Hand-written clock specification file

2. Tool-generated clock specification file
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| WNS | AULWNS | TWS | AULTNS | Density | Real | Mem [Worst View|Pathgrous| £na point 1

| 2.820] 21.025] o.0e8]  0.08]  55.03% 0:00:80.0] 830.3M]  stow| Al A |

35.0m) o

00:07, =em = 790.6M, totSessionCous0:01:25 *+

optoesign Final sumary

Setwp mode | all | regzreg | default |

I

| NS (ns)i| 21.926 | 21926 | 22.068 |
| THS (n):| o000 | 0.090 | 0.000 |
| violating patne:| | e
| AUpatnsi| 1s30 | 1s2 | 1278 |

FIGURE 3.22: Clearing Violating Paths

We could browse to Clock- Synthesize Clock Tree - Mode- Mode Setup -
Route EM tab, here we can specify on which metal layers we want the clock
signals to get routed. Select Metal layers for Top and Bottom Preferred routing

layers for Non-Leaf Nets and Leaf Nets.

0 Mode Setup (on asicdesign.inst.bnl.gov) DR

List of Modes — - CTS Mode
ClackMesh Trace  Route/EM || Optimization | Miscellaneous
EndCap Routing Control
Filler

 Route Clock Nets
NanoRoute
Optinization v Route With NanoRoute Guidance
Placement Routing Attribute
ScanReorder Non-Leaf Nets Leaf hets
StreamOut Top Preferred Layer MG [~ I -]
OasisOut Bottom Preferred Layer M3 B s B
TieHiLo

hon Default Rule:

TrialRoute ) B

AC Limit

‘ __ Fix Violation Due To LEF AC Limit ‘
1 Prevention
Mor-Leaf Nets Lea Nets
®Extra Routing Track:1 B B
< Shielding: (7 G
Set Defauts
[ ox ] Apply Cancel Help ‘

FIGURE 3.23: Selecting Metal Layers to route Clock Signal

It is advisable to let EDI generate the Clock Specification(.ctstch) file. Generation
of this file depends on the constraint file (.sdc) file imported while creating the

MMMC configuration file in Stepl.
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SDC file (Constraint file) contains the information about the clock ports, time pe-
riod, pulse width, duty cycle , rise time , fall time of the clock signal. We manually
put those constraints to the design while generating the .sdc (constraint file) from

the logic synthesis tool.

Selected Cells
e . [EUFFER N
(S
INVERT_O
Delete
Output Specification File: Clock.ctstch =}
OK Apply (Clear Spec Close Help

FI1GURE 3.24: Generating Clock Specification File

After running the above command, we browse through our design directory and
have a look at the generated Clock Specification (.ctstch) file. This is how it looks

like-

19 #BottonPreferredLayer
20 #Preferredextraspace 1
21 #End

2

23 #-- Regular Route Type --
24 #RouteTypeName regularRoute
25 #TopPreferredLayer 4

26 #ottonPreferredLayer 3

27 #PreferredExtraspace 1 1
28 #End

29

30 #-- Clock Group --
31 #CUKGroup

32 #+ <clockName>

33

34

35 << e
36 # Clock Root  : clk

37 # Clock Name  : 40MHz

38# Clock Period : 25ns

39# Clock Name : 40MHz

40 # Clock Period : 25ns
e
42 AutoCTSRootPin clk

43 Period ns

44 MaxDelay ©0.01ns # sdc driven default

45 MinDelay ons # sdc driven default

46 MaxSkeu 1000ps # sdc driven default

47 SinkMaxTran  250ps # sdc driven default
250ps # sdc driven default
BUFFER_N INVERT_N INVERT_0

g o
eport  YES
0

50 OptAddBuffer  YES

60 #Route specialRoute
61 #LeafRouteType regularRoute
62 END

63 o)

Plain Text v_ b width: 8 n 34, Col 1 s

FIGURE 3.25: Clock Specification File

We see the all the clock parameters- Slew, Skew, Rise time, Fall time in the file.
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Fay_reg[14][41/CLK 322.6(ps)
reql21(331/CLK 298.2(ps)

= 28.4ps (required = 1000ps)
= 112ps (required = 1000ps)

FIGURE 3.26: Clock Synthesis Report

3.1.12 Post-CTS Optimization

Select the mode On-Chip Variation (OCV) and Common Path Pessimism Removal

(CPPR).

