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Abstract of the Dissertation

On the Optimization of Grid Systems

by

Kai Wang

Doctor of Philosophy

in

Electrical and Computer Engineering

Stony Brook University

2013

Grid systems are widely used to transfer power and information in various

forms in many engineering and scientific areas such as grid computing sys-

tems, electrical grids, control grid and etc. A good handling of task partition,

task allocation and load balancing can significantly increase a grid systems’

efficiency. In this dissertation, balancing the loads in electrical grid systems

and optimizing grid computing systems are analyzed.

Unbalanced loads on feeders increase power system investment and oper-

ating costs. Three-phase lateral loads phase swapping is one of the popular

methods to balance such systems. We employed a dynamic programming

algorithm that makes optimal suggestions to balance the load in electrical
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grid systems given an input of previous years’ data. The algorithm is com-

pared with exhaustive search, the greedy algorithm and heuristic algorithms

and it excels in terms of optimality and running time. Based on this, a more

general load balancing algorithm with spatial consideration for electrical grid

is developed.

For the grid computing systems, an interesting class of research topic-

s is the optimal task partition and their mapping to different distributed

computing machines with communication time that is nonlinear to the size

of the transferring files. Grid computing systems are essentially distribut-

ed computing systems without workload dependencies on different machines

and with internal communications. Thus, Divisible Load Theory (DLT) is

a good match to the scheduling problems in grid computing systems. We

developed a DLT-based method to optimally partition the computing load

into fractions and map them to computing machines with nonlinear com-

munication speed in the size of loads. Furthermore, two novel performance

measurements for grid computing systems with multi-level tree networks are

examined. One measure is utilization: the fraction of time processors are

busy processing computational load. The other is progress: the percentage

of load processed so far at a given time. A variety of scheduling policies are

considered.
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Chapter 1

Introduction

In this thesis, load balancing and scheduling for two types of grids are intro-

duced: electrical grids and computing grids. An electrical grid is a network

used to transfer electricity and a computing grid is a collection of computing

machines connected for a common computing task.

An electrical grid is comprised of electrical feeders in each part of which

there are three phase lines. At any location along a feeder, each of these three

phase lines have a certain amount of current and the variation of the amount

of these current is defined as the phase unbalance. It is desired to have equal

current at every point along all the feeders so that the phases could be fully

utilized and current on phase lines could be more easily kept under the line

capacity. Traditionally, the electricity companies send workers to adjust their

transformers’ phase assignments using workers’ experience and intuition once

a year. This greedy algorithm-like method is hardly able to reach the optimal

assignment. As a result, electricity companies are introducing operational
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methods for this problem. The goal is to reduce the unbalance on feeders

and make the smallest change to the transformers to relieve the workers’

burden and minimize the power cut off time for residents. To exhaustively

search an optimal solution to the phase balancing problem is not possible

because of the large number of customers. As a result, researchers used

linear/integer programming method and heuristic algorithms to solve this

problem. However, both of these two methods have their disadvantages: the

linear/integer programming method is not able to use nonlinear objective

functions and heuristic algorithms are not able to guarantee their solutions’

optimality. In this thesis, we introduce a dynamic programming algorithm

to solve phase balancing problem. It produces optimal solution and it has a

reasonable running time.

A grid computing system is a loosely coupled and geographically dis-

persed distributed system with (usually) non-interactive workloads. As the

system receives a computing task, it needs to partition and allocate the par-

titioned fractions of loads to different computing machines. The scheduling

problem is to find the best arrangement to minimize the total running time.

Here, we focus on the “divisible loads” which has no dependency and can

be partitioned into arbitrary size. Also, we suppose the computing time for

a task on a specific machine is known or can be estimated before running

it. The divisible load model has a large number of applications including

digital image processing, banks, insurance companies and etc. For divisible

loads scheduling, Divisible Load Theory (DLT) is a good theory because it

is tractable and scalable. The linear divisible load model has been studied
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for over a decade with various network topologies. Divisible loads with non-

linear running time has been investigated recently. However, divisible loads

with nonlinear communication time has not received that much researchers’

attention. In this thesis, we introduce a DLT-based algorithm to solve this

problem. Meanwhile, in the field of performance evaluation for grid com-

puting system, several performance measures have been considered such as

makespan (finish time), speedup and isoefficiency. In this thesis, we propose

two novel performance measures: progress and utilization. These two perfor-

mance measures are useful for real time data processing, scheduling policy

comparative evaluation and resource allocation.

3



Chapter 2

A Dynamic Programming

Algorithm for Phase Balancing

Problem

2.1 Introduction

Over the past 15 years, research has been conducted on three phase feeder

balancing. Phase balancing aims to reduce the unbalance of loads on three

phases which can bring severe voltage drops in the feeders. The majority

of electric power systems utilize, in the electric distribution system, feed-

ers which carry three phases of alternating current/voltage. It is desirable

for electric utilities and providers of electric power distribution systems to

have approximately equal loads on each phase. This is a problem as even if

loads are initially balanced, with time loads increase, decrease, are added or
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removed from each phase, causing an unbalance of loads. Even during the

same day there may be much variation of load on each phase of a feeder.

There are two major phase balancing methods: there is feeder reconfigura-

tion at the system level and there is phase swapping at the feeder level [2].

Phase swapping is not as well studied in the electric power literature as feeder

reconfiguration. This chapter is about phase swapping algorithms.

Why does one wish phases to be in balance? Phase unbalance can limit

the amount of power transferred on a feeder as on an unbalanced feeder one

phase may reach its maximum carrying capacity measured in amperes (i.e.

ampacity) while the other two phases are then underutilized and unable to

carry their full or even nearly their full amount of current. This is poor

utilization of the existing power distribution network and may result in un-

necessary feeder expansion and upgrades which raise utility costs. Because

one phase may be near its maximum ampacity, phase unbalance can also

lead to preventive breaker/relay tripping and shutdown of a feeder whose

restoration also involves a cost to the electric utility.

Periodically crews rebalance feeders. This can be done during periods of

maintenance or restoration. One suburban Northeast U.S. utility rebalances

feeders if the percentage of unbalance exceeds 15%. Generally it takes 10 to

15 minutes to switch a load so the overall job may take an hour plus travel

time to the location. Work by a crew of two employees can cost several

hundred dollars. However preparatory work such as scheduling can bring

the total cost to several thousand dollars for one tap change. Three factors

are considered in making a decision to rebalance a feeder: the monetary
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Figure 2.1: Three phase wiring diagram

cost of making the tap change(s), the expected increase in feeder balance

(saved energy) and the temporary interruption of power to the customer. Tap

change generally fall into two situations: a new customer is to be connected or

the phase balance for existing feeders has become significantly unbalanced.

Once a feeder is re-balanced it will initially be in balance but drift into

unbalance as time goes on.

Even in more limited electric power systems, the same problems may

arise. For instance Gaffney [3] reports problems with effective phase balanc-

ing in electric power systems in the tactical battlefield environment, largely

because of insufficient operator training and experience. David [4] [5] pro-

poses automatic phase balancing but does not propose an algorithm for this

purpose.

The variables in the phase balancing problem are the phases each load is

connected to and the goal is to minimize the degree of unbalance on feeders.
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Many algorithms have been used to solve phase balancing problem. The

original work is Zhu, Chow and Zhang’s mixed-integer programming in 1998

[1], but this algorithm has a drawback that the objective functions can only

be linear. In 1999, to expand to nonlinear objective functions, Zhu, Bilbro

and Chow introduced simulated annealing [2]. In 2000 and 2004, Chen and

Cherng and Gandomkar applied a genetic algorithm to the problem [6] [7].

In 2005, Lin, Chen, et. al adopted a heuristic greedy algorithm [8]. In 2007,

Huang, Chen, Lin, et. al used an immune algorithm to solve the problem [9].

These heuristic algorithms can get near-optimal solution quickly but can not

guarantee optimal solutions.

Many combinatorial optimization problems have no known efficient algo-

rithms capable of always producing optimal solutions. For those problems

that computer scientists have been shown to be NP -complete, there is con-

vincing evidence that no correct, efficient algorithms can exist. An efficient

algorithm for any one of the hundreds of knownNP -complete problems would

imply efficient algorithms for all of them, implying that all are equally hard

to compute.

The phase balancing problem we describe in this chapter can readily be

shown to be equivalent to integer partitioning, a well-known NP -complete

problem. Thus an efficient algorithm for phase balancing which always pro-

duced optimal solutions would imply efficient algorithms for all problems

in NP , which computer scientists considered extremely unlikely. Howev-

er heuristic algorithms that produce near optimal solutions with reasonable

efficiency are possible, and are often developed for this purpose. [10]
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In this chapter, five algorithms are applied to the phase balancing problem

and a comparison is made between those five methods: Exhaustive search,

Greedy Algorithm, Simulated Annealing, Genetic Algorithm and Dynam-

ic Programming. All the algorithms use the same variables and objective

function so that a comparison can be made.

We purposefully did not consider particle swarm optimization (PSO) and

differential evolution (DE) algorithms in this chapter. We note that these

methods are most appropriate for complex problems with ill-defined search

spaces, as opposed to classical combinatorial optimization problems like ours,

which is essentially a variant of the knapsack problem.

The key lesson of this chapter is that heuristic techniques such as simu-

lated annealing and genetic algorithms (and DE and PSO) are superseded

by the dynamic programming and combinatorial search methods we employ,

which give optimal results instead of heuristic ones. Our new dynamic pro-

gramming algorithm gives optimal results in reasonable time.

2.2 Objective function and stopping criteria

There are various kinds of objective functions such as cost functions in [2]

and the loss function in [6]. Also, loads could be connected to two or three

phases. Here we consider that all the loads are connected to single phase.

The load range is set as integers between 1 and 100. Larger loads range can

be scaled to this range. In this test, the objective function is the phasing

unbalance index (PUI) which is used in many phase balancing papers [9] [8]
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[12]:

PUI =
Max(|Ia − Iavg| , |Ib − Iavg| , |Ic − Iavg|)

Iavg
∗ 100% (2.1)

Here, Ia, Ib and Ic are the total current on phase a, b and c. Iavg is the

mean value of the current on each single phase.

For greedy and heuristic algorithms, the stopping criteria is: when the ob-

jective value reaches 1/500 times of the initial value. Other stopping criterias

are of course possible.

2.3 Exhaustive search and a backtracking al-

gorithm

For n loads, each load is connected to one phase throughout the chapter.

Since there are n loads, and each load can be on one of three phases, there

are 3n ways to assign the loads to different phases. Under exhaustive search

we calculate minimum objective functions for any potential number of tap

changes. One then selects the solutions which satisfy the stopping criteria

and finds the minimum number of tap changes among them.

Here we present a backtracking algorithm which can obtain an optimal

solution as exhaustive search does, but has a smaller computational com-

plexity [10]. Suppose one wants the most balanced solution using at most t

tap changes. This can be done with backtracking in O((2n)t) since each tap

change has two phase choices, which is better than the exhaustive search for
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small t. In this solution, the state space will be a vector of length t: The

candidates for the ith position will be the possible tap changes greater than

the last one in terms of load indexes.

The pseudo code appears below. Here Sk is the set of candidate nodes in

the decision tree for k tap changes:

Backtrack - DFS(A,k)

if A = (a1, a2, · · · , ak) is a solution, report it.

else

k = k + 1

compute Sk

while Sk 6= � do

ak = an element in Sk

Sk = Sk − ak

Backtrack - DFS(A,k)

2.4 Greedy Algorithm

2.4.1 Greedy Algorithm

A greedy algorithm is any algorithm that finds a local optimal solution at

every step. It gives a global optimal solution to many problems, but not all

problems. It does not give a globally optimal solution to the phase balancing

problem.
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2.4.2 Greedy Algorithm for Phase Balancing

The steps are:

1. Input the loads and initial phases.

2. Calculate total loads on each phase.

3. Select one load from the phase with largest total load and move it to

the phase with smallest total load. The load is selected so it can minimize

the difference of the total loads on those two phases.

4. Calculate the objective value and see if it satisfies the stopping criteria.

If yes, finish. If not, return to step 3.

