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Abstract of the Dissertation 

Multi-Platform Comparison with Structural Equation Modeling and Errors-in-Variables 

Models with Random Loadings  

by 

Jinmiao Fu 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

 (Statistics) 

Stony Brook University 

2015 

 

With the rapid advancement of biotechnology, multiple measurement platforms of microbiome 

abundance are increasingly available. These include the traditional platforms of gene microarray 

and quantitative PCR, as well as the modern next-generation sequencing technique. 

Consequently, the evaluation of the consistencies of these platforms has also become an 

increasingly crucial topic. Classic methods including using the Pearson correlation or the more 

suitable errors-in-variables (EIV) models to gauge the linear dependency between two platforms. 

Our group is among the leaders in applying the structural equation modeling (SEM) to estimate 

the relationships among three or more platforms and to combine these measurements for an 

optimal joint analysis. However, our previous work, as well as those of the others, only examines 

the agreement for each individual bacterium. In this thesis, we have developed a novel random 

coefficient SEM model to determine the agreement of different platforms across the entire 

microbiomes together taking into account the heterogeneity of individual bacterium.  

We further applied this novel platform comparison method to a 16S ribosomal RNA sequencing 

study on bacteria abundance with three measurement modalities referred to as the V1V2, V1V3 

and V3V4 windows. These are indeed three different targeting regions of primers when 

generating the amplicons. The newly developed SEM method with random loadings aims to test 

the average overall and pairwise consistency among these three platforms. Subsequently, good 

agreement between V1V2 and V3V4, and between V1V3 and V3V4 is found, while more 

discrepancy between V1V2 and V1V3 is detected. Moreover, the prediction of random loadings, 
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a by-product of the model above, is able to elucidate the performance of platforms on each 

individual bacterium. 

The paradigm mentioned above could be easily adjusted to situations where only two platforms 

are available, which is another contribution of this work. Errors-in-variables (EIV) model with 

random coefficients (loadings) is proposed for the given task. To further confirm the conclusions 

above, pairwise comparison is performed and we are glad to report that coherent results are 

obtained.
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Chapter 1. Linear Mixed Model 

 

1.1 Introduction 

 Linear mixed model (LME), also called multilevel model or random effect model, is a 

regression model suitable when repeated measures are made on the same unit longitudinally, or 

when units are divided into clusters. It could evaluate the overall linear relation between 

response and covariates, while allowing for heterogeneity within each unit or cluster of units. An 

important property of the LME is, unlike the simple or multiple linear regression where 

observations are assumed to be independent from each other, observations within the same 

cluster are correlated. Thanks to its ability to deal with missing data, it is always preferred over 

the repeated measure ANOVA. 

 

1.2 Model Setting 

 Suppose the data contains 𝑁 independent clusters, 𝑖 = 1,⋯ ,𝑁, and each cluster has 𝑛𝑖 

measurements, 𝑗 = 1,⋯ , 𝑛𝑖, with response variable 𝑌𝑖𝑗, covariates 𝑥𝑖𝑗  (𝑝 × 1) corresponding to 

fixed effects 𝛽, and 𝑧𝑖𝑗 (𝑞 × 1) corresponding to random effects 𝑏𝑖, and in most cases 𝑧𝑖𝑗 will be 

a subset of 𝑥𝑖𝑗, then the model would be 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖                                           (1.2.1) 
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where 𝑌𝑖 = (𝑌𝑖1,⋯ , 𝑌𝑖𝑛𝑖
), 𝑋𝑖 = (𝑥𝑖1, ⋯ , 𝑥𝑖𝑛𝑖

)
𝑇
, 𝑍𝑖 = (zi1, ⋯ , zini

)
T
, 𝑏𝑖 ∼ 𝑁(0, 𝐷) and 𝜀𝑖 ∼

𝑁(0, 𝑅𝑖), with 𝑅𝑖 = 𝜎2𝐼𝑛𝑖
, usually. 

 

 To better understand the model above, suppose there are 𝑁 schools in a certain area, and 

in the 𝑖𝑡ℎ school there are 𝑛𝑖 students. Researchers are interested in studying the relation between 

each student’s midterm score 𝑥𝑖𝑗 with his/her final score 𝑦𝑖𝑗, where 𝑖 is the school index, and 𝑗 

the student index. Since this relation will not be constant across all the schools, one can simple 

fit a simple linear regression by 

 [

𝑌𝑖1

𝑌𝑖2

⋮
𝑌𝑖𝑛𝑖

] = [

1 𝑋𝑖1

⋮ ⋮
1 𝑋𝑖𝑛𝑖

] [
𝛽𝑖0

𝛽𝑖1
] + [

𝜀𝑖1

𝜀𝑖2

⋮
𝜀𝑖𝑛𝑖

]                                           (1.2.2) 

for each school 𝑖 separately, however this could be burdensome when 𝑁 gets large, and more 

importantly, it is highly plausible that for some 𝑖, the corresponding sample size (e.g. total 

number of students) 𝑛𝑖 could be small, which will make the regression in this school unreliable. 

As a result, to handle situations where 𝑁 is large and certain 𝑛𝑖 is small, one could assume 𝛽𝑖0 =

𝛽0 + 𝑏𝑖0 and 𝛽𝑖1 = 𝛽1 + 𝑏𝑖1, where 𝑏𝑖 = (𝑏𝑖0, 𝑏𝑖1)
𝑇 ∼ 𝑁(0, 𝐷).   

 

1.3 Estimation 

Given the model settings above, it follows naturally that 𝑌𝑖 ∼ 𝑁(𝑋𝑖𝛽, 𝑉𝑖), where 𝑉𝑖 =

𝑍𝑖𝐷𝑍𝑖
𝑇 + 𝑅𝑖, and the parameters to be estimated are 𝜃 = (𝛽, 𝐷, 𝑅𝑖), so the log likelihood function 

would be  
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𝑙 = 𝐶 −
1

2
𝛴𝑖=1

𝑁 [𝑙𝑜𝑔(|𝑉𝑖|) + (𝑌𝑖 − 𝑋𝑖𝛽)𝑇𝑉𝑖
−1(𝑌𝑖 − 𝑋𝑖𝛽)]                      (1.3.1) 

 

1.3.1 Maximum Likelihood Estimator (MLE) 

From  
𝜕𝑙

𝜕𝛽
= 0, it could be obtained that 𝛽̂ = (𝛴𝑖=1

𝑁 𝑋𝑖
𝑇𝑉𝑖

−1𝑋𝑖)
−1 ∙ 𝛴𝑖=1

𝑁 𝑋𝑖
𝑇𝑉𝑖

−1𝑌𝑖 , meaning 

that the MLE is completely determined by 𝐷 and 𝑅𝑖, and various algorithms including Newton-

Raphson [1] and Expectation Maximization (EM) [2] are available to solve for 𝐷 and 𝑅. 

 

1.3.2 Restricted Maximum Likelihood (REML) 

To demonstrate the motivation of REML, suppose the data are represented by 

𝑋1,⋯ , 𝑋𝑛 𝑁(𝜇, 𝜎2)∼   
𝑖.𝑖.𝑑 , i.e. 𝑋 = (𝑋1,⋯ , 𝑋𝑛)𝑇 ∼ 𝑁(𝜇1𝑛, 𝜎2𝐼𝑛), where 1𝑛 denotes the vector 

(1,⋯ ,1)𝑇 of length 𝑛 and 𝐼𝑛 denotes the n-dimensional identity matrix, then it is obvious that 

𝜇̂𝑀𝐿𝐸 = 𝑋̅, and 𝜎̂𝑀𝐿𝐸
2 =

𝛴𝑖=1
𝑛 (𝑋𝑖−𝜇̂𝑀𝐿𝐸)2

𝑛
. It is well known that 𝜎̂𝑀𝐿𝐸

2  is biased because estimating 

𝜇̂𝑀𝐿𝐸 will consume 1 degree of freedom, and hence  
𝛴𝑖=1

𝑛 (𝑋𝑖−𝜇̂𝑀𝐿𝐸)2

𝑛−1
 would be unbiased. However, 

if 𝜇 is known, then 𝜎̂𝑀𝐿𝐸
2 =

𝛴𝑖=1
𝑛 (𝑋𝑖−𝜇)2

𝑛
 would be unbiased, because there is no loss of degrees of 

freedom in ‘estimating’ 𝜇. 

 

In order to address the biasness problem when 𝜇 and 𝜎2 are both unknown, REML tries 

to find a matrix 𝐴 of dimension (𝑛 − 1) × 𝑛 that maps 𝑋 from 𝑅𝑛 to 𝑅𝑛−1, and in the meanwhile 

to guarantee 𝐴𝜇 = 0, then it could be obtained that 𝑌 ≜ 𝐴𝑋 ∼ 𝑁(0, 𝜎2𝐴𝐴𝑇). As a result, since 
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the mean of 𝑌, which is 0, becomes a known constant, the 𝜎̂𝑀𝐿𝐸
2  based on 𝑌 instead of 𝑋 would 

be unbiased. 

 

Patterson and Thompson (1971) proposed the formal procedure of applying REML in 

linear mixed model [3]. The basic idea is that, since 𝑌𝑖 ∼ 𝑁(𝑋𝑖𝛽, 𝑍𝑖𝐷𝑍𝑖
𝑇 + 𝑅𝑖), if there exists a 

matrix 𝐴, such that 𝐴𝑌𝑖 ∼ 𝑁(0, Σ𝑖), then the variance estimates would be unbiased, and then 𝛽̂ 

could be obtained later. Since 𝑅𝑖 = 𝜎2𝐼𝑛𝑖
, then 𝑉𝑖 = 𝑍𝑖𝐷𝑍𝑖

𝑇 + 𝑅𝑖 = 𝜎2 (𝐼𝑛𝑖
+

1

𝜎2
𝑍𝑖𝐷𝑍𝑖

𝑇) =

𝜎2𝐻𝑖. In their work, they selected 𝑆𝑖 = 𝐼𝑛𝑖
− 𝑋𝑖(𝑋𝑖

𝑇𝑋𝑖)
−1𝑋𝑖

𝑇 and 𝐻𝑖 = 𝑋𝑖
𝑇𝐻𝑖

−1, because 

𝐸[𝑆𝑖𝑌𝑖] = 0, i.e. 𝑆𝑖𝑋𝑖 = 0, and 𝑐𝑜𝑣(𝑆𝑖𝑌𝑖, 𝑄𝑖𝑌𝑖) = 0, meaning that the log likelihood of 𝑌𝑖, which 

is 𝑙𝑖, could be decomposed into the log likelihood of 𝑆𝑖𝑌𝑖, i.e 𝑙𝑖1, and 𝑄𝑖𝑌𝑖, that is, 𝑙𝑖2. 

 

The unbiased estimates of 𝐻𝑖 could be obtained through maximizing Σ𝑖=1
𝑁 𝑙𝑖1 because 

𝐸[𝑆𝑖𝑌𝑖] = 0, and after obtaining 𝐻̂𝑖, estimates of 𝛽 could be generated by maximizing Σ𝑖=1
𝑁 𝑙𝑖2 

assuming 𝐻𝑖 is known, that is, 𝛽̂ = (𝛴𝑖=1
𝑁 𝑋𝑖

𝑇𝐻̂𝑖
−1𝑋𝑖)

−1
∙ 𝛴𝑖=1

𝑁 𝑋𝑖
𝑇𝐻̂𝑖

−1𝑌𝑖 

 

1.3.3 Random Effect Prediction 

After obtaining the estimations of all the parameters, i.e. 𝛽̂, 𝐷̂ and 𝑅̂𝑖, all of the 𝑏𝑖′𝑠 can 

also be predicted if the linear relation within each cluster is of interest. It is worth noticing that 

𝑏𝑖′𝑠 are random variables that are not included in the likelihood function, therefore they could 

not be predicted by the MLE or REML method. 
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Based on the normality assumption, it is not hard to see that [
𝑏𝑖

𝑌𝑖
] ∼

𝑁 ([
0

𝑋𝑖𝛽̂
] , [

𝐷̂ 𝐷̂𝑍𝑖
𝑇

𝑍𝑖𝐷̂ 𝑉𝑖̂

]), from which it could be derived that 

𝑏𝑖|𝑌𝑖 ∼ 𝑁 (𝐷̂𝑍𝑖
𝑇𝑉𝑖̂

−1
(𝑌𝑖 − 𝑋𝑖𝛽̂), 𝐷̂−1 − 𝐷̂𝑍𝑖

𝑇𝑉𝑖̂
−1

𝑍𝑖𝐷̂)                         (1.3.2) 

As a result, the mean of this conditional distribution could be used as a prediction of 𝑏𝑖, i.e. 

𝐷̂𝑍𝑖
𝑇𝑉𝑖̂

−1
(𝑌𝑖 − 𝑋𝑖𝛽̂).  
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Chapter 2. Structural Equation Modeling 

 

2.1 Introduction 

Structural equation modeling (SEM) is a general analysis framework used to study the 

structure among variables including observed variables and latent variables, the latter defined as 

variables that could not be measured directly, for e.g., IQ, ability etc.  Observed variables that are 

measurements of the latent variables are referred to as the indicators or manifest variables. 

Moreover, SEM could be viewed as a general modeling framework encompassing other methods 

such as regression, factor analysis, mixed model and errors in variables model etc.   