|'-- Specify Analysis Mode (on asicdesign.inst.br = |O|[X |

Bazic = Advanced
Timing Check
& Setup  _ Hold ‘

Timing Mode

_ Single . Bestand Woarst Case & On-Chip Variation

v CPPR

 Clock Gating Check

Apply Cancel Help

FI1GURE 3.27: Analysis Mode

Running the timing analysis post-CTS. After routing the clock, we once again do

the timing analysis.
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- Timing Analysis (on asicdesign.inst.bnl.gov)

“Basic Advanced
__ Use Existing Extraction and Timing Crata
Design Stage

‘ _ Pre-Place _ Pre-CTS @ Past-CTS_ Post-Route _ Sigr-OfF ‘

Analysis TypE

& Setup  Hold ‘
Include 31

Repurting Optiuns

Mumber of Faths Eil

Report file(s) Prefis  FIFO_v_pnstCTS

Output Directory timingRepons

Apply Cancel Help

F1cURE 3.28: Post-CTS Timing Analysis

Post-CTS optimization

Optimization (on asicdesign.inst.bnl.gov)

Design Stage

‘ _ Pre-CT3 & Post-CT3 _ Post-Route _ aign-0m
Optimization Type
o Setup __ Haold

_ Incremental
& Design Rules Yialations

o Max Tran
__ Max Fanout
Include 51 (& Optinns...
—

Apply hode Default Close Help

F1GURE 3.29: Post-CTS optimization

Post-CTS Optimization - Hold

Change the configuration to HOLD time from SETUP and again do the post-CTS

Timing analysis.

3.1.13 Nano Route

To complete the timing closure on the design, we need to prevent crosstalk. Thus,

the design is run with global and detail routing using NanoRoute[4].
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= Timing Analysis (on asicdesign.inst.bnl.gov) EEE

“Basic Advanced
__ Use Existing Extraction and Timing Crata
Design Stage
_ Pre-Place _ Pre-CTS @ Post-CTS _ Post-Route _ Sign-Off

Analysis Type

_ Setup
Include 3l

Reporting Options

Mumber of Paths 50

Report file(s) Prefis  FIFO_v_pnstCTS
Output Directary timingRepons

[ oK ] Apply Cancel Help

Fi1cURE 3.30: Post-CTS Hold Timing Analysis

To close timing and prevent crosstalk, we enable two options in NanoRoute-
1. Timing Driven

2. SI (Signal Integrity) Driven

Note- To check the crosstalk noise through SI driven option, we have to include
capacitance table (or QRC technology) files while setting up the configuration files

in the MMMC browser.

The empty space in the floorplan (where standard cells are not placed) is filled
up by the filler cells. These are spare filler cells which have no connection to the

standard cells and are just used to fill up the gaps in the floorplan.

After placing the filler cells (generally the Clock Buffers)-
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NanoRoute (on asicdesig

Routing Phase

v Global Route

o Detail Route  Start Iteration 0 End Iterafion default
Post Route Optimization __ Optimize ¥ia _ Optimize Wire

Concurrent Routing Features

» Fix Antenna. _ Insert Dindes Diode Cell Mame

Congestion Timing

« Timing Driven Effort % i SMART.
w51 Driven

_ Post Route &1 3l Victim File [

__ Litha Driven

__ Post Route Litho Repair

Routing Control

_ Selectad Mets Only Bottom Layer default Top Layer default

_ ECO Route

__ Area Route Area Selechifreaand Boute
Job Control

 Auto Stop

Mumber of Local CPU(s: 1
Number of CPU(s) per Remote Machine T
Number of Remote Machine(s) (O

Set Multiple CFU

m Apply. Attribute Koie Save Load Cancel Help
\pply , \Atrbute , | Mode ,_Save , Load , Cencel )| _Help )

FI1GURE 3.31: Nano Route

[ ] |X| Select Filler Cells
Selectable Cells List Cells List
FILLT FILLZ
MW S

Bgid
Delete
=

FicURrE 3.32: Adding Spare Cells: Filler

eo0e X Encounter(R) RTL-to-GDSI| System 14.18 - X _FIFO_v

File Edit ¥iew Partition Floorplan Power Place Optimize Clock Route Timing Verify Options FvS Tools Flows Help cadence