2.4.3 Results

In figure 2.2, 100 randomly generated loads and phases are used for testing.

The figures are the average of 300 runs. The horizontal axis is the number of

tap changes the program needs and the vertical axis is the probability they

appeared in 300 runs.

2.5 Simulated Annealing

2.5.1 Simulated Annealing Algorithm

The intuition behind the simulated annealing algorithm comes from the pro-

cess of molten metals. The system is slowly cooled in order to achieve its

lowest energy state. The basic idea of the method is that, in order to avoid

being trapped in local minima, the algorithm usually accepts a “move” to a
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Figure 2.2: Probability VS Number of tap changes for the greedy algorithm

better solution but occasionally accepts a “move” that worsens the objective

function with probability of:

ProbAccept = e−4E/kT (2.2)

Here e is the irrational number (=2.71828...). 4E is the change between

the objective values for two different solutions, k is a constant relationship

between temperature and energy, and T is “temperature”.

Simulated annealing is applicable to problems where one solution can be

transformed into another by a “move” and there is an objective function

available for evaluating the quality of a solution.
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2.5.2 Simulated Annealing Algorithm for Phase Bal-

ancing

The steps are:

1. Input the loads and initial phases. Calculate the objective value.

2. Randomly select one load, move its phase to a randomly selected

phase. Calculate the objective value.

3. Calculate the difference between the values in previous two steps. If

the difference is negative, accept the “move”. If not, accept the move with

the probability in equation 2.

4. Repeat step 2 until it meets the stopping criteria.

2.5.3 Results

In figure 2.3, 100 randomly generated loads and phases are used for testing.

The horizontal axis is time axis, the vertical axes are objective values and

numbers of tap changes. It can be seen that beyond a certain number of tap

changes there is only a minimal improvement on the objective function (law

of “diminishing returns”).
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Figure 2.3: Probability VS Number of tap changes for the simulated anneal-
ing

2.6 Genetic Algorithm

2.6.1 Genetic Algorithm

Genetic algorithms belong to a larger family of algorithms known as evo-

lutionary algorithms. They apply concepts from the theory of biological

evolution, such as natural selection, reproduction, genetic diversity and prop-
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agation, species competition/cooperation, and mutation, to search and opti-

mization problems.

A genetic algorithm starts from the initial population (initial phases of

the loads from some random solution) which are represented by a string of

binary numbers. In each generation, crossover, mutation and selection are

applied to the population in order to converge to the best solution.

2.6.2 Coding

In GA, a population is a set of solutions (chromosomes) for the objective

function. In the population, the variables are encoded by use as binary

numbers. For phase balancing problem, 2 bits are considered since one needs

to represent 3 phases. “00”, “01” and “10” represent phase 1, 2 and 3

respectively. After mutation or crossover, “11” will be changed to “00”, “01”

and “10” with equal probability if it is generated.

2.6.3 Objective function

In the GA process, the value of the objective function mirrors the property

of a solution. Better solutions have larger objective values.

2.6.4 Crossover

The crossover operator will proceed as follows. A crossover point is selected

randomly for each of two solutions. A crossover probability is then invoked
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(Pc from 0.6 to 0.8) to decide whether to make a swap of bits. An example

is shown as follow:

String 1: 110|10011

String 2: 101|01110

Crossover point

String 1: 101|01110

String 2: 101|10011

2.6.5 Mutation

The mutation operation is implemented by randomly selecting any binary bit

with a prespecified probability (about 0.01) and reversing it. The purpose of

mutation in GAs is preserving and introducing diversity. Mutation should

allow the algorithm to avoid local minima by preventing the population of

chromosomes from becoming too similar to each other, thus slowing or even

stopping evolution.

An example is shown as follow:

Before: 11010011

Mutation point

After: 11000011

2.6.6 Selection

The selection operator creates new populations or generations by selecting

individuals from the old population. The selection is probabilistic but biased
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towards the best solutions as special deterministic rules are used. In the new

generations created by the selection operator, there will be more copies of

the best individuals and fewer copies of the worst. A common technique for

implementing the selection operator is the roulette wheel approach.

In this process, the individuals of each generation are selected for survival

into the next generation according to a probability value proportional to

the ratio of individual fitness (i.e. value of objective function) over total

population fitness; this means that on average the next generation will receive

copies of an individual in proportion to the importance of its fitness value.

2.6.7 Results

As shown in figure 2.4 and 2.5, 100 random generated loads and phases are

used for testing. The figures are the average of 300 runs. In first graph,

the horizontal axis is the number of generations for the genetic algorithm

and the vertical axis is the corresponding objective value. In second graph,

the horizontal axis is the number of tap changes the program needs and the

vertical axis is the probability they appeared in 300 runs.

We also simulated an immune algorithm which is similar to genetic al-

gorithm in the use of crossover, mutation and selection. It was found to

perform similar to our genetic algorithm.
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Figure 2.4: Fitness value VS Number of generations for a genetic algorithm

Figure 2.5: Probability VS Number of tap changes for a genetic algorithm
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2.7 Dynamic Programming

2.7.1 A Dynamic Programming Algorithm to Solve

the Phase Balancing Problem

An “optimal” algorithm for phase balancing is now presented. The phase

balancing problem is NP -complete even with two phases and no cost per

tap change, because it is equivalent to the integer partition problem and the

integer partition problem is NP -complete. The hardness of integer partition

depends upon large numbers, because it is not strongly NP -complete. For

the phase balancing problem, the loads range between 1 and several thousand

amperes. Assume that there are n loads, where the ith load has weight wi

and is currently assigned to feeder li. We assume the weights of all loads are

integers, and the total load T =
∑n

i=1wi. As will be seen the algorithm runs

faster with smaller T . Loads can be scaled to bring this about. The solution

produced by the dynamic programming algorithm are optimal but it should

be noted that the scaling is a source of approximation.

We present an algorithm which runs in O(nT 2) to find the minimum

number of changes to reach a particular quality criteria.

Denote the total load on phase i by Li. Because there are 3 phases, there

are about T 2 sets of possible values for L1, L2, and L3. This is as both L1

and L2 are integers between 0 and T , and L3 = T − L1 − L2, L3 would be

specified after one has L1 and L2.

The algorithm will enumerate all possible partitions of T into L1, L2, and
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L3, and in particular for each such partition P find way to move from the

current state to P using the fewest number of changes. One can evaluate

each of these O(T 2) partitions according to the objective function, eliminate

all which are not good enough, and then find the minimum cost good-enough

transformation.

Define C[x, y, i] to be the minimum cost (in terms of number of moves)

to realize a balance of L1 = x, L2 = y and implicitly L3 = T − L1 − L2 after

reassignments to the first i loads (from 1 to i).

We define the following recurrence relation:

C[x, y, i] = Min[C[x−li, y, i−1]+t(i, 1), C[x, y−li, i−1]+t(i, 2), C[x, y, i−1]+t(i, 3)]

(2.3)

Here t(i, φ) is the cost of moving the ith load to phase φ. C[x, y, i] is the

minimum number of tap changes to move from the initial loads to [x, y, Ti−

x− y].

Ti =
i∑

j=1

Lj (2.4)

If ith load stays on phase φ

t(i, φ) = 0 (2.5)

If ith load leaves phase φ

t(i, φ) = 1 (2.6)
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Assume the ith load is initially on line 1. Then the optimal solution either

leaves load i on line 1 (incurring no cost for the move), or moves it to line

2, or moves it to line 3 (both of which incur a cost of 1 operation). We need

similar recurrences for the cases where load i is on line 2 or line 3. The basis

of this recurrence is that C[L1, L2, 0] = 0, C[x0, y0, 0] = ∞ for all x0 6= L1

and y0 6= L2 (meaning no other states are achievable with zero moves).

Lastly, one calculates objective values for all (Tn + 1)2 possible [x, y, n]

using equation 1 and get the minimum tap changes from C[x, y, n]. Thus,

one does not need to calculate objective values for other C[x, y, i], i ∈ [1, n−

1] which significantly reduces running time. In other words, the dynamic

programming algorithm naturally produces a minimal solution for all number

of tap changes desired, efficiently.

2.7.2 Results

As in figure 2.6, 100 randomly generated loads and phases are used for testing.

The figure is the average of 300 runs. The horizontal axis is the number of

tap changes the program recommends and the vertical axis is the probability

they appeared in 300 times running.

2.8 Comparison

Two factors affect the results: the objective value and the number of tap

changes. The objective value represents the unbalance of the loads on feeders.

Meanwhile, each tap change costs some amount of money. So the aim is to
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Figure 2.6: Probability VS Number of tap changes for the dynamic program-
ming

get the desired objective value with a number of tap changes which is as

small as possible.

Table 2.1 compares the performance of the six approaches in terms of

running time and the number of tap changes for a single run of each program

written in Matlab. Table 2.2 illustrates the performance improvement of each

algorithm. The table shows wins (W ), losses (L) and ties (T ) of the algorithm

in the first column compared to the algorithm listed for each column.

From the previous two tables, one can see that DP and GA are prob-

ably the better algorithms for the Phase Balancing problem. So to further

compare the performance of DP and GA, we have two tables. Table 2.3 and

table 2.4 are two tables made from 20 examples of DP . Every example has
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Table 2.1: Performance comparison

Algorithms Running Time (ms)

Exhaustive Search 6642.97
Backtracking Algorithm 886.49

Greedy Algorithm 5.65
Simulated Annealing 1.45
Genetic Algorithm 72.15

Dynamic Programming 223.62

Table 2.2: Performance comparison 2

Algorithm DP GA Greedy SA

DP 10W/40T 42W/8T 45W/5T
GA 10L/40T 40W/6T/4L 42W/4T/4L

Greedy 8T/42L 4W/6T/40L 40W/4T/6L
SA 39L/11T 4W/4L/42T 6W/4T/40L

10 loads and the integer load range is 1 to 10. The columns differ in the

number of tap changes. The rows are the different runs. The numbers in

the table are the objective values. Table 2.5 is made from 20 examples of

the genetic algorithm, every one with the same initial loads and phases as

DP has. The vertical axis is the number of runs. The first column holds the

best objective values that the GA obtained and the second column includes

the corresponding number of tap changes the GA needed for those objective

values. From these two tables, one can see that in some cases the best ob-

jective values that the two algorithms can get are same and DP needs less

tap changes and other times GA loses both in terms of the objective value

and number of tap changes.

Another test as in figure 2.7 is a gathering of 30 examples. In each
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Figure 2.7: Comparision of number of tap changes between DP and GA

example, both the DP and the GA are give same set of loads and initial

phases and then we record the result they give in terms of the number of

tap changes. Every example has 10 loads and the integer load range is 1 to

10. DP lost very few times but DP gave better objective values in those

examples.

Since most of the time DP and GA have the same performance in terms

of the unbalance factor, but GA needs a larger number of tap changes, it was

desired to investigate the size of the loads those two algorithm transferred,

that is, whether GA transfers more loads with relatively smaller size and

DP transfers loads with relatively larger size. Figure 2.8 and figure 2.9

show the loads’ size VS the frequency that were transferred. From figure 2.8

and figure 2.9, one can see that DP is somewhat biased to larger values of
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Figure 2.8: Tap change load size VS frequency for genetic algorithm

switched load size and the loads that GA transfers are distributed evenly in

load size because GA transfers loads randomly but DP transfers loads with

less tap changes (less total load transfer). While most of the algorithms in

the chapter were implemented in Matlab, running time of a faster C version

of the dynamic programming algorithm appears in Table 2.6.

