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Abstract of the Dissertation

State Estimation and Fusion in Communication- and

Computation-Constrained Long-Haul Sensor Networks

by

Qiang Liu

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2014

In a long-haul sensor network, sensors are remotely deployed over a large geographical

area to perform certain tasks, such as tracking the states of one or more dynamic targets.

The communication loss and delay inherent over certain types of long-haul links, such as the

satellite channels, pose severe challenges to the successful execution of such tasks. First, free

and complete information flow over the network is constrained, as a direct result of the lost

and delayed messages over the imperfect communication links. Next, the system is often

error- and delay-tolerant to a certain extent, but still the underlying tracking tasks are to

be finished within a tightly stipulated deadline with outputs, i.e., the state estimates, that

satisfy the system requirement on maximum tolerable error. In addition, due mainly to the

limited computational capabilities of the entities within the network, information processing

may be inaccurate, inefficient, and time-consuming as well, which in turn negatively affects

the final tracking performance. Sensor fusion is a powerful means to aggregate information

from multiple sources so that the fused information is expected to possess a much higher
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quality than that at any of the sensors. However, the above communication and computation

constraints over long-haul sensor networks may severely limit the potential of sensor fusion,

resulting in reduced fusion gain and degraded estimation performance. In this dissertation,

various approaches are proposed to counteract the effects of imperfect communication and

computation in long-haul sensor networks, so that the performance of the tracking tasks in

the context of sensor fusion can, even under extremely adverse conditions, be guaranteed

to meet the system requirements on both accuracy and timeliness. Some of the solutions

are message retransmission and retrodiction, information-driven selective fusion, staggered

and asynchronous sensing scheduling, information feedback, as well as learning-based fusion

design. Extensive analytical and simulation studies specifically for different types of tar-

get tracking applications over satellite-based long-haul sensor networks are carried out to

demonstrate the major benefits as well as limitations of adopting these approaches.
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Chapter 1

Introduction

The past decade has seen increasing research and development interests and efforts in net-

worked sensing systems. This is due to ever expanding needs for assisting and extending the

capabilities of human operators in monitoring large and complex spaces such as airports,

train stations, parking lots, bridges, tunnels, coastal areas, and air space. In order to in-

crease the monitoring accuracy and coverage, multiple sensors – each consisting of sensing,

data processing, and communication components – are often deployed and networks inter-

connected. Besides dedicated sensors in conventional wireless sensor networks [4], more and

more portable wireless devices are equipped with different types of sensors and can serve

as opportunistic sensor nodes. All these entities can be considered components of a net-

worked sensing system. The overarching application of networked sensing systems and the

ubiquitous use of smart monitoring devices also contribute to the significant increase in the

volumes of data generated, and more importantly, the urgent need for effective and efficient

techniques to abstract useful information from such massive amounts of data.

In a typical tracking/monitoring application, a sensor needs to measure certain charac-

teristics of its environment and report its sensing findings either in the form of raw measure-

ments, or estimates that are processed from measurements and serve as an approximation

of the system “states” at given time instants. Measurements or estimates provided by a
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number of such sensors are often sent over a network to a data processing “fusion center”,

which collects, extracts, and aggregates the information so that it can generate a global

output that can better describe the parameters or attributes of the system. If a networked

sensing system is very large, to reduce the computational load and bandwidth consumption,

data sent from a subset of sensors may also be pre-processed at local nodes, which could

ease the computational burden and storage space requirement at a central location, before

being sent to a global fusion node for final processing.

Depending on specific applications, features of different monitoring systems can vary

tremendously in terms of coverage, sensor types and capabilities, and energy supply, among

others. Behind such diversity, however, is a common theme for nearly all systems, that is, to

obtain high quality measures about the underlying system via networked sensing and infor-

mation processing. Perhaps no other category of applications exemplifies this theme better

than target tracking. In order to automatically track and assess the ongoing movement of one

or more dynamic targets in the monitored area, a set of networked sensors are used to provide

their measurements or estimates of the target location(s) to a fusion center. Limited sensing

capabilities of any sensor necessitate fusion of sensing data generated at multiple such sen-

sors so that more accurate “snapshots” approximating the actual movement of the target(s)

can be obtained by the fusion center in a timely manner. Real-time detection, tracking,

recognition and activity interpretation of moving targets with multiple sensors represent the

fundamental issues to be solved in order to develop tracking/monitoring/surveillance sys-

tems that are able to autonomously monitor large and complex environments. Accurate

and timely detection and estimation of the targets is of critical importance for the reliable

operation of such systems.
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1.1 Motivation

We are especially interested in one subclass of the networked sensing systems, namely, the

long-haul sensor networks. In a long-haul sensor network, sensors are deployed remotely to

cover a vast geographical area, which could be a continent or even the entire globe depending

on the specific application. Such long-haul sensing applications can be found in a multitude of

real-world scenarios [1,2,6,7,15,28,32,39,61,64,67,71], ranging from civilian applications, such

as air traffic or satellite orbit control, tracking of greenhouse gas emission and air pollution

levels, monitoring of seismic, atmospheric, and oceanic activities and events, localization

of autonomous vehicles in intelligent transportation systems, and monitoring of the health

of power grids, to military applications, such as the operation of unmanned aerial vehicles

(UAVs) and unmanned underwater vehicles (UUVs) for surveillance and reconnaissance, and

more broadly battle management and national defense systems. There could be significant

variations in the response time requirements of such long-haul sensor networks, from a few

seconds in detecting cyber attacks on critical infrastructures to years in detecting global

trends in greenhouse gas emissions. We focus on a particular class of long-haul sensor

networks that are tasked to detect and track events and/or targets within a timescale of

seconds.

The long-haul connections can be established by an infrastructure of extensive terrestrial

and submarine fibers and/or satellite links. Under many circumstances, however, satellite

links may be the only type of cost-effective medium for such long-range communications be-

cause of the prohibitive cost of extending existing submarine and terrestrial fiber connections

to rough terrains and sparsely populated areas. Therefore, in this dissertation, we focus on

tracking/monitoring applications where data are communicated over satellite links. Fig. 1.1

illustrates the structure of such a satellite-based long-haul sensor network. The measurement

data of the remote sensors are used to generate the state estimates of the dynamic target(s).

These estimates are then individually sent via long-haul satellite links to the remote fusion

center, which, upon successful reception of these estimates, applies a certain fusion rule and
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Figure 1.1: Target tracking over satellite links: Sensors generate their state estimates of the
dynamic target(s), which are sent over long-haul satellite links to a remote fusion center.

obtains a final fused estimate to be reported.

It is well known that fusion of estimates from different sensors is a viable means to reduce

the estimation error [37]. Had the communication links between the sensors and the fusion

center been perfect, a fused estimate would normally reach an accuracy level far superior

to those of the individual sensor estimates, which is often referred to in the literature as

the fusion gain. However, many challenges exist in a long-haul sensor network that may

limit the potential of the fusion center to achieve this gain. These challenges can be largely

categorized into communication and computation constraints.

In satellite-based long-haul sensor networks, the connection distances to the fusion center

are often in the range of several to tens of thousands of miles. Because of the long commu-

nication distance, the propagation time of signals is significant. For example, the round-trip

time (RTT) for signal propagation with a geostationary earth orbit (GEO) satellite is more

than a half second [73]. More importantly, communication over the satellite links is char-

acterized by sporadic high bit-error rates (BERs) and burst losses. Losses either incurred

during transmission or resulting from the high BERs could further effectively reduce the

number of messages available at the fusion center. The long distance also subjects a high
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proportion of data in flight at any given time, thereby increasing the chance that a random

delay is experienced due to variations in weather and/or obstacles. The collective effect of

the above loss and delay is that the amount of information received by the fusion center is

reduced; and as a result, only a portion of the potential fusion gain could be achieved and the

quality of the finally fused estimate may be deemed unacceptable by the system operator.

A significant limiting factor in tracking performance is the uncertainty associated with

the sensing data and the sensing process itself. More specifically, we consider the quality

of the estimates generated by the sensors as well as the specific algorithms that the fusion

center applies to fuse the available estimates. Due to the dynamic nature of the system

and environment, variable levels of uncertainty exist in ambient noise, targets, and sensors,

which could potentially compromise the existing data processing algorithms and lead to

much degraded system performance.

Fig. 1.2 schematically shows the information flow in a typical estimate fusion applica-

tion. Upon taking the measurements from the targets, the sensors generate state estimates

individually. The raw measurement data usually come in larger volumes, and, for efficiency

purposes, are not directly sent to the fusion center. When such an estimate is sent to the
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fusion center, even with hypothetically perfect communications, the fusion center may not be

able to generate a reasonably “good” estimate because of the potential errors of the sensors’

estimates in the first place. Sensor measurement bias is one of the main factors that cause

such performance degradation. In practice, a malfunctioning sensor after extended use, or

operating under extreme conditions, or poorly calibrated against noise, may yield estimates

that are highly biased. But even without these hardware conditions, a “healthy” sensor may

still experience bias as part of its intrinsic behavior. For example, some nonlinear estimation

techniques may lead to bias over time. In the context of multiple sensors, measurements

from multiple sources often need to be transformed into a common spatial reference frame

(coordinate system). Errors occurring during this process, if uncorrected, will result in large

tracking errors or even multiple (ghost) tracks for the same target.

In addition, in multi-target tracking, prior to fusion, the estimates generated by the

sensors must be associated with the correct targets, which is especially challenging when

multiple targets move in close proximity to one another [41]. This is the so-called association

problem [13]. The number of targets within the range of a sensor also varies with time,

which means that a sensor should first detect the presence of a target before it generates

the state estimates for the target. Due to weather, obstacles, and atmospheric disturbances,

unwanted echoes may be detected by a sensor, leading to a false alarm, which is also known

as a clutter [69]. The above erroneous association and detection results are likely to be

exacerbated by the long-haul target-sensor link as well. The drawbacks of the satellite links

could work against the very purpose of the underlying task – to promptly and accurately

report state estimates – and may result in failure to comply with the requirement on the

worst-case estimation error and maximum tolerable reporting delay.

At the other end the system, the fusion center may apply a variety of detection, asso-

ciation, and fusion algorithms to combine the available sensor data and generate the state

estimates. However, the performance of these algorithms may differ significantly under vari-

able network conditions, sensor data qualities, and resource constraints such as the available
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time to execute these algorithms. The goal of this dissertation is to propose different ap-

proaches, mainly to be implemented at the fusion center, that can be used to counteract the

effect of the above communication and computation constraints so that the quality of the

fused estimates, and the overall tracking performance, can be improved.

1.2 Overview of the Dissertation

The remainder of the dissertation is organized as follows: In Chapter 2, an information met-

ric is proposed as the criterion used by the fusion center to dynamically decide when to stop

waiting for the randomly delayed sensor estimates so that both the accuracy and timeliness

requirements are accounted for. In Chapter 3, along with active interpolation of the missing

data by the fusion center via retrodiction, retransmission is also scheduled to help recover

information that was previously lost en route to the fusion center. Chapter 4 explores stag-

gered sensing scheduling so that the network communication delay is used opportunistically

by the fusion center to reduce the tracking errors in the conventional scheduling practices.

Chapter 5 investigates the major benefits and limitations of sending previously fused state

estimates back to the individual sensors under various link conditions and sensor profiles.

Having studied mostly closed-form information fusers in previous chapters, in Chapter 6 we

propose an artificial neural network learning-based fuser and explore its various enhanced

implementations that can potentially improve the tracking performance. Finally, we con-

clude this dissertation in Chapter 7 with a summary of the work as well as directions for

future research.
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Chapter 2

Selective Fusion Based on Projected

Sensor Information Contribution

2.1 Introduction

In most sensing applications, there are two competing requirements for the fused estimates

generated over long-haul sensor networks. First, the accuracy of the fused estimate must

exceed that of any single sensor and the estimation error should also be below a predefined

maximum tolerable threshold. This generally requires the incorporation of most, if not all,

sensor data into the fused estimate. On the other hand, the fused estimate must be gener-

ated within a certain, often tight, deadline. For instance, in some military applications, the

position of an aircraft or missile is required to be reported within a few seconds. Unfortu-

nately, over long-haul links with severe loss and delay, data from sensors may even fail to

arrive at the fusion center by the reporting deadline.

Faced with these challenges, the fusion center can take two types of “extreme” actions.

If it simply combines only the data that have arrived, the quality of the fused state is often

suboptimal. On the other hand, waiting for all the data to arrive could compromise the

timeliness requirement. Accounting for the trade-offs between the estimation accuracy and
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reporting timeliness, in this study, we design an online selective fusion scheme that enables

the fusion center to opportunistically make decisions on when to fuse the estimates to achieve

a balance between the two.

Some literature studies have considered state estimation in communication-constrained

settings. Fixed or relatively stable arrival delay can be easily handled by the technique of

state augmentation [73], where adjacent states in time are grouped together to form a “super-

state” with a higher dimension. Nevertheless, this can inflate the computation overhead

significantly with longer delay. More importantly, with highly random arrival delay, it is

difficult to effectively apply this approach as the dimension of the augmented state would

keep changing. On the other hand, some literature studies have considered independent

packet losses (i.e., a packet either arrives on time or is permanently lost) for one sensor-

estimator. For example, in [20], an upper bound of the packet loss rate is derived above

which the estimation error will go unbounded.

In multi-sensor state estimation problems, fusion schemes have been proposed under the

condition that all packets arrive on time; see [23] and the references therein. [60] attempted to

address fusion by combining various sources of degradation (delay, loss, and packet drop) in a

probabilistic manner. Their scheme calls for highly intensive computation to run on multiple

sensors because of the high dimensionality of the augmented states on top of the already

complicated one-sensor case. Besides, the underlying solution requires that the probabilities

of encountering different types of degradation are known a priori, which apparently is a very

unrealistic assumption.

There have been a series of studies addressing the out-of-sequence-measurement (OOSM)

issues. In these problems, due to random latency, sensor data – often in the form of raw mea-

surements – arrive out of order. One of their main focuses is on how to re-incorporate late

arrivals. The initial one-step lag problem [10] has been extended to the multi-lag case [11],

and the single-OOSM problem in [10,11] has been extended to the multi-OOSM case [84,85]

as well. Whereas a similar concept of “selective” information processing based on threshold-
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ing is proposed in [75], the focus is mainly on the re-incorporation of OOSMs (without loss)

over the time domain, rather than information fusion from multiple sensors. Still, there are

few multi-sensor studies under adverse link conditions, and the time-domain constraints –

in the form of a reporting deadline – have not been accounted for in any of the above works.

Compared to the related studies, our design is not confined to a particular type of packet

delay/loss. It is neither possible nor necessary that the fusion center can ascertain why a

packet is missing. Instead, we focus on the impact of missing1 packets on current estimation

accuracy and timeliness, regardless of the delay/loss patterns. In this light, our approach is

more of an online decision-making process under tight constraints on accuracy and delay.

Our study has a few salient features compared to the related works:

(1) This study is among the very first to address state estimation with severe data

loss/delay and strict enforcement on estimation accuracy and timeliness. The delay perfor-

mance has often been overlooked in previous studies. The fusion center must balance the

pros and cons of early versus late reporting to meet the dual requirements on timeliness and

accuracy.

(2) A fusion center in long-haul state estimation applications often possesses sufficient

storage and computation capabilities to handle large amounts of data sent from the sensors

that can be queried and retrieved easily. However, from our performance study results,

the storage/computation requirements on the fusion center are fairly minimal because the

waiting period is often short following our information-gain-based fusion algorithm.

(3) In our study, prior statistical knowledge about delay and loss is not required. Although

such information can be learned over a long period of time by the fusion center, and, once

obtained, will prove to be useful, it is not a prerequisite of our selective fusion scheme.

Therefore, our scheme can be applied more universally.

(4) We highlight the “online” nature of our scheme as the fusion center determines the

best strategy on the go, based on its current accuracy and delay performance of the fused

1We use “missing” here since an unavailable message could either be lost or delayed.
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estimates. Combining this and the “selective” criteria whereby the fusion center determines

the potential contribution from each missing estimate, our scheme works well even under a

high degree of system uncertainty.

For the convenience of presentation, in this chapter we mainly consider tracking of a

target with its dynamics being characterized by a linear system with zero-mean Gaussian

measurement and process noise profiles. Nevertheless, the ideas introduced here, especially

the information-based online selective fusion, can be extended to somewhat more complex

target models as well, with higher implementation costs. In addition, the results can be

easily extended to the scenario when multiple distributed fusion centers are deployed in a

long-haul sensor network.

The major contributions of this chapter are listed as follows:

• We study the impact of communication delay and loss on the accuracy of the fused

estimate and provide the motivation for selective fusion;

• We propose a novel information metric that the fusion center can utilize for online

selective fusion decisions based on the projected differential information contribution,

which effectively reduces the reporting delay while meeting the accuracy requirement;

• We apply retrodiction to the selective fusion process so that the recovery of the missing

information can be proactively expedited and the estimation accuracy improved within

the same amount of time under variable degrees of data loss and delay;

• Although the loss and noise profiles are not essential to the online decision making

process, we carry out some analysis of the estimation performance from known or

learned link loss and delay statistics;

• We perform extensive simulations of a tracking example to demonstrate the effective-

ness of our online scheme.

The rest of the chapter is organized as follows. The optimal fusion rule with fully received
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state estimates from the sensors is first reviewed in Section 2.2, before we discuss design

considerations for a selective fusion algorithm in Section 2.3. We then propose our selective

fusion scheme based on the projected differential information gain metric and backward

retrodiction in Section 2.4 and provide a complete algorithmic description. In Section 2.5, as

an extension to our scheme, the notion of expected information contribution is discussed and

its impact on fusion performance is explored. Simulation results are presented and analyzed

in Section 2.6 before we conclude the chapter in Section 2.7.

2.2 Optimal Fusion with Fully Received State Esti-

mates from the Sensors

2.2.1 System Model and Kalman Filtering (KF) Basics

We consider the following multi-sensor discrete linear system (the subscript k and superscript

i are time and sensor indices respectively):

xk = Fxk−1 +wk, E[wkw
T
l ] = Qδk−l, (2.1)

yi
k = Hixk + vi

k, E[vi
k(v

i
l)

T ] = Riδk−l, (2.2)

where F is the state transition matrix and H is the measurement matrix. These matrices

are often known from the underlying system and time-invariant in tracking applications.

The vector x denotes the state of the target and y the sensor measurement. The process

noise w and measurement noise v are white and independent (δ is the Kronecker delta

function), whose covariances are Q and R respectively. While Q measures the internal

system uncertainty, R measures the imperfect performance of the sensors as exhibited by

errors in their measurements. Note that here these noise statistics are considered time-

invariant2.

2An analysis on bounds of errors under varying noise statistics can be similarly derived as in [72].
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The well-known Kalman filter (KF) operates recursively on streams of noisy input data to

produce statistically optimal estimates of the underlying dynamic system states. At sensor

i, the filter evolves recursively according to the following set of equations:

x̂i
k|k−1 = Fx̂i

k−1|k−1 (2.3)

Pi
k|k−1 = FPi

k−1|k−1F
T +Q (2.4)

Ki
k = Pi

k|k−1(H
i)T (HiPi

k|k−1(H
i)T +Ri)−1 = Pi

k|k(H
i)T (Ri)−1 (2.5)

x̂i
k|k = x̂i

k|k−1 +Ki
k(y

i
k −Hix̂i

k|k−1) (2.6)

Pi
k|k = (I−Ki

kH
i)Pi

k|k−1 = ((Pi
k|k−1)

−1 + (Hi)T (Ri)−1Hi)−1 (2.7)

In these equations, x̂k|k−1 and x̂k|k denote respectively the a priori and a posteriori estimate

at time k. These notations also apply to P, the error covariance matrix of the estimate,

defined as Pi
k = E[(x̂i

k − xk)(x̂
i
k − xk)

T ]. Each of the diagonal element in P measures the

mean-square-error (MSE) of the corresponding element state estimate. Eqs. (2.3) and (2.4)

form the prediction step and Eqs. (2.5)–(2.7) the correction step. The Kalman filter gain

matrix K determines the relative weights of the historical data and a new measurement. In

Eq. (2.7), P−1 is often called the information matrix. Kalman filters are minimum-mean-

square-error (MMSE)-optimal as the trace of P – characterizing the estimation error – at

each step is minimized. A more thorough discussion of the Kalman filter basics can be found

in [73].

2.2.2 Optimal Fusion of Fully Received Local State Estimates

Let us focus on the information form of the KF correction step Eq. (2.7). From the equation,

we have

Ji
k � (Pi

k|k)
−1 − (Pi

k|k−1)
−1 = (Hi)T (Ri)−1Hi, (2.8)
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where Ji
k is defined as the information gain matrix from the sensor i at time k. This J

matrix measures the increase of the information matrix P−1, and indirectly measures the

reduction of error P. Similarly, we can define

jik � (Pi
k|k)

−1x̂i
k|k − (Pi

k|k−1)
−1x̂i

k|k−1 = (Hi)T (Ri)−1yi
k (2.9)

as the information gain vector – the difference between the prior and posterior weighted

estimates. It can be shown that Ji
k of a real system is semi-positive definite; besides, it is

also stable since both H and R are time-invariant3.

In multi-sensor fusion, the updates from the KFs run by the individual sensors are sent

to the fusion center so that the global fusion can be performed. If we define the above

parameters for the fusion center in a similar manner (“G” denotes “global”), the optimal

fusion rule is simply to add up the information gain terms from the n sensors during the

correction step:

JG
k � (PG

k|k)
−1 − (PG

k|k−1)
−1 =

n∑
i=1

(
(Pi

k|k)
−1 − (Pi

k|k−1)
−1
)
, (2.10)

jGk � (PG
k|k)

−1x̂G
k|k − (PG

k|k−1)
−1x̂G

k|k−1 =
n∑

i=1

(
(Pi

k|k)
−1x̂i

k|k − (Pi
k|k−1)

−1x̂i
k|k−1

)
. (2.11)

Such results have been shown in works such as [19] and [80]; and in [14], this is named the

centralized measurement fusion (CMF), as the estimate fusion here is in effect equivalent to

the centralized scheme in which the fusion center has received all the raw measurements.

In our setting, the state estimates and their corresponding error covariances, both prior

and posterior, are sent to the fusion center. Since the raw measurement data usually come

in much larger volumes, sending them directly to the fusion center not only consumes more

bandwidth but may also renders transmission more prone to the link delay and loss.

3This time-invariance serves as the basis for our selective fusion algorithms in Section 2.4, as the fusion
center initially needs to use this steady information gain to determine the potential contribution of a missing
packet.
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Combining the above global correction step with the global prediction step, which has

the very same form as in the one-sensor case (Eqs. (2.3) and (2.4)), we have the evolution

of PG and x̂G at the fusion center as follows:

x̂G
k|k−1 = Fx̂G

k−1|k−1 (2.12)

PG
k|k−1 = FPG

k−1|k−1F
T +Q (2.13)

(PG
k|k)

−1 = (PG
k|k−1)

−1 +
n∑

i=1

(
(Pi

k|k)
−1 − (Pi

k|k−1)
−1
)

(2.14)

(PG
k|k)

−1x̂G
k|k = (PG

k|k−1)
−1x̂G

k|k−1 +
n∑

i=1

(
(Pi

k|k)
−1x̂i

k|k − (Pi
k|k−1)

−1x̂i
k|k−1

)
(2.15)

These equations constitute the optimal global fusion rule, again, when all the estimates

generated by the sensors are successfully received by the fusion center.

2.3 Selective Fusion: Design Considerations

With the remote sensors’ state estimates being fully received by the fusion center, the es-

timation error of the fused estimate is often much lower than that of the state estimates

provided by individual sensors. However, the severe delay and loss inherent over the long-

haul links may significantly limit the fusion gain. In this section, we propose selective fusion

as a capable solution to balance the dual requirements of reporting accuracy and timeliness.

With incomplete data, Eqs. (2.14) and (2.15) can be rewritten as

(PG
k|k)

−1 = (PG
k|k−1)

−1 +
n∑

i=1

I
i
kJ

i
k, (2.16)

(PG
k|k)

−1x̂G
k|k = (PG

k|k−1)
−1x̂G

k|k−1 +
n∑

i=1

I
i
kj

i
k, (2.17)

where I
i
k = {0, 1} is the indicator function that describes whether the actual packet sent by

Sensor i for time k – which is denoted by Pi
k – is delivered to the fusion center on time and
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hereby contributes to the final fusion. One option is that the fusion center simply ignores

those missing packets. As a result, with incomplete observation, fewer than n terms are

incorporated in Eqs. (2.16)-(2.17) during the correction step and the resulting a posteriori

P is higher – in terms of the elevated diagonal elements in P – than that in the full-observation

case. Alternatively, the fusion center can substitute one- or multi-step predicted values –

that is, the a priori estimates – for the missing data. However, the effect is exactly the

same as that of simply ignoring the missing packets: Pi
k|k = Pi

k|k−1 and x̂i
k|k = x̂i

k|k−1

leading to Ji
k = 0 and jik = 0, respectively (the same can be said for multi-step predictions).

Consequently, prediction alone is equivalent to having zero information gain, and may cause

the error variance of (some elements of) the state estimates to shoot up within a short amount

of time if there are multiple missing packets. Also the unavailability of certain components

in Eqs. (2.16)-(2.17) results in sub-optimality of the fuser [14].

Fortunately, the fusion center is often allowed to delay its reporting, up till the reporting

deadline, by waiting for the delayed data to arrive. The reporting deadline Dmax is often

set in such a way to reflect the worst-case delay performance the system could tolerate. The

fusion center can certainly hold off the finalization of the global estimate for an earlier time

till all the packets from that time have arrived; however, the average waiting time could

well approach Dmax whenever there is a single packet loss. For many applications, in which

near real-time performance is called for, it is desirable for the fusion center to report its

fused estimate as early as possible before the deadline. Not only does waiting passively for

any lost and/or delayed packets significantly increase the reporting delay, but there is also a

good chance that some of the packets being awaited carry little information to improve the

existing level of estimation accuracy.

On the other hand, if the fusion center prematurely terminates the process of waiting for

some of the packets with a higher potential to reduce the estimation error, the fused estimate

obtained may deviate too much from the true state to be acceptable. Therefore, to maintain

a decent accuracy level while not incurring a long reporting delay, it would be more viable
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for the fusion center to selectively wait for some missing packets before it decides to finalize

the estimate of an earlier time instant. This can be stated in an alternate way: at any time

step, the fusion center should decide whether each delayed packet is still “worth” waiting

for. By making such online decisions for the pending data, the fusion center can dynamically

balance the need for both reporting accuracy and timeliness to finalize the state estimate.

We note that such “wait-versus-disregard” decisions should be made online because they

are largely determined by the current accuracy level at the fusion center. Generally speaking,

if the current error covariance is higher, it is preferable that the fusion center waits longer

for the recovery of those missing packets to achieve a higher confidence before sending out

the final estimate. Suppose that the elevated error covariance due to an earlier missing

packet Pi
k leads the fusion center to initially make a “waiting” decision, as other packets are

subsequently received (including the packets from Sensor i itself but generated at different

time instants other than k and those sent by other sensors), the information loss from Pi
k

may be offset by the gain from these other packets. At a certain point, even when the said

packet is still missing, the fusion center may decide to discontinue the wait.

For any missing packet, only by further observing the subsequent arriving packets can

the fusion center opportunistically decide the cost vs. benefit of deferring its final reporting

for one more time step4. In the next section, we propose a selective fusion scheme that

enables the fusion center to make its fusion decisions based on the current level of estimation

accuracy.