[[=R=N |0 @R F i QA QA B QRO|I&F 0B RRYIFT0
TR Y

KKK KKK KK

v

Kl

KKK R R KR

Q [[seinumo [76592, 141127 [Routed 1

FIGURE 3.33: Post-placement of Fillers Cells
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e0e X/ Encounter(R) RTL-to-GDSII System 14.18 - | - FIFO_v
| File Edit Yiew Pariion Floorplan Power Place Optimize Clock Route Timing Veriiy Optians Tools Flows Help cadence
= a O (@@ A IQ Q &M ROIED 14 oENRMIF S

(e 0 BB 1EHER =% ik

Layer Control & X

Al Colors

KERKKRK KKK KRKIKK

KRkl | KKK KKK R KKK KK KK

]
¥
~
v
~
¥
&
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~
¥
&
~
o
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L3 -

Q [[seiNumd [217.217, 85.646)  |[Routed 1

FiGURE 3.34: Post-placement of Fillers Cells -customized floorplan

3.1.14 Verify Geometry

This step is done to verify the geometry. If the technology /PDK has rules written
compatible with PVS (Physical Verification Systems) tool, we can do DRC/LVS

in EDI only.

W Verify Geometry (on asicdesign.inst.bnl.gov)

“Basic. Advanced
Verification Area

& Entire area

_ Specify y B

__ Layer Range » »
Check
 Minimum Wicth « Minimum Spacing
w Minimum Area » Same Met Spacing
w Short __ Geometry Antenna
w Cell Overlap __ Off Routing Grid
 Insufficient Metal Overlap o Off Manufacturing Grid
 MinHole « Implant Check
W Minimum Cut W MinStep
w Wiz Enclosure w Merged MGrid Check
Allow

« Pin In Blockage
v Same Cell Violations

Different Cell Yiolations

Gveriap of Routing Biackages And Pins
Overlap of Routing Blockage And Cell Blockage

@B vy Eee ) (Cawel) (e

FI1GURE 3.35: Verify Geometry
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3.1.15 Netlist Export

Since, we have routed many nets (CTS), the final netlist imported in the encounter
has modified a lot. At last, we export the final netlist (.v) file from the encounter.
This file will serve as our schematic when we do DRC/LVS in Virtuoso.

@ O ® x| Save Netlist

W Include Intermediate Cell Definitian
W Include Leaf Cell Definition

Metlist File: FIFC _w.y = |

m hgan::eli : Help

Ficure 3.36: Netlist Export

3.1.16 GDS Export

After performing all the steps, our final design is shown in figure below

eoe X| Encounter(R) RTL-to-GDSI| System 14.18 - qup ign_ki v, ign/FIFO_v.enc.dat - FIFO_v

| File Edit View Parfifon Flooplan Power Place Opfimize Clack Boute Timing Verify Options Tools Flows Help cadence
== |O|EEN A A Q QAR RO & (e ERSNIFELS
(B o M@ L&k =%k

| & (@) B

_All Colors
Elinstance
instance
Block

5t Cell
Cover Cell
Fhysical Cell
10 Cell

Area 10 Cell
Black Box

KRR KRR KR KK K

EMultiple Color
ElMiscellaneous
Terminal
Violation

Bus Guide
ggressor

LS U

C

Channel
Flight Line
REDUCED
P ort Nuriber

7
v
&
v
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|
v
v
v
v
¥
v
¥
v
BCongestion v
v
v
v
v
v
v
v
v
v
v
v
Grid Resistor ]

v

v

v

| S Q

[[a][seinumo {00544, 146 s‘aa) [pouted

(Click to select single abject Shit-Click to de/select multiple abjects

FiGure 3.37: Final design

Final Design in the Amoeba view looks like-
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e0e X/ Encounter(R) RTL-to-GDSII System 14.18 - | - FIFO_v
File Edit Yiew Pariion Floorplan Power Place Optimize Clock Route Timing Veriiy Optians Tools Flows Help cadence
=] | O (RN AN Q QAR QRO | & e oBER&EYIPN

(B4 0 % B W % 1) -

Al Colors

FIGURE 3.38: Amoeba View of the design

GDSII (Graphic Design Systems) Export

The design is exported in GDSII format to verify DRC/LVS in Virtuoso if not

done in PVS in EDI. This export will create strMapOut file.