2.9 Conclusion

Dynamic programming does the best in terms of performances though it is the

slowest of the non-exhaustive algorithms. This is a very promising algorithm

because of the algorithm’s optimality. It was found that even though the

genetic algorithm and dynamic programming produced solutions that were
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Table 2.3: Objective function and number of tap changes for dynamic pro-
gramming for ten runs

Number of tap changes: 1 2 3

1st Run 0.2750 0.0500 0.0500
2nd Run 0.0179 0.0179 0.0179
3rd Run 0.0678 0.0169 0.0169
4th Run 0.0500 0.0500 0.0500
5th Run 0.2558 0.0465 0.0465
6th Run 0.4769 0.1077 0.0154
7th Run 0.1053 0 0.0526
8th Run 0.1321 0.0755 0.0189
9th Run 0.6154 0.2000 0.0154
10th Run 0.1077 0.0154 0.0154

Table 2.4: Objective function and number of tap changes for dynamic pro-
gramming for ten runs

Number of tap changes: 4 5 6

1st Run 0.1250 0.2750 0.8000
2nd Run 0.0714 0.1786 0.4464
3rd Run 0.0678 0.0169 0.2203
4th Run 0.0500 0.0500 0.0500
5th Run 0.0154 0.0615 0.2462
6th Run 0.0154 0.0615 0.2462
7th Run 0.0526 0.2105 0.3684
8th Run 0.0189 0.1887 0.4151
9th Run 0.0154 0.1538 0.2462
10th Run 0.0615 0.1077 0.2000
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Figure 2.9: Switched load size VS frequency for dynamic programming

almost identical in terms of the unbalance factor to many significant places,

the genetic algorithm can require many more tap changes than dynamic

programming did (often by more than a factor of two). This suggests that

the solution space contains a variety of optimal/near-optimal solutions that

differ significantly in the number of tap changes. The genetic algorithm, at

least as presently constituted, is not able to discern the best solution as well

as the dynamic programming algorithm. The good news is that an optimal

algorithm for phase balancing in dynamic programming is available with

reasonable complexity ( O(nT 2) ). This is an interesting problem from both

the viewpoint of algorithms and an interesting power system application.
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Chapter 3

A Dynamic Programming

Algorithm for Spatial Phase

Balancing Problem

3.1 Introduction

In the previous chapter, we introduced a dynamic programming algorithm

to obtain the optimal solution for phase balancing problem in a reasonable

running time. However, this algorithm has a shortcoming in that it only

balances the whole feeder, but not every section along the feeder. This may

lead to a situation where the three phase current is balanced at the beginning

of the feeders, but not balanced at other positions of the feeders.

In this chapter, a dynamic programming algorithm is applied to solve the

phase balancing problem along each part of the feeder. The computation
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complexity of this algorithm is O(nT 2) (T is the sum of all the loads) in

the worst case, and all operations we do are in linear time. A mathematical

model, algorithm and objective functions are introduced (section 3.2). An

optimal dynamic programming algorithm is discussed in detail (section 3.3).

Simulation results appear in section 3.4. The conclusion is in section 3.5.

3.2 Problem and Algorithm Formulation

3.2.1 Overview

The algorithm we discuss in this chapter is a dynamic programming algo-

rithm. Assume the feeder is linear and the generation input is at the left.

In terms of an objective function we seek to minimize a weighted sum of the

degree of imbalance of each section along the feeder for a given number of tap

changes. Suppose we have N loads on a linear feeder. To do this we create N

objective function matrices (one for each section) as well as N cost matrices.

For each matrix in both sets the (horizontal) rows correspond to potential

load on phase A and the (vertical) columns correspond to the potential load

on phase B. Thus the (i, j)th entry of the kth objective function matrix is

the objective function value with partial total load i for phase A for the first

k sections and with partial total load j for phase B for the first k sections.

Implicitly the partial total load on phase C is the total load on the first k

sections minus load i and minus load j for the first k sections.

Also, the (i, j)th entry of the kth cost matrix is the minimum number of
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Table 3.1: An example feeder with single phase loads

Load size: 2 1 2 1

Phase: A B C A

tap changes one has to use to achieve the corresponding objective function in

the (i, j)th entry of the kth objective function matrix. How does one compute

the (i, j)th entry in the kth objective function matrix? One knows the load

on phase A is i for the first k sections and the load on phase B is j for the

first k sections. Implicitly one then knows the load on phase C is the total

load for the first k sections minus i and minus j. So the (i, j)th entry is the

absolute difference between the maximum of the loads on each phase minus

the average load per phase for the first k sections and this difference is divided

by the average load per phase for the first k sections. On the other hand, the

(i, j)th entry of the kth cost matrix (which is the minimum number of tap

changes to achieve the corresponding objective function value) is generated by

a recursion that appears below. Note there are different recursions depending

on whether loads are connected to one phase or two/three phases.

Once all of the matrices are generated, what is essentially a shortest path

algorithm can be run from matrix to matrix where the distances are the

objective function entry values. However in generating the possible paths

thru the matrices there are some constraints on which entries in the (k +

1)st matrix an entry in the kth matrix can be connected to. For instance

if one is at entry (4,5) with a load of 1 on phase C in the 3rd objective

function matrix, a path can connect it to entry (6,5) with a load of 1 on
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phase C in the 4th matrix if the 4th load is 2 (single phase load) but a path

cannot connect it to (8,5) with a load of one on phase C in the 4th matrix.

Thus, unlike the Dijkstra shortest path algorithm we generate all possible

feasible paths. However these constraints reduce the number of paths to be

considered. Actually there is one more set of matrices that is generated as

the recursion is run to record the associated paths for future use. This is

done in k path matrices, where using similar definitions of i and j as before,

the (i, j)th entry of the kth matrix is a pointer to the position of its parent

entry along a path in the k − 1st objective function matrix.

To obtain a solution, one fixes as an input parameter to the algorithm the

maximum number of tap changes allowed. Call it M . The last cost matrix

is used to determine the set of solutions that meet this constraint. From

the remaining solutions we can select the solution with the best objective

function value. Once the best solution is selected one can retrieve the phase

assignment from the corresponding path matrix.

Alternately we can create a table of the best solution for each specific

number of tap changes. To create the pth row in the table one can run

the steps of the previous paragraph, keeping only the solutions with p tap

changes. Note that beyond a certain number of tap changes the objective

function value of solutions tend to get worse.

This overview has been phrased in terms of minimizing a weighted sum of

the degree of imbalance on each section. However the use of other objective

functions using these techniques is certainly possible. A different one is

discussed below. Note that the objective function and cost matrices may
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be viewed as N sets of two dimensional matrices, or each one as a three

dimensional matrix. Another note is that an implementation of this dynamic

programming algorithm can do without the objective function matrices since

the objective function values can be computed from corresponding indexes

of the cost matrices.

Another idea to save memory is to use a different notation to describe

the statuses. Let L(i) be the load on each phase after the first i loads on the

line, then We can change our state space from:

C(i, j, k) – the cost to achieve a total load of i on phase a and total load

of j on phase b, after the first k loads, leaving the total load on phase c

implicit.

to

C(da, db, i) – the cost to achieve a difference (delta) load on phase a from

L(i), a delta load on phase b from L(i) after the first i loads, leaving the

delta load on phase c implicit.

The advantage is that this method can reduce the complexity and also we

can delete the solutions with very large deltas. So one can save a great deal

of memory, which otherwise would limit the scalability of this algorithm.

Figure 3.1 and figure 3.2 are examples of objective function values matri-

ces and cost function matrices of a feeder with four single phase loads.

The dynamic programming algorithm is now outlined in more detail.
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Figure 3.1: Example of objective function values matrices

Figure 3.2: Example of cost matrices

3.2.2 Objectives

In phase balancing problem, there are three main objectives:

1. To avoid overloading.

2. To balance three phase current along the feeders.

3. Reduce number of phase changes to save labor cost.
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Figure 3.3: Overall structure for phase balancing

3.2.3 Overall structure

Figure 3.3 illustrates the overall structure for phase balancing of distribution

feeders. One abstracts the node connection and hourly load demand for each

node from feeder topology information and customer information. Based on

this information, one can do a phase balancing analysis and give a phase

assignment recommendation.

3.2.4 Sample feeder with connecting branches

Figure 3.4 shows a radial feeder configuration and the loads (Li,1, Li,2, Li,3)

at node i. In our model, the feeder is divided into nodes and sections. Here,
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Figure 3.4: Sample feeder model

Ii,j denotes the current on phase j of section i. Li,j is the current (load)

demand of node i on phase j. The phase balancing’s objective is to find the

optimal phase assignment for each load to minimize the unbalanced flows at

monitored sections with a certain number of tap changes which is smaller

than the given maximum one.

3.2.5 Objective function

To balance the three phase flows along the whole feeder, one needs to balance

the three phase flow in each section. From Kirchhoff’s current law, one knows

that the current on phase φ flowing out of section j equals to the current on

phase φ from the source minus the total current on phase φ of the first j − 1

sections.

Ij,φ = Isource,φ −
∑j−1

i=1 Li,φ for all φ=a,b,c.

Here, j is the section index and i is the load index. j ≥ 2.

Then the problem becomes to balance
∑k

i=1 Li,a,
∑k

i=1 Li,b and
∑k

i=1 Li,c
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Figure 3.5: Phasing unbalance index

for k = 1 to N .

There are various kinds of objective functions such as cost functions in

[2] and the loss function in [6]. In this chapter, the objective function is

the phasing unbalance index (PUI) which is used in many phase balancing

papers [9] [8] [12]:

PUIi =
Max(

∣∣Ia,i − Iavgi∣∣ , |Ib,i − Iavgi| , |Ic,i − Iavgi |)
Iavgi

∗ 100% (3.1)

Here, Ia,i, Ib,i and Ic,i are the total current loads on phase a, b and c of

section i. Iavgi is the mean value of the current load on each single phase

of section i. Considering the single phase loads case is a subset of the three

phase loads case, we assume that all the loads are connected to three phases.

The load range is set as integers between 1 and 100. Larger loads range can

be scaled to this range.

Also, to avoid overloading, the current on each phase has to be smaller
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than the line capacity.

In this chapter, two approaches are introduced.

The first approach is to limit all the PUI’s of each section under a certain

threshold:

PUI i <= threshold for all i = 1 to N (3.2)

Here, the threshold can be set by operator or one can use binary search

to find the minimum possible threshold.

The second approach is to minimize the weighted sum of phase unbalance

indexes for each section of the feeder:

Minimize
i=N∑
i=1

wi ∗ PUI i (3.3)

Subject to:

wi =
∑

Iφ,i (3.4)

Iφ,i ≤ Ci (3.5)

where

φ is one of three phases a, b and c.

i is the index of section from 1 to N .

Ci is the phase line capacity of phase j of section i.
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3.2.6 Load type

There are two types of loads on the feeder: one phase loads and two or three

phase loads. Loads on one phase feeders can only connect to one of the three

phases. Loads on the two and three phase feeders can connect to two or three

phases. That is: single phase loads have three tap change possibilities, two

and three phase loads have six tap change possibilities.

The tabular below shows valid connection schemes for various types of

laterals.

Original phase Valid rephasing schemes

3φ

abc acb

abc bca bac

cab cba

2φ

ab ab* ba* a*b

b*a *ab *ba

bc bc* cb* b*c

c*b *bc *cb

ac ac* ca* a*c

c*a *ac *ca

1φ

a a** *a* **a

b b** *b* **b

c c** *c* **c
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Figure 3.6: A yearly load profile

3.2.7 Load pattern

The customer hourly load data can be collected by the AMI (Advanced

Metering Infrastructure) meters. However, it would be hard to do the com-

putation if one makes phase balancing recommendation for the next year

based on all hourly load data of the last year because of the large amount of

data. So the evaluation of the load pattern is considered. One can do phase

balancing analysis based on the load in the “peak time” or the “peak day”

in the summer. Figure. 3.6 and 3.7 shows the load pattern obtained from

one of LIPA’s substation’s data. From the two load profiles, one can see the

peak days of the year are in the summer and autumn and the peak hours of

the day are in the afternoon.
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Figure 3.7: A daily load profile

3.3 A Dynamic Programming Algorithm to

Solve the Phase Balancing Problem

3.3.1 Step1: Use recurrence to record number of tap

changes

Define C[x, y, i] to be the minimum cost (in terms of number of moves) to

realize a balance of L1 = x, L2 = y and implicitly L3 = T − L1 − L2 after

reassignments to the first i loads (from 1 to i).

For the cost matrix for single phase loads we define the following recur-

rence relation:

C[x, y, i] = Min[C[x−li, y, i−1]+t(i, 1), C[x+li, y−li, i−1]+t(i, 2), C[x+li, y, i−1]+t(i, 3)]

(3.6)

Here in the cost matrix, li is the weight of ith load (single phase load),
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t(i, φ) is the cost of moving the ith load to phase φ. C[x, y, i] is the minimum

number of tap changes to move from the initial status to [x, y, Ti − x− y].