 

2.2 Model Specification 

 A simple latent SEM model could be defined as follows, for each sample 𝑖: 

𝑋𝑖 = [

𝑋𝑖1

𝑋𝑖2

⋮
𝑋𝑖𝑝

] = Γ𝜉𝑖 + 𝜀𝑖                                                   (2.2.1) 

where Λ = (𝜆1, ⋯ , 𝜆𝑝)
𝑇
 is a 𝑝 × 1 coefficient vector, and 𝜀𝑖 = (𝜀𝑖1, ⋯ , 𝜀𝑖𝑝)

𝑇
 is the 𝑝 × 1 

residual vector. Figure 2.1 shows a diagram of the model above, where 𝜉𝑖, the circled variable, is 

the latent variable, while the rectangular variables, 𝑋𝑖1, ⋯ , 𝑋𝑖𝑝, are the observed variables, or 

manifest variables. Moreover, 𝜉𝑖, from which there are only arrows pointing out, is called 

exogenous variable, while all the others pointed to by arrows are called endogenous variables. 



 

7 

 

 

Figure 2.1. Diagram of model defined by Equation (2.2.1), where 𝜉𝑖 is the latent factor and 

𝑋𝑖1,⋯ , 𝑋𝑖𝑝 are the corresponding manifest variables. 

 

  

 A convention of SEM is to center the data beforehand, i.e. substituting 𝑋𝑖𝑗 with 𝑋𝑖𝑗 − 𝑋̅𝑗, 

where 𝑋̅𝑗 =
Σ𝑖=1

𝑁 𝑋𝑖𝑗

𝑁
, which is why intercepts are absent from the model, and the mean of 𝜉𝑖 will be 

zero. Given 𝜉𝑖 ∼ 𝑁(0, 𝜎𝜉
2), and 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎𝑗

2), the covariance matrix of 𝑋𝑖 would be  

𝑉𝑖 =

[
 
 
 
 
𝜆1

2𝜎𝜉
2 + 𝜎1

2 𝜆1𝜆2𝜎𝜉
2

𝜆1𝜆2𝜎𝜉
2 𝜆2

2𝜎𝜉
2 + 𝜎2

2

⋯ 𝜆1𝜆𝑝𝜎𝜉
2

⋯ 𝜆2𝜆𝑝𝜎𝜉
2

⋮ ⋮
𝜆1𝜆𝑝𝜎𝜉

2      𝜆2𝜆𝑝𝜎𝜉
2

⋱ ⋮
⋯ 𝜆𝑝

2𝜎𝜉
2 + 𝜎𝑝

2
]
 
 
 
 

                           (2.2.2) 

from which it could be seen that there are infinite numbers of ({𝜆𝑖}𝑖=1,⋯,𝑝, {𝜎𝑖
2}𝑖=1,⋯,𝑝, 𝜎𝜉

2) that 

share the same 𝑉𝑖, because the scale, or unit, of the latent factor 𝜉𝑖 could be arbitrary. As a result, 

for the purpose of model identification, two commonly used constraints are available, and they 

are (1) constrain 𝜆1 to be 1, and (2) constrain 𝜎𝜉
2 to be 1. 
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Another identification issue will occur when there are only two manifest variables, i.e. 

𝑝 = 2. In this situation after applying a constraint above, e.g. 𝜆1 = 1, 𝑉𝑖 will become 

[
𝜎𝜉

2 + 𝜎1
2 𝜆2𝜎𝜉

2

𝜆2𝜎𝜉
2 𝜆2𝜎𝜉

2 + 𝜎2
2] , which contains four unknown parameters, 𝜆2, 𝜎𝜉

2, 𝜎1
2 and 𝜎2

2, however, 

the valid information 𝑉𝑖 provides is only three, thus the model is still non-identified. 

Consequently, another commonly used sufficient condition for the model to be identifiable is, 

each latent factor should have at least three manifest variables [4], i.e. 𝑝 ≥ 3.   

 

SEM could handle more complicated model incorporating not only the relationship 

between manifest and latent variables, but also the relationship among latent variables or 

manifest variables themselves. A general setting of the SEM could be presented as the follows: 

𝜂𝑖  =  𝐵𝜂𝑖  +  𝛤𝜉𝑖  +  𝜁𝑖                                                (2.2.2) 

𝑌𝑖  =  𝛬𝑦𝜂𝑖  +  𝜀𝑖                                                     (2.2.3) 

𝑋𝑖  =  𝛬𝑥𝜂𝑖  +  𝛿𝑖                                                     (2.2.4) 

and Figure 2.2 shows an example path diagram of the model above. 
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Figure 2.2. An example of SEM path diagram with complex structure including not only 

relationships between latent and manifest variables, but also relationships among latent variables 

themselves.  

 

2.3 Estimation 

From (2.2.2) – (2.2.4), it is easy to see that  

𝜂𝑖 = (𝐼 − 𝐵)−1𝛤𝜉𝑖 + (𝐼 − 𝐵)−1𝜁𝑖                                         (2.2.5) 

𝑦𝑖 = (𝐼 − 𝐵)−1𝛤𝜉𝑖 + (𝐼 − 𝐵)−1𝜁𝑖 + 𝜀𝑖                                      (2.2.6) 

𝑥𝑖 = 𝜉𝑖 + 𝛿𝑖                                                           (2.2.7) 

Subsequently, denoting the covariance matrix of 𝜉𝑖, 𝜁𝑖, 𝛿𝑖 and 𝜀𝑖 by 𝑉𝜉, 𝑉𝜁, 𝑉𝛿 and 𝑉𝜀 

respectively, it follows naturally that  

𝑉𝑥 ≜ 𝑉𝐴𝑅(𝑥) = 𝑉𝜉 + 𝑉𝛿                                               (2.2.8) 

𝑉𝑦 ≜ 𝑉𝐴𝑅(𝑦) = (𝐼 − 𝐵)−1[𝛤𝑉𝜉𝛤
𝑇 + 𝑉𝜁]((𝐼 − 𝐵)−1)𝑇 + 𝑉𝜀                   (2.2.9) 
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𝑉𝑥𝑦 ≜ 𝐶𝑂𝑉(𝑥, 𝑦) = 𝑉𝜉𝛤
𝑇((𝐼 − 𝐵)−1)𝑇                                 (2.2.10) 

and the log likelihood of 𝑥 and 𝑦 would be 

𝑙 ∝ −
1

2
Σ𝑖=1

𝑁 (𝑙𝑜𝑔|𝑉| −
1

2
𝑧𝑖

𝑇𝑉−1𝑧𝑖)                                            (2.2.11) 

where 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖)
𝑇 and 𝑉 = [

𝑉𝑥 𝑉𝑥𝑦

𝑉𝑥𝑦
𝑇 𝑉𝑦

], and subsequently the MLE could be obtained. 
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Chapter 3. Expectation Maximization Algorithm 

 

3.1 Introduction 

The idea of Expectation-Maximization (EM) algorithm was established and named by 

Dempster, Laird and Rubin in 1977 [5]. Suppose 𝛩 contains the parameters of interest, and 𝑌 =

(𝑌1,⋯ , 𝑌𝑛) are the observations, then the Θ̂𝑀𝐿𝐸  that maximizes the log likelihood 𝑙(𝛩|𝑌) could 

be cumbersome to solve. To overcome this, the EM algorithm assumes the existence of 

unobservable latent variables 𝑋 = (𝑋1,⋯ , 𝑋𝑛), which after being combined with Y would 

generate the completed observations 𝑍 = (𝑋, 𝑌), and the corresponding log likelihood 𝑙(𝛩|𝑋, 𝑌) 

has a neat form, then through the iteration between the E step and the M step, which would be 

covered later, solutions of  𝑙(𝛩|𝑌) could be obtained upon convergence.  

 

3.2 Procedure 

The EM algorithm is achieved via the successive iteration between the Expectation Step 

(E step) and the Maximization Step (M step), where the E step is used to compute the conditional 

expectation of 𝑙(𝛩|𝑋, 𝑌) given Y and 𝛩̂(𝑡) at the current stage 𝑡, i.e. 𝐸[𝑙(𝛩|𝑋, 𝑌)|𝑌, Θ̂(𝑡)], after 

which the M step will update 𝛩̂(𝑡) by maximizing the conditional expectation obtained from the 

E step with respect to Θ, i.e. 𝛩̂(𝑡+1) = 𝑎𝑟𝑔𝑚𝑎𝑥
Θ

𝐸[𝑙(𝛩|𝑋, 𝑌)|𝑌, Θ̂(𝑡)]. At the end, when the 

difference between two consecutive estimates, |𝛩̂(𝑡+1) − 𝛩̂(𝑡)|, is less than a certain threshold 𝛥, 

usually 𝛥 = 1𝑒 − 8, the algorithm reaches convergence. 
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3.3 Application in linear mixed model 

 From (1.2.1), i.e. 𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖, 𝑖 = 1,⋯ , 𝑁, 𝑏𝑖~𝑁(0, 𝐷) and 𝜀𝑖~𝑁(0, 𝜎2𝐼𝑛𝑖
), in 

this case, the observations are 𝑌 = (𝑌1, ⋯ , 𝑌𝑁), and the latent variables are (𝑏𝑖, 𝜀𝑖), 𝑖 = 1, ⋯ ,𝑁, 

then the log likelihood of the complete observations is 

𝑙(𝛩|𝑌, 𝑏𝑖, 𝜀𝑖) ∝ −
𝑁

2
𝑙𝑜𝑔|𝐷| −

1

2
𝛴𝑖=1

𝑁 𝑏𝑖
𝑇𝐷−1𝑏𝑖 −

1

2
𝛴𝑖=1

𝑁 𝑙𝑜𝑔|𝑅𝑖| −
1

2
𝛴𝑖=1

𝑁 𝜀𝑖
𝑇𝑅𝑖

−1𝜀𝑖 

= −
𝑁

2
𝑙𝑜𝑔|𝐷| −

1

2
𝑡𝑟(𝐷−1𝛴𝑖=1

𝑁 𝑏𝑖𝑏𝑖
𝑇) −

1

2
𝑀𝑙𝑜𝑔𝜎2 −

1

2𝜎2 𝛴𝑖=1
𝑁 𝜀𝑖

𝑇𝜀𝑖       (3.3.1) 

where 𝑀 = 𝛴𝑖=1
𝑁 𝑛𝑖. If denoting 𝑡1 = 𝛴𝑖=1

𝑁 𝜀𝑖𝜀𝑖
𝑇 and 𝑇2 = 𝛴𝑖=1

𝑁 𝑏𝑖𝑏𝑖
𝑇, then based on the results from 

Davidian and Giltinan (1995) [6], it follows that 

𝑡̃1
(𝑡)

≜ 𝐸[𝑡1|𝑌, 𝛩̂(𝑡)] = 𝛴𝑖=1
𝑁 (𝜀𝑖̃

(𝑡)′𝜀𝑖̃
(𝑡) + 𝑡𝑟(𝐶𝑜𝑣{𝜀𝑖|𝑌𝑖, 𝛩̂

(𝑡)}))                  (3.3.2) 

𝑇̃2
(𝑡)

≜ 𝐸[𝑇2|𝑌, 𝛩̂(𝑡)] = 𝛴𝑖=1
𝑁 (𝑏̃𝑖

(𝑡)′𝑏̃𝑖
(𝑡) + 𝑡𝑟(𝐶𝑜𝑣{𝑏𝑖|𝑌𝑖, 𝛩̂

(𝑡)}))                 (3.3.3) 

where 𝜀𝑖̃
(𝑡) ≜ 𝐸[𝜀𝑖|𝑌𝑖, 𝛩̂

(𝑡)] and 𝑏̃𝑖
(𝑡) ≜ 𝐸[𝑏𝑖|𝑌𝑖, 𝛩̂

(𝑡)]. 

 

  From (3.3.1) – (3.3.3), it is obvious that in the E step,  we have 

𝑄 = 𝐸[𝑙𝑐(𝛩|𝑌, 𝑏𝑖, 𝜀𝑖)|𝑌, 𝛩̂(𝑡)] = −
𝑁

2
𝑙𝑜𝑔|𝐷| −

1

2
𝑡𝑟(𝐷−1𝑇̃2

(𝑡)
) −

1

2
𝑀𝑙𝑜𝑔𝜎2 −

1

2𝜎2 𝑡̃1
(𝑡)

 (3.3.4) 

Therefore in order to maximize 𝑄 in terms of 𝐷 and 𝜎2, it could be obtained that 

𝜎̂2(𝑡+1)
=

𝑡̃1
(𝑡)

𝑀
  and 𝐷̂(𝑡+1) =

𝑇̃2
(𝑡)

𝑁
. 



 

13 

 

Chapter 4. Errors-in-Variables Model 

4.1 Introduction 

Errors-in-Variables (EIV) model, also called the measurement error model, is a 

regression model used to deal with situations where predictors/regressors are also subject to 

error. For example, when people are interested in the effects of fat intake during the last 24 hours 

have on certain response measure, the subjects may have to recall and estimate their fat intake, 

which is clearly error prone. 

 

In classic regression model, for example, the simple linear regression, 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀, 

estimated by the  most popular ordinary least squares (OLS) method – if only the response 𝑌 is 

assumed to subject to error, while 𝑋 is assumed be measured perfectly the OLS will fit 𝛽0 and 𝛽1 

by minimizing the sum of squares of the vertical distances from each point to the regression line. 

