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Abstract of the Dissertation

A Stochastic Segmentation Model for Recurrent Copy
Number Alterations in Grouped array-CGH Data

by

Ying Cai

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2013

With the recent advances in high resolution microarrays and next generation sequencing,

DNA copy number can now be profiled in a high throughput global manner. This has enabled

the systematic study of DNA copy number alterations in tumors, as well as the profiling of

inherited population-wide copy number variants. Studies of DNA copy number usually

involve many samples that fall into different groups, e.g. tumor subtype or ethnic group. It

is often of interest to find recurrent alterations within each group. We develop a stochastic

segmentation model for detecting recurrent DNA copy number alterations in grouped array-

CGH data. In our model, the parameter in each regime is a random variable following specific

regime-specific distribution. Explicit formulas for posterior means can be used to estimate

the signal directly without performing segmentation. We give a linear-time algorithm for

fitting this model and for estimating its parameters by expectation maximization. Simulation
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studies and applications to real grouped array-CGH data illustrate the advantages of the

proposed model.
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Chapter 1

Introduction

Genome sequencing have been made process at a rapid pace, with the development of

high throughput technologies. The high resolution microarrays and next-generation sequenc-

ing (NGS) technologies are now widely being applied to a broad range of important topics

in biology and medicine, including analyses of transcriptome dynamics, genomic variation,

genome structure and etc. These high throughput, high resolution techniques have generated

tremendous sequential data, thus there are onerous statistical and computational challenges

that are incurred when dealing with such data, like identifying genetic variation, transcrip-

tional network inference, Genome-Wide Association Study (GWAS) or common diseases and

complex traits. Obviously, identifying genetic variation and understanding the role in human

traits and diseases is an important goal of human genetics.

In this chapter, we will review an important genetic variation, arrayCGH data for copy

number alteration (CNA) detection and recurrent copy number alterations (CNAs). Then

we shall retrospect the most popular and the latest statistical models to show how they

solved the problem of detecting recurrent CNAs. Moreover, the interesting and unsolved

questions are shown in the third section as the motivation of our study. The last section

gives the outline of this dissertation.
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1.1 Recurrent Copy Number Alterations using array-CGH data

Genetic variation plays a significant role in biological function. It exists in different

forms, ranging from gross alterations in the human karyotype to single nucleotide changes.

one predominant form of genetic variation is called a Single Nucleotide Polymorphism (SNP).

A SNP is defined as a single nucleotide base change in a DNA sequence. The single nucleotide

base is replaced by any of the other three bases. For example, a SNP may replace the

nucleotide cytosine (C) with the nucleotide thymine (T) in a certain stretch of DNA. They

occur once in every 300 nucleotides on average, which means there are roughly 10 million

SNPs have been identified in the human genome. If a SNP is frequently found close to a

particular gene, it can act as a biological marker for that gene, thereby it may help researcher

to locate disease associated gene. An alternative form of genetic variation has gained much

interest, it is defined as gains or losses of specific regions of the genome, and varying in size

from 1 kb to a complete chromosome arm, not limited to a single nucleotide base (Lee et

al., 2007; Scherer et al., 2007; Shah et al., 2008; Hastings et al., 2009), has been estimated

to contribute more to genetic diversity than single nucleotide polymorphisms (Feuk et al.,

2006) as shown in Figure 1.1.

CNA is a key genetic event in the development and progression of numerous human

diseases including cancer, HIV acquisition, autoimmune diseases, and Alzheimer and Parkin-

sons disease (Pollack et al., 2002; Redon et al. 2006; Beck et al. 2007; Lupski et al. 2007).

So far the CNAs reported have been documented in the TCAG database of genomic vari-

ants(MacDonald et al., 2013), accounts for roughly 12% of human genomic DNA. Recent

advances in high density microarray technologies (Pinkel et al. 1998; Pollack et al. 1999;

Snijders et al. 2001; Bignell et al. 2004; Ishkanian et al. 2004; Peiffer et al. 2006; Pinkel et al.

2005) enable high-throughput genome-wide profiling of DNA copy number, hence enabling

systematic study of their involvement in diseases. For a given cell sample, these technologies
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allow measurement of the average genomic DNA copy number at thousands of locations

linearly ordered along the chromosomes. Array-based Comparative Genomic Hybridization

(aCGH) is currently the main technology to detect genomic copy number changes(gains or

losses) in DNA. For a given cell sample, the average DNA copy number at several thousands

of locations along the chromosomes can be quantitatively measured. DNA from a test sam-

ple is chopped up into short fragments, then these fragments are labeled with a fluorescent

dye of a specific color, while DNA from normal reference sample is labeled with a dye of a

different color. The two genomic DNAs, test and reference, are then jointly hybridize to the

array of several thousands of short sequences of DNA probes. Hybridization to the probes

emits fluorescence, which can be quantified. Because the test and reference are labeled with

different colored fluorescent dyes that can be measured independently, the intensity ratio

of the test and reference hybridization signals, usually expressed by log 2, gives an indirect

measure of copy number of each probe. The aCGH protocol is shown in Figure 1.2. The

potential of aCGH has been widely used to identify functional genetic mutations involved in

cancer (Beroukhim et al.,2010). SNP array-based technology is another array-based technol-

ogy, which also enable the detection of CNA (Wang et al., 1998), although it was originally

developed for detecting SNP. In SNP array, it is single label, no reference DNA sample is

necessary. Instead, CNA is identified via comparing the probe intensities of the test DNA

with library of location specific empirical distribution. Besides the array-based technologies,

NGS based approaches have also been used in the last few years in detecting CNA in hu-

man genomes. This type of method based on the short read data provide an unbiased and

comprehensive view of genetic variations, their performance is not fully understood due to

the relatively young age of the procedures. It is important to note that, locating CNA in

individual samples is only the initial step in the search for interesting genes, but the cancer

driver genes are more likely to be found in common or recurrent regions among samples

(Korbel et al., 2007; Lai., 2005; Willenbrock et al., 2005; Rueda et al., 2007). Generally,
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we can define a recurrent CNAs region as “a set of continuous probes that show a high

enough evidence to being altered in at least some samples” (Rueda and Diaz-Uriarte, 2010),

as shown in Figure 1.3.

Figure 1.1: Illustration: Copy Number Alteration on Chromosome 8.
(http://www.dnavision.com/biostatistics.php)

1.2 Overview of existing methods

Over the past ten years, a large number of computational and statistical methods have

been developed to analyze DNA copy number data. These methods can be broadly divided

into two categories: (1) single-sample procedures aimed at accurately identifying regions of

gain and loss within an individual sample by various statistical techniques including simple

thresholding, change-point models, wavelets, hidden Markov models, and lowess smoothing
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Figure 1.2: Illustration: Array-CGH protocol.
(http://compbio.cs.brown.edu/projects/structvar/)

(for recent reviews and comparisons, see Lai et al., 2005; Willenbrock and Fridlyand, 2005);

(2) multi-sample methods aimed at providing an integrative analysis of copy number aber-

rations across samples (Lipson et al., 2006; Diskin et al., 2006; Rouveirol et al., 2006; Shah

et al., 2007; Beroukhim et al., 2007; Guttman et al., 2007; Taylor et al., 2008; Zhang et

al., 2009). Two recent reviews (Shah, 2008; Rueda OM and Diaz-Uriarte R, 2010) provide

qualitative comparison of of existing methods. In this thesis, we focus on the problem of

multi-sample CNAs analysis when the samples have pre-assigned group labels. We develop

a method for estimating recurrent aberrations.

The common strategy for identifying recurrent CNAs is to first pre-process each indi-

vidual sample and make calls of gains and losses, and then to infer recurrent CNAs using a

threshold for the frequency of occurrence (Pollack et al., 2002; de Leeuw et al., 2004; Garnis

2006). We describe these methods as alternation frequency-based procedures. For example,

Rouveirol et al. (2006) proposed an minimal alteration region (MAR) algorithm that takes

as input a set of discretized sequences and outputs a set of minimal recurrent regions. This

method works by converting the sequences to a S ∗ T binary matrix (gains and losses are

analyzed separately), where S is the number of samples and T is the number of probes on

the array. It then tries to find short blocks that are shared by a pre-specified fraction of

the samples. Significance testing for aberrant copy number (STAC) proposed by Diskin et
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Figure 1.3: Illustration: Recurrent Copy Number Alterations. (Shah et al., 2007)

al. (2006) also take a binary S ∗ T matrix as input, and use a greedy search procedure to

find regions (“stacks”) that are shared across samples with statistically significant frequency.

Guttman et al. (2007) proposed a method, Multiple Sample Analysis (MSA), which can be

considered an improvement over STAC. MSA uses the original ratio data, not segmented

data, as input data, by searching over a set of possible cutoff values in the segmentation

procedure. Genomic Identification of Significant Targets in Cancer (GISTIC) (Beroukhim

et al., 2007) is another approach that uses segmentation information. In contrast to STAC

and MSA, GISTIC not only considers the location and length of the aberration, but also

considers the amplitude of the aberration across samples. In addition, GISTIC accepts con-

tinuous segmented input data generated by single sample analysis methods such as Gain

and Loss Analysis of DNA (GLAD) algorithm (Hup et al., 2004) and circular binary seg-

mentation (CBS) algorithm (Venkatraman et al., 2007) and define the G-score involving
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both the amplitude of the aberration and the frequency of its occurrence across samples.

Recently, Walter proposed a novel method Discovering Copy Number Aberrations Mani-

fested In Cancer (DiNAMIC) which employs a novel permutation scheme called cyclic shift

to assess the statistical significance of recurrent CNAs in multiple samples (Walter et al.,

2011). This method accepts both continuous raw signal and segmented data, either discrete

or continuous, since this method makes no distributional assumptions. Morganella et al.

(2011) proposed a Genomic Analysis of Important Alterations (GAIA) approach which uses

within-sample homogeneity to find recurrent CNAs where a statistical hypothesis model is

based on a conservative permutation test. To access statistical significance of CNAs, all

these methods, STAC, MSA, GISTIC, DiNAMIC and GIGA, use a permutation approach.

GAIA, GISTIC uses multiple hypothesis testing via false discovery rate (FDR) control for

the CNAs, while DiNAMIC, STAC and MSA use max-T procedure to control the family-wise

error rate (FWER)(Westfall PH and Young SS, 1993). It is important to note that, these

above two-step methods require pre-segmentation of each sample, and do not pool informa-

tion across samples at the raw data stage. While alteration-based procedures may detect

some common signals, pre-processing or discretizing the sequences separately may remove

information by smoothing over short or low-amplification CNAs.

For finding shared patterns using the raw data to avoid problems with premature thresh-

olding, one stage method which does not require a prior segmentation step will be discussed

here. Lipson et al. (2006) proposed a combined scan statistic and provides the statistical

significance for each CNA calling. Shah et al. (2007) suggested a multi-layer hierarchical hid-

den Markov model (HMM) to simultaneously segment all samples.This model assumes that

changes must occur in the same direction with the same magnitude. An MCMC algorithm

is used to estimate parameters in this model. Klijn et al. (2008) proposed a Kernel Convolu-

tion: a Statistical Method for Aberrant Region deTection (KC-SMART) which constructs a
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statistic, kernel smoothed estimate (KSE) base on a kernal function. The correlations among

copy number data and information from neighboring markers are considered in the statistic,

KSE. Zhang et al. (2010) proposed a simultaneous change-point model and a likelihood-

based framework for pooling data across multiple samples, and showed by using replicate

samples and family trios that pooling data across samples pre-segmentation improves the

power of calling short copy number variants. Zhang Q et al. (2010) introduced Correlation

Matrix Diagonal Segmentation (CMDS) algorithm, directly using the raw copy number data

(intensity ratio) across a set of samples, without the pre-analysis of single sample. This

method constructs a Recurrent CNAs (RCNA) score using an easily implemented and fast

diagonal transformation technique, the significance of RCNA score can be accessed based on

a normal distribution, and then the significance of RCNA regions can be determined. Sergii

et al. (2010) presented a CNAnova for identifying recurrent CNAs using unsegmented SNP

microarray data .This model can be considered as a one-way analysis of variance and does not

require permutation strategy to generate the null distribution. Instead, the distribution can

be approximated using probe intensities in normal samples. Recently, Ewald et al. (2013)

proposed a Analytical Multi-scale Identification of Recurring Events(ADMIRE), which per-

forms a different kernel smoothing methodology from KC-SMART on the aggregated profile

that gains power for detecting recurrent CNAs.

None of the existing methods incorporate grouping information for the samples. Such

information is often available and may yield additional insights. For example, in tumor

data, we often know the disease stage, lymph node status, and information regarding other

biomarkers for each biological sample. In population-wide studies, samples may be cate-

gorized by ethnicity or by a particular phenotype. It is often of interest in studies to find

regions of the genome that is altered more frequently in a specific group.

In this thesis, we propose for the analysis of recurrent CNAs a new stochastic segmenta-
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tion model that incorporate grouping information for multiple samples. We tend to classify

the states of copy number as three regimes, amplification, deletion, and baseline. The mean of

copy number at different periods have different values, even they belong to the same regime.

So in our model, parameter is a random variable instead of a constant in the classic model,

following some regime-specific distribution within each regime. The model parameters are

represented by a three state irreducible Hidden Markov Chain with transition probability

matrix. Our model uses a Bayesian framework, so contains certain hyperparameters. Here I

applied Expectation Maximization (EM) algorithm to estimate the hyperparameters. Fur-

thermore, in order to improve the computational efficiency of the estimation, I proposed

an approximation to the Bayes estimates, named Bounded Complexity Mixture (BCMIX),

which uses only a fixed number of filters, thus reducing the computational complexity.

1.3 A Motivating Question

The classic segmentation model, also called Hidden Markov Model (HMM), in which the

parameter is a constant at different periods within each regime, has been comprehensively

used for many application, including CNA detection (Fridlyand et al., 2004). However,

the mean of copy number data at different periods might not necessarily be same, even they

belong to the same regime (amplification, deletion or baseline). To address this issue, Lai and

Xing developed a novel Bayesian segmentation model for array-CGH data (Lai et al., 2008).

However studies of DNA copy number usually involve many samples. It is often of interest

to find recurrent CNAs for grouped samples. So we want to develop our novel stochastic

segmentation model under Bayesian framework, which incorporate grouping information

for multiple samples. The model is a mixture model, or hierarchical model with the top

layer being a finite-state Markov chain and the middle layer being continuous-state Markov

chain. Explicit formulas instead of Monte Carlo simulations will be adopted to smooth the

9



parameters in the model.

1.4 Outline

This dissertation research is based on the motivation mentioned above. This research

developed a new model to detect recurrent CNAs in real grouped arrary-CGH data set. It

studied the estimation of parameters in a stochastic segmentation model and explored its

application to ovarian cancer copy number data. Chapter 2 proposes the stochastic regime

switching model, and describes smoothing estimates of parameters and the posterior state

probability with explicit formula. Since the proposed model uses a Bayesian framework,

and hence contains certain hyperparameters, EM algorithm is used to estimate those hy-

perparameters. Furthermore, to improve the computational efficiency of the estimation, an

approximation to the Bayes estimates is proposed, BCMIX, which uses only a fixed number

of filters. Chapter 3 describes the extensive numerical simulation study to check whether our

model performs well or not. Three types of simulation studies were designed to evaluates the

performance of our method on simulated data. The first type of simulation is to demonstrate

its accuracy and robustness compared to the fictitious Bayes (fBayes). The second simula-

tion study exactly follows our model assumption and tests the performance under different

simulation settings without using EM algorithm to estimate hyperparameters. In the third

simulation study, we examine the effects of different simulation setting on the estimates

using EM algorithm. Furthermore, we compared our method to an existing hierarchical

HMM method, which shows advantages of our model over current state-of-the-art method.

The last part of this section assumes regime switching locations across all samples are non-

simultaneous, which is more close to what happens in real data, and tests the performance

of our model for non-simultaneous changes. In Chapter 4, our model is applied to analyze

ovarian cancer copy number data downloaded from the The Cancer Genome Atlas (TCGA)
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to detect recurrent CNAs in fifteen ovarian cancer patients. In the end, some concluding

remarks and discussion are given in Chapter 5.
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Chapter 2

Estimation in a Novel Stochastic Segmentation Model

2.1 Model Specification

We consider the following model assumptions:

1. The log ratios ylt of CNAs follow the model ylt = θlt + εlt for l = 1, . . . , J and t =

1, . . . , T , where εlt are independent normal random variables with mean 0 and variance

σ2
l .

2. The recurrent CNAs across the J ’s sample are represented by a three-state irreducible

hidden Markov chain {st} with transition probability matrix P = (pij) and stationary

distribution π. Here the three states represent the states of copy number “gains”,

“losses”, and “baseline value 0”.

3. For each l, the dynamics of {θlt}t=1,...,T given {st} is given by θlt = 1{st=st−1}θl,t−1 +

1{st 6=st−1}zlt, in which zlt are independent normal variables with mean z(l,st) and covari-

ance V (l,st).