Ti =
i∑

j=1

Lj (3.7)

If ith load stays on phase φ

t(i, φ) = 0 (3.8)

If ith load leaves phase φ

t(i, φ) = 1 (3.9)

Assume the ith load is initially on phase a. Then the optimal solution

either leaves load i on phase a (incurring no cost for the move), or moves it

to phase b, or moves it to phase c (both of which incur a cost of 1 operation).

We need similar recurrences for the cases where load i is on phase b or phase

c. The basis of this recurrence is that C[L1, L2, 0] = 0, C[x0, y0, 0] = ∞ for

all x0 6= L1 and y0 6= L2 (meaning no other states are achievable with zero

moves).

For two and three phase loads, suppose the ith load has three single phase

loads li,a, li,b, li,c and they are initially on phase a, b and c. We define the

following recurrence relation:
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C[x, y, i] = Min[c[x− li,a, y − li,b, i− 1], c[x− li,a, y − li,c, i− 1] + 1,

c[x− li,b, y − li,a, i− 1] + 1, c[x− li,b, y − li,c, i− 1] + 1,

c[x− li,c, y − li,a, i− 1] + 1, c[x− li,c, y − li,b, i− 1] + 1]

(3.10)

3.3.2 Step 2: Record the “Path”

In last subsection, when calculating the number of tap changes for each

[x, y, i], one needs to create a three dimensional path matrix (since C is three

dimensional) to record what is the “parent” of a status [x, y, i]. That is, to

record the parent’s position of [x, y, i] as a cell. With all the record of these

relationships, one can know the paths.

3.3.3 Step 3: Calculate objective values

After using the recurrence to record the path, one calculates objective values

for all (Ti + 1)2 possible [x, y, i] using objective function for all i ∈ [1, n −

1]. Then, to take the imbalance of each section into consideration, one can

calculate the weighted sum objective values for each path.

3.3.4 Step 4: Avoid the overload

One needs to delete the solutions that cause overload on the feeders by setting

the positions that have indexes larger than the line capacity to infinity. The

deletion simply removes the incoming or outgoing edges to these nodes. That
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is to make sure that all three phase currents in each section is smaller or equal

to the line capacity.

3.3.5 Step 5: Make phase assignment recommendation

For the first approach, if we have a threshold of “what is balanced enough”,

then we can delete any partial solution that is not “balanced enough”. If

there is a solution remaining, it would be found by any path from an end

state to a state that passes through “balanced enough” vertices. If we do

not have a threshold but want to find the path with the minimum balance,

do a binary search on the possible thresholds. Repeatedly pick a possible

threshold in the middle of the range of possible thresholds. Delete all vertices

more unbalanced than this. Look for a path in the remaining graph. If we

find one, try a smaller threshold. If not, try a larger one.

For the second approach, consider now that one has three matrixes: the

number of tap changes (cost) matrix C[x, y,N ], the path matrix and objective

values matrix Objv[x, y,N ]. Then one can make a table with N rows and

three columns. The first column is the maximum number of tap changes

allowed to make. The second column is the corresponding best objective

value one can get, this can be obtained by searching all the x and y in

Objv[x, y,N ] that satisfies C[x, y,N ] = maximum number of tap changes

allowed. The third is the corresponding phase assignment for each load which

can be obtained by retrieving the path. From this table, one can make phase

assignment recommendation provided the desired number of tap changes or
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objective values.

3.3.6 An iterative method to balance tree network feed-

ers

For tree network feeders, one can use the dynamic programming algorithm

above to balance each subtree feeder and take every subtree feeders as equiv-

alent nodes in the upper level of the tree. One can balance the whole system

using this bottom-up method.

For example, one can use the algorithm to balance three phase current of

IEEE sample feeder (figure. 3.8). This feeder contains several branch feeders

and they form a tree network. One can divide it into five groups: node 632,

645 and 646 as group A, node 633 and node 634 as group B, node 692 and

node 675 as group C, node 611,684 and 652 as group D and node 671 and

680 as group E. One can first balance group A and B and take them as one

nodes. Then balance group C, D and E and take them as the second node.

At last, balance those two equivalent nodes.

3.4 Simulation

3.4.1 Implementing a 20 node feeder

Here, a feeder with 10 randomly generated loads and phases is tested. Table

3.2 and Table 3.3 show the phase assignment for each load before and after

phase balancing. Figure 3.9 and 3.10 show the three phase current for each
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Figure 3.8: IEEE sample feeder with 13 nodes

section before and after phase balancing respectively. Figure 3.11 shows the

corresponding objective values. Note that in the objective values at the end

of the curves in figure 3.11 are worse because there is less flexibility in making

tap changes at that point. In fact, no tap changes were made for the last

two loads in the example.

3.4.2 Running time and required memory

To illustrate the running time and required memory (without the memory

reducing trick mentioned in the overview), randomly generated loads and

phases are used for testing. In figure 3.12 and 3.13, the horizontal axis is the

number of loads and the vertical axes are running time in ms and allocated
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Table 3.2: Feeder before phase balancing

Load index 1 2 3 4 5 6 7 8 9 10
a: 0 5 1 2 7 6 10 3 9 0
b: 0 2 7 0 0 0 0 6 0 2
c: 5 0 10 0 0 7 3 0 3 6

Total on a: 0 5 6 8 15 21 31 34 43 43
Total on b: 0 2 9 9 9 9 9 15 15 17
Total on c: 5 5 15 15 15 22 25 25 28 34

Table 3.3: Feeder after phase balancing

Load index 1 2 3 4 5 6 7 8 9 10
a: 0 5 1 2 7 6 0 3 9 0
b: 0 2 10 0 0 0 10 6 0 2
c: 5 0 7 0 0 7 3 0 3 6

Total on a: 0 5 6 8 15 21 21 24 33 33
Total on b: 0 2 12 12 12 12 22 28 28 30
Total on c: 5 5 12 12 12 19 22 22 25 31

Figure 3.9: Three phase current along the feeder before phase balancing
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Figure 3.10: Three phase current along the feeder after phase balancing

Figure 3.11: Objective values before and after phase balancing

memory in bytes.
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Figure 3.12: Running time VS Number of loads

Figure 3.13: Running time VS Allocated memory

3.5 Conclusion

Of all the algorithms examined in our earlier work [11], dynamic program-

ming was the most promising in its ability to provide optimal solutions with-
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out using an exhaustive search approach. This chapter has examined and

discussed dynamic programming in much greater detail and also adapted it

to include a consideration of spatially distributed loads. Many variations

on the basic approach described here are possible. This includes the use of

different objective functions and data structure implementation of the algo-

rithm. Most significantly the use of dynamic programming allows a better

quality combinatorial solution at much less the cost of an exhaustive search.
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Chapter 4

Scheduling Divisible Loads

With Nonlinear

Communication Time

4.1 Introduction

For decades it has been realized that many algorithms of much practical

interest have a computational time that is a nonlinear in the size of the

algorithms input. This includes algorithms used in aerospace applications

such as the fast Fourier transform, matrix operations, line detection using

the Hough transform [13] and pattern recognition using 2D Hidden Markov

models.

But a related question that has received much less attention is whether

the transmission time of data moving over links between processing nodes
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can be nonlinear in the size of the data to be transmitted. Normally one

would think this is not possible. If one doubles the amount of data to be

transmitted one would think it should take twice as much time to transmit

as half that amount of data. This intuition is based on the usual linear

intuitive model of a channel. Naturally we are ignoring overhead such as

packet headers in this consideration.

However there is another way of looking at things: indexing data trans-

mission not by time but by data structural properties. For instance, if one

transmits a square matrix and indexes data transmission by matrix (i.e.

row/column) size, the transmission time is proportional to a square power

of the size of the matrix. Alternately if one transmits a binary tree of data

where each node holds x bytes and indexes data transmission by the size of

the tree in levels, L, the transmission time is proportional to 2L − 1.

In this chapter such nonlinear models of communication time operating

either with linear or nonlinear models of computation is investigated. This

is done in the context of divisible loads and divisible load scheduling. Divisi-

ble loads are perfectly partitionable loads that are a good model for parallel

systems processing embarrassingly parallel loads consisting of voluminous

amounts of data. That is, we assume that there are no precedence relation-

ships in the processing. Divisible load scheduling techniques are used in this

chapter because of their tractability in order to make analytical progress.

Over a hundred journal papers [14] describing the divisible load schedul-

ing have been published since the original work of Cheng and Robertazzi in

1988 [15] and Agrawal and Jagadish [46] that year. The basic problem is
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to determine the optimal scheduling of load given the interconnection and

processor network topology, scheduling policy, processor and link speeds, and

computing and communication intensities. The aim is to finish processing in

the shortest time by the optimal scheduling of the load taking into consid-

eration the aspects of both computation and communication. This occurs if

processors stop working at the same time. If not, the load can be transferred

from busy to idle processors to improve the solution. This linear model is

well suited for parallel and distributed computing because of its tractable

and realistic characteristics [17].

Over the years, divisible load theory has been applied to various kinds of

networks topologies including linear daisy chains, tree and bus networks us-

ing a set of recursive equations [15] [18] [19]. Further studies have been made

for hypercubes [20] and mesh networks [21]. The idea of equivalent networks

[45] was developed for complex networks such as multilevel tree networks.

Research has also examined scheduling policy with multi-installment [48],

multi-round algorithms [24], independent task scheduling [25], fixed commu-

nication charges [26], detailed parameterizations and solution reporting time

optimization [27], large matrix vector computations [28] and combinatori-

al optimization [29]. Recent new applications includes aligning biological

sequences [34], aligning multiple protein sequences [35], optimizing parallel

image registration [36], divisible MapReduce computations [47], multicore

and parallel channel systems [38] and parallel video transcoding [39].

To the best of our knowledge, only nonlinear computation, not nonlin-

ear communication, has been investigated to date using divisible load theory.
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The first to so was Drozdowski and Wolniewicz [30] who demonstrated super-

linear speedup by defining processing times as a piecewise linear (and thus

nonlinear) function of the size of the input load for evaluating the memory

hierarchy of a computer. These results were determined using mathematical

programming. Later, Hung and Robertazzi [31] obtained analytically optimal

load allocation and speedup for simultaneous (i.e. concurrent) load distribu-

tion for a quadratic nonlinearity. They also presented an iterative solution for

sequential load distribution with a nonlinearity of arbitrary power. Suresh,

Run, Kim et.al. [32] [33] used a mild assumption on the communication to

computation speed ratio to present scheduling solutions for certain nonlin-

ear divisible load problems including optimal sequencing and arrangement

results.

This chapter is organized as follows. In section 4.1, the introduction was

made. Section 4.2 explains the notations. In section 4.3, we discuss the

optimal scheduling for different distribution policies. In section 4.4, several

specific examples are presented. In section 4.5, we make a conclusion.

4.2 List of symbols

αi: The load fraction assigned to the ith child processor from the root

node.

wi: The inverse of the computing speed of the ith child processor.

zi: The inverse of the link speed of the link connects ith processor to the

root node.
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Tcp: Computing intensity constant: The entire load is processed in wiTcp

seconds by the ith child processor.

Tcm: Communication intensity constant: The entire load can be trans-

mitted in ziTcm seconds to the ith child processor from the root node.

4.3 Optimal scheduling under different dis-

tribution policies

4.3.1 Sequential distribution, simultaneous start

We consider single level trees in this chapter as a basic starting point archi-

tecture. Note that if link speeds are homogenous, a single level tree under

sequential distribution is equivalent to a bus. We also assume communica-

tion speed and computation speed are known though they can be estimated

[40]. Consider now a single level tree network, sequential distribution (load

is distributed from the root to each child in turn), simultaneous start policy

(load reception and computation start at the same time). We also assume

that the root does processing.

