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Abstract of the Thesis

Digital Implementation of a Synchronous First-in First-out (FIFO) using CAD tools

by

Aseem Gupta

Master of Science

in

Electrical & Computer Engineering

Stony Brook University, New York

2015

Over the past couple of decades, digital design has prospered many miles. The

availability of advanced EDA tools help cut design times, debugging issues and

time-to-market (TTM). Understanding the digital design flow has now become

crucial and many IP cores are being built in no time with use of advanced tools.

The tools for front-end, back-end simulations have given industry freedom to ex-

periment new complex designs.

The productivity of a digital designer is also a function of his ability to step up of a

ramp and use the EDA tools to achieve faster designs and get the job done. Tools

such as for synthesis, place and route, and timing verification have evolved over

times with many variations and different command tools. Thus, the designer has

to adjust with different and multiple UI’s (user interfaces). In general industrial
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design, large CAD (Computer-Aided Design) teams are needed to provide such

smoother flow control and results gathering capabilities via extensive scripting[5].

The thesis is based on learning and getting hands-on experience of new cutting-

edge tools for faster designs.

First-in First-out (FIFO) design is crucial where the data has to be passed across

different clock domains. Synchronous FIFO is used for first-in first-out read/write

operation through a single clock port. This thesis describes the digital imple-

mentation of a synchronous FIFO with front-end and back-end flow using mostly

Cadence Design Systems (CDS) and Mentor Graphics Corporation (MGC) EDA

tools. Front-end involves logic design and simulation, logic synthesis and functional

verification. Floorplanning, automatic placing and routing, clock-tree synthesis,

timing closure and physical verification were performed as back-end design steps.

The ionizing radiations on a semiconductor device can cause bits to flip thereby

changing the functionality of the digital IC causing a phenomenon called Single

Event Upset (SEU). Thus, digital integrated circuits used for applications which

expose them to radiations need to be SEU-tolerant. Many radiation-hardened-

by-design (RHBD) techniques have been developed and one such technique is

discussed in this thesis. This technique is called DICE (Dual-Interlocked Cell

Storage).

As part of my work, drawing layouts and getting familiarized with the Process

Design Kit (PDK) was necessary to complete a SEU-tolerant Flip Flop layout.

In this process, TSMC 65nm, 130nm and IBM 130nm PDK’s were studied and

standard cells layouts were drawn.
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Chapter 1

Digital VLSI Design Flow

1.1 Introduction: RTL-GDSII Design Flow

The gadget world has grown tremendously over last 15 years. Thanks to the ever-

growing silicon industry, we are now living in a much more advanced and safer

world.

The development of a silicon chip used in electronic devices starts with sand (sil-

ica). This silicon, a semiconductor element, along with its compounds primarily

make the transistor we use in integrated circuits.

It is so remarkable that we have been able to use sand to reach to the moon. Elec-

tronic design has been growing with development of automated EDA (Electronic

Design Automation) tools.

With feature size shrinking as per Moore’s Law, the design has grown in function-

ality and complexity. Number of transistors have been increasing giving designers

to play with trade-offs such as power, performance and area.

1



Chapter 1. Digital VLSI Design Flow

Digital design continues to evolve. The beauty of the digital design is its levels of

abstraction. Today, we can design and simulate functionality at much higher level

of abstraction which gives us more freedom to incorporate complex functionalities.

Figure 1.1 describes the VLSI Design Flow-

Figure 1.1: VLSI Design Flow

The flow shown in figure can be divided into two broad categories-

1. Front-end Design

2. Back-end Design

2



Chapter 1. Digital VLSI Design Flow

Standard-Cell design methodology has been chosen. This methodology uses

EDA tools to automate the design flow.

Standard Cells are logic cells such as inverter, NAND, Flip Flops etc that we

want to treat as black boxes during synthesis (memory blocks, custom body-bias

circuits etc) and IO pad cells. All standard cells are of same height but different

widths.

1.2 Front-end Steps

Front-end design includes-

A. System Specification & Architecture

B. HDL coding & Behavioral Simulation

C. Synthesis & Gate-level Simulation

Step1 - In any design, specifications of the product are written first. Specifica-

tions describe abstractly the functionality, interface, and overall architecture of

the digital circuit to be designed.