A final note is in place before we end this section: Although we loosely use “information

gain” and “error reduction” interchangeably as the same concept, quantitative calculations

should always follow the latter because in the KF evolution the trace of the error variance

matrix is minimized, not that the trace of the information matrix is maximized.

4This can be regarded as one instance of the principle of diminishing information return.
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2.4 Selective Fusion With Projected Differential Infor-

mation Contribution (PRODIC) and Retrodiction

The fusion center apparently cannot predict whether a missing packet will eventually be

received; it can, however, project the packet’s past information gain to the current time

and decide whether the potential information contribution to the current time still warrants

further waiting for the missing packet. In other words, the information gain past due is

measured from the perspective of the current time so that the decrease of information gain

as time progresses, due to the arrival of other packets, is accounted for.

In this section, we propose using an information metric to guide the fusion center through

the selective waiting and fusion process. In particular, we combine forward projected infor-

mation gain and backward retrodiction so that the fusion center can obtain an accurate

estimate much faster.

2.4.1 PRODIC: the Information Metric

For notational simplicity, we define a function h that links two successive a posteriori P

together:

h(X,Y) � (FX−1FT +Q)−1 +Y. (2.18)

Then from Eqs. (2.13) and (2.14), we have

P−1
k|k = h(P−1

k−1|k−1,Jk). (2.19)

We name the information metric Projected differential information contribution (PRODIC).

It measures the potential information contribution of a delayed packet should it return now.

The following steps calculate ΔPi
k,k−d at time k, which is the PRODIC of the missing packet

from Sensor i with the time-stamp k − d, that is, Pi
k−d:
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Step 1: Add the information gain5 Ji
k−d of the missing packet to the information matrix

PG
k−d:

(PG
k−d,temp)

−1 = (PG
k−d)

−1 + Ji
k−d; (2.20)

The “temp” in this and the following equations denotes that the associated PG is only

updated temporarily to obtain the PRODIC of the missing packet which has not actually

arrived.

Step 2: Recursively propagate the change of PG
k−d in Step 1, through the intermediate steps,

to the current time k. From time Tn = k − d+ 1, k − d+ 2, ..., up to k, calculate

(PG
Tn,temp)

−1 = h
(
(PG

Tn−1,temp)
−1,JG

Tn

)
; (2.21)

In this step, all the existing JG values of these intermediate time steps remain the same.

Step 3: Calculate the differential information gain

ΔPi
k,k−d = PG

k −PG
k,temp. (2.22)

After the recursion in Step 2 proceeds to the current time k, Eq. (2.22) measures the

difference between PG
k,temp – the updated PG

k with the supposed arrival of the missing packet

– and the current PG
k . Note that PG

k has been calculated according to the existing arrivals;

no matter how small the original information gain from the missing estimate is, the aggregate

error in PG
k,temp will be better than that in PG

k . In other words, ΔPi
k,k−d � 0.

The lag d is in general a random variable that depends on the actual arrival history of

the recent data; however, in the following analysis, we consider it as the existing lag of the

next global estimate to be obtained. The PRODIC for each delayed packet of time k − d is

calculated separately. At any time instant, it is computationally expensive to consider all

5From now on, the conditions in the subscripts are dropped for simplicity since all the variables are
considered a posteriori: e.g., k|k is shortened to k.
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the possible packet arrival patterns across multiple time steps for all the currently missing

messages; there are as many as 2dn different patterns in a d-lag enumeration. By singling out

each sensor’s contribution, we have reduced the complexity from a brute-force search to a

linear order dn. After considering the PRODIC of one missing packet, the fusion center has

found the least information to be gained among all the possible arrival patterns that include

at least this particular pending packet. Therefore, the PRODIC is actually a conservative

measure of the potential information gain from awaiting a particular pending packet.

Following the above calculation, the fusion center should compare the PRODIC value with

a cutoff threshold th. If the PRODIC value is larger than the threshold, the fusion center

still considers the information carried by the packet important for reducing the estimation

error and will continue to wait for it. As long as the reporting deadline has not been reached,

the pending global estimate for a time instant will be finalized only when the fusion center

decides not to wait for any of the pending packet which contains the corresponding sensor

estimate.

Determining the value of the threshold th is again a process of balancing the dual re-

quirements of high reporting accuracy and low latency. In general, the higher the existing

error variance is, the more potential information gain can be expected from the same missing

packet. The threshold thus in principle should adapt according to varying levels of PG. For

the convenience of implementation, however, it is better to normalize the threshold to a

fixed value. We choose the desired proportion of error reduction by the fusion center as the

threshold at any time step, so that

tr(ΔPi
k,k−d)

tr(PG
k )

= 1− tr(PG
k,temp)

tr(PG
k )

> th (2.23)

implies the packet Pi
k−d can potentially improve the current PG

k more than the threshold

level and thus will be awaited.

The online decisions are largely affected by the availability of the packets from the sensors
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Figure 2.1: Selective fusion example with three sensors and forward prediction and backward
retrodiction

with better accuracy guarantees. When the fusion center has received all or most packets

from these sensors, any further improvement from the missing ones becomes increasingly

small and thus unnecessary beyond a certain point. On the other hand, with the data

from these better sensors missing, PG can quickly inflate, thereby elevating the normalized

PRODIC of these packets to a higher level; what often ensues is the decision to continue

waiting for these missing packets. Hence, with heterogeneous sensors, a decision for a sensor

with higher accuracy (e.g., “to wait”) often overrules that from another one with lower

accuracy (e.g., “to disregard”) when the two decisions are contradictory.

2.4.2 Information Gain from Retrodiction

From the last subsection, sensors that yield more accurate estimates usually predominate

the fusion center’s selective waiting decisions. Because of their larger potential information

gain, the fusion center generally has to wait longer in case an estimate sent from any of these

sensors is delayed. In order to guarantee timely reporting, it is critical for the fusion center

to reduce such passive waiting.
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Estimation of a target state at a particular time based on measurements collected beyond

that time is generally called retrodiction (or smoothing). Traditionally, an earlier existing

estimate is retrodicted using subsequent measurements so that its accuracy is improved [73].

In this study, we propose a novel use of retrodiction to proactively interpolate intermediate

missing data. Once one or more subsequent packets of an unavailable one have been received,

the fusion center uses them to retrodict the preceding missing one. While waiting for missing

packets, the fusion center applies retrodiction backward, from the current time k to time

k−d whose globe estimate is to be reported next, for all the packets – including the available

ones – in between. This idea is illustrated in Fig. 2.1, where the current lag is d = 2. There

are a total of three sensors. Since applying prediction-only estimates results in a higher error

variance, to reduce the performance degradation, the fusion center may decide to wait for

the delayed packet while applying the retrodiction scheme if subsequent packets arrive. Note

both available and unavailable estimates are retrodicted during waiting. The retrodiction

process is always run backward to the time instant for the next pending global estimate.

We apply the fixed-interval Rauch-Tung-Streibel (RTS) retrodiction algorithm [73], which

is known to be computationally efficient. Besides, since measurements do not appear in the

equations, the algorithm is especially suited for our scenario in which state estimates rather

than raw data are sent directly to the fusion center. The following iterative steps propagate

the newly gained information due to the on-time arrival of packet Pi
k backward to time k−d.

Step 0: Initialize the backward smoother.

Pi
k,retr = Pi

k|k; (2.24)

x̂i
k,retr = x̂i

k|k; (2.25)

From time Tn = k, k−1, ..., up to k−d, recursively calculate the values through the following

three steps:
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Step 1: calculate the backward smoothing gain

Gi
Tn−1 = Pi

Tn−1|Tn−1F
T (Pi

Tn|Tn−1)
−1; (2.26)

Step 2: calculate the error Pi of the smoothed estimate

Pi
Tn−1,retr = Pi

Tn−1|Tn−1 −Gi
Tn−1(P

i
Tn|Tn−1 −Pi

Tn,retr)(G
i
Tn−1)

T ; (2.27)

Step 3: find the smoothed estimate

x̂i
Tn−1,retr = x̂i

Tn−1|Tn−1 +Gi
Tn−1(x̂

i
Tn,retr − x̂i

Tn|Tn−1). (2.28)

In these equations, Pi
retr denotes the a posteriori Pi after retrodiction. The algorithm

is applied to each sensor separately, so that the process is also in line with the packet-

level PRODIC calculation. As mentioned earlier, retrodiction in our scheme has the dual

benefits of improving the accuracy of existing estimates and interpolating missing ones;

consequently, the process has its distinct features, some of which are absent from those

conventional retrodiction studies.

(1) Interpolation of the missing estimates and the chain effect. Retrodiction is only

meaningful when a later estimate has an accuracy level at least as good as that of an earlier

estimate. According to the equations, an unavailable packet itself has no impact on its

preceding estimate during RTS retrodiction (that is, retrodiction is only effective with the

presence of an actual estimate); however, if this unavailable estimate has been retrodicted

from a subsequently available one, it can in turn improve its preceding one as well. This can

be regarded as the “chain effect” of retrodiction. As a result, a string of missing estimates

can be improved by just one single estimate subsequent to them all. For example, in Fig.

2.1, at time k, having been retrodicted by packet P2
k, P

2
k−1 can further retrodict P2

k−2.

(2) Handling the a priori mismatch as a result of loss. Both the a priori estimates and
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their error covariances appear in the RTS algorithm. In the full-observation case, sending a

posteriori values is often enough, since the fusion center can always derive one-step predicted

values for a priori values of the next step that are congruent with the predictions at the

sensors. However, with missing data, the a priori values at the sensors and those at the

fusion center may not match. The predicted values at the fusion center can be much more

error-prone after multi-step losses. This has an effect on RTS retrodiction. For instance,

when an actual estimate is received following at least a missing one, there exists a mismatch

between the a priori values calculated from prediction and those (if any) sent directly by

the sensors. We let the fusion center take the prior values from earlier prediction for the

following two reasons: first, the a priori values may not actually be sent by the sensors in a

real system or can be lost separately from the a posteriori data; second, the predicted values

at the fusion center is a true reflection of accuracy level evolution associated with the global

estimate.

(3) Handling the delayed estimates. What if the original estimate sent from a sensor

arrives when the estimate has been interpolated from subsequent packet(s) but before the

global estimate for the time of interest has been finalized? For simplicity, in our design,

we have the original estimate replace the corresponding “partially retrodicted estimate(s)”.

Still better yet, the fusion center may reprocess the estimates so that both the original and

its subsequent estimates are combined to yield a “fully retrodicted estimate”, possessing an

even better accuracy level than the original itself.

2.4.3 Selective Fusion Algorithm – PRODIC-RTS

Now we are ready to present the complete selective fusion algorithm, in which we have

incorporated the RTS retrodiction into our recursive PRODIC calculation.

In a dynamic decision-making process like ours, there is more than one way to implement

the selective fusion scheme. While we hope to improve both reporting accuracy and delay

performances at the same time, the algorithm should be implemented as easily as possible.
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Algorithm 1 Selective Fusion Algorithm with PRODIC and RTS Retrodiction

1: Initialize: At time k, the next estimate to be reported is x̂G
k−d

2: for Tn := d to 0 with decrement 1 do
3: Collect arriving packets Nk =

⋃d
T=0Nk,k−T .

4: Update Wk,k−Tn and Fk,k−Tn:
5: Wk,k−Tn ←Wk−1,k−Tn −Nk,k−Tn;
6: Fk,k−Tn ← Fk−1,k−Tn

⋃Nk,k−Tn;
7: end for
8: for ∀i ∈ S do
9: Calculate Pi

k−d,retr and x̂i
k−d,retr using Eqs. (2.24)-(2.28);

10: for Tn := d to 0 with decrement 1 do
11: Calculate Ji

k−Tn
using Eq. (2.8) (with retrodicted values);

12: JG
k−Tn

=
∑

packet Pi
k−Tn

∈Fk,k−Tn
Ji
k−Tn

;

13: (PG
k−Tn|k−Tn

)−1 = h((PG
k−Tn−1|k−Tn−1)

−1,JG
k−Tn

);
14: end for
15: end for
16: if Wk,k−d = ∅ or d = Dmax then
17: Finalize x̂G

k−d using Eq. (2.15) with all the elements in Fk,k−d and PG
k−d;

18: d← d− 1;
19: if d > 0 then
20: Go to Line 8;
21: end if
22: else
23: for ∀j ∈ S such that Pj

k−d ∈ Wk,k−d do
24: Calculate ΔPi

k,k−d using Eqs. (2.20)-(2.22);
25: Calculate the difference between the normalized PRODIC and the threshold th

Diff j
k−d =

tr(ΔPj
k,k−d)

tr(PG
k )

− th = 1− tr(PG,j
k|k,temp

)

tr(PG
k )

− th;

26: end for
27: if ∀i ∈ S, Diff i

k−d ≤ 0 then
28: Wk,k−d ← ∅;
29: Go to Line 16;
30: else
31: d = d+ 1;
32: end if
33: end if
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In our design, only arrivals from within the waiting window are considered; that is, delayed

arrivals are disregarded if the corresponding global estimate has already been finalized and

reported. Although it is possible that the fusion center still considers incorporating delayed

arrivals (e.g., up to Dmax) in this scenario, doing so may increase the computational cost as

the size of the historical data grows. In addition, the benefit of incorporating the estimates

with such a long delay is often negligible: the PRODIC criterion has already dictated that

the previously disregarded packets carried little information, and even more so after the

global estimate has been finalized, due again to the diminishing information over time.

Algorithm 1 describes the selective fusion rule performed by the fusion center at time k

for a global estimate at time stamp k − d (i.e., the current lag is d). The following sets are

defined:

• S is the set of all sensors;

• Pk is the set of all the packets with time stamp k;

• Nk,k−d is the set of new arrivals at time k with time-stamp k − d;

• Wk,k−d consists of all the packets with time-stamp k − d that the fusion center is still

expecting at time k;

• Fk,k−d is the set of packets with time-stamp k − d that are ready at time k for fusion.

In addition, we letWk,k−d = Pk−d and Fk,k−d = ∅ if d < 0. Apparently, if at time k,Wk,k−d =

∅, the fusion center is ready to finalize x̂G
k−d using all the elements in Fk,k−d. Besides, a packet

appearing in Nk,k−d (d > 0) must have appeared in Wk−1,k−d too. Therefore, the selective

fusion decision-making process evolves as follows. After updating newly received packets,

the fusion center first retrodicts the past estimates using newly received data; afterward,

it calculates the PRODIC of each packet in Wk,k−d and decide whether further waiting is

necessary. Only when all the packets in the set have been received, or when the pending

packets are deemed no longer worthy of further waiting can the fusion center finalize x̂G
k−d.
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In the algorithm, the instantaneous PG can be calculated immediately, as shown in Lines

8-12, after the fusion center has incorporated the packets that have just arrived and has

retrodicted the estimates. Afterward, the PRODIC of all the pending packets is computed

and normalized for comparison with a cutoff threshold th (Lines 23-26). There are two

possible scenarios when the next pending estimate can be finalized: all the packets have

been received (Line 16) or all the remaining pending packets are no longer deemed necessary

and will be disregarded (Lines 27-28). Besides, when one global estimate is finalized, the

above procedure is repeated immediately for the next pending estimate (Line 21) – for a lag

of d− 1 in this case – as more than one pending estimate may be finalized at the same time

step.

Thanks to the information gain from retrodiction, the PRODIC of a missing packet

becomes smaller and the fusion center can often terminate its waiting for the pending packets

much earlier compared to the case without retrodiction. The level of improvement will be

demonstrated via simulation studies in Section 2.6.

2.5 Expected Information Gain with Link Loss and De-

lay Profiles

Our earlier discussions highlighted the proposed selective waiting and fusion algorithm as an

online scheme since the fusion center makes its decisions based solely on the actual message

arrival instances. In this section, we consider the scenario where the fusion center has some

knowledge about the packet loss and delay statistics. The deterministic information gain

from a pending estimate can then be extended to the expected information gain for different

time periods. Substituting the expected information gain for the original will also result in

different fusion performance as to be discussed below.
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2.5.1 Loss and Delay Profiles

The packet loss and delay characteristics are largely determined by the long-term condition

of the long-haul link. In a real system, even when the fusion center is initially oblivious to

these characteristics, the empirical packet arrival patterns can be measured and recorded

over time and thus approximate profiles of link loss and delay can be constructed. For ease

of exposition, here we assume that each packet sent by a sensor is lost during transmission

with probability p independently of other packets. A pdf f(t) and the corresponding cdf

F (t) =
∫ t

0
f(u) du can model the overall delay t – a continuous random variable – that a

packet experiences to be successfully delivered to the fusion center. Additionally, the loss

and delay are regarded as two independent processes.

2.5.2 Expected Information Gain

If we let time zero denote the time of interest, that is, the time when the packet containing

the state estimate is generated and sent out by a sensor, then the probability that this

packet is delivered by time t is (1 − p)F (t). Consider a pending packet with a current lag

of d steps – in other words, a delay of at least dT , where T is the estimation interval – and

the probability that the packet will be delivered within the next interval [dT, dT +T ] can be

calculated as

pdel,dT→(d+1)T � Pr{t ≤ dT + T |t > dT}

=
Pr{dT < t ≤ dT + T}

Pr{t > dT}
=

(1− p)[F (dT + T )− F (dT )]

1− (1− p)F (dT )
. (2.29)

Eq. (2.29) describes the probability that the information contribution from a pending

estimate will be realized in the next estimation interval. Then the expected information
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contribution would be

Jk−d,E = pdel,dT→(d+1)TJk−d. (2.30)

2.5.3 Effect of the Expected Gain on Selective Fusion

Eq. (2.30) is a statistical measure of the potential information gain in the first step of our

selective fusion algorithm. We consider its effect for both heterogeneous and homogeneous

link conditions.

Heterogeneous Link Loss and Delay Profiles

Since both the packet-level loss rate p and the delay distribution F (t) appear in Eq. (2.30),

any variations in either of them would cause a shift in the expected information gain even

for the same value of J. It is easy to show that for the same delay distribution, an increase

in the packet loss rate would result in the decrease of the expected information gain at any

step (that is, Eq. (2.29) monotonically decreases with p.); on the other hand, with the same

loss rate, the expected information gain depends on the specific shape of the pdf f(t). In

our context, then, the fusion center would find it difficult to realize the potential information

gain promptly for a link with a high loss rate and/or a long average arrival delay.

Homogeneous Link Loss and Delay Profiles

Even when the loss and delay statistics are homogenous across different communication links,

differences in fusion performance still exist if the fusion center opts to use Eq. (2.30) as the

potential information gain. In particular, since Eq. (2.29) effectively serves as a discount

factor, the perceived information gain at each step becomes smaller than the original J.

Recall from the last section that the fusion center uses a cutoff threshold th to decide whether

to continue waiting for a pending packet. As the information gain term to be plugged in the

initial step becomes smaller, so does the one propagated to the current time. As such, for
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the same th, the fusion center may alter some of the would-be “wait” decision so that the

packet is then disregarded. This would help reduce the reporting delay significantly at the

cost of slightly higher estimation errors.

2.6 Performance Evaluation

We evaluate the performance of our selective fusion algorithm through extensive simulations.

We first introduce the target motion model, and then compare a few on-line fusion algorithms;

and finally, we compare our scheme with two other OOSM fusion schemes that also exploit

retrodiction. Despite our discussions on expected information gain in the last section, in our

simulation studies, the fusion center does not assume any statistical knowledge about the

loss and delay characteristics in its online decision making.

2.6.1 Simulation Setup

Target Motion Model

We consider tracking of a target whose motion follows the nearly-constant-acceleration

model [44]; that is, the trajectory of the moving target follows Newtonian laws with inde-

pendently incremented acceleration. In particular, we consider the white-noise jerk version

of the model, in which the acceleration derivative (i.e., the “jerk”) is an independent white

noise process.

The target in general moves within the three-dimensional free space, but the trajectory

can be mapped to orthogonal axes (e.g., the commonly used “east – north – up”). And here

we single out the effect of one dimension (e.g., east) by mapping the trajectory onto this

axis only. The target state then consists of the position r, velocity v, and acceleration a on

this axis and the discretized state evolution is given by

xk = Fxk−1 +wk,
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Table 2.1: Simulation Parameters Default Setup

Parameter Symbol Value

sampling period (s) T 0.5

process noise PSD (m2/s3) Sw 0.5

loss rate Ploss 0.1

normalized arrival delay Darv 3

reporting deadline Dmax 10

no. of sensors n 3

measurement noise s.t.d. (m)
√
R 50

PRODIC threshold th 5%

where

xk =

⎡
⎢⎢⎢⎢⎣
rk

vk

ak

⎤
⎥⎥⎥⎥⎦ ,F =

⎡
⎢⎢⎢⎢⎣
1 T T 2/2

0 1 T

0 0 1

⎤
⎥⎥⎥⎥⎦ ,

and

Q = cov(wkw
T
k ) = Sw

⎡
⎢⎢⎢⎢⎣
T 5/20 T 4/8 T 3/6

T 4/8 T 3/3 T 2/2

T 3/6 T 2/2 T

⎤
⎥⎥⎥⎥⎦ ,

where Sw is the power spectral density of the continuous-time white noise, and T is the

sampling/estimation period. Besides, the common measurement matrix at the individual

sensors is

H =

[
1 0 0

]
.

Parameters and Performance Metrics

Table 2.1 contains the list of our default parameters.
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Figure 2.2: Loss rate vs. (a) position error variance and (b) normalized reporting delay

As our default setup, there are a total of three sensors, whose measurement noise standard

deviations are all 50 m. The process noise PSD is 0.5 m2/s3; the sampling/estimation

period T = 0.5 s and the associated time measures are subsequently “normalized” relative

to this time (without units); e.g., the normalized sampling time is 1, whereas the normalized

deadline is set as 10 (which is really 5 s). The PRODIC threshold is set to 5%. Again,

in our study, packet loss and delay are generated as two independent processes. While the

packet loss is generated as an independent Bernoulli process, delays follow (memoryless)

exponential distribution. The default loss rate and normalized arrival delay are set to be

10% and 3, respectively.

The loss and delay statistics for a given long-haul network should be fairly stable over

a period of time (that’s the very reason that they can be learned over time). Nevertheless,

we are interested in studying the impact on fusion performance from variable loss and delay

profiles, for instance, when different types of networks are compared with one another. We

study the impact of each factor separately by varying its values while keeping all other

parameters at their default values. In addition, although we expect a long-haul network is

well designed for scalability, we study the scenario when the number of deployed sensors is

small (no more than five) as long-haul sensors are generally expensive to deploy; also, the
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Figure 2.3: Normalized arrival delay vs. (a) position error variance and (b) normalized reporting
delay

system is more vulnerable to failure and suboptimal performance with an insufficient number

of sensors and thereby warrants special attention.

2.6.2 Comparison of Different Online Fusion Schemes

We compare the following schemes in our first group of study:

• Maximum waiting (“wait”): the FC finalizes the estimate after all missing estimates

arrive or the reporting deadline is reached, whichever comes first;

• Selective fusion based on PRODIC but without retrodiction (“PRODIC”):

• Selective fusion based on PRODIC with modified RTS retrodiction6 (“PRODIC-retr”);

• We also consider the full-observation case (“ideal”) as a baseline scenario for compar-

ison with other schemes, in which the reporting delay is always zero and hence there

is no retrodiction being implemented. In other words, this ideal scenario is not real-

istic since it always assumes perfect communications and instant data processing and

reporting.

6This has been denoted as “PRODIC-RTS” earlier, which will be used in subsequent analysis as well.
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Figure 2.4: Number of sensors vs. (a) position error variance and (b) normalized reporting delay

Overall the goal is to reduce both the estimation MSE and reporting time, where the former

is measured as the trace of the error covariance matrix.

Loss Rate

The packet loss rate is varied from 0 to 0.25, and the results are shown in Fig. 2.2. With its

average reporting time approaching the deadline, the ”wait” scheme takes advantage of the

extra waiting time to collect delayed estimates and thus reduces the estimation error7. The

PRODIC scheme is seen to effectively reduce the reporting delay; however, the estimation

error is still relatively high. Compared to other schemes, PRODIC-RTS is less sensitive to

changes in the loss rate. At the highest loss rate 25% in our study, the position error variance

increases only by about 7% from the zero-loss case. This demonstrates the effectiveness of

our design, which exploits retrodiction to reduce the estimation error upon packet loss. One

of the main reasons for this improvement has been shown earlier: as long as one most recent

packet is received, all the preceding missing estimates can be retrodicted. Besides, the change

in reporting delays as the loss rate increases is negligible (it stays slightly above 2). From

this perspective, our PRODIC-RTS is robust to packet loss.

7The unit for this and all subsequent position error variances is m2.
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Figure 2.5: PRODIC threshold vs. (a) position error variance and (b) normalized reporting
delay

Arrival Delay

We vary the normalized packet arrival delay from 0 to 6, and observe similar trends in

Fig. 2.3 as in the previous case, with some minor exceptions. When there is no arrival

delay, no retrodiction is performed so that the estimates can be reported immediately; as

the arrival delay goes up to 1, the error variance decreases following PRODIC-RTS thanks

to retrodiction. And then, as the arrival delay continues to increase, the error variance also

increases, though not quite as fast as in other schemes. As can be seen again, retrodiction

has effectively reduced the estimation error when there are significantly long delays.

Although it may first seem surprising that the reporting delay is well below the average

arrival delay (e.g., when the arrival delay equals 6, the reporting delay is about 2.5), the

result is attributed to both the randomness of the arrival delay and the PRODIC-based

selective fusion process. There exist packets whose arrival delay is smaller than that of

others and hence can retrodict other missing ones comparatively faster. With the improved

estimates following retrodiction, the fusion center may decide to terminate its waiting much

earlier by disregarding all the remaining pending packets. In contrast, the reporting delay in

the “waiting” case, even under moderate loss and delay profiles, almost always approaches
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the reporting deadline Dmax due to the nearly constant presence of missing packets.

Number of Sensors

We vary the number of sensors from 1 to 5 to test its impact on fusion performance. From Fig.

2.4, we observe that when the number of sensors is small, the effect of retrodiction is more

prominent. Because the error variance is usually much higher with an insufficient number

of sensors – at the risk of violating the maximum tolerable errors – the targeted potential

information gain (as specified by PRODIC threshold) from a missing packet can be realized

only by waiting longer so that the actual packet or subsequent packets following this missing

one can be received. If there is only one sensor, all the gains from the retrodiction would

benefit the final estimate because no other sources – that is, packets from other sensors –

exist that can compensate for the information loss due to an unavailable packet. On the other

hand, the relative information gain from retrodiction with an increasing number of sensors

being present becomes smaller and the advantage of applying PRODIC-RTS in terms of

improved accuracy diminishes.

As for the reporting delay, opposite trends are observed. The “waiting” scheme is subject

to the increase of waiting time when more sensors are present, as there is a higher possibility

that a packet is absent. In contrast, PRODIC-based schemes experience reduced waiting

time, thanks to the selective waiting process, in which the information gain from a missing

packet diminishes as more sensors contribute to the final fusion.

PRODIC Threshold

In the above simulations, we have kept the PRODIC threshold at a conservative 5%; that is,

only when a pending packet can potentially reduce the current estimate error by more than

5% would the fusion center decide to wait for it. In reality, the fusion center can tune the

threshold according to the current accuracy level. In Fig. 2.5, the threshold is set to vary

from 0% (i.e., to wait for all pending packets) to 20%. The plots can be easily interpreted:
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Figure 2.6: Loss rate vs. position error variance (with normalized reporting delay = 2)

When the threshold goes up, the requirement on each packet is relaxed, fewer packets need

to be awaited, and reduced accuracy and reporting delay would follow; and vice versa. It

is interesting to note that when the threshold is zero, the PRODIC scheme is reduced to

the “waiting” case; PRODIC-RTS, on the other hand, does not have inflated waiting time

thanks to the proactive nature of retrodiction.