Note that the classic segmentation model does not satisfy the third assumption. In the

classic model, the parameter is a constant based on the regime. The third assumption adds

12



the new feature to our novel model by allowing the parameter as a random variable following

some regime-specific distribution within each regime. Let’s take a two-state scenario as an

example. As shown in Figure 2.1, the red lines demonstrates the assumptions of our model,

showing an example of possible values of a one-dimensional θlt. Four transitions occur during

the period 0 ≤ t ≤ T . Within each state, θlt take different values instead of a constant in

the classic model which is represented by the blue lines. The values are realizations from

the state-specific distribution of θl(st). The transitions are governed by some hidden Markov

chain.

Figure 2.1: Illustration: A comparison between values of θl(st) in a classic stochastic seg-
mentation model (blue line) and in our novel stochastic segmentation model (red line).
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2.2 The Forward Filtering Estimate of Parameters

Let J
(k)
t = max{i ≤ t : si−1 6= si = · · · = st = k} be the most recent switching time

prior or equal to t and at which st switches from a regime other than k to regime k. The

definition of J
(k)
t is illustrated in Figure 2.2. At time t, st = 2, and the most recent switching

occurs before t is at time J
(2)
t as shown in the figure.

Figure 2.2: Illustration: Definition of J
(k)
t .

Let

ξ
(k)
t = P (st = k|Yt), ξ

(k)
i,t = P (J

(k)
t = i|Yt), (2.2.1)

for 1 ≤ i ≤ t and 1 ≤ k ≤ K, in which Yt = (y1, . . . ,yt) and Yi,j = (yi, . . . ,yj), y =

(y1, . . . , yJ)′, then, by definition, ξ
(k)
t =

∑t
i=1 ξ

(k)
i,t . If we know all the historical information

up to time t, Yt, and that the recent transition occurs at time i from some regime to regime

k, we just need to use the information after this transition to estimate the current value of
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θlt.

Since ylt = θlt + εlt for l = 1, . . . , J . where εlt ∼ N(0, σ2
l ), and θlt ∼ N(z(l,k), V (l,k)). The

posterior distribution of θlt given Yt and J
(k)
t = i is:

f(θlt|Yit) ∝
t∏
j=i

f(ylj|θlt) · f(θlt)

∝
t∏
j=i

exp
(
− (ylj − θlt)2

2σ2
l

)
· exp

(
− (θlt − z(l,k))2

2V (l,k)

)
∝ exp

(
−

(θlt − z(l,k)i,t )2

2V
(l,k)
i,t

)
,

where

V
(l,k)
i,j =

([
V (l,k)

]−1
+
j − i+ 1

σ2
l

)−1
, z

(l,k)
i,j = V

(l,k)
i,j

([
V (l,k)

]−1
z(l,k) +

1

σ2
l

j∑
u=i

ylu

)
,

for j ≥ i.

Thus the conditional distribution of θlt given Yt and J
(k)
t = i, is g

(lk)
i,t (θlt) which is defined as

θlt|{Yt, J (k)
t = i} ∼ N(z

(lk)
i,t , V

(lk)
i,t ), (2.2.2)

If no historical information is given and only the event st = k is known, the conditional

distribution of θlt is g
(lk)
0,0 (θlt) which is defined as

θlt|{st = k} ∼ N(z(l,k), V (l,k)). (2.2.3)

It follows that the posterior distribution of θlt given Yt is a mixture of normal distributions:

θlt|Yt ∼
K∑
k=1

t∑
i=1

ξ
(k)
i,t Normal(z

(lk)
i,t , V

(lk)
i,t ). (2.2.4)
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Let us see how to derive the mixture weight ξ
(k)
i,t . First note that

f(θlt,yt, st−1 = k|Yt−1) =
K∑
r=1

f(θlt,yt, st−1 = k, st = l|Yt−1).

When r 6= k,

f(θlt,yt, st−1 = k, st = l|Yt−1)

=f(θlt,yt|Yt−1, st−1 = k, st = r)P (st−1 = k, st = r|Yt−1)

=f(yt|Yt−1, J (r)
t = t)f(θlt|Yt, J (r)

t = t)P (st = r|st−1 = k)P (st−1 = k|Yt−1)

=f(yt|Yt−1, J (r)
t = t)g

(l,r)
t,t (θt)pk,rξ

(k)
t−1.

When r = k,

f(θlt,yt, st−1 = k, st = k|Yt−1) =
t−1∑
i=1

f(J
(k)
t = i, θlt,yt|Yt−1)

=
t−1∑
i=1

f(θlt,yt|Yt−1, J (k)
t = i)P (st−1 = k, st = k|Yt−1)

=
t−1∑
i=1

f(yt|Yt−1, J (k)
t = i)f(θlt|Yt, J (k)

t = i)P (st = k|st−1 = k)P (st−1 = k|Yt−1)

=
t−1∑
i=1

f(yt|Yt−1, J (k)
t = i)g

(l,k)
i,t (θt)pk,kξ

(k)
i,t−1.

Define

ξ
(k)
i,t ∝ ξ

(k)∗
i,t :=


(∑

r 6=k ξ
(r)
t−1prk

)
f(yt|J (k)

t = t) i = t,

pkkξ
(k)
i,t−1f(yt|Yt−1, J (k)

t = i) i < t.
(2.2.5)
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So, we will study f(yt|J (k)
t = t) and f(yt|Yt−1, J (k)

t = i), when i = t.

f(yt|J (k)
t = t) =

∫
f(yt|θlt, J (k)

t = t)f(θlt|J (k)
t = t)dθlt.

f(yt|θlt, J (k)
t = t)f(θlt|J (k)

t = t)

=
J∏
l=1

1√
2πσ2

l

exp
{
− (ylt − θlt)2

2σ2
l

} 1√
2πV (l,k)

exp
{
− (θlt − z(l,k))2

2V (l,k)

}
=

J∏
l=1

1√
2πσ2

l V
(l,k)

exp
{
− (ylt − θlt)2

2σ2
l

− (θlt − z(l,k))2

2V (l,k)

}
=

J∏
l=1

1√
2πσ2

l V
(l,k)

exp
{
− (θlt − z̃)2

2Ṽ
− (z(l,k))2

2V (l,k)
− y2lt

2σ2
l

+
z̃2

2Ṽ

}
.

where

Ṽ =− 1

V (l,k)
+

1

σ2
l

)−1
= V

(l,k)
t,t ,

z̃ =Ṽ
( z(l,k)
V (l,k)

+
ylt
σ2
l

)
= z

(l,k)
t,t .

Denote g
(l,k)
i,j (u) the density function of the Normal(z

(l,k)
i,t , V

(l,k)
i,t ) distribution at point u, i.e.,

g
(l,k)
i,j (u) = (2πV

(l,k)
i,j )−1/2 exp{− (u−z(l,k)i,j )2

2V
(l,k)
i,j

},

Thus

f(yt|θlt, J (k)
t = t)f(θlt|J (k)

t = t)

=
J∏
l=1

g
z
(l,k)
t,t ,V

(l,k)
t,t

(θt)gz(l,k),V (l,k)(o)g0,σ2
l
(ylt)

g
z
(l,k)
t,t ,V

(l,k)
t,t

(o)
.

Therefore

f(yt|J (k)
t = t) =

J∏
l=1

∫ g
z
(l,k)
t,t ,V

(l,k)
t,t

(θt)gz(l,k),V (l,k)(o)g0,σ2
l
(ylt)

g
z
(l,k)
t,t ,V

(l,k)
t,t

(o)
dθlt =

ψ
(k)
0,0

ψ
(k)
t,t

ψ0,σ2
l
(ylt).

where ψ
(k)
0,0 =

∏J
l=1 g

(l,k)
0,0 (0), and ψ

(k)
i,j =

∏J
l=1 g

(k)
i,j (0).
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The second conditional density can be transferred to a similar integral

f(yt|Yt−1, J (k)
t = i) =

∫
f(yt|θlt,Yt−1, J (k)

t = i)f(θlt|Yt−1, J (k)
t = i)dθlt,

f(yt|θlt,Yt−1, J (k)
t = i)f(θlt|Yt−1, J (k)

t = i)

=
J∏
l=1

1√
2πσ2

l

exp
{
− (ylt − θlt)2

2σ2
l

} 1√
2πV (l,k)

exp
{
−

(θlt − z(l,k)i,t−1)
2

2V
(
i,t−1l, k)

}
=

J∏
l=1

1√
2πσ2

l V
(l,k)

exp
{
− (ylt − θlt)2

2σ2
l

−
(θlt − z(l,k)i,t−1)

2

2V
(l,k)
i,t−1

}
=

J∏
l=1

1√
2πσ2

l V
(l,k)

exp
{
− (θlt − z̃)2

2Ṽ
−

z
2(l,k)
i,t−1

2V
(l,k)
i,t−1

− y2lt
2σ2

l

+
z̃2

2Ṽ

}
.

where

Ṽ =− 1

V
(l,k)
i,t−1

+
1

σ2
l

)−1
= V

(l,k)
i,t ,

z̃ =Ṽ
( z(l,k)i,t−1

V
(l,k)
i,t−1

+
ylt
σ2
l

)
= z

(l,k)
i,t .

Thus

f(yt|Yt−1, J (k)
t = i) =

ψ
(k)
i,t−1

ψ
(k)
i,t

ψ0,σ2
l
(ylt).

Then

f(yt|J (k)
t = t)

f(yt|Yt−1, J (k)
t = i)

=
ψ

(k)
0,0/ψ

(k)
t,t

ψ
(k)
i,t−1/ψ

(k)
i,t

. (2.2.6)

Plugging (2.2.6) into (2.2.5) yielding ξ
(k)
i,t =

ξ
(k)∗
i,t∑K

k=1

∑t
i=1 ξ

(k)∗
i,t

, where

ξ
(k)∗
i,t :=


(∑

r 6=k ξ
(r)
t−1prk

)
ψ

(k)
0,0

/
ψ

(k)
t,t i = t,

pkkξ
(k)
i,t−1ψ

(k)
i,t−1

/
ψ

(k)
i,t i < t,

(2.2.7)
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Then expressions (2.2.1) and (2.2.4) imply

P (st = k|Yt) =
t∑
i=1

ξ
(k)
i,t , E(θlt|Yt) =

K∑
k=1

t∑
i=1

ξ
(k)
i,t z

(l,k)
i,t . (2.2.8)

2.3 The Backward Filtering Estimate of Parameters

The model assumption implies that, a stationary distribution of θlt exists and is given

by
K∑
k=1

πkNormal(z(l,k), V (l,k)). (2.3.1)

This indicates that, if θlt is initialized at the stationary distribution, its time-reversed Markov

chain can be defined. This substantially simplifies the smoothing estimates of θlt. Note that

this also imposes stationarity conditions for yt, for instance, if the regression model has

an autoregressive component, the stationarity condition for components of θlt should be

imposed. In such case, we shall replace the Normal distribution in (2.3.1) by a truncated

Normal distribution that has support in stability region. Such treatment also applies for

the smoothing estimates of θlt. For notational convenience, we still use Normal (instead of

truncated Normal) in the sequel.

As indicated at the end of Section 2.1, {θlt} is a reversible Markov chain. Therefore

we can obtain a backward filter that is analogous to (2.2.4). That is, we reverse the time,

starting with time T and estimating θlt for any time t given the “historical” information

from time T to t.

Let R
(k)
t = min{j ≥ t : k = st · · · = sj−1 6= sj} be the most recent switching time

larger than or equal to t when st switches from the regime k to another regime. Figure

2.3 illustrates the definition of R
(k)
t . At time t, the regime is st = 1, and the most recent

transition occurs after t is at R
(1)
t as shown in Figure 2.3.
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Figure 2.3: Illustration: Definition of R
(k)
t .

Define

η
(k)
t = P (st = k|Yt,T ), η

(k)
j,t = P (R

(k)
t = j|Yt,T )

We then use the time-reversed chain of θlt to obtain a backward analog of (2.2.4),

θl,t+1|Yt+1,T ∼
K∑
k=1

T∑
j=t+1

η
(k)
t+1,jNormal(z

(l,k)
t+1,j, V

(l,k)
t+1,j), (2.3.2)

in which the weights η
(k)
t+1,j can be obtained by backward induction using the time-reversed

counterpart of (2.2.7):

η
(k)
t+1,j ∝ η

(k)∗
t+1,j :=


(∑

r 6=k η
(r)
t+2p̃rk

)
ψ

(k)
0,0/ψ

(k)
t+1,t+1 j = t+ 1,

p̃kkη
(k)
t+2,jψ

(k)
t+2,j/ψ

(k)
t+1,j j > t+ 1,

(2.3.3)
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where P̃ = (p̃rk) is the transition matrix of the reversed chain of {st}, and p̃rk = P (st =

k|st+1 = r).

Thus

θlt|Yt+1,T ∼
K∑
k=1

{
p̃kk

T∑
j=t+1

η
(k)
t+1,jNormal(z

(l,k)
t+1,j, V

(l,k)
t+1,j)

+
(∑
l 6=k

p̃rkη
(r)
t+1

)
Normal(z(l,k), V (l,k))

}
.

(2.3.4)

Then we can go one step further to calculate f(θlt|Yt+1,T ).

f(θlt|Yt+1,T ) =
K∑
k=1

f(θlt, st+1 = k|Yt+1,T ) =
K∑
k=1

P (st+1 = k|Yt+1,T )f(θlt|st+1 = k,Yt+1,T )

=
K∑
k=1

K∑
r=1

P (st+1 = k|Yt+1,T )f(θlt, st = r|st+1 = k,Yt+1,T )

=
K∑
k=1

K∑
r=1

P (st+1 = k|Yt+1,T )P (st = r|st+1 = k)f(θlt|st+1 = k, st = r,Yt+1,T )

=
K∑
k=1

K∑
r=1

P (st+1 = k|Yt+1,T )p̃krf(θlt|st+1 = k, st = r,Yt+1,T ).

When k = r,

p̃kkP (st+1 = k|Yt+1,T )f(θlt|st+1 = k, st = k,Yt+1,T )

=p̃kkf(θ, st+1 = k|Yt+1,T )
∣∣∣
θ=θlt

=p̃kk

T∑
j=t+1

f(θ, st+1 = k,R
(k)
t = j|Yt+1,T )

∣∣∣
θ=θlt

=p̃kk

T∑
j=t+1

P (R
(k)
t = j|Yt+1,T )f(θ, st+1 = k|R(k)

t = j,Yt+1,T )
∣∣∣
θ=θlt

=p̃kk

T∑
j=t+1

η
(k)
t+1,jg

(k)
t+1,j(θ)

∣∣∣
θ=θlt

;
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when k 6= r,

p̃krP (st+1 = k|Yt+1,T )f(θlt|st+1 = k, st = r,Yt+1,T )

=p̃krη
(k)
t+1f(θ|st = r)

∣∣∣
θ=θlt

= p̃krη
(k)
t+1g

(l,r)
0,0 (θ)

∣∣∣
θ=θlt

.

Thus

f(θlt|Yt+1,T ) =
K∑
k=1

f(θlt, st+1 = k|Yt+1,T ) =
K∑
k=1

P (st+1 = k|Yt+1,T )f(θlt|st+1 = k,Yt+1,T )

=
K∑
k=1

K∑
r=1

P (st+1 = k|Yt+1,T )p̃krf(θlt|st+1 = k, st = r,Yt+1,T )

=
K∑
k=1

p̃kk

T∑
j=t+1

η
(k)
t+1,jg

(k)
t+1,j(θlt) +

K∑
k=1

∑
r 6=k

p̃krη
(r)
t+1g

(k)
0,0(θlt).

2.4 Smoothing Estimate of Parameters

Next, we shall use Bayes’ theorem to combine the forward filter (2.2.4) with its backward

variant (2.3.4) to estimate θlt given YT (1 ≤ t < T, 1 ≤ l < J)

f(θlt|YT ) =
K∑
k=1

f(θlt, st = k|YT ) ∝
K∑
k=1

f(θlt, st = k|Yt)f(θlt, st = k|Yt+1,T )
/
f(θlt, st = k).