Step2 - A behavioral description is then created to analyze the design in terms of

functionality, performance, compliance to standards, and other high-level issues.

Behavioral descriptions can be written in any Hardware Description Language

(HDL)[6]. High-level synthesis (HLS) design using HLS tools allows us to

build design in C, C++ at much higher level of abstraction.

Step3 - Logic Design

RTL (Register-Transfer Level) design starts now. A digital RTL design engineer

would look at the behavioral description and manually write the RTL code in

HDL. From this point onwards, the flow is fully automated using CAD tools[6].

3



Chapter 1. Digital VLSI Design Flow

For specific cases and complex designs, a verification engineer would simultane-

ously look at the behavioral description and come up with his own verification

methodology independent of the RTL design created by the RTL designer.

Now, there are various HDL’s to choose from -

1. VHDL (Very High Speed IC Hardware Description Language)

2. Verilog

3. System Verilog

It depends on RTL (Register-transfer level) code writer whichsoever HDL is chosen

for design. Each language has its pros and cons. In this thesis, SystemVerilog has

been chosen in the design of FIFO. The code could be written in any editor window

such as textedit or gedit.

Any code that is synthesizable is the RTL code. Designs using the RTL specify

the characteristics of a circuit by operations and the transfer of data between the

registers. An explicit clock is used.

RTL design contains exact timing bounds:operations are scheduled to occur at

certain times.

The code has to be simulated to verify the correct functionality of the design.

There are many logic simulation tools to see the waveforms of the signals and

simulate the design for which the code has been written such as -

1. ModelSim by Mentor Graphics

2. Incisive Enterprise Simulator (SimVision) by Cadence Design Systems

3. Vivado Design IC Suite by Xilinx

4



Chapter 1. Digital VLSI Design Flow

4. Synopsys VCS

Step4 - Logic Synthesis

Once the design is successfully simulated and verified (Functional Verification) for

its correct functionality, it is ready to be synthesized. This process is called Logic

Synthesis.

Logic Synthesis tools convert RTL description to a gate-level netlist. Some syn-

thesis tools are -

1. Cadence RTL RC Compiler

2. Synopsys Design Compiler

A standard cell design methodology makes use of standard cell library of a particu-

lar process technology and synthesizes the design. Synthesizing the design involves

use of standard cells, constraint file, timing files of the technology used and pro-

duces a gate-level netlist made out of logic gates such as- AND, INV, Flip-Flop,

OR etc.

The gate-level netlist is obtained after running the synthesis. A gate-level netlist

is a description of the circuit in terms of gates and connections between them.

This gate-level netlist is again simulated using simulation softwares to verify the

correct functionality of the design. This sub-step is called post-synthesis gate-

level simulation.

All the above steps are discussed in detail in Chapter2.
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Chapter 1. Digital VLSI Design Flow

1.3 Back-end Steps

Once the gate-level netlist is obtained, we are ready to layout (physical represen-

tation) the design.

All the steps of Back-end design are performed. These steps include -

1. Design Import - The necessary files such as the gate-level netlist (.v), timing

information files (.lib), library exchange format (.lef) files, signal integrity (.cdb

files) etc are imported into the back-end tool.

2. Floorplanning - The designer is required to determine die-size by arrangement

of the IO’s on pad frame and padframe to core. This step is a preparation step

for power supplies; placement of IO pads, hard macros (RAM, PLL) and standard

cells.

3. Power Planning and Routing - Power supplies to the core rows and Macros

are specified. Designs vary in the physical location and the width of the supply

lines. The tool will create connections between the core rows and core rings and

the core rows to the core supply pads.

4. Cell Placement - Gate-level netlist is used to place the standard cells on the

floorplan.

5. Clock-Tree Synthesis - After cell placement, placement of registers is known

and the clock tree can be synthesized. Constraints like skew, slew, rise time and

fall time can be specified in the clock-tree specification file (.ctstch). Clock Buffers

and DECAPS are placed in the gaps of the floorplan[7].

6. Signal Routing - Signals as specified in the gate-level netlist need to be

routed to complete physical placement of the design.
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Chapter 1. Digital VLSI Design Flow

7. Timing Verification- The tool will try to optimize the timing by optimal

routing i.e. the signals will be assembled by wires that span over several layers.