2.6.3 Performance Comparison with OOSM Algorithms

We also compared our scheme with Al1 [11] and Al1-RTS [58] algorithms, both of which are

designed to address OOSM issues. The main feature of these algorithms is that retrodiction

is performed only after an OOSM actually arrives and the goal is to correct only the current

estimate. The difference within the two cited algorithms exists during the retrodiction

process: while Al1 uses an “equivalent measurement” to perform one-step retrodiction, Al1-

RTS applies the standard RTS retrodiction algorithm.

The original schemes are proposed under relatively simple circumstances: single sensor,

single l -step delay, no data loss, and no reporting deadline, among others. However, it is

easy to extend the schemes to multi-OOSM [84] and multi-sensor case with data loss and

reporting deadline. Besides, we also allow non-zero reporting delay so that the correction

after retrodiction applies to an intermediate step as well, thereby improving the accuracy

37



1 2 3 4 5 6
200

400

600

800

1000

1200

1400

arrival delay

po
si

tio
n 

es
tim

at
io

n 
er

ro
r 

va
ria

nc
e

ideal
RTS only
Al1
AL1−RTS
PRODIC−retr

Figure 2.7: Normalized average arrival delay vs. position error variance (with normalized re-
porting delay = 2)

performance of not just the current estimate. This can somewhat guarantee fair comparisons

among the algorithms.

Because all the schemes share retrodiction as a common means to reduce the error vari-

ance of an earlier estimate, we also compare with an “RTS-only” scheme in which no OOSM

is processed; that is, data are either received on time or smoothed with subsequent ones

whenever available. We test how the position error variance varies with different parameters

(loss rate, arrival delay, and number of sensors) with a given normalized reporting delay

of two (since the reporting delay in other schemes needs to be pre-assigned to run the al-

gorithms). Note that the thresholds have been adjusted in our PRODIC-RTS scheme to

guarantee the same reporting delay.

Loss Rate

From Fig. 2.6, as the loss rate increases, the increase in the position estimation error of

PRODIC-RTS is less significant compared to others. When the loss rate is 20%, the error

variances of both Al1 and Al1-RTS are 50% more than that of PRODIC-RTS. On the other

hand, while the two OOSM algorithms reduce the error variance by about 10% compared

to the case where OOSMs are simply ignored (“RTS only”), our scheme reduces the error
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Figure 2.8: Number of sensors vs. position error variance (with normalized reporting delay = 2)

by about 40%. The reason is fairly simple: In other schemes, retrodiction is performed only

when the missing packets actually arrive later, which may not be effective when the loss rate

is high, resulting in larger estimation errors.

Arrival Delay

As can be seen in Fig. 2.7, with the increasing mean arrival delay, the position error variance

in PRODIC-RTS does not shoot up as much as those in other schemes. When the arrival

delay is 4, for example, Al1 already has its error variance nearly 50% higher than that of

PRODIC-RTS; as it further reaches 6, the error variances of the two OOSM schemes are more

than 75% higher. Similar to the case with varying loss rates, as the arrival delay increases, the

fusion center has to wait longer to perform retrodiction. Meanwhile, the reporting deadline

is fixed, allowing fewer estimates to be effectively retrodicted in time for the final reporting,

thus leading to a higher error variance.

Number of Sensors

Again, we can see from Fig. 2.8 that the benefit of retrodiction is more significant when the

number of sensors is small for all cases. With fewer sensors, all the other schemes suffer from

much higher error variances than PRODIC-RTS. Our scheme benefits from the proactive
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retrodiction where the correction doesn’t have to occur only after an OOSM actually arrives.

The other schemes must wait significantly longer to perform retrodiction, which may not be

possible within the deadline if the missing packets do not arrive in time, and this becomes

even more challenging when fewer sensors exist. The difference is especially significant when

there is only one sensor.

To sum up the above results, our PRODIC-RTS scheme, combining features such as in-

formation gain projection, selective waiting, and proactive retrodiction, often yields accuracy

performance comparable to that under the full-observation case while incurring very little

reporting latency, demonstrating its robustness against degradation in transmission links

such as severe loss and arrival delay.

2.7 Conclusion

In this chapter, to meet the stringent requirements on accuracy and timeliness, while ac-

counting for the long latency and severe loss inherent over long-haul links that exert a

negative impact on fusion performance, we have proposed an information metric PRODIC

and a modied application of the RTS retrodiction algorithm, so that the fusion center can

make its online selective waiting decisions on when to fuse its available sensor information.

Simulation results of a target tracking application have validated the major advantages of

our design under variable link loss and delay profiles.
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Chapter 3

Message Retransmission and

Retrodiction for Recovery of Missing

Sensor Information

3.1 Introduction

Information loss is often an intrinsic feature of a long-haul sensor network. In this chapter,

we consider how to recover some of the lost information over time. One way to counteract

the effect of the lossy transmission link is to adopt certain transport protocols in which

message retransmission is implemented and some lost messages can be recovered after one or

multiple rounds of retransmission. Not to be overlooked, however, is another aspect of the

system requirement – the delay performance. Owing to often near real-time requirements of

the monitoring/tracking tasks, the system often allows for only a small time gap between the

time of interest and the time when the estimate should be finally obtained and reported. This

often comes as a predefined reporting deadline before which an estimate must be reported by

the fusion center. Message retransmission may exacerbate the reporting delay performance

by incurring extra time on top of the already relatively large propagation and transmission
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latency. The fusion center may have to increase its reporting time significantly in order to

recover the lost messages, even at the risk of violating the stipulated reporting deadline.

The transmission control protocol (TCP) implemented in wired Internet and wireless

local area networks (WLANs) is still garnering research efforts that are too numerous to list.

Analysis of TCP-like transport protocols over satellite links can be found in studies such

as [5] and [33]. Commonly acknowledged are the difficulties in applying “conventional” TCP

protocols to transmission over satellite links, mainly because of the very large propagation

delay not encountered in other networks. The specificity of our application also somewhat

distinguishes our analysis from the ones geared toward the voice- and video-based broadcast-

ing and data-based Internet access, both of which have continuous data in flight. Also of note

is that in our settings, state estimates from the remote sensors are generally intermittently

sent over a wide-band satellite channel – with the interval possibly ranging from a few times

within a second to once every few minutes – and thus congestion is not as much a concern

as in conventional TCP applications. Hence, we assume a simplified transport protocol in

which retransmission is performed on the message-level basis.

In many state estimation applications, retrodiction, also known as smoothing, serves as

the “backward prediction” of an earlier estimate. Depending on the relationship between

the length of data used and the time of interest, we can categorize retrodiction roughly

into fixed-point, fixed-lag, and fixed-interval retrodiction [73]. Whereas the conventional

retrodiction techniques are used mainly for improving estimates that have been obtained,

for instance, in the context of out-of-order measurement (OOSM) problems [58, 83, 84], we

are primarily interested in how missing estimates can be interpolated from retrodiction1 and

the corresponding improvement in estimation errors following such retrodiction.

Another important aspect of the multi-target tracking task is that prior to fusion, the data

association algorithm determines the groups of estimates, so that each group is hypothesized

to correspond to the same target. Many types of association and fusion algorithms for

1In the meantime, an available estimate is retrodicted by subsequent estimate(s) as well whenever appli-
cable as in conventional retrodiction.
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tracking and navigation applications have been studied [12]. However, our focus here is

not on performance comparison among different algorithms; rather, of interest to us is the

performance improvement from retransmission and retrodiction following a given simple set

of association and fusion algorithms.

In this chapter, we provide analytical models to systematically study the impact from

retransmission and retrodiction on target-tracking performance under variable loss and delay

conditions in a long-haul sensor network. Our study is among the very first to link both com-

munication (message retransmission) and computation (prediction, retrodiction) with state

estimation performance, accounting for both data fusion and association in target tracking

applications. Simulations of a coasting ballistic target tracking example are conducted and

results under various conditions are shown in the end to validate our analysis.

The remainder of this chapter is organized as follows: We first provide analysis of the

delivery rate of a message after retransmission in Section 3.2, and derive the arrival time

distribution in Section 3.3. Following analytical studies on retransmission, we explore the

effect of retrodiction on the estimation performance improvement in Section 3.4, where non-

cooperative and cooperative types of retrodiction are discussed. Simulation results of a

coasting ballistic target tracking application are presented and analyzed in Section 3.5 before

we conclude the chapter in Section 3.6.

3.2 Message Retransmission

In a long-haul sensor network, a remote sensor sends out a message containing the state

estimate; upon successful reception of this message, the fusion center sends back an ac-

knowledgment (ACK) message to the sensor. A failed arrival of the ACK message before the

expiration of the timeout TTO – due to loss and/or long delay of the message itself or the

ACK – will prompt the sensor to retransmit the message. Typically, TTO could be several

times the RTT of the connection, and over long-haul connections it could be of the order
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of seconds. Setting TTO too long could reduce the maximum number of retransmissions,

thereby limiting the potential to recover the lost message; on the other hand, a short TTO

may incur many rounds of retransmission (often unnecessarily) when the sensor could have

waited a bit longer to receive the ACK. Such retransmission continues till the acknowledg-

ment is received by the sensor, or the retransmission window W expires. This window should

ideally contain multiple TTO periods so that under adverse link conditions, it’s likely that

the message can eventually be recovered after multiple tries.

In a real system, the reporting deadline may limit the potential gain from retransmission

as the overall time before reporting can be very short. A cutoff time TCO is defined to mark

the end of the waiting at the fusion center. This cutoff on the one hand limits the total

number of retransmissions, and on the other limits certain messages from being eventually

delivered due to the randomness of the delay. In Fig. 3.1, the effect of this time cutoff

is shown. The window W is set to be 3TTO and hence there are a total of two rounds of

retransmision (at TTO and 2TTO). In the first case, TCO is small so that the last round of

retransmitted message cannot arrive in time for fusion. While in the last case, setting TCO

way beyond the end of the retransmission window is not likely to significantly increase the

chance of receiving the message. Therefore, the system should guarantee that the retrans-

mission window – at the sensors side – is commensurate with the cutoff time – at the fusion

center, as in the second case in the figure, so that the fusion center could benefit from all

rounds of retransmission while not wasting time attempting to recover the pending message

after the retransmission has ended.

The message-level loss and delay characteristics are determined by the long-haul link

conditions. We assume that each message sent by a sensor is lost during transmission with

probability pL independently of other messages. Normally, the latency that a message expe-

riences before arriving at the fusion center consists of the initial detection and measurement

delay, data processing delay by both the sensor and the fusion center, propagation delay,
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Figure 3.1: Timing of message retransmission: The timeout is TTO, retransmission window is
W , and different choices of the cutoff time TCO are marked by bold lines.

and transmission delay, among others2. These are collectively considered as the minimum

delay that a message must undergo to reach the fusion center, which is bound mostly by

factors such as the distance of the satellite link, the transmission data rate, and length of

the message. The extra random delay is often due to link conditions such as weather and

terrain. We suppose a pdf f(t) can model the overall delay t that a message experiences

to be successfully delivered to the fusion center. One typical example is that of the shifted

exponential distribution:

f(t) =
1

μD

exp
− t−T

μD , for t ≥ T. (3.1)

in which T serves as the common link and processing delay, and μD is the mean of the

random delay beyond T . In a real system, the empirical values of the message delay can be

measured over time and thus an approximate function f̃ can be estimated. In the following

analysis, however, we still use the generic function f(t) to model the arrival delay.

We are interested in the average probability of a message being successfully delivered by

a certain time, that is, by the cutoff time TCO. An estimate is only counted once even if

it arrives multiple times due to retransmission. The duplicate messages received by the FC

can simply be ignored as they will not contribute further to the fusion performance.

2The queueing delay is also minimal with little/no congestion.
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With the time of interest being regarded as time zero in this section, the maximum

number of retransmissions before the cutoff time TCO is

Kretx =

⌈
min{TCO,W}

TTO

⌉
− 1. (3.2)

From the definition, Kretx + 1 is the total rounds of transmission, including the original and

subsequent retransmissions.

We define pkdel,t as the probability that a message is delivered by time t after k rounds of

retransmissions, and

Tretx,k = TCO − kTTO, for k = 0, 1, ..., Kretx (3.3)

as the duration of the period [kTTO, TCO] in which the k-th retransmitted message is in flight

and could be potentially delivered to the fusion center.

When there is no retransmission within [0, t], the probability of a message being delivered

by time t is

p0del,t = (1− pL)F (t), (3.4)

in which F (t) =
∫ t

0
f(u) du is the cdf of the arrival delay. Its complement, the probability

that the original message is unavailable at time t, is denoted as

p0loss,t = 1− p0del,t = pL + (1− pL)F (t), (3.5)

in which F (t) = 1−F (t) is the tail distribution. With these two probabilities, we can derive

the message delivery rate pKretx
del,TCO

.

The original message is delivered by TCO with probability

p0del,TCO
= p0del,Tretx,0

= (1− pL)F (Tretx,0). (3.6)
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And with the first round of retransmission, the delivery probability totals

p1del,TCO
= p0del,TCO

+ p0loss,Tretx,0
p0del,Tretx,1

. (3.7)

In general, for the k-th (0 < k ≤ Kretx) round of message retransmission, we have

pkdel,TCO
= pk−1

del,TCO
+ p0del,Tretx,k

(
k−1∏
i=0

p0loss,Tretx,i

)
. (3.8)

In other words, the extra delivery rate from the k-th round is realized when all the previous

k − 1 retransmissions and the original message are not available by TCO. Subsequently, we

can obtain the overall message delivery probability within time [0, TCO] by summing up all

such probabilities:

pKretx
del,TCO

=
Kretx∑
k=0

p0del,Tretx,k

(
k−1∏
i=0

p0loss,Tretx,i

)

= (1− pL)
Kretx∑
k=0

F (Tretx,k)

{
k−1∏
i=0

[1− (1− pL)F (Tretx,i)]

}
. (3.9)

3.3 Arrival Time Pattern Distribution

So far we have combined the message-level loss rate and one-way arrival delay distribution

to obtain the message delivery probability with a certain deadline requirement as speci-

fied by TCO. In practice, the fusion center should be afforded some flexibility in deciding

its actual cutoff time that does not violate the systemic value TCO. First, sometimes re-

porting an abnormal change promptly is more crucial than initially providing an accurate

estimate because the alert level can be increased immediately that facilitates further inves-

tigation. As the maximum allowable delay, TCO may nevertheless be too large for such rare

but time-critical incidences. On the other hand, owing to the dynamic environment of the

field, sometimes the fusion center may decide to reduce its waiting time for the retrans-
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mitted messages because of increased computational effort to obtain the final estimate, due

to an increased number of sensors or increased state dimensionality when multiple closely

positioned targets are in clutter [14].

In this section, we aim to derive the distribution of the arrival time, and more particularly,

the cdf of the first instance of arrival before TCO. This provides us a view of the internal

structure of the arrival process within [0, TCO], which could be explored for the above flexible

scheduling of early cutoff.

3.3.1 Arrival Time: One-way Communication Analysis

We treat loss and delay as two independent processes, although a lost message can be

regarded as having an arrival delay of infinity. In the previous section, only the one-way

delay characterized by the pdf f(t) is considered because we noticed the equivalence of the

final delivery probability no matter how acknowledgments are actually received. In deriving

the arrival time, however, we need to consider two-way delay as well: loss and latency of

ACKs would affect the total number of retransmissions, which in turn decides the distribution

of the arrival time. For ease of explication though, we first work on the case in which there

are exactly Kretx retransmissions – as if no ACKs were ever sent back by the fusion center

– and later extend the results to an arbitrary number of retransmissions.

First, we define the cdf of a truncated nonnegative random variable YT with the upper

truncation point b > 0 as3

F b
T (y) =

F (y)

F (b)
, for all 0 ≤ y ≤ b. (3.10)

And the associated pdf is

f b
T (y) =

f(y)

F (b)
, for all 0 ≤ y ≤ b. (3.11)

3Note that the subscript “T” appearing in cdf’s and pdf’s denote the function describes a truncated
random variable.

48



In our study, we are interested in a series of truncated cdfs and pdfs corresponding to different

retransmission cycles. More specifically, we consider the k-th round of retransmitted message

has a truncated cdf by time Tretx,k as

F
Tretx,k

T (t) =
F (t)

F (Tretx,k)
, for all 0 ≤ t ≤ Tretx,k. (3.12)

Let D denote the arrival time of the message, and more specifically, Dk = dk + kTTO

the arrival time of the k-th retransmitted message (or the original message when k = 0).

Apparently, dk denotes the arrival delay of the k-th retransmission.

We are interested in deriving the distribution of D(1) – the time of the first arrival –

before the cutoff time TCO. When there are a maximum number of Kretx retransmissions

before TCO, we let

DKretx

(1),TCO
= min

k=0,...,Kretx

DKretx
k,TCO

= min
k=0,...,Kretx

{dKretx
k,TCO

+ kTTO} (3.13)

be the time of the first arrival among all Kretx+1 messages sent out by the sensor. We note

Pr{DKretx

(1),TCO
≤ TCO} = pKretx

del,TCO
, (3.14)

where the right-hand side of the equation was given in Eq. (3.9). Our goal is to derive

the distribution of DKretx

(1),TCO
, that is, Pr{DKretx

(1),TCO
≤ t} for any 0 < t < TCO. For ease of

presentation, in the remainder of this section, we assume that a certain TCO value has been

specified along with the resulting Kretx and drop them from the notations unless otherwise

specified.

One may first be tempted to directly apply the result of the distribution of the minimum of

n random variables, which is a special case of the order statistics [65]. Despite the seemingly

similar relationship, the problem at hand is more complicated. First, from Eq. (3.13), we

need to find the minimum ofDk for k = 0, 1, 2, ..., Kretx, which are from different distributions
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for different k. Although results for independently and non-identically distributed random

variables have been studied in the literature [9], the operations involve substantial use of

matrix manipulation, and one must enumerate all 2Kretx+1 possible arrival patterns since each

would yield a distinct result for the distribution of the minimum. To circumvent the issue,

we follow another approach by finding the probability that the k-th retransmitted message

(and the original message when k = 0) is the earliest to arrive, denoted as Pr{ID(1)
= k}, in

which I is the indicator for the earliest arriving message. As stated above, we have

Pr{ID(1)
= k} = Pr{Dk ≤ Dj} for all j 
= k. (3.15)

Kretx = 0

For the simplest case where there is no retransmission before the cutoff time TCO, that is,

if Kretx = 0, the cdf of the first instance of arrival is simply the truncated cdf as shown

in Eq. (3.12) for k = 0. To show this, we first have (a) the delivery probability in Eq.

(3.9) is (1 − pL)F (Tretx,0); and (b) the associated probability that the arrival time – which

happens to be the delay of the original message as well in this case – is no greater than t is

(1− pL)F (t). And the cdf can thus be obtained by having (b) divided by (a):

FD0
(1)
(t) = Pr{D0

(1) ≤ t} = (1− pL)F (t)

(1− pL)F (Tretx,0)
= F

Tretx,0

T (t). (3.16)

Kretx = 1

When Kretx = 1, the sensor can retransmit the message at most once before the cutoff time.

There are basically two scenarios for the first instance of arrival, namely:

a. the original message arrives first before TCO;

b. the retransmitted message arrives first before TCO.

The first case can be further subdivided into
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Figure 3.2: Distributions of d0 and d1

a1: the retransmitted message is not available by TCO;

a2: the retransmitted message is also delivered by TCO, but its random arrival delay d1

must satisfy d0 ≤ d1 + TTO.

Likewise, for the second scenario, we have

b1: the original message is not available by TCO;

b2: the original message is also delivered by TCO with its random arrival delay d0 satis-

fying d1 + TTO < d0.

All different scenarios are illustrated in Fig. 3.2. Their probabilities are calculated as

Pr{a1} = p0loss,Tretx,1
p0del,Tretx,0

= (1− (1− pL)F (Tretx,1))(1− pL)F (Tretx,0). (3.17)

Pr{a2} = (1− pL)
2 Pr{d0 − TTO ≤ d1 < Tretx,1}

= (1− pL)
2

∫ Tretx,1

0

(∫ d1+TTO

0

f(d0) dd0

)
f(d1) dd1

= (1− pL)
2

∫ Tretx,1

0

F (t+ TTO)f(t) dt. (3.18)
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Similarly, we have

Pr{b1} = p0loss,Tretx,0
p0del,Tretx,1

= (1− (1− pL)F (Tretx,0))(1− pL)F (Tretx,1). (3.19)

Pr{b2} = (1− pL)
2 Pr{d1 + TTO < d0 < Tretx,0}

= (1− pL)
2

∫ Tretx,0

TTO

(∫ d0−TTO

0

f(d1) dd1

)
f(d0) dd0

= (1− pL)
2

∫ Tretx,1

0

F (t)f(t+ TTO) dt. (3.20)

Note that the sum of Eqs. (3.18) and (3.20) is p0del,Tretx,0
p0del,Tretx,1

= (1 − pL)F (Tretx,0) ·
(1− pL)F (Tretx,1), the probability that both the original and the retransmitted messages are

available at the cutoff time.

The resulting cdf of D1
(1) is hence

FD1
(1)
(t) = Pr{D1

(1) ≤ t}

=
Pr{ID1

(1)
= 0}F Tretx,0

T (t) + Pr{ID1
(1)

= 1}F Tretx,1

T (t− TTO)

p1del,TCO

, (3.21)

in which Pr{ID1
(1)

= 0} and Pr{ID1
(1)

= 1} are the sums of Eqs. (3.17) and (3.18), and Eqs.

(3.19) and (3.20), respectively. From Eq. (3.9), we have the total delivery probability p1del,TCO

for “normalizing” the probabilities to obtain the cdf.

Kretx > 1

When Kretx is any number greater than one, thanks to the independence of different retrans-

missions, we can carry out the above pairwise comparison for any arbitrary pair of arrivals.

In fact, if we generalize the above results, we have for any pair i and j (i < j) of effective
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retransmissions

Pr{Di ≤ Dj} = (1− pL)
2

∫ Tretx,j

0

F (t+ (j − i)TTO) f(t) dt

+ (1− (1− pL)F (Tretx,j)) (1− pL)F (Tretx,i), (3.22)

and

Pr{Di > Dj} = (1− pL)
2

∫ Tretx,j

0

F (t)f(t+ (j − i)TTO) dt

+ (1− (1− pL)F (Tretx,i)) (1− pL)F (Tretx,j). (3.23)

Repeating for all possible pairs, we have the probability of Dk being the minimum, that

is, the k-th retransmitted message is received first, as

Pr{I
D

Kretx
(1)

= k}

=
Kretx∏
j=0
j �=k

Pr{Dk ≤ Dj}

= (1− pL) ·
Kretx∏
j=0
j �=k

{
(1− pL)

∫ Tretx,max{k,j}

0

F (t+max{0, (j − k)TTO}) ·

f (t+max{0, (k − j)TTO}) dt

+ (1− (1− pL)F (Tretx,j))F (Tretx,k)

}
. (3.24)

This leads to the overall distribution of the DKretx

(1) :

F
D

Kretx
(1)

(t) = Pr{DKretx

(1) ≤ t}

=

∑Kretx

k=0 Pr{I
D

Kretx
(1)

= k}F Tretx,k

T (t− kTTO)

pKretx
del,TCO

. (3.25)
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3.3.2 Arrival Time: Two-way Communication Analysis

Eq. (3.25) describes the distribution of the earliest arrival time under the condition that all

Kretx rounds of retransmissions are sent out after the original message. In reality, though,

the total number of retransmissions can be anywhere from 0 to Kretx. In this subsection,

we consider the two-way communications that determines the number of the actual retrans-

missions, which in turn affects the overall distribution of the earliest arrival time before the

cutoff.

For satellite systems with conventional bent pipe type of transponders [70], one uplink

(sensor → satellite) and downlink (satellite → FC) pair is used for the forward link, and

the reverse link similarly consists of the uplink (FC → satellite) and downlink (satellite →
sensor) pair. Depending on specific channel allocation schemes (e.g., TDMA- or FDMA-

based), that is, whether the forward and reverse channels are assigned the same frequency

band, the delay distribution of the ACK could vary from that of the messages4. Regardless,

we have the pdf of the sum of two random delay values being expressed as the convolution

of their respective pdfs:

h(t) = f(t) � g(t) =

∫ ∞

t=0

f(u)g(t− u) du, (3.26)

in which f and g are the distributions of the forward and reverse links, respectively. Mean-

while, if the ACK message is lost over the reverse link with a probability pL,ACK , the overall

probability that the ACK message can be eventually delivered is (1− pL)(1− pL,ACK), and

its complement

pL,T = 1− (1− pL)(1− pL,ACK) (3.27)

is the “total” loss rate of the “super-message” that includes both the estimate message and

4Also the initial delay could be quite different too, owing to the usually much smaller size of the ACK
messages.
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ACK. With this loss rate and h(t) function, we can derive a general form of the arrival time.

Probability of Having k1 (0 ≤ k1 ≤ Kretx) Retransmissions

First, we have the trivial case in which Kretx = 0 as TCO ≤ TTO, then with probability one,

there is no retransmission. Next we focus on the cases where Kretx ≥ 1.

Having exactly k1 (0 ≤ k1 < Kretx) retransmissions means that the earliest reception of

the ACK message by the sensor occurs in the interval [k1TTO, (k1 + 1)TTO). In other words,

the first instance of the ACK arrival at the sensor

Dk1
T,(1) = min

k=0,...,k1
{DT,k} (3.28)

must satisfy

k1TTO ≤ Dk1
T,(1) < (k1 + 1)TTO, (3.29)

in which Dk1
T,(1) is similarly defined as in Eq. (3.13), with the subscript T specifying that

this is the arrival time accounting for the total delay from both forward and reverse links.

Meanwhile, we define the delivery rate for the “super-message” described earlier as pKretx
T,del,t

with the maximum number of retransmissions Kretx. Then we have

Pr{There are exactly k1 retransmissions, 0 ≤ k1 < Kretx}

= pKretx

T,del,(k1+1)TTO
− pKretx

T,del,k1TTO
. (3.30)

The delivery probabilities can be similarly calculated as in Eq. (3.9), with pL being replaced

by pL,T and F (t) by H(t) =
∫ t

0
h(u) du, respectively.

On the other hand, having Kretx retransmissions means that none of the ACKs have been
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received by KretxTTO, and we have

Pr{There are exactly Kretx retransmissions}

=
Kretx−1∏

k=0

Pr{DKretx
T,k > KretxTTO}

=
Kretx−1∏

k=0

[1− (1− pL,T )H((Kretx − k)TTO)] . (3.31)

Distribution of the Arrival Time for a Given TCO

With Kretx in Eqs. (3.9) and (3.24) being replaced by any k1 (0 ≤ k1 ≤ Kretx), we can

easily find the delivery rate pk1del,TCO
after k1 rounds of retransmissions and the probability

Pr{I
D

k1
(1)

= k} that the k-th retransmission marks the earliest arrival among all k1 + 1 sent

out messages. And then we have the cdf with exactly k1 retransmissions as

F
D

k1
(1)

(t) = Pr{Dk1
(1) ≤ t}

=

∑k1
k=0 Pr{IDk1

(1)

= k}F Tretx,k

T (t− kTTO)

pk1del,TCO

. (3.32)

Finally, we can combine Eqs. (3.30), (3.31), and (3.32) to obtain the distribution of the

arrival time for any given TCO:

FD(1)
(t) =

Kretx∑
k1=0

F
D

k1
(1)

(t) Pr{There are k1 retransmissions}. (3.33)

3.4 State Estimation and Fusion with Retransmission

and Retrodiction

We have seen that retransmission can effectively increase the message delivery rate, which

in turn is expected to improve the estimation quality. However, at times, we wish to further

expedite this recovery process so that the final estimate can be reported earlier; besides, the

56



system may impose rather stringent requirements on the estimation errors so that given the

same allocated time for retransmission, we want more accurate estimates from the output

of the fusion center. This section addresses these concerns by means of utilizing estimate

retrodiction.