Certainly many nonlinear communication/computation functions are pos-

sible. In this chapter, for purposes of demonstration we use a communication

integer power nonlinearity χ (χ > 1). Certainly also polynomial nonlineari-

ties could beconsidered. From figure 4.1, one has the timing equations:

α0w0Tcp = α1w1Tcp (4.1)
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Figure 4.1: Sequential distribution simultaneous start
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α1w1Tcp = (α1Tcm)χz1 + α2w2Tcp (4.2)

α2w2Tcp = (α2Tcm)χz2 + α3w3Tcp (4.3)

· · · · · ·

· · · · · ·

· · · · · ·

αN−1wN−1Tcp = (αN−1Tcm)χzN−1 + αNwNTcp (4.4)

We assume in our timing diagram that communication time does not

extend beyond computation time (ie. communication is generally faster than

computation).

The normalization equation is:

α0 + α1 + α2 + · · ·+ αN = 1 (4.5)

These equations can be re-written as:

f0 = α0w0Tcp − α1w1Tcp = 0 (4.6)

f1 = (α1Tcm)χz1 − α1w1Tcp + α2w2Tcp = 0 (4.7)

f2 = (α2Tcm)χz2 − α2w2Tcp + α3w3Tcp = 0 (4.8)
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· · · · · ·

· · · · · ·

· · · · · ·

fN−1 = (αN−1Tcm)χzN−1 − αN−1wN−1Tcp + αNwNTcp = 0 (4.9)

fN = α0 + α1 + α2 + · · ·+ αN − 1 = 0 (4.10)

and

~f =



f0(α0, α1, α2, · · · , αN)

f1(α0, α1, α2, · · · , αN)

f2(α0, α1, α2, · · · , αN)

...

fN−1(α0, α1, α2, · · · , αN)

fN(α0, α1, α2, · · · , αN)


= 0 (4.11)

One can use the multivariate Newton’s method to solve this set of tim-

ing equations. For the above equations, the Taylor expansion of fi in the

neighborhood of x:

fi(~α + δ~α) = fi(~α) + δα0
∂fi
∂α0

(~α) + · · ·+ δαN
∂fi
∂αN

(~α)

+O(|δ~α|2) ≈ fi(~α) +∇fi(~α) · δ~α
(4.12)
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This can be rewritten as

~f(~α + δ~α) ≈ ~f(~α) + J~f (~α)δ~α = 0 (4.13)

where J~f (~α) is the Jacobian of ~f = (f1, · · · , fN)T .

J~f (~α) =



∇fT0 ( ~α)

∇fT1 ( ~α)

∇fT2 ( ~α)

...

∇fTN( ~α)


=



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)

∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)

∂f2
∂α0

(~α) · · · ∂f2
∂αN

(~α)

...
...

...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)


(4.14)

One can first make a guess of the solution for the αs and then iterate the

relation below until it converges to a solution:

~αk+1 = ~αk − J −1(~αk)~f(~αk) (4.15)

4.3.2 Sequential distribution, staggered start

A sequential distribution, staggered start policy involves the root node dis-

tributing loads to its children nodes in a sequential way and the children

nodes starting computation after they have received their entire fractions of

the loads.

From the timing diagram figure 2, one can write timing equations as
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Figure 4.2: Sequential distribution staggered start
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below:

α0w0Tcp = (α1Tcm)χz1 + α1w1Tcp (4.16)

α1w1Tcp = (α2Tcm)χz2 + α2w2Tcp (4.17)

α2w2Tcp = (α3Tcm)χz3 + α3w3Tcp (4.18)

· · · · · ·

· · · · · ·

· · · · · ·

αN−1wN−1Tcp = (αNTcm)χzN + αNwNTcp (4.19)

Manipulating the recursive equations and normalization equation one can

obtain

f0 = α0w0Tcp − (α1Tcm)χz1 − α1w1Tcp = 0 (4.20)

f1 = α1w1Tcp − (α2Tcm)χz2 − α2w2Tcp = 0 (4.21)

f2 = α2w2Tcp − (α3Tcm)χz3 − α3w3Tcp = 0 (4.22)

· · · · · ·

· · · · · ·
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· · · · · ·

fN−1 = αN−1wN−1Tcp − (αNTcm)χzN − αNwNTcp = 0 (4.23)

fN = α0 + α1 + α2 + · · ·+ αN − 1 = 0 (4.24)

Then one can use the Newton’s method described above to solve for the

unknown α’s.

4.3.3 Simultaneous distribution, staggered start

A simultaneous distribution, staggered start policy involves the root dis-

tributing loads to its children nodes simultaneously and the children nodes

starting computation after they have received the entire fractions of the load-

s.In figure 4.3:

α0w0Tcp = (α1Tcm)χz1 + α1w1Tcp (4.25)

(α1Tcm)χz1 + α1w1Tcp = (α2Tcm)χz2 + α2w2Tcp (4.26)

(α2Tcm)χz2 + α2w2Tcp = (α3Tcm)χz3 + α3w3Tcp (4.27)

· · · · · ·

· · · · · ·
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Figure 4.3: Simultaneous distribution staggered start
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· · · · · ·

(αN−1Tcm)χzN−1 + αN−1wN−1Tcp = (αNTcm)χzN + αNwNTcp (4.28)

Manipulating the recursive equations and normalization equation one can

obtain

f0 = α0w0Tcp − (α1Tcm)χz1 − α1w1Tcp = 0 (4.29)

f1 = (α1Tcm)χz1 + α1w1Tcp − (α2Tcm)χz2 − α2w2Tcp = 0 (4.30)

f2 = (α2Tcm)χz2 + α2w2Tcp − (α3Tcm)χz3 − α3w3Tcp = 0 (4.31)

· · · · · ·

· · · · · ·

· · · · · ·

fN−1 = (αN−1Tcm)χzN−1 + αN−1wN−1Tcp

−(αNTcm)χzN − αNwNTcp = 0
(4.32)

fN = α0 + α1 + α2 + · · ·+ αN − 1 = 0 (4.33)

Then one can use the Newton’s method to solve it for the unknown α’s.
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4.3.4 Nonlinear communication, nonlinear computa-

tion, sequential distribution, staggered start

Here, both the computation and communication time is nonlinear to the size

of the load. We have power χ for the communication nonlinearity and power

y for the computation nonlinearity.

A sequential distribution, staggered start policy involves the root node

distributing loads to its children nodes in a sequential way and the children

nodes starting computation after they have received the entire fractions of

the loads.

We now consider integer computation power nonlinearity y ( y > 1) as

used as communication nonlinearity

One can have timing equations (figure 4.4):

(α0Tcp)
yw0 = (α1Tcm)χz1 + (α1Tcp)

yw1 (4.34)

(α1Tcp)
yw1 = (α2Tcm)χz2 + (α2Tcp)

yw2 (4.35)

(α2Tcp)
yw2 = (α3Tcm)χz3 + (α3Tcp)

yw3 (4.36)

· · · · · ·

· · · · · ·

· · · · · ·
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Figure 4.4: Nonlinear communication and nonlinear computation
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(αN−1Tcp)
ywN−1 = (αNTcm)χzN + (αNTcp)

ywN (4.37)

α0 + α1 + α2 + · · ·+ αN = 1 (4.38)

Manipulating the recursive equations and normalization equation one can

obtain

f0 = (α0Tcp)
yw0 − (α1Tcm)χz1 − (α1Tcp)

yw1 = 0 (4.39)

f1 = (α1Tcp)
yw1 − (α2Tcm)χz2 − (α2Tcp)

yw2 = 0 (4.40)

f2 = (α2Tcp)
yw2 − (α3Tcm)χz3 − (α3Tcp)

yw3 = 0 (4.41)

· · · · · ·

· · · · · ·

· · · · · ·

fN−1 = (αN−1Tcp)
ywN−1 − (αNTcm)χzN − (αNTcp)

ywN = 0 (4.42)

fN = α0 + α1 + α2 + · · ·+ αN − 1 = 0 (4.43)

As an example, if the computation problem is the solution of a set of

linear equations (AX = B), one may have an equation in place of equation
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34 for instance:

(α0Tcp)
3w0 = (α1Tcm)2z1 + (α1Tcp)

3w1 (4.44)

where computation time is cubic of the size of the matrix (in terms of the

number of rows) and square of the communication (in terms of the number

of rows).

One can calculate the Jacobian of the ~f and use Newton’s method to

solve for the unknown α’s.

4.4 Specific Examples

Here, we take z, Tcp and Tcm all as 1 and leave w as a variable. Note z

(inverse communication speed) appears linearity in the equations. Below are

two performance measurements we use:

Makespan: the time period between when the root processor starts to

send loads and the last processor finishes computing.

Speedup: the ratio of processing time on one processor to processing

time on the entire network.
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4.4.1 Second order, sequential distribution, staggered

start

In this case, the communication time is the square of the size of the load.

One has the timing equations:

~f =



α0w0Tcp − (α1Tcm)2z1 − α1w1Tcp

α1w1Tcp − (α2Tcm)2z2 − α2w2Tcp

α2w2Tcp − (α3Tcm)2z3 − α3w3Tcp
...

αN−1wN−1Tcp − (αNTcm)2zN − αNwNTcp

α0 + α1 + α2 + · · ·+ αN − 1


= 0 (4.45)

Let

εi = wiTcp (4.46)

and

θi = 2αiT
2
cmzi (4.47)
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The Jacobian of ~f is:

J~f (~α) =



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)

∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)

...
...

...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)



=



ε0 −θ1 − ε1 0 · · · 0 0

0 ε1 −θ2 − ε2 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · εN−1 −θN − εN

1 1 1 · · · 1 1



(4.48)

One can set the initial ~α as all zeros and insert into the right hand side

of the iterative function below to get a newer set of the ~α on the left hand

side. Substitute the newer ~α into the right hand side again and so on.

~αk+1 = ~αk − J −1(~αk)~f(~αk) (4.49)

After the ~α is obtained, one can calculate the speedup and the makespan

(finish time).

Makespan = α0w0Tcp (4.50)

Speedup =
w0Tcp
α0w0Tcp

=
1

α0
(4.51)
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Figure 4.5: Makespan - Sequential distribution staggered start (second order
communication)

Figure 4.5 and 4.6 show how the makespan and speedup change as the

number of processors increases with sequential distribution, staggered start

and this second order nonlinearity.
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Figure 4.6: Speedup - Sequential distribution staggered start (second order
communication)

4.4.2 Third order, sequential distribution, staggered

start

In this case, the communication time is the cubic of the size of the load. One

has the timing equations:

~f =



α0w0Tcp − (α1Tcm)3z1 − α1w1Tcp

α1w1Tcp − (α2Tcm)3z2 − α2w2Tcp

α2w2Tcp − (α3Tcm)3z3 − α3w3Tcp
...

αN−1wN−1Tcp − (αNTcm)3zN − αNwNTcp

α0 + α1 + α2 + · · ·+ αN − 1


= 0 (4.52)
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Let

εi = wiTcp (4.53)

and

θi = 3α2
iT

3
cmzi (4.54)

The Jacobian of ~f is:

J~f (~α) =



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)

∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)

...
...

...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)



=



ε0 −θ1 − ε1 0 · · · 0 0

0 ε1 −θ2 − ε2 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · εN−1 −θN − εN

1 1 1 · · · 1 1



(4.55)

One can set the initial ~α as all zeros and insert it into the right hand side

of the iterative function below to get a newer set of the ~α on the left hand

side. Substitute the newer ~α into the right hand side again and so on.

~αk+1 = ~αk − J −1(~αk)~f(~αk) (4.56)
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Figure 4.7: Makespan - Sequential distribution staggered start (third order
communication)

After the ~α is obtained, one can calculate the speedup and the makespan

(finish time).

Makespan = α0w0Tcp (4.57)

Speedup =
w0Tcp
α0w0Tcp

=
1

α0
(4.58)

Figure 4.7 and 4.8 show how the makespan and speedup change as the

number of processors increases with sequential distribution, staggered start

and third order nonlinearity.
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Figure 4.8: Speedup - Sequential distribution staggered start (third order
communication)

4.4.3 Second order, simultaneous distribution, stag-

gered start

In this case, the communication time is the square of the size of the load.

One has the timing equations:
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~f =



α0w0Tcp − (α1Tcm)2z1 − α1w1Tcp

α1w1Tcp + (α1Tcm)2z1 − (α2Tcm)2z2 − α2w2Tcp

α2w2Tcp + (α2Tcm)2z2 − (α3Tcm)2z3 − α3w3Tcp
...