Similarly,  if 𝑋 is the response, the sum of the squared horizontal distances will be minimized, as 

shown in Figure 4.1. The general EIV model, on the other hand, assuming errors exist in both the 

response and the regressor, would minimize the weighted sum of squared distances in both 

directions [7], and hence the entire class of EIV regression lines are always bounded by the two 

OLS regression lines of Y on X, and X on Y. 
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Figure 4.1. The ordinary least squares (OLS) regression line with Y as the error-prone response, 

and X as the error-free predictor (left); and similarly, the OLS with X as the response, and Y as 

predictor (right). 

 

4.2 Model Setting 

For each subject 𝑖, it is assumed that there exists the perfectly measured response 𝜂𝑖 and 

predictor 𝜉𝑖, such that  

 𝜂𝑖 = 𝛽0 + 𝛽1𝜉𝑖  (4.2.1) 

while the observed response and predictor satisfy 

 𝑌𝑖 = 𝜂𝑖 + 𝜀𝑖 and 𝑋𝑖 = 𝜉𝑖 + 𝛿𝑖 (4.2.2) 

where 𝜀𝑖 and 𝛿𝑖 are measurement errors with mean 0 and variances 𝜎𝜀
2 and 𝜎𝛿

2.  

  In terms of the true predictor 𝜉𝑖, distributional assumption on which may or may not be 

applied. If 𝜉𝑖′𝑠 are considered as fixed but unknown parameters, it is called functional relation, 

while if 𝜉𝑖′𝑠 are assumed to follow certain distribution, usually 𝜉𝑖 ∼ 𝑁(𝜇, 𝜎𝜉
2), it becomes a 

structural one [8]. 
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Sometimes the linear relationship between 𝜂𝑖 and 𝜉𝑖 indicated by (4.2.1) is not satisfied 

exactly, and thus there exists an equation error 𝜏𝑖 [9], meaning 𝜂𝑖 = 𝛽0 + 𝛽1𝜉𝑖 + 𝜏𝑖, and this 

topic will be mentioned again in Section 5.6. 

 

4.3 Estimation 

4.3.1 Functional EIV 

Since 𝜉𝑖
′𝑠 are unknown parameters, the log likelihood would be 

 
𝑙 ∝ −

𝑁

2
(𝑙𝑜𝑔𝜎𝛿

2 + 𝑙𝑜𝑔𝜎𝜀
2) −

1

2
𝛴𝑖=1

𝑁 [
(𝑋𝑖−𝜉𝑖)

2

𝜎𝛿
2 +

(𝑌𝑖−𝛽0−𝛽1𝜉𝑖)
2

𝜎𝜀
2 ]   

(4.3.1) 

where if all the 𝜉𝑖′𝑠 are constrained to be equal to 𝑋𝑖′𝑠, then all the corresponding term 
(𝑋𝑖−𝜉𝑖)

2

𝜎𝛿
2  

will always be zero no matter how small 𝜎𝛿
2 is, thus as 𝜎𝛿

2 goes to zero, −𝑙𝑜𝑔𝜎𝛿
2 will go to 

positive infinity, and so the whole log likelihood, therefore the model, is not identified. 

 

4.3.2 Structural EIV 

Since 𝜉𝑖 ∼ 𝑁(𝜇, 𝜎𝜉
2), 𝑍𝑖 = (𝑋𝑖, 𝑌𝑖)

𝑇 will follow bivariate normal with mean 𝜇𝑍 =

(𝜇, 𝛽0 + 𝛽1𝜇)𝑇 and covariance matrix 𝑉 = [
𝜎𝜉

2 + 𝜎𝛿
2 𝛽1𝜎𝜉

2

𝛽1𝜎𝜉
2 𝛽1

2𝜎𝜉
2 + 𝜎𝜀

2
], thus the log likelihood 

would be  
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 𝑙 ∝ −
𝑁

2
𝑙𝑜𝑔|𝑉| −

1

2
𝛴𝑖=1

𝑁 (𝑍𝑖 − 𝜇𝑍)𝑇𝑉−1(𝑍𝑖 − 𝜇𝑍)   (4.3.2) 

Because V is a matrix containing three distinct elements but four unknown parameters, i.e. 

(𝛽1, 𝜎𝜉
2, 𝜎𝛿

2, 𝜎𝜀
2), the model is also non-identifiable like functional EIV. 

 

4.3.3 Identifiability 

The pattern of EIV could be depicted by Figure 4.2, which is like the diagram of Figure 

2.1, thus EIV could be considered as a special SEM with one latent factor and two manifest 

variables, which is clearly non-identifiable as explained in Section 2.2. For the purpose of 

identification, further constraint is needed, and the most commonly used one is to assume 𝜆 =
𝜎𝜀

2

𝜎𝛿
2 

is known, then the MLE of parameters could be obtained as shown in Casella and Berger [9], 

where  

𝛽̂1 =
𝑆𝑌𝑌−𝜆𝑆𝑋𝑋+√(𝑆𝑌𝑌−𝑆𝑋𝑋)2+4𝜆𝑆𝑋𝑌

2

2𝑆𝑋𝑌
 and 𝛽̂0 = 𝑌̅ − 𝛽̂𝑋̅                         (4.3.3) 

with 𝑆𝑋𝑋 = 𝛴𝑖=1
𝑁 (𝑋𝑖 − 𝑋̅)2, 𝑆𝑌𝑌 = 𝛴𝑖=1

𝑁 (𝑌𝑖 − 𝑌̅)2 and 𝑆𝑋𝑌 = 𝛴𝑖=1
𝑁 (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅). Furthermore, 

for functional EIV,  

𝜉𝑖 =
𝜆𝑋𝑖+𝛽̂1(𝑌𝑖−𝛽̂0)

𝜆+𝛽̂1
2                                                      (4.3.4) 

𝜎̂𝛿
2 =

1

2𝑁(𝜆+𝛽̂1
2)

𝛴𝑖=1
𝑁 [𝑌𝑖 − (𝛽̂0 + 𝛽̂1𝑋𝑖)]

2
 and 𝜎̂𝜀

2 = 𝜆𝜎̂𝛿
2                        (4.3.5) 

while for structural EIV,  
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 𝜇̂ = 𝑋̅ and 𝜎̂𝜉
2 =

𝑆𝑋𝑌

𝑁𝛽̂1
                                                   (4.3.6) 

𝜎̂𝛿
2 =

1

𝑁
(𝑆𝑋𝑋 −

𝑆𝑋𝑌

𝛽̂1
) and 𝜎̂𝜀

2 = 𝜆𝜎̂𝛿
2                                       (4.3.7) 

 

Figure 4.2. Diagram of a structural EIV model, which is equivalent to SEM with one latent factor 

and two corresponding manifest variables. 

 

4.4 Choice of 𝛌 

Without preliminary knowledge it is hard for one to choose the correct λ, but there are 

two commonly used choices of λ that have wonderful geometric interpretations. 

 

4.4.1 Orthogonal Regression 
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If 𝜆 = 1, then the MLE is identical to the model that tries to minimize the sum of the 

squared perpendicular distances between sample points and the fitted line as illustrated in Figure 

4.3. 

 

Figure 4.3. Fitting OR – minimizing the sum of squared perpendicular distances between the 

sample points and the fitted line  

 

4.4.2 Geometric Mean Regression 

If 𝜆 =
𝑆𝑌𝑌

𝑆𝑋𝑋
, then the MLE is identical to the model that minimizes the sum of the right 

triangular areas formulated by the sample points and the fitted line as illustrated in Figure 4.4. 
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Figure 4.4. Fitting GMR – minimize the sum of areas of triangles formed by sample points and 

fitted line  

 

4.5 Estimating 𝝀 

In reality it is often the case that one cannot determine which λ to use and has no 

available preliminary knowledge on 𝜆, then with the help of replicates, i.e. each subject 𝑖 is 

measured several times, the model could be identified without knowing λ. 

 

4.5.1 Functional EIV 

Barnett (1970) proposed the theoretical framework of functional EIV with replicates [10], 

where it was assumed that for each subject i, there are ni replicates such that  

{

𝑋𝑖𝑗 = 𝜉𝑖 + 𝛿𝑖𝑗

𝑌𝑖𝑗 = 𝜂𝑖 + 𝜀𝑖𝑗

𝜂𝑖 = 𝛽0 + 𝛽1𝜉𝑖

                                                      (4.5.1) 
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where 𝑖 = 1,⋯ ,𝑁 and 𝑗 = 1,⋯ , 𝑛𝑖 , then 𝑀 = 𝛴𝑖=1
𝑁 𝑛𝑖 will be the total number of observation. 

His work is more general than the distributional assumption proposed in Section 4.3 in a way 

that 𝛿𝑖𝑗 and 𝜀𝑖𝑗 are allowed to have different variances across 𝑖 while their ratio is held constant, 

i.e. 𝛿𝑖𝑗 ∼ 𝑁(0, 𝜎𝑖
2) and 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜆𝜎𝑖

2). As a result, the log likelihood would be 

𝑙 ∝ −𝛴𝑖=1
𝑁 𝑛𝑖 𝑙𝑜𝑔(𝜎𝑖

2√𝜆) −
1

2
𝛴𝑖=1

𝑁 𝛴𝑗=1
𝑛𝑖 [

(𝑋𝑖𝑗−𝜉𝑖)
2

𝜎𝑖
2 +

(𝑌𝑖𝑗−𝛽0−𝛽1𝜉𝑖)
2

𝜆𝜎𝑖
2 ]               (4.5.2) 

And then the vector of parameters to be estimated would be 

𝛩 = (𝛽0, 𝛽1, 𝜆, {𝜉𝑖 , 𝜎𝑖
2}𝑖=1,⋯,𝑁)

𝑇
                                          (4.5.3) 

 

 After setting all of the related partial derivatives of 𝑙 to zero, it is not hard to see that 

𝜎̂𝑖
2 =

𝛴
𝑗=1

𝑛𝑖 [(𝑋𝑖𝑗−𝜉̂𝑖)
2
+

(𝑌𝑖𝑗−𝛽̂0−𝛽̂1𝜉̂𝑖)
2

𝜆̂
]

2𝑛𝑖
                                         (4.5.4) 

𝜆̂ =
𝛴𝑖=1

𝑁 𝛴
𝑗=1

𝑛𝑖
(𝑌𝑖𝑗−𝛽̂0−𝛽̂1𝜉̂𝑖)

2

𝜎̂𝑖
2  

𝑀
                                               (4.5.5) 

(𝑋̅𝑖 − 𝜉𝑖) +
𝛽̂1(𝑌̅𝑖−𝛽̂0−𝛽̂1𝜉̂𝑖)

𝜆̂
= 0                                           (4.5.6) 

𝛴𝑖=1
𝑁 𝑛𝑖(𝑌̅𝑖−𝛽̂0−𝛽̂1𝑋̅𝑖)

𝜆̂𝜎̂𝑖
2                                                      (4.5.7) 

𝛴𝑖=1
𝑁 𝑛𝑖𝜉̂𝑖(𝑌̅𝑖−𝛽̂0−𝛽̂1𝑋̅𝑖)

𝜆̂𝜎̂𝑖
2                                                     (4.5.8) 

from which 𝜉𝑖 could be eliminated from the equation system and subsequently 
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𝜎̂𝑖
2 =

𝛴
𝑗=1

𝑛𝑖 [(𝑋𝑖𝑗−𝑋̅𝑖)
2
+

(𝑌𝑖𝑗−𝑌̅𝑖)
2

𝜆̂
]

2𝑛𝑖
+

(𝑌̅𝑖−𝛽̂0−𝛽̂1𝑋̅𝑖)
2

2𝜆̂𝛥̂
                                (4.5.9) 

𝜆̂ =
𝛴

𝑗=1

𝑛𝑖 (𝑌𝑖𝑗−𝑌̅𝑖)
2
+

𝑛𝑖
𝛥̂2(𝑌̅𝑖−𝛽̂0−𝛽̂1𝑋̅𝑖)

2

𝑀𝛴𝑖=1
𝑁 𝜎̂𝑖

−2                                        (4.5.10) 

where 𝛥̂ = 1 +
𝛽̂1

2

𝜆̂
,  and if defining 

𝑀̃ = 𝛴𝑖=1
𝑁 𝑛𝑖

𝜎̂𝑖
2, 𝑋̃𝑖 =

𝑛𝑖𝑋̅𝑖

𝜎̂𝑖
2  and 𝑌̃𝑖 =

𝑛𝑖𝑌̅𝑖

𝜎̂𝑖
2                                     (4.5.11) 

it could be obtained that 

𝛽̂1 =
𝑆̃𝑌𝑌−𝜆̂𝑆̃𝑋𝑋+√(𝑆̃𝑌𝑌−𝜆̂𝑆̃𝑋𝑋)

2
+4𝜆̂𝑆̃𝑋𝑌

2

2𝑆̃𝑋𝑌
 and 𝛽̂0 =

𝑌̃−𝛽̂1𝑋̃

𝑀̃
                        (4.5.12) 

where 

𝑋̃ = 𝛴𝑖=1
𝑁 𝑋̃𝑖 and 𝑌̃ = 𝛴𝑖=1

𝑁 𝑌̃𝑖                                           (4.5.13) 

𝑆̃𝑋𝑋 = 𝛴𝑖=1
𝑁 𝜎̂𝑖

2𝑋̃𝑖
2

𝑛𝑖
−

𝑋̃2

𝑀̃
, 𝑆̃𝑌𝑌 = 𝛴𝑖=1

𝑁 𝜎̂𝑖
2𝑌̃𝑖

2

𝑛𝑖
−

𝑌̃2

𝑀̃
 and 𝑆̃𝑋𝑋 = 𝛴𝑖=1

𝑁 𝜎̂𝑖
2𝑋̃𝑖𝑌̃𝑖

𝑛𝑖
−

𝑋̃𝑌̃

𝑀̃
      (4.5.14) 

Then (4.5.9), (4.5.10) and (4.5.12) could be processed iteratively to generate the estimates 

(𝛽0, 𝛽1, 𝜆, {𝜎𝑖
2}𝑖=1,⋯,𝑁)

𝑇
. 