3.4.1 Estimate Retrodiction

Estimation of a target state at a particular time based on measurements collected beyond that

time is generally called retrodiction or smoothing. Retrodiction improves the accuracy of the

estimates, thanks to the use of more information, at the cost of extra delay. Nevertheless, the

inherent link delay in a long-haul network occurring before the final reporting entails that the

fusion center can exploit the opportunities for potential retrodiction to improve the accuracy

of the fused estimate. Moreover, the randomness of the arrival delay of different messages

also facilitates the fusion center to opportunistically interpolate the missing messages from

the available ones for subsequent time periods.

Consider a discrete-time system in which estimates are generated regularly at a certain

fixed period TI . An important note here is that a subsequent estimate must be available in

order for retrodiction to happen. As such, the retransmission window W and the cutoff time

TCO must contain at least one estimation interval TI (and also the initial latency of the latest

estimate to arrive at the fusion center) so that the next estimate could potentially arrive

therein. This is shown in Fig. 3.3. In the first case, no retrodiction can be possibly performed

because the cutoff time comes before the end of the same estimation interval; while in the

second and third cases, a maximum of one and two, respectively, rounds of retrodiction can

be possibly carried out. In many actual systems, the near real-time reporting requirement

dictates that the estimation intervals are chosen fairly small. As a result, the next estimate

can be generated and sent to the fusion center in time for retrodiction before the reporting

deadline.

Let xn denote the true target state at time t = nTI and x̂n its estimate. One note is
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TI 2TI 3TI0 t

Figure 3.3: Timing of estimate retrodiction: The estimation interval is TI and different choices
of the cutoff time TCO are marked by bold lines.

Final 
estimate 

for time n

n-2 n-1 n n+1 n+2
... ...

Earlier 
estimates

Current 
estimate

Later 
estimates

Prediction Retrodiction

Figure 3.4: Prediction and retrodiction: The estimate at time n is to be obtained.

that since we have both continuous time – when addressing latency – and the discrete time

indices for retrodiction analysis, all time subsequently labeled as “n” – the time of interest

to us – should be understood as the continuous time nTI and the retransmission parameters

TTO and W and the cutoff time TCO are all defined relative to this time instant.

Fig. 3.4 demonstrates the effect of prediction and retrodiction on the quality of the

state estimate. For each sensor, for example, we have the following types of estimates when

retrodiction of up to one step is performed:

a. x̂n, shorthand for x̂n|n, the “default” estimate sent from the sensor;

b. x̂n− , the predicted estimate;
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c. x̂n−|n+1, the predicted & retrodicted estimate; and

d. x̂n+|n+1, the retrodicted estimate.

In the cases a) and d), the estimate x̂n is received by the fusion center; whereas in both

other cases, this estimate is missing and hence prediction of one or multiple steps is at

first necessary. As is well-known in filtering theory, estimates derived from prediction alone

generally have higher errors when system uncertainty exists; and the errors will increase with

the number of prediction steps that have accrued. For example, x̂n|n−2 is a worse estimate

than x̂n|n−1 in terms of accuracy. On the other hand, the presence of the subsequent estimate

x̂n+1 (in the last two cases) helps improve the quality of the estimate of time n. Of course,

the improvement is on top of the predicted estimate in case c) but on the already received

x̂n in case d). Of concern here is whether an interpolated estimate from retrodiction – such

as that in case c) – can adequately substitute the default estimate in case a); and what is the

probabilistic performance of obtaining these different types of estimates so that the system

requirement on estimation errors can be met.

The quantitative performance of retrodiction also depends on the specific algorithm.

In this study, we apply Rauch-Tung-Striebel (RTS) retrodiction [73] because not only the

algorithm is easy to implement, with relatively low computational cost, but the algorithm

involves only the state estimates and their covariances – rather than the raw measurement

data – which is well suited in our settings when the fusion center needs to run the algorithm.

Based on the criteria that whether the sensors actively participate in retrodiction during

message retransmission, we categorize our schemes into non-cooperative and cooperative

retrodiction. In the former case, message retransmission is carried out in exactly the same

way as before; it is up to the fusion center to opportunistically apply retrodiction whenever

applicable. In contrast, cooperative retrodiction means that the sensors themselves, upon

request, send out the retrodicted estimates during retransmission so that the fusion center

can directly fuse such retrodicted values if successfully delivered. In what follows, we derive

the delivery rates of different types of estimates during retransmission for both types of
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retrodiction and consider their impact on the final error performance.

3.4.2 Non-Cooperative Retrodiction

The fusion center can opportunistically apply retrodiction whenever applicable; this can

of course be combined with message retransmission introduced earlier. In what follows,

we derive the delivery rates of different types of estimates following retransmission and

retrodiction. Although here only one-step retrodiction is shown, analysis for retrodiction of

two or more steps can be similarly obtained, albeit in a more exhaustive manner, as the

number of possible scenarios grows exponentially with the number of steps5.

We have the following probabilities at the cutoff time nTI + TCO:

• pn− , the probability that x̂n− is reported (neither x̂n or x̂n+1 is delivered by the cutoff);

• pn|n, the probability that x̂n|n is reported (x̂n+1 is not delivered yet);

• pn−|n+1, the probability that x̂n−|n+1 is reported (x̂n+1 has been delivered but not x̂n);

• pn+|n+1, the probability that x̂n+|n+1 is reported (both x̂n and x̂n+1 have been delivered).

The analysis in Sec. 3.2 can be readily applied here, thanks to the independence of the

transmission from different time intervals. Similar to Eq. (3.2), we have the maximum

number of retransmissions during t ∈ [nTI + TI , nTI + TCO] given as

Kretx,retr1 =

⌈
min{TCO − TI ,W}

TTO

⌉
− 1, (3.34)

in which the subscript retr1 denotes that there is a maximum of one-step retrodiction. And

the duration in Eq. (3.3) can also be defined likewise for the above time interval:

Tretx,retr1,k = TCO − TI − kTTO, for k = 0, 1, ..., Kretx,retr1 . (3.35)

5Another caveat is that message-level loss and delay may worsen as significantly more data are sent
simultaneously with increasing retrodiction steps.
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To calculate the above probabilities, we need to consider the probability that x̂n+1 is de-

livered at the cutoff time. This probability, denoted as p
Kretx,retr1
del,TCO−TI

, follows the very same form

as in Eq. (3.9), but with newly defined Eqs. (3.34) and (3.35) substituting the corresponding

terms. Then we have

pn− = (1− pKretx
del,TCO

)(1− p
Kretx,retr1
del,TCO−TI

) (3.36)

pn|n = pKretx
del,TCO

(1− p
Kretx,retr1
del,TCO−TI

) (3.37)

pn−|n+1 = (1− pKretx
del,TCO

)p
Kretx,retr1
del,TCO−TI

(3.38)

pn+|n+1 = pKretx
del,TCO

p
Kretx,retr1
del,TCO−TI

(3.39)

3.4.3 Cooperative Retrodiction

In this subsection, we provide similar analysis as above – that is, with a maximum of one

step of retrodiction being performed – and focus on comparisons between cooperative and

non-cooperative retrodiction techniques. In particular, two possible implementations of the

cooperative retrodiction are studied, one in which we only consider one-way communications

– as we have done so far – and the other requiring two-way analysis that addresses the

delivery of the ACK messages as well.

Condition for One-Step Cooperative Retrodiction

In non-cooperative retrodiction, message retransmission is scheduled in the manner as de-

scribed in Sec. 3.2 and a sensor is oblivious to the retrodiction process happening at the

fusion center. In contrast, cooperative retrodiction requires the retrodicted estimates to be

sent out during retransmission. In order for a sensor to actually send out its one-step retro-

dicted estimates, the retransmission window W should not have expired at the end of the

estimation interval TI ; in fact, there should be at least one round of retransmission initiated

by the sensor after TI when the retrodicted estimate can be sent out by the sensor. Hence,

compared to non-cooperative retrodiction, tighter conditions are in place for cooperative
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retrodiction.

Cooperative Retrodiction: One-way Communications without ACK

During the time period [nTI + TI , nTI + TCO], instead of the original estimate, the sensor

sends out the retrodicted estimate x̂n+|n+1 directly. The total number of retransmission

rounds for the original message during [nTI , nTI + TI ] is reduced to

Kretx,coop =

⌈
TI

TTO

⌉
− 1, (3.40)

while both the new state estimate x̂n+1|n+1 and retrodicted estimate x̂n+|n+1 are sent after

TI . If TI = lTTO, l = 1, 2, 3, ..., both estimates will undergo

Kretx,coop,retr1 = Kretx,retr1 =

⌈
TCO − TI

TTO

⌉
− 1, (3.41)

rounds of retransmission, in which the subscripts “coop, retr1” and “retr1” denote coopera-

tive and non-cooperative retrodiction of up to one step respectively. Similar to our earlier

analysis, we can obtain the delivery probabilities of the original estimate x̂n|n as p
Kretx,coop

del,TCO
,

of the subsequent estimate x̂n+1|n+1 as p
Kretx,retr1
del,TCO−TI

, and of the retrodicted estimate by the

sensor x̂n+|n+1 as p
Kretx,coop,retr1
del,TCO−TI

. With an increased size of the state space, the probabilities

of obtaining different types of estimates at the cutoff time can now be computed as

pn− = (1− p
Kretx,coop,retr1
del,TCO−TI

)(1− p
Kretx,coop

del,TCO
)(1− p

Kretx,retr1
del,TCO−TI

) (3.42)

pn|n = (1− p
Kretx,coop,retr1
del,TCO−TI

)p
Kretx,coop

del,TCO
(1− p

Kretx,retr1
del,TCO−TI

) (3.43)

pn−|n+1 = (1− p
Kretx,coop,retr1
del,TCO−TI

)(1− p
Kretx,coop

del,TCO
)p

Kretx,retr1
del,TCO−TI

(3.44)

pn+|n+1 = p
Kretx,coop,retr1
del,TCO−TI

+ (1− p
Kretx,coop,retr1
del,TCO−TI

)p
Kretx,coop

del,TCO
p
Kretx,retr1
del,TCO−TI

(3.45)

Note in Eq. (3.45) that the estimate x̂n+|n+1 can be obtained either directly from the sensor,

or indirectly in the manner we discussed in the non-cooperative retrodiction case.
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Cooperative Retrodiction: Two-way Communications with ACK

The analysis above is along the same line as that in Sec. 3.2, where only one-way commu-

nication is considered. This can also be seen as the extreme case where no ACK is ever

sent back by the fusion center, since the sensors always have their one-step retrodicted es-

timates sent out after one estimation interval TI . In reality, though, the ACK might have

been successfully received by the sensor within TI , thereby obviating the need for further

retransmission. Next, we carry out two-way communication analysis to account for such

scenarios.

Recall from Eq. (3.27) that pL,T is the loss rate of the “super-message” that includes

both the estimate message and ACK. With this loss rate and h(t) function in Eq. (3.26), we

have the probability that the ACK is delivered by time t and hence no more retransmission

occurs afterward:

pretx(t) = (1− pL,T )H(t), for t ∈ [0,min{TCO,W}], (3.46)

in which H(t) =
∫ t

0
h(u)f(u) du is the cdf of the two-way communications delay.

After the ACK has been successfully received within one estimation interval, the retrod-

icted estimate is no longer to be sent out, thereby reducing the chance that the best estimate

x̂n+|n+1 is available at the fusion center. Subsequently, with probability 1 − pretx(TI), Eqs.

(3.42)–(3.45) hold true; on the other hand, with probability pretx(TI), only two types of esti-

mates are possible to be used by the cutoff time – since x̂n|n has been received successfully –

with probabilities 1− p
Kretx,retr1
del,TCO−TI

for x̂n|n and p
Kretx,retr1
del,TCO−TI

for x̂n+|n+1. Using the law of total

probability, we can easily incorporate them to calculate the overall probabilities of obtaining

each type of estimate.
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3.4.4 Impact of Retransmission and Retrodiction on Estimation

Error

It’s generally difficult to derive the exact error performance analytically. Note that in Eqs.

(3.36) and (3.38), the time at which the last received estimate was generated is not specified;

that is, the number of prediction steps leading up to x̂n− is unknown. Even with known error

profiles for x̂n|n and x̂n+|n+1, an exact evaluation of estimation error for x̂n− and x̂n−|n+1

requires knowledge of the errors with an arbitrary number of prediction steps, which is

generally unrealistic. If the off-line error performance can be obtained for the above original,

predicted, and retrodicted estimates, an approximate estimation error can be calculated as

the probabilistic sum of errors for different types of estimates. Next, via simulations of

a ballistic target tracking application, we explore the impact of both retransmission and

retrodiction on actual estimation performance.

3.5 Performance Evaluation

We carry out system-level tracking simulations of coasting ballistic targets. First, we focus

on the one-target case where fusion is performed by the fusion center to combine the state

estimates of a single target sent by the sensors. Then, the multi-target tracking scenario is

investigated, where a probability association model is used to capture the performance of

data association prior to the estimate fusion. We aim to explore the benefits and limitations

of applying retransmission and retrodiction under variable loss and delay statistics.

3.5.1 Effect of Retransmission Schedules on Tracking Performance

Target Model

The trajectory of a ballistic target, from launch to impact, is divided into three basic phases:

boost, coast, and reentry. In this dissertation we focus on the coast phase, which is an exo-
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atmospheric, free-flight motion, continuing until the Earth’s atmosphere is reached again.

The states of a coasting ballistic target – whose motion is governed predominantly by gravity

– are generated using the following state-space model [45]:

ẋ �

⎡
⎢⎣ṗ
v̇

⎤
⎥⎦ = f

⎛
⎜⎝
⎡
⎢⎣p
v

⎤
⎥⎦
⎞
⎟⎠ �

⎡
⎢⎣ v

aG(p)

⎤
⎥⎦ . (3.47)

The target state vector x =

[
pT vT

]T
, where p =

[
x y z

]T
and v � ṗ =

[
ẋ ẏ ż

]T
are

the target position and velocity vectors, respectively. aG(p) is the gravitational acceleration

under the spherical Earth model [45]:

aG(p) = − μ

p2
up = − μ

p3
p, (3.48)

where p is the vector from the Earth’s center to the target, p � ‖p‖ is its length, up � p/p

is the unit vector in the direction of p, and μ = 3.986012 × 105 km3/s2 is the Earth’s

gravitational constant.

The algorithm for state propagation can be found in [81] and the initial target state

is [38]: [113.75 3960 5150 0.988 3.33 − 6.01]T , in which the position and velocity

values are in the units of km and km/s respectively.

Sensor and Noise Profiles

A total of N = 5 sensors are deployed for reporting their state estimates of the dynamic

target defined above. Estimates are generated once per second. A state estimate x̂i(k) from

sensor i at time k is generated by adding random Gaussian noise to the true states6 as in [68]:

x̂i(k) = x(k) + ni(k), (3.49)

6This is a simplified model for scenarios in which the dependency of estimation errors on the underlying
states are negligible.
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where x(k) is the true target state for a target at time k, and ni(k) ∼ N (0,Σ). Σ is a

diagonal matrix:

Σ = diag

([
σ2
x σ2

y σ2
z σ2

ẋ σ2
ẏ σ2

ż

])
, (3.50)

where σ2
x, σ

2
y , and σ2

z are the position error variances, and σ2
ẋ, σ

2
ẏ , and σ2

ż are the velocity

error variances. The following state estimation errors are set commonly for all sensors:

σ2
x = σ2

y = σ2
z = 1 and σ2

ẋ = σ2
ẏ = σ2

ż = 10−4.

Fusion Rule

We apply the linear fuser defined as follows:

PF =

(
L∑
i=1

P−1
i

)−1

, and x̂F = PF

L∑
i=1

P−1
i x̂i, (3.51)

where x̂F is the fused estimate and PF is its error covariance matrix. Pi and x̂i are similarly

defined for sensor i. A total of L (L ≤ N) state estimates are combined at the fusion center.

This simple fuser is a special form of the track-to-track fuser [14] where the process noise is

zero.

Communication Link Statistics

The default forward link loss rate is set to be pL = 0.5, compared to that of the reverse

link pL,ACK = 0.1. The arrival delay of both directions satisfies the shifted exponential

distribution defined in Eq. (3.1), with μD,F = 0.3 s and μD,R = 0.2 s for the forward and

reverse links respectively and a common T = 0.5 s. The default TTO and W are set to be

1.5 s and 4.5 s respectively, which are both integer multiples of the measured average RTT

at 1.5 s.
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MSE analysis

From Eq. (3.51), the mean-square-error (MSE) of the position and velocity estimates of the

linearly fused estimate satisfies

|p̂F − p|2 = |p̂i − p|2/L, and |v̂F − v|2 = |v̂i − v|2/L, (3.52)

if the sensors have the same estimation error profiles (that is, the same MSEs). Suppose the

system imposes its maximum tolerable errors of position and velocity estimates asMSEmax,p̂

and MSEmax,v̂ respectively, with independent transmissions from up to N sensors, the min-

imum delivery probability should satisfy

pdel,min =
Lmin

N
=

1

N
max{ |p̂i − p|2

MSEmax,p̂

,
|v̂i − v|2
MSEmax,v̂

}, (3.53)

in which Lmin is the minimum number of estimates that should be delivered. The actual

delivery probability from message retransmission as expressed in Eq. (3.9) must be checked

against this minimum delivery rate to ensure the MSE requirements are met.

The distribution of the arrival time, as in Eq. (3.33), can be used to derive an upper

bound of the estimation error. For a given cutoff time TCO, when the fusion center decides to

finalize the estimate at an earlier time t, according to Eq. (3.51), the expected contribution

of the position estimate from the sensor i is lower bounded by α
|p̂i−p̂|2 , in which α = F

D
TCO
(1)

(t).

The other part, weighted by 1−α, depends on how the fuser chooses to substitute the missing

estimate, such as using one- or multi-step prediction. If we consider the error performance

of the fused estimate, the upper bound – as in the worst-case scenario in which a missing

estimate results in zero contribution – is

|p̂F (t)− p|2max =
|pF (TCO)− p|2

F
D

TCO
(1)

(t)
, for 0 < t ≤ TCO, (3.54)

in which pF (TCO) is the fused position estimate at time TCO. A similar result can be found
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Timeout TTO and Cutoff TCO

Figs. 3.5 and 3.6 demonstrate the effect of different retransmission timeout and fusion cutoff.

There is no retransmission when W = TTO = 4.5 s. When TTO is set to be 1.5 s, however,

two rounds of retransmissions can effectively reduce the MSE of the estimate. For example,

when the loss rate is 60%, the error is reduced by more than 50%. Likewise, for a given

TTO, when the reporting deadline requirement is tightened, as reflected by decreasing cutoff

time TCO, the estimation MSE will increase given the same loss rate. On the other hand,
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when read horizontally, the plots indicate that to meet the same MSE requirement, with

increasing loss rates, TTO should be reduced and/or TCO should be increased. A good rule

of thumb to determine the MSE performance is the ratio TCO/TTO, although this rule may

at times fail due to the periodicity of the retransmission process, especially when the values

being compared are close.

Retransmission Performance

In Fig. 3.7, we plot the proportion of different numbers of retransmissions with respect to

various loss rates. Note that the last group (labeled as “2”) does not indicate the message

will be delivered within this round, but rather this is the last try as Kretx = 2. As expected,

an increased message-level loss rate requires more rounds of retransmissions so that the

message can be recovered with the same probability over a longer period of time.

Upper Bound of the MSEs From Early Cutoff

Finally, in Fig. 3.8, the upper bounds of the MSEs resulting from earlier-than-scheduled

cutoff are shown. The singular points in these plots indicate the arrival of a new round of

retransmission. The concavity of the bounds (excluding the singular points) implies that the

“best” time for early fusion is roughly in the middle of each round (accounting for the link

delay), where the deepest descent in this round has occurred. In addition, as time inches

closer to the cutoff time TCO, the bound also approaches the actual MSE obtained when the

cutoff time is set at that point, and is a good indicator of the actual MSE performance.

3.5.2 Tracking of One Coasting Target

Target Model

The target model remains the same as that introduced in the previous subsection. We note

the generated trajectory there – which happens to be the very last few seconds before the

target enters the re-entry stage starting at an altitude of about 100 km – is very short. Hence,

69



we have backtracked a segment of the earlier trajectory so we can focus on the position state

estimates during the last 30 seconds prior to the re-entry stage.

Sensor Profiles

A total of N = 3 sensors are deployed for reporting their state estimates with the common

estimation interval set as TI = 2 s. The measurements (z) of the range (r), elevation (E),

and azimuth (A) of the target are generated using the following measurement model [38]:

z = h(x) + v, (3.55)

where the target state x is in Cartesian coordinates, but the measurement z and additive

noise v are in the sensor spherical coordinates. If [x y z]T is the true position of the

target, then the measurement7 is given as

z =

⎡
⎢⎢⎢⎢⎣
r

E

A

⎤
⎥⎥⎥⎥⎦+ v =

⎡
⎢⎢⎢⎢⎢⎣

√
x2 + y2 + z2

tan−1

(
z√

x2+y2

)
tan−1

(
x
y

)

⎤
⎥⎥⎥⎥⎥⎦+ v, (3.56)

v ∼ N (0,R), R =

⎡
⎢⎢⎢⎢⎣
σ2
r 0 0

0 σ2
E 0

0 0
σ2
E

cos2(E)

⎤
⎥⎥⎥⎥⎦ . (3.57)

A simplified radar model is used to define the range and elevation error standard devia-

tions. The σr and σE values of a ballistic target/satellite tracking phased array radar, the

Cobra Dane, are 15 ft and 0.05◦ respectively, according to [24]; and these values are assumed

for all the sensors. The sensors apply the recursive best linear unbiased estimator (BLUE)

proposed in [86] which improves upon the measurement-conversion approach [43]; that is,

the output has the minimum MSE among all linear unbiased filters in Cartesian coordinates.

7Note that this measurement has been normalized to any sensor’s own known location.
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Figure 3.9: Position estimate RMSE over time, with loss rates of (a) 0.2; and (b) 0.7

As in [86], the filter is initialized with an effectively large state error covariance and a highly

inaccurate state estimate.

Fusion Rule

We apply a linear fuser similar to that defined in (3.51). With imperfect communications,

the number of received state estimates for any time of interest is often less than the desired

value N . The fusion center can apply two approaches: First, as in Eq. (3.51), it uses

the actual number of available estimates L (L ≤ N) and ignores the remaining, if any,

unavailable tracks. Alternatively, it can substitute the predicted (or retrodicted) estimates

in place of the original, if the latter is unavailable, and uses all N tracks for fusion. While

the first approach is easier to implement, its estimation error is often worse; in other words,

a predicted estimate still more or less provides error reduction for the fused estimate when

compared to the case where the track is simply dropped. Therefore, in what follows, we

pursue the second method of fusing the estimates in which all the tracks are used.

Communication Link Statistics

The following communication link statistics are used for the remainder of this section. Two

link loss rates of 0.2 and 0.7, are studied, representing respectively the low and high loss
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scenarios. The arrival delay satisfies the shifted exponential distribution defined in Eq.

(3.1), with μD = 0.3 s and the initial latency T = 0.5 s. With the cutoff time set as

TCO = 3 s – the same for the retransmission window W – we explore two options with the

retransmission timeout period TTO set as 1.5 s (up to one round of retransmission) and 3 s

(no retransmission) respectively.

Position Estimate RMSE Performance

We run Monte Carlo simulations to test the position estimate root-mean-square-errors8 (RM-

SEs) during the last 30 seconds of the coasting phase, and the results are shown in Fig. 3.9.

Whereas the performance improvement of cooperative retrodiction over the non-cooperative

counterpart has been shown in a numerical example in [54], the improvement is usually not

as significant. We focus here on the case – often in practical implementation – where the

sensors do not participate in cooperation. The estimation errors become noticeably higher

with a higher message-level loss rate; but regardless of the loss rate, applying retransmis-

sion and retrodiction can effectively reduce the estimation errors. Given the communication

parameters, according to Eq. (3.9), the total delivery probability of the original message at

time cutoff TCO is approximately (1− p2L) where pL denotes the message-level loss rate. As

such, the delivery rates for pL = 0.2 and pL = 0.7 at TCO are approximately 96% and 50%

respectively. The increased delivery rate effectively prevents the fusion center from using the

predicted estimates – statistically worse than the original – thereby improving the estimation

performance compared to the case without retransmission.

During this 30-second period9, the sensors produce state estimates whose quality pro-

gressively improves over time – the favorable condition for applying retrodiction. Even with

just one-step retrodiction, its effect on improving the accuracy can already be seen from

the plots, where the RMSE is reduced generally by over 10%. Interestingly, retransmission

8The RMSEs are used more often in the tracking literature. We used MSEs earlier in Sec. 3.5.1 because
the upper bounds were used to approximate fusion performance.

9The filters have been initialized prior to the “zero” time in the figures.
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seems to play a more prominent role than retrodiction when the loss rate is high – note the

two curves in the middle appear “flipped” when the loss changes from 0.2 to 0.7 – since

the chance of applying retrodiction is rather small without retransmission under higher loss

rates.

3.5.3 Tracking of Multiple Coasting Targets

In this subsection, we consider tracking of multiple ballistic targets coasting in close proximity

to one another. The initial states for M = 4 different targets (in which Target 1 is the one

we used in the previous subsection) are shown in Table 3.1. The trajectories are generated

in the same manner as before.

Table 3.1: Initial target states

Target

Position
x, y, z (km)

Velocity
ẋ, ẏ, ż (km/s)

1 76.1, 3829.4, 5373.1 0.995, 3.54, -5.73

2 77.0, 3827.1, 5368.6 0.985, 3.48, -5.75

3 75.0, 3828.2, 5370.0 0.970, 3.52, -5.74

4 77.8, 3831.3, 5375.8 0.998, 3.51, -5.72

Association Properties

An important task prior to fusion is that every sensor estimate (track) must be associated

with a certain target. Rather than focus on a particular type of data association algo-

rithm, we explore the effect of available time on data association and on the final estimation

performance by means of the probabilistic model [68] as follows.

The state estimate of Target i is assigned to Target j with probability aij:

aij =

⎧⎪⎪⎨
⎪⎪⎩
1− (M − 1)pA, i = j

pA, i 
= j

, i, j = 1, ...,M,M ≥ 2, (3.58)
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where M is the number of targets, and pA is the probability that we assign a state estimate

to any incorrect target10. We model pA here to be the following function of the number of

targets, M , and time τ :

pA =
1

M(1 + βτ)
, pA ≤ 1

M
, (3.59)

where β is a scaling parameter. This function has the following properties: (a) as the number

of targets M increases, the total probability of misassignment, (M − 1)pA, increases; (b) as

τ increases, pA decreases; (c) if τ = 0, there is an equal probability of assigning a state

estimate to any target; and (d) as τ → ∞, pA → 0. However, of note is that pA is unlikely

to be zero given an unlimited execution time for the correlator; more likely there may be

some lower bound pA,min on the probability pA, such that if τ → ∞, pA → pA,min. This

model is suited for the scenario in our study because the targets remain in close proximity

and thus the distance between any two does not undergo dramatic change; as such, no target

lies far apart from the rest from the view of a long-haul sensor. A fixed amount of time τ is

allocated right before TCO for computation, and the scaling factor β depends on the specific

algorithms used. Here we set β = 80.

