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Abstract of the Thesis

Parallel and Flexible Hardware Implementation of Fletcher Checksum

by

Maria Isabel Mera Collantes

Master of Science

in

Electrical Engineering

Stony Brook University

2014

Checksums are utilized in many contexts such as communications, storage
and reliable processing. The balance between checksum strength, implemen-
tation cost and obtained throughput often pose a challenge for present day
system designers. In this research we propose two new methods for imple-
menting the Fletcher Checksum (FC) in a parallelized context. We deter-
mined an extended parallel definition from the original FC and applied it
to two different hardware implementation approaches. We then created a
generator that would automatically output parameterized designs. We con-
trolled the input word length, number of parallel inputs and architecture of
the designs, and we then synthesized these designs for FPGA and ASIC. Our
results show that parallelization of FC is feasible and the system through-
put is proportional to the cost defined by resources used, area and power
consumption. In our results, we demonstrate designs with throughput up to
375 Gbits/sec in ASIC and up to 110 Gbits/sec in FPGA, depending on the
specific parameters.
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Chapter 1 Introduction

Checksums provide a manner for verifying the integrity of data being
transmitted or processed in a system. They are used in communications [1–3],
data storage [4] and reliable processor systems [5,6]. The concept of checksum
is loosely used to term an error detection code appended to the transmit-
ted data sequence. The calculations that are performed to obtain the code
value are usually, but not limited to, summations. There are several check-
sums that provide varying degrees of error detection effectiveness, and, as is
expected, different implicit trade-offs. These often depend on their imple-
mentation algorithm, nature of processed data, type of errors to be detected,
intended hardware platform, and combinations of these.

Arithmetic checksums are generally considered to be lower-cost than al-
ternative methods [3,7,8] when they are implemented in software. One such
checksum is the Fletcher Checksum [3]. The Fletcher Checksum is particu-
larly interesting because it has better error-detecting capabilities than other
simple checksums, yet is still comprised of simple arithmetic. This is a serial
addition-based checksum algorithm that takes a series of input words one at
a time and computes two verification values. It is imperative for us to pro-
pose solutions that can offer more processing speed due to the ever growing
amount of data that present day systems are managing especially in contexts
like execution stream compression for reliable systems, where many bytes of
data potentially need to be processed per clock cycle. One way to accom-
plish this is to assign fixed computation-heavy tasks to dedicated circuits as
well as increasing data rate processing, so we considered parallelization in
hardware.

In this thesis, our aim is to determine the feasibility and trade-offs of
implementing the serial Fletcher Checksum into a parallel design in hard-
ware. First, we extend the serial checksum definition into parallel format.
After that, we establish two different methods for parallelizing the Fletcher
Checksum in order to improve the throughput of the system. Then, we cre-
ate a generator that outputs synthesizable Verilog files. Last, we evaluate
various designs that offer certain advantages at different costs and present a
comparison.

For comparison of the costs and benefits of both parallel methods, we
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synthesized and evaluated a wide space of automatically generated Fletcher
Checksum designs targeting FPGA (Altera Arria II) and ASIC (45 nm stan-
dard cell) implementations. We propose two different designs that scale
easily. The first is purely combinational, and the second is characterized
for its sequential computations which reduce the need for repetitive logic.
The specific implementations that are compared in our work depend on the
following parameters: architecture, input word length, and number of inputs.

Through the realization of this work, we contribute information on an
alternative scalable method for executing a well known checksum on hard-
ware. We provide a parallel definition of the Fletcher Checksum, an HDL
code generator for the checksum, a quantitative comparison of different par-
allel designs, and conclusions regarding hardware implementation.

Prior work in the literature has studied the performance, effectiveness
and cost of the implementation of various checksums (including the Fletcher
Checksum) in software as well as recommendations on implementations.
Stone et al. have examined the behavior of checksums over real data [9].
Nakassis provided insight on implementation pitfalls and improvements that
could be made to the Fletcher Checksum in [10]. Fletcher checksum input
bit values of 8, 16 [11], 32 and 64 [7] have also been studied and compared
to other checksums.