It is worth noticing that in (4.5.12), 𝛽̂1 and 𝛽̂0 have the same structure as in (4.3.3), with 

the subtle differences that all of the 𝑁, 𝑋𝑖 and 𝑌𝑖 involved in (4.3.3) have been reweighted by 𝜎̂𝑖
2 

as in (4.5.11).   

 



 

22 

 

4.5.2 Structural EIV 

In parallel to Barnett’s work, Chan and Mak (1979) proposed the corresponding 

framework for structural EIV [11] with additional distributional assumption of 𝜉𝑖, i.e. 𝜉𝑖 ∼

𝑁(𝜇, 𝜎2). In this work there are extra constraints, including 𝜎1
2 = ⋯ = 𝜎𝑁

2 = 𝜎𝛿
2 and 𝑛1 = ⋯ =

𝑛𝑁 = 𝑟. 

 

Let 𝑋𝑖 = (𝑋𝑖1, ⋯ , 𝑋𝑖𝑟)
𝑇, 𝑌𝑖 = (𝑌𝑖1,⋯ , 𝑌𝑖𝑟)

𝑇, and 𝑍𝑖 = (
𝑋𝑖

𝑌𝑖
) for 𝑖 = 1,⋯ ,𝑁, then 𝑍𝑖 ∼

𝑁(𝜇𝑍, 𝑉), where 

𝜇𝑍 = (𝜇1𝑟
𝑇 , (𝛽0 + 𝛽1𝜇)1𝑟

𝑇)𝑇 and 𝑉 = [
𝜎𝛿

2𝐼𝑟 + 𝜎21𝑟1𝑟
𝑇 𝛽1𝜎

21𝑟1𝑟
𝑇

𝛽1𝜎
21𝑟1𝑟

𝑇 𝜆𝜎𝛿
21𝑟 + 𝛽1

2𝜎21𝑟1𝑟
𝑇
]     (4.5.15) 

then the log likelihood becomes  

𝑙 ∝ −
1

2
𝑁𝑙𝑜𝑔|𝑉| −

1

2
𝛴𝑖=1

𝑁 (𝑍𝑖 − 𝜇𝑍)𝑇𝑉−1(𝑍𝑖 − 𝜇𝑍)                        (4.5.16) 

 

 It was proven in their work that if defining  

𝑋̅𝑖 =
𝛴𝑗=1

𝑟 𝑋𝑖𝑗

𝑟
 and 𝑌̅𝑖 =

𝛴𝑗=1
𝑟 𝑌𝑖𝑗

𝑟
                                          (4.5.17) 

𝑇𝑋𝑋 =
𝛴𝑖=1

𝑁 𝛴𝑗=1
𝑟 𝑋𝑖𝑗

2

𝑁𝑟
 and 𝑇𝑌𝑌 =

𝛴𝑖=1
𝑁 𝛴𝑗=1

𝑟 𝑌𝑖𝑗
2

𝑁𝑟
                                  (4.5.18) 

𝑊𝑋𝑋 =
𝛴𝑖=1

𝑁 𝛴𝑗=1
𝑟 (𝑋𝑖𝑗−𝑋̅𝑖)

2

𝑁𝑟
 and 𝑊𝑌𝑌 =

𝛴𝑖=1
𝑁 𝛴𝑗=1

𝑟 (𝑌𝑖𝑗−𝑌̅𝑖)
2

𝑁𝑟
                       (4.5.19) 
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𝑆𝑋𝑋 =
𝛴𝑖=1

𝑁 𝑋̅𝑖
2

𝑁
, 𝑆𝑌𝑌 =

𝛴𝑖=1
𝑁 𝑌̅𝑖

2

𝑁
 and 𝑆𝑋𝑌 =

𝛴𝑖=1
𝑁 𝑋̅𝑖𝑌̅𝑖

𝑁
                            (4.5.20) 

then the MLE of 𝛽1 is the root of equation 𝑘0𝛽1
4 + 𝑘1𝛽1

3 + 𝑘2𝛽1
2 + 𝑘3𝛽1 + 𝑘4 = 0, where 

𝑘0 = (𝑟 − 1)𝑆𝑋𝑋𝑆𝑋𝑌𝑇𝑋𝑋                                              (4.5.21) 

𝑘1 = 𝑟𝑆𝑋𝑋
2 𝑊𝑌𝑌 − (𝑟 − 1)𝑆𝑋𝑌

2 𝑇𝑋𝑋 − (𝑟 − 1)𝑆𝑋𝑋𝑆𝑌𝑌𝑇𝑋𝑋 − 𝑟𝑆𝑋𝑌
2 𝑊𝑋𝑋           (4.5.22) 

𝑘2 = (3𝑟 − 1)𝑆𝑋𝑌(𝑆𝑌𝑌𝑊𝑋𝑋 − 𝑆𝑋𝑋𝑊𝑌𝑌)                                 (4.5.23) 

𝑘3 = 𝑟𝑆𝑋𝑌
2 𝑊𝑌𝑌 + (𝑟 − 1)𝑆𝑋𝑌

2 𝑇𝑌𝑋 + (𝑟 − 1)𝑆𝑋𝑋𝑆𝑌𝑌𝑇𝑌𝑌 − 𝑟𝑆𝑌𝑌
2 𝑊𝑋𝑋            (4.5.24) 

𝑘4 = −(𝑟 − 1)𝑆𝑋𝑌𝑆𝑌𝑌𝑇𝑌𝑌                                            (4.5.25) 

if a real solution exists. 

 

4.6 Application in platform comparison 

In 2012, our team applied the EIV model to compare the consistency between qPCR and 

Microsphere (MS) [12] in terms of measuring gene expression level. The mainstream of perform 

platform comparison is via the Pearson correlation [13], which is a valid index measuring linear 

dependency, but it is not sophisticated enough to capture any bias. Since both platforms are 

obviously subject to measurement error, the EIV model seems to be a perfect fit [14].  
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4.6.1 Data Structure 

Measurements of 18 pre-selected platelet related genes, including TGFB2, APP, 

LAPTM4B, HIST1H2AG, NGFRAP1, C20orf103, H3F3A, SRP72, ACOT7, WASF3, CLEC1B, 

RPL32, ACTB, CRYM, RPS20, HIST1H1A, TPM1, CTNS, from 50 subjects are available for 

both qPCR and MS, and each measurement has three technical replicates. Table 4.1A and B 

shows the structure of the data points for qPCR, and the ones for MS has the same pattern, where 

𝑋𝑖𝑗
𝑘  is the qPCR measurement for the 𝑖𝑡ℎ gene, 𝑗𝑡ℎ subject and 𝑘𝑡ℎ replicate for 𝑖 = 1,⋯ ,18, 𝑗 =

1,⋯ ,50 and 𝑘 = 1,⋯ ,3. Then similarly 𝑌𝑖𝑗
𝑘 is the corresponding measurement from MS.  

 

There is a caveat that before the comparison, measurements from both platforms should 

be transformed into the same units. To achieve that, two housekeeping genes, RPL32 and RPS20 

were selected, and denote them as gene 𝑖1 and 𝑖2, then for each gene 𝑖, 𝑋𝑖𝑗
𝑘  was transformed into 

𝑋𝑖𝑗
𝑘/

𝑋̅𝑖1𝑗+𝑋̅𝑖2𝑗

2
, where 𝑋̅𝑖1𝑗 =

𝑋𝑖1𝑗
1 +𝑋𝑖1𝑗

2 +𝑋𝑖1𝑗
3

3
 and 𝑋̅𝑖2𝑗 =

𝑋𝑖2𝑗
1 +𝑋𝑖2𝑗

2 +𝑋𝑖2𝑗
3

3
. Similarly, 𝑌𝑖𝑗

𝑘 was 

transformed into 𝑌𝑖𝑗
𝑘/

𝑌̅𝑖1𝑗+𝑌̅𝑖2𝑗

2
. An intuitive interpretation of this transformation is, instead of 

comparing the raw measurements for qPCR and MS, for each gene 𝑖 and subject 𝑗, his or her 

measurements, divided by the mean of measurements of the two housekeeping genes from the 

same subject, were compared between two platforms.      

Table 4.1A – Data structure of measurements of 18 genes and 50 subjects from qPCR. 

qPCR (X) 
 Subject 1 

⋯ 
Subject 50 

 R1 R2 R3 R1 R2 R3 

TGFB2  𝑋11
1  𝑋11

2  𝑋11
3  ⋯ 𝑋1,50

1  𝑋1,50
2  𝑋1,50

3  

     ⋮  ⋮  ⋮ 

CTNS  𝑋18,1
1  𝑋18,1

2  𝑋18,1
3  ⋯ 𝑋18,50

1  𝑋18,50
2  𝑋18,50

3  
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Table 4.1B – Data structure of measurements of 18 genes and 50 subjects from MS. 

MS (Y) 
 Subject 1 

⋯ 
Subject 50 

 R1 R2 R3 R1 R2 R3 

TGFB2  𝑌11
1  𝑌11

2  𝑌11
3  ⋯ 𝑌1,50

1  𝑌1,50
2  𝑌1,50

3  

     ⋮  ⋮  ⋮ 

CTNS  𝑌18,1
1  𝑌18,1

2  𝑌18,1
3  ⋯ 𝑌18,50

1  𝑌18,50
2  𝑌18,50

3  

 

4.6.2 Analysis of all the genes 

 Suppose all of the measurements have been properly transformed, then in order to apply 

Barnett’s method in Section 4.5.1, the sample mean of triplicates for each gene and each subjects 

was computed at first, i.e. 𝑋̅𝑖𝑗 ≜
𝑋𝑖𝑗

1+𝑋𝑖𝑗
2+𝑋𝑖𝑗

3

3
 and 𝑌̅𝑖𝑗 =

𝑌𝑖𝑗
1+𝑌𝑖𝑗

2+𝑌𝑖𝑗
3

3
, then it was assumed that 𝑋̅𝑖𝑗 =

𝜉𝑖 + 𝛿𝑖𝑗, 𝑌̅𝑖𝑗 = 𝜂𝑖 + 𝜀𝑖𝑗 and 𝜂𝑖 = 𝛽0 + 𝛽1𝜉𝑖 like in (4.5.1), where for each gene 𝑖, the 50 subjects 

were considered as 50 replicates. If it is further assumed that 𝛿𝑖𝑗 ∼ 𝑁(0, 𝜎𝑖
2) and 𝜀𝑖𝑗 ∼

𝑁(0, 𝜆𝜎𝑖
2), then Barnett’s method could be applied exactly, and the conclusion of 𝛽̂0 = 0 and 

𝛽̂1 = 1 would indicate the consistency between these two platforms. 

 

 Figure 4.5 is the scatterplot of all of the (𝑋̅𝑖𝑗, 𝑌̅𝑖𝑗) pairs with different symbols for 

different genes, from which it is clear that HIST1H1A is an outlier gene, so it was excluded from 

the following regression analysis where we compared the results of OLS with Y as response 

variables (OLS_Y), OLS with X as response variable (OLS_X), orthogonal regression (OR), 

geometric mean regression (GMR) and Barnett’s method (Barnett_EIV).  
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Figure 4.5. Scatter plots and Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from all the genes together. 

 

Table 4.2 shows the results from all 5 methods with their corresponding 𝜆, estimated 𝛽̂0, 

𝛽̂1, and the bootstrapped confidence intervals [15]. Barnett’s method is clearly superior in the 

sense that all the other four methods assume λ to be known, and its outputs, 𝛽̂0 = −0.01 and 

𝛽̂1 = 1.06, strongly favors the conclusion that qPCR and MS are consistent. 

Table 4.2. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of all the genes together. 

 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -0.83 (-0.95, -0.71) 0.82 (0.78, 0.86) 

OLS_X 0 -0.23 (-0.42, -0.04) 1.23 (1.17, 1.29) 

OR 1 -0.56 (-0.70, -0.43) 1.01 (0.95, 1.05) 

GMR 1.01 -0.56 (-0.69, -0.44) 1.01 (0.97, 1.04) 

Barnett_EIV 1.37E-06 -0.01 (-0.68, 1.20) 1.06 (0.48, 2.35) 
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4.6.3 Analysis of each individual gene 

 Although these two platforms are consistent in terms of all the genes together, it is 

obvious that for some genes, based on Figure 4.2, their scatter plots are far away from the 

reference line, i.e. 𝑌 = 𝑋, which makes it doubtful that whether assuming all the genes have the 

same linear pattern is plausible or not. As a result, EIV analysis on each individual gene could be 

done in a similar manner.  