[ ] [ ] x| GDS/OASIS Export
Output Format o GDSIStream ~ DASIS
Cutput File FIFO_v.gds |
hap File  streamOutmap :I

Library Mame Designlib

__ Structure Mame  FIFC_y

__ Aftach Instance Mame to Atftribute Mumber

__ Aftach Met Mame to atiribute Mumber

__ Merge Files _I __ Uniguify Cell Mames
__ Stripes

__ ‘Write Die Area as Boundary

__ 'Write ahstract information far LEF Macros

Units | 1000 »
Mode | ALL b
@ ey cows) ek

FiGurE 3.39: GDSII Export
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3.1.17 Power

We can use report power command to get the tool give power of the design. The

command from the terminal is -

report_power

@ & aseemgupta — agupta@asicdesign:FIFO_v_testcase — ssh — 94x24

FiGURE 3.40: Power

Power of the design is as follows-

At 40MHz frequency,
Switching power - 0.38 mW

Leakage power - 0.041 mW

3.1.18 Area

We can use report area command to get the tool give the area of the design. The
area reported was approax 35000 sq. um. Total area with nets is around 65000 sq

um as reported after synthesis also.

The command from the terminal is report_area.
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[ ] [ ] aseemgupta — agupta@asicdesign:FIFO_v_testcase — ssh — 94x24

FiGURE 3.41: Power II

® [ ] aseemgupta — agupta@asicdesign:FIFO_v_testcase — ssh — 94x24

encaunte

FIGURE 3.42: Area

We finish the design here. Virtuoso Export and mixed-signal integration would be
performed in the upcoming project while integrating this digital implementation

in a bigger top-level layout.
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Chapter 4

Radiation-Hardened-by-Design
(RHBD)

4.1 Single Event Upset

Silicon chips used in applications where they are exposed to ionizing radiations
such as outer-space applications, high-ionized ion source (Large Hadron Collider,
Heavy Ion Collider) must be hardened against the radiations in order to make
them function properly. These radiations can cause undesirable effects in the
devices, such as flipping the state of the memory cells or other effects caused by

accumulation of trapped charges induced by radiation.

The error induced by an incident particle on a digital integrated circuit (IC) is
called a Single Event Upset (SEU). A large number of electron-hole pairs is gen-
erated, for an equivalent charge in excess to 1pC, by the incident particle which
follows its way to the circuit node making it a sensitive node. This perturbation
may propagate through the circuit resulting in operational errors[1]. For instance,

if a circuit node with voltage interruptions due to incident particles belongs to a
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memory state (latch), it is highly likely to flip the state of the memory thereby
completely reversing the logic causing a SEU. These kind of errors/flaws in the
design can be very hazardous for the functioning of the chip. Imagine a SEU
causing RESET bit to flip, thereby causing the entire functionality to go in reset

mode.

With feature size getting smaller and smaller, the problem of SEU has increased
manifold. Smaller feature sizes translate to smaller capacitances and held charges,

allowing radiation of even smaller energies to upset vulnerable/sensitive nodes|2].

SEU mitigation is necessary to ensure data integrity. Semiconductor Associations
have realized the need of building radiation-tolerant ASIC’s and have come up

with many Radiation-Hardened-by-Design (RHBD) techniques|2].

One such technique is the Dual Interlocked Cell Storage (DICE). Before that, lets

see the functioning of a basic Flip-Flop Cell.

The D-Flip Flop operates in two mode-
1. Master

2. Slave
Both configurations have back-to-back inverters as shown in the figure 4.1
Master - Clk Low - Transparent Mode Clk High- Hold mode

At the rising edge of the clock (positive-edge triggered), the output Q of a flip-flop
follows input data D. Master configuration of FF passes the data (Transparent)
when the clock is low and holds the information when the clock is high. This is

achieved by back-to-back inverters topology, thus making a memory.

Slave - Clk Low - Hold Mode Clk High - Transparent mode
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In slave configuration, the data is in hold mode when clock is low and is passed

when clock is high. Transmission gate is one topology to use as a switch.

With this Master-Slave configuration, we achieve proper functioning of Flip-flop

at clock edges.