Maxino and Koopman [8] have compared the trade-offs between several
checksum algorithms and and have shown that the Fletcher Checksum offers
less effective error detection and is less computationally costly than cyclic
redundancy codes which are more efficient at detecting errors. Yet, when
compared to other methods, such as exclusive or checksum, one’s and two’s
complement addition checksum, and Adler Checksum, the authors recom-
mend using the Fletcher Checksum for non bursty data transmissions. These
analyses are done in software with the algorithms tested to run on general
purpose processors.

Checksums are used in communications, embedded networks and other
applications. Due to the Fletcher Checksum being sensitive to sum order,
it has an application of being used to trace data paths in wireless sensor
networks (WSN) for fault detection [12]. It is also taken into consideration
in improvements of existing protocols because it is more computationally ef-
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ficient in software implementations than other checksums [13].

So far, most hardware implementations of checksums are focused on
CRCs [6, 14–22], but very few people have explored flexible Fletcher Check-
sum hardware implementations.

In Chapter 2 we explore the original Fletcher Checksum and present a
parallel version. Then, in Chapter 3 we determine different ways in which
to implement the parallel version in hardware. In Chapter 4 we present a
generator created to test our designs and we discuss the results we obtain
from synthesis. Lastly, we state our findings in Chapter 5.

A preliminary version of this work was included in [23].
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Chapter 2 The Fletcher Checksum

2.1 Concept

The Fletcher Checksum is an error detection method that takes an input
sequence of B bit numbers and produces two B bit checksums for which
the present state is a function of all past inputs [3]. We will refer to these
two B bit checksums as s and t. Both s and t are arithmetic checksums
calculated by adding cumulative input values, x`, which can be interpreted
as integers. The addition can be performed with modulo 2B (two’s comple-
ment) or 2B − 1 (one’s complement) arithmetic, with B being the number
of bits in each word. One’s complement arithmetic can be carried out by
doing unsigned arithmetic followed by a modulus operation, which is per-
formed by adding the overflow bit back into the B lower bits of the sum. For
our implementations we chose one’s complement arithmetic instead of two’s
complement because it offers better error detection [8], but our system can
easily be reconfigured to support two’s complement arithmetic.

Let x` represent the input word at time `. Then, the two Fletcher Check-
sum outputs s and t are calculated according to:

s`+1 ← s` + x` (1)

t`+1 ← t` + s` (2)

To compute the checksums we first initialize all the variables to zero
(s0 = 0, t0 = 0). Then, the first input value is added to the first result
of the checksum. Consequently this checksum result is added to the second
checksum result. In this manner we compute the checksum results for each
new word. In other words, s is the sum of all prior and current inputs x,
and t is the sum of all prior and current values of s. The first and second
checksum results, s and t, are the same bit size as the input words x. The
total checksum result is the concatenation of the last two computed check-
sum values of s and t.
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For example, the first four checksum values can be calculated as follows.
Recall, all arithmetic operations are performed modulo 2B − 1.

s0 = 0 t0 = 0

s1 = s0 + x1 = x1 t1 = t0 + s1 = x1

s2 = s1 + x2 = (x1) + x2 t2 = t1 + s2 = 2x1 + x2

s3 = s2 + x3 = (x1 + x2) + x3 t3 = t2 + s3 = 3x1 + 2x2 + x3

s4 = s3 + x4 = (x1 + x2 + x3) + x4 t4 = t3 + s4 = 4x1 + 3x2 + 2x3 + x4

The result of each final checksum, after four inputs (x4), are the values
of s4 and t4. Generalizing this idea, we can represent the checksum values
purely in terms of the inputs x.

s` =
n∑

`=0

x` (3)

t` =
n∑

`=0

s`

=
n∑

`=0

∑̀
k=0

xk

=
n∑

`=0

(n− `+ 1)x` (4)