Position Estimate RMSE Performance

In Fig. 3.10, the position estimate RMSEs for Target 1 under different retransmission-

retrodiction combinations are plotted for a message loss rate of pL = 0.7. First, by comparing

the results from each category with that in Fig. 3.9(b), we observe the estimation errors

have increased due to mis-assigned tracks, although with the same allocated time τ , the

improvement after retransmission and/or retrodiction is on the level as before. When the

allocated time for computation is short, say τ = 0.05, the degradation in error performance is

much higher. As τ gradually goes up, the errors are seen to decrease, thanks to the improved

10For the case where M = 1, data association is not required since there is only one target that the state
estimate can belong to (i.e., for M = 1, pA = 0).
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Figure 3.10: Multi-target position estimate RMSE over time with variable τ and the loss rate
as 0.7: (a) no retransmission or retrodiction; (b) with retransmission, but no retrodiction; (c) with
retrodiction, but no retransmission; (d) with both retransmission and retrodiction

performance of the correct association probabilities.

On the other hand, we observe that as τ is further increased, for example from 0.2 to 0.3,

except in Case (a), where no retransmission or retrodiction is implemented, there is no clearly

discernible performance improvement in accuracy. Actually, by this time, the probability for

wrong associations has become very low. But as τ , the allocated time within TCO, increases,

the remaining time for communications is shortened. As such, when τ becomes higher, the

slight improvement in computation can hardly offset reduced communication opportunities,

which could either be the retransmitted messages (in (b)) or the next estimate itself used for

retrodiction (in (c)) or both (in (d)). This demonstrates the trade-offs between computation
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and communication when the total allocated time TCO is fixed.

Discussions

In this subsection, we have assumed the communication parameters are given for a certain

long-haul network. For a given deadline TCO, however, if an existing schedule cannot meet the

required or desired estimation accuracy levels, the fusion center can schedule more frequent

retransmission and/or estimation intervals (at the cost of higher communication overhead

for the sensors), to counteract the increasing demand for computation due to more sensors

being deployed and/or more targets being monitored.

3.6 Conclusion

In this chapter, we have studied target tracking in a long-haul sensor network where commu-

nication loss and delay are severe enough to degrade the estimation accuracy performance

significantly. Message-level retransmission is thus adopted to recover some of the missing

sensor data. We have derived the improved delivery probabilities of estimate messages after

retransmission and the distribution of the first arrivals among all retransmitted messages.

We have also analyzed the probabilities of obtaining different types of estimates by the fusion

center when retransmission and retrodiction techniques are applied. Simulation results for

tracking of coasting ballistic targets – with the effect of track association and fusion being

accounted for – demonstrate the effectiveness of our retransmission- and retrodiction-based

mechanisms and the extent to which they can be applied so that the system requirements

on estimation errors can be potentially met.
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Chapter 4

Opportunistic Staggered Sensing

Scheduling

4.1 Introduction

Sensing scheduling is a broad term that pertains to any action that can effect changes in

the attributes or parameters during the sensing process [34]. Many of the existing studies

on wireless sensor networks have considered energy and power savings as an essential task

for prolonging the lifespan of the entire network. In these studies, myopic- and non-myopic

sensor management schemes [42] have been proposed that rely on some predefined cost func-

tions associated with certain sensing actions. However, these formulations do not lead to

generally applicable solutions as they suffer from the “curse of dimensionality” due to the ex-

ponentially increasing computational complexity over time. An algorithm for scheduling and

control of passive sensors is similarly proposed in [29] that aims to maximize an information

measure in the sensor measurements. An optimization problem for estimation scheduling

has been studied in [63] where a uniform scheduling technique is found to be optimal with

steady-state sensors and an average error metric. Recently, [56] has proposed an optimiza-

tion solution that strikes a balance between estimation accuracy and total sensor activations
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over one period. None of these studies have accounted for varying tracking requirements

and are generally not amenable to communication-constrained settings as all the sensor data

must be present for the manager to make global decisions.

Our focus in this chapter, in contrast, is not on finding the optimal solutions (e.g.,

minimum errors) for every possible combination of network and sensor conditions in a

communication- and computation-constrained environment; rather, of interest is how to

opportunistically use these constraints to schedule sensing over time that can potentially

improve the estimation and fusion performance. Different from conventional approaches,

where the time instants to generate state estimates at the sensors and the fused state at

the fusion center coincide, we consider staggered estimation and fusion where there exists a

time shift – considered as the “staggered time” – between the two. The fusion center can

take advantage of the time difference to perform intra-state prediction and retrodiction to

improve the quality of the fused estimates at desired reporting time. Such scheduling can be

carried out across multiple sensors as well. Correspondingly, the fusion center needs to fuse

such multi-sensor state estimates with various time stamps. The main goal of this chapter

is to investigate the effect of such asynchronous and staggered estimation/fusion on tracking

for different types of target trajectories under variable communication loss/delay conditions

and sensor bias levels.

The remainder of this chapter is organized as follows: Section 4.2 is an overview of the

system model, ranging from the target and measurements, to generating the estimates at

the sensors and fusing the estimates at the fusion center. Next in Section 4.3, the prediction

and retrodiction performed at the fusion center is highlighted, which serves as the basis of

staggered scheduling in subsequent sections. In Section 4.4, we introduce the basic ideas

behind staggered estimation by the technique of intra-state prediction and retrodiction.

In Section 4.5, we carry out a study using a simplified trajectory case that demonstrates

the major advantages of such opportunistic staggered scheduling in improving estimation

performance. Simulation results of a maneuver target tracking application are shown and
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analyzed in Section 4.6. The chapter concludes in Section 4.7.

4.2 System Model

In this section we present the target and sensor measurement models as well as the estimation

and fusion algorithms.

4.2.1 Target Model

The most popular motion models are the kinematic state models that are obtained by setting

a certain derivative of the position to be equal to a zero-mean white noise [14]. The process

noise in each model describes the motion uncertainty that complicates the estimation pro-

cess. We consider a trajectory that consists of two basic types of motion: straight-line and

turn movements. The straight line and turn components are described by the continuous

white-noise acceleration (CWNA) and coordinated turn (CT) models respectively. Such a

combination has been used in the literature, such as in [82].

In most scenarios, the motion along each coordinate (such as in the “east-north-up”

coordinate system [14]) is typically assumed to be decoupled from the other coordinates. As

such, the same model is used for each coordinate. In this study, for simplicity, we consider

tracking occurs in horizontal dimensions (for both straight-line and turn segments). This is

typically the case for motion over land or water; but even for aircraft motion, real trajectories

suggest that the vertical motion can be easily decoupled from that in the horizontal plane [62].

Continuous White-Noise Acceleration (CWNA) Model

The discretized continuous white noise acceleration (CWNA) model is a simple, commonly

used motion model in which an object moving in a generic coordinate ξ is assumed to be

traveling at a near constant speed. The discrete-time state equation is given by xk+1 =

Fxk +wk, where (dropping the time index k), x = [ξ ξ̇]T here is a two-dimensional vector
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representing the position and velocity, and F is known as the transition matrix and is given by

F =

⎡
⎢⎣1 T

0 1

⎤
⎥⎦, where T is the scan rate of the sensor1 (i.e., sampling period). The covariance

of the discrete-time process noise wk is Q = q̃

⎡
⎢⎣T 3/3 T 2/2

T 2/2 T

⎤
⎥⎦, where q̃ (often assumed to be

constant over time) is the power spectral density (PSD) of the underlying continuous-time

white stochastic process.

Since our focus is on 2-D tracking, we extend the above model to two coordinates ξ and

η. The evolution of the state vector x = [ξ ξ̇ η η̇]T is described by

xk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣1 T

0 1

⎤
⎥⎦ 02×2

02×2

⎡
⎢⎣1 T

0 1

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
xk +wk, (4.1)

and the covariance matrix Qk of the process noise wk is

Qk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃ξ

⎡
⎢⎣T 3/3 T 2/2

T 2/2 T

⎤
⎥⎦ 02×2

02×2 q̃η

⎡
⎢⎣T 3/3 T 2/2

T 2/2 T

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.2)

Target Maneuver

The second type of motion occurs when the target performs a maneuver (i.e., a turn). A turn

usually follows a pattern known as a coordinated turn, which is characterized by a constant

turn rate and a constant speed. The turn rate Ω is incorporated into the motion model by

augmenting the state vector for a horizontal motion model: x =
[
ξ ξ̇ η η̇ Ω

]T
, which

1Note that a superscript T always denotes the transpose of a vector or matrix.
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gives rise to the discretized coordinated turn (CT) model [14], given by

xk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 sinΩ(k)T
Ω(k)

0 −1−cosΩ(k)T
Ω(k)

0

0 cosΩ(k)T 0 − sinΩ(k)T 0

0 1−cosΩ(k)T
Ω(k)

1 sinΩ(k)T
Ω(k)

0

0 sinΩ(k)T 0 cosΩ(k)T 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xk +wk, (4.3)

and the covariance matrix of the process noise wk is

Qk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃ξ

⎡
⎢⎣T 3/3 T 2/2

T 2/2 T

⎤
⎥⎦ 02×2

0

0

02×2 q̃η

⎡
⎢⎣T 3/3 T 2/2

T 2/2 T

⎤
⎥⎦ 0

0

0 0 0 0 q̃ΩT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4)

In contrast to the CWNA model, the CT model is a nonlinear one if the turn rate Ω is not

a known constant. In practice, the linear acceleration noise PSD levels in both dimensions

are assumed to be equal; i.e., q̃ξ = q̃η. The general guidelines for selecting an appropriates

levels of these noise parameters can be found in [14].

4.2.2 Sensor Measurement Model

A sensor collects measurements of the target range and azimuth angle according to the

following measurement model [82]:

z =

⎡
⎢⎣r
a

⎤
⎥⎦ =

⎡
⎢⎣
√

x2 + y2

tan−1
(y
x

)
⎤
⎥⎦+

⎡
⎢⎣wr

wa

⎤
⎥⎦ (4.5)
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where wr and wa are independent zero mean Gaussian noises with standard deviations σr

and σa, respectively. Note that this measurement has been normalized to the sensor’s own

known location.

4.2.3 Generating the State Estimates

Conversion of Measurements from Polar to Cartesian Coordinate

In practice the measurements are often reported in polar coordinates as in Eq. (4.5) with

respect to the sensor location. Nevertheless, common motion models are given in Cartesian

coordinates as shown earlier. Therefore, it is necessary that a sensor first converts the

polar measurements to Cartesian ones before generating its state estimates. The standard

conversion formulas are

zξ = r cos a zη = r sin a, (4.6)

where zξ and zη denote the transformed measurement components along ξ and η axes re-

spectively. However, it is noted that this conversion only applies in restricted conditions as

it can introduce a bias after the conversion. A more general unbiased conversion rule is given

by applying a correction factor as follows [59]:

zuξ = eσ
2
a/2r cos a zuη = eσ

2
a/2r sin a, (4.7)

where σa is the standard deviation of the polar azimuth measurement.

Filtering

Once a measurement in Cartesian coordinates is obtained, the sensors can then generate

its state estimate using its prior knowledge about the target and this newest measurement.

Conceptually, the goal of a state estimator is to extract the state information x from measure-
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ment z that is corrupted by noise; this is done by running a filter that sequentially outputs

the state estimate x̂ and its associated error covariance matrix P. In most recursive state

estimators, each step is comprised of two distinct phases, namely, “predict” and “update”.

In the “predict” phase, the state estimate from the previous time step is used to produce a

rough estimate of the current state, which is also known as the a priori state estimate. In

the subsequent “update” phase, this predicted value is combined with the latest measure-

ment to refine the state estimate, resulting in the a posteriori estimate that is supposed to

possess an improved quality in terms of a reduced estimation error. Normally, these two

phases alternate and the system state at a certain time instant is predicted directly from the

preceding posterior estimate. Also computed during each step are the prior and posterior

error covariance matrices P. Defined as Pk = E[(x̂k − xk)(x̂k − xk)
T ] but can be recursively

computed without knowledge of the actual target state, P provides a theoretical accuracy

measure of the estimator.

Kalman Filters and Extended Kalman Filters

The Kalman filters (KFs) are arguably the most well-known state estimators. They are

linear minimum-mean-square-error (LMMSE)-optimal as the trace of P – characterizing the

estimation error – at each step is minimized. The equations and explanations have been

provided in Chapter 2. Of note is that KFs are the first options with linear system and

measurement dynamics, i.e., where both system and measurement models are well-defined

linear functions. To recall the motion models introduced above, we have the CWNA model

as a good candidate for KFs as the transition matrix is well-defined and stable over time.

Although the polar measurement equation is nonlinear as in Eq. (4.5), a sensor can regard

the transformed Cartesian measurement in Eq. (4.6) or (4.7) as the direct measurement,

which corresponds to a linear mapping from states to measurements.

On the other hand, when the state transition matrix contains elements of the current

state, as in the CT model, the system dynamics are nonlinear. As such, extended Kalman
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filters (EKFs) can be used to approximate the nonlinearity. To elaborate, when the state

transition and measurement models are not linear functions of the state but differentiable

functions

xk = f(xk−1) +wk (4.8)

zk = h(xk) + vk, (4.9)

where w and v are again the process and measurement noises, the functions f and h can be

used to compute the predicted state from the previous estimate and measurement respec-

tively, but they cannot be applied to the covariances directly. Instead, their Jacobians are

used to compute the state transition and measurement matrices2:

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1

(4.10)

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

. (4.11)

At each time step, the Jacobians are evaluated with current states. These matrices can then

be used in the Kalman filter equations. This process essentially linearizes the non-linear

function around the current estimate.

Interacting Multiple Models

In many practical scenarios, the system characteristics can change over time. As an example,

a fighter jet, which normally proceeds with stable flight dynamics, might commence rapid

maneuvers when approached by a hostile missile. Such varying system characteristics are not

easily described by just one model, thereby calling for a multiple-model approach. A multiple

model (MM) provides a versatile tool for adapting the state estimation process in dynamic

systems where a target can undergo different types of motion at different times. In particular,

2These are used for the first-order EKF. Higher order EKFs may be obtained by retaining more terms of
the Taylor series expansions.
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the interacting multiple-model (IMM) estimator is considered one of the most cost-effective

dynamic MM algorithms. In IMM, at any time, the system state is assumed to be in

a number of possible modes that are described by their probabilities. The structure of the

system and/or the statistics of the noises can be different from mode to mode. The transition

probabilities between modes from one estimation epoch to the next are assumed to follow

a Markov chain. For each mode, the underlying filtering process is performed as described

earlier, with the addition of evaluating the probabilities of different modes and interacting

and mixing all the modes to generate an overall state estimate and error covariance. The

equations and a detailed discussion of design parameters and implementation issues can be

found in [14].

In our two-sensor settings, since KF and EKF can be used for CWNA and CT models

respectively as described above, we consider Sensor 1 uses an IMM estimator that contains

two modes, namely, KF and EKF, with appropriately selected noise levels. On the other

hand, in [14], an argument has been made that during maneuvers, if the number of samples

are relatively small (say, less than 10), a stand-alone KF with high process noise levels

can be used for the maneuver. As such, we consider a heterogenous sensor setting where

Sensor 2 uses a KF throughout its filtering process; in other words, it doesn’t distinguish

different types of motion. For both sensors, state estimates x̂ and the associated error

covariances P are generated periodically and sent out, in a timely fashion, to the remote

fusion center. Besides, when the fusion center combines the two estimates together according

to the algorithms to be presented below, the component estimates should be of the same

dimension; hence, at the time of fusion, the fusion center can simply drop the turn rate

component from Sensor 1.

4.2.4 Fusers

It is a well known fact that the common process noise in measuring the motion of any

target results in correlation among estimates generated by multiple sensors. The error cross-
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covariance is the term that describes this spatial correlation. However, it is in general a

very challenging task to derive the exact cross-covariance terms in practice. We consider

two types of fusers where the fused estimate can be obtained directly in closed forms with

no cross-covariance calculation needed.

Track-to-Track Fuser without Cross-Covariance

In tracking applications, the track-to-track fuser (T2TF) is a linear fuser that is optimal in

the linear minimum mean-square error (LMMSE) sense. In general, the fused state estimate

x̂F and its error covariance PF are defined for two sensors [14] as:

x̂F = x̂1 + (P1 −P12)(P1 +P2 −P12 −P21)
−1(x̂2 − x̂1) (4.12)

PF = P1 − (P1 −P12)(P1 +P2 −P12 −P21)
−1(P1 −P21) (4.13)

where x̂i and Pi are the state estimate and error covariance from sensor i, respectively,

and Pij = PT
ji is the error cross-covariance between sensors i and j. However, when the

sensor errors are correlated and the cross-covariance is unavailable, one may assume that

the cross-covariance is zero in order to apply this linear fuser, even though the result will be

suboptimal. The fuser would then be reduced to a simple convex combination of the state

estimates:

PF = (P−1
1 +P−1

2 )−1 (4.14)

x̂F = PF (P
−1
1 x̂1 +P−1

2 x̂2) (4.15)

Fast Covariance Intersection (CI) Algorithm

Another sensor fusion method is the covariance intersection (CI) algorithm. The intuition

behind this approach comes from a geometric interpretation of the problem. If one were to

plot the covariance ellipses for PF (defined as the locus of points {y : yTP−1
F y = c} where

86



c is some constant), the ellipses of PF are found to always lie within the intersection of the

ellipses for P1 and P2 for all possible choices of P12 [36]. The intersection is characterized

by the convex combination of sensor covariances:

PF = (ω1P
−1
1 + ω2P

−1
2 )−1 (4.16)

x̂F = PF

(
ω1P

−1
1 x̂1 + ω2P

−1
2 x̂2

)
, ω1 + ω2 = 1 (4.17)

where ω1, ω2 > 0 are weights to be determined (e.g., by minimizing the determinant of PF ).

[79] proposed a fast CI algorithm where the weights are found based on an information-

theoretic criterion so that ω1 and ω2 can be solved for analytically as follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
(4.18)

whereD(pA, pB) is the Kullback-Leibler (KL) divergence from pA(·) to pB(·), and ω2 = 1−ω1.

When the underlying estimates are Gaussian, the KL divergence can be computed as:

D(pi, pj) =
1

2

[
ln
|Pj|
|Pi| + dT

XP
−1
j dX + Tr(PiP

−1
j )− k

]
(4.19)

where dX = x̂i − x̂j, k is the dimensionality of x̂i, and | · | denotes the determinant. This

fast-CI algorithm will be used for a quantitative comparison against the above T2TF with

unavailable cross-covariances.

4.2.5 Target Trajectory

The initial state of the target in Cartesian coordinates (with the position in meters and

velocity in m/s) is set to be [82] x(0) = [x(0) ẋ(0) y(0) ẏ(0)]T = [0 0 20000 250]T .

At t = 60 s, the test target starts to take a left turn at a turn rate of 2◦/s for 30 s, and

then continues straight until t = 150 s. The sampling rate of the sensors is once every two

seconds, i.e., T = 2 s.
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4.3 Prediction and Retrodiction by the Fusion Center

4.3.1 Prediction by the Fusion Center

We consider prediction performed not by a sensor during its regular recursive filtering, but

by the fusion center. The purpose is largely different even though the two may share the

same “prediction” equations. Since the fusion center does not have access to measurements,

it needs the sensors to communicate their processed state estimates for subsequent fusion.

However, due to severe loss and delay, the desired state estimates are not always available; in

this case, the fusion center may simply interpolate the unavailable estimates by plugging in

its own predicted estimates from earlier ones, using known or learned state evolution models.

Hence, the prediction by the fusion center is used to counteract the effect of communication

constraints. Due to the system uncertainty characterized by process noise, prediction alone

often results in higher estimation errors compared to the estimates generated and sent by

the sensors (this is the very reason measurements have to be taken regularly at the sensors

in order to maintain desired tracking performance). Nevertheless, to achieve the fusion gain,

at the fusion center, often it is still preferable to use predicted estimates for a sensor rather

than discard the sensor’s potential information altogether.

4.3.2 Retrodiction by the Fusion Center

To recall, estimation of a target state at a particular time based on data collected beyond

that time is called retrodiction or smoothing. Retrodiction improves the accuracy of the

estimates, thanks to the use of more information, at the cost of extra delay. The vast majority

of the existing literature studies have considered retrodiction only from the perspective of

an individual sensor; the effect of retrodiction in the context of state fusion has been largely

unexplored. Since retrodiction calls for the availability of subsequent data to the ones of

interest, the inherent link delay over a long-haul network entails that the fusion center can

exploit the opportunities for potential retrodiction to improve the accuracy of the fused
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estimate. Conventionally, an estimate is retrodicted only when it actually arrives as in many

OOSM-related studies [58,83,84]. However, in our design, the fusion center opportunistically

interpolates the missing estimates – that is, to “fill in the blanks” – from prior estimates

using prediction, and subsequent ones with retrodiction. Of course, an available estimate can

be retrodicted using its following estimates too – as in the conventional use of retrodiction

– as long as the associated fused estimate has not been finalized by the fusion center. This

has the potential benefit to speed up the process of finalizing the global estimates – since

the fusion center does not have to wait for the actual missing estimates to finally arrive –

and hence can reduce the chance of missing the reporting deadline.

4.3.3 Selection of Prediction and Retrodiction Algorithms with

Multiple Models

In the context of possibly heterogenous and multiple system models utilized by individual

sensors, the fusion center faces the question of which model(s) to use when deriving its

predicted/retrodicted values. As a matter of fact, a sensor is not likely to send every filtering

parameter update to the fusion center (considering the complexity of IMM estimators);

therefore, the fusion center can only use its best guess, or out of practicality, use simplified

models to interpolate the missing values. Although data thereby generated may not match

the quality level of that of the sensor originals, they might still provide enough information

to drive up the fusion gain.

We consider the fusion center uses a linear form of prediction and retrodiction (i.e., KF-

based) for simplicity, both of which can be easily computed with closed-form expressions. In

particular, the fixed-interval Rauch-Tung-Striebel (RTS) retrodiction algorithm is adopted

that can help fill in missing data as well as update existing ones using subsequent arrivals.
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4.4 Staggered Estimation: An Overview

In this chapter, we consider staggered estimation that exploits the temporal relationship

between adjacent estimates in order to improve the estimation performance. To formulate

the estimation and fusion process, we consider that a stream of globally fused estimates are

reported at a regular time interval of T , which also coincides with the estimation interval at

the sensors as well. Suppose the (continuous) time of interest is nT , where n is a positive

integer. Given the stationarity of the above interval T , in subsequent analysis, the time

instant will also be conveniently referred to as the time (step) n. Based on the estimates

sent by the sensors, the fusion center can perform prediction and retrodiction – if necessary

– to form component state estimates for fusion. For a given sensor, depending on what

estimates sent from this sensor have been received, the fusion center may report one of the

following types of estimates, corresponding to time n:

a. x̂n|n, the “default” estimate sent from the sensor;

b. x̂n− , the predicted estimate;

c. x̂n−|n+1, the predicted & retrodicted estimate; and

d. x̂n+|n+1, the retrodicted estimate.

Note that similar notations were first introduced in Section 3.4 along with their ex-

planations. The conventional prediction and retrodiction techniques discussed therein are

schematically shown in Fig. 4.1(a), where the estimation interval T and its integer multiples

serve as the basic time units for prediction and retrodiction. We conveniently name this as

inter-state prediction and retrodiction.

Instead of forming the reports ideally at the same time instants as those when the sensors

generate the estimates, we consider staggered scheduling shown in Fig. 4.1(b). With this

method, a sensor is scheduled to generate its estimates following the same estimation interval

T but at time instants different from the ones at which the fusion center creates reports. As
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Figure 4.1: Prediction and retrodiction: The estimate at time n is to be obtained. (a) Conven-
tionally, prediction and retrodiction occur over integer multiples of the estimation interval; (b) in
staggered scheduling, prediction and retrodiction can be carried out over a fraction of the estimation
interval.

a result, we allow both the prediction and retrodiction to be performed over a period of time

that is a fraction of the estimation interval T . Hence, we have the intra-state prediction and

retrodiction3.

In Fig. 4.2, an example consisting of three different estimation schedules is shown. In

the figure, the red dotted lines denote the common time instants of interest for the fusion

center (i.e., the time instants whose state estimates are to be finalized and reported) and

the green bars indicate the times where the estimates are generated. In (a), the standard

3Of course, the extension of this intra-state filtering can be realized by superimposing an estimation
interval (and its integer multiples) on top of the fractional period τ .
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estimation schedule is shown, where the estimation time at the sensors and fusion time at

the fusion center always coincide4. In (b), an estimate with time-stamp (n − 0.2)T is sent

out by the sensor. Upon initial reception, the fusion center can perform a 0.2-step prediction

to form the estimate report for time instant nT ; next, if the subsequent estimate from the

same sensor – now with time-stamp (n+0.8)T – arrives before the reporting deadline (which

is assumed to be one estimation interval T here), the fusion center can further perform a

0.8-step retrodiction for an improvement in accuracy over the previous predicted estimate.

On the other hand, the estimation time in (c) always lags its preceding fusion time by

0.2T , resulting in a 0.8-step prediction and a 0.2-step retrodiction when both estimates are

available. In the figure, τ (tau) values are shown in the figure as the gap – normalized to the

estimation interval T – between the fusion time and the time stamp of the latest generated

estimate. In all, when a sensor does not directly report its estimates for the time instants of

interest but expects the fusion center to generate the corresponding estimates on its own for

further fusion, we consider the scheduling as both “asynchronous” – from the perspective of

the fusion center – and “staggered”.

Albeit conceptually simple, the effects of this staggered scheduling on estimation and

fusion performance are not readily predictable. Next we investigate its potential benefits

for both one-sensor and two-sensor scenarios under variable communication loss and delay

conditions during the straight-line motion.

4.5 Staggered Estimation and Fusion

In this section, we carry out a study of the staggered estimation and fusion under a simplified

single-model motion scenario. To achieve this, we relax the target and sensor measurement

settings as follows. We consider only the straight-line segment – as described by the CWNA

model – in one generic coordinate ξ with the estimation interval set to be T = 1 s and the

4To avoid confusion, the term “fusion time” refers to the time of interest whose state estimate needs to
be generated by the fusion center; whereas “reporting time” refers to the time when final fusion occurs.
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Figure 4.2: Staggered estimation scheduling: (a) the standard schedule; (b) staggered estimation,
where the sensor takes measurements 0.2T earlier than the subsequent fusion time; (c) staggered
estimation, where the sensor takes measurements 0.2T later than the preceding fusion time. The
τ values are shown as the gap between the fusion time and the time stamp of the latest generated
estimate.

noise PSD q̃ξ = 1 m2/s3. The sensor measurement model has been simplified in which the

sensor directly measures the Cartesian position of the target and hence the measurement

zk = Hxk + vk is available, where H = [1 0] is the measurement matrix, and the Gaussian

measurement noise v has autocorrelation E[vkvj] = Rδkj � σ2
vδkj, where δ(·) is the Kronecker

delta function. Both sensors have a σv = 20 m. Doing such a case study would allow us to

focus on the effect of staggered scheduling on the estimation and fusion performance in a

simplified setting, without considering the impact of such factors as target model uncertainty

and sensor heterogeneity, among others.
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4.5.1 Estimation Performance with One Sensor

We first explore the effect of staggered scheduling on one-sensor estimation. Had the commu-

nication between the sensor and the fusion center been perfect with the standard synchronous

scheduling being used, the fusion center would simply “take over” the sensor state estimates.