8. Physical Verification - The design is physically verified for DRC, ERC,

antenna and LVS violations.

9. GDS Export - The final design is exported in GDSII format (Graphic Design

Systems) format. This file contains the layout design in form of polygons and is

sent out to the foundry to fabricate the design.

For a fully developed flow, it is recommended to include -

1. RC Extraction

2. Signal Integrity Check

3. Cross-talk

4. IR Drop Analysis

All these above steps are discussed in detail in Chapter 3.

Figure 1.2 shows a simple example of a combinational logic circuit giving an idea

of sample .v, .lef and .lib files.

.v (gate-level netlist) - circuit in terms of gates and connections between them

.lib files - contains the timing information (delay of the gates)

.lef files - contains the geometry of the cells
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Chapter 1. Digital VLSI Design Flow

Figure 1.2: Different sample file representations of a simple logic
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Chapter 2

Front-end Design

2.1 Synchronous FIFO

A synchronous FIFO is a First-In-First-Out queue consisting of a storage array

with control logic that manages the read and write of data and generates status

flags. The number of rows of the array is called the DEPTH of the FIFO, and

the bit length of each row is called the WIDTH of the FIFO. In this thesis design,

Depth is 64-bit and and Width is 38-bit.

A synchronous FIFO has a single clock port for both data-read and data-write

operations. These FIFO’s are the ideal choice for high-performance systems due to

high-operating speed. They also offer many other advantages that improve system

performance and reduce complexity. These include status flags: synchronous flags,

half-full, programmable almost-empty and almost-full flags. These FIFOs include

features such as width expansion, depth expansion, and retransmit. Synchronous

FIFOs are easier to use at high speeds because they use free-running clocks to time

internal operations whereas asynchronous FIFOs require read and write pulses to

be generated without an external clock reference[8].
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Chapter 2. Front-end Digital Design

2.2 FIFO: Front-end Design

After the design specifications and the behavioral description is written, the design

is ready to be converted to RTL code.

Front-end design broadly includes following steps-

A. Logic Design

B. Logic Synthesis

C. Formal Verification

After synthesis, we perform gate-level simulation. In digital design, we do not go

deep into transistor-level simulations unlike the analog design.

A. Logic Design

As the word says, this step deals with writing the RTL logic of the functionality

we want in our chip. In digital design, a HDL (Hardware Description Language)

code is written while analog designers make transistor-level schematics. Both are

logic representations.

As previously explained, common hardware languages are - VHDL, Verilog and

SystemVerilog. The written source code is simulated for correct functionality.

This is called logic simulation.

For simulation, just as we draw testbenches for schematic design, we need a test-

bench to simulate the written HDL code. The testbench can be written in any

language (software or hardware).

Logic Simulators available to simulate the written HDL and see waveforms are -

10



Chapter 2. Front-end Digital Design

1. ModelSim by Mentor Graphics

2. Incisive Enterprise Simulator (SimVision) by Cadence Design Systems

3. Vivado Design IC Suite by Xilinx

4. Synopsys VCS

B. Logic Synthesis

After verifying the correct functionality of the design, it is ready to be synthe-

sized if a synthesizable code has been written. The code has to be written very

efficiently so that it does not have inferred latches while it is being synthesized.

The common EDA tools used for logic synthesis are -

1. Synopsys Design Compiler

2. Cadence RTL (RC) Compiler

The logic synthesis tool (RTL RC Compiler in this case) will take in the timing

information (obtained from the characterization of the library technology) and

synthesize our design with certain area, frequency and power. We can put our

own constraints into synthesis step as per our requirement.

Input files to a logic synthesis tool -

1. .v (verified source verilog code) or .vhd (vhdl) or .sv (systemverilog) - This file

is analogous to the schematic in analog design

11



Chapter 2. Front-end Digital Design

2. .lib models (timing library information) - Slow, typical or fast (whatever mode

we want the design to run). This step is analogous to choosing model libraries

while performing simulation in ADE (Analog Design Environment)

3. Technology file - This file is very crucial as it specifies what technology (or

process) the design has to build/synthesized with. We did not say for what tech-

nology we wrote the code. And this is exactly the beauty of digital design. If

we want the same functionality for a different technology, we just need to change

the path to new technology and the new technology timing library files. There

is no need to write the HDL code again. On the contrary, schematics have to be

redrawn for the new technology.