αN−1wN−1Tcp + (αN−1Tcm)2zN−1 − (αNTcm)2zN − αNwNTcp

α0 + α1 + α2 + · · ·+ αN − 1


= 0

(4.59)

Let

εi = wiTcp (4.60)

and

θi = 2αiT
2
cmzi (4.61)
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The Jacobian of ~f is:

J~f (~α) =



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)

∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)

∂f2
∂α0

(~α) · · · ∂f2
∂αN

(~α)

...
...

...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)



=



ε0 −ε1 − θ1 0 · · · 0 0

0 ε1 + θ1 −ε2 − θ2 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · εN−1 + θN−1 −εN − θN

1 1 1 · · · 1 1



(4.62)

One can set the initial ~α as all zeros and insert it into the right hand side

of the iterative function below to get a newer set of the ~α on the left hand

side. Substitute the newer ~α into the right hand side again and so on.

~αk+1 = ~αk − J −1(~αk)~f(~αk) (4.63)

After the ~α is obtained, one can calculate the speedup and the makespan

(finish time).

Makespan = α0w0Tcp (4.64)
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Figure 4.9: Makespan - Simultaneous distribution staggered start (second
order communication)

Speedup =
w0Tcp
α0w0Tcp

=
1

α0
(4.65)

Figure 4.9 and 4.10 show how the makespan and speedup change as the

number of processors increases with simultaneous distribution, staggered s-

tart and second order nonlinearity.
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Figure 4.10: Speedup - Simultaneous distribution staggered start (second
order communication)

4.4.4 Third order, simultaneous distribution, staggered

start

In this case, the communication time is the cube of the size of the load. One

has the timing equations:

~f =



α0w0Tcp − (α1Tcm)3z1 − α1w1Tcp

α1w1Tcp + (α1Tcm)3z1 − (α2Tcm)3z2 − α2w2Tcp

α2w2Tcp + (α2Tcm)3z2 − (α3Tcm)3z3 − α3w3Tcp
...

αN−1wN−1Tcp + (αN−1Tcm)3zN−1 − (αNTcm)3zN − αNwNTcp

α0 + α1 + α2 + · · ·+ αN − 1


= 0

(4.66)
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Let

εi = wiTcp (4.67)

and

θi = 3α2
iT

3
cmzi (4.68)

The Jacobian of ~f is:

J~f (~α) =



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)

∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)

∂f2
∂α0

(~α) · · · ∂f2
∂αN

(~α)

...
...

...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)



=



ε0 −ε1 − θi 0 · · · 0 0

0 ε1 + θ1 −ε2 − θ2 · · · 0 0

...
...

...

0 0 0 · · · εN−1 + θN−1 −εN − θN

1 1 1 · · · 1 1



(4.69)

One can set the initial ~α as all zeros and insert it into the right hand side

of the iterative function below to get a newer set of the ~α on the left hand
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side. Substitute the newer ~α into the right hand side again and so on.

~αk+1 = ~αk − J −1(~αk)~f(~αk) (4.70)

After the ~α is obtained, one can calculate the speedup and the makespan

(finish time).

Makespan = α0w0Tcp (4.71)

Speedup =
w0Tcp
α0w0Tcp

=
1

α0
(4.72)

Figure 4.11 and 4.12 show how the makespan and speedup change as

the number of processors increases with simultaneous distribution, staggered

start and third order nonlinearity.

4.4.5 Second order communication, third order com-

putation, sequential distribution, staggered start

In this case, the communication time is the square of the size of the load and

the computation time is the cubic of the size of the load. One has the timing
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Figure 4.11: Makespan - Simultaneous distribution staggered start (third
order communication)

Figure 4.12: Speedup - Simultaneous distribution staggered start (third order
communication)
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equations:

~f =



(α0Tcp)
3w0 − (α1Tcm)2z1 − (α1Tcp)

3w1

(α1Tcp)
3w1 − (α2Tcm)2z2 − (α2Tcp)

3w2

(α2Tcp)
3w2 − (α3Tcm)2z3 − (α3Tcp)

3w3

...

(αN−1Tcp)
3wN−1 − (αNTcm)2zN − (αNTcp)

3wN

α0 + α1 + α2 + · · ·+ αN − 1


= 0 (4.73)

Let

εi = 3α2
iT

3
cpwi (4.74)

and

θi = 2αiT
2
cmzi (4.75)
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The Jacobian of ~f is:

J~f (~α) =



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)

∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)

∂f2
∂α0

(~α) · · · ∂f2
∂αN

(~α)

...
...

...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)



=



ε0 −ε1 − θ1 0 · · · 0 0

0 ε1 −ε2 − θ2 · · · 0 0

...
...

...

0 0 0 · · · θN−1 −εN − θN

1 1 1 · · · 1 1



(4.76)

One can set the initial ~α as all zeros and insert it into the right hand side

of the iterative function below to get a newer set of the ~α on the left hand

side. Substitute the newer ~α into the right hand side again and so on.

~αk+1 = ~αk − J −1(~αk)~f(~αk) (4.77)

After the ~α is obtained, one can calculate the speedup and the makespan

(finish time).

Makespan = α0w0Tcp (4.78)

83



Figure 4.13: Makespan - Nonlinear communication (second order) and non-
linear computation (third order), sequential distribution staggered start

Speedup =
w0Tcp
α0w0Tcp

=
1

α0
(4.79)

Figure 4.13 and 4.14 show how the makespan and speedup change as the

number of processors increases with sequential distribution, staggered start,

second order communication and third order computation.

4.5 Conclusion

Scheduling divisible loads with nonlinear commmunication time has many

aerospace applications including fast Fourier transform, line detection using
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Figure 4.14: Speedup - Nonlinear communication (second order) and nonlin-
ear computation (third order), sequential distribution staggered start

the Hough transform and pattern recognition using 2D hidden Markov mod-

els. This chapter proposes an iterative method to find the optimal scheduling

for single level tree networks under different distribution policies. Quadratic

and cubic nonlinearity examples are used to demonstrate the proposed algo-

rithm. The testing results show that this scheduling algorithm can provide

an optimal solution for parallel and distributed systems with divisible and

nonlinear communication time loads. Such optimal solutions can maximize

the responsiveness of critical data processing where time is of the essence.
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Chapter 5

Utilization and Progress

Performance Measures for

Divisible Load Scheduled Trees

5.1 Introduction

In any performance evaluation of a computing or communication system

performance measures, numerical quantities indicating system performance

[41] [42] [43] [44], play an important role.

Over a hundred journal papers [45] describing the performance of divisi-

ble load scheduling have been published since the original work of Agarwal

and Jagadish [46] in 1988 and Cheng and Robertazzi [15] the same year.

Divisible loads are computing and communication loads that are perfectly

partitionable among processors and links. One may have a very long linear
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data file of numbers whose sum is desired. Fragments of the file can be sent

to different processors over an interconnection network, intermediate sums

computed and returned to a processor for final summation. This is similar

in spirit to the Map/Reduce algorithm [47]. Divisible load theory provides

analytical and/or numerical means to determine the amount of load to sched-

ule on links and processors to achieve a minimal time solution for processing

the load. The basic problem is to determine the optimal scheduling of load

given the interconnection and processor network topology, scheduling policy,

processor and link speeds, and computing and communication intensities.

Cheng and Robertazzi considered finish time, the time for all load distri-

bution and computation to end. Other workers have called this performance

measure makespan. Later in 1995 [48] Bharadwaj, Ghose and Mani intro-

duced the use of speedup to the divisible load scheduling problem. Speedup

is a well-established parallel processing performance measure. It is the ra-

tio of the time to solve a computational problem on one processor divided

by the time to solve the problem on N (homogeneous) processors. In 2010

Drozdowski and Wielebski proposed the use of isoefficiency maps for divisi-

ble computations [49]. Efficiency is a normalized speedup (speedup divided

by the number of processors considered, N). Isoefficiency maps are plots of

contours of equal efficiency versus such quantities as N and problem size V .

In this chapter we compute two novel performance measures for represen-

tative sequential and simultaneous distribution scheduling policies for both

single-level and multi-level tree networks. One is utilization. This is the frac-

tion of time processors are busy processing computational load. The second
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is progress. Progress is the percentage of load processed at a given time.

Earlier work on utilization and progress for single level tree networks can be

found in the 2008 PhD thesis of Milton Jackson [50].

These two performance measures, progress and utilization, are of interest

for real time data processing (How fast is the data processed?), scheduling

policy comparative evaluation (Which is the best scheduling policy in a given

situation?) and resource allocation (What percentage of time is a processor

actually used for processing and what percentage of time it is idle?).

This chapter is organized as follows. In section 5.2, we introduce model

and notations of divisible load theory on multi-level tree. In section 5.3,

we discuss the solution, utilization of the processors and the percentage of

the load that have been processed at a given time T for single level tree

networks with divisible loads. In section 5.4, we discuss solution, utilization

and progress for multi-level tree networks with divisible loads. In section 5.5,

we make a conclusion.

5.2 Model and notation

5.2.1 Symbols for Single Level Tree

αi: The load fraction assigned to the ith child processor from the root

node.

wi: The inverse of the computing speed of the ith child processor.

zi: The inverse of the link speed of the link connects ith processor to the
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root node.

Tcp: Computing intensity constant:

The entire load is processed in wiTcp seconds by the ith child proces-

sor.

Tcm: Communication intensity constant:

The entire load can be transmitted in ziTcm seconds to the ith child

processor from the

root node.

Pi: ith node of the tree.

Ti: time point at which the ith processor start computing.

T̂i: ith smallest element of sorted vector T

Tf : The finish time. Time at which the last processor ceases computation.

Ui: The utilization of the ith node in the ith level of the tree.

α%T : The percentage of load that has been processed at a time point T.

5.2.2 Symbols for Multi-level Tree

αi,j: The load fraction assigned to the jth node in the ith level from its

parent.

wi,j: The inverse of the computing speed of the jth processor in the ith

level.

zi,j: The inverse of the link speed of the link connects jth processor in

ith level to its parent.

Tcp: Computing intensity constant:
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The entire load is processed in wi,jTcp seconds by the jth processor

in ith level.

Tcm: Communication intensity constant:

The entire load can be transmitted in zi,jTcm seconds to the jth

processor in the ith level.

Tf : The finish time. Time at which the last processor ceases computation.

Pi,j: jth node in the ith level of the tree.

Ui,j: the utilization of the jth node in the ith level of the tree.

α%T : the percentage of load that has been processed at time T.

5.3 Single-level tree networks with divisible

loads

Basic idea: The assumption is that the communication speed is faster than

the computation speed, otherwise there is no need to distribute computa-

tional load to other processors. Thus the optimality condition is that all the

processors stop computing at the same time. If this was not true, the load

could be transferred from the busy processors to the idle ones to increase the

computation speed.

There are two strategies to distribute the load: simultaneous distribution

and sequential distribution. With the sequential distribution, the root pro-

cessor distributes load to its children in sequence. With the simultaneous

distribution, the root processor distributes load to all of its children at the
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same time.

Meanwhile, there are two strategies to start the child processors: simulta-

neous start and staggered start. With simultaneous start, the child processors

start to process when they start to receive load. With the staggered start,

the child processors start to process after they have received all the load that

they are supposed to process.

5.3.1 Simultaneous distribution, staggered start, root

node does processing

In this strategy, the root processor keeps a fraction of α0 to process and dis-

tributes the other fractions α1, α2, · · · ,αN (suppose the root processor has

N children processors) to its children processors concurrently. The assign-

ment of the α’s is decided by the computing speed of the processors and the

communication speed from root processor to the children processors. The

children processors start to compute after they have received all the load

and they finish computing at the same time.