With communication loss and delay, however, the fusion center may have a different view

of the state evolution from that of the sensor due to the use of prediction and retrodiction.

The link loss and delay profiles have been introduced in Chapter 3. To recap, each message

is lost with probability p that is independent of other messages. And the arrival delay of

each message is modeled by a shifted exponential random variable with fixed initial delay TI

and mean random delay μ beyond TI . We analyze the probabilities of generating different

types of estimates by a certain deadline and show the impact of scheduling on estimation

performance.

Probabilities for Obtaining Different Types of Estimates

We first consider the specific condition under which a certain number of retrodiction rounds

can potentially take place. Suppose the interval between the time of interest and the pre-

ceding sensor estimation time is τ , where 0 ≤ τ < T ; in other words, the time stamp of the

preceding sensor estimate is nT − τ . Suppose the reporting deadline for time nT is nT +D

(i.e., with a maximum lag D); then in order to possibly perform at least one round of retro-

diction, an estimate must be generated after time nT and arrive at the fusion center by

nT +D. Since the time stamp of the estimate following time nT is (n+1)T − τ , accounting

for the fixed initial delay TI , the earliest arrival time (n + 1)T − τ + TI should be no later

than the deadline nT +D; on the other hand, to have only up to one round of retrodiction,

the estimate generated at time (n + 2)T − τ should arrive later than nT + D. Combining

both constraints, we have the condition for both the reporting lag D and the scheduling

lag τ with up to one round of retrodiction. In fact, this result can be easily extended to

multi-round retrodiction: To have up to l (l ≥ 1) rounds of retrodiction, the reporting lag
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D should satisfy the following condition:

lT + TI − τ ≤ D < (l + 1)T + TI − τ. (4.20)

Without loss of generality, in the following analysis, T and D are given as 1 s and 1.5 s

respectively, with the common link communication and pre-processing delay TI set as 0.5 s

(and μ = 0.3 s). This is the situation where in the standard scheduling scheme, the deadline

for reporting one estimate happens to be the very earliest time the subsequent estimate

arrives, namely, D = T + TI . Also, it is easy to verify that l = 1.

Given the link statistics introduced earlier, the probability that a sensor estimate is

successfully received by the fusion center within time t since being generated is (1− p)F (t).

It is easy to verify that the amounts of time it takes for the two estimates, one immediately

preceding nT and the other following it, to be delivered to the fusion center before the

deadline, are D+ τ and D−T + τ , respectively. As such, we have the following probabilities

of using different types of estimates by the deadline:

a. x̂n|n−τ : (1− p)F (D + τ)(1− (1− p)F (D − T + τ));

b. x̂n− : (1− (1− p)F (D + τ))(1− (1− p)F (D − T + τ));

c. x̂n−|n+1−τ : (1− (1− p)F (D + τ))(1− p)F (D − T + τ); and

d. x̂n+|n+1−τ : (1− p)2F (D + τ)F (D − T + τ).

Similar notations for these types of estimates were first introduced in Sec. 4.4, now with

the exception that the staggered interval τ is added to the subscripts to reflect the time

difference. Note that when τ = 0, the results are simply reduced to those under standard

scheduling. In the cases b) and c), the minus signs denote that the estimate generated at

n− τ is not available at the fusion center; as such, these probabilities have also incorporated

the scenarios where prediction over a longer time span by the fusion center has taken place.
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Figure 4.3: Probabilities of using different
types of estimates at the deadline with vari-
able staggered estimation intervals τ , where
p = 0.25, T = 1, and D = 1.5 s.
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Figure 4.4: Steady-state position estimate
mean-square-error (MSE) performance with
variable staggered interval τ values

Given a pre-determined set of estimation interval T and deadline D values, the question

of interest arises: how would different τ values impact the estimation performance at the

fusion center? In Fig. 4.3, the probabilities of eventually using different types of estimates

by the fusion center are plotted for a loss rate of p = 0.25. As can be easily seen in the figure,

as the staggered interval τ moves from 0 all the way up to T , the probability of obtaining

x̂n+|n+1−τ goes up while that of using the predicted state x̂n− decreases. Among the four,

these two represent the best and worst estimates respectively in terms of the estimation

error. Increasing τ would then seem to improve the estimation performance when only these

two types of estimates are considered. However, the other two types of estimate, x̂n|n−τ and

x̂n−|n+1−τ , change in reverse directions too as τ shifts, and it is not immediately clear which

of the two has overall better accuracy performance [54].

However, the above analysis does not capture the actual behavior of the estimate to

be finalized by the fusion center, since intra-state prediction and/or retrodiction has to

be applied when τ shifts away from zero, thereby affecting the behavior of all types of

estimates. In what follows, we explore the error profiles with staggered scheduling under

perfect communications. Then we will combine them with the above probabilistic analysis

to derive the approximate estimation error performance.
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4.5.2 Quantitative Results

Approximate Estimation Error

The fusion center applies the Rauch-Tung-Streibel (RTS) retrodiction algorithm [73] to ob-

tain the retrodicted state estimates. With the previously established models, the steady-state

behavior [73] of the sensor estimate can be found analytically via Ricatti equation recursion

or more conveniently from simulations. In Fig. 4.4, the steady-state error performance of

different types of estimates under variable τ values is displayed. Again, with our parameter

setup, only the sensor estimates generated at n+1−τ , if available, can be used by the fusion

center for retrodiction. Another assumption used in generating the plots is that no bursty

loss is present; that is, the number of prediction steps is constrained strictly under two. For

example, in Cases b) and c) in the last subsection, the minus sign would mean that only the

immediately preceding estimate is not received, but not the ones before.

From the plots, as τ gradually shifts away from 0, all types of estimates experience

increasing steady-state estimation errors. Recall that under the steady-state condition, a

sensor estimate has the same theoretical MSE guarantee regardless of its time of origin.

Suppose two adjacent sensor estimates are successfully delivered to the fusion center (as in

the case where x̂n+|n+1−τ can be obtained); as τ increases, the intra-state prediction step

size is lengthened and retrodiction step size shortened, resulting in an increased estimation

error. This relationship holds true for all other cases as well. Another interesting observa-

tion is that the two cases with x̂n+|n+1−τ and x̂n−|n+1−τ have nearly identical steady-state

performance. This means that had the communications been perfect, the frequency that a

sensor communicates its estimates (but with the same estimation frequency on tap) can be

reduced by half without causing noticeable performance degradation.

Finally, we calculate the expected estimation MSE performance as the probabilistic com-

bination of steady-state MSEs of different types of estimates. More specifically, the expected

MSE with a certain τ choice is computed as the summation of the probabilities of obtain-
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Figure 4.6: Actual position estimate MSE
performance with variable staggered interval τ
and loss rate p values

ing all four types of estimates, such as those shown in Fig. 4.3, times the corresponding

steady-state position MSEs found in Fig. 4.4. This result is “approximate” at best in that

the probabilities themselves may have included the cases where a string of losses occur. The

results are plotted in Fig. 4.5 with three different link-level loss rates, namely 0%, 25%, and

50%. Interestingly, across all cases, the estimation errors decrease initially as τ shifts away

from zero, and then increases. For validation of the results, however, we also need to test

the actual estimation error performance via Monte-Carlo simulations.

Actual Estimation Error Performance

The same set of parameters are used to generate the actual position estimate MSE perfor-

mance as shown in Fig. 4.6. Comparing it with Fig. 4.5, we can observe the following:

First, the above approximation by probabilistic combination becomes increasingly erroneous

as the loss rate increases. When there is no or little loss, the off-line probabilistic values serve

as a good approximation of the actual error profile; however, as p increases, bursty losses

become more commonplace, which was not reflected in the steady-state MSE values in Fig.

4.4, resulting in overly optimistic approximation when the loss becomes severe (as in the

p = 0.5 case in the figure). Also the minimum estimation error is somewhat skewed in the
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approximation. Nevertheless, a common time across cases where the minimum estimation

errors can be found happens to be around τ = 0.4 s. Here, at zero loss rate, the standard

scheduling results in a nearly 30% higher estimation MSE compared to the value obtained

at τ = 0.4 s; even at a 25% loss rate, standard scheduling still yields 20% more errors com-

pared to its staggered counterpart. As the loss becomes even higher, the improvement from

staggered scheduling in terms of the percentage of error reduction becomes less prominent

as the fusion center encounters more difficulties receiving estimates regardless of their time

of origin. But overall, the error reduction performance showcases the major advantage of

scheduling sensor estimation activity in a staggered manner.

4.5.3 Estimation and Fusion Performance with Two Sensors

Two sensors are assumed to have the same measurement noise profile. In this case, we need

to consider all the combinations of different staggered intervals for both sensors – relative

to the reporting time instants at the fusion center – denoted as τ1 and τ2, respectively.

Probabilistic analysis similar to that in the last section can be carried out for both sensors.

However, our focus here is to analyze the Monte Carlo simulation results as shown in Figs.

4.7 and 4.8, in which the position estimate MSEs for the linear T2TF and the fast-CI fuser

are plotted respectively.

From the figures, all generated three-dimensional surfaces resemble a sheet with downward-

curved center portions, the extension of the earlier one-sensor estimation performance. We

observe that for nearly all cases, the fast-CI fuser outputs estimates that are of slightly

worse quality than those generated by the simple linear fuser5. Also the fast-CI fuser is

more sensitive to the changes in the loss rate. The increase in estimation MSE with a more

lossy link is more dramatic in the CI fuser. Another common feature across the cases is

that the standard scheduling τ1 = τ2 = 0 happens to result in the highest estimation error.

Comparing the results here to those in the one-sensor case shown in Fig. 4.6, we can see

5Note that if P1 = P2, then ω1 = ω2 = 0.5, and the resulting fused estimate will be equivalent to that
from Eq. (4.15) but with an inflated error covariance matrix (increased by a factor of 2).

99



(a)

0
0.5

1

0

0.5

1
80

100

120

140

τ
1
 (s)τ

2
 (s)

po
si

tio
n 

er
ro

r 
M

S
E

 (
m

2 )

90

95

100

105

110

115

120

(b)

0
0.5

1

0

0.5

1
100

150

200

τ
1
 (s)τ

2
 (s)

po
si

tio
n 

er
ro

r 
M

S
E

 (
m

2 )

120

130

140

150

160

(c)

0
0.5

1

0

0.5

1
150

200

250

300

τ
1
 (s)τ

2
 (s)

po
si

tio
n 

er
ro

r 
M

S
E

 (
m

2 )

200

220

240

260

Figure 4.7: Actual position estimate MSE performance with two-sensor T2TF fusion and variable
staggered interval τ and loss rate p values: (a) p = 0; (b) p = 0.25; (c) p = 0.5

that both fuser outputs have MSEs that are more than half of those values with one sensor

only, reflecting the effect of the common process noise and cross-covariance.

Although not easily discernible in the figures here, a more “microscopic” examination of

the numerical results reveals the effect of cross-covariance in staggered scheduling design.

Individually, at τ = 0.4 s, the fusion center can expect the least estimation error from either

of the two sensors. However, the case where τ1 = τ2 = 0.4 s does not achieve the best fuser

outputs; another point close by does. This observation can be construed as the reduction

of cross-covariance by staggering the estimation time across sensors. If the two sensors take

samples at the same time (even at optimal τ = 0.4 s), the cross-covariance is the highest; as

the time separation in between increases, so does the reduction of correlation. This reduction
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Figure 4.8: Actual position estimate MSE performance with two-sensor fast-CI fusion and vari-
able staggered interval τ and loss rate p values: (a) p = 0; (b) p = 0.25; (c) p = 0.5

of cross-covariance over time was also observed in one numerical study [54] and is especially

of interest for further investigation.

4.6 Performance Evaluation

In this section we evaluate the impact of variable staggered schedules on estimation and fusion

performance in tracking a target undergoing a more complex set of motions as described in

Section 4.2.
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4.6.1 Sensor Behaviors

Whereas Sensor 1 uses an IMM estimator consisting of KF and EKF components whose

parameters match the noise profiles of the CWNA and CT models respectively, Sensor 2

uses a KF with a much higher noise density level throughout to account for the uncertainty

in the target trajectory. In Fig. 4.9(a), we observe the following behaviors of the individual

sensors: The IMM estimator at Sensor 1 yields more accurate estimates – compared to the

KF estimator at Sensor 2 – initially during the straight-line motion; but after the turn begins

at t = 60 s, its error gradually increases and at around t = 80 s, shoots up rapidly till after

the maneuver ends at t = 90 s. Afterward, the error decreases, less precipitately compared

to the previous phase, and doesn’t fall back to the pre-maneuver level until around t = 140

s. The relatively poor performance of the IMM estimator during and after maneuver in

this case is due mainly to the selection of parameters for component modes. On the other

hand, the error of the KF filter output at Sensor 2 remains stable throughout the process,

higher than that of the IMM during the initial straight-line motion, but much lower as the

other experiences inflated errors during and after the turn. Such sensor heterogeneity will

be reflected in the effect of sensing scheduling on fusion as demonstrated below.

4.6.2 Staggered Sensing Scheduling without Sensor Bias

We now shift our focus to the fusion performance. Again in Fig. 4.9(a), the performance of

the T2TF and CI fusers under conventional scheduling is shown for both p = 0 and p = 0.5

cases. Note the selection of fusers or different link profiles do not change the sensor estimation

performance. As has been observed in the case study from the previous section, the CI fuser

yields somewhat higher errors during the initial straight-line motion; however, during and

shortly after the turn, the T2TF experiences higher errors than its CI counterpart. Also of

note is that when loss is severe enough, say, when p = 0.5, for a short period of time after

the turn is initiated, between t = 80 s and 90 s, both fusers yield even worse performance

than the individual sensors. In this case, the CI fuser is able to pull back from its elevated
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errors much faster than the T2TF, as can be observed by the somewhat narrower error peak

around t = 90 s.

Next we consider staggered scheduling that spans different choices of τ1 and τ2 values. As

there are more variables in this case, for better visualization, we use combinations of a few

different values of both τ1 and τ2 and plot the performance under these settings in separate

figures. In Fig. 4.9, starting from (a) the standard scheduling, where τ1 = τ2 = 0, τ1 and τ2

are incremented by 0.5 s from top to bottom, and left to right, respectively. The deadline

is chosen to be D = 2 s. From the plots, while the improvements during the straight-line

segments are not very obvious, we can easily observe that when τ1 is 1 s, regardless of the

τ2 choices, the peak levels of both T2TF and CI drop significantly, especially for the p = 0.5

case. For example, the position RMSE is about 20% less when τ1 = 1 s compared to that

following the default scheduling. This demonstrates by staggering the estimation times of

the more error-prone Sensor 1, the fusion center can reduce the uncertainty in target motion

by applying intra-state prediction and retrodiction. In contrast, different choices of τ2 don’t

seem to affect the fusion performance as much. Besides, the improvement at the beginning

of the maneuver, if any, is rather limited, since even using retrodiction doesn’t help much

during the phase of inflating errors at Sensor 1.

Next in Fig. 4.10, the same set of plots are shown, with the exception that the deadline

is decreased to one half of the previous value, now set at 1 s. The reduced deadline ap-

parently reduces the probability of receiving a sensor estimate at the fusion time; but more

importantly, it also changes the dynamics of the staggered estimation process by reducing

the retrodiction opportunities and increasing the chances of using prediction only. From the

plots, it’s easily observed that the previous τ1 = 1 s cases now experience even higher errors

than the standard scheduling during and after the maneuver, so do the cases where τ1 = 1.5

s. Under these settings, the prediction steps are long, and due to the short deadline, there is

not enough time for the subsequent sensor estimate to arrive, thereby greatly reducing the

chances for applying retrodiction.
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4.6.3 Staggered Sensing Scheduling with Sensor Bias

Next we study the case where the IMM estimator at Sensor 1 experiences measurement

bias. In Fig. 4.11, the plots are shown for all above staggered schedules with a consistent

positive bias term where the range and azimuth angle measurement bias values are σr/
√
5

and σa/
√
20 respectively. From the plots, the performances with staggered scheduling largely

follow the trends discovered earlier in Fig. 4.9 and cases with τ1 = 1 s yield improved tracking

accuracy levels compared to others. In addition, the performance gap between the T2TF and

CI fusers following the maneuver becomes more pronounced, especially for the case where

p = 0.5. This demonstrates that to some extent, the CI fuser is more tolerant of bias than

its T2TF counterpart as the distances between the estimates (which reflects the bias) also

appear in the weights which can somewhat mitigate the effect of more biased estimates.

Finally, we consider an increasing measurement bias occurs at Sensor 1, where the range

and azimuth biases rise steadily from 0 to 3σr/
√
5 and 3σa/

√
20 respectively toward the end

of the 150-second trajectory. From the plots in Fig. 4.12, the estimates from Sensor 1 are

now even worse than before, as the errors never return to the pre-maneuver level toward the

end of the trajectory. However, both fusers are able to retain similar tracking performance as

in the previous steady-bias case, even when only half of the original sensor data are available.

4.7 Conclusion

.

In this chapter, we have studied how the fusion center can exploit staggered scheduling

and opportunistically apply intra-state prediction and retrodiction to improve the fusion

performance based on link-level loss and delay conditions. Tracking performances of a ma-

neuvering target under variable network and sensor profiles as well as sensing schedules

demonstrate the major potentials of such staggered estimation in reducing the tracking er-

rors in the presence of communication and computation constraints.
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Figure 4.9: Position estimate RMSE performance with variable staggered intervals. Deadline
is 2 s. From top left (τ1 = τ2 = 0), τ1 and τ2 are increased by 0.5 s along each column and row
respectively (e.g., in (g), τ1 = 0.5 s and τ2 = 1 s).
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Figure 4.10: Position estimate RMSE performance with variable staggered intervals. Deadline
is 1 s. From top left (τ1 = τ2 = 0), τ1 and τ2 are increased by 0.5 s along each column and row
respectively.
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Figure 4.11: Position estimate RMSE performance with variable staggered intervals and steady
measurement bias at Sensor 1 (IMM). Deadline is 2 s. From top left (τ1 = τ2 = 0), τ1 and τ2 are
increased by 0.5 s along each column and row respectively.
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Figure 4.12: Position estimate RMSE performance with variable staggered intervals and increas-
ing measurement bias at Sensor 1 (IMM). Deadline is 2 s. From top left (τ1 = τ2 = 0), τ1 and τ2
are increased by 0.5 s along each column and row respectively.
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Chapter 5

Information Feedback and Fusion

5.1 Introduction

Despite all the recent research efforts in networked sensing, one aspect of state estimation

and fusion in a communication-constrained environment has not received enough attention,

namely, information feedback from the fusion center to the individual sensors. Feedback is

central to closed-loop control-based design [40], where among others, system stability and

convergence is one of the major benefits. In the literature, a number of studies have been

conducted in the domain of wireless sensor networks that pertain to the role of feedback:

In [8] and [16], for instance, feedback is studied from an information-theoretic perspective,

which is used to mitigate the effect of the fading channels; in [74], on the other hand, a

control-theoretical calibration algorithm is developed where the feedback is used to enhance

signal detection performance in a surveillance network. Despite its importance, there have

been very limited studies on the effect of information feedback in estimation and fusion

performance. Whereas [76] has considered different information configurations, the study is

limited in scope as only feedback to steady-state sensors under largely ideal communication or

computation conditions is studied. In the simplest form without communication constraints,

the global estimates and associated error covariances generated by the FC are always sent
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back to the individual sensors so that the global values can supersede the local counterparts

[14].

The main goal of this chapter is to investigate the effect of feedback on estimation/fusion

in tracking different types of target trajectories under variable communication loss/delay

conditions and sensor bias profiles. Conventionally the fusion center simply serves as the

information collector and integrator. As the fusion center is expected to output more ac-

curate estimates under normal circumstances, we are interested in exploring when feedback

of a “better” estimate can improve – and at other times worsen – the estimation/fusion

performance with or without the presence of link-level communication constraints. Our ma-

jor contributions include probabilistic analysis of feedback message delivery within a given

time-frame and its projected effect on information fusion, and investigation, via simulation

studies, of the fusion performance in a two-sensor environment with variable link-level condi-

tions, sensor biases, as well as feedback configurations and schedules. Two types of fusers are

studied and their performances under variable conditions are compared in various settings.

The system model descriptions, including those of target and measurement models, ways to

generate the state estimates at the sensors, and the fusion algorithms at the fusion center,

remain largely the same as those in Chapter 4 and are therefore not repeated here.

The remainder of this chapter is organized as follows: In Section 5.2, we explore the

effect of information feedback on sensor fusion – via the study of a simplified tracking case –

under the ideal assumption that the communication link is perfect. The results therein are

further developed in Section 5.3, where communication link loss, delay, and the combination

of the two come into play and the resulting impact of information degradation on feedback

and fusion is shown. Simulation results of a maneuvering target tracking application, whose

settings largely remain the same as those in Chapter 4 – are shown and analyzed in Section

5.4 before the chapter concludes in Section 5.5.
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FC FC FC

Sensor 1

Sensor 2

FC FC FC

Sensor 1

Sensor 2

(a) no feedback

(b) partial feedback

FC FC FC

Sensor 1

Sensor 2

(c) full feedback

Figure 5.1: Different information feedback mechanisms with two sensors: (a) no feedback; (b)
partial feedback (to Sensor 1 only); and (c) full feedback. The horizontal arrows indicate time
evolution, whereas the vertical ones indicate the direction of information flow.

5.2 Information Feedback and Its Impact on Fusion

without Communication Constraints

In this section, we consider information feedback under the assumption that the communi-

cation medium is ideal; that is, every message can be successfully delivered to its intended

destination with no or negligible delay. As such, we can single out the effect of instantaneous

feedback on information fusion, and focus on the effects of computation constraints in the

form of sensor estimation bias, which are demonstrated using a simplified tracking scenario.
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5.2.1 Feedback Configurations

In terms of to which sensor(s) a feedback message is being sent back, there exist different

feedback configurations. For ease of presentation, here we consider only a two-sensor fusion

scenario in this study, although the ideas can be similarly extended to multi-sensor fusion

as well. In Fig. 5.1, a two-sensor scenario is shown with the ovals representing sensor esti-

mates and rectangles fused estimates. In (a), as in conventional fusion settings, information

exchange is one-way, meaning that no information feedback from the fusion center to the

individual sensors exists. In contrast, the partial feedback to Sensor 1 in (b) and full feed-

back to both sensors in (c) serve to pass the global information generated by the fusion

center to the individual sensor(s). Upon receiving a feedback message (containing the fused

estimate and its associated error covariance matrix), a sensor substitutes the globally fused

information for its own, which is further used as the input for its next-step filtering. An

important note here is that under the ideal communication assumption, the fusion center

can immediately obtain a fused estimate; in addition, any feedback message can be received

by the sensor(s) with no delay1 as well, thereby affecting its subsequent filtering.

Having introduced different feedback configurations, next we investigate the effect of

information feedback with perfect communications. Variable sensor bias profiles that reflect

the computational constraints are studied. To achieve this, we somewhat relax the target

and sensor measurement settings as follows. We consider only the straight-line segment – as

described by the CWNA model – in one generic coordinate ξ with the estimation interval

set to be T = 1 s and the noise PSD q̃ξ = 1 m2/s3. The sensor measurement model has been

simplified in which the sensor directly measures the Cartesian position of the target and

hence the measurement zk = Hxk + vk is available, where H = [1 0] is the measurement

matrix, and the Gaussian measurement noise v has autocorrelation E[vkvj] = Rδkj � σ2
vδkj,

where δ(·) is the Kronecker delta function. Both sensors have σv = 20 m.

1Or at least this delay is negligible compared to the estimation interval.
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Figure 5.2: Position estimate RMSE performance under variable feedback configurations without
communication and computation constraints for (a) T2TF and (b) fast-CI fuser

5.2.2 Feedback with Unbiased Sensor Data

We first consider the case with both sensors yielding unbiased estimates. The effects on

position RMSE estimation performance of the sensors and on fusion performance at the

fusion center are shown in Fig. 5.2.

In (a), the performance of the track-to-track fuser (T2TF) is shown. The “n”, “p”, and

“f” in the labels stand for no, partial, and full feedback configurations, respectively. When

there is no feedback, the fused estimate has on average 25.5% less position RMSE than the

individual sensors, or equivalently, 44.5% less MSE after fusion2. On the other hand, in both

“p-FB” and “f-FB” cases, where a fused estimate x̂F and the associated error covariance PF

are sent back, the resulting fusion performance is poor, especially for the full feedback case

(with an RMSE approaching 200). It can be shown that this feedback mechanism, as in the

partial feedback (to Sensor 1) case, is equivalent to artificially reducing the P of the other

sensor (Sensor 2) to half of its value at each fusion step; in the full feedback case, P of both

sensors are artificially halved, thereby leading to rapid filter divergence and extremely large

fusion errors. As such, two modified feedback schemes are introduced, namely, “p-FB-e”

and “f-FB-e”, where “e” means that an elevated P – in this case, 2PF – is sent back by the

2Note that in the ideal case without error cross-covariance, this value would be 50%.
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fusion center along with the fused estimate x̂F .

Next in (b), the performance with the fast-CI fuser is similarly shown. The default

setup without feedback yields basically the same error performance as in the T2TF case.

Interestingly, this fuser doesn’t undergo the above-described filter divergence problem when

x̂F and PF are taken by the sensor(s). In addition, as has been observed in the T2TF case

(with elevated P), feedback effectively reduces the sensor estimation errors; however, the

fusion performance becomes slightly worse with partial feedback to sensor 1 and remains

nearly the same with full feedback to both sensors. This effect can be somewhat explained

by the geometric meaning of the CI fuser. Since the fusion result is described by an ellipse

that contains the intersection of the two ellipses corresponding to errors of both sensors

[14,77], when a fused estimate is initially sent back and supplants data of Sensor 1, the area

corresponding to the next-step fused estimate would at least contain the intersection of error

ellipses of Sensor 2 and the fusion center3, now an even larger ellipse, hence an increased

error. In the full-feedback case, the expanding and shrinking of ellipses occur simultaneously,

albeit in different directions, resulting in nearly identical intersection areas.

In the case with no information feedback, both sensors and the fusion center are in

their respective steady state, meaning statistically the estimation errors remain stable over

time. However, feedback subjects the sensor(s) taking the feedback messages and the fusion

center to their respective transient quasi-steady state, since once the feedback is withdrawn,

the errors will soon revert to their true steady-state values. It is to be understood that

all performances under feedback are non-steady state behaviors, since in the steady state,

as long as one sensor’s error performance is improved, the fused estimate will experience

reduced errors as well. From above, during the straight-line motion, with unbiased state

estimates, feedback serves to disrupt the steady state of the individual sensors; although the

sensor error performance is somewhat improved, there’s no immediate benefit in improving

the quality of fused estimates.

3In fact the updated Sensor 1 estimate would be described by a different ellipse than the fusion center’s
from the previous step. But the net effect is still a larger new intersection region.
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5.2.3 Feedback with Biased Sensor Data

Now we focus on the case where the estimate quality of one sensor (Sensor 1 in this study)

is compromised due to persistent measurement biases. In particular, a biased measurement

zbk at time k consists of both deterministic and random elements: zbk = Hxk + vk + bk + vbk,

where bk is the fixed bias and vbk is the random element such that E[(vbk)
2] = Rb and Rb is the

associated bias variance. To measure the effect of both deterministic and random biases, we

consider a joint bias term ṽk that satisfies ṽ2k = b2k + (vbk)
2 as the metric for bias. In our case

study example, bk is selected to be 96% of the average bias ṽk and the random bias term vbk

can be easily generated as well. An important point here is that Sensor 1 is not aware of its

measurement bias; therefore, P1 it generates is an over-optimistic description of its actual

estimation error.