From this we can derive the posterior distribution of θlt given YT . Applying Bayes’ theorem,

g
(l)
t (θ|YT ) =

K∑
k=1

g
(l)
t (θ, st = k|YT ) ∝

K∑
k=1

g
(l)
t (θ, st = k|Yt)g(l)t (θ, st = k|Yt+1,T )

/
f(θ, st = k).

where g
(l)
t (·|YT ), g

(l)
t (·|Yt), and g

(l)
t (·|Yt+1,T ) denote the density functions of the absolutely

continuous components of θlt given YT , Yt, and Yt+1,T respectively.
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The right hand side is a mixture of different states.

g
(l)
t (θ, st = k|Yt)g(l)t (θ, st = k|Yt+1,T )

/
f(θ, st = k)

=

{∑t
i=1 P (J

(k)
t = i|Yt)f(θlt|Yt, J (k)

t = i)
}{∑K

r=1 P (st+1 = r|Yt+1,T )f(θlt, st = k|st+1 = r,Yt+1,T )
}

P (st = k)f(θlt|st = k)

=

{∑t
i=1 ξ

(k)
i,t g

(l,k)
i,t (θ)

}{
p̃kk
∑T

j=t+1 η
(k)
t+1,jg

(l,k)
t+1,j(θ) +

(∑
r 6=k p̃rkη

(r)
t+1

)
g
(l,k)
0,0 (θ)

}
πkg

(l,k)
0,0 (θ)

=
t∑
i=1

ξ
(k)
i,t

(∑
r 6=k

p̃rk
πk
η
(r)
t+1

)
g
(l,k)
i,t (θ) +

p̃kk
πk

∑
1≤i≤t<j≤T

ξ
(k)
i,t η

(k)
t+1,j

g
(l,k)
i,t (θ)g

(l,k)
t+1,j(θ)

g
(l,k)
0,0 (θ)

.

Based on the reversibility of P ,

p̃kk =P (st = k|st+1 = k) =
P (st = k, st+1 = k)

P (st+1 = k)

=
P (st = k, st+1 = k)

P (st = k)
= P (st+1 = k|st = k) = pkk.

So the posterior distribution of θlt given YT is a mixture of normal distributions:

θlt|YT ∼
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt g

(l,k)
i,j (θt), (2.4.1)

in which the mixture weights α
(k)
ij,t are posterior probabilities explained below. Consider the

event

C
(k)
ij = {si = · · · = sj = k, si 6= si−1, sj 6= sj+1},

Appendix A shows that, for i ≤ t ≤ j, α
(k)
ijt = P (C

(k)
ij |Yt) and α

(k)
ij,t can be calculated
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recursively as

α
(k)
ijt = α

(k)∗
ijt

/
Dt, Dt =

K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)∗
ijt ,

α
(k)∗
ijt =

 ξ
(k)
i,t

(∑
r 6=k η

(r)
t+1pkr/πr

)
i ≤ t = j,

pkkξ
(k)
i,t η

(k)
t+1,jψ

(k)
i,j ψ

(k)
0,0

/
(πkψ

(k)
i,t ψ

(k)
t+1,j) i ≤ t < j.

(2.4.2)

where ψ
(k)
0,0 =

∏J
l=1 g

(l,k)
0,0 (0), and ψ

(k)
i,j =

∏J
l=1 g

(k)
i,j (0).

Therefore, the smoothing estimates of θlt and st given YT are given by

E(θlt|YT ) =
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt z

(l,k)
i,j . (2.4.3)

P (st = k|YT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijt . (2.4.4)

One concern here is that, since (2.4.3) are represented as K mixtures of mixtures of normals,

it is questionable whether the smoothing formula could differentiate the values of θlt when

K regimes are close to each other. Such identification issue is closed related to the choice of

appropriate hyperparameters, and will be discussed in Section 2.6.

2.5 Bounded Complexity Mixture (BCMIX) Approximation

Although the Bayes filter (2.2.4) uses a recursive updating formula (2.2.7) for the weights

ξ
(k)
i,t (1 ≤ i ≤ t, 1 ≤ k ≤ K), the number of weights increases dramatically with t, resulting in

rapidly increasing computational complexity and memory requirements in estimating θlt as

t keeps increasing. To address the issue of computational efficiency, we follow Lai and Xing

(2011) and consider a Bounded Complexity Mixture (BCMIX) approximation procedure with

much lower computational complexity yet comparable to the Bayes estimates in statistical
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efficiency. The idea of BCMIX approximation is to keep only a fixed number M of weights at

every stage t, in particular, the most recent m (1 ≤ m < M) weights ξ
(k)
i,t (with t−m < i ≤ t)

and the largest M −m of the remaining weights.

Denote K(k)
t−1 the set of indices i for which ξ

(k)
i,t−1 in (2.2.7) is kept at stage t−1 for regime

k. Note that there are at most M indices in K(k)
t−1 and K(k)

t−1 ⊃ {t − 1, · · · , t −m}. When a

new observation arrives at time t, we still define ξ
(k)∗
i,t by (2.2.7) for i ∈ {t}∪K(k)

t−1 and denote

it the index not belonging to the most recent m stages, {t, t− 1, . . . , t−m+ 1}, such that

ξ
(k)∗
it,t

= min{ξ(k)∗i,t : i ∈ K(k)
t−1 and i ≤ t−m}, (2.5.1)

choosing i
(k)
t to be the one farthest from t if the minimizing set in (2.5.1) has more than one

element. Define K(k)
t = {t} ∪ (K(k)

t−1 − {i
(k)
t }), and then

ξ
(k)
i,t =

(
ξ
(k)∗
i,t

/ ∑
j∈K(k)

t

ξ
(k)∗
j,t

)
, i ∈ K(k)

t , (2.5.2)

yields a BCMIX approximation to the forward filter.

Similarly, to obtain a BCMIX approximation to the backward filter (2.3.3), let K̃(k)
t+1

denote the set of indices j for which η
(k)
j,t+1 in (2.3.3) is kept at stage t+ 1 for regime k; thus,

K̃(k)
t+1 ⊃ {t + 1, · · · , t + m}. At time t, define η

(k)
j,t by (2.3.3) for j ∈ {t} ∪ K̃(k)

t+1 and let jt be

the index not belonging to the most recent m stages, {t, t+ 1, · · · , t+m− 1} such that

η
(k)∗
jt,t

= min{η(k)∗j,t : j ∈ K̃(k)
t+1 and j ≥ t+m}, (2.5.3)

choosing j
(k)
t to be the one farthest from t if the minimizing set in (2.5.3) has more than one

25



element. Define K̃(k)
t = {t} ∪ (K̃(k)

t+1 − {i
(k)
t }), and then

η
(k)
j,t =

(
η
(k)∗
j,t

/ ∑
j∈K̃(k)

t

η
(k)∗
j,t

)
, j ∈ K̃(k)

t , (2.5.4)

yields a BCMIX approximation to the backward filter.

For the smoothing estimate E(θlt|YT ) and its associated posterior distribution, we con-

struct BCMIX approximations by combining the preceding forward and backward BCMIX

filters with index sets K(k)
t and K̃(k)

t+1, respectively, at time t. Then the BCMIX approxima-

tions to (2.4.2) are given as

α̃ijt = α∗ijt
/
D̃t, D̃t =

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α∗ijt,

α
(k)∗
ijt =

 ξ
(k)
i,t

(∑
r 6=k η

(r)
t+1pkr/πr

)
i ∈ K(k)

t ,

pkkξ
(k)
i,t η

(k)
t+1,jψ

(k)
i,j ψ

(k)
0,0

/
(πkψ

(k)
i,t ψ

(k)
t+1,j) i ∈ K(k)

t , j ∈ {t} ∪ K̃(k)
t+1.

Therefore, the BCMIX smoother for θlt and st given YT are expressed as

E(θlt|YT ) ≈
∑K

k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1
α̃
(k)
ijt z

(l,k)
i,j , (2.5.5)

P (st = k|YT ) ≈
∑K

k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1
α̃
(k)
ijt . (2.5.6)

The BCMIX approximation fixes the number of filters as M at each time, and keeps

the m closest weights and the other M − m largest weights. This greatly reduces the

computational complexity O(T 2) of the filter in Section 2.2, 2.3 and O(T 3) of the smoother

in Sections 2.4 to O(T ). The specification of M and m are discussed in Section 3.
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2.6 Hyperparameter Estimation

The inference procedure in the above sections involve the hyperparameters {P, z(l,k), V (l,k), σ2
l },

(1 ≤ k ≤ K, 1 ≤ l ≤ J). which can be replaced by their estimates in the empirical Bayes

approach. We can show the conditional density function of yt given Yt−1 is expressed as

f(yt|Yt−1) =
J∏
l=1

(
K∑
k=1

t∑
i=1

ξ
(k)∗
i,t

)
, (2.6.1)

where ξ
(k)∗
i,t are given by (2.2.7) and are functions of hyperparameter vector Φ = {P, z(lk), V (lk), σ2

l },

1 ≤ k ≤ K, 1 ≤ l ≤ J . Given Φ and the observed data YT , the log likelihood function is

l(Φ) =
T∑
t=1

log f(yt|Yt−1) =
J∑
l=1

(
T∑
t=1

log
{ K∑
k=1

t∑
i=1

ξ
(k)∗
i,t

})
, (2.6.2)

in which f(·|·) denotes conditional density function. Maximizing (2.6.2) over Φ yields the

maximum likelihood estimate Φ̂.

Since Φ is a [(K − 1)K + d(d+ 1)K + 1]-dimensional vector and the functions ξ
(k)
i,t have

to be computed recursively for 1 ≤ t ≤ T , direct maximization of (2.6.2) is computationally

expensive due to the curse of dimensionality. We now use the Expectation Maximization

(EM) algorithm to exploit the much simpler structure of the log likelihood lc(Φ) of the
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complete data {(yt, st, θlt), 1 ≤ t ≤ T, 1 ≤ l ≤ J}:

lc(Φ|s0) =
J∑
l=1

T∑
t=1

f(ylt, θlt, st|{yli, θli, si; i = 0, . . . , t− 1, l = 0, . . . , J})

=
J∑
l=1

T∑
t=1

{
log f(ylt|θlt) +

K∑
k=1

f(θlt|st = k)1{st=k} +
K∑

k,r=1

log(pkr)1{st−1=k,st=r}

}
= −1

2

J∑
l=1

T∑
t=1

{(ylt − θlt)2

σ2
l

+ log(2πσ2
l )
}

+
J∑
l=1

T∑
t=1

K∑
k,r=1

log(pkr)1{st−1=k,st=r}

− 1

2

J∑
l=1

T∑
t=1

K∑
k=1

{(θlt − z(l,k))2

V (l,k)
+ log((2πV (l,k))

}
1{st=k,st 6=st−1}

(2.6.3)

The E-step of the EM algorithm calculates E(lc(Φ)|YT ) which is

E(lc(Φ)|YT ) =− 1

2

J∑
l=1

T∑
t=1

1

σ2
l

E[(ylt − θlt)2|YT ]− T

2
log(2πσ2

l )

− 1

2

J∑
l=1

T∑
t=1

K∑
k=1

E[
(θlt − z(l,k))2

V (l,k)
1{st=k}|YT ]

− T

2

J∑
l=1

K∑
k=1

log((2πV (l,k))E(1{st=k}|YT ) + J
T∑
t=1

K∑
k,r=1

log(pkr)E(1{st−1=k,st=r}|YT ).

(2.6.4)

It involves E[(ylt−θlt)2|YT ], E[ (θlt−z(lk))
2

V (lk)
1{st=k}|YT ], and the conditional probabilitiesE(1{st=k}|YT ) =

P (st = k|YT ) and E(1{st−1=k,st=r}|YT ) = P (st−1 = k, st = r|YT ). For the first conditional

probability,

P (st = k|YT ) =
t∑
i=1

P (J
(k)
t = i|YT ) =

t∑
i=1

T∑
j=t

P (J
(k)
t = i, R

(k)
t = j|YT )

=
∑

1≤i≤t≤j≤T

P (C
(k)
ij |YT ) =

∑
1≤i≤t≤j≤T

α
(k)
ijt .
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For the second conditional probability,

P (st−1 = k, st = r|YT ) = P (st = r|st−1 = k,YT )P (st−1 = k|YT ). (2.6.5)

From the above derivation, we know that

P (st−1 = k|YT ) =
∑

1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

Furthermore,

P (st = j|st−1 = i,YT ) =
P (st = j, st−1 = i,YT )

P (st−1 = i,YT )

=
P (st = j, st−1 = i,Yt|Yt+1,T )

P (st−1 = i,Yt|Yt+1,T )

=
P (st−1 = i,Yt|st = j)P (st = j|Yt+1,T )

P (st−1 = i,Yt|Yt+1,T )

=
P (st−1 = i,Yt)P (st = j|st−1 = i,Yt)

P (st = j)

P (st = j|Yt+1,T )

P (st−1 = i,Yt|Yt+1,T )

=
P (st−1 = i,Yt)

P (st−1 = i,Yt|Yt+1,T )

P (st = j|st−1 = i,yt)P (st = j|Yt+1,T )

P (st = j)

∝P (st = j,yt|st−1 = i)P (st = j|Yt+1,T )

P (st = j)

=
f(yt|st = j, st−1 = i)P (st = j|st−1 = i)

∑K
k=1 P (st = j, st+1 = k|Yt+1,T )

P (st = j)

=
f(yt|st = j, st−1 = i)P (st = j|st−1 = i)

∑K
k=1 P (st = j|st+1 = k,Yt+1,T )P (st+1 = k|Yt+1,T )

P (st = j)

=
f(yt|st = j)P (st = j|st−1 = i)

∑K
k=1 P (st = j|st+1 = k)P (st+1 = k|Yt+1,T )

P (st = j)

=
ψ

(j)
0,0/ψ

(j)
t,t pij

∑K
k=1 p̃kjη

k
t+1

πj
.
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Thus

P (st = r|st−1 = k,YT ) =
ψ

(r)
0,0/ψ

(r)
t,t pkrP̃

′
rηt+1/πr∑K

i=1

[
ψ

(i)
0,0/ψ

(i)
t,t pkiP̃

′
iηt+1/πi

] . (2.6.6)

Plugging (2.6.6) into (2.6.5), we have

P (st = r, st−1 = k|YT ) =
ψ

(r)
0,0/ψ

(r)
t,t pkrP̃

′
rηt+1/πr∑K

i=1

[
ψ

(i)
0,0/ψ

(i)
t,t pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

Then the conditional probabilities are:

E(1{st=k}|YT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijt ,

E(1{st−1=k,st=r}|YT ) =
ψ

(r)
0,0/ψ

(r)
t,t pkrP̃

′
rηt+1/πr∑K

i=1

[
ψ

(i)
0,0/ψ

(i)
t,t pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

(2.6.7)

The M-step of the EM algorithm involves calculating the partial derivatives of (2.6.4)

with respect to Φ. Simple algebra yields the following updating formulas for Φ.

p̂kr,new =

∑T
t=2 P (st−1 = k, st = r|YT , Φ̂old)∑T

t=2 P (st−1 = k|YT , Φ̂old)
,

ẑ(lk)new =

∑T
t=1E(θlt1{st=k}|YT , Φ̂old)∑T
t=1 P (st = k|YT , Φ̂old)

,

V̂ (lk)new =

∑T
t=1E[(θlt − ẑ(lk)old)21{st=k}|YT , Φ̂old]∑T

t=1 P (st = k|YT , Φ̂old)
,

σ̂2
l,new =

1

T

T∑
t=1

E[(ylt − θlt)2|YT , Φ̂old].

(2.6.8)

In (2.6.8), P (st = k|YT ) can be computed by (2.4.4), and other items are given as follows,

P (st−1 = k, st = r|YT ) =
ψ

(r)
0,0/ψ

(r)
t,t pkrP̃

′
rηt+1/πr∑K

i=1

[
ψ

(i)
0,0/ψ

(i)
t,t pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.
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E(θlt1{st=k}|YT ) =
∑

1≤i≤t≤j≤T

E(θlt|P (J
(k)
t = i, R

(k)
t = j,YT )P (J

(k)
t = i, R

(k)
t = j|YT ),

in which P (J
(k)
t = i, R

(k)
t = j|YT ) = P (C

(k)
ij |YT ) = α

(k)
ijt . Given C

(k)
ij and YT , the conditional

density of θlt is g
(k)
i,j (θlt), which is a normal distribution as given (2.2.2) with mean of z

(l,k)
i,j

and variance of V
(l,k)
i,j . Thus

E(θlt1{st=k}|YT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijt z

(l,k)
i,j ,

Similarly, for the second posterior expectation,

E[(θlt − z(l,k))21{st=k}|YT ]

=
∑

1≤i≤t≤j≤T

E[(θlt − z(l,k))2|C(k)
ij ,YT ]P (C

(k)
ij |YT )

=
∑

1≤i≤t≤j≤T

α
(k)
ijtE[θ2lt − 2θltz

(l,k) + (z(l,k))2|C(k)
ij ,YT ]

2 =
∑

1≤i≤t≤j≤T

α
(k)
ijt

{
E(θ2lt|C

(k)
ij ,YT )− 2z(l,k)E(θlt|C(k)

ij ,YT ) + (z(l,k))2
}

Here E(θlt|C(k)
ij ,YT ) = z

(l,k)
i,j and

E(θ2lt|C
(k)
ij ,YT ) = var(θlt|C(k)

ij ,YT ) + (E(θlt|C(k)
ij ,YT ))2

=
(
V

(l,k)
i,j + (z

(l,k)
i,j )2

)
.