 

For each gene 𝑖, since replicates are available for each subject, we applied method used to 

Linnet (1993) to estimate 𝜆 at first [16], which is 𝜆̂𝑖 =
Σ𝑗=1

50 Σ𝑘=1
3 (𝑌𝑖𝑗

𝑘−𝑌̅𝑖𝑗)
2

Σ𝑗=1
50 Σ𝑘=1

3 (𝑋𝑖𝑗
𝑘−𝑋̅𝑖𝑗)

2, and used this 𝜆̂𝑖 to 

perform EIV on {(𝑋̅𝑖𝑗, 𝑌̅𝑖𝑗)}𝑗=1,⋯,50
, hereafter abbreviated as Best_EIV. Similarly, OLS_Y, 

OLS_X, OR, GMR were also adopted on the same data points. Table 4.3A–Q  shows the results 

for each gene in the same way Table 4.1 does, and Figure 4.6A–Q are the corresponding plots 

with the sample correlation of {(𝑋̅𝑖𝑗, 𝑌̅𝑖𝑗)}𝑗=1,⋯,50
 at the top. 

Table 4.3A. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of C20orf103. 

C20orf103 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y  ∞ 0.19 (-0.37, 0.75) 1.26 (1.12, 1.39) 

OLS_X 0 0.92 (-0.34, -0.04) 1.43 (1.29, 1.61) 

OR 1 0.65 (0.04, 1.26) 1.37 (1.22, 1.52) 

GMR 1.80 0.54 (-0.06, 1.14) 1.34 (1.20, 1.49) 

Best_EIV 0.76 0.70 (0.08, 1.31) 1.38 (1.23, 1.53) 
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Table 4.3B. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of NGFRAP1. 

NGFRAP1 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -0.05 (-0.16, 0.07) 1.19 (1.03, 1.34) 

OLS_X 0 -0.22 (-0.37, -0.10) 1.43 (1.27, 1.65) 

OR 1 -0.15 (-0.28, -0.03) 1.34 (1.16, 1.51) 

GMR 1.70 -0.13 (-0.25, -0.01) 1.30 (1.13, 1.48) 

Best_EIV 0.48 -0.18 (-0.31, -0.05) 1.38 (1.19, 1.56) 

 

Table 4.3C. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of TPM1. 

TPM1 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -1.13 (-1.22, -1.04) 0.91 (0.71, 1.11) 

OLS_X 0 -1.36 (-1.45, -1.21) 1.43 (1.09, 1.61) 

OR 1 -1.25 (-1.34, -1.17) 1.18 (0.98, 1.38) 

GMR 1.30 -1.24 (-1.30, -1.17) 1.14 (1.00, 1.28) 

Best_EIV 0.77 -1.27 (-1.35, -1.17) 1.22 (0.99, 1.40) 

 

Table 4.3D. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of ACTB. 

ACTB λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -2.90 (-4.14, -1.66) 1.09 (0.82, 1.35) 

OLS_X 0 -6.45 (-8.14, -3.81) 1.84 (1.28, 2.19) 

OR 1 -5.13 (-6.49, -3.02) 1.56 (1.11, 1.84) 

GMR 1.99 -4.44 (-5.37, -3.27) 1.41 (1.16, 1.61) 

Best_EIV 1.41 -4.80 (-6.21, -2.97) 1.49 (1.10, 1.79) 

 

Table 4.3E. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of ACOT7. 

ACOT7 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -2.30 (2.70, -1.90) 0.93 (0.73, 1.13) 

OLS_X 0 -1.28 (-1.91, -0.85) 1.44 (1.12, 1.66) 

OR 1 -1.76 (-2.25, -1.40) 1.20 (0.95, 1.38) 

GMR 1.34 -1.85 (-2.35, -1.35) 1.16 (0.91, 1.41) 

Best_EIV 4.02 -2.11 (-2.55, -1.67) 1.02 (0.80, 1.25) 
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Table 4.3F. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of APP. 

APP λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -1.34 (-1.68, -1.00) 1.06 (0.80, 1.33) 

OLS_X 0 -2.35 (-3.13, -1.88) 1.86 (1.49, 2.48) 

OR 1 -1.97 (-2.46, -1.47) 1.56 (1.17, 1.95) 

GMR 1.98 -1.77 (-2.22, -1.33) 1.41 (1.05, 1.76) 

Best_EIV 0.83 -2.02 (-2.35, -1.51) 1.60 (1.20, 2.00) 

 

Table 4.3G. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of CTNS. 

CTNS λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -2.84 (-3.33, -2.35) 0.96 (0.74, 1.17) 

OLS_X 0 -1.54 (-2.23, -1.08) 1.53 (1.23, 1.73) 

OR 1 -2.13 (-2.66, -1.70) 1.27 (1.04, 1.46) 

GMR 1.47 -2.27 (-2.63, -1.95) 1.21 (1.05, 1.35) 

Best_EIV 0.13 -1.65 (-2.40, -1.21) 1.48 (1.15, 1.68) 

 

Table 4.3H. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of H3F3A. 

H3F3A λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ 0.51 (-0.16, -1.19) 1.25 (0.94, 1.56) 

OLS_X 0 -1.48 (-3.05, -0.55) 2.17 (1.74, 2.90) 

OR 1 -0.89 (-1.92, 0.13) 1.90 (1.43, 2.37) 

GMR 2.72 -0.35 (-1.24, 0.54) 1.65 (1.24, 2.06) 

Best_EIV 0.04 -1.45 (-2.62, -0.29) 2.16 (1.62, 2.70) 

 

 

Table 4.3I. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of TGFB2. 

TGFB2 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞  -2.53 (-3.54, -1.63) 0.61 (0.35, 0.84) 

OLS_X 0 1.62 (-0.19, 5.69) 1.68 (1.22, 2.74) 

OR 1 -0.94 (-2.46, 0.59) 1.02 (0.63, 1.42) 

GMR 1.03 -0.97 (-2.48, 0.54) 1.01 (0.63, 1.40) 

Best_EIV 1.88 -1.64 (-2.89, -0.39) 0.84 (0.52, 1.16) 
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Table 4.3J. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of WASF3. 

WASF3 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -3.04 (-3.44, -2.65) 0.82 (0.56, 1.08) 

OLS_X 0 -1.57 (-2.70, -1.04) 1.79 (1.04, 2.15) 

OR 1 -2.27 (-2.91, -1.64) 1.33 (0.91, 1.75) 

GMR 1.47 -2.45 (-3.03, 0.54) 1.21 (0.83, 1.60) 

Best_EIV 0.33 -1.86 (-2.68, -1.37) 1.60 (1.06, 1.92) 

 

Table 4.3K. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of CRYM. 

CRYM λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -1.68 (-4.33, 0.98) 0.78 (0.40, 1.16) 

OLS_X 0 13.78 (6.91, 33.87) 3.01 (2.02, 5.90) 

OR 1 8.06 (0.63, 15.49) 2.18 (1.11, 3.25) 

GMR 2.35 3.54 (-1.67, 8.75) 1.53 (0.78, 2.28) 

Best_EIV 1.77 5.05 (-0.90,11.01) 1.75 (0.89, 2.61) 

 

Table 4.3L. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of RPL32. 

RPL32 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -0.09 (-0.24, 0.06) 0.41 (0.18, 0.64) 

OLS_X 0 0.91 (0.46, 2.52) 1.93 (1.24, 4.38) 

OR 1 0.15 (-0.13, 0.44) 0.77 (0.34, 1.21) 

GMR 0.79 0.23 (-0.10, 0.55) 0.89 (0.39, 1.39) 

Best_EIV 0.32 0.55 (0.04, 1.06) 1.38 (0.61, 2.15) 

 

Table 4.3M. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of LAPTM4B. 

LAPTM4B λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -2.17 (-2.57, -1.77) 0.44 (0.17, 0.72) 

OLS_X 0 0.71 (-5.68, 1.88) 2.41 (-1.94, 3.21) 

OR 1 -1.23 (-2.29, -0.15) 1.08 (0.36, 1.82) 

GMR 1.07 -1.30 (-1.76, -0.95) 1.03 (0.72, 1.28) 

Best_EIV 0.47 -0.42 (-2.14, 0.33) 1.64 (0.46, 2.15) 
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Table 4.3N. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of CLEC1B. 

CLEC1B λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ 1.63 (0.15, 2.71) 0.54 (0.20, 0.80) 

OLS_X 0 10.91 (6.65, 26.98) 2.72 (1.72, 6.49) 

OR 1 5.86 (2.06, 9.66) 1.54 (0.64, 2.43) 

GMR 1.48 4.50 (1.49, 7.51) 1.22 (0.51, 1.92) 

Best_EIV 0.13 10.10 (3.84, 16.36) 2.53 (1.06, 4.00) 

 

Table 4.3O. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of SRP72. 

SRP72 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -5.27 (-5.81, -4.72) -0.08 (-0.17, 0.01) 

OLS_X 0 -12.50 (-32.24,19.67) -1.28 (-4.56, 4.05) 

OR 1 -5.32 (-5.93, -4.71) -0.09 (-0.19, 0.01) 

GMR 0.10 -6.73 (-8.89, -4.56) -0.32 (-0.68, 0.04) 

Best_EIV 0.08 -7.54 (-10.44, -1.54) -0.46 (-0.94, 0.54) 

 

Table 4.3P. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of HIST1H2AG. 

HIST1H2AG λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ -1.29 (-1.66, -0.92) 0.22 (0.03, 0.41) 

OLS_X 0 2.52 (-17.89,4.71) 2.22 (-8.49, 3.37) 

OR 1 -1.00 (-1.62, -0.38) 0.37 (0.05, 0.70) 

GMR 0.49 -0.38 (-1.54, 0.79) 0.70 (0.09, 1.31) 

Best_EIV 0.19 1.10 (-8.50, 2.32) 1.48 (-3.56, 2.1) 

 

Table 4.3Q. Estimates of 𝜆, 𝛽0, 𝛽1 and their confidence intervals by OLS_Y, OLS_X, OR, GMR 

and Best_EIV on measurements of RPS20. 

RPS20 λ̂ β̂0 CI(β̂0) β̂1 CI(β̂1) 

OLS_Y ∞ 0.19 (0.05, 0.32) 0.19 (-0.16, 0.55) 

OLS_X 0 -2.76 (-0.80, 3.84) 7.94 (-9.40, 2.79) 

OR 1 -0.90 (-3.05, 1.24) 3.06 (-2.58, 8.69) 

GMR 1.52 -0.21 (-1.07, 0.66) 1.23 (-1.04, 3.51) 

Best_EIV 0.07 -2.62 (-7.94, 2.70) 7.57 (-6.39,21.53) 
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Figure 4.6. A (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from C20orf103; B (right) – corresponding plot from NGFRAP1.  

 

 

Figure 4.6. C (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from TPM1; D (right) – corresponding plot from ACTB.  
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Figure 4.6. E (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from ACOT7; F (right) – corresponding plot from APP.  

 

 

Figure 4.6. G (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from CTNS; H (right) – corresponding plot from H3F3A.  
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Figure 4.6. I (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from TGFB2; J (right) – corresponding plot from WASF3.  

 

 

Figure 4.6. K (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from CRYM; L (right) – corresponding plot from RPL32.  

 



 

35 

 

  

Figure 4.6. M (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from LAPTM4B; N (right) – corresponding plot from CLEC1B.  

 

 

Figure 4.6. O (left) – Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of 

measurements from SRP72; P (right) – corresponding plot from HIST1H2AG.  
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Figure 4.6Q. Fitted lines from OLS_Y, OLS_X, OR, GMR, and Barnett_EIV of measurements 

from RPS20.  

 

4.6.4 Discussion 

The outputs above indicate that the choice of 𝜆 will affect the judgment to a very large 

extent, and most genes are not consistent between qPCR and MS when analyzed separately, e.g. 

H3F3A, 𝐶𝐼(𝛽̂0) = (−2.62,−0.29), which does not include 0, and 𝐶𝐼(𝛽̂1) = (1.62, 2.70), which 

also does not include 1, thus it would be assertive to assume all the genes have the same pattern 

like in Section 4.6.2. Hence, a method that could analyze the whole gene cohort while allowing 

each gene to have individual pattern is needed, and the corresponding details will be covered in 

Section 7.7. 
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Chapter 5. Generalized Method of Moments 

 

5.1 Introduction 

The material of this chapter is enlightened by and organized as the same structure as the 

lecture note by University of Washington [17]. Generalized method of moments (GMM) was 

formulized by Hansen LP (1982) [18], which unlike MLE, does not rely on the knowledge of the 

distribution of data, and is widely used in finance and econometrics, besides it is usually 

computationally easy. The estimation is achieve via the orthogonal conditions from instrumental 

variables and residuals that would be described later, and the results have good properties like 

consistency and asymptotic efficiency. 