Utilization

From figure 5.1

Tf1 = α1z1Tcm + α1w1Tcp (5.1)
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Figure 5.1: Simultaneous distribution, staggered start, root does processing.
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U1 =
α1w1Tcp

α1z1Tcm + α1w1Tcp
(5.2)

Tf2 = α2z2Tcm + α2w2Tcp (5.3)

U2 =
α2w2Tcp

α2z2Tcm + α2w2Tcp
(5.4)

Tf3 = α3z3Tcm + α3w3Tcp (5.5)

U3 =
α3w3Tcp

α3z3Tcm + α3w3Tcp
(5.6)

· · · · · ·

· · · · · ·

· · · · · ·
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Tfi = αiziTcm + αiwiTcp (5.7)

Ui =
αiwiTcp

αiziTcm + αiwiTcp
(5.8)

The utilization is the ratio of a processor’s computational time to the

makespan (finish time).

Ui =
αiwiTcp
Tf

=
αiwiTcp
1
k1
α1w0Tcp

= k
αiwi
α1w0

(5.9)

The general form for the utilization is:

AvgU =
1

N + 1

N∑
i=0

Ui (5.10)

Figure 5.2 is the simulation result of utilization for simultaneous distri-

bution, staggered start, root does processing case.

Progress

As above, the progress is the percent of the total load that has been processed

within a interval of time T . Here,
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Figure 5.2: Utilization - Simultaneous distribution, staggered start, root does
processing.

T1 = α1z1Tcm (5.11)

T2 = α2z2Tcm (5.12)

T3 = α3z3Tcm (5.13)

· · · · · ·

· · · · · ·
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· · · · · ·

Ti = αiziTcm (5.14)

One can sort the vector and obtain T̂ such that the elements in T̂ are from

small the large. Also, record the indexes and use it to creat a corresponding

vector of α̂.

The percent of the load that processors P1 through PN have computed

within an interval can be given by the following equations.

T̂1 ≤ T ≤ T̂2
T − T̂1
Tf − T̂1

α̂1 (5.15)

T̂2 ≤ T ≤ T̂3
T − T̂1
Tf − T̂1

α̂1 +
T − T̂2
Tf − T̂2

α̂2 (5.16)

T̂3 ≤ T ≤ T̂4
T − T̂1
Tf − T̂1

α̂1 +
T − T̂2
Tf − T̂2

α̂2 +
T − T̂3
Tf − T̂3

α̂3(5.17)

· · · · · · (5.18)

· · · · · · (5.19)

· · · · · · (5.20)

αT%i =
i∑

m=1

T − T̂i
Tf − T̂i

α̂i for i = 1, 2, · · · , N (5.21)

αT% =
N∑
m=1

αT%i (5.22)
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Figure 5.3: Progress - Simultaneous distribution, staggered start, root does
processing

Where T is in the interval of

T̂i ≤ T ≤ T̂i+1 for i = 1, 2, · · · , N − 1 (5.23)

And T is in the interval of

T̂N ≤ T ≤ Tf for i = N (5.24)

Figure 5.3 is the simulation of progress for simultaneous distribution,

staggered start, root does processing case.
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5.3.2 Sequential distribution, staggered start, root n-

ode does processing

Utilization

In Figure 5.4, the loads are sequentially distributed by the parent processor

to the children processors. The children processors do not have front end

processing. One can solve for utilization by the processors’ computing time

and finish time.

From figure 5.4

Tf1 = α1z1Tcm + α1w1Tcp (5.25)

U1 =
α1w1Tcp
Tf1

(5.26)

U1 =
α1w1Tcp

α1z1Tcm + α1w1Tcp
(5.27)

Tf2 = α1z1Tcm + α2z2Tcm + α2w2Tcp (5.28)
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Figure 5.4: Sequential distribution, staggered start, root does processing.
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U2 =
α2w2Tcp
Tf2

(5.29)

U2 =
α1w1Tcp

α1z1Tcm + α2z2Tcm + α2w2Tcp
(5.30)

Tf3 = α1z1Tcm + α2z2Tcm + α3z3Tcm + α3w3Tcp (5.31)

U3 =
α3w3Tcp
Tf3

(5.32)

U3 =
α2w2Tcp

α1z1Tcm + α2z2Tcm + α3z3Tcm + α3w3Tcp
(5.33)

· · · · · ·

· · · · · ·

· · · · · ·
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Figure 5.5: Utilization - Sequential distribution, staggered start, root does
processing.

Tfi = αiwiTcp +
i∑

p=1

αpzpTcm (5.34)

Ui =
αiwiTcp

αiwiTcp +
∑i

p=1 αpzpTcm
for i=1, 2, · · · , N (5.35)

The general form for the utilization is:

AvgU =
1

N + 1

N∑
i=0

Ui (5.36)

Figure 5.5 is the simulation result of utilization for sequential distribution,

staggered start, root does processing case.
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Progress

Here Ti represents time point that processor i starts to compute the load.

Since this distribution has a staggered start, the loads are completely trans-

mitted before the processors begin computations. So the load α1 of T1 is

entirely transmitted over link z1 in the time α1z1Tcm before processor P1 s-

tarts processing at time T1. This process continues until all values from T1

to TN are transmitted.

T0 = 0 (5.37)

T1 = (α1z1)Tcm (5.38)

T2 = (α1z1 + α2z2)Tcm (5.39)

T3 = (α1z1 + α2z2 + α3z3)Tcm (5.40)

· · · · · · (5.41)

· · · · · · (5.42)

· · · · · · (5.43)

Tfi = αiwiTcp +
i∑

p=1

αpzpTcm (5.44)

The percent of the load that processors P1 through PN have computed

within an interval is defined as αT%, and given by the following equations.
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T0 ≤ T ≤ T1
T − T0
Tf − T0

α0 (5.45)

T1 ≤ T ≤ T2
T − T0
Tf − T0

α0 +
T − T1
Tf − T1

α1 (5.46)

T2 ≤ T ≤ T3
T − T0
Tf − T0

α0 +
T − T1
Tf − T1

α1 +
T − T2
Tf − T2

α2(5.47)

T3 ≤ T ≤ T4
T − T0
Tf − T0

α0 +
T − T1
Tf − T1

α1 +
T − T2
Tf − T2

α2(5.48)

+
T − T3
Tf − T3

α3 (5.49)

· · · · · · (5.50)

· · · · · · (5.51)

· · · · · · (5.52)

αT%i =
i∑

m=1

T − Ti
Tf − Ti

αi for i = 0, 1, 2, · · · , N (5.53)

αT% =
N∑
m=0

αT%i (5.54)

Where T is in the interval of

Ti ≤ T ≤ Ti+1 for i = 0, 1, 2, · · · , N − 1 (5.55)

And T is in the interval of

TN ≤ T ≤ Tf for i = N (5.56)
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Figure 5.6: Progress - Sequential distribution, staggered start, root does
processing.

Figure 5.6 is the simulation result of progress for sequential distribution,

staggered start, root does processing case.
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Figure 5.7: Multi-level tree
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Figure 5.8: Simultaneous distribution, staggered start, root does processing.
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5.4 Multi-level tree networks with divisible

loads

5.4.1 Simultaneous distribution, staggered start

Optimal solution

For the first N children in ith level, one has the timing equations:

βi−1,1zi−1,1Tcm + βi−1,1weqi,1Tcp = βi−1,2zi−1,2Tcm + βi−1,2weqi,2Tcp

= βi−1,3zi−1,3Tcm + βi−1,3weqi,3Tcp = · · · = βi−1,Nzi−1,NTcm + βi−1,Nweqi,NTcp

(5.57)

Here, i is the number of level and j = 1toN . Here also, N is the number

of children nodes in a single subtree.

Also:

βi−1,1 + βi−1,2 + βi−1,3 + · · ·+ βi−1,N = 1 (5.58)

So one has:

βi−1,j =
zi−1,j−1Tcm + weqi,j−1

Tcp

zi−1,jTcm + weqi,jTcp
βi−1,j−1 (5.59)
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and

βi−1,1 +
zi−1,1Tcm + weqi,1Tcp

zi−1,2Tcm + weqi,2Tcp
βi−1,1 + · · ·+

zi−1,1Tcm + weqi,1Tcp

zi−1,NTcm + weqi,NTcp
βi−1,1 = 1

(5.60)

So

βi−1,1 =
1∑N

a=1

zi−1,1Tcm+weqi,1Tcp

zi−1,aTcm+weqi,aTcp

(5.61)

One finds the βs (fraction of load for subtrees by themselves). For the

connected tree one multiplies the βs to find the αs.

Utilization

Here, we assume the time for the data transferred to the next level is the

time to transfer the load to its first child. The finish time equations are:
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Tf1,1 = α0,1z0,1Tcm + α0,1w1,1Tcp (5.62)

Tf2,1 = α1,1z1,1Tcm + α2,1z2,1Tcm + α1,1w2,1Tcp (5.63)

Tf2,2 = α1,2z1,2Tcm + α2,n+1z2,n+1Tcm + α1,2w2,2Tcp (5.64)

Tf2,3 = α1,3z1,3Tcm + α2,2n+1z2,2n+1Tcm + α1,3w2,3Tcp (5.65)

· · · · · · (5.66)

· · · · · · (5.67)

· · · · · · (5.68)

Tf2,j = α1,jz1,jTcm + α2,jn+1z2,jn+1Tcm + α1,jw2,jTcp (5.69)

Tf3,j = α1,ceil(j/n)z1,ceil(j/n)Tcm + α2,jz2,jTcm + α3,jn+1z3,jn+1Tcm (5.70)

+α2,jw3,jTcp (5.71)

Tf4,j = α1,ceil(j/n2)z1,ceil(j/n2)Tcm + α2,ceil(j/n)z2,ceil(j/n)Tcm (5.72)

+α3,jz3,jTcm + α4,jn+1z4,jn+1Tcm + α3,jw4,jTcp (5.73)

· · · · · · (5.74)

· · · · · · (5.75)

· · · · · · (5.76)

Tfi,j = α1,ceil[j/n(i−2)]z1,ceil[j/n(i−2)]Tcm + α2,ceil[j/n(i−3)]z2,ceil[j/n(i−3)]Tcm(5.77)

+α3,ceil[j/n(i−4)]z3,ceil[j/n(i−4)]Tcm + · · ·+ αi−1,jzi−1,jTcm (5.78)

+αi,jn+1zi,jn+1Tcm + αi−1,jwi,jTcp (5.79)

=
i−1∑
L=1

αL,ceil[j/n(i−L−1)]zL,ceil[j/n(i−L−1)]Tcm (5.80)

+αi,jn+1zi,jn+1Tcm + αi−1,jwi,jTcp (5.81)
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The utilization is:

Ui,j = αi−1,jwi,jTcp/Tfi,j (5.82)

The average utilization is:

AvgU =
1

1 + n+ n2 + n3 + · · ·+ nL−1

L∑
i=1

ni−1∑
1

Ui,j

=
1− nL

1− n

L∑
i=1

ni−1∑
1

Ui,j

(5.83)

Here, L is the depth of the tree.

Figure 5.9 is the simulation result of utilization for simultaneous distri-

bution, staggered start, root does processing case.

Progress

As previously:

Ti,j = α1,ceil[j/n(i−2)]z1,ceil[j/n(i−2)]Tcm + α2,ceil[j/n(i−3)]z2,ceil[j/n(i−3)]Tcm

+α3,ceil[j/n(i−4)]z3,ceil[j/n(i−4)]Tcm + · · ·+ αi−1,jzi−1,jTcm + αi,jn+1zi,jn+1Tcm

=
i−1∑
L=1

αL,ceil[j/n(i−L−1)]zL,ceil[j/n(i−L−1)]Tcm + αi,jn+1zi,jn+1Tcm

(5.84)
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Figure 5.9: Utilization - Simultaneous distribution, staggered start, root does
processing.

so:

αT% in level x =
∑

[(T − Tx,sx)/(Tf − Tx,sx)αx,sx ] (5.85)

And:

αT% = αT% in level 1 + αT% in level 2 + · · ·+ αT% in level x

=
x∑

L=1

∑
[(T − TL,sL)/(Tf − TL,sL)αL,sL ]

(5.86)

Figure 5.10 is the simulation result of progress for simultaneous distribu-

tion, staggered start, root does processing case.
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Figure 5.10: Progress - Simultaneous distribution, staggered start, root does
processing.