So

E
[
(θlt − z(l,k))21{st=k}|YT

]
=

∑
1≤i≤t≤j≤T

α
(k)
ijt

(
z
(l,k)
i,j

2
+ V

(l,k)
i,j − 2z(l,k) · z(l,k)i,j + (z(l,k))2

)
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For the last posterior expectation, according to (2.4.1) and the above proof,

E[(ylt − θlt)2|YT ]

=
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijtE[(ylt − θlt)2|C(k)

ij ,YT ]

=
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt

{
y2lt − 2E(θlt|C(k)

ij ,YT )ylt + E(θ2lt|C
(k)
ij ,YT )

}
=

K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt

{
y2lt − 2z

(l,k)
i,j ylt + V

(l,k)
i,j + (z

(l,k)
i,j )2

}
In summary, the posterior expectations necessary for the updating formulas can be calculated

as

P (st−1 = k, st = r|YT ) =
ψ

(r)
0,0/ψ

(r)
t,t pkrP̃

′
rηt+1/πr∑K

i=1

[
ψ

(i)
0,0/ψ

(i)
t,t pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1. (2.6.9)

E(θlt1{st=k}|YT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijt z

(k)
i,j , (2.6.10)

E
[
(θlt − z(lk)21{st=k}|YT

]
=

∑
1≤i≤t≤j≤T

α
(k)
ijt

(
z
(l,k)
i,j

2
+ V

(l,k)
i,j − 2z(l,k) · z(l,k)i,j + (z(l,k))2

) (2.6.11)

E[(ylt − θlt)2|YT ] =
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt

{
y2lt − 2z

(l,k)
i,j ylt + V

(l,k)
i,j + (z

(l,k)
i,j )2

}
(2.6.12)

The iteration scheme (2.6.8) is carried out until convergence or until some prescribed upper

bound on the number of iterations is reached.

To speed up the computations involved in the EM algorithm, one can use the BCMIX

approximations in Section 2.5 instead of the full recursions to determine the items (2.6.9)-

(2.6.12). Our simulation studies shows that the EM procedure converge very fast.
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2.6.1 Implementation

We have shown the posterior distribution of parameter θlt is mixture of distributions.

In this section, we describe in detail how to implement the algorithms, presenting explicit

formulas. Let us start with a description of Bayes algorithm.

Step 1 Calculating V
(l,k)
i,j and z

(l,k)
i,j . Similar to (2.2.2), given YT and C

(k)
ij , i < j we use

V
(l,k)
i,j =

(
[V (l,k)]−1 +

j − i+ 1

σ2
l

)−1
,

z
(l,k)
i,j = V

(l,k)
i,j

(
[V (l,k)]−1z(l,k) +

∑j
u=i ylu
σ2
l

)
.

The results can be saved in two four-dimensional matrices for future calculation. More

specifically, g
(l,k)
i,j (θt) is calculated by (2.2.2). If there is no information other than st = k

is given, the conditional distribution is g
(l,k)
0,0 (θt) as in (2.2.3). Using V

(l,k)
i,j , z

(l,k)
i,j , we can

also calculate the conditional densities ψ
(k)
0,0 and ψ

(k)
i,j . They are also used to calculate the

smoothing estimate of θlt by (2.4.3).

Step 2 Calculating the forward filter (2.2.7) in a recursive manner.

(A) Start with t = 1. According to (2.2.7), we have

ξ
(k)
1,1 ∝ ξ

(k)∗
1,1 =

(∑
r 6=k

ξ
(r)
0 prk

)
ψ

(k)
0,0/ψ

(k)
1,1 .

Substitute ξ
(r)
0 for r 6= k by the stationary distribution πr, use ψ

(k)
0,0 and ψ

(k)
1,1 to calculate(∑

r 6=k πrprk
)
ψ

(k)
0,0/ψ

(k)
1,1 , which gives the value of ξ

(k)∗
1,1 , and therefore ξ

(k)
1,1 =

ξ
(k)∗
1,1∑K

k=1 ξ
(k)∗
1,1

.

(B) At t > 1, calculate ξ
(k)∗
t,t =

(∑
r 6=k ξ

(r)
t−1prk

)
ψ

(k)
0,0/ψ

(k)
t,t directly. Use ξ

(k)
i,t−1 to calculate

ξ
(k)∗
i,t = pkkξ

(k)
i,t−1ψ

(k)
i,t−1/ψ

(k)
i,t for i < t. Normalize ξ

(k)∗
i,t by dividing

∑
1≤i≤t ξ

(k)∗
i,t to get ξ

(k)
i,t .

Keep doing (B) until t = T .
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Step 3 Calculating the backward filter (2.3.3) in a recursive manner. The backward

filter η
(k)
j,t+1 can be calculated similarly by starting with t = T .

Step 4 Calculating the smoothing mixture weight (2.4.2) and the smoothing estimate

(2.4.3).

One main challenge for this procedure is the computational complexity due to the space

needed to save the matrices and number of weights which is increasing with t. There are

two ways to increase the computational efficiency of this procedure.

The first modification is to implement the BCMIX approximation so that number of

weights will be a fixed number M . The cost associated with the method is to keep the index

set K(k)
t for forward filter ξ

(k)
i,t and K̃(k)

t+1 for backward filter η
(k)
j,t+1. The basic procedure is

similar to the preceding one with calculation of up to M + 1 weights for each stage t. The

detailed procedure is as follows.

Step 1 Calculating V
(l,k)
i,j and z

(l,k)
i,j .

Step 2 Calculating the BCMIX forward filter (2.5.2) in a recursive manner.

(A) For 1 ≤ t ≤M , use the Bayes procedure to calculate ξ
(k)∗
i,t , ξ

(k)
i,t . The index set K(k)

t

at stage t is {1, · · · , t}.

(B) At t > M , use new information at stage t to calculate ψ
(k)
t,t and therefore ξ

(k)∗
t,t =(∑

r 6=k ξ
(r)
t−1prk

)
ψ

(k)
0,0/ψ

(k)
t,t . Use ξ

(k)
i,t−1 to calculate ξ

(k)∗
i,t = pkkξ

(k)
i,t−1ψ

(k)
i,t−1/f

(k)
i,t−1 for i ∈ K(k)

t−1.

Compare the weights in K(k)
t−1 − {i

(k)
t } and drop the smallest one. The remaining M weights

form the new index set K(k)
t , and ξ

(k)
i,t =

ξ
(k)∗
i,t∑

j∈K(k)
t

ξ
(k)∗
j,t

. Keep doing (B) until t = T , saving

both the index sets and the BCMIX forward filters for future calculation.

Step 3 Calculating the BCMIX backward filter (2.5.4) in a recursive manner starting

with t = T .

Step 4 Calculating the BCMIX smoothing mixture weight (2.4.2) and the smoothing
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estimate (2.4.3).

When one takes a second look at the BCMIX procedure, it is easy to find that only

a small portion of the huge precalculated matrices z
(l,k)
i,j and V

(l,k)
i,j have been used. So it

wastes a lot of space and time to calculate all the elements. However, we do not know which

elements to use before calculating the index sets. A better idea is to calculate z
(l,k)
i,j and V

(l,k)
i,j

when we need them. One more challenge is that the formulas to calculate z
(l,k)
i,j and V

(l,k)
i,j

involve matrix inversion, which will take a long time to implement. Instead of calculating

z
(l,k)
i,j and V

(l,k)
i,j directly, we can calculate V I

(l,k)
i,j := (V

(l,k)
i,j )−1 and V IZ

(l,k)
i,j := (V

(l,k)
i,j )−1z

(l,k)
i,j

by the following simple recursive formulas if we know V I
(l,k)
i,j−1 and V IZ

(l,k)
i,j−1

V I
(l,k)
i,j = [V (l,k)]−1 +

j − i+ 1

σ2
l

= V I
(l,k)
i,j−1 +

1

σ2
l

,

V IZ
(l,k)
i,j = [V (l,k)]−1z(l,k) +

∑j
t=i ylt
σ2
l

= V IZ
(l,k)
i,j−1 +

∑j
t=i ylt
σ2
l

.

(2.6.13)

So the BCMIX algorithm can be further simplified by adding this recursive updating

feature. The detailed procedure is as follows.

Step 1 Calculating the BCMIX forward filter (2.5.2) in a recursive manner from t = 1.

Follow Step 2 in the above BCMIX algorithm. Assume at stage t − 1 we have finished

calculating ξ
(k)
i,t−1 and K(k)

t−1, and saved all the V I
(l,k)
i,t−1 and V IZ

(l,k)
i,t−1 for i ∈ K(k)

t−1. At stage t,

V I
(l,k)
i,t and V IZ

(l,k)
i,t for i ∈ K(k)

t−1 can be calculated by (2.6.13). V I
(l,k)
t,t = [V (l,k)]−1 + 1

σ2
l
, and

V IZ
(l,k)
t,t = [V (l,k)]−1z(l,k) + ylt

σ2
l
. They are used to calculate ψ

(k)
i,t , ψ

(k)
t,t by

ψ
(k)
i,t =

J∏
l=1

g
(l,k)
i,t ∝

J∏
l=1

(V
(l,k)
i,t )−1/2 exp{−

(z
(l,k)
i,t )2

2V
(l,k)
i,t

}

∝
J∏
l=1

(V I
(l,k)
i,t )1/2 exp{−

(V IZ
(l,k)
i,t )2

2V I
(l,k)
i,t

},
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and therefore ξ
(k)∗
i,t are calculated for all i ∈ {t} ∪ K(k)

t−1. A small weight is dropped by the

BCMIX rule and the remaining index set K(k)
t , ξ

(k)
i,t , V I

(l,k)
i,t and V IZ

(l,k)
i,t are saved.

Step 2 Calculating the BCMIX backward filter (2.5.4) in a recursive manner starting

with t = T . If we know V I
(l,k)
i−1,j and V IZ

(l,k)
i−1,j, and want to calculate V I

(l,k)
i,j and V IZ

(l,k)
i,j by

the recursive formulas

V I
(l,k)
i,j = V I

(l,k)
i−1,j +

1

σ2
l

, V IZ
(l,k)
i,j = V IZ

(l,k)
i−1,j +

∑j
t=i ylt
σ2
l

.

Using these updating formulas, we can recursively calculate V I
(l,k)
t+1,j and V IZ

(l,k)
t+1,j for j ∈ K̃(k)

t+1

and conduct Step 3 in the above BCMIX algorithm.

Step 3 Calculating the BCMIX smoothing mixture weight α̃
(k)
ijt and the smoothing

estimate θ̂l,t|T . We can evaluate V I
(l,k)
i,j and V IZ

(l,k)
i,j for i ∈ K(k)

t , j ∈ K̃(k)
t+1 by

V I
(l,k)
i,j = [V (l,k)]−1 +

j − i+ 1

σ2
l

= ([V (l,k)]−1 +
t− i+ 1

σ2
l

) + ([V (l,k)]−1 +
j − t
σ2
l

)− [V (l,k)]−1

= V I
(l,k)
i,t + V I

(l,k)
t+1,j − [V (l,k)]−1,

V IZ
(l,k)
i,j = [V (l,k)]−1z(l,k) +

∑j
u=i ylu
σ2
l

= ([V (l,k)]−1z(l,k) +

∑t
u=i ylu
σ2
l

) + ([V (l,k)]−1z(l,k) +

∑j
u=t+1 ylu

σ2
l

)− [V (l,k)]−1z(l,k)

= V IZ
(l,k)
i,t + V IZ

(l,k)
t+1,j − [V (l,k)]−1z(l,k).

(2.6.14)

The smoothing estimate of θlt can be calculated as θ̂l,t|T defined in (2.5.5). Furthermore,

the inference on regimes can be conducted using (2.5.6) by substituting αijt by α̃ijt calculated

in Step 3.
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Chapter 3

Simulation Studies

In this chapter, implementation of intensive simulation experiments is described. Firstly,

some general criterion are introduced, including sum of squared error (SSE),and the identi-

fication ratio (IR) of true state calling. Then the performances of the fBayes and BCMIX

estimates are compared, through Monte Carlo simulations. The result shows the BCMIX is

statistically and computational efficient. Afterwards, we examine the relationship between

the BCMIX performance and simulation settings. Additionally, we compare our model to

an existing hierarchical HMM model. The choice of hyperparameters is also discussed.

3.1 Comparison Criterion

The sum of squared errors between the true and estimated parameters is used to assess

the performance of the estimation of parameter θlt. In our model, if a time series of T

observations is generated, with a series of θ̂lt estimated, the SSE is defined by

SSE =
1

T

T∑
t=1

1

J

J∑
l=1

(θlt − θ̂lt)2

We also need to evaluate the performance of the smoothed probability r̂
(k)
t|T = P (st =
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k|Yt) as discussed in previous chapter. We use this probability to provide assessment of the

hidden state st belonging to regime k. However, this is not a logical variable only taking a

value of 1 or 0, but a probability theoretically close to 1 or 0. When there is a transition

from some regime to another one, the probability might show some fuzziness. An intuitive

and simple way to make the inference on st is to compare the smoothed probability r̂
(k)
t|T with

0.5. If for any 1 ≤ k ≤ K, r̂
(k)
t|T > 0.5, we identity st = k. More specifically, to evaluate the

performance of this procedure, we define an identification ratio as

IR :=

∑T
t=1

∑K
k=1 1

(r̂
(k)
t|T>0.5)∩(st=k)

T
,

where 1 denotes an indicator function, and T is the length of the sequence. If the true regime

is k, and a probability reasonably close to 1, r̂
(k)
t|T > 0.5, is obtained from the procedure, then

(r̂
(k)
t|T > 0.5) ∩ (st = k) is true, and the indicator function returns 1 for stage t.

3.2 Simulation 1: Comparison between Bayes and BCMIX Esti-

mates

As mentioned in Section 2.5, the Bayes method is accurate but computationally inef-

ficient since the number of weights increases with t, resulting in rapidly increasing compu-

tational complexity and memory requirement in estimating θlt as t keeps increasing. The

BCMIX approximation is much faster and does not need to save so many variables. This

section is to compare the performances of the fBayes method described later and the BCMIX

approximation described in Section 2.5.

We use three states in our model, K = 3, and the values of the parameter θlt depend

on the hidden state st. The hyperparameters consist of {P, z(l,k), V (l,k), σ2
l }, 1 ≤ k ≤ K,

1 ≤ l ≤ J . In all the examples shown in this section, data are generated according to
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hyperparameter values: (z(l,1), V (l,1)) = (1, 0.22), (z(l,2), V (l,2)) = (0, 0.22), (z(l,3), V (l,3)) =

(−1, 0.22) P =


0.998 0.001 0.001

0.001 0.998 0.001

0.001 0.001 0.998

, and σ2
l = 1, 1 ≤ l ≤ 10. Furthermore, given st,

θlt is a realization from a truncated Normal(z(l,st), V (l,st)) distribution such that |θlt| < 2

to make the series stationary. We generate N = 500 series, each of length T = 1000, and

consider st changing over time in four scenarios:

Scenario 1. There is one transition from regime 1 to regime 2, one transition from regime

2 to regime 3. st = 1 for 1 ≤ t ≤ 200; st = 2 for 201 ≤ t ≤ 400; st = 3 for 401 ≤ t ≤ 1000.

Scenario 2. There is one transition from regime 1 to regime 2, one transition from regime

2 to regime 3. st = 1 for 1 ≤ t ≤ 500; st = 2 for 501 ≤ t ≤ 700; st = 3 for 701 ≤ t ≤ 1000.

Scenario 3. There are four transitions among regime 1, regime 2 and regime 3. st = 2

for 1 ≤ t ≤ 200; st = 1 for 201 ≤ t ≤ 400; st = 2 for 401 ≤ t ≤ 600, st = 3 for 601 ≤ t ≤ 800,

st = 2 for 801 ≤ t ≤ 1000.

Scenario 4. There are six transitions among regime 1, regime 2 and regime 3. st = 2 for

1 ≤ t ≤ 200; st = 3 for 201 ≤ t ≤ 300; st = 1 for 301 ≤ t ≤ 400, st = 2 for 401 ≤ t ≤ 600,

st = 3 for 601 ≤ t ≤ 700, st = 1 for 701 ≤ t ≤ 800,st = 2 for 801 ≤ t ≤ 1000.

In each scenario, we assume the true hyperparameters are given, and compute both the

BCMIX estimate. As mentioned in Section 2.5, the performance of the BCMIX procedure

depends on the specification of M and m. This dependence is examined here, choosing

M = 2m and M =10, 20, 30 and 40. Furthermore, to access the performance of the method,

we consider a simple benchmark in which the hidden state is known so that the Bayes

estimates of θlt among three transitions are given by the standard Bayesian formulas for

normal populations (Section 2.7 of Box and Tiao (1973)). This is called a “fictitious Bayes”

estimate. Tables 3.1 compare fictitious Bayes estimate (fBayes) and the BCMIX estimate
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Table 3.1: Performance of sum of squared errors (SSE) for fBayes and BCMIX estimates.
Standard errors are given in parentheses below the estimates.