4. Constraint File (.sdc) - This is called the Synopsys Design Constraint file. Any

constraint on clock, input delay, output delay, area, frequency etc can be included

in this file. This file will be read by the logic synthesis tool and it will synthesize

the design keeping in mind all the constraints specified in this file.

Output Files to a logic synthesis tool-

1. .v (Gate-level Netlist) - This file contains the synthesized circuit only in terms

of gates such as AND, OR etc and the connection between them.

2. .sdc - The tool again generates a constraint file which is used in the back-end

flow.

3. Power and area report - The tool reports the power and the approax area taken

by the design (area of the cells only not of the wires as we have not routed the

physical wires yet).

The results of logic synthesis steps have been shown in the figures below.
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Chapter 2. Front-end Digital Design

Figure 2.1: Area after synthesis

The tool reports area of the design. The total cell area and the nets area approax

65000 sq um.

We obtain the report of the full list of the mapped gates in our design.

Figure 2.2: Mapped Gates

We have to make sure the Slack is not negative in Static Timing Analysis (STA).

Slack is defined as the difference of the required time and the arrival time of the

13



Chapter 2. Front-end Digital Design

timing path.

At the frequency we provided in the constraint file, if the slack is positive, it is

good as it means the signal was able to reach/arrive on time traversing the com-

binational path on time. The arrival time was less than the required (as specified

in the slow/fast timing files).

If the slack comes out to be negative, we have to increase the time period (or

reduce frequency) to get the timing meet in STA.

After the logic synthesis, the gate-level netlist obtained is again simulated for cor-

rect functionality of design. This is called post-synthesis simulation.

Figure 2.3: Timing Report

And we see that the Slack is positive.

We also see the statistics giving clear picture of number and area of logic and

sequential cells given by the statistics report.

C. Formal Verification

14



Chapter 2. Front-end Digital Design

Figure 2.4: Statistics Report

A verification step is performed called Formal verification. The step is for logical

equivalence checking through a tool. Gate-level netlist obtained after synthesis is

checked against the RTL code.

This gate-level netlist is again simulated to verify functionality. This is called

post-synthesis gate-level simulation.

This completes the Front-end part of the design.
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Chapter 3

Back-end Design

3.1 FIFO: Back-End Physical Design

Tool- Cadence Encounter EDI141

Broadly, the following steps were performed-

Netlist Import

Floorplanning

Power Routing

Placement of standard cells

Clock-Tree synthesis (CTS)

Routing of standard cells

Timing verification

Physical DRC/LVS verification

Sign-off/GDSII Export

16



Chapter 3. Back-end Design

3.1.1 A short Introduction about the tool

Cadence Encounter EDI is a complete tool for back-end design by Cadence De-

sign Systems,Inc (CDS). It is an automated tool for placing & routing, clock-tree

synthesis (CTS) and timing verification.

Input Files to Cadence Encounter -

1. Gate-level netlist(.v)

2. Library Exchange Format( .lef)

3. Timing Files/Liberty Files ( .lib)

4. Synopsys Design Constraint (.sdc)

5. I/O pad file (.io)

6. Power and Ground Nets (VDD/VSS)

Output Files out of Cadence Encounter-

1. strmOutMap (GDSII ) file - This file has design in polygons and is understood

by the foundry.

2. Design Exchange Format (DEF) File - The file is to import the design to vir-

tuoso for a mixed-signal design or DRC/LVS physical verification.

The design in Cadence Encounter can be seen in three views-

1. Floorplan view

2. Amoeba view
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3. Placement view

Figure 3.1 below shows a basic Encounter EDI flow.

Figure 3.1: Basic Encounter EDI Flow

3.1.2 Importing Files

1. Gate-level netlist of the design (.v file) - The gate-level netlist obtained

from logic synthesis tools (RC compiler) containing the circuit in terms of logic-

gates and connections between them.

18



Chapter 3. Back-end Design

2. Library Exchange Format (.lef file) - These are the files which contains

the technology information of a particular process technology. These files include

the design rules for routing and abstract of the cells. These files do not contain

any information about the internal netlist of the design.