 

5.2 Orthogonal Conditions 

Given a linear regression model  

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜀𝑖, 𝑖 = 1,⋯ ,𝑁                                             (5.2.1) 

where 𝑥𝑖 is the 𝐿 dimensional explanatory vector of the 𝑖𝑡ℎ observation, 𝛽 = (𝛽0, ⋯ , 𝛽𝐿−1) is the 

𝐿 dimensional coefficients of interest, and 𝜀𝑖 is the corresponding residual. The GMM assumes 

the existence of a 𝐾 instrumental variables 𝑧𝑖 for each 𝑖, which contain some or all of the 

elements in 𝑥𝑖 are uncorrelated with the residual, i.e. 𝐸[𝑧𝑖𝜀𝑖] = 0. Since 𝑧𝑖 is 𝐾 dimensional, 

𝐸[𝑧𝑖𝜀𝑖] = 0 is referred to as the 𝐾 orthogonal conditions. 
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5.3 Estimation 

Denoting 𝑤𝑖 is the vector of unique elements in {𝑦𝑖, 𝑥𝑖, 𝑧𝑖}, then from (4.2.1), the 

orthogonal conditions could be expressed as  

𝐸[𝑔𝑖(𝑤𝑖, 𝛽)] = 𝐸[𝑧𝑖𝜀𝑖] = 𝐸[𝑧𝑖(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)] = 0                             (5.3.1) 

where 𝑔𝑖(𝑤𝑖, 𝛽) ≜ 𝑧𝑖𝜀𝑖 = 𝑧𝑖(𝑦𝑖 − 𝑥𝑖
𝑇𝛽). 

 

 Expanding (5.3.1) will give us 

Σ𝑧𝑦 = Σ𝑧𝑥𝛽                                                          (5.3.2) 

where Σ𝑧𝑦 = 𝐸[𝑧𝑖𝑦𝑖] and Σ𝑧𝑥 = 𝐸[𝑧𝑖𝑥𝑖] are matrices of 𝐾 × 1 and 𝐾 × 𝐿 respectively. It is worth 

noticing that if 𝐾 = 𝐿, (5.3.2) means 𝛽 = 𝛴𝑧𝑥
−1𝛴𝑧𝑦, and the model is called just-identified, where 

it is worth noticing that if 1 was still kept in 𝑧𝑖 or 𝑥𝑖, the first row or column of Σ𝑧𝑥 would be 0, 

leading to the singularity of Σ𝑧𝑥, if 𝐾 < 𝐿, 𝛽 clearly could not be solved by (5.3.2), and thus the 

model is non-identifiable, while if 𝐾 > 𝐿, (5.3.2) provides more equations than the number of 

unknown parameters, which lead to an over-identified model.  

 

Since it is impossible to know 𝛴𝑧𝑥 and 𝛴𝑧𝑦 in advance, the GMM substitutes them with 

their sample versions 𝑆𝑧𝑥 and 𝑆𝑧𝑦 respectively, where 𝑆𝑧𝑥 =
1

𝑁
𝛴𝑖=1

𝑁 𝑧𝑖𝑥𝑖
𝑇 and 𝑆𝑧𝑦 =

1

𝑁
𝛴𝑖=1

𝑁 𝑧𝑖𝑦𝑖, 

then when dealing with a just-identified model, it is obvious that 𝛽̂ = 𝑆𝑧𝑥
𝑇 𝑆𝑧𝑦, from which it is 

not hard to see that if 𝑧𝑖 = 𝑥𝑖, 𝛽̂ is consistent with ordinary least square estimator. The focus of 
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the GMM is on situation where 𝐾 > 𝐿, where clearly there does not exist 𝛽 such that (5.3.2) is 

satisfied completely, therefore the goal is to make 𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽 as close to zero as possible.  

 

The error terms 𝜀𝑖
′𝑠 in (5.2.1) are allowed to be heteroskedastic as well as serially 

correlated, but in this dissertation, they are assumed to be independent. If 𝑔𝑖(𝑤𝑖, 𝛽)′𝑠 are also 

independent from each other, then it could be defined that 

𝑆 ≜ 𝑐𝑜𝑣(𝑔𝑖(𝑤𝑖, 𝛽)) = 𝐸[𝑔𝑖(𝑤𝑖, 𝛽)𝑔𝑖
𝑇(𝑤𝑖, 𝛽)]                              (5.3.3) 

From central limit theorem, 𝑆 would be the asymptotical variance covariance matrix of 𝑔̅ =

1

𝑁
Σ𝑖=1

𝑁 𝑔𝑖(𝑤𝑖, 𝛽), i.e. 𝑔̅
𝐷
→ 𝑁(0, 𝑆), then given 𝛽, the sample moment estimation of 𝑆 is 

𝑆̂ =
1

𝑁
Σ𝑖=1

𝑁 𝑔𝑖(𝑤𝑖, 𝛽)𝑔𝑖
𝑇(𝑤𝑖, 𝛽)                                           (5.3.4) 

 

Let 𝑊̂ denote an arbitrary 𝐾 × 𝐾 positive definite matrix such that 𝑊̂
𝑃
→ 𝑊, where 𝑊 is 

also positive definite, then it could be proven that  

𝛽̂(𝑊̂) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

𝑁(𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽)
𝑇
𝑊̂−1(𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽)                        (5.3.5) 

has the following properties 

𝛽̂(𝑊̂)
𝑃
→ 𝛽                                                          (5.3.6) 

√𝑁(𝛽̂(𝑊̂) − 𝛽)
𝑑
→ 𝑁 (0, 𝑎𝑣𝑎𝑟(𝛽̂(𝑊̂)))                                  (5.3.7) 
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where  

𝑎𝑣𝑎𝑟(𝛽̂(𝑊̂)) = (𝛴𝑧𝑥
𝑇 𝑊𝛴𝑧𝑥)

−1𝛴𝑧𝑥
𝑇 𝑊𝑆𝑊𝛴𝑧𝑥(𝛴𝑧𝑥

𝑇 𝑊𝛴𝑧𝑥)
−1                     (5.3.8) 

and a consistent estimator of  𝑎𝑣𝑎𝑟(𝛽̂(𝑊̂)) would be  

𝑎𝑣𝑎𝑟̂(𝛽̂(𝑊̂)) = (𝑆𝑧𝑥
𝑇 𝑊̂𝑆𝑧𝑥)

−1
𝑆𝑧𝑥

𝑇 𝑊̂𝑆̂𝑊̂𝑆𝑧𝑥(𝑆𝑧𝑥
𝑇 𝑊̂𝑆𝑧𝑥)

−1
                     (5.3.9) 

 

5.4 Efficiency 

 Since the consistency and asymptotic normality properties could be satisfied regardless of 

the choice of 𝑊̂, a natural question to ask is: what kind of 𝑊̂ will generate the smallest 

𝑎𝑣𝑎𝑟(𝛽̂(𝑊̂)), and the 𝛽̂(𝑊̂) based on this 𝑊̂ will be the efficient GMM estimator.  

 

 Hansen LP (1982) showed that 𝑊̂ = 𝑆̂−1, where 𝑆̂
𝑃
→ 𝑆 would be the right choice. As a 

result, from (5.3.8) and (5.3.9),  

𝑎𝑣𝑎𝑟(𝛽̂(𝑆̂−1)) = (𝛴𝑧𝑥
𝑇 𝑆−1𝛴𝑧𝑥)

−1                                        (5.3.7) 

𝑎𝑣𝑎𝑟̂(𝛽̂(𝑆̂−1)) = (𝑆𝑧𝑥
𝑇 𝑆̂−1𝑆𝑧𝑥)

−1
                                        (5.3.8) 

Consequently, we are faced with a paradox that 𝑆̂−1 is needed to estimate 𝛽, while in order to 

obtain 𝑆̂−1, 𝛽 should be known in advance, so there are the following methods dealing with this 

situation. 
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5.4.1 Two-Step Efficient GMM 

 Due to the fact that 𝛽̂(𝑊̂) is consistent for any arbitrary positive definite matrix 𝑊̂ such 

that 𝑊̂
𝑃
→ 𝑊, where 𝑊 is also positive definite, a suitable initial choice of 𝑊̂ would be 𝐼𝐾 or 

(𝑍𝑇𝑍)−1, where 𝑍 is an 𝑁 × 𝐾 matrix with the 𝑖𝑡ℎ row being 𝑧𝑖, and 𝛽̂(𝑊̂) is the estimated 𝛽 

obtained from (5.3.5), then the corresponding 𝑆̂ would be  

𝑆̂(𝑊̂) =
1

𝑁
𝛴𝑖=1

𝑁 𝑧𝑖𝑧𝑖
𝑇 (𝑦𝑖 − 𝑥𝑖

𝑇𝛽̂(𝑊̂))                                    (5.4.1) 

Then the two-step efficient GMM estimator is  

𝛽̂(𝑊̂) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

𝑁(𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽)
𝑇
𝑆̂−1(𝑊̂)(𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽)                     (5.4.2) 

 

5.4.2 Iterated Efficient GMM  

The steps indicated by (5.4.1) and (5.4.2) could be repeated until the difference between 

𝛽̂(𝑊̂) from two consecutive iterations is ignorable, which in the end will generate 𝛽̂(𝑆̂𝑖𝑡𝑒𝑟
−1 ). 

Iterated Efficient GMM estimator and Two Step Efficient GMM estimator share the same 

asymptotic distribution, but the former one has the advantage of being robust the scale of data 

and the initial setting of 𝑊̂. 
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5.4.3 Continuous Updating Efficient GMM 

Instead of estimating 𝛽 iteratively like what the previous two methods do, continuous 

updating efficient GMM (CU) tries to estimate β and S simultaneously, which is defined as  

𝛽̂(𝑆̂𝐶𝑈
−1) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
𝑁(𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽)

𝑇
𝑆̂−1(𝛽)(𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽)                     (5.4.3) 

where 𝑆̂(𝛽) =
1

𝑁
𝛴𝑖=1

𝑁 𝑧𝑖𝑧𝑖
𝑇(𝑦𝑖 − 𝑥𝑖

𝑇𝛽)2. CU has the same merit as iterated efficient GMM but is 

burdensome to compute, while the finite sample performance of it is superior to the other two. 

 

5.5 Model Checking 

5.5.1 J-Statistic 

The J-Statistic is used to test whether the orthogonal conditions indicated by (5.3.1) is 

valid, and it is defined as  

𝐽 = 𝐽(𝛽̂(𝑆̂−1), 𝑆̂−1) = 𝑁 (𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽̂(𝑆̂−1))
𝑇

𝑆̂−1 (𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽̂(𝑆̂−1))       (5.5.1) 

For just-identified model, i.e. 𝐾 = 𝐿, 𝐽 is always zero, while for over-identified model with 𝐾 >

𝐿, which is often the case, then under 𝐻0: (5.3.1) is satisfied, one should expect 𝐽
𝑑
→ 𝜒𝐾−𝐿

2 . Hence 

J-statistic is a general test of modeling setting, and a large one indicates model mis-specification, 

however, it cannot provide information about how the model is mis-specified. 
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5.5.2 Normalized Moments 

If the model is rejected by the 𝐽-statistic, then it would be of interest to locate the source 

of this rejection, which could be indicated by the normalized moments √𝑁 (𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽̂(𝑆̂−1)), 

because under the null hypothesis, that is the model is correct and the orthogonal conditions are 

satisfied, we have  

√𝑁 (𝑆𝑧𝑦 − 𝑆𝑧𝑥𝛽̂(𝑆̂−1))
𝐷
→ 𝑁(0, 𝑆 − Σ𝑧𝑥[Σ𝑧𝑥

𝑇 𝑆−1Σ𝑧𝑥]
−1Σ𝑧𝑥

𝑇 )                 (4.5.3) 

As a result, the individual moment 𝑡-ratio 

𝑡𝑖 =
((𝑆𝑧𝑦−𝑆𝑧𝑥𝛽̂(𝑆̂−1)))

𝑖

√(𝑆̂−S𝑧𝑥[S𝑧𝑥
𝑇 𝑆̂−1S𝑧𝑥]

−1
S𝑧𝑥
𝑇 )

𝑖𝑖
/ 𝑇

                                          (5.5.4) 

is asymptotically standard normal, thus a large 𝑡𝑖 indicates the mis-specification of the 𝑖𝑡ℎ 

orthogonal condition. 
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Chapter 6. Literature reviews of platform comparison methods 

 

6.1 Introduction 

It is quite common in any discipline that certain concepts could be measured by multiple 

techniques, e.g., gene expression level could be measured by microarray, next generation 

sequencing or qPCR etc. Due to the fact that these latent concepts could not be observed directly, 

SEM seems to be a quite suitable model to analyze multiple platforms for a certain concept.  

 

Surprisingly there are not too many literatures on using SEM to perform platform 

comparison, and related works include Sun et al (2014) who applied SEM to calibrate qPCR, 

microarray and RNA-sequencing (RNA-seq) and further estimated the true expression level of 

each gene [19], and the same group also published a paper where SEM was used to compare 

different normalization methods of RNA-seq [20]. Besides SEM, conventional methods like 

Pearson Correlation among different platforms, reproducibility within each platform, are often 

used a criteria of platform quality, e.g. Spurgeon et al (2008) [21],  Chen et al (2007) [22], 

Arikawa et al (2008) [23] all used similar methods to compare multiple gene expression 

measurement methods. However, these conventional criteria have been suffering from critics 

since they are not sophisticated enough to capture the information of agreement among 

platforms, and regression based models are in demand to handle the task. Allen et al (1997) 

applied both Pearson Correlation and ordinary least squares to compare among different 

techniques of measuring density of ambient particulate matters [24]. While as discussed in 
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Chapter 4, OLS is not suitable in this situation since each platforms is subject to measurement 

error, thus more advanced models are in need. 

  

This chapter mainly focuses on the work done by Xiao Wu et al (2013) [25], where she 

adopted the latent SEM to compare multiple platforms measuring the abundance of bacteria, 

including Sanger sequencing, next generation pyrosequencing with two windows (454_V1V3 

and 454_V3V5), and quantitative PCR (qPCR), and further identified the most reliable platform. 