BCMIX
Scenarios fBayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 0.00287 0.00320 0.00319 0.00319 0.00319
(3.26E-05) (3.77E-05) (3.77E-05) (3.77E-05) (3.77E-05)

Scenario 2 0.00294 0.00329 0.00328 0.00328 0.00328
(3.35E-05) (3.93E-05) (3.91E-05) (3.91E-05) (3.91E-05)

Scenario 3 0.00487 0.00540 0.00540 0.00540 0.00540
(4.34E-05) (4.75E-05) (4.75E-05) (4.75E-05) (4.75E-05)

Scenario 4 0.00676 0.00758 0.00758 0.00758 0.00758
(5.18E-05) (6.17E-05) (6.13E-05) (6.12E-05) (6.12E-05)

(BCMIX) in terms of the SSE.

The first two columns in Table 3.1 show that the fictitious Bayes estimate show smaller

SSE than BCMIX(10,5) estimate. As discussed in Section 3.1, SSE is not an appropriate

criterion for evaluating the performance of different estimation procedures. But this com-

parison illustrates the effectiveness of BCMIX estimate. Furthermore, the relative difference

between BCMIX(10,5) estimate and fBayes estimate in SSE is less than 2% in all scenarios,

which demonstrates BCMIX has very promising results.The last four columns in Table 3.1

show that the average SSE over 500 sequences changes with respect to the different values

of M and m. As mentioned in Section 2.5, the approximation should improve as M and

m become larger since more filters are kept at each stage. However, based on Table 3.1,

we cannot see the trend clearly although in each scenario all the BCMIX estimates have

similar SSE. This observation shows the BCMIX procedure is very robust for this model.

The estimation results do not change dramatically when M and m are getting larger.

Let us take a second look at Table 3.1 to compare the results of different scenarios.

Scenarios 1 and 2 both experience two transitions, but at different times. Both fBayes and
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Figure 3.1: A selected series ylt for 10 samples in Scenarios 1 (from left to right and top to
bottom).
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BCMIX estimates have similar SSE in Scenario 1 and 2. The estimating errors become

larger in Scenarios 3 and 4 when there are more transitions and the distances between two

successive transitions become smaller. The result is consistent with the prediction that the

more change points, the larger SSE.

To visualize the simulation results, here we show some figures. Figure 3.1, 3.2, 3.3,

3.4 show a randomly selected simulation path ylt in four scenarios, respectively. From the

four figures we find some changing patterns in each series, but cannot tell the number and

locations of the transitions by observing the series. Figure 3.5, 3.6, 3.7, 3.8, show the true

θlt and estimated θ̂lt|T of the corresponding series in four scenarios, respectively. Before we
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Figure 3.2: A selected series ylt for 10 samples in Scenarios 2 (from left to right and top to
bottom).
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Figure 3.3: A selected series ylt for 10 samples in Scenarios 3 (from left to right and top to
bottom).
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Figure 3.4: A selected series ylt for 10 samples in Scenarios 4 (from left to right and top to
bottom).
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analyze the estimates, let us observe the true parameters in different regimes to have a better

understanding of the model. In the last plot (Figure 3.8), there are three regimes and six

transitions from regime 2 to 3, then to regime 1, and then back to regime 2, then to regime

3, then to regime 1, then back to regime 2 again. However, values of θlt within each regime

are not the same. This is the new feature of our model as specified in assumption (A3).

Different from the classic segmentation model in which θlt is a constant within each regime,

in our model θlt is a random variable following some distribution within each regime. Now let

us look at the estimation results. In the first two scenarios (Figure 3.5, 3.6), the estimated

parameters are very close to the true θlt. In the last two scenarios (Figure 3.7,3.8) there are

significant deviations between θlt and θ̂lt|T .

Figure 3.9, 3.10, 3.11, 3.12 show the true and estimated P (st = 1), P (st = 2), P (st = 3)

of each series in four scenarios, respectively. Specifically, if the true regime is 1, the true

probability of P (st = 1) = 1; if the true regime is 2 or 3, the true probability of P (st =

1) = 0. There are three regimes in our simulation setup. In all four scenarios, the estimated

probabilities in BCMIX procedure (red line) are very close to the true probabilities (blue

line). So the BCMIX procedure is robust and efficient to make inference on regimes.
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Figure 3.5: BCMIX estimates (red line) of θ̂lt|T and true θlt (blue line) of the selected series
for 10 samples in Scenarios 1 (from left to right and top to bottom).
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Figure 3.6: BCMIX estimates (red line) of θ̂lt|T and true θlt (blue line) of the selected series
for 10 samples in Scenarios 2 (from left to right and top to bottom).
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Figure 3.7: BCMIX estimates (red line) of θ̂lt|T and true θlt (blue line) of the selected series
for 10 samples in Scenarios 3 (from left to right and top to bottom).
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Figure 3.8: BCMIX estimates (red line) of θ̂lt|T and true θlt (blue line) of the selected series
for 10 samples in Scenarios 4 (from left to right and top to bottom).
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Figure 3.9: BCMIX estimates (red line) of r̂
(1)
t|T and true P (st = 1) (blue line) (top), P (st = 2)

(blue line) (middle), P (st = 3) (blue line) (bottom) of the selected series for 10 samples in
Scenarios 1.
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Figure 3.10: BCMIX estimates (red line) of r̂
(1)
t|T and true P (st = 1) (blue line) (top),

P (st = 2) (blue line) (middle), P (st = 3) (blue line) (bottom) of the selected series for 10
samples in Scenarios 2.
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Figure 3.11: BCMIX estimates (red line) of r̂
(1)
t|T and true P (st = 1) (blue line) (top),

P (st = 2) (blue line) (middle), P (st = 3) (blue line) (bottom) of the selected series for 10
samples in Scenarios 3.
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Figure 3.12: BCMIX estimates (red line) of r̂
(1)
t|T and true P (st = 1) (blue line) (top),

P (st = 2) (blue line) (middle), P (st = 3) (blue line) (bottom) of the selected series for 10
samples in Scenarios 4.
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3.3 Simulation 2: Large Simulation with Different Simulation Set-

ting

In this section, we will examine the effects of different simulation settings on the esti-

mates. As mentioned in the last section, we will use the BCMIX procedure for large scale

simulation studies with specific M and m. We assume we have the exact same model de-

scribed in chapter 2. There are three states, K = 3. We still use the same parameter

settings with the previous simulation study: (z(l, 1), V (l, 1)) = (1, 0.22), (z(l, 2), V (l, 2)) =

(0, 0.22), (z(l, 3), V (l, 3)) = (−1, 0.22), σ2
l = 1, 1 ≤ l ≤ 10. The transition matrix is

P =


1− p1 − q1 p1 q1

p2 1− p2 − q2 q2

p3 q3 1− p3 − q3

, which has the following settings:

Scenario 1. (p1, q1, p2, q2, p3, q3) = (0.001, 0.001, 0.001, 0.001, 0.001, 0.001).

Scenario 2. (p1, q1, p2, q2, p3, q3) = (0.002, 0.002, 0.002, 0.002, 0.002, 0.002).

Scenario 3. (p1, q1, p2, q2, p3, q3) = (0.004, 0.004, 0.004, 0.004, 0.004, 0.004).

Scenario 4. (p1, q1, p2, q2, p3, q3) = (0.008, 0.008, 0.008, 0.008, 0.008, 0.008).

Scenario 5. (p1, q1, p2, q2, p3, q3) = (0.016, 0.016, 0.016, 0.016, 0.016, 0.016).

Scenario 6. (p1, q1, p2, q2, p3, q3) = (0.002, 0.001, 0.002, 0.002, 0.001, 0.002).

Scenario 7. (p1, q1, p2, q2, p3, q3) = (0.004, 0.001, 0.004, 0.004, 0.001, 0.004).

Scenario 8. (p1, q1, p2, q2, p3, q3) = (0.001, 0.002, 0.001, 0.001, 0.001, 0.001).

Scenario 9. (p1, q1, p2, q2, p3, q3) = (0.001, 0.004, 0.001, 0.001, 0.001, 0.001).

We generate 500 series, N = 500, and each of length T takes the values of 3000, 4000,

5000, 6000 and 7000 for each scenario. The BCMIX procedure with M = 20 and m = 10 is

adopted to estimate the smoothing parameters and give inference on the states. Tables 3.2

compare the estimates in different scenarios in terms of the SSE. Each table has 5 columns
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and 9 rows, in which every “cell” is the result of 500 times simulation for that specific

scenario.

Let us look at Tables 3.2 column by column. Within each column, the sample size T is

the same, but the value of p1,q1,p2,q2,p3,q3 is different. This infers that the transition matrix

P =


1− p1 − q1 p1 q1

p2 1− p2 − q2 q2

p3 q3 1− p3 − q3

 is different and thus, the mean number of

the change point is different for each row. Although we cannot guarantee the number of

transitions are the same for each scenario since the they are generated by the Markov chain,

we knew the more transitions should be expected once the p1,q1,p2,q2,p3,q3 become larger.

From scenario 1 to scenario 5, p1,q1,p2,q2,p3,q3 become larger, so more transitions should be

expected. Presumably the errors are getting larger when experience more transitions. For

example, when T = 7000, p1 = q1 = p2 = q2 = p3 = q3 = 0.008, SSE is 0.00531. The

quantity of SSE decreases to 0.00411 when p1,q1,p2,q2,p3,q3 changes to 0.004, and decreases

to 0.00284 when p1,q1,p2,q2,p3,q3 change to 0.002. The quantity increases to 0.00625 when

p1,q1,p2,q2,p3,q3 become 0.016. For scenario 1, scenario 6 and scenario 8 , p1 = q1 = p2 =

q2 = p3 = q3 = 0.001, SSE is 0.00179, and increases to 0.00254 when q1,p3 remain at 0.001

and p1,p2,q2,q3 change to 0.002. The value of SSE slightly increase to 0.00193, when only q1

change to 0.002.

From Tables 3.2, we can examine the effects of sample size on the performance. When

T changes from 3000 to 4000, there is a slightly decrease in SSE. After that, the differences

between SSE are quite small. For example, in scenario 5, p1 = q1 = p2 = q2 = p3 = q3 =

0.016, SSE is 0.00639, when T = 3000, then there are almost no distinction among T = 4000,

T = 5000, T = 6000 and T = 7000. In short, we can tell BCMIX has very good performance

on all of these p1,q1,p2,q2,p3,q3 settings, because the largest SSE is only about 0.639%.

Table 3.3 summarizes the identification ratio (IR) in each scenario. Most ratios are
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Table 3.2: Performance of Sum of squared errors (SSE) for BCMIX estimates for K=3.
Standard errors are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000

Scenario 1 0.00196 0.00187 0.00187 0.00179 0.00179
(3.27E-05) (2.70E-05) (2.44E-05) (2.16E-05) (2.14E-05)

Scenario 2 0.00301 0.00292 0.00290 0.00286 0.00284
(3.64E-05) (3.09E-05) (2.69E-05) (2.41E-05) (2.25E-05)

Scenario 3 0.00421 0.00414 0.00411 0.00414 0.00411
(3.62E-05) (3.02E-05) (2.62E-05) (2.50E-05) (2.36E-05)

Scenario 4 0.00541 0.00529 0.00531 0.00527 0.00531
(3.52E-05) (3.00E-05) (2.59E-05) (2.35E-05) (2.35E-05)

Scenario 5 0.00639 0.00625 0.00625 0.00626 0.00625
(3.54E-05) (2.99E-05) (2.78E-05) (2.36E-05) (2.24E-05)

Scenario 6 0.00272 0.00264 0.00264 0.00258 0.00254
(3.61E-05) (3.08E-05) (2.59E-05) (2.50E-05) (2.27E-05)

Scenario 7 0.00375 0.00363 0.00367 0.00365 0.00360
(3.59E-05) (3.11E-05) (2.80E-05) (2.53E-05) (2.28E-05)

Scenario 8 0.00231 0.00201 0.00203 0.00195 0.00193
(3.46E-05) (2.89E-05) (2.43E-05) (2.24E-05) (2.08E-05)

Scenario 9 0.00227 0.00218 0.00220 0.00212 0.00211
(3.54E-05) (3.03E-05) (2.69E-05) (2.43E-05) (2.29E-05)
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Table 3.3: Performance of identification ratio (IR) for BCMIX estimates for K=3. Standard
errors are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000

Scenario 1 0.956 0.962 0.954 0.959 0.962
(4.91E-03) (3.66E-03) (4.57E-03) (3.44E-03) (3.32E-03)

Scenario 2 0.956 0.968 0.960 0.958 0.958
(4.20E-03) (2.86E-03) (2.93E-03) (2.63E-03) (2.39E-03)

Scenario 3 0.955 0.954 0.957 0.960 0.962
(2.87E-03) (2.66E-03) (2.39E-03) (2.09E-03) (1.82E-03)

Scenario 4 0.951 0.956 0.960 0.953 0.956
(2.78E-03) (2.20E-03) (2.03E-03) (1.88E-03) (1.76E-03)

Scenario 5 0.948 0.952 0.956 0.949 0.950
(2.46E-03) (2.00E-03) (1.79E-03) (1.65E-03) (1.64E-03)

Scenario 6 0.964 0.974 0.971 0.971 0.970
(3.82E-03) (2.68E-03) (2.61E-03) (2.66E-03) (2.32E-03)

Scenario 7 0.981 0.980 0.977 0.984 0.983
(2.16E-03) (2.00E-03) (2.08E-03) (1.49E-03) (1.40E-03)

Scenario 8 0.950 0.956 0.947 0.958 0.959
(5.32E-03) (3.89E-03) (4.48E-03) (3.24E-03) (3.24E-03)

Scenario 9 0.952 0.953 0.955 0.956 0.957
(5.10E-03) (3.75E-03) (3.87E-03) (3.12E-03) (2.85E-03)

greater than 95%, showing that the BCMIX procedure is very effective in identifying the

transitions.
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3.4 Simulation 3: Large Simulation with Different Simulation Set-

ting using EM Algorithm to Estimate Hyperparameters

In this section, the effects of different simulation settings on the estimates using EM

algorithm are examined. Similar with previous sections, the BCMIX procedure for large

scale simulation studies with specific M and m is used. It assumes that we have the exact

same model described in chapter 2. Again there are three states, K = 3, true parameters for

simulation are, (z(l,1), V (l,1)) = (1, 0.16), (z(l,2), V (l,2)) = (0, 0.16), (z(l,3), V (l,3)) = (−1, 0.16)

and σ2
l = 1, 1 ≤ l ≤ 10. P =


1− p1 − q1 p1 q1

p2 1− p2 − q2 q2

p3 q3 1− p3 − q3

 which has the

following settings:

Scenario 1. (p1, q1, p2, q2, p3, q3) = (0.001, 0.001, 0.001, 0.001, 0.001, 0.001).

Scenario 2. (p1, q1, p2, q2, p3, q3) = (0.002, 0.002, 0.002, 0.002, 0.002, 0.002).

Scenario 3. (p1, q1, p2, q2, p3, q3) = (0.004, 0.004, 0.004, 0.004, 0.004, 0.004).

Scenario 4. (p1, q1, p2, q2, p3, q3) = (0.008, 0.008, 0.008, 0.008, 0.008, 0.008).

Scenario 5. (p1, q1, p2, q2, p3, q3) = (0.016, 0.016, 0.016, 0.016, 0.016, 0.016).

Scenario 6. (p1, q1, p2, q2, p3, q3) = (0.002, 0.001, 0.002, 0.002, 0.001, 0.002).

Scenario 7. (p1, q1, p2, q2, p3, q3) = (0.004, 0.001, 0.004, 0.004, 0.001, 0.004).

Scenario 8. (p1, q1, p2, q2, p3, q3) = (0.001, 0.002, 0.001, 0.001, 0.001, 0.001).

Scenario 9. (p1, q1, p2, q2, p3, q3) = (0.001, 0.004, 0.001, 0.001, 0.001, 0.001).

Let N = 500 and T take the values of 3000, 4000, 5000, 6000 and 7000 for each scenario.