5.4.2 Sequential distribution, staggered start

Optimal solution

One has the timing equations:

βi−1,jzi−1,jTcm + βi−1,jweqi,jTcp = βi−1,j−1weqi,j−1
Tcp (5.87)

Here, i is the number of level and j=1 to N . Here also, N is the number

of children nodes in a single subtree.

that is:

βi−1,j =
weqi,j−1

Tcp

zi−1,jTcm + weqi,jTcp
βi−1,j−1 = Qi,j−1βi−1,j−1 (5.88)
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Figure 5.11: Sequential distribution, staggered start, root does processing.
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where

Qi,j−1 =
weqi,j−1

Tcp

zi−1,jTcm + weqi,jTcp
(5.89)

and the normalization equation:

βi−1,1 + βi−1,2 + · · ·+ βi−1,N = 1 (5.90)

So one has:

βi−1,1 +Qi,2βi−1,1 +Qi,2Qi,3βi−1,1 + · · ·+
n−1∏
N=1

Qi,Nβi−1,1 = 1 (5.91)

βi−1,1 =
1∑n−1

N1=1

∏N2=N1

N2=1 Qi,N2

(5.92)

and

βi−1,j =

j−1∏
N=1

Qi,Nβi−1,1 (5.93)

From the βs of all the single level trees, one can get the αs by multiplying

the corresponding βs. Other subtrees can be solved by the same method.

Utilization

The finish time equations are:
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Tf1,1 = α1,1z1,1Tcm + α1,2z1,2Tcm + α1,3z1,3Tcm + · · ·α1,nz1,nTcm + α0,1w1,1Tcp (5.94)

Tf2,1 = α1,1z1,1Tcm + α2,1z2,1Tcm + α2,2z2,2Tcm + · · ·+ α2,nz2,nTcm + α1,1w2,1Tcp (5.95)

Tf2,2 = α1,1z1,1Tcm + α1,2z1,2Tcm + α2,n+1z2,n+1Tcm + α2,n+2z2,n+2Tcm (5.96)

+α2,n+3z2,n+3Tcm + · · ·+ α2,2nz2,2nTcm + α1,2w2,2Tcp (5.97)

Tf2,3 = α1,1z1,1Tcm + α1,2z1,2Tcm + α1,3z1,3Tcm + α2,2n+1z2,2n+1Tcm (5.98)

+α2,2n+2z2,2n+2Tcm + α2,2n+3z2,2n+3Tcm + · · ·+ α2,3nz2,3nTcm + α1,3w2,3Tcp (5.99)

Tf2,j = α1,1z1,1Tcm + α1,2z1,2Tcm + α1,3z1,3Tcm + · · ·+ α1,jz1,jTcm (5.100)

+α2,(j−1)∗n+1z2,(j−1)∗n+1Tcm + α2,(j−1)∗n+2z2,(j−1)∗n+2Tcm (5.101)

+α2,(j−1)∗n+3z2,(j−1)∗n+3Tcm + · · ·+ +α2,j∗nz2,j∗nTcm + α1,jw1,jTcp (5.102)

Tf3,j = α1,1z1,1Tcm + α1,2z1,2Tcm + α1,3z1,3Tcm + · · ·+ α1,ceil(j/n)z1,ceil(j/n)Tcm (5.103)

+α2,[ceil(j/n)−1]∗n+1z2,[ceil(j/n)−1]∗n+1Tcm + α2,[ceil(j/n)−1]∗n+2z2,[ceil(j/n)−1]∗n+2Tcm (5.104)

+ · · ·+ α2,jz2,jTcm + α2,[ceil(j/n)−1]∗n+3z2,[ceil(j/n)−1]∗n+3Tcm (5.105)

+α3,(j−1)∗n+1z3,(j−1)∗n+1Tcm + α3,(j−1)∗n+2z3,(j−1)∗n+2Tcm (5.106)

+α3,(j−1)∗n+3z3,(j−1)∗n+3Tcm + · · ·+ α3,j∗nz3,j∗nTcm + α2,jw3,jTcp (5.107)

=

ceil(j/n)∑
L=1

α1,Lz1,LTcm +

j∑
L=[ceil(j/n)−1]∗n+1

α2,Lz2,LTcm +

j∗n∑
L=(j−1)∗n+1

α3,Lz3,LTcm (5.108)

+α2,jw3,jTcp (5.109)

Tf4,j = α1,1z1,1Tcm + α1,2z1,2Tcm + α1,3z1,3Tcm + · · ·+ α1,ceil(j/n2)z1,ceil(j/n2)Tcm (5.110)

+α2,[ceil(j/n2)−1]∗n+1z2,[ceil(j/n2)−1]∗n+1Tcm + α2,[ceil(j/n2)−1]∗n+2z2,[ceil(j/n2)−1]∗n+2Tcm (5.111)

+α2,[ceil(j/n2)−1]∗n+3z2,[ceil(j/n2)−1]∗n+3Tcm + · · ·+ α2,ceil(j/n(z2,ceil(j/n)Tcm (5.112)

+α3,[ceil(j/n)−1]∗n+1z3,ceil(j/n)−1]∗n+1Tcm + α3,[ceil(j/n)−1]∗n+2z3,ceil(j/n)−1]∗n+2Tcm (5.113)

+α3,[ceil(j/n)−1]∗n+3z3,ceil(j/n)−1]∗n+3Tcm + · · ·+ α3,[ceil(j/n)z3,ceil(j/n)Tcm (5.114)

+α4,(j−1)∗n+1z4,(j−1)∗n+1Tcm + α4,(j−1)∗n+2z4,(j−1)∗n+2Tcm (5.115)

+α4,(j−1)∗n+3z4,(j−1)∗n+3Tcm + · · ·+ α4,j∗nz4,j∗nTcm + α3,jw4,jTcp (5.116)

=

ceil(j/n2)∑
a=1

α1,az1,aTcm +

ceil(j/n)∑
a=[ceil(j/n2)−1]∗n+1

α2,az2,aTcm (5.117)

+

j∑
L=[ceil(j/n)−1]∗n+1

α3,Lz3,LTcm +

j∗n∑
L=(j−1)∗n+1

α4,Lz4,LTcm + α3,jw4,jTcp (5.118)

· · · · · · (5.119)

· · · · · · (5.120)

· · · · · · (5.121)

Tfi,j =

j∑
L=ceil(j/n)∗n+1

αi−1,Lzi−1,LTcm +

ceil(j/n)∑
L=ceil(j/n2)∗n+1

αi−2,Lzi−2,LTcm +

ceil(j/n2)∑
L=ceil(j/n3)∗n+1

αi−3,Lzi−3,LTcm(5.122)

+ · · ·+
ceil(j/ni−2)∑

L=ceil(j/ni−1)∗n+1

α1,Lz1,LTcm +

(j+1)∗n∑
b=j∗n+1

αi,bzi,bTcm + αi−1,jwi,jTcp (5.123)
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Figure 5.12: Utilization - Sequential distribution, staggered start, root does
processing.

The utilization is:

Ui,j =
αi−1,jwi,jTcp

Tfi,j
(5.124)

The average utilization is:

AvgU =
1

1 + n+ n2 + n3 + · · ·+ nL−1

L∑
i=1

ni−1∑
1

Ui,j

=
1− nL

1− n

L∑
i=1

ni−1∑
1

Ui,j

(5.125)

Here, L is the depth of the tree.

Figure 5.12 is the simulation result of utilization for sequential distribu-

tion, staggered start, root does processing case.
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Progress

Ti,j =

ceil[j/n(i−2)]∑
p=ceil[j/n(i−1)]n+1

α1,pz1,pTcm +

ceil[j/ni−3]∑
p=ceil[j/n(i−2)]n+1

α2,pz2,pTcm +

ceil[j/n(i−4)]∑
p=ceil[j/n(i−3)]n+1

α3,pz3,pTcm

+ · · ·+
ceil(j/n)∑

p=ceil(j/n2)n+1

αi−2,pzi−2,pTcm +

j∑
p=ceil(j/n)n+1

αi−1,pzi−1,pTcm +

(j+1)n∑
p=jn+1

αi,pzi,pTcm

=
i−1∑
L=1

ceil[j/n(i−1−L)]∑
p=ceil[j/n(i−L)]n+1

αL,pzL,pTcm +

(j+1)n∑
p=jn+1

αi,pzi,pTcm

(5.126)

αT% =
x∑

L=1

αT% in level L (5.127)

As previously, x is the largest number of levels which have been running

and can be got from T and Ti,j

αT% in level 1 =
T − T1,1
Tf − T1,1

α0,1 (5.128)

αT% in level 2 =
T − T2,1
Tf − T2,1

α1,1 +
T − T2,2
Tf − T2,2

α1,2 + · · ·+ T − T2,m2

Tf − T2,m2

α1,m2

=

m2∑
p=1

T − T2,p
Tf − T2,p

α1,p

(5.129)

· · · · · ·

· · · · · ·

· · · · · ·
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Figure 5.13: Progress - Sequential distribution, staggered start, root does
processing.

αT% in level x =
mx∑
p=1

T − Tx,p
Tf − Tx,p

αx−1,p (5.130)

So we get:

αT% = αT% in level 1 + αT% in level 2 + · · ·+ αT% in level x

=
x∑

L=1

mL∑
p=1

[
T − TL,p
Tf − TL,p

αL−1,p]
(5.131)

Here, m is the set of processors that have been running in the ith level

and can be got by T and Ti,j.

Figure 5.13 is the simulation result of progress for sequential distribution,

staggered start, root does processing case.
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5.5 Conclusion

In this chapter, we discussed calculating two parameters for performance e-

valuation for single-level and multi-level trees with divisible loads: utilization

and progress. For multilevel tree network, it was found that the utilization

decreases as the number of levels increases. This indicates explicitly, as other

authors have noticed, that there is a point of diminishing returns for speedup

and make span in adding additional levels of processors in multi-level tree

networks.

It was also found that the processors with staggered start have lower

utilizations than the ones with simultaneous start. For the processors with

simultaneous distribution, all the processors in the same level have same

utilization. For the processors with sequential distribution, the processors in

precedence have larger utilization.

The percentage of the load that has been processed has two periods:

a transient one and a stable one. In the transient period, the processors

are getting started level by level (simultaneous distribution) or one by one

(sequential distribution). So the total processing speed increases during this

short period of time. In the stable period, all the processors have been started

and the processing speed is a constant.

Future work could involve are utilization and progress for other types of

networks such as rings, 2D meshes, 3D meshes and hypercubes.
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Chapter 6

Conclusion

In this thesis, the optimization for electrical grid systems and grid computing

systems are studied. Chapter 2 introduces single phase load balancing prob-

lem. Different algorithms including brute force searching, greedy algorithm,

heuristic algorithms and a dynamic programming algorithm we developed

are implemented to solve this problem. These algorithms are compared and

we found the dynamic programming is the most promising one in terms of its

optimality and reasonable running time. In chapter 3, we extended the dy-

namic programming algorithm to solve three phase load balancing problem

with spatial consideration. More details for three phase balancing problem

are modeled and several variations on the basic algorithm are discussed. The

heuristic algorithms can be superseded by the dynamic programming algo-

rithm we proposed to solve three phase balancing problem. In chapter 4,

a DLT - based scheduling algorithm for divisible loads with nonlinear com-

munication time is investigated. This algorithm is implemented on single
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level tree network with divisible loads and quadratic and cubit internal com-

munication time for different distribution policies. An iterative method is

used to obtain the numerical solutions. The simulation results show that

this algorithm provides optimal solutions for grid computing systems where

the makespan is the most crucial factor. In chapter 5, two novel performance

measures for grid computing systems are proposed: utilization and progress.

Single level and multi-level divisible loads scheduled trees with various dis-

tribution policies are studied and it was found that these two performance

measures are of interest for grid computing systems.

The key lesson is that electrical companies can write software based on our

dynamic programming algorithm to automatically analyze customers’ elec-

tricity demand and make the optimal phase balancing arrangement instead

of workers’ intuitive decision, greedy algorithm and heuristic algorithms. Al-

so, the Divisible Load Theory as an analytical tool is applied and optimal

scheduling is obtained. It is found that DLT is a promising mathematical

tool for grid computing systems and further studies are needed.
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