The contents in the next chapter were actually motivated by her work since she modeled each 

taxon of bacterium separately, and thus the results differ across different bacterium, which is 

why the random effects are adopted in order to perform an overall comparison while allowing 

individual (bacterium) heterogeneity. At the end of this chapter, another important work of 

applying SEM on platform comparison will also be reviewed. 

 

6.2 Data Structure 

ABI 3730 Sanger sequencing [26] and 454 FLX Titanium pyrosequencing [27] including 

two hypervariable regions V1V3 and V3V5, which belongs to the next generation sequencing 

(NGS) technology, were used to generate data from 300 healthy human subjects by amplifying 

16S rRNA genes. In addition, quantitative polymerase chain reaction (qPCR) [28], which 

employs primers to detect and quantify bacteria, are also available for a single bacterial taxon, 

Faecalibacterium spp. 



 

46 

 

Besides Faecalibacterium, measurements of several other bacteria including 

Proteobacteria, Firmicutes/Clostridia/Clostridiales/LachnolV, Actinobacteria, Bacteroidetes, 

Firmicutes/Bacilli are also available in Sanger, 454_V1V3 and 454_V3V5. 

 

6.3 Model Setting 

For each bacterium, the true frequency of subject 𝑖 is considered as a latent variable 𝜉𝑖, 

while the corresponding measurements from 𝑝 platforms are denoted as 𝑋 = (𝑋𝑖1,⋯ , 𝑋𝑖𝑝)
𝑇
, 

which are observable, then based on the model setting in secton 2.2, it follows naturally that 

𝑋𝑖𝑗 = 𝜆𝑗𝜉𝑖 + 𝑒𝑖𝑗, where 𝑣𝑎𝑟(𝜉𝑖) = 1. 

                                 

Given normality assumption of 𝜉 and 𝜀 = (𝜀1, ⋯ , 𝜀𝑝), i.e. 𝜉 ∼ 𝑁(0,1) and 𝜀 ∼

𝑀𝑉𝑁(0, 𝜎2𝐼𝑝), it could be obtained that 𝑋 ∼ 𝑀𝑉𝑁(0, 𝛬𝛬𝑇 + 𝜎2𝐼𝑝), where 𝛬 = (𝜆1, ⋯ , 𝜆𝑝)
𝑇
. 

then the log likelihood becomes  

𝑙 ∝ −
𝑁

2
𝑙𝑜𝑔|𝛬𝛬𝑇 + 𝜎2𝐼𝑝| −

1

2
𝛴𝑗=1

𝑁 𝑋𝑗
𝑇(𝛬𝛬𝑇 + 𝜎2𝐼𝑝)

−1
𝑋𝑗                 (6.3.1) 

from which the maximum likelihood estimates could be obtained. 

 

In terms of platform quality, it is natural to use reliability as an index, which is defined as 

𝑅𝑋𝑖

2 =
𝑣𝑎𝑟(𝜆𝑖𝜉)

𝑣𝑎𝑟(𝑋𝑖)
= 1 −

𝑣𝑎𝑟(𝜀𝑖)

𝑣𝑎𝑟(𝑋𝑖)
                                               (6.3.2) 
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i.e. the percentage of the variance of 𝑋𝑖 that is explained by the model. 

 

 The process described above could be used to compare Sanger, 454_V1V3, 454_V3V5, 

qPCR for Faecalibacterium, and compare Sanger, 454_V1V3, 454_V3V5 for all the other 

bacteria, the diagrams of which are indicated by Figure 6.1. 

 

Figure 6.1. SEM comparing measurements of abundance of Faecalibacterium from Sanger, 

454_V1V3, 454V3V5 and qPCR.  

 

6.4 Results 

The result of comparison among Sanger, 454_V1V3, 454_V3V5 and qPCR for 

Faecalibacterium is shown in Figure 6.2, where 454_V3V5 has the highest loading, 0.955, and 

the reliabilities of these four platforms, computed by (6.3.2), are 0.819, 0.857, 0.912 and 0.441 

respectively.  
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Figure 6.2. Estimation results of SEM comparing measurements of abundance of 

Faecalibacterium from Sanger, 454_V1V3, 454V3V5 and qPCR. 

 

As mentioned in Section 6.2, measurements from Sanger, 454_V1V3 and 454_V3V5 are 

available for other bacterium, thus similar analysis could be done on each one of them, whose 

reliabilities are shown in Table 6.1. 

 

Table 6.1. Reliabilities of Sanger, 454_V1V3 and 454_V3V5 when comparing measurements of 

abundance of Proteobacteria, Firmicutes/Clostridia/Clostridiales/LachnoIV,  Actinobacteria, 

Bacteroidetes and Firmicutes/Bacilli. 

Reliability Sanger 454_V1V3 454_V3V5 

Proteobacteria 0.657 0.641 0.974 

Firmicutes/Clostridia/Clostridiales/LachnoIV 0.685 0.923 0.793 

Actinobacteria 0.582 0.854 0.882 

Bacteroidetes 0.684 0.828 0.980 

Firmicutes/Bacilli 0.698 0.953 0.959 
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6.5 Discussion 

Both Figure 6.2 and Table 6.1 show that for most bacterium, 454_V3V5 is superior than 

others, but for Firmicutes/Clostridia/Clostridiales/LachnoIV, 454_V1V3 performs the best, then 

the same issue as in Section 4.6.3 occurs, meaning it is not reasonable to assume that platforms 

perform homogeneously across different bacteria. Therefore, it is of our interest to know whether 

the platforms are consistent or not, or which one performs the best in general, while at the same 

time, the behavior of platforms should be allowed to vary across bacteria. Therefore, a model 

that could handle this issue will be introduced in Chapter 7. 

 

6.6 Another related work 

 Bilonick et al (2015) proposed the framework of comparing multiple samplers of 

measuring density of PM2.5 using linked structural equation modeling [29]. In this work, three 

federal references methods (FRM1, FRM2, FRM3), three speciation samplers (SASS, SFS, 

IMP), and a tapered element oscillating microbalance (TEOM) were compared in terms of 

measuring PM2.5, and furthermore, calibration between each pair under different temperatures 

were also established. To stabilize the variance, square root data was analyzed instead of raw 

data. 

 

 Figure 6.3 illustrates eight sub-SEM models comparing seven platforms under eight 

temperatures that are -5.8°C, 0.7°C, 5.3°C, 10.0°C, 14.4°C, 18.1°C, 21.1°C and 24.4°C, and 

http://www.thefreedictionary.com/%C2%B0C
http://www.thefreedictionary.com/%C2%B0C
http://www.thefreedictionary.com/%C2%B0C
http://www.thefreedictionary.com/%C2%B0C
http://www.thefreedictionary.com/%C2%B0C
http://www.thefreedictionary.com/%C2%B0C
http://www.thefreedictionary.com/%C2%B0C
http://www.thefreedictionary.com/%C2%B0C
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preliminary knowledge about samplers indicates that only TEOM is affected by temperatures, 

which is the reason that only its loadings vary across eight models.  

  

 

Figure 6.3. From Bilonick et al (2015), path diagram for structural equation model for 

measurement error relating all seven samplers and stratified by temperature. This model is 

composed of eight submodels with some parameters constrained to be equal across the 

temperature strata. 

 

 

 FRM1, FRM2, FRM3 are three identical samplers whose measurements were took on 

different frequencies of days, thus they could be considered as technical replicates, and their 

loadings are equal to each other as shown in Figure 6.3.  
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 After fitting eight SEMs together, eight estimates of 𝛼̂𝑇𝐸𝑂𝑀𝑡
, 𝛽̂𝑇𝐸𝑂𝑀𝑡

 and 
𝜎̂𝑇𝐸𝑂𝑀𝑡

𝛽̂𝑇𝐸𝑂𝑀𝑡

 for 𝑡 =

1,⋯ ,8 could be obtained, and their scatterplot versus temperatures are shown in Figure 6.4A, B 

and C. Due to the sigmoid shape of 𝛼̂𝑇𝐸𝑂𝑀𝑡
, 𝛽̂𝑇𝐸𝑂𝑀𝑡

 and the linear shape of  
𝜎̂𝑇𝐸𝑂𝑀𝑡

𝛽̂𝑇𝐸𝑂𝑀𝑡

, it was 

assumed that 𝛼̂𝑇𝐸𝑂𝑀𝑡
= 𝐴𝛼 +

𝐵𝛼−𝐴𝛼

1+𝑒
𝑡𝛼−𝑡
𝑆𝛼

, 𝛽̂𝑇𝐸𝑂𝑀𝑡
= 𝐴𝛽 +

𝐵𝛽−𝐴𝛽

1+𝑒

𝑡𝛽−𝑡

𝑆𝛽

 and 
𝜎̂𝑇𝐸𝑂𝑀𝑡

𝛽̂𝑇𝐸𝑂𝑀𝑡

= 𝑎 + 𝑏𝑡 for any 

temperature t, and the model is re-fitted based on these shape assumptions.  

 

 

 

Figure 6.4. From Bilonick et al (2015), A – Fitted sigmoid function of 𝛼̂𝑇𝐸𝑂𝑀𝑡
, B – Fitted 

sigmoid function of 𝛽̂𝑇𝐸𝑂𝑀𝑡
, C – Fitted linear function of 

𝜎̂𝑇𝐸𝑂𝑀𝑡

𝛽̂𝑇𝐸𝑂𝑀𝑡

. 
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 After finalizing the estimates, one could easily obtain the calibration relation between any 

pair of samplers. For example, with FRM and TEOM at temperature t, it could be obtained that 

√𝐹𝑅𝑀 = 𝜇 + 𝜀𝐹𝑅𝑀 and √𝑇𝐸𝑂𝑀 = 𝛼̂𝑇𝐸𝑂𝑀𝑡
+ 𝛽̂𝑇𝐸𝑂𝑀𝑡

𝜇 + 𝜀𝑇𝐸𝑂𝑀, where 𝜇 is the true PM2.5 

density, 𝜀𝐹𝑅𝑀 and 𝜀𝑇𝐸𝑂𝑀 are the corresponding residuals of two samplers, then it follows 

naturally that 𝑇𝐸𝑂𝑀 = (𝛼̂𝑇𝐸𝑂𝑀𝑡
+ 𝛽̂𝑇𝐸𝑂𝑀𝑡

√𝐹𝑅𝑀)
2
, which was shown to be more plausible than 

fitting OLS between √𝑇𝐸𝑂𝑀 and √𝐹𝑅𝑀 in their paper. 

 

 An important contribution of their work to this dissertation is, given preliminary 

knowledge of all the platforms, sub-SEM models could be linked by constraining some 

parameters to be identical across strata while allowing others to vary, which is why in Chapter 7, 

all of the loadings of each platform across different strata will be assumed to consist of a mean 

loading and a random effect to cope with situations where there are no available preliminary 

knowledge on platforms. 
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Chapter 7. SEM and EIV with Random Effects 

 

7.1 Introduction 

Multiple measurement platforms of Microbiome abundance are increasingly available 

nowadays, including microarray, next-generation sequencing, quantitative PCR etc., thus the 

evaluation of the consistency of which, has become an increasingly urgent topic. Existing 

methods including using Pearson correlation or the EIV to gauge the linear dependency between 

two platforms [13], applying structural equation modeling (SEM) to estimate the relations among 

three or more platforms [25] etc., are mainly designed to determine the agreement of platforms 

on each individual bacterium without taking into account the heterogeneity of individual 

bacterium to yield an overall platform agreement measure across the entire Microbiome. Reasons 

that such heterogeneity should be considered have been covered at the end of Chapter 4 and 

Chapter 6.  

 

In this work, we develop a novel method for overall platform agreement analysis via 

SEM or EIV via the random effect model. Our method is illustrated through a 16S ribosomal 

RNA sequencing study measuring bacteria abundance via three measurements windows: V1V2, 

V1V3 and V3V4. We found good agreement between V1V2 and V3V4, and between V1V3 and 

V3V4 is found, however, more discrepancy was found between V1V2 and V1V3 with p value of 

2.4𝑒 − 7, which strongly rejected the null hypothesis that they were consistent. Moreover, the 



 

54 

 

prediction of random loadings, a by-product of the model above, is able to elucidate the 

performance of platforms on each individual bacterium. 

 

The paradigm mentioned above could be easily adjusted to situations where only two 

platforms are available via the Errors in variables (EIV) model, which is another contribution of 

this work. To further confirm the conclusions above, pairwise comparison is performed and we 

are glad to report the random effect SEM and the random effect EIV model yielded consistent 

results. 

 

7.2 Background 

16S ribosomal RNA (rRNA) sequencing has been a well-established method of profiling 

amplicons to identify and enumerate bacteria present in a given sample due to merits including 

its presence in almost all bacteria, stable function over time and large bp size for informatic 

purposes [30]. There are nine hypervariable amplicon regions targeted in the 16S gene, i.e. V1 to 

V9 [31], of which three were selected in this study for the check of consistency, which are 

V1V2, V1V3 and V3V4, hereafter refered to as three platforms, and it is of our interest to 

compare the consistency among them.  

 

Due to the multiple options of targeting regions, it is of major interest to study the 

consistency among measurements resulting from all of them. Instead of treating this consistency 

as a fixed property across all bacteria, which is not uncommon when people did platform 
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comparison, e.g. in this study, we considered that property as random across different bacteria. 