In each scenario, hyperparameter estimate uses EM algorithm until convergence. Then

the estimates are computed. We give the hyperparameters some initial values as below:

(z(l,1), V (l,1)) = (0.9, 0.12), (z(l,2), V (l,2)) = (0.1, 0.12), (z(l,3), V (l,3)) = (−1.1, 0.12) and σ2
l =

58



Table 3.4: Performance of sum of squared errors (SSE) using EM for K=3. Standard errors
are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000

Scenario 1 0.00228 0.00213 0.00208 0.00201 0.00198
(3.72E-05) (3.01E-05) (2.64E-05) (2.36E-05) (2.22E-05)

Scenario 2 0.00339 0.00322 0.00317 0.00313 0.00304
(4.10E-05) (3.41E-05) (2.88E-05) (2.58E-05) (2.38E-05)

Scenario 3 0.00462 0.00447 0.00443 0.00442 0.00431
(4.00E-05) (3.32E-05) (3.09E-05) (2.73E-05) (2.40E-05)

Scenario 4 0.00585 0.00562 0.00560 0.00557 0.00555
(3.89E-05) (3.18E-05) (2.76E-05) (2.54E-05) (2.43E-05)

Scenario 5 0.00675 0.00659 0.00653 0.00652 0.00645
(3.83E-05) (3.14E-05) (2.93E-05) (2.47E-05) (2.34E-05)

Scenario 6 0.00303 0.00289 0.00282 0.00276 0.00273
(3.86E-05) (3.35E-05) (2.84E-05) (2.55E-05) (2.36E-05)

Scenario 7 0.00399 0.00387 0.00382 0.00379 0.00375
(3.83E-05) (3.42E-05) (2.96E-05) (2.70E-05) (2.41E-05)

Scenario 8 0.00248 0.00228 0.00225 0.00219 0.00213
(3.97E-05) (3.18E-05) (2.61E-05) (2.47E-05) (2.24E-05)

Scenario 9 0.00266 0.00247 0.00247 0.00237 0.00233
(3.86E-05) (3.33E-05) (2.99E-05) (2.62E-05) (2.45E-05)

1.1, 1 ≤ l ≤ 10. and (p1, q1, p2, q2, p3, q3) = (0.01, 0.01, 0.01, 0.01, 0.01, 0.01). The BCMIX

procedure with M = 20 and m = 10 is adopted to estimate the smoothing parameters and

produce inference on the states. Table 3.4 compares the estimates in different scenarios in

terms of the SSE. Each table has 5 columns and 9 rows, in which every “cell” contains the

result of 500 times simulation for that specific scenario.

In Table 3.4, within each column, the sample size T is the same, but the values of

p1,q1,p2,q2,p3,q3 are different. From scenario 1 to scenario 5, p1,q1,p2,q2,p3,q3 become larger,

so more transitions should be expected. Presumably the errors are getting larger when

experience more transitions. For example, when T = 7000, p1 = q1 = p2 = q2 = p3 =

q3 = 0.008, SSE is 0.00555. The quantity of SSE decreases to 0.00431 when p1,q1,p2,q2,p3,q3
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Table 3.5: Performance of identification ratio (IR) using EM for K=3. Standard errors are
given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000

Scenario 1 0.926 0.919 0.880 0.870 0.874
(6.18E-03) (5.66E-03) (6.72E-03) (6.23E-03) (6.19E-03)

Scenario 2 0.890 0.863 0.842 0.831 0.827
(6.21E-03) (5.59E-03) (5.39E-03) (5.51E-03) (5.21E-03)

Scenario 3 0.857 0.824 0.816 0.808 0.802
(5.14E-03) (5.51E-03) (4.86E-03) (4.55E-03) (4.47E-03)

Scenario 4 0.829 0.819 0.795 0.781 0.777
(4.85E-03) (4.61E-03) (4.15E-03) (4.25E-03) (4.01E-03)

Scenario 5 0.826 0.802 0.787 0.776 0.766
(4.52E-03) (4.36E-03) (4.00E-03) (3.95E-03) (3.78E-03)

Scenario 6 0.921 0.912 0.885 0.872 0.870
(5.58E-03) (5.09E-03) (5.72E-03) (5.82E-03) (5.24E-03)

Scenario 7 0.935 0.918 0.919 0.908 0.904
(4.28E-03) (4.79E-03) (3.99E-03) (4.19E-03) (4.17E-03)

Scenario 8 0.904 0.895 0.857 0.857 0.845
(7.46E-03) (6.53E-03) (7.41E-03) (6.62E-03) (6.34E-03)

Scenario 9 0.905 0.876 0.858 0.841 0.831
(7.13E-03) (7.15E-03) (6.98E-03) (7.02E-03) (7.03E-03)
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changes to 0.004, and decreases to 0.00304 when p1,q1,p2,q2,p3,q3 change to 0.002. The

quantity increases to 0.00645 when p1,q1,p2,q2,p3,q3 become 0.016. For scenario 1, scenario

6 and scenario 8 , p1 = q1 = p2 = q2 = p3 = q3 = 0.001, SSE is 0.00198, and increases to

0.00273 when q1, p3 remain at 0.001 and p1, p2, q2, q3 change to 0.002. The value of SSE

slightly increases to 0.00213, when only q1 changes to 0.002.

From Table 3.4, we can observe the effects of sample size on the performance. When T

changes from 3000 to 4000, there is a slightly decrease in SSE. After that, the differences

between SSE are quite small. For example, in scenario 5, p1 = q1 = p2 = q2 = p3 = q3 =

0.016, SSE is 0.00675, when T = 3000, then there are almost no difference among T = 4000,

T = 5000, T = 6000 and T = 7000. In summary, we can say BCMIX has very good

performance on all of these p1,q1,p2,q2,p3,q3 settings since the largest SSE is still quite small,

only about 0.675%.

Table 3.5 summarizes the identification ratio (IR) in each scenario. Most ratios are

greater than 80%, showing that the BCMIX procedure is very efficient in identifying the

transitions.
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Figure 3.13: A selected series ylt for 10 samples in Scenario 1 (from left to right and top to
bottom).
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As in the first section, we will show some figures of a randomly selected simulation path

in each scenario to visualize the simulation results. Considering the limitations of space, I

only show the results of the first two scenarios. Figures 3.13, 3.16, show the series ylt in two

scenarios with T = 3000 for 10 samples. We find more fluctuations in magnitude in each series

when p1,q1,p2,q2,p3,q3 become larger. Figures 3.14, 3.17 compare the true θlt with θ̂lt|T of the

same series for 10 samples in these two scenarios. From Figures 3.14, 3.17, it is clear that

when p1,q1,p2,q2,p3,q3 become larger, the series experiences more frequent transitions. For

example, in the Figure 3.14 with p1 = q1 = p2 = q2 = p3 = q3 = 0.001, there are 6 transitions

in total for each sample, while in the Figure 3.17 with p1 = q1 = p2 = q2 = p3 = q3 = 0.02,
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Figure 3.14: BCMIX estimates θ̂lt|T (dashed line) and true θlt (solid line) of the selected
series for 10 samples in Scenario 1 (from left to right and top to bottom).
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Figure 3.15: BCMIX estimates r̂
(1)
t|T (red points) and true P (st = 1) (solid line) (top),

P (st = 2) (solid line) (middle), P (st = 3) (solid line) (bottom) of the selected series for
10 samples in Scenario 1.
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Figure 3.16: A selected series ylt for 10 samples in Scenario 2 (from left to right and top to
bottom).
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Figure 3.17: BCMIX estimates θ̂lt|T (dashed line) and true θlt (solid line) of the selected
series for 10 samples in Scenario 2 (from left to right and top to bottom).
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Figure 3.18: BCMIX estimates r̂
(1)
t|T (red points) and true P (st = 1) (solid line) (top),

P (st = 2) (solid line) (middle), P (st = 3) (solid line) (bottom) of the selected series for
10 samples in Scenario 2.
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there are 11 transitions. In each plot of each figure there are three regimes, but the values of

θlt within each regime are not constant. In each plot, the estimated parameter is close to the

true θlt with some errors, which become more significant when there are more transitions.

Figure 3.15, 3.18 shows the true and estimated P (st = 1), P (st = 2), P (st = 3) of

the same series for 10 samples in each scenario. To clearly show the fuzziness around each

transition, I use points to denote the estimated probabilities. It is clear that when there is

a transition, it takes a while to recognize it. So the probability of P (st = 1) does not jump

directly from 1 to 0 or 0 to 1. Instead it adjusts step by step and takes some values in between.

These “middle” points may affect the identification ratio. Moreover, there are more middle

points when there are more frequent transitions, although the IR is higher. In our simulation,

the three states are close with large variance, thus make the model difficult to correctly

estimate the posterior mean. in Figure 3.16 with p1 = q1 = p2 = q2 = p3 = q3 = 0.002,

we can discover some transitions with “blur” boundaries and we cannot know the number

of transitions and the magnitude of each states. The Figure 3.17 demonstrates that the

“shape” of the means are much different with the previous ones. In this scenario, the mean

of state 1 sometimes are smaller than the mean of state 2 or 3 in some plots, since the large

variation of the hidden variable. Moreover, the Figure 3.18 has clearly shows the fuzziness

around each transitions. Even though there are some obvious differences between true state

probability and estimated probability, their value still indicate the correct state calling.

Next, in order to access the advantage of our model, we compare our model to an

existing hierarchical hidden Markov model (HMM) proposed by Shah et al., (2007) in terms

of the identification ratio of true state calling. Shah assumed that the hidden parameter

is conditionally independent given state, and follows a normal distribution. While in our

model, we assume the dynamics of parameter is a Markov process, based solely on the

state of the most recent time point, which is more close to what happens in real world.
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Table 3.6: Performance of identification ratio (IR) using hierarchical HMM for K=3. Stan-
dard errors are given in parentheses.

Scenarios T = 3000 T = 4000

Scenario 1 0.733 0.729
(2.43E-02) (2.63E-02)

Scenario 2 0.726 0.710
(1.54E-02) (1.36E-02)

Scenario 3 0.699 0.695
(2.53E-02) (3.62E-02)

Furthermore, instead of using Markov Chain Monte Carlo (MCMC) algorithm to estimate

hyperparameters in Shah’s model, the hyperparameters in our model are estimated by an

EM algorithm. To speed up the computations involved in the EM algorithm, we use the

BCMIX approximations. So the running time of our model is quite fast.

Table 3.6 summarizes the identification ratio (IR) using hierarchical HMM in some

scenarios chosen from the above simulation settings. Table has 2 columns and 3 rows, in

which every “cell” is the result of 100 times simulation for that specific scenario instead of

500 times simulation, because 500 times simulation takes too much time.

As mentioned before, in this simulation, the three states are very close to each other with

large variance, thus it is difficult to make a correct state calling. We can see all the ratios

are about 70%, which is typically smaller than the corresponding ratios in Table 3.5. This

comparison illustrates that our model is more accurate and effective than Shah’s hierarchical

HMM model in identifying the transitions, in the case that the regimes are very close to each

other.
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At the end of this section, we will display a special simulation which is not satisfied with

the assumptions of our model. Instead of considering the change points are the same across

all 10 samples, we will set that the change points are different across 10 samples which is

corresponding with the real condition. There are two states, K = 2, true parameter for

simulation, (z(l,1), V (l,1)) = (1, 0.01), (z(l,2), V (l,2)) = (−1, 0.01), and σ2
l = 0.04, 1 ≤ l ≤ 10.

The transition matrix is P =

 1− p p

q 1− q

, which has the following settings:

Scenario 1. (p, q) = (0.001, 0.001).

Scenario 2. (p, q) = (0.002, 0.001).

Scenario 3. (p, q) = (0.002, 0.002).

Scenario 4. (p, q) = (0.004, 0.001).

Scenario 5. (p, q) = (0.004, 0.002).

Scenario 6. (p, q) = (0.008, 0.004).

Scenario 7. (p, q) = (0.008, 0.008).

Scenario 8. (p, q) = (0.016, 0.008).

Scenario 9. (p, q) = (0.016, 0.016).

N = 500, and T takes the values of 3000, 4000, 5000, 6000, 7000 and 8000 for each scenario.

In each scenario, hyperparameter estimate uses EM algorithm until convergence. Then

the estimates are computed. We give the hyperparameters some initial values as below:

(z(l,1), V (l,1)) = (0.6, 0.1), (z(l,2), V (l,2)) = (−1.4, 0.1) and σ2
l = 0.1, 1 ≤ l ≤ 10. and (p, q) =

(0.01, 0.01). The BCMIX procedure with M = 20 and m = 10 is adopted to estimate the

smoothing parameters and give inference on the states. Tables 3.7 compares the estimates

in different scenarios in terms of the SSE. Each table has 5 columns and 9 rows, in which

every “cell” is the result of 500 times simulation for that specific scenario.

Let us Look at Tables 3.7 column by column. In each column, the sample size T is
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Table 3.7: Performance of Sum of squared errors (SSE) using EM for K=2. Standard errors
are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 0.00141 0.00139 0.00134 0.00128 0.00130 0.00130
q = 0.001 (3.17E-05) (2.77E-05) (2.59E-05) (2.28E-05) (2.22E-05) (2.01E-05)
p = 0.002 0.00168 0.00166 0.00165 0.00158 0.00157 0.00158
q = 0.001 (3.66E-05) (3.25E-05) (3.08E-05) (2.63E-05) (2.49E-05) (2.19E-05)
p = 0.002 0.00227 0.00228 0.00228 0.00224 0.00222 0.00222
q = 0.002 (4.45E-05) (3.94E-05) (3.09E-05) (2.94E-05) (2.64E-05) (2.57E-05)
p = 0.004 0.00192 0.00184 0.00181 0.00177 0.00174 0.00176
q = 0.001 (4.06E-05) (3.56E-05) (3.28E-05) (2.92E-05) (2.73E-05) (2.50E-05)
p = 0.004 0.00276 0.00266 0.00271 0.00267 0.00267 0.00263
q = 0.002 (4.86E-05) (4.30E-05) (3.50E-05) (3.19E-05) (2.88E-05) (2.69E-05)
p = 0.008 0.00450 0.00435 0.00439 0.00438 0.00438 0.00436
q = 0.004 (5.79E-05) (4.72E-05) (4.17E-05) (4.06E-05) (3.49E-05) (3.03E-05)
p = 0.008 0.00585 0.00571 0.00575 0.00570 0.00571 0.00571
q = 0.008 (5.34E-05) (4.80E-05) (4.24E-05) (3.99E-05) (3.50E-05) (3.35E-05)
p = 0.016 0.00664 0.00658 0.00659 0.00662 0.00655 0.00658
q = 0.008 (5.69E-05) (4.92E-05) (4.52E-05) (4.14E-05) (3.86E-05) (3.47E-05)
p = 0.016 0.00803 0.00801 0.00799 0.00793 0.00798 0.00799
q = 0.016 (5.38E-05) (4.65E-05) (4.17E-05) (4.00E-05) (3.60E-05) (3.28E-05)
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fixed, but p and q are changing. Therefore the transition matrix P =

 1− p p

q 1− q


is different for each row. From top to bottom p and q become larger, so more transitions

should be expected and the larger are SSE. For example, when T = 8000, p = 0.008, and

q = 0.008, SSE is 0.00571. The quantity SSE decreases to 0.00436 when p remains at 0.008

and q changes to 0.004, and decreases to 0.00263 when p and q change to 0.004 and 0.002

respectively. The quantity increases to 0.00799 when both p and q become 0.016. When T

changes from 3000 to 8000, the differences between SSE are small. For example, in scenario

9, p = q = 0.016, SSE is around 0.008, from T = 3000 to T = 8000. In short, we can tell

BCMIX has very good performance on all of these p,q settings since the largest SSE is only

about 0.803%.
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Figure 3.19: A selected series ylt for 10 samples in Scenario 9 (from left to right and top to
bottom).
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Because of the limitation of report’s length. We choose the largest p, q value (in scenario

9) in order to keep many transitions in the sequence. Considering the visualization, we set

T = 3000 and do 500 simulation with different seeds. To visualize the results, we display

the Figure 3.19 and find many fluctuations in magnitude in each series corresponding to

each sample. Figure 3.20 compares the true θlt with θ̂lt|T of the same series for each sample.

Even though most of the estimated parameters are very close to the true θlt, there are more

significant difference between the true θlt and estimated θ̂lt|T , since the change points are

different across 10 samples and many transitions in this scenario.

Figure 3.21 shows the true and estimated P (st = 1) of each series for 10 samples.
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Figure 3.20: BCMIX estimates θ̂lt|T (dashed line) and true θlt (solid line) of the selected
series for 10 samples in Scenarios 9 (from left to right and top to bottom).
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Figure 3.21: BCMIX estimates r̂
(1)
t|T (red points) and true P (st = 1) (solid line) (top),

P (st = 2) (solid line) (middle), P (st = 3) (solid line) (bottom) of the selected series for
10 samples in Scenario 9.
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Specifically, if the true regime is 1, the true probability of P (st = 1) = 1; if the true regime is

2, the true probability of P (st = 1) = 0. There are two regimes in our simulation setup, hence

P (st = 2) = 1−P (st = 1) for 1 ≤ t ≤ T . So we only show the probability of regime 1. Slight

differences between the estimated state probabilities and true state probabilities. Since there

are more frequent transitions, as shown in Figure 3.21, the estimated probabilities show some

fuzziness around transitions. We can see there are some red dots which represent the posterior

state probability appears in the middle of 0 and 1. That is why we use P (st = 1) > 0.5

to make inference on the unknown regime. Therefore, even though this simulation is not

satisfied with the assumptions of our model, it still works well for estimating parameter and

state calling.
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Chapter 4

Real Data Analysis

4.1 Data/Ovarian Cancer

In this section, we will apply the stochastic segmentation model to one real data set:

copy number results for ovarian serous cystadenocarcinoma (OV) using Array based-CGH

technology, CGH-1x1M G4447A platform, archive type Level 2 (normalized signals for copy

number alterations of aggregated regions, per probe or probe set), version 11.2.0 from Memo-

rial Sloan-Kettering Cancer Center (MSKCC). The data files available for public use, can be

downloaded from The Cancer Genome Atlas (TCGA). We will display some relative results

of our model such as posterior mean and state probability.