Edge Triggered Flip Flops... @’
Cascading Two Latches

D input must be settled by Output (Q) will only change

rising-edge of clock at rising-edge of clock
CLK CLKB
4% it 2
D__Z H\V
cLkB clK |
cLkeST ek cLK5eLkB
Master: Slave:
Clock Low: Transparent Clock Low: Hold
Clock High: Hold Clock High: Transparent

At the rising-edge of clock (CLK), the master
captures its data input. CLKB is the logic inverse of CLK

Presented by Melanie Berg at the Microelectronics Rellability & Qualification Werking Meeting (MRQW) 2013 and HIREV Indusiry Day, EI
Segundo, CA, December 10-12, 2013 and published on nepp.nasa.gov 4

FIGURE 4.1: Master-Slave DFF

The DICE-DFF configuration shown in Figure 4.2 is able to behave as radiation-
tolerant configuration for milliCoulombs of charge. The charge pulse of 50mA
current and 1ns time period (50pC charge) was injected to see if the configuration
was able to sustain the charge. The result was found out to be positive. On
the contrary, normal Flip Flop configuration can sustain only femtoCoulombs of

charge.
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.
1 A
-4 E : £ s
jé gl jg : 3 £ jﬁ g
> = 1 < T + .
£ 1 & &
b1 ¢
: i ' Rels
-
o L - y
< - T :
—n§ T _é
- ] <
ada

FIGURE 4.2: Dual Interlocked Storage Cell Flip Flop

4.2 Standard Cells Layout

Technology - TSMC 130nm Cell - DFF

The digital ground was separated from the analog substrate. The D flip-flop is

only a reset Flip Flop.
Technology - TSMC 130nm Cell - DFFSR

This configuration of DFF is the set-reset configuration.

All these design steps have helped me complete my thesis. Through this thesis, I
have learnt to draw efficient layouts, study and analyze SEU designs and developed

strong capabilities working on RTL-to-GDSII design flow using CAD tools.
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ece X| Virtuoso® Layout Suite L Editing: H3DD_DigitalCells_AG_V3 dffr1 layout

Launch File Edit Wiew Create Verfy Copnectivity Options Tools MWindow Assura GRC Opfimize Calibre Help cadence
I ¢ |4 0 R EQD | »|Q | » s B &

‘% 1_‘,% g = %‘Mkﬁ\ (el E\ » || (F)Selectn Sel(y0 Seifh0 Seit0):0 | X 5.245 v 6.085 X -\ Dist: Crgl

mouse L Mt R:
3w ] > cm

FIGURE 4.3: Layout -D Flip Flop(reset) - TSMC 130nm

ece X Virtuoso® Layout Suite L Editing: H3DD_DigitalCells_AG_V3 dffsr1 layout
Launch File Edit Yiew Create VYerfy Connectivity Options Tools Window Assura QRC Optimize Calipre Help cadence
| clk O @R BRI 1%~ o BTG

I \% x‘“; g == osmkﬁ\ f\ E\ o (F)Select Sel(NyD Self)0 Sel(0)0 [ X 4335 ¥ 5.030 dx dy Dist: Cmd.

mause L M, R:

2(3) \ > Crd.

FIGURE 4.4: Layout- D Flip Flop (set/reset) - TSMC 130nm
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Abbreviations

TTM
TAT
EDI
CPF
SDC
SDF
LEC
CCD

First-in First-out
Computer-Aided Design

Very Large Scale Integration
Cadence Design Systems

Mentor Graphics Corporation
Electronic Design Automation
Application Specific Integrated Circuit
Field Programmable Gate Array
System-on-Chip

Register Transfer Level

Hardware Description Language
Very High Speed IC Hardware Description Language
Power Performance Area
Engineering Change Order
Quality-of-Silicon
Quality-of-Results
Time-to-Market

TurnAround Time

Encounter Digital Implementation
Common Power File

Synopsys Design Constraint
Standard Delay Format

Logic Equivalence Checking
Conformal Constraint Designer
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CLP Conformal Low Power
LEF Library Exchange Format
DEF Design Exchange Format
MMMC Multi Mode Multi Corner
STA Static Timing Analysis
CTS Clock Tree Synthesis

GTD Global Timing Debug

oCcv On Chip Variation

CPPR Common Path Pessimism Removal
AAE Advanced Analysis Engine

ST Signal Integrity

GDSII Graphic Design Systems II
LIB Liberty Files

ILM Interface Logic Models

TLM Transaction Level Modelling
DRC Design Rule Check

ERC Electrical Rule Checking
DRV Design Rule Violations

LVS Layout vs Schematic

PVS Physical Verification System

FHM Fast Hardware Models

ELS Embedded Logic Synthesis

BST Behavior Structure Timing

CFS Constraint Functionality Separation
CTOS C-to-Silicon

HLS High Level Synthesis

BIST Built-In Self Test

ATPG Automated Test Pattern Generation
JTAG Joint Test Action Group

DFT Design For Testability

DFM Design For Manufacturability
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