Abstract- An abstract is a high-level representation of a layout view. An ab-

stract contains information about the type and size of the cells, position of pins

or terminals and the overall sizes of blockages. Standard cells are often saved in

abstract format.

The abstracts are used in place of full layouts to improve the performance of place

and route tools. After place and route is complete, the abstracts are replaced back

with the layouts.

The information contained in the LEF file is the text version of the Virtuoso cell

view abstract and includes layer names, layer widths and layer usage. LEF file

can be obtained using abstract generator tool in Virtuoso.

LEF file has two different categories -

A. Technology/Tech LEF - contains physical information about routing layers,

design rules, metal vias definitions, width, pitch, sheet resistance and sheet metal

capacitance of the process technology

B. MACROS/Cell LEF - cells descriptions, cells dimensions, layout of pins and

blockages, routing information of the each circuit block in the design library.

Note - Always Tech LEF is imported first and then the Macro LEF.
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3. Timing Library Files/ Liberty Files ( .lib file) - These files are very

important and specify the timing characteristics of each standard cell drawn in

the technology. Each cell is separately wire-modelled against different load ca-

pacitances and PVT (Process, voltage and temperature) conditions. All these

calculated experimental values are stored in timing files (.lib files). The bc(best

case) and wc (worst case) conditions during design are tested by these max and

min timing libraries. Liberate Altos is a tool for Library Characterization.

4. Pad file- This is the IO file which places the pad all around the die. This file

is not included here as this digitally implemented block would become a part of a

bigger layout design.

5. Power Information - This relates to the power nets to use in the layout.

Power net names are those defined in the LEF technology file.

File - Import Design, this inputs all the files to the Encounter. The first one

is the gate-level netlist obtained from RTL Compiler which is imported into En-

counter EDI tool. Encounter only supports verilog-netlist(.v) .

Also, our MMMC (Multi-Mode Multi Corner) configuration is setup by importing

all the relevant subsidiary files.

6. Captable File - The capacitance value at different process parameters for

130nm technology.

7. Extraction File (.qrc) - he file is used to extract parasitic capacitances and

resistances.

8. Signal Integrity (.cdb) -CDB ( CeltIC dB) noise files are to prevent crosstalk.
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Figure 3.2: Importing files

9. Design Constraint File ( .sdc) - A constraint file outputted by RTL RC

Compiler.

Figure 3.3: Creating Configuration Files

3.1.3 Specifying Floorplan

After the configuration files are created, the original loaded floorplan looks like in

the figure. The die area has been appended all around the core.
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Figure 3.4: Initial Floorplan

Specify customized Floorplan

We specify the Aspect Ratio = 1 , Core utilization = 70. Die Size (Width, Height)

and Core Size (Width, Height) as per the area value of the design given out by

the logic synthesis tool RTL Compiler. We can also change the die area around

the core area of the chip.

Size the Floorplan - 60 micron X 1090 micron, this dimension is a

requirement for the project.

The initial floorplan was sized-customized as per the area report given by the RTL

compiler in the logic synthesis step. The Encounter EDI tool automatically size

the floorplan seeing the area but we could apply our own constraints.
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Figure 3.5: Loading Floorplan

Figure 3.6: Sized (customized) Floorplan

3.1.4 Power Rails

Its time to specify the power rails. We have to add the Global Net Connection.

We will add two rails. VDD and GND.

Adding Power Rings all around the design.

By browsing Power-Add Power Rings, we can add VDD and GND all around

the Floorplan Core. Make sure you route low metal layers for power rails. The
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Figure 3.7: Adding Power Rails

higher metal layers are wider and thus have more resistance resulting in greater

IR drop.

Figure 3.8: Power Rings

We see power rails on all 4 sides of our floorplan.

We see power rails on all 4 sides of our customized floorplan in Figure 3.10
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Figure 3.9: Power Rings on design

Figure 3.10: Power Rings- customized floorplan
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3.1.5 Power Stripes

Adding Power Stripes By browsing to Power -Add Power Stripes we could run

VDD and GND lines through the floorplan of the core.

Figure 3.11: Power Stripes

We see a M2 (Vertical) and M1(Horizontal) power stripes in the Floorplan design.