This data is published on April 1st, 2010 in TCGA database. Fifteen OV cancer patients

were selected. Three states model were used. State 1 represents amplification, state 2 is

baseline, state 3 represents deletion.

Ovarian cancer is the fifth leading cause of cancer death in women. It is cancer that

starts in the ovaries. The ovaries are the female reproductive organs that produce eggs.

This cancer mainly develops in older women. About half of the women who are diagnosed

with ovarian cancer are 63 years or older. It is more common in white women than African-
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American women. The American Cancer Society estimates for ovarian cancer in the United

States for 2013 are: About 22,240 women will receive a new diagnosis of ovarian cancer.

About 14,230 women will die from ovarian cancer. Ovarian cancers display a high degree

of complex genetic variations. The previous literature results show that the most frequently

affected chromosomes in ovarian cancer are chromosome 1, chromosome 8 and chromosome

17. So we chose these three chromosomes to display the results. Analysis on chromosome

17 is more important and introduced first, then analysis on chromosome 1 and 8, since

chromosome 17 includes more copy number alterations and well known mutant genes related

to OV cancer.

4.2 Analysis on Chromosome 17

We chose 15 series from 15 OV cancer patients to visualize the estimation of posterior

mean and state probability. There are 20009 probes on Chromosome 17. With K = 3 and

hyperparameter estimate using EM algorithm, we give the hyperparameters some initial val-

ues as below: (z(l,1), V (l,1)) = (0.5, 0.01), (z(l,2), V (l,2)) = (0, 0.01), (z(l,3), V (l,3)) = (−0.6, 0.01)

and σ2
l = 0.1, 1 ≤ l ≤ 15. and P =


0.98 0.01 0.01

0.01 0.98 0.01

0.01 0.01 0.98

.

Table 4.1 shows the estimated hyperparameters by the EM algorithm . The correspond-

ing estimated transition probability matrices are showed in Table 4.2.

Figure 4.1 displays the observations along the probes for 15 patients from left to right

and top to bottom shown by grey lines. Red line displays the posterior estimation of mean

for each patient. Figure 4.2 displays the posterior state probability (Red: Amplification;

Blue: Baseline; Green: Deletion). We can find that deletions occur in the first half, and

amplifications occur in the second half. Most of 15 observations from Fig 4.1 show the similar
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Table 4.1: Hyperparameter estimate using EM algorithm for 15 samples.
z1 z2 z3 V1 V2 V3 σ2

sample1 0.1072 0.0037 -0.6472 0.1601 0.0484 0.2239 0.0394
sample2 0.1145 0.0334 -0.5832 0.1517 0.0246 0.1679 0.0613
sample3 0.3780 0.2098 -0.6881 0.1094 0.0821 0.3018 0.1006
sample4 0.6321 0.4072 -0.5638 0.0184 0.1868 0.2079 0.0678
sample5 0.2339 0.2018 -0.6702 0.1022 0.1238 0.2113 0.0727
sample6 0.3039 0.0796 -0.5852 0.0910 0.0442 0.1412 0.0762
sample7 0.3201 0.0189 -0.6737 0.0821 0.0595 0.2490 0.0559
sample8 0.1726 0.0063 -0.4995 0.1309 0.0537 0.1090 0.0497
sample9 0.1297 0.0130 -0.5551 0.1414 0.0252 0.0479 0.0424
sample10 0.8393 0.2749 -0.6858 0.1278 0.2673 0.1875 0.0648
sample11 0.0783 -0.0399 -0.5553 0.1844 0.0519 0.0497 0.0459
sample12 0.4209 -0.0013 -0.5415 0.0431 0.0412 0.0639 0.1452
sample13 0.1233 -0.0095 -0.5610 0.1439 0.0687 0.0882 0.0669
sample14 0.1179 -0.0257 -0.4885 0.1654 0.0611 0.0864 0.0616
sample15 0.2935 -0.2219 -0.7257 0.0950 0.1244 0.2608 0.0671

Table 4.2: Estimated transition probabilities.
State 1 State 2 State 3

State 1 0.7433 0.2539 0.0028
State 2 0.0893 0.8874 0.0233
State 3 0.1198 0.2374 0.6428
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pattern. From these two figures, we can conclude that our model has good performance

on detecting transitions and generate reasonable state call. Although the posterior state

probabilities here have many fuzziness, it can improve state call using a cut line p = 0.5.

So, the above results show that our stochastic segmentation model can successfully capture

recurrent aberrations across 15 OV cancer patients.

The most common aberrations for serous histology of OV cancer are deletions of 17p

(Dimova et al., 2009; Mankoo et al., 2011; Zhang et al., 2013). Engler utilized TCGA dataset

and found that most of deletions of chr17 map to 17p11.2 (Chr17:17646236 - 21720090) and

17p12(Chr17:10689461 - 16833125)(Engler et al., 2012). The recent research (Zhang et

al., 2013) found that deletions in OV cancer was in the regions containing BRCA1, TP53

mutations. In general, a deletion indicates the presence of a tumor suppressor gene, and

an amplification indicates the presence of at least one oncogenes. BRCA1 and TP53 are

well-known tumor suppressor genes. Mutation in BRCA1 has been associated with higher

risks of OV cancer, and they are hereditary, so the mutation and the cancer risk can occur

in families. Mutations of the TP53 gene are the most common and most frequently studied

molecular alterations in human cancer. Several earlier studies have suggested that TP53

plays a role in serous OV cancer.

Our result as shown in Figure 4.3 indicates that the recurrent copy number deletions

involved 17p11.2, 17p12 which is consistent with the above studies using existing statistical

models. For example, Engler used GISTIC analysis to identify amplifications and deletions

based on segmented copy number data generated by CBS algorithm (Engler et at., 2012).

We also detected well known tumor suppressor genes TP53(17p13.1), BRCA1(17q21), and

transcription factors RAI1 (17p11.2),SREBF1 (17p11.2). There are totally 136 unique known

genes involving in recurrent copy number deletion regions.

Pathway enrichment analysis using these 136 known genes based on IPA database was
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Figure 4.1: The observationbs (grey line) and the posterior estimation of mean for 15 samples
(from left to right and top to bottom).

81



Figure 4.2: The posterior estimation of state probability for 15 samples P (amplification)
(top), P (baseline) (middle), P (deletion) (bottom).
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Figure 4.3: The posterior estimation of deletion probability for 15 samples with marked
recurrent deletions.

Figure 4.4: Canonical pathway analysis of genes from recurrent regions of copy number
variants.
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carried out in this study. Significantly enriched pathways with Fishers exact p-value less than

0.05 are listed in this bar plot as shown in Figure 4.4. Although only one of the chromosomes

was analyzed, this already reveals some biological mechanisms and pathway changes involved

in ovarian cancer. First obviously, the ovarian cancer signaling pathway was found enriched.

Particularly, the GADD45 and p53 signaling pathways are enriched. Both these two factors,

especially p53, are well established tumor suppressor proteins. More importantly, almost

half of the pathways are basic and critical cellular processes such as DNA repair, cell cycle

regulation and apoptosis. Changes in these pathways indicate severe disruptions of normal

cellular functions. This could either be causing the cancer or be the result of cancer.

4.3 Analysis on Chromosome 1

We choose 15 series from the same 15 OV cancer patients and apply the same method

from previous section to estimate posterior mean and state probability. There are 55274

probes on Chromosome 1. We set K = 3 and use EM to estimate hyperparameter esti-

mate.Some initial values of hyperparameters are given as below: (z(l,1), V (l,1)) = (0.55, 0.01),

(z(l,2), V (l,2)) = (0, 0.01), (z(l,3), V (l,3)) = (−0.55, 0.01) and σ2
l = 0.1, 1 ≤ l ≤ 15. and

P =


0.98 0.01 0.01

0.01 0.98 0.01

0.01 0.01 0.98

.

Table 4.3 shows the estimated hyperparameters by the EM algorithm. Table 4.4 shows

the corresponding estimated transition probability matrices.

Figure 4.5 displays the observations along the probes for 15 patients shown by grey

lines. The posterior estimation of mean for each patient is represented by red line. Figure

4.6 displays the posterior state probability. From these two figures, we can say that our

model has good performance on smoothing the signal and can successfully detect recurrent
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Table 4.3: Hyperparameter estimate using EM algorithm for 15 samples.
z1 z2 z3 V1 V2 V3 σ2

sample1 0.1308 0.0187 -0.6950 0.1835 0.0389 0.0568 0.0393
sample2 0.1340 0.0431 -0.4722 0.1776 0.0205 0.0748 0.0612
sample3 0.4457 0.2161 -0.0650 0.0549 0.0957 0.3443 0.1008
sample4 0.6304 0.4280 0.1577 0.0073 0.2063 0.6220 0.0678
sample5 0.2843 0.2027 -0.2837 0.1067 0.1172 0.1261 0.0726
sample6 0.2550 0.1059 -0.0310 0.1189 0.0599 0.3434 0.0760
sample7 0.3652 0.0399 -0.2272 0.0791 0.0629 0.2406 0.0559
sample8 0.2193 0.0199 -0.4590 0.1284 0.0500 0.0233 0.0496
sample9 0.1310 0.0252 -0.4042 0.1827 0.0229 0.0314 0.0423
sample10 0.8470 0.3270 -0.1480 0.1029 0.3071 0.2362 0.0649
sample11 0.0873 -0.0235 -0.6472 0.2244 0.0423 0.0216 0.0457
sample12 0.4159 0.0384 -0.2024 0.0565 0.0576 0.1507 0.1449
sample13 0.1379 0.0087 -0.6267 0.1732 0.0589 0.0216 0.0669
sample14 0.1574 -0.0202 -0.0385 0.1797 0.0569 0.3181 0.0615
sample15 0.3355 -0.1802 -0.4393 0.1136 0.1200 0.0618 0.0671

Table 4.4: Estimated transition probabilities.
State 1 State 2 State 3

State 1 0.6639 0.3332 0.0029
State 2 0.0907 0.8859 0.0234
State 3 0.0158 0.3477 0.6365

aberrations cross 15 OV cancer patients.

Dimova found that amplifications of 1p12 (Chr1:117350000 - 118700000) and 1q23.2

(Chr1:157700000 - 158500000), the deletions of 1p36.21 and 1p36.1, were associated with

ovarian cancer (Dimova et al., 2009). Engler found that most of amplifications of chr1

map to 1p34.2 (Chr1:39685801 - 40370914) including the oncogene MYCL1 and 1q42.3(

Chr1:232669917 - 234247146), most of deletions map to 1p36.33 (Chr1:823965 - 2511264)

containing TP73 mutations (Engler et al., 2012).

As a result, Figure 4.7 shows the recurrent copy number amplifications involved 1p34.2,
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1p12, 1q23.2 and 1q42.3, deletions involved 1p36.33, 1p36.21 and 1p36.13 which are con-

sistent with these above earlier studies. We also detected well known oncogene MYCL1

(1p34.2) and tumor suppressor genes TP73 (1p36.33). There are totally 178 unique known

genes involving in recurrent regions of copy number variants.

Pathway enrichment analysis using these 178 known genes based on IPA database was

used to identify biological themes. Significantly enriched pathways with Fishers exact p-

value less than 0.05 are listed in this bar plot as shown in Figure 4.8. Most of the pathways

are related to cancer. First obviously, the breast cancer signaling and apoptosis signaling

pathways were found enriched. Defects in apoptosis signaling contribute to resistance of

tumors (Schulze-Bergkamen et al., 2004). NRF2-mediated oxidative stress response is the

most significantly regulated pathway, which has been related to breast cancer (Seng et al.,

2007; Liu et al., 2010). Ubiquitination regulates degradation of cellular proteins by the

ubiquitin proteasome system, controlling a proteins half-life and expression levels. A change

of ubiquitination activity is associated with ovarian tumorigenesis, so the protein ubiquiti-

nation pathway might be involved in breast ovarian progression. Notch signaling plays the

paradoxical role in numerous human cancers including ovarian cancer (Rose, 2009). Notch

appears to act as both an oncogene and a tumor suppressor gene depending on the cellular

context.
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Figure 4.5: The observationbs (grey line) and the posterior estimation of mean for 15 samples
(from left to right and top to bottom).
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Figure 4.6: The posterior estimation of state probability for 15 samples P (amplification)
(top), P (baseline) (middle), P (deletion) (bottom).
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Figure 4.7: The posterior estimation of state probability for 15 samples with marked recur-
rent regions of copy number variants.
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Figure 4.8: Canonical pathway analysis of genes from recurrent regions of copy number
variants.

4.4 Analysis on Chromosome 8

On chromosome 8, Same subjects and methods are applied to estimate posterior mean

and state probability. There are 30473 probes on Chromosome 8. We use three states in our

model, K = 3, and hyperparameter estimate using EM algorithm, we give the hyperparam-

eters some initial values as below: (z(l,1), V (l,1)) = (0.75, 0.0265), (z(l,2), V (l,2)) = (0, 0.02),

(z(l,3), V (l,3)) = (−0.7, 0.02) and σ2
l = 0.1, 1 ≤ l ≤ 15. and P =


0.98 0.01 0.01

0.01 0.98 0.01

0.01 0.01 0.98

.

Table 4.5 shows the estimated hyperparameters by the EM algorithm . The correspond-

ing estimated transition probability matrices are showed in Table 4.6. Figure 4.9 displays

the observations along the probes for 15 patients (grey lines) and the posterior estimation

of mean for each patients (red lines). Figure 4.10 displays the posterior state probability.
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Table 4.5: Hyperparameter estimate using EM algorithm for 15 samples.
z1 z2 z3 V1 V2 V3 σ2

sample1 0.2603 -0.1956 -0.7526 0.3020 0.2455 0.0053 0.0380
sample2 0.0980 0.0907 0.0394 0.4276 0.0092 0.5640 0.0606
sample3 0.0922 0.0669 0.0053 0.4353 0.0055 0.5150 0.0973
sample4 0.5129 0.4127 0.2519 0.2017 0.2061 0.9331 0.0690
sample5 0.2324 -0.1269 -0.3572 0.3009 0.1308 0.1967 0.0719
sample6 0.3069 -0.1085 -0.6065 0.2480 0.1472 0.0134 0.0769
sample7 0.9516 0.1449 -0.6286 0.1210 0.4612 0.0103 0.0580
sample8 0.3308 0.0752 -0.3229 0.2015 0.0845 0.1466 0.0460
sample9 0.1058 -0.0123 -0.3466 0.4234 0.0465 0.1630 0.0408
sample10 0.4248 0.2157 -0.1009 0.1100 0.0922 0.3737 0.0595
sample11 0.0508 0.0160 -0.0178 0.4957 0.0013 0.4793 0.0422
sample12 0.9665 0.4874 -0.5248 0.0520 0.6475 0.0362 0.1568
sample13 0.5788 -0.5090 -2.2307 0.9309 0.9882 3.3140 0.0823
sample14 1.0638 0.4795 0.0162 0.1624 0.4680 0.5264 0.0643
sample15 0.4003 -0.0427 -0.9629 0.1639 0.1556 1.0574 0.0671

Dimova found that amplifications of 8q13.2 (Chr8:69490000 - 70200000), the deletions

of 8p23.1 and 8p21.2, were associated with ovarian cancer (Dimova et al., 2009). En-

gler utilized TCGA dataset and found that most of amplifications of chr8 map to 8q24.21

(Chr8:128870582 - 129868380) containing oncogene MYC, most of deletions map to 8p23.2

(Chr8: 1422246- 3652163) (Engler et al., 2012).

From Figure 4.11, we can see our results show that the recurrent copy number amplifi-

cations involved 8q13.2 and 8q24.21, deletions involved 8p23.2, 8p23.1 and 8p21.2, which are

consistent with the above studies. We also detected well known oncogene MYC (8q24.21).

There are totally 289 unique known genes involving in recurrent copy number amplification

and deletion regions.