A serial hardware representation of the checksum and one’s complement
arithmetic is illustrated in Figure 1 and Figure 2. We perform the modulo
2B − 1 operation when we add the carry bit or bits back into the sum.

reg reg
t

s

B

B

B

B

B

Figure 1: Hardware design of Fletcher Checksum

5



1

B+1 B
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B

B

Figure 2: Hardware design of one’s complement arithmetic

2.2 Mathematical Description of the Parallelized Fletcher Check-
sum

The Fletcher Checksum was originally created to process serially trans-
mitted data; because of this it is an inherently serial set of operations. This
means that each current output depends on the preceding output. For this
reason a typical implementation of the checksum is limited to processing one
B bit input word per clock cycle. Consider that if large amounts of input
data must be processed (for example, when computing a fingerprint of a pro-
cessor’s internal state), the data must be serialized into B bit words. This
limits the speed greatly. On the other hand, if we were to process more words
per clock cycle, we would need multiple inputs, but in Figure 3 we see that
multiple typical implementations would produce multiple checksum values
instead of one overall value. For this reason the serial implementation of the
checksum cannot scale to process data from more than one input.

In order to get past the limitation of only being able to process one input
word per clock cycle, we have designed two new methods for parallelizing
Fletcher Checksum computation that allows a system to have P parallel in-
puts. This system takes into consideration the dependencies on the previous
iterations of the checksums and performs additional arithmetic operations to
obtain the same final total checksum result.

As shown in Figure 3, we can see that when we implement P parallel
instances of the Fletcher Checksum we obtain P particular checksum results
si and ti for each set of specific inputs. In this case P represents the paral-
lelism and signifies the number of simultaneous inputs. Now, si and ti, where
0 ≤ i < P , are the partial checksums calculated for each block. In order to
obtain a single unified answer for s and t, we must perform arithmetic oper-
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Checksum
Block

Checksum
Block

x9 x5 x1

x8 x4 x0
s0=x8+x4+x0

s1=x9+x5+x1 

Checksum
Block

Checksum
Block

x10 x6 x2

x11 x7 x3

s2=x10+x6+x2 

s3=x11+x7+x3 

t3=x11+2x7+3x3 

s2=x10+2x6+3x2 

t1=x9+2x5+3x1 

t0=x8+2x4+3x0

Figure 3: Four Parallel Checksum Blocks

ations on the single individual answers and combine the results in the same
proportions as the serial implementation would. The final total checksums,
s and t, that are calculated are the outputs that are the Fletcher Checksum.

By reformulating (3) and (4) we can obtain new expressions for s and t
in terms of the partial checksums si and ti according to (5) and (6).

s =
P∑
i=0

si (5)

t = P
P−1∑
i=0

ti −
P−1∑
i=0

isi (6)

For example, let’s take a system that has four inputs like the one in
Figure 3. After three clock cycles we can apply the anterior equations and
confirm their output matches the values obtained from (1) and (2).
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According to (5):

s = s0 + s1 + s2 + s3

= (x0 + x4 + x8) + (x1 + x5 + x9) + (x2 + x6 + x10) + (x3 + x7 + x11)

= x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11

According to (6):

t =4(t0 + t1 + t2 + t3)− (0s0 + 1s1 + 2s2 + 3s3)

=4t0 + 4t1 + 4t2 + 4t3 − s1 − 2s2 − 3s3

=4(3x0 + 2x4 + x8) + 4(3x1 + 2x5 + x9)

+ 4(3x2 + 2x6 + x10) + 4(3x3 + 2x7 + x11)

− (x1 + x5 + x9)− 2(x2 + x6 + x10)− 3(x3 + x7 + x11)

=(12x0 + 8x4 + 4x8) + (12x1 + 8x5 + 4x9)

+ (12x2 + 8x6 + 4x10) + (12x3 + 8x7 + 4x11)