Figure 3.12: Power Stripes on design
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The thickness and the placement of these power rings and power stripes are in

designers’ hand and can be controlled through the tool.

Figure 3.13: Power Stripes- customized floorplan

3.1.6 Placing Cells

The Encounter reads in the Tech LEF and the MACRO LEF file and places the

standard cells in the rows of the floorplan as per the rules information contained

in the LEF. All cells have the same height and but are different in width.

Figure 3.14: Placing Standard Cells

Placement of standard cells in the rows of the floorplan shown in the Figure 3.15
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Figure 3.15: Placement of Standard Cells

Figure 3.16: Placement of Standard Cells- customized floorplan
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Turn off the visibility of the nets in the design and just have a look at the placed

standard cells (Figure 3.17).

Figure 3.17: Placed cells without Nets

Now we will tell the tool what process technology we are using.

setDesignMode -process 130

The above command is to specify the process technology because it sets capacitive

filters and extraction effort level based on the process node. This is done through

command line.

3.1.7 Trial Route

Trial Route is run to check the congestion. We can specify how many maximum

number of routing metal layers we want to use in our design. After running trial

route, we look for congestion in the design through congestion markers. There

might be numbers in the form of H: -top/bottom or V: -top/bottom. H

stands for horizontal congestion and V stands for vertical congestion. The - top
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is for the required number of routing tracks used in this area and - bottom is the

available routing tracks.

Note- This is only a trial route for Global Assignments. The signals are routed by

Nano Route engine later.

Figure 3.18: Trial Route Run

3.1.8 RC Extraction

The capacitance and resistance values for all the nets in the design are extracted

by the extract RC form.

Extraction is run in pre-route mode prior to signal routing and in post-route mode

after the signals are routed with the NanoRoute license of the tool.

The RC extraction mode can be changed by the Options-Set Mode- Specify

Extraction Mode

Select Timing-Extract RC
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Figure 3.19: Extracting RC

3.1.9 Timing Analysis

One thing to ponder here, how are we running Timing Analysis without having

a clock in the design. The tool is smart enough to assume an ideal clock with

transition delay value of 0.1 ps (pico second).

Figure 3.20: Timing Analysis

3.1.10 Pre-CTS Optimization

Before we do clock tree synthesis (CTS), it is better to optimize the design to fix

all the timing violations. There may be violations in the design such as -
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1. Setup and Hold Violations

2. DRV (Design Rule Violations - max transitions and max capacitance violations)

.

Therefore, timing optimization is run several times during the implementation flow

to fix the above issues.

Figure 3.21: Timing Optimization

After running this, all the violating paths would go away as the tool runs opti-

mization many times till we the design is free from any kind of violation.

Here, its a screenshot from the command terminal window of the design-

3.1.11 Clock Tree Synthesis (CTS)

Its time to route the clock in the design. For this, we have to generate clock

specification file(.ctstch). There are two ways to generate a clock specification file

-

1. Hand-written clock specification file

2. Tool-generated clock specification file
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Figure 3.22: Clearing Violating Paths

We could browse to Clock- Synthesize Clock Tree - Mode- Mode Setup -

Route EM tab, here we can specify on which metal layers we want the clock

signals to get routed. Select Metal layers for Top and Bottom Preferred routing

layers for Non-Leaf Nets and Leaf Nets.

Figure 3.23: Selecting Metal Layers to route Clock Signal

It is advisable to let EDI generate the Clock Specification(.ctstch) file. Generation

of this file depends on the constraint file (.sdc) file imported while creating the

MMMC configuration file in Step1.
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SDC file (Constraint file) contains the information about the clock ports, time pe-

riod, pulse width, duty cycle , rise time , fall time of the clock signal. We manually

put those constraints to the design while generating the .sdc (constraint file) from

the logic synthesis tool.

Figure 3.24: Generating Clock Specification File

After running the above command, we browse through our design directory and

have a look at the generated Clock Specification (.ctstch) file. This is how it looks

like-

Figure 3.25: Clock Specification File

We see the all the clock parameters- Slew, Skew, Rise time, Fall time in the file.
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Figure 3.26: Clock Synthesis Report

3.1.12 Post-CTS Optimization

Select the mode On-Chip Variation (OCV) and Common Path Pessimism Removal

(CPPR).