Fig. 5.3 shows the RMSE performance under variable Sensor 1 measurement bias levels

and feedback configurations. It is interesting to note that the T2TF (with elevated error

covariances sent back) and fast-CI fusers yield the same performance and therefore they are

plotted together. As expected, the estimation error increases rapidly as the overall bias level

goes up. The resulting fused estimates also experience degraded error performance, which

after a certain point, becomes even worse than using Sensor 2 alone. With information

feedback from the fusion center, the error performance of Sensor 1, again, can be improved

significantly. Unlike the no-bias case, as the bias level increases, the fused estimates start to

possess a better quality when the feedback is sent back to Sensor 1 only (labeled as “p-FB-1”)

than in the no- or full-feedback case. This demonstrates the major benefit of information

feedback is to counteract sensor measurement/estimation bias. Of course, the premise is

that feedback has to be selectively sent to the right sensor (i.e., biased sensor); otherwise, it

can actually worsen the performance when feedback is sent to the better sensor (i.e., Sensor

2). The potential bias at any sensor can be possibly learned from historical data. Another

interesting observation is that although the fusion performance under different partial and

full feedback configurations varies, the effects on the individual sensors remain largely the
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mance under variable feedback configurations
and bias levels with fixed RTT = 1 s (both T2TF
and fast-CI fusers)

same; that is, the effect of feedback on Sensor 1 is independent of that on Sensor 2 and vice

versa.

5.3 Information Feedback with Communication Con-

straints

Now we turn our attention to information feedback in the presence of communication con-

straints. We assume that the sensors can take measurements and then in turn generate and

send out their state estimates in a timely manner; it is the imperfect communication link

between any sensor and the fusion center that may result in unavailable state estimates at

the latter. Doing so allows us to focus mainly on evaluating different information feedback

schemes at the fusion center that can potentially improve estimation/fusion performance.

5.3.1 Case Study: Fixed Delay

Before we consider feedback under the independent loss and shifted-exponential delay set-

tings used for the satellite-based links, we explore the simplified case in the last section one
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step further by adding in fixed communication delay in both directions. More specifically,

the RTT of the network is set to be a fixed 1 s, with each way (sensor→ FC or FC→ sensor)

taking up exactly 0.5 s. Following this setup, half a second after both sensor estimates are

sent out, the fusion center receives and combines them to obtain a fused estimate. Imme-

diately, this estimate is sent back to the desired sensor(s). Suppose all processing delays

are negligible, a sensor will receive the fused estimate one second after sending out its own.

Because the estimation interval is also 1 s, the sensor needs to update this fused estimate

(for the previous estimation epoch) to its current estimate. We now investigate how fusion

performance will change with such delayed feedback and response.

Fig. 5.4 shows the estimation and fusion performance under variable feedback configu-

rations and bias profiles as in the previous section. Compared to the results in Fig. 5.3,

changes in fusion performance after feedback become much less visible regardless of the bias

level. The main reason for this result is that in order to update the previous feedback mes-

sage forward by 1 s, the sensor has used its latest measurement – which is exactly the biased

one feedback attempts to improve. Another way to examine the effect is to count how many

times a biased measurement is used in the sensor estimation process. Without communica-

tion delay, it is used just once for generating a new estimate; with RTT = 1 s, however, it is

used an additional time to update the feedback message over time. As a result, the fusion

performance is hardly affected by feedback.

Alternatively, to bypass the biased measurement, Sensor 1 can use one-step prediction

to update the delayed feedback message. In Fig. 5.5, the performance comparison between

updates using measurements (“-meas”) and those using prediction (“-pred”) is shown under

different feedback configurations and a measurement bias = 20 m. Of interest to us is the

case where feedback is sent back to Sensor 1, which in turns uses prediction to forward the

feedback message by one second. It turns out this approach yields better fusion performance

than others, and the difference will become more apparent with even higher biases.
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Figure 5.5: Position estimate RMSE performance with variable feedback configurations and
update methods, measurement bias of Sensor 1 = 20 m, RTT = 1 s (both T2TF and fast-CI fusers)

5.3.2 Timing of Feedback with Random Loss and Delay

From the above case study, we noted that delayed response may reduce the potential of

the information feedback to mitigate the effect of sensor bias. We are primarily interested

in two aspects related to feedback when communication constraints exist: (1) when is the

feedback message sent back by the fusion center and what’s the quality of the message? (2)

when is the message received by the sensor and how will the message affect the quality of

its subsequent estimate(s)?

Suppose f1(·) and f2(·) represent the forward and reverse link delay pdf’s, with their

respective mean random delay being μ1 and μ2:

f1(t) =
1

μ1

exp
− t−TI

μ1 , f2(t) =
1

μ2

exp
− t−TI

μ2 , for t ≥ TI . (5.1)

Then the pdf h(·) of the total time for a feedback message to return to a sensor (starting

from the time when the estimate was originally sent out by the sensor to the fusion center)

can be found as

h(t) =
1

μ1 − μ2

(e
− t−2TI

μ1 − e
− t−2TI

μ2 ) =
μ1

μ1 − μ2

e
TI
μ1 f1(t)− μ2

μ1 − μ2

e
TI
μ2 f2(t), for t ≥ 2TI ,
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(5.2)

and the distribution function can be found by replacing f1(·) and f2(·) with their respective

cdf’s respectively. With this distribution, the probability mass function (pmf) of the time

when a subsequently updated estimate is sent out by the sensor can be obtained by taking

the ceiling of t, and in turn the pdf of the time when the updated message takes effect at

the fusion center by superimposing the above time on another forward-link communication

delay.

With the presence of communication loss, the feedback process becomes much less certain

in terms of the quality of any fused estimate to be sent back. If in the case of a lost message

from a sensor, the fusion center applies prediction from the previously available estimates for

that sensor, then a fused estimate at time k could be obtained from (1) available x̂1 and x̂2

at k; (2) available x̂1 but a predicted estimate from an earlier time for Sensor 2; (3) available

x̂2 but a predicted estimate from an earlier time for Sensor 1; and (4) predicted estimates

from (possibly different) earlier times for both sensors.

The above observations are easily made; however, the effect of communication delay and

loss should be examined more closely both at the fusion center and at the sensor to which

a message is fed back. The communication delay profile apparently determines the arrival

time of any feedback message, but the length of the sampling interval T and the epoch of

feedback time TF – that is, the time instant when the fusion center sends back its fused

estimate – also plays a role in the feedback performance. Suppose a reporting deadline D

is defined as the maximum allowable time for the fusion center to fuse the available sensor

estimates. Note that the fusion center can decide to feedback a message earlier than D, i.e.,

TF ≤ D. The question arises: what message is fed back?

In our two-sensor case, it can be derived that in a lossless scenario, an average amount

of E[max(T1, T2)] = TI + 3μ1/2 time is needed before the fusion center receives both sensor

estimates. However, if the fusion center restricts the fusion time within a certain range, the
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total amount of time it takes for the feedback message can be found to follow the distribution

Pr{t ≤ D} =
∫∫ D

0

f2(t|TF )g(TF )dtdTF , (5.3)

where f2(t|TF ) is the conditional pdf contingent on a certain TF value, and g(·) is the

prior pdf of the fusion/feedback time. If the fusion time is chosen uniformly from the

interval [TI , D − TI ] (accounting for the propagation delay), i.e., g(TF ) = 1/(D − 2TI) for

TF ∈ [TI , D − TI ] and 0 otherwise, then the distribution in Eq. (5.3) can be further derived

as

Pr{t ≤ D} = 1

D − 2TI

∫ D−TI

TI

(1− e
−D−TI−t

μ2 )dt = 1− μ2

D − 2TI

F2(D − TI), (5.4)

which is a further improvement compared to the distribution derived with Eq. (5.2) alone,

i.e., without the additional prior knowledge about TF .

On the other hand, with loss, the probability that the fusion center can obtain both

sensor estimates by the feedback time TF is (1−p)2F 2
1 (TF ) where p is the link-level loss rate.

With a longer TF , it is more likely that the fusion center has obtained a better estimate by

the feedback time, after fusing the latest arrivals from both sensors. However, the subsequent

reverse-link communication would have a delayed start, thereby affecting the arrival time of

the feedback message.

As in the previous case study, when the feedback message happens to arrive after an

estimation interval T , then the sensor would have to update this fused estimate (for the

previous estimation epoch) to its current time. To forward this feedback estimate by T ,

the sensor can recycle its latest measurement and re-generate a state estimate that is based

on the feedback message. Therefore, the newest measurement is used twice in the context

of feedback: (a) to generate a sensor state estimate as usual; and (b) to reincorporate a

delayed feedback message and to generate an updated state estimate. Unfortunately, the

new measurement is more likely to be another biased one that feedback attempts to improve
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in the first place. Using it twice is hence likely to counteract the goal of reducing sensor

bias. Alternatively, to bypass the biased measurement, the sensor can instead use one-step

prediction to update the delayed feedback message. However, as prediction alone often brings

higher estimation errors in the presence of model uncertainty, this will likely diminish the

gain from feedback as well.

More generally, when there’s no communication loss, the average amount of time it

takes for the feedback message to arrive is TI + μ2; with the initial period TF , the total

average latency between the time when the feedback message is received and the (prior)

time instant the message describes is TF + TI + μ2 ≤ 2TI + 3μ1/2 + μ2. If this duration

exceeds the estimation interval T , the sensor has already generated a new estimate before

the feedback message arrives; then it would have to either use prediction or measurements to

project this delayed fused estimate to its next pending estimate, with an average of no less

than �2TI+3μ1/2+μ2

T
� prediction steps, or alternatively, using each measurement �2TI+3μ1/2+μ2

T
�

times.

In summary, to reduce the potential negative effect of estimation error increase due to

prediction and/or measurement bias following delayed feedback, it is preferable to use a

smaller TF . However, with an early time cutoff, the fusion center is using less information

for fusion, which may have a more adverse effect on tracking performance as a decrease in

TF can easily reduce the probability of having new arrivals from both sensors. Accounting

for the timing factors analyzed above, although it is possible to probabilistically combine

the long-term error values for these different scenarios (such as those found in the simplified

example in the previous section) to approximate the errors after fusion, in what follows, we

will mainly resort to simulation studies for an evaluation of the tracking performance of a

maneuvering target with different communication statistics, sensor measurement profiles as

well as feedback configurations and schedules.
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5.4 Performance Evaluation

In this section we evaluate the impact of variable feedback schedules on estimation and

fusion performance in tracking a target undergoing a more complex set of motions again

as described in Section 4.2. To recap, a turn is in place from t = 60 s to 90 s in between

straight-line movements. Two sensors, with Sensor 1 using an IMM estimator and Sensor 2

a KF, take measurements and generate their state estimates once every T = 2 s.

5.4.1 Feedback on Estimation and Fusion without Bias

To begin, Fig. 5.6 shows the estimation and fusion performance where no feedback occurs4.

Loss rates of p = 0, 25%, 50%, as well as a fusion deadline of DF = 2 s and 1 s are

considered. Similar to what we have seen in the previous chapter, when there’s no loss, the

CI fuser performs slightly worse during the initial straight-line segment. During the peak

of the maneuver and for a period of time after the maneuver is over, on the other hand, it

performs much better than its T2TF counterpart. However, this superiority is easily offset

with a higher loss rate, as the CI fuser is more susceptible to loss compared to T2TF. As

shown in (c) and (f), when the loss rate reaches 50%, the output of the CI fuser is worse

than those from both the IMM track and the T2TF.

Next we consider the effect of feedback under the same set of conditions. Note that in the

remainder of the chapter, we consider only partial feedback to Sensor 1 (using the original

error covariances) as we try to minimize the peak error performance during the maneuver.

In Figs. 5.7 and 5.8, tracking performances with feedback from the output of the T2TF and

the CI fuser are shown respectively. Loss rates of p = 0 and 50% are considered, along with

three feedback schedules with forward and reverse link deadlines set as (1) DF = 2 s, DR

= 1.5 s; DF = 1.5 s, DR = 1.2 s; and DF = 1.2 s, DR = 0.8 s respectively. The deadlines

for the reverse link are smaller than the associated forward-link deadlines as the average

4Note the results look slightly different from those shown in the previous chapter, more noticeably for
the case where p = 0.5. This is because we have adopted a slightly different implementation at the fusion
center where it keeps track of the turn rate component as well.
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Figure 5.6: Position estimate RMSE performance with variable link-level loss rates and deadlines,
no measurement bias or feedback. First row: DF = 2 s; second row: DF = 1 s. Loss rates are 0,
25%, and 50% from left to right for each row.

communication delay on the former is also smaller. From the plots, we observe the feedback

messages are able to largely reshape the error curves of Sensor 1 around the maneuver time

period. In particular, the peaks of the error bell curves for Sensor 1 are significantly narrowed

by the feedback, although the new peaks are slightly higher than the original. Across all

the cases, although there are some variations in the shape and position of the IMM error

curves, the tracking performance for the fuser itself remains more or less stable under the

same loss condition. On the other hand, feedback from the CI fuser results in even more

drastic changes in the estimation and fusion behavior. Now the IMM curves (when p = 0)

are largely flattened and there’s hardly any noticeable increase in the errors of the IMM or

fuser outputs during the maneuver. However, such desired performance does not hold for

the p = 0.5 case, as the CI fuser itself already yields even worse estimates than the IMM,

and feeding back such estimates may temporarily improve the IMM estimator performance,
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Figure 5.7: Position estimate RMSE performance with variable feedback schedules and link-level
loss rates for the T2TF fuser, no measurement bias. The first row: p = 0; second row: p = 0.5.
From left to right are different schedules: DF = 2 s, DR = 1.5 s; DF = 1.5 s, DR = 1.2 s; DF =
1.2 s, DR = 0.8 s.

but it does little to pull the CI error curves down. Worse still, the fuser outputs tend to

become unstable after the maneuver is over. These observations demonstrate (1) feedback

can also benefit the estimation and fusion performance when there’s no bias; and (2) there

exist performance trade-offs when deciding which fuser to use for feedback, as different fusers

may have different responses to communication loss and delay.

5.4.2 Feedback on Estimation and Fusion with Bias

Since we discovered that one major benefit of feedback is to mitigate sensor bias, now we

investigate how tracking performances change with feedback sent from either type of fuser.

In Figs. 5.9, 5.10, and 5.11, estimation and fusion performances without feedback, with

feedback from the T2TF, and from the CI fuser are shown respectively for the case where
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Figure 5.8: Position estimate RMSE performance with variable feedback schedules and link-level
loss rates for the CI fuser, no measurement bias. The first row: p = 0; second row: p = 0.5. From
left to right are different schedules: DF = 2 s, DR = 1.5 s; DF = 1.5 s, DR = 1.2 s; DF = 1.2 s,
DR = 0.8 s.

there is a positive bias term with the measurement bias values as σr/
√
5 for the range and

σa/
√
20 for the azimuth. As before, feedback from the T2TF can reduce the Sensor 1 IMM

estimation error much faster at the peak of and after the maneuver, which in turn improves

the fusion performance to some extent as well. However, the CI fuser again experiences much

improved track performance where there’s no loss, and is likely to become unstable with half

of the original sensor data missing. Such instability may exacerbate the subsequent IMM

filtering as well if the sensor replaces its own data with the feedback without discretion.

Finally, the same set of simulations are run for the case with increasing measurement bias

over time and the results are plotted in Figs. 5.12, 5.13, and 5.14. In these simulations, the

range and azimuth biases rise steadily from 0 to 3σr/
√
5 and 3σa/

√
20 respectively toward

the end of the 150-second trajectory. We can see the curves largely follow the same trend
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as in the previous case. From these results, it’s fair to say that when there is no loss or if

the loss rate is rather small, it’s better to run the CI fuser to reduce the peak error during

maneuver; otherwise, the T2TF is preferred for its stability and superior performance under

a high level of loss.

5.5 Conclusion

.

In this chapter, we have investigated the effect of different information feedback config-

urations and schedules in the context of variable communication link-level loss and delay

conditions as well as sensor bias levels. Numerical and simulation studies with a two-sensor

fusion scenario are used to demonstrate the major benefits and limitations of information

feedback as applied in a long-haul tracking application. We have observed that although

information feedback has potentials to reduce sensor bias, and sometimes even reduce the

estimation and fusion errors without the presence of sensor bias, the communication link-

level communication loss and delay can pose a major challenge to fulfill such potentials. As

such, information feedback should be used in conjunction with other techniques that can

reduce the effect of loss and delay.
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Figure 5.9: Position estimate RMSE performance with variable link-level loss rates and deadlines,
steady measurement bias, and no feedback. (a) p = 0, DF = 2 s; (b) p = 0.5, DF = 2 s; (c) p = 0,
DF = 1.2 s; (d) p = 0.5, DF = 1.2 s.
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Figure 5.10: Position estimate RMSE performance with variable link-level loss rates and feedback
schedules, steady measurement bias, and no feedback. T2TF. (a) p = 0, DF = 2 s, DR = 1.5 s;
(c) p = 0.5, DF = 2 s, DR = 1.5 s; (b) p = 0, DF = 1.2 s, DR = 0.8 s; (d) p = 0.5, DF = 1.2 s,
DR = 0.8 s.
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Figure 5.11: Position estimate RMSE performance with variable link-level loss rates and feedback
schedules, steady measurement bias, and no feedback. CI fuser. (a) p = 0, DF = 2 s, DR = 1.5 s;
(b) p = 0.5, DF = 2 s, DR = 1.5 s; (c) p = 0, DF = 1.2 s, DR = 0.8 s; (d) p = 0.5, DF = 1.2 s,
DR = 0.8 s.
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Figure 5.12: Position estimate RMSE performance with variable link-level loss rates and dead-
lines, increasing measurement bias, and no feedback. (a) p = 0, DF = 2 s; (b) p = 0.5, DF = 2 s;
(c) p = 0, DF = 1.2 s; (d) p = 0.5, DF = 1.2 s.
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Figure 5.13: Position estimate RMSE performance with variable link-level loss rates and feedback
schedules, increasing measurement bias, and no feedback. T2TF. (a) p = 0, DF = 2 s, DR = 1.5 s;
(c) p = 0.5, DF = 2 s, DR = 1.5 s; (b) p = 0, DF = 1.2 s, DR = 0.8 s; (d) p = 0.5, DF = 1.2 s,
DR = 0.8 s.
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Figure 5.14: Position estimate RMSE performance with variable link-level loss rates and feedback
schedules, increasing measurement bias, and no feedback. CI fuser. (a) p = 0, DF = 2 s, DR = 1.5
s; (c) p = 0.5, DF = 2 s, DR = 1.5 s; (b) p = 0, DF = 1.2 s, DR = 0.8 s; (d) p = 0.5, DF = 1.2 s,
DR = 0.8 s.
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Chapter 6

Artificial Neural Network

Learning-Based Information Fusion

6.1 Introduction

A number of data fusion methods have been developed over the years, with a primary goal

of taking in the data from multiple sensors and combining them to produce a condensed set

of meaningful information with the highest possible degree of accuracy and certainty [14,

78]. Whereas most conventional state fusion approaches produce fused estimates by linearly

combining the available sensor data, the use of nonlinear fusers is still fairly unexplored. In

contrast to the closed-form linear fusers such as the T2TF and fast-CI fusers used extensively

in the preceding chapters, in this chapter we are primarily interested in using nonlinear

functions to fuse sensor data that may potentially yield better results than with linear

fusion.

Essentially, information fusion is a regression problem, and there are many existing re-

gression analysis techniques that can be applied. In many applications, field tests may be

performed a priori using the available sensor networks to collect test measurements. Such

field tests with known true target states facilitate learning-based fuser design as many types
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of regression analysis methods exist and can be used to learn or compute the parameters of

the fusing function we wish to estimate from these field tests. In this chapter, we look at

the use of Artificial Neural Networks for fusing the state estimates as they are known to be

able to approximate any continuous function given sufficient parameters.

Artificial neural networks (ANNs) have been applied to tasks such as pattern classifica-

tion, clustering/categorization, function approximation, and prediction/forecasting, among

others [30, 35]. In the literature, [21] and [25] have proposed using ANNs for sensor fusion,

where the neural networks are used to determine the weights for linearly combining sen-

sor state estimates. More recently, [17] has proposed nonlinear fusion using ANNs. This

study of ANN-based fusers accounts for both communication and computation constraints

and aims to yield improved long-haul target tracking and monitoring performance under

these constraints. In particular, besides performing the core function of learning from true

target trajectories and sensor data and then applying such learned patterns to testing data

to be combined by the fusion center, we also consider how to perform such tasks effectively

with (1) very limited training data; (2) lost data in both training and testing stages; and

(3) sensor biases. Of concern throughout our study is the performance of generalization

capabilities from training to testing data under variable communication and computation

constraints as discussed earlier. A ballistic target tracking application is used to demonstrate

the performance of our learning-based design.

The remainder of this chapter is organized as follows: In Section 6.2, the fundamentals

of ANNs and the learning algorithm called backpropagation are briefly overviewed. Next in

Section 6.3, the enhanced variations of a standard backpropagation algorithm are considered

that could improve the generalization capabilities of the training-based fuser to new data. We

consider the communication and computation constraints in Sections 6.4 and 6.5 respectively,

highlighting the effect of missing data and bias on the training and testing stages. Simulation

results of a ballistic target tracking application are presented and analyzed in Section 6.6

before we conclude this chapter in Section 6.7.
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Figure 6.1: An example of a three-layer feedforward neural network

6.2 Artificial Neural Networks (ANNs) and Backprop-

agation

6.2.1 Structure of an ANN

Over the past few decades, advances have been made in developing intelligent systems,

some of which – notably the artificial neural networks (ANNs) – have been inspired by

biological neural networks. Broadly speaking, ANNs are a class of statistical models that

consist of sets of adaptive weights (i.e., numerical parameters) that are tuned by a learning

algorithm, and are capable of approximating non-linear functions of their inputs. There are

different types of ANNs, but we focus on the simplest feedforward neural networks where

connections between the units do not form a directed cycle or loop (i.e., no feedback exists

in the network). The structure of such a three-layer neural network is shown in Fig. 6.1.

This network consists of an input layer, a hidden layer, and an output layer, interconnected

by weights (to be determined) which are represented by the arrows between the layers.

Apparently, information moves forward in one direction, from the input nodes, through the

hidden nodes, and to the output nodes.

In our settings, the inputs x̂(1), ..., x̂(Ni) can be the state estimates from the sensors, and
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Figure 6.2: Weights from Ni inputs to the hidden node j

the outputs x̂
(1)
F , ..., x̂

(No)
F are the global (fused) state estimates. There is also a bias unit

(not shown in the figure) that is connected to each node in addition to the input nodes. The

output of the jth hidden node, aj, is given by

aj = g1

(
Ni∑
i=1

wijx̂
(i) + bj

)
, (6.1)

where the parameters wij and bj are typically called the weights and biases, respectively. x̂(i)

is an input feature (e.g., a state estimate from a sensor), and g1(·) is a nondecreasing function
called the activation function, which is typically a bounded function such as the sigmoid. A

simple diagram illustrating this node function is shown in Fig. 6.2. If we concatenate all

of the hidden node outputs aj into a vector a = [a1, ..., aL]
T , then we can write the hidden

node outputs as

a = g1(W
T
H x̂+ bH), (6.2)

where WH = [wij]Ni×L is the matrix of weights whose transpose is multiplied by the input

vector x̂ = [x(1), ..., x(Ni)]T , and bH = [b1, ..., bL]
T is a vector of the biases for each hidden

node. The fused output of our network, x̂F , which is an No-dimensional vector, is then given

by

x̂F = g2(W
T
o a+ bo), (6.3)
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where Wo = [wo
ij]L×No is another weight matrix, bo = [bo1, ...b

o
No
]T is the vector of biases for

each output, and g2(·) is another activation function.

6.2.2 Backpropagation

When the target outputs are available, a well-known approach to determining the neural

network parameters is called backpropagation. Backpropagation is based on gradient de-

scent; the weights are initialized with random values and are iteratively updated to reduce

the error (according to some user-defined error function, e.g., the mean-squared error). Once

the network parameters are learned (from training data), new inputs can simply be fed into

the neural network to obtain fused outputs.

The Levenberg-Marquardt (LM) algorithm [27] is a backpropagation method that is used

in this study to train the ANNs as it can be implemented efficiently and is considered to be

one of the faster training methods with relatively good performance. It is a second-order

method in that it uses both the first and second derivatives of the error function to find

a set of optimum weights. The formulation is as follows. Assume we want to minimize

some function S(w) with respect to a r-dimensional parameter vector w. Then the Gauss-

Newton method for updating w, which is an iterative method that uses the first and second

derivatives of a function to find a point where the derivative is zero, would be

Δw = −[∇2S(w)]−1∇S(w), (6.4)

where ∇2S(w) and ∇S(w) are the Hessian and the gradient, respectively, of S(w). If we let

S(w) be a sum of squares function over m training patterns, e.g.,

S(w) =
m∑
k=1

(y(k) − f(x̂(k),w))2 =
m∑
k=1

(ek(w))2 = e(w)Te(w), (6.5)

where y(k) is the true target state in the kth training pattern, ek(w) = y(k) − f(x̂(k),w) and
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e(w) = [e1(w), ..., em(w)]T , then we can approximate the Hessian and the gradient with the

Jacobian, J, of the error vector e(w) and rewrite Eq. (6.4) as

Δw = −(JTJ)−1JTe(w), (6.6)

where

J =

⎡
⎢⎢⎢⎢⎣

∂e1(w)
∂w1

. . . ∂e1(w)
∂wd

...
. . .

...

∂em(w)
∂w1

. . . ∂em(w)
∂wd

⎤
⎥⎥⎥⎥⎦ . (6.7)

The Levenberg-Marquardt modification1 to the Gauss-Newton method is

Δw = −(JTJ+ ηI)−1JTe(w) (6.8)

where I is the identity matrix, and η > 0 is a damping factor, which is adjusted at each

iteration of the weight update. If a step (i.e., weight update) results in an increased S(w),

then η is multiplied by some factor ν, and if a step results in a decreased S(w), then η is

divided by ν. The Jacobian of e(w) can be computed using the backpropagation approach

as described in [27], where w is a vector containing all of the neural network parameters as

follows:

w = [WH(1, 1),WH(1, 2), ...,WH(L,Ni),bH(1), ...,bH(L),Wo(1, 1), ...,bo(No)]
T . (6.9)

If we have Ni network inputs, L hidden nodes, and No network outputs, then the dimension

of w is d = L(Ni + 1) + No(L + 1). In this study, the state estimates from each sensor are

used as a network input, so Ni = Ns since there are N sensors generating s-dimensional

1There are other variations of the algorithm presented here. For example, there are different ways to
select the initial damping factor η and increase/decrease its value. Also, the matrix consisting of only the
diagonal elements of JTJ may be used in place of the identity matrix I.
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state estimates, and No = s so that the neural network outputs a s-dimensional fused state

estimate.

6.3 Improving the Generalizability of the ANN Train-

ing

Overfitting is one of the most critical issues during neural network training, or more broadly,

for any learning-based design. The error on the training set is driven to a small value, but

when new testing data are input to the learned network, the error can be potentially large.