− (x1 + x5 + x9)− (2x2 + 2x6 + 2x10)− (3x3 + 3x7 + 3x11)

=12x0 + 11x1 + 10x2 + 9x3 + 8x4 + 7x5

+ 6x6 + 5x7 + 4x8 + 3x9 + 2x10 + x11

We have shown that (5) computes the same output as (1), and (6) com-
putes the same output as (2).
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Chapter 3 Parallel Implementation Design of the Fletcher
Checksum in Hardware

3.1 Implementation Models

In Chapter 2 we saw that the Fletcher Checksum could be reconstructed
into a parallel input format described by equations (5) and (6). In this section
we will focus on how to carry this out in hardware domain. Our aim is to
develop two designs that correctly output the corresponding checksum value
and that offer different cost/throughput trade-offs.

3.1.1 System Architecture: Binary Tree (2n inputs)

For our first approach we developed a tree architecture design that out-
puts the checksum values s and t at every clock cycle. Increasing the problem
size is straightforward because binary trees are easily scalable.

We can see that (5) and (6) are comprised of a combination of the partial
checksums si and ti. We can obtain s from a direct summation of the partial
checksums si by implementing the adders in a tree structure. To calculate t,
each partial checksum si is multiplied by its corresponding coefficient (rang-
ing from 0 to P −1) and added to each other, also using a binary tree. Later,
this result is subtracted from the result obtained from multiplying P times
the summation of all partial checksums ti. At every addition stage we per-
form the modulo 2B − 1 operation to account for the possibility of overflow.
There is a constant output at every clock cycle once the initial values have
finished processing.

The checksum block produces the partial checksums si and ti and is com-
posed of the design in Figure 1. The binary tree addition is implemented in
Figure 5. The checksum block and the tree are composed of registers, adders,
and multipliers. Due to the to the predominance of registers and logic in-
volved in the implementation of the tree architecture, we can see that this
scales linearly. As the number of inputs increases the structure of a perfect
binary tree scales accordingly as is illustrated in Figures 4 and 5.

With this structure we studied two basic designs: one that is pipelined and
one with no pipelining to determine the quantity of additional used resources

9
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s1

t0 

t1 

B
B

B
B

Checksum
Block
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Checksum
Block
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(a) Two basic checksum blocks are used
to calculate partial checksum values.

s0

s1

t0 

t1 

s

t

2s1

(b) From the two partial checksum values
we calculate the complete checksum.

Figure 4: Two parallel input Fletcher Checksum tree design
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(a) Four basic checksum blocks are used
to calculate partial checksum values.

s0

s1

t0 

t1 t

2

s2

s3

sB

t2 

t3 4

s1

s2

s3

3

(b) From the four partial checksum values
we calculate the complete checksum.

Figure 5: Four parallel input Fletcher Checksum tree design
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and compare the trade-off between that and frequency. In the pipelined de-
sign, after each arithmetic unit, a register is added, with the exception of
the sum corresponding to the partial checksum, in which adding a register
would interfere with the feedback loop and give a sum of two incorrect inputs.

3.1.2 System Architecture: Sequential Processing Datapath

In order to reduce the amount of logic that would be implemented, we
redesigned the structure into a sequential datapath of the processed signals.
The first design produced an output of the checksum with every clock cy-
cle, but since what is often needed is the checksum at a particular time, we
can alter the implementation strategy to produce a more hardware-efficient
circuit that will output the checksum on request. This would reduce overall
cost but come with different trade-offs, such as increased number of clock
cycles before a value is output. We implemented this alternate architecture
by using a finite state machine which controls the capture of the values of the
partial checksum and initiates the computation on these. Since the Fletcher
Checksum has a feedback loop, and therefore memory, it is not necessary to
calculate the final checksums during every single clock cycle or store previ-
ous results. All the information that is needed is stored within each partial
checksum. We are able to calculate s and t using the mathematical formulas
(5) and (6) described in Chapter 2 while implementing a sequential datapath
controlled by a finite state machine (FSM).