We implemented pathway enrichment analysis using these 289 known genes based on IPA

database. Figure 4.12 shows significantly enriched pathways with Fishers exact p-value less

than 0.05. As we know, these three G-protein coupled receptor related signaling pathways:
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Table 4.6: Estimated transition probabilities.
State 1 State 2 State 3

State 1 0.6761 0.3230 0.0009
State 2 0.1139 0.8060 0.0801
State 3 0.0057 0.2181 0.7762

Figure 4.9: The observationbs (grey line) and the posterior estimation of mean for 15 samples
(from left to right and top to bottom).
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Figure 4.10: The posterior estimation of state probability for 15 samples P (amplification)
(top), P (baseline) (middle), P (deletion) (bottom).
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Figure 4.11: The posterior estimation of state probability for 15 samples with marked recur-
rent regions of copy number variants
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Figure 4.12: Canonical pathway analysis of genes from recurrent regions of copy number
variants.

the G-protein coupled receptor signaling, Gaq signaling and Gai signaling pathways are very

important molecular pathways. Aberrant signaling through G-protein coupled receptors pro-

motes metastasis which is the major cause of breast cancer death. Particularly, the MYC

signaling pathway was found enriched. MYC is a key regulator of cell growth, proliferation,

metabolism, differentiation, and apoptosis. MYC deregulation contributes to many cancers

development and progression. Additionally, previous studies demonstrate that ERK5 sig-

naling is involved in breast and prostate cancer proliferation and tumorigenesis (Zhou et

al., 2008), and the ErbB2/ErbB3 dimer functions as an oncogenic unit to drive tumor cell

proliferation (Holbro et al., 2003).
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Chapter 5

Conclusions and Discussions

For the analysis of grouped array-CGH data, we proposed a class of stochastic seg-

mentation models and an associated inference framework that has attractive statistical and

computational properties. The stochastic segmentation model in Chapter 2 assumes that

ylt = θlt + εlt for l = 1, . . . , J and t = 1, . . . , T , where εlt are independent normal random

variables with mean 0 and variance σ2
l , and θlt is an unknown step function whose prior

distribution depends on a finite state hidden Markov chain st. After the hidden state shifts

from one regime to another regime, the model parameters jump to another set of values,

which are generated by regime-dependent prior distributions and hence are not necessarily

same as those within the same regime during the past.

A forward filtering procedure shows the posterior distribution of the parameter as a

mixture distribution with explicit weights which can be calculated recursively. Furthermore,

based on the reversibility of the hidden Markov chain, a backward filtering procedure can be

conducted in a similar way. Based on Bayes’ theorem, both the smoothing estimate of pa-

rameter and probability of regimes can be calculated explicitly to save a time-consuming

numerical filtering procedure. The hyperparameters in the model can be estimated by

the Expectation-Maximum (EM) algorithm. Furthermore, a Bounded Complexity Mix-
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ture (BCMIX) Approximation is shown to have much lower computational complexity yet

comparable to the Bayes estimates in statistical efficiency. Simulation studies evaluate the

fBayes and BCMIX estimates in terms of the sum of squared errors (SSE). Moreover, the

accuracy of identifying the transitions is evaluated by an Identification Ratio (IR). In order

to access the advantage of our model, we compare our model to an existing statistical model

in terms of IR. The result of comparison illustrates that our model is more accurate and

effective than that model in identifying transitions. At the end of this thesis, we apply this

model to the real grouped array-CGH data set to detect recurrent copy number alterations.

An important benefit of our Bayesian model is that we can derive analytical filtering and

explicit smoothing formulas for the posterior distributions of model parameters and make

inference on regimes. The BCMIX estimate has much lower computational complexity yet

comparable to the Bayes estimate in statistical efficiency. Furthermore, our model not only

can handle the simultaneous change model, but also work well with non-simultaneous model,

which is more close to what happens in real world.

As mentioned in the introduction section, for detecting recurrent CNAs, many methods

based on two-step procedure with the first step being segmentation for each sample, the sec-

ond step being finding recurrent across multiple samples, have been applied. It is important

to note that, the two-step procedure may miss information across the samples. This moti-

vates us to consider a joint model which analyzes the recurrent events in one sweep. Besides,

the noise information for recurrent events across the samples can be averaged out in our

joint model. Analyzing each sample separately may strengthen or weaken some information

that might be very important for recurrent event.

As for improving our model, it means to improve the power of the model that identifies

genes from recurrent events. This may depend on different types of cancers. so we need

incorporate the detailed structure in different cancers.

97



Reference

Beck JB, Schmuths H, Schaal BA . Global population genetics of Arabidopsis thaliana.
Molec Ecol in press (2007).

Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco I, Lee JC,
Huang JH, Alexander S, Du J, Kau T, Thomas RK, Shah K, Soto H, Perner S, Prensner
J, Debiasi RM, Demichelis F, Hatton C, Rubin MA, Garraway LA, Nelson SF, Liau
L, Mischel PS, Cloughesy TF, Meyerson M, Golub TA, Lander ES, Mellinghoff IK,
Sellers WR. Assessing the significance of chromosomal aberrations in cancer: Method-
ology and application to glioma. Proceedings of the National Academy of Sciences
0710052104+ (2007).

Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J,
Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho
YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka
KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies
D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J,
Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine
RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway
LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR,
Lander ES, Getz G, Sellers WR, Meyerson M. The landscape of somatic copy-number
alteration across human cancers. Nature 463, 899-905 (2010).

Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, Grigorova M, Jones KW,
Wei W, Stratton MR, Futreal PA, Weber B, Shapero MH, Wooster R. High-resolution
analysis of DNA copy number using oligonucleotide microarrays. Genome Research
14, 287295 (2004).

Box GE. and Tiao GC. Bayesian Inference in Statistical Analysis. Addison-Wesley (1973).

de Leeuw RJ, Davies JJ, Rosenwald A, Bebb G, Gascoyne RD, Dyer MJ, Staudt LM,
Martinez-Climent JA, Lam WL. Comprehensive whole genome array CGH profiling
of mantle cell lymphoma model genomes. Human Molecular Genetics 13, 1827-1837
(2004).

98



Dimova I, Orsetti B, Negre V, Rouge C, Ursule L, Lasorsa L, Dimitrov R, Doganov N,
Toncheva D, Theillet C. Genomic markers for ovarian cancer at chromosomes 1, 8 and
17 revealed by array CGH analysis. Tumori 95, 357-366 (2009).

Diskin SJ, Eck T, Greshock J, Mosse YP, Naylor T, Stoeckert CJ Jr, Weber BL, Maris
JM, Grant GR. STAC: A method for testing the significance of DNA copy number
aberrations across multiple array-CGH experiments. Genome Research 16, 11491158
(2006).

Engler DA, Gupta S, Growdon WB, Drapkin RI, Nitta M, Sergent PA, Allred SF, Gross
J, Deavers MT, Kuo WL. Genome wide DNA copy number analysis of serous type
ovarian carcinomas identifies genetic markers predictive of clinical outcome. PLoS
One 7, e30996 (2012).

Ewald van Dyk, Marcel J.T. Reinders and Lodewyk F.A. Wessels. A scale-space method
for detecting recurrent DNA copy number changes with analytical false discovery rate
control. Nucleic Acids Research 41,e100 (2013).

Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nature Reviews
Genetics 7, 8597 (2006).

Fridlyand J, Snijders A, Pinkel D, Albertson DG, Jain AN. Application of hidden Markov
models to the analysis of the array-CGH data. Journal of Multivariate Analysis 90,
132-153 (2004).

Garnis C, Lockwood WW, Vucic E, Ge Y, Girard L, Minna JD, Gazdar AF, Lam S,
MacAulay C, Lam WL. High resolution analysis of non-small cell lung cancer cell
lines by whole genome tiling path array CGH.International Journal of Cancer 118,
1556-1564 (2006).

Guttman M, Mies C, Dudycz-Sulicz K, Diskin SJ, Baldwin DA, Stoeckert CJ Jr, Grant
GR. Assessing the significance of conserved genomic aberrations using high resolution
genomic microarrays. PLoS Genetics 3, e143+ (2007).

Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number.
Nature reviews. Genetics 10, 551564.(2009).

Goecks J, Nekrutenko A, Taylor J; Galaxy Team. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biol 11, R86 (2010).

Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF 3rd, Hynes NE. The ErbB2/ErbB3
heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast
tumor cell proliferation. Proceeding of the National Academy of Sciences of the United
States of America 100, 89338938 (2003).

99



Hup P, Stransky N, Thiery JP, Radvanyi F, Barillot E. Analysis of array CGH data: from
signal ratio to gain and loss of DNA regions. regions. Bioinformatics 20, 34133422
(2004).

Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson
DG, Pinkel D, Marra MA, Ling V, MacAulay C, Lam WL. A tiling resolution DNA
microarray with complete coverage of the human genome. Nature Genetics 36, 299303
(2004).

Klijn C, Holstege H, de Ridder J, Liu X, Reinders M, Jonkers J, Wessels L. Identification
of cancer genes using a statistical framework for multiexperiment analysis of nondis-
cretized array CGH data. Nucleic Acids Research 36, e13 (2008).

Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev
D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders ACE, Chi J, Yang F,
Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder
M. PairedEnd Mapping Reveals Extensive Structural Variation in the Human Genome.
Science 318, 420426 (2007).

Lai TL, Xing H, Zhang N. Stochastic segmentation models for array-based comparative
genomic hybridization data analysis.Biostatistics 9, 290-307 (2008).

Lai TL and Xing H. A simple Bayesian approach to multiple change-points. Statistica
Sinica, 21, 539-569 (2011).

Lai WRR, Johnson MDD, Kucherlapati R, Park PJJ. Comparative analysis of algorithms
for identifying amplifications and deletions in array CGH data. Bioinformatics 21,
37633770 (2005).

Lee C, Iafrate AJ, Brothman AR. Copy number variations and clinical cytogenetic diagnosis
of constitutional disorders. Nature Genetics 39, S48S54 (2007).

Lipson D, Aumann Y, Ben-Dor A, Linial N, Yakhini Z. Efficient calculation of interval
scores for dna copy number data analysis. Journal of Computational Biology 13, 215228
(2006).

Liu Q, Zhang H, Smeester L, Zou F, Kesic M, Jaspers I, Pi J, Fry RC. The NRF2-mediated
oxidative stress response pathway is associated with tumor cell resistance to arsenic
trioxide across the NCI-60 panel. BMC Medical Genomics 3:37, (2010).

Lupski JR. An evolution revolution provides further revelation. Bioessays 29, 1182-1184
(2007).

MacDonald JR, Ziman R, Yuen RKC, Feuk L, and Scherer SW. The database of genomic
variants: a curated collection of structural variation in the human genome. Nucleic
Acids Research 17 (2013).

100



Mankoo P, Shen R, Schultz N, Levine D, Sander C. Time to recurrence and survival in
serous ovarian tumors predicted from integrated genomic profiles. PLoS One 6, e24709
(2011).

Morganella S, Pagnotta SM, Ceccarelli M. Finding recurrent copy number alterations pre-
serving within-sample homogeneity. Bioinformatics 27, 2949-2956 (2011).

Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw
CA, Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL. High- resolution
genomic profiling of chromosomal aberrations using infinium whole-genome genotyping.
Genome Research 16, 11361148 (2006).

Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C,
Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG. High reso- lution analysis of
dna copy number variation using comparative genomic hybridization to microarrays.
Nature Genetics 20, 207211 (1998).

Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in
cancer. Nature Genetics 37, 1117 (2005).

Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey
SS, Botstein D, Brown PO. Genome-wide analysis of DNA copy-number changes using
cDNA microarrays.. Nature Genetics 23, 4146 (1999).

Pollack JR, Srlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein
D, Brresen-Dale AL, Brown PO. Microarray analysis reveals a major direct role of
DNA copy number alternation in the transcriptional program of human breast tumors.
Proceedings of the National Academy of Sciences 99, 1296312968 (2002).

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH,
Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzlez JR, Gratacs M, Huang
J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L,
Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark
C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-
Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. Global
variation in copy num- ber in the human genome. Nature 444, 444454 (2006).

Rouveirol C, Stransky N, Hup P, Rosa PL, Viara E, Barillot E, Radvanyi F. (2006). Compu-
tation of recurrent minimal genomic alterations from array-CGH data. Bioinformatics
22, 849856 (2006).

Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 11, 3146 (2010).

Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman
W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie

101



X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE. Genome-
wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448,
553560 (2007).

Rose SL. Notch signaling pathway in ovarian cancer. International Journal of Gynecological
Cancer 19, 564-566 (2009)

Rueda OM, DiazUriarte R. Flexible and Accurate Detection of Genomic CopyNumber
Changes from aCGH. PLoS Computional Biology 3, e122 (2007).

Rueda OM, Diaz-Uriarte R. Finding Recurrent Copy Number Alteration Regions: A Review
of Methods. Current Bioinformatics 5, 1-17 (2010).

Scherer SW, Lee C, Birney E, Altshuler DM, Eichler EE, Carter NP, Hurles ME, Feuk
L. Challenges and standards in integrating surveys of structural variation. Nature
Genetics 39, S7S15 (2007).

Schulze-Bergkamen H, Krammer PH. Apoptosis in cancer–implications for therapy. Semi-
nars in Oncology 31, 90119 (2004).

Seng S, Avraham HK, Jiang S, Yang S, Sekine M, Kimelman N, Li H, Avraham S. The
nuclear matrix protein, NRP/B, enhances Nrf2-mediated oxidative stress responses in
breast cancer cells. Cancer Research 67, 85968604 (2007)

Shah SP, Lam WL, Ng RT, Murphy KP. Modeling recurrent DNA copy number alterations
in array CGH data. Bioinformatics 23, 450458 (2007).

Shah SP. Computational methods for identification of recurrent copy number alteration
patterns by array CGH. Cytogenetic and Genome Research 123, 343351 (2008).

Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle
AK, Huey B, Kimura K, Law S, Myambo K, Palmer J, Ylstra B, Yue JP, Gray JW, Jain
AN, Pinkel D, Albertson DG. Assembly of microarrays for genome-wide measurement
of DNA copy number.. Nature Genetics 29, 263264 (2001).

Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, Meyerson M, Singer S, Sander
C. (2008). Functional copy-number alterations in cancer. PLoS ONE 3, e3179+ (2008).

Vakhno S, Tavar S. CNAnova: a new approach for finding recurrent copy number abnor-
malities in cancer SNP microarray data Bioinformatics 26, 1395-1402 (2010).

Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the anal-
ysis of array CGH data. Bioinformatics 23, 657-663 (2007).

102



Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N,
Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E,
Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen
S, Hudson TJ, Lipshutz R, Chee M, Lander ES. Large-scale identification, mapping,
and genotyping of single-nucleotide polymorphisms in the human genome. Science 280,
1077-1082 (1998).

Walter V, Nobel AB, Wright FA. DiNAMIC: a method to identify recurrent DNA copy
number aberrations in tumors. Bioinformatics 27, 678-685 (2011).

Westfall PH, Young SS. Resampling-Based Multiple Testing: Examples and Methods for
p-Value Adjustment. New York (1993).

Willenbrock H, Fridlyand J. A comparison study: applying segmentation to array CGH
data for downstream analyse. Bioinformatics 21, 40844091 (2005).

Zhang J, Shi YH, Lalonde E, Li LL, Cavallone L, Ferenczy A, Gotlieb WH, Foulkes WD and
Majewski J. Exome profiling of primary, metastatic and recurrent ovarian carcinomas
in a BRCA1-positive patient. BMC Cancer 13, 146 (2013).

Zhang N, Siegmund D, Ji H, Li JZ. Detecting simultaneous change-points in multiple se-
quences. Biometrika 97, 631-645 (2010).

Zhang Q, Ding L, Larson DE, Koboldt DC, McLellan MD, Chen K, Shi X, Kraja A,
Mardis ER, Wilson RK, Borecki IB, Province MA. CMDS: a population-based method
for identifying recurrent DNA copy number aberrations in cancer from high-resolution
data. Bioinformatics 26, 464-469 (2010).

Zhou C, Nitschke AM, Xiong W, Zhang Q, Tang Y, Bloch M, Elliott S, Zhu Y, Bazzone
L, Yu D, Weldon CB, Schiff R, McLachlan JA, Beckman BS, Wiese TE, Nephew KP,
Shan B, Burow ME, Wang G. Proteomic analysis of tumor necrosis factor-alpha resis-
tant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal
transition phenotype. Breast Cancer Research 10, R105 (2008).

103


	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Recurrent Copy Number Alterations using array-CGH data 
	Overview of existing methods
	A Motivating Question
	Outline

	Estimation in a Novel Stochastic Segmentation Model
	Model Specification
	The Forward Filtering Estimate of Parameters
	The Backward Filtering Estimate of Parameters 
	Smoothing Estimate of Parameters
	Bounded Complexity Mixture (BCMIX) Approximation
	Hyperparameter Estimation
	Implementation


	Simulation Studies
	Comparison Criterion
	Simulation 1: Comparison between Bayes and BCMIX Estimates
	Simulation 2: Large Simulation with Different Simulation Setting
	Simulation 3: Large Simulation with Different Simulation Setting using EM Algorithm to Estimate Hyperparameters

	Real Data Analysis
	Data/Ovarian Cancer
	Analysis on Chromosome 17
	Analysis on Chromosome 1
	Analysis on Chromosome 8

	Conclusions and Discussions
	Reference