In other words, the network has memorized the training examples, but it has not learned to

generalize to new situations. In this section, we consider a few techniques for improving the

generalizability of the LM-based ANN training.

6.3.1 Multiple ANNs

It is preferable to train several networks to ensure that a network with good generalization

is found. Simple as it sounds, using multiple neural networks to train the same set of data2

and averaging their outputs might yield superior performance by diversifying the training

process. Typically each backpropagation training session starts with different initial weights

and biases and these conditions may lead to very different solutions for the same problem.

In addition, the network structure can be diversified as well by using a different number of

hidden nodes or even hidden layers. Just a slight change in the structure would result in

a different neural network with a completely new set of parameters. This approach can be

especially helpful for a small and noisy dataset.

2In our setting, only a small set of training data from previous field tests are available and the testing stage
occurs in the form of real-time tracking, hence we don’t pursue cross-validation [3] approaches where data
are iteratively divided into training, validation, and testing sets to improve the generalization capabilities.
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6.3.2 Bayesian Regularization

Another method for improving generalization capabilities of an learning algorithm is called

regularization. This involves modifying the performance function, which is normally chosen

to be the sum of squares of the network errors on the training set, as shown in Eq. (6.5).

An additional term is added to the original performance function, usually in the form of a

cost or penalty function for complexity, such as restrictions for smoothness or bounds on the

vector space norm [26].

MacKay [57] proposed a Bayesian framework to overcome the problem in interpolating

noisy data, which can be directly applied to the neural network learning problem. In this

framework, the weights and biases of the network are assumed to be random variables with

specified distributions. The regularization parameters are related to the unknown variances

associated with these distributions. Another goal is to reduce the effective number of pa-

rameters actually used by the model - in this case, the number of network weights actually

needed to solve a particular problem. Hence, MacKay’s Bayesian regularization expands

the original sum-of-squares cost function to search for the minimum error using minimum

weights by introducing two Bayesian hyperparameters, α and β, to balance the dual needs

during the learning process. In particular, the objective function to be minimized is in the

form of

S(w) =
β

2

m∑
k=1

(y(k) − f(x̂(k),w))2 +
α

2

d∑
k=1

w2
i = β · SSE + α · SSW. (6.10)

It can be seen that in addition to the sum of squared errors term, an additional term, namely,

the sum of squared weights (SSW), is added to the objective function. The SSW is simply

the square of the L2 norm of the d-dimensional weight vector w introduced in Eq. (6.9).

The hyperparameters are updated as

α =
γ

2 · SSW , and β =
m− γ

2 · SSE , (6.11)
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where

γ = d− α tr((JTJ)−1) (6.12)

is considered as the number of “effective” parameters (weights and biases) being used by the

network, thus giving an indication on how complex the network should be. These parameter

update steps3 can be easily incorporated into each iteration of the LM weight update equation

as in Eq. (6.8).

6.3.3 Regularization Using Error Covariance Matrices

It is noted that the sensors also provide additional information regarding the state estimates:

the error covariances. It is still an open question of how to best utilize this information, if

at all, when designing or using these nonlinear fusers. It is proposed here that these error

covariance estimates can be used when training the neural network to improve the neural

network’s generalization capability. If we assume that the state estimates from the sensors

are equal to the true states plus noise, that is,

x̂i = x+ ni (6.13)

where i is the sensor index, and ni is zero-mean white Gaussian noise with covariancePi, then

in fusing these state estimates, the neural network will also transform and fuse the noise. We

can therefore try to further reduce the variance of the output in addition to the overall error

by adding the output variance to the objective function that we minimize when determining

the neural network parameters. But if one were to use a nonlinear activation function such

as the tangent hyperbolic sigmoid function, f(x) = 2
1+e−2x − 1, then the variance becomes

3Poland [66] provided another way to update α as

α = d/(2.0 · SSW + tr((JTJ)−1))

which has been shown to provide more smooth and robust updates compared to Eq. (6.11).
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quite difficult to determine analytically. However, from [18], we have the following upper

bound on the variance of the function of a random variable X, if X ∼ N (μ, σ2):

Var[g(X)] ≤ σ2
E[g′(X)]2 (6.14)

We can write the output x̂F as a function of the noise n = [nT
1 , ...,n

T
N ]

T , where n ∼ N (0,P).

P is a block diagonal matrix where the blocks are P1 through PN :

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1 0s×s · · · 0s×s

0s×s P2 · · · 0s×s

...
...

. . .
...

0s×s · · · 0s×s PN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.15)

where s is the number of states in the true target state x. For the ANN fuser, if we let the

activation function for each hidden node be g1(x) =
2

1+e−2x − 1 and the output activation

function g2(x) = x, then the ANN fuser output would be given by

x̂F = WT
o

(
2

1 + e−2(WT
H x̂+bH)

− 1

)
+ bo

= WT
o

(
2

1 + e−2(WT
Hx+bH)e−2WT

Hn
− 1

)
+ bo

(6.16)

Now if we let θ = WT
Hn, which is simply a linear transformation of the Gaussian random

variable n ∼ N (0,P), then θ ∼ N (0,WT
HPWH). Therefore, we can write Eq. (6.14) as

Var[x̂F (θ)] ≤ E

[
∂x̂F (θ)

∂θ

]
·WT

HPWH · E
[
∂x̂F (θ)

∂θ

]T
(6.17)

However, even determining E [∂x̂F (θ)/∂θ] is still quite complicated. Suppose θ0 = WT
Hx+

bH , then we can obtain the following relationship:

Var[x̂F (θ)] < 4WT
o exp(Θ)WT

HPWH exp(Θ)Wo, (6.18)
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in which Θ = 8WT
HPWH � IL + 4θD

0 , where � denotes the Hadamard product, IL is the

L× L identity matrix, θD
0 is the diagonal matrix whose diagonal elements are the elements

of the vector θ0, and finally exp(·) denotes the exponential of a diagonal matrix. The

proof of Eq. (6.18) can be found at the end of this chapter. However, this multiplicative

relationship is still not neat enough for use in the additional term for error regularization,

considering the complexity of the matrix Θ. Therefore, to simplify, an extended form of the

term WT
HPWH will be used to add to the error function for minimization. We can modify

the LM algorithm described in the previous section to incorporate this additional term using

a tradeoff parameter λ:

S(w) =
m∑
k=1

(y(k) − f(x̂(k),w))2 + λwTΣw (6.19)

where

Σ =

⎡
⎢⎣ PR 0NLs×(d−NL)s

0(d−NL)s×NLs 0(d−NL)s×(d−NL)s

⎤
⎥⎦ , (6.20)

and PR ∈ �(NLs)×(NLs) is a block diagonal matrix with each block consisting of the matrix

P, repeated L times (once for each hidden node):

PR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P 0Ns×Ns · · · 0

0 P · · · 0

...
...

. . .
...

0 · · · 0 P

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.21)

Recall that N is the number of sensors and s is the number of states, so each block diagonal

matrix P is of size Ns×Ns. Following the LM approach, when we update w with Δw, we
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get the following update to our error function S(w):

S(w +Δw)

=
m∑
k=1

(y(k) − f(x̂(k),w +Δw))2 + λ(w +Δw)TΣ(w +Δw)

=
m∑
k=1

(ek(w +Δw))2 + λ(w +Δw)TΣ(w +Δw)

= [e(w +Δw)]T e(w +Δw) + λ(w +Δw)TΣ(w +Δw)

≈ [e(w) +∇e(w)Δw]T [e(w) +∇e(w)Δw] + λ(w +Δw)TΣ(w +Δw)

(6.22)

where the following substitutions are made: y(k) − f(x̂(k),w + Δw) = ek(w + Δw) (line

1 to line 2), and e(w + Δw) = [e1(w + Δw), ..., em(w + Δw)]T (line 2 to line 3). In the

fourth line of Eq. (6.22), we approximate and substitute e(w + Δw) with its first-order

Taylor expansion about w. Furthermore, we know that at the minimum of S(w+Δw), the

gradient with respect to Δw is zero, so we have

∂S(w +Δw)

∂Δw
≈ 2 [∇e(w)]T [e(w) +∇e(w)Δw] + 2λΣ(w +Δw)

= 2JTe(w) + 2JTJΔw + 2λΣw + 2λΣΔw

(6.23)

where J is the Jacobian of e(w).

The weight update equation can then be computed as: Δw = −(JTJ+λΣ)−1(JTe(w)+

λΣw), and with the LM modification to include the damping factor, we obtain the final

weight update equation which incorporates the error covariance estimates into the training

using the LM method:

Δw = −(JTJ+ λΣ+ ηI)−1(JTe(w) + λΣw) (6.24)
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6.4 Training and Testing with Missing Data

Having provided the training algorithm and techniques for generalization, we now focus on

the communication and computation constraints and their impact on the learning process.

First, the communication link loss and delay further reduces the amount of data that can be

effectively used for training and testing purposes, which must be accounted for by the fusion

center in devising efficient learning-based fusers.

6.4.1 Data Loss during Training

As training is performed based on data gathered from historical field tests, usually the true

target states are obtained via some other sources that are not subject to the same link loss

and delay conditions as from the sensors, whereas some sensor estimates may have never

arrived. As such, the fusion center simply has a smaller set of training data that are input

to an ANN. Suppose the link-level loss rate is pL across all training patterns, then the effect

this loss has on training can be interpreted in two different ways. First, the actual number

of available training patterns m̃ is often less than m, and thus the training objective simply

uses SSE terms for the available m̃ patterns. In other words, in Eq. (6.5), based on the

actual pattern availability, we have

S(w) =
m̃∑
k=1

(ek(w))2 = ẽ(w)T ẽ(w), (6.25)

where ẽ is the error vector containing m̃ elements. Alternatively, the number of available

patterns follows the following binomial distribution: m̃ ∼ B(m(1− pL),mpL(1− pL)). As a

result, the original SSE term in Eq. (6.5) can now be expressed as

S(w) =
m∑
k=1

ik(ek(w))2 = e(w)TΛe(w), (6.26)
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where ik is the indicator function in which ik = 1 with probability 1−pL and 0 otherwise, and

the diagonal matrix Λ = iD where i = [i1, i2, ..., im]
T . These results can be easily extended

to patterns with different link loss rates.

6.4.2 Data Loss and Delay during Testing

The testing phase of the learning process, namely, to apply the learned ANN parameters

to new sensor inputs, coincides with the actual online tracking process. The loss and delay

inherent over the communication link, as a result, plays a somewhat different role compared

to the off-line training phase.

In most tracking tasks that impose nearly real-time performance, the fusion center is

required to finalize its fused state within a very tight deadline, by which time one or more

sensor estimates may have not yet arrived (although they might arrive later). Thus, in

contrast to the off-line training phase, the communication delay is a major limiting factor in

the desired performance.

The structure of the ANN-based learning requires that the input data be complete in order

to generate the desired output. Whereas it is in general difficult to interpolate missing values

in the training phase as the underlying time-domain relationship between the training data

is not readily available, it is possible that the fusion center uses adjacent sensor estimates

that are available to interpolate the missing ones, based on the knowledge it has on the

possible trajectory of the underlying target being tracked. Therefore, when some of the

inputs are missing, the fusion center can use prediction and retrodiction (when applicable)

techniques that utilize previous and subsequent sensor estimates, respectively, to manually

fill in the missing inputs. Of course, should all other methods fail (as under extremely lossy

link conditions), the fusion center can still bypass the neural network altogether by using

prediction on its previously fused states to generate the immediate fused value, although

this is likely to compromise the accuracy performance by a large margin.
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6.5 Sensor Bias and Error Regularization

Another concern arising out of the long-haul tracking is the sensor information quality.

Notably, sensor biases could potentially degrade the fusion performance. To be answered are

questions such as how the ANN-based fuser would perform with the presence of variable bias

levels and whether the learning process could potentially improve the training and testing

data quality. In this section, we discuss bias-related issues pertaining to the ANN training

and testing.

An important fact about estimation biases is that a sensor i might not be aware of its

biases. Sometimes the biases are an integral part of the filtering process, due to linearization

and coordinate conversion; while other times it is due to poor calibration or environmental

factors that result in sensor measurement biases. As such, the error covariance matrix Pi

– which is also supplied to the fusion center – is likely to be an optimistic measure of the

actual estimation error. Fortunately, thanks to the available true target states during the

training phase, the fusion center can evaluate the potential estimation biases from the sensor

data and “correct” the error covariance matrix for its training.

To illustrate, consider a generic sensor estimate as x̂i whereas the true target state is

x. Then the error covariance matrix is defined as Pi = E[(x̂i − x)(x̂i − x)T ]. Now suppose

x̂i = x̂u + bi where x̂u is an unbiased estimate for x and bi is the bias vector, then we have

Pi = E[(x̂i − x)(x̂i − x)T ]

= E[(x̂u − x+ bi)(x̂u − x+ bi)
T ]

= E[(x̂u − x)(x̂u − x)T ] + E[bib
T
i ] + 2E[(x̂u − x)bT

i ]

= Pu + E[bib
T
i ] + 2E[(x̂u − x)bT

i ]

≈ Pu + bibT
i , (6.27)

where Pu is the error covariance matrix for an unbiased estimate. In the extreme case
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when a sensor is fully oblivious to its bias, this is the matrix it communicates to the fusion

center. The last line has used two approximations, the first one being that the bias is largely

uncorrelated with the true target state, and the second being a running average (as denoted

by the overline) is used for the expectation of the outer (tensor) product of the bias vector

and itself.

In an ideal scenario, the estimation bias at a sensor is deterministic and consistent, and

the fusion center can easily obtain the bias vector and subtract it from the associated sensor

estimates during the testing stage. However, with more complex forms of bias, instead of

correcting the sensor estimates, the fusion center may want to use Eq. (6.27) for error

regulation so that the updated matrices more closely match the actual error levels of the

sensor estimates. Doing so might be of better benefit to the prediction (and retrodiction)

when the fusion center encounters missing data during the online tracking. The performance

comparison using different error regularization methods will be shown in the next section.

6.6 Performance Evaluation

In this section, the performance of the ANN-based fusers is evaluated for a coasting bal-

listic target tracking application via simulations. Different configurations during the learn-

ing process are considered, so are variable communication and computation constraints.

The tracking performance with ANN-based fusers is also compared against that using the

track-to-track fuser (T2TF) and the fast-CI fuser that have been studied extensively in this

dissertation.

6.6.1 Simulation Models

We model two sensors tracking a ballistic target in the exo-atmospheric coast phase whose

trajectory is determined by a nonlinear state-space model. The target state and sensor

measurement models have been presented in Section 3.5.2. As in previous chapters, an
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independent link loss pL and a delay pdf f(t) = exp ((T − t)/μD) /μD for t ≥ T (where T

is the fixed initial delay and μD is the mean of the additional random delay) is considered.

We have T = 0.5 s and μD = 0.3 s. The fusion deadline DF describes the time by which

the fusion center must have combined the individual sensor estimates and generated a fused

estimate.

The initial states of the training and test targets are randomly generated from a normal

distribution with the mean set to the following (in km for position, and km/s for velocity):

x(0) = [x(0) ẋ(0) y(0) ẏ(0) z(0) ż(0)]T

= [71.31, 0.946, 3794.5, 3.577, 5413.0, −5.676]T ,

with a standard deviation of 500 m and 5 m/s for each position and velocity component,

respectively. In our default setting, two target trajectories are available for training. Mea-

surement data are generated according to the sensor measurement model introduced in Eqs.

(3.55)-(3.57), and state estimates (and the associated error covariance matrices) – also avail-

able in the training data set – are computed from these measurements for each trajectory.

Data are available for each trajectory segment that lasts 30 seconds.

The ANN used for training and testing has one hidden layer with a number of hidden

nodes. The number of hidden nodes needed depends on the complexity of the function we

are trying to estimate. Using too few hidden nodes may yield a poor approximation to the

actual function. Using too many hidden nodes results in overfitting the data so that while

the neural network may precisely give the desired outputs for the training data, it may not

generalize well to unseen data. Unfortunately, there is no precise method that provides the

optimal number of hidden nodes needed to properly model the data. But a good rule of

thumb [31] is that it lies between the number of input and output nodes. Hence, we select

three hidden nodes in our default setting. The tangent hyperbolic sigmoid function is used

as the activation function from the input to hidden layers.
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Figure 6.3: Position estimate RMSE over time with ANN-based fusers as well as T2TF and
fast-CI fuser, two training trajectories, three hidden nodes: (a) pL = 0, DF = 2 s; (b) pL = 0.5,
DF = 1 s

6.6.2 Fusion Performance without Sensor Biases

In Fig. 6.3(a), tracking performances using variations of the ANN-based fuser, including

the regular ANN (“reg-ANN”), multiple ANN with 5 component ANNs of the same struc-

ture (“mul-ANN”), ANN with Bayesian regularization (“bys-ANN”), and ANN with error

covariance regularization (“cov-ANN”), along with that of the T2TF/CI fuser4 are plotted.

From these plots, we observe that although the original ANN fuser doesn’t yield estimates

as good as those from the T2TF/CI by using only two available training trajectories, some

of the enhanced variations do, especially “cov-ANN”. In practice, Bayesian regularization is

often applied when combined with other techniques, such as multiple ANNs; as a stand-alone

technique, its performance is not always superior to that of the regular ANN as the Bayesian

formulation depends on how the trade-off parameters are selected. From our simulations,

there are a total of 33 weights to be determined in the regular ANN, and after applying

regularization about 3 or 4 parameters are removed, which means the performance of the

two should not differ by much under normal circumstances. In general, the multiple ANN

approach would outperform the original ANN-based fuser by variable levels, depending on

4When pL = 0, due to the lack of process noise, these two fusers yield the same performance.
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Figure 6.4: Position estimate RMSE over time with ANN-based fusers as well as T2TF and
fast-CI fuser, five training trajectories, three hidden nodes: (a) pL = 0, DF = 2 s; (b) pL = 0.5,
DF = 1 s

such factors as how the weights are initialized in each component network. The covariance

error regularization method can effectively use the extra information from the covariance

matrices supplied by the sensors and provide improved performance compared to all other

techniques.

As the link-level loss goes up, there’s an increasing chance that the fusion center can’t

receive both sensor estimates for any time epoch during the testing stage. In addition, the

training data are also likely to be obtained from past testing data – that experienced similar

losses – with the addition of the true target states being revealed later, but not the sensor

estimates. The communication delay also reduces the chance that a message is successfully

received by the fusion center by a certain deadline. Therefore, with incomplete sensor data,

the fusion center could use predicted estimates it derives for the individual sensors, and

once these predicted values are obtained, the inputs to the ANNs are complete. Training

data may contain such predicted estimates too. As a result, all the training algorithms

can be run with complete data, even when a portion of the training data are not from the

sensors, but rather derived by the fusion center during earlier tracking. Fig. 6.3(b) shows

the performance with 50% sensor data loss in both training and testing data. In the previous
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Figure 6.5: Position estimate RMSE over time with ANN-based fusers as well as T2TF and
fast-CI fuser, two training trajectories, six hidden nodes: (a) pL = 0, DF = 2 s; (b) pL = 0.5, DF

= 1 s

case, a fusion deadline ofDF = 2 s can effectively reduce any effect of early cutoff; in contrast,

here the deadline DF = 1 s, resulting in even more unavailable original sensor data by the

deadline. Comparing different cases, there is an increase in the tracking error in non-learning

based T2TF and CI fusers compared to their respective no-loss case. However, the ANN

learning-based approaches are largely able to retain most of their respective performance

under the lossless situation, thereby demonstrating the major benefit of adopting these

fusers in counteracting the negative effect of communication constraints.

Next, we explore how the learning-based fusion performance can be potentially improved

with the use of more training data and/or an ANN of a larger size. In Fig. 6.4, the plots for

the same settings as before but with five trajectories are shown. From these plots, the error

curves for ANN-based fusers are variably lower compared to those in Fig. 6.3, reflecting the

major benefit of training more data. On the other hand, with the same amount of training

data (two trajectories), we increase the number of hidden nodes from three to six, and the

error plots are shown in Fig. 6.5. It can be seen here again that using more hidden nodes

can, by and large, improve the error performance somewhat for both loss cases, although the

training process becomes more complex with more network weights to be determined. But
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Figure 6.6: Position estimate RMSE over time with ANN-based fusers as well as T2TF and
fast-CI fuser with unlearned bias: (a) pL = 0, DF = 2 s; (b) pL = 0.5, DF = 1 s

regardless of the chosen data or network size, a consistent observation is the superiority of

the proposed covariance-based ANN fuser over others in terms of tracking accuracy.

6.6.3 Fusion Performance with Sensor Biases

We examine the cases where the training and/or testing data contain biased estimates. First,

suppose in the test data, a positive uniform bias is added to the (unbiased) measurement

noise at one of the sensors, with its mean magnitude set at 0.1% of the noise level. The

fusion performance is shown in Fig. 6.6. Even such a small bias results in the error curves

now trending upward across the board. Due to the mismatch between the training and

testing data in terms of bias profiles, the unlearned bias (i.e., the bias not present in the

training data) reduces the generalization capability of the trained parameters, resulting in

elevated estimation errors across all learning-based cases. It’s interesting to note that the

learning-based fusers with more than half the original sensor data missing would yield even

better tracking performance than those of the same type in the lossless case thanks to the

reduced effect of the mismatch between the training and testing data.

Next, suppose in one of the training trajectories data share the same bias profile as
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Figure 6.7: Position estimate RMSE over time with ANN-based fusers as well as T2TF and
fast-CI fuser with bias: (a) pL = 0, DF = 2 s; (b) pL = 0.5, DF = 1 s

described above whereas estimates in the other remain unbiased. The fusion performance is

shown in Fig. 6.7, where performance of the “cov ANN” under the bias correction method

introduced earlier has been plotted as well (“b-cov ANN”). The improved generalization

performance can now be seen for both loss settings compared to the previous case with bias

mismatch. With an additional bias correction step, the covariance regularization method is

able to output even better estimates, although this improvement is somewhat limited and

can be reduced when a higher loss rate is encountered.

Finally, all others kept equal, the mean bias level is now increased to 0.2% of the unbiased

measurement noise, and the estimation errors are plotted in Fig. 6.8. Whereas the T2TF

and the CI fuser output increasingly error-prone estimates (more so for the T2TF), the

ANN-based fusers are able to retain much of their error levels as in the previous case,

thereby demonstrating their superiority in tracking with potentially more biased sensor data.

Nevertheless, with such an elevated bias level and over half the original sensor data missing,

the improvement in tracking accuracy over the non-learning fusers is reduced, as a result

of the increased mismatch level (from extended prediction over biased estimates) between

the training and testing data. Thus, from the above analysis, in order to improve the
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Figure 6.8: Position estimate RMSE over time with ANN-based fusers as well as T2TF and
fast-CI fuser with a higher level of bias: (a) pL = 0, DF = 2 s; (b) pL = 0.5, DF = 1 s

generalizability of the training process, it is essential to guarantee the training and testing

data match well in features such as bias levels.

6.7 Conclusion

In this chapter, we have provided a quantitative study on the potential benefits of artificial

neural network learning-based fusers for sensor fusion in target tracking over long-haul sen-

sor networks. In particular, the effects of variable communication link-level loss and delay

conditions as well as sensor bias profiles on the performance of a variety of ANN implemen-

tations have been investigated. The extra covariance information provided by the sensors

has been shown to provide better generalization guarantees in the presence of the above

communication and computation uncertainties.
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Proof of Eq. (6.18)

Proof. From Eq. (6.16), let

ξ(θ) =
2

1 + e−2(θ+θ0)
− 1 (6.28)

be the output of the hidden nodes. Then its derivative with respect to θ, ∂ξ(θ)/∂θ, is a

L × L diagonal matrix with entries −2 (1 + exp(−2(θk + θ0,k)))
−2, k = 1, 2, ..., L, where θk

and θ0,k denote the kth entry of the vector θ and θ0, respectively. Next we focus on finding

the expected value of (1 + exp(−2(θk + θ0,k)))
−2:

E[(1 + exp(−2(θk + θ0,k)))
−2]

< E[(exp(−2(θk + θ0,k)))
−2]

= E[exp(4(θk + θ0,k))]. (6.29)

It can be shown that θk is a Gaussian random variable with θk ∼ N
(
0, (WH,[:,k])

TPWH,[:,k]

)
,

where WH,[:,k] denotes the kth column of matrix WH . Consequently, exp(4(θk + θ0,k)) is

a log-normal random variable. Recall the mean of a log-normal random variable Y ∼
Lognormal(μ, σ2) is exp(μ + σ2/2). Consequently, the mean of exp(4(θk + θ0,k)) is found

to be exp(4θ0,k + 8(WH,[:,k])
TPWH,[:,k]). To aggregate the result for all entries, after some

matrix manipulation, we have

E [∂ (−ξ(θ)/2) /∂θ] < exp(8WT
HPWH � IL + 4θD

0 ), (6.30)

where � denotes the Hadamard product, IL is the L×L identity matrix, θD
0 is the diagonal

matrix whose diagonal elements are the elements of the vector θ0, and finally exp(·) denotes
the exponential of a diagonal matrix. Accounting for the coefficient -2 left out earlier, we let

Θ = 8WT
HPWH�IL+4θD

0 , plug everything into Eq. (6.17) and then obtain Eq. (6.18).
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Chapter 7

Conclusions

The purpose of this dissertation is to account for the communication and computation con-

straints in long-haul target tracking applications and to improve the overall tracking perfor-

mance (accuracy and timeliness) using a suite of algorithms and schemes. More specifically,

we have made contributions in the following aspects by studying

• A dynamic online selective fusion algorithm (PRODIC-RTS) that balances the dual

requirements on tracking accuracy and timeliness [49, 52];

• A combined use of retransmission and retrodiction that speeds up the recovery of lost

or delayed sensor information [53–55];

• Staggered and asynchronous estimation and fusion schedules that opportunistically use

the network delay to mitigate the negative effect of cumulative process noise and target

uncertainty on tracking [48,50];

• Feedback of fused information back to the sensors to improve the data quality, counter

the bias, and improve the overall tracking performance [47, 51];

• Artificial neural network learning-based fusers that utilize historical tracking data to

reduce the effect of loss/delay and bias on new sensor data [46].

153



The research contained in this dissertation combines algorithm design, case studies, and

evaluation of tracking performance via mathematical analysis as well as numerical and sim-

ulation studies. We expect the research results to be of interest to those working in the field

and can guide future development of advanced estimation and fusion systems.

The research in this dissertation can be extended in many ways. The selective fusion

algorithm can be incorporated into a system with more complex target and sensor dynamics

and the metric itself be transformed into a range of values that account for such additional

uncertainties. The retransmission scheduling can be studied in a cross-layer context where

the effect of retransmission on higher-layer performance is considered along with the esti-

mation error metric. Both staggered sensing scheduling and information feedback can be

studied in a more dynamic environment where the fusion center keeps track of the evolving

system dynamics and make adaptive changes to its existing sensing schedules or feedback

configurations/schedules. The learning-based fusers can be reexamined in a setting with a

much larger training dataset but with heterogenous trajectories and/or variable data qual-

ity levels so that prior to training, a classification process needs to be carried out in order

to increase the potential match between the training and testing datasets and improve the

generalizability of the learned patterns. Beyond the above extensions to the approaches con-

sidered in this dissertation, also of interest are other information-based performance metrics

(besides MSE and RMSE) [22], more advanced estimation and fusion techniques (e.g., by

utilizing multiple IMMs at the sensors and/or fusing the outputs of a number of fusers at the

fusion center), and tracking under more complex network communication and computation

constraints (such as in the presence of time-correlated link conditions and heterogeneous bias

profiles across sensors).
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