Figures 6 and 7 show the basic block diagram of this architecture. The
registers preceding the multiplexer receive and store the partial checksums
when an output is requested. These values are then selected by the multi-
plexer. For calculating s the partial checksums si are added to each other
using a feedback loop. For calculating t the result of si multiplied by i is
subtracted from the multiplication of the partial checksums ti with P and
lastly, this value is accumulated through a feedback loop. The FSM controls
the output of a multiplexer and the variable value input to the multiplier.
This same diagram serves designs for any number of inputs with only the
multiplexer size increasing.

In summary, we replaced the adder trees with two multiplexers, one for
each of the partial checksums, and an FSM that controls the multiplying

12



coefficient of si and the select signal of said multiplexers.

s0

s1

t0 

t1 

B
B

B
B

Checksum
Block

x5 x3 x1

x4 x2 x0 B

Checksum
Block

B

(a) Two basic checksum blocks are used
to calculate partial checksum values.

reg s

sel

M
U
X

s0

s1

sel

M
U
X 2

sel

reg t

reg

reg

t0

t1

reg

reg

(b) From the two partial checksum values
we calculate the complete checksum.

Figure 6: Two parallel input Fletcher Checksum sequential design

Having previously designed a pipelined and non-pipelined version we no-
ticed that not using pipelining caused operating clock frequencies that were
low and not comparable to speeds of implementations of other algorithms
used for similar purposes. For this reason we added pipelining stages to the
design so that we could get results that could be compared to the previous
architecture.
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3.2 Estimation of Utilized Components for Each Architecture

The designs that have been implemented are straightforward and allow
us to analyze the number of registers, adders, and constant multipliers. We
can give an estimate of the area and how we expect it to scale in relation to P .

We use the equations described in (5) and (6) and include the adders that
perform one’s complement arithmetic for the modulo operation to obtain a
relative value of registers, adders and multipliers. The sequential design uses
one constant multiplier and one full multiplier, while the tree design uses
several constant multipliers. The values relative to P are shown in Tables 1
and 2. If we compare the values in the Total row for each table we can quickly
see that the there is more use of resources in the tree architecture.

computation registers adders multipliers

P serial Fletcher 3P 2P 0
Checksum units

s =
P∑
i=0

si P − 1 P − 1 0

P
P−1∑
i=0

ti P P − 1 1

P−1∑
i=0

isi 2P − 4 P − 2 P − 2

final subtraction 1 1 0

Total 7P − 4 5P − 3 P − 1

Table 1: Estimated number of registers, adders and multipliers in tree struc-
ture design.

14



computation registers adders multipliers multiplexers

P serial Fletcher 3P 2P 0 0
Checksum units

s =
P∑
i=0

si 2 1 0 1

P
P−1∑
i=0

ti 3 1 1 1

P−1∑
i=0

isi 2 1 1 0

subtraction 1 1 0 0

accumulation 1 1 0 0

Total 3P + 9 2P + 5 2 2

Table 2: Estimated number of registers, adders and multipliers in sequential
structure design.
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Chapter 4 Results

4.1 Fletcher Checksum Generator

Based on the architectures and considerations reviewed in Chapter 3 we
developed a generator that automatically outputs specialized Fletcher Check-
sum modules in Verilog that are ready for synthesis. We are able to assign
values to design parameters that influence the trade-offs between cost and
throughput. These parameters are: checksum size, number of simultaneous
inputs and pipelining.

We verified that our generator was working correctly by testing the out-
put with testbenches we created. The testbenches apply uniform random
numbers between 0 to 2B − 1 to the design, and an accompanying software
implementation provides the correct values.

Noteworthy Features of the Implemented Designs

After creating both designs we have noticed there are a few interesting
points regarding P which are the following:

• Generation for the partial checksums is exactly the same for both ar-
chitectures.