Figure 3.27: Analysis Mode

Running the timing analysis post-CTS. After routing the clock, we once again do

the timing analysis.
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Figure 3.28: Post-CTS Timing Analysis

Post-CTS optimization

Figure 3.29: Post-CTS optimization

Post-CTS Optimization - Hold

Change the configuration to HOLD time from SETUP and again do the post-CTS

Timing analysis.

3.1.13 Nano Route

To complete the timing closure on the design, we need to prevent crosstalk. Thus,

the design is run with global and detail routing using NanoRoute[4].
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Figure 3.30: Post-CTS Hold Timing Analysis

To close timing and prevent crosstalk, we enable two options in NanoRoute-

1. Timing Driven

2. SI (Signal Integrity) Driven

Note- To check the crosstalk noise through SI driven option, we have to include

capacitance table (or QRC technology) files while setting up the configuration files

in the MMMC browser.

The empty space in the floorplan (where standard cells are not placed) is filled

up by the filler cells. These are spare filler cells which have no connection to the

standard cells and are just used to fill up the gaps in the floorplan.

After placing the filler cells (generally the Clock Buffers)-
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Figure 3.31: Nano Route

Figure 3.32: Adding Spare Cells: Filler

Figure 3.33: Post-placement of Fillers Cells
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Figure 3.34: Post-placement of Fillers Cells -customized floorplan

3.1.14 Verify Geometry

This step is done to verify the geometry. If the technology/PDK has rules written

compatible with PVS (Physical Verification Systems) tool, we can do DRC/LVS

in EDI only.

Figure 3.35: Verify Geometry
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3.1.15 Netlist Export

Since, we have routed many nets (CTS), the final netlist imported in the encounter

has modified a lot. At last, we export the final netlist (.v) file from the encounter.

This file will serve as our schematic when we do DRC/LVS in Virtuoso.

Figure 3.36: Netlist Export

3.1.16 GDS Export

After performing all the steps, our final design is shown in figure below

Figure 3.37: Final design

Final Design in the Amoeba view looks like-
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Figure 3.38: Amoeba View of the design

GDSII (Graphic Design Systems) Export

The design is exported in GDSII format to verify DRC/LVS in Virtuoso if not

done in PVS in EDI. This export will create strMapOut file.

Figure 3.39: GDSII Export
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3.1.17 Power

We can use report power command to get the tool give power of the design. The

command from the terminal is -

report power

Figure 3.40: Power

Power of the design is as follows-

At 40MHz frequency,

Switching power - 0.38 mW

Leakage power - 0.041 mW

3.1.18 Area

We can use report area command to get the tool give the area of the design. The

area reported was approax 35000 sq. um. Total area with nets is around 65000 sq

um as reported after synthesis also.

The command from the terminal is report area.
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Figure 3.41: Power II

Figure 3.42: Area

We finish the design here. Virtuoso Export and mixed-signal integration would be

performed in the upcoming project while integrating this digital implementation

in a bigger top-level layout.
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Radiation-Hardened-by-Design

(RHBD)

4.1 Single Event Upset

Silicon chips used in applications where they are exposed to ionizing radiations

such as outer-space applications, high-ionized ion source (Large Hadron Collider,

Heavy Ion Collider) must be hardened against the radiations in order to make

them function properly. These radiations can cause undesirable effects in the

devices, such as flipping the state of the memory cells or other effects caused by

accumulation of trapped charges induced by radiation.

The error induced by an incident particle on a digital integrated circuit (IC) is

called a Single Event Upset (SEU). A large number of electron-hole pairs is gen-

erated, for an equivalent charge in excess to 1pC, by the incident particle which

follows its way to the circuit node making it a sensitive node. This perturbation

may propagate through the circuit resulting in operational errors[1]. For instance,

if a circuit node with voltage interruptions due to incident particles belongs to a
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memory state (latch), it is highly likely to flip the state of the memory thereby

completely reversing the logic causing a SEU. These kind of errors/flaws in the

design can be very hazardous for the functioning of the chip. Imagine a SEU

causing RESET bit to flip, thereby causing the entire functionality to go in reset

mode.