• In the tree architecture, we see the generation of different size trees
depends on the number of inputs and is straightforward to implement.
The tree needs not be perfect binary, but this restriction clearly helps
in the implementation.

• For the sequential datapath architecture, the inputs need not be a
power of two because what is affected by changing P is the FSM and
multiplexer. Any input value can be easily taken into consideration
in the generation of the design because it does not depend on a tree
architecture.

• For the sequential datapath architecture, the calculation of the final
checksums, given the partial checksums, stays the same regardless of
the number of inputs that are implemented and is generated in the
same way for every design with different input parameters.
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4.2 Evaluation Setup

After using the generator to produce a variety of designs with the pa-
rameters specified in Table 3, we synthesized them, first, using an FPGA
design flow, and then synthesizing for an ASIC (using the NanGate 45nm
Open Cell Library). We obtained metrics for the cost and performance of
the implementations.

Type 1: Tree Type 2: Sequential
Number of Input Bits 4, 8, 16, 32 bits 4, 8, 16, 32 bits

Number of Parallel
Inputs

(power of two)
2, 4, 8, 16, 32, 64 2, 4, 8, 16, 32, 64

Pipelining Options
1: Pipelined

2: Not Pipelined
Pipelined

Table 3: Parameters for designs used for synthesis.

The FPGA experiments were performed using Altera Quartus II design
software, targeting an Altera Arria II GX FPGA (EP2AGX45DF29C5). Af-
ter performing synthesis, fitting (including place-and-route) and static tim-
ing analysis, we determine for each design: the number of adaptive LUTs
(ALUTs) that were used; the number of registers that were used; the max-
imum clock frequency at which the design could run; and the critical path.
ALUTs are logical constructs that represent the combinational resources
used. No RAMs or DSPs are used in these designs.

For the ASIC experiments, we used Synopsys DesignCompiler version A-
2007.12, and targeted the NanGate 45nm Open Cell Library, based on the
NCSU 45nm FreePDK. After performing synthesis using the Synopsys tool,
we use its ability to provide estimates for area (µm2), power (mW ), and
timing (maximum clock frequency and critical path).
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4.3 Synthesis Results

4.3.1 Comparison Between Different Architectures

As detailed in the previous section, we have several parameters that affect
the system performance that can be compared and evaluated. In order to
evaluate performance we compared the estimated throughput against several
metrics. We calculated the throughput (T ) for each design, T = Wf , where
W = PB, P is the number of simultaneous parallel inputs, and B is the
number bits per word. Each design is characterized through its checksum
size M and graphed according to the number of registers or ALUTs deter-
mined from Quartus’s reports, or the estimated area or power consumption
determined by DesignCompiler.

In Figures 8 and 9 we compare throughput reached for four families of tree
designs and four families of sequential designs based on checksum size (M)
and with varying values of P . Figure 8 shows throughput on the y-axis ver-
sus ALUTs (combinational logic) on the x-axis. Figure 9 shows throughput
versus registers. The designs are grouped by architecture (tree or sequen-
tial, see Chapter 3) and by checksum size (M). As each line goes up and
to the right, its value of parallelism is increasing (thus increasing the cost
and throughput). We can see that the maximum throughput achieved by
the designs (the last marker, when they reach 256 input bits per clock cy-
cle) decreases as M increases in size in both architectures. This means that
designs with more inputs and shorter word length obtain higher through-
put because higher maximum frequencies are achieved compared to designs
with equivalent total input bits (W ). We can notice the tree architecture
reaches the highest throughputs, but the sequential architecture uses less
resources (ALUTs and registers). This is consistent with our theoretical es-
timation finding of the use of resources per design. Yet, it is notable that,
for the same increase in ALUTs, the sequential designs shows significantly
more gain in throughput than the tree designs. Also, there’s less variation
in performance between different values of M for sequential designs than for
tree designs. When the sequential design scales to the maximum parameters
tested (parallelism P = 8, checksum length M = 64) we can see that the
linear trend is broken. We believe that this is due to unexpected synthesis
difficulties with this challenging parallel design.
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Figure 10: Throughput in Gbits/sec vs estimated implementation area on
Nangate 45nm Open Cell Library.

In Figures 10 and 11 we compare throughput versus estimated imple-
mentation area and power consumption as calculated with DesignCompiler.
We can see that the obtained throughput is about the same for either ar-
chitecture, varying slightly in favor of the tree designs. This is because the
the frequencies obtained where about the same for implementation in both
architectures. The estimated design area is consistent with what we saw in
the FPGA implementation, but with a larger degree of variation for the se-
quential architecture as checksum size M increases. We can see similarities
between design area and power consumption estimation, which is consistent
with what we would expect.

For the tree architecture designs, when we have 2 parallel inputs, the
critical path is usually between the two consecutive addition blocks in the
checksum stage. This is the only place in the design where, due to the feed-
back loop, we do not have a pipeline stage between two sums. Then, as
the number of inputs increases, and therefore the complexity of the design
increases, the critical path tends to migrate to the addition of two branches
of the tree structure.
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For small sequential architecture designs, when parallelism is 2 or 4, the
critical path is also usually the feedback loop that adds the second checksum
values. When parallelism increases, we can see that the critical path changes
to the path that contains the full multiplier.

4.3.2 Tree Architecture: Effect of Pipelining

If you recall, from Section 3.1.1, we introduced the notion of adding this
design parameter to the tree architecture due to the potential of obtaining
substantial increase in clock frequency for the larger designs. After every
logical operation, a pipeline stage was added when doing so would not affect
the correct functioning of the checksum. After analyzing the results obtained
from the synthesis of the pipelined and non pipelined versions of the same
design, we determined that, for comparison between architectures, the sig-
nificant increment in throughput outweighed the costs in logic components
and registers. For this reason, the experiments in the previous section used
the pipelined version of the tree architecture.

In Figure 12 we can observe the difference in pipelining the tree archi-
tecture for M = 16. The variance in additional registers needed is more
than the variance in increased throughput. In Figure 13 we can recognize a
similar trend, results for designs with M = 16 and M = 32 lie between the
represented values. The unpipelined tree architectures achieve a throughput
similar to the sequential designs. On the other hand, the pipelined versions
provide the highest throughput.
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Chapter 5 Conclusions

This thesis set out to explore the feasibility and implementation trade-
offs of a multiple simultaneous input design for a Fletcher Checksum. Speed
and complexity of the method used to verify the correctness of data trans-
mission is of significant importance in the overall design of the system. We
established different methods for parallelizing the Fletcher Checksum and
compared the throughput and implementation costs.

We have found that we were able to reconstruct the Fletcher Checksum
through combination of the partial checksums corresponding to each simul-
taneous input. The results have shown that parallelization of this checksum
causes an increase in throughput directly proportional with the area neces-
sary for its implementation. When comparing both architectures and main-
taining other parameters the same, we notice there are significant differences
in choosing a fully pipelined version of the tree and sequential processing
datapath. The former achieves greater throughput at a higher cost. On the
other hand, the latter on average uses around half of the resources for a given
parallelism. We have concluded that if we need to obtain a checksum result
for every clock cycle then we should use the tree design in implementation,
but if we only need the checksum result upon request, then the sequential
design is more efficient. Yet, it is a recurring observation across both archi-
tectures, that it is more desirable to handle smaller word lengths and increase
parallelism, so that the design can attain higher maximum frequencies, which
is a determining factor in achieving faster throughput.

Offloading specific computations to hardware is a way that we can im-
prove data processing in many systems. Future work for this line includes
performing tests to determine error-detection capabilities of our designs dif-
ferent input data types. Also, we will consider other algorithms and hardware
implementations.
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