With feature size getting smaller and smaller, the problem of SEU has increased

manifold. Smaller feature sizes translate to smaller capacitances and held charges,

allowing radiation of even smaller energies to upset vulnerable/sensitive nodes[2].

SEU mitigation is necessary to ensure data integrity. Semiconductor Associations

have realized the need of building radiation-tolerant ASIC’s and have come up

with many Radiation-Hardened-by-Design (RHBD) techniques[2].

One such technique is the Dual Interlocked Cell Storage (DICE). Before that, lets

see the functioning of a basic Flip-Flop Cell.

The D-Flip Flop operates in two mode-

1. Master

2. Slave

Both configurations have back-to-back inverters as shown in the figure 4.1

Master - Clk Low - Transparent Mode Clk High- Hold mode

At the rising edge of the clock (positive-edge triggered), the output Q of a flip-flop

follows input data D. Master configuration of FF passes the data (Transparent)

when the clock is low and holds the information when the clock is high. This is

achieved by back-to-back inverters topology, thus making a memory.

Slave - Clk Low - Hold Mode Clk High - Transparent mode
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In slave configuration, the data is in hold mode when clock is low and is passed

when clock is high. Transmission gate is one topology to use as a switch.

With this Master-Slave configuration, we achieve proper functioning of Flip-flop

at clock edges.

Figure 4.1: Master-Slave DFF

The DICE-DFF configuration shown in Figure 4.2 is able to behave as radiation-

tolerant configuration for milliCoulombs of charge. The charge pulse of 50mA

current and 1ns time period (50pC charge) was injected to see if the configuration

was able to sustain the charge. The result was found out to be positive. On

the contrary, normal Flip Flop configuration can sustain only femtoCoulombs of

charge.
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Figure 4.2: Dual Interlocked Storage Cell Flip Flop

4.2 Standard Cells Layout

Technology - TSMC 130nm Cell - DFF

The digital ground was separated from the analog substrate. The D flip-flop is

only a reset Flip Flop.

Technology - TSMC 130nm Cell - DFFSR

This configuration of DFF is the set-reset configuration.

All these design steps have helped me complete my thesis. Through this thesis, I

have learnt to draw efficient layouts, study and analyze SEU designs and developed

strong capabilities working on RTL-to-GDSII design flow using CAD tools.
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Figure 4.3: Layout -D Flip Flop(reset) - TSMC 130nm

Figure 4.4: Layout- D Flip Flop (set/reset) - TSMC 130nm
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Abbreviations

FIFO First-in First-out

CAD Computer-Aided Design

VLSI Very Large Scale Integration

CDS Cadence Design Systems

MGC Mentor Graphics Corporation

EDA Electronic Design Automation

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

SoC System-on-Chip

RTL Register Transfer Level

HDL Hardware Description Language

VHDL Very High Speed IC Hardware Description Language

PPA Power Performance Area

ECO Engineering Change Order

Q-o-S Quality-of-Silicon

Q-o-R Quality-of-Results

TTM Time-to-Market

TAT TurnAround Time

EDI Encounter Digital Implementation

CPF Common Power File

SDC Synopsys Design Constraint

SDF Standard Delay Format

LEC Logic Equivalence Checking

CCD Conformal Constraint Designer
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CLP Conformal Low Power

LEF Library Exchange Format

DEF Design Exchange Format

MMMC Multi Mode Multi Corner

STA Static Timing Analysis

CTS Clock Tree Synthesis

GTD Global Timing Debug

OCV On Chip Variation

CPPR Common Path Pessimism Removal

AAE Advanced Analysis Engine

SI Signal Integrity

GDSII Graphic Design Systems II

LIB Liberty Files

ILM Interface Logic Models

TLM Transaction Level Modelling

DRC Design Rule Check

ERC Electrical Rule Checking

DRV Design Rule Violations

LVS Layout vs Schematic

PVS Physical Verification System

FHM Fast Hardware Models

ELS Embedded Logic Synthesis

BST Behavior Structure Timing

CFS Constraint Functionality Separation

CTOS C-to-Silicon

HLS High Level Synthesis

BIST Built-In Self Test

ATPG Automated Test Pattern Generation

JTAG Joint Test Action Group

DFT Design For Testability

DFM Design For Manufacturability
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