Consequently, the mean of that random consistency, i.e. the fixed effect part, served as the 

criteria of consistency between regions, or platforms in a broader sense, while the consistency for 

each bacteria. 

 

7.3 Data Structure 

240 bacteria were measured on the same 6 rats in each platform, with each rat repeated 

10 times. In order for the raw counts to be comparable across platforms, measurements were 

transformed into percentage by dividing each count by the total count of all bacteria of that rat. 

In additional, bacteria with percentages of all of the replicates from all of the rats equal to 0 in 

any one of the three platforms were filtered out, which led to 55 bacteria left.  

 

To make the measurements more normally distributed and to stabilize the variance, 

arcsine square root transformation [32] was applied on the percentages, where each p would be 

transformed into 𝑎𝑟𝑐𝑠𝑖𝑛(√𝑝). Moreover, if a certain percentage is 0, it would be transformed 

into 𝑎𝑟𝑐𝑠𝑖𝑛 (
1

4𝑛
), where n is the total counts of all of the bacteria for that particular replicate of 

rat. The data structure of measurements from V1V2 (X) is indicated by Table 7.1, and V1V3 (Y) 

and V3V4 (Z) follow the same pattern.    
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Table 7.1. Data structure of measurements form V1V2. 

V1V2 
 Rat 1 

⋯ 
Rat 6 

 R1 ⋯ R10 R1 ⋯ R10 

Bacteria/Acidobacteria/Acidobacteria 

/.../Edaphobacter 

 
X11

1  ⋯ X11
10 ⋯ X16

1  ⋯ X16
10 

Bacteria/Acidobacteria/Acidobacteria 

/.../AKIW659 

 

X21
1  ⋯ X21

10 ⋯ X26
1  ⋯ X26

10 

⋮  

 

⋮ ⋱ ⋮ 

Bacteria/Verrucomicrobia/Verrucomicrobiae 

/.../Akkermansia 

 
XI1

1  ⋯ XI1
10 ⋯ XI6

1  ⋯ XI6
10 

 

7.4 Model Setting 

In each platform, it is assumed that for each bacterium, even if it does not exist, there will 

be an unknown, but fixed non-zero measurement, which is called constant systematic error [16] 

for this platform. These errors are defined as 𝛼0, 𝛽0 and 𝛾0 respectively for V1V2 (X), V1V3 (Y) 

and V3V4 (Z).   

 

The true abundance of 𝑖𝑡ℎ bacterium from the 𝑗𝑡ℎ subject is considered as a unobservable 

latent variable 𝜉𝑖𝑗, which satisfies 𝜉𝑖𝑗~𝑁(𝜉𝑖, 𝜎𝜉𝑖

2 ), then the corresponding measurement, e.g. from 

V1V2 (X) could be affected by a factor of 𝛼1, which is called proportional systematic error [16]. 

In order to incorporate the heterogeneity of each bacterium 𝑖, a random effect 𝑎𝑖1, is added to 𝛼1, 

which gives 𝐴𝑖1 = 𝛼1 + 𝑎𝑖1. In parallel, there are 𝐵𝑖1 = 𝛽1 + 𝑏𝑖1 and 𝐶𝑖1 = 𝛾1 + 𝑐𝑖1 for V1V3 

(Y) and V3V4 (Z) respectively. Therefore, the measurements from three platforms are modeled 

as 
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{

𝑋𝑖𝑗
𝑘 = 𝛼0 + 𝐴𝑖1𝜉𝑖𝑗 + 𝛿𝑖𝑗

𝑘

𝑌𝑖𝑗
𝑘 = 𝛽0 + 𝐵𝑖1𝜉𝑖𝑗 + 𝜀𝑖𝑗

𝑘

𝑍𝑖𝑗
𝑘 = 𝛾0 + 𝐶𝑖1𝜉𝑖𝑗 + 𝜏𝑖𝑗

𝑘

                                                      (7.4.1) 

where 𝑖 = 1,⋯ , 𝐼, 𝑗 = 1,⋯ , 𝐽, 𝑘 = 1,⋯ ,𝐾, and 𝐼 = 55 is the number of bacteria, 𝐽 = 6 is the 

number of rats, 𝐾 = 10 is the number of replicates per rat. Besides, 𝑋𝑖𝑗
𝑘  is the measurement of 𝑖𝑡ℎ 

bacterium from the 𝑘𝑡ℎ replicate of the 𝑗𝑡ℎ subject in terms of V1V2, then 𝑌𝑖𝑗
𝑘 and 𝑍𝑖𝑗

𝑘  are the 

counterparts of V1V3 and V3V4 respectively. Figure 7.1 is the diagram of model defined by 

(7.4.1). 

 

Figure 7.1. Diagram of model defined by Equation (7.4.1), which is SEM with random effects. 

 

Normality assumptions of residuals in each platform are made for the purpose of model 

fitting, which include 𝛿𝑖𝑗
𝑘~𝑁(0, 𝜎𝛿𝑖

2 ), 𝜀𝑖𝑗
𝑘~𝑁(0, 𝜎𝜀𝑖

2) and 𝜏𝑖𝑗
𝑘 ~𝑁(0, 𝜎𝜏𝑖

2). For the sake of model 
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identifiability, constraints need to be put on 𝛼1, 𝛽1 or 𝛾1. Without loss of generality, 𝛼1 is 

constrained to be 1, meaning that V1V2 serves as a reference platform against which V1V3 and 

V3V4 would be compared. As a result, 𝐴𝑖1~𝑁(1, 𝜎𝐴1

2 ), 𝐵𝑖1~𝑁(𝛽1, 𝜎𝐵1

2 ) and 𝐶𝑖1~𝑁(𝛾1, 𝜎𝐶1

2 ).  

  

Given the model settings above, if denoting 𝑋𝑖𝑗 = (𝑋𝑖𝑗
1 , ⋯ , 𝑋𝑖𝑗

𝐾)
𝑇
, 𝑋𝑖 = (𝑋𝑖1

𝑇 ,⋯ , 𝑋𝑖𝐽
𝑇)

𝑇
, 

and similarly for 𝑌𝑖 and 𝑍𝑖, then with the definitions below, namely 𝐼𝑝 is the 𝑝 dimensional 

identity matrix, 𝐸𝑝 is the 𝑝 dimensional square matrix with all elements equal to 1, and 

𝑑𝑖𝑎𝑔𝑝(𝑀) is the block diagonal matrix with 𝑀  at the diagonal positions repeatedly for 𝑝 times, 

it follows naturally that  

𝐷𝑖 ≜ (𝑋𝑖
𝑇 , 𝑌𝑖

𝑇 , 𝑍𝑖
𝑇)𝑇 ∼ 𝑁(𝜇𝑖, 𝑉𝑖)                                          (7.4.2) 

where 

𝜇𝑖 = [(𝛼0 + 𝜉𝑖)1𝐽𝐾
𝑇 , (𝛽0 + 𝛽1𝜉𝑖)1𝐽𝐾

𝑇 , (𝛾0 + 𝛾1𝜉𝑖)1𝐽𝐾
𝑇 ]

𝑇
                        (7.4.3) 

𝑉𝑖 = [

𝑉𝑖1 𝑉𝑖12 𝑉𝑖13

𝑉𝑖12
𝑇 𝑉𝑖2 𝑉𝑖23

𝑉𝑖13
𝑇 𝑉𝑖23

𝑇 𝑉𝑖3

]                                                (7.4.4) 

𝑉𝑖1 ≜ 𝑉𝐴𝑅(𝑋𝑖) = 𝜎𝛿𝑖

2 𝐼𝐽𝐾 + 𝜉𝑖
2𝜎𝐴1

2 𝐸𝐽𝐾 + 𝑑𝑖𝑎𝑔𝐽 ((1 + 𝜎𝐴1

2 )𝜎𝜉𝑖

2 𝐼𝐾)                (7.4.5) 

𝑉𝑖2 ≜ 𝑉𝐴𝑅(𝑌𝑖) = 𝜎𝜀𝑖

2 𝐼𝐽𝐾 + 𝜉𝑖
2𝜎𝐵1

2 𝐸𝐽𝐾 + 𝑑𝑖𝑎𝑔𝐽 ((1 + 𝜎𝐵1

2 )𝜎𝜉𝑖

2 𝐼𝐾)                 (7.4.6) 

𝑉𝑖3 ≜ 𝑉𝐴𝑅(𝑍𝑖) = 𝜎𝜏𝑖

2 𝐼𝐽𝐾 + 𝜉𝑖
2𝜎𝐶1

2 𝐸𝐽𝐾 + 𝑑𝑖𝑎𝑔𝐽 ((1 + 𝜎𝐶1

2 )𝜎𝜉𝑖

2 𝐼𝐾)                 (7.4.7) 

𝑉𝑖12 ≜ 𝐶𝑂𝑉(𝑋𝑖, 𝑌𝑖) = 𝑑𝑖𝑎𝑔𝐽(𝛽1𝜎𝜉𝑖

2 𝐼𝐾)                                    (7.4.8) 
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𝑉𝑖13 ≜ 𝐶𝑂𝑉(𝑋𝑖, 𝑍𝑖) = 𝑑𝑖𝑎𝑔𝐽(𝛾1𝜎𝜉𝑖

2 𝐼𝐾)                                    (7.4.9) 

𝑉𝑖23 ≜ 𝐶𝑂𝑉(𝑌𝑖, 𝑍𝑖) = 𝑑𝑖𝑎𝑔𝐽(𝛽1𝛾1𝜎𝜉𝑖

2 𝐼𝐾)                                (7.4.10) 

thus it could be obtained that the log likelihood function of all observations satisfies 

𝑙 ∝ −
1

2
𝛴𝑖=1

𝐼 [𝑙𝑜𝑔|𝑉𝑖| + (𝐷𝑖 − 𝜇𝑖)
𝑇𝑉𝑖

−1(𝐷𝑖 − 𝜇𝑖)]                          (7.4.11) 

 

 From the model settings above, the process of data preparation and adopting random 

effects could be depicted by Figure 7.2 below. 

 

Figure 7.2. Flowchart of SEM with random effects based on the model setting in Section 7.4. 
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7.5 Estimation 

EM algorithm [5] is adopted here since the MLE of the original likelihood is cumbersome 

to solve, where  

𝛩 ≜ (𝛼0, 𝛽0, 𝛾0, 𝛽1, 𝛾1, 𝜎𝐴1

2 , 𝜎𝐵1

2 , 𝜎𝐶1

2 , 𝜉𝑖, 𝜎𝜉1

2 , 𝜎𝛿𝑖

2 , 𝜎𝜀𝑖

2 , 𝜎𝜏𝑖

2)                      (7.5.1) 

is the vector containing all of the parameters to be estimated, and 

𝛬 ≜ (𝐴𝑖1, 𝐵𝑖1, 𝐶𝑖1, 𝜉𝑖𝑗 , 𝛿𝑖𝑗
𝑘 , 𝜀𝑖𝑗

𝑘 , 𝜏𝑖𝑗
𝑘 )                                        (7.5.2) 

is the vector containing all of the unobserved missing variables, then the log likelihood of the 

completed data would be 

                         𝑙𝑐 ∝ −
3𝐼

2
𝑙𝑜𝑔𝜎𝑅1

2 −
1

2
𝛴𝑖=1

𝐼 [
(𝐴𝑖1−1)2

𝜎𝑅1
2 +

(𝐵𝑖1−1)2

𝜎𝑅1
2 +

(𝐶𝑖1−1)2

𝜎𝑅1
2 ]  

                        −
1

2
𝛴𝑖=1

𝐼 [𝐽𝑙𝑜𝑔𝜎𝜉𝑖

2 + 𝛴𝑗=1
𝐽 (𝜉𝑖𝑗−𝜉𝑖)

2

𝜎𝜉𝑖

2 ] −
𝐽𝐾

2
𝛴𝑖=1

𝐼 [𝑙𝑜𝑔𝜎𝛿𝑖

2 + 𝑙𝑜𝑔𝜎𝜀𝑖

2 + 𝑙𝑜𝑔𝜎𝜏𝑖

2 ] 

                        −
1

2
𝛴𝑖=1

𝐼 𝛴𝑗=1
𝐽 𝛴𝑘=1

𝐾 [
(𝛿𝑖𝑗

𝑘 )
2

𝜎𝛿𝑖
2 +

(𝜀𝑖𝑗
𝑘 )

2

𝜎𝜀𝑖
2 +

(𝜏𝑖𝑗
𝑘 )

2

𝜎𝜏𝑖
2 ]                                                       (7.5.3) 

The EM algorithm consists of the Expectation Step (E step) and the Maximization Step (M step). 

At the E step, conditional expectation of 𝑙𝑐 given observations 𝐷𝑖 , 𝑖 = 1,⋯ , 𝐼 and the current 

parameter estimation 𝛩̂(𝑡), i.e. 𝐸[𝑙𝑐|𝐷𝑖, 𝛩̂
(𝑡)], is obtained.  

 

With the following definitions and derivations,   



 

61 

 

𝛿𝑖𝑗 ≜ (𝛿𝑖𝑗
1 , ⋯ , 𝛿𝑖𝑗

𝐾) and 𝛿𝑖 ≜ (𝛿𝑖1
𝑇 , ⋯ , 𝛿𝑖𝐽

𝑇)
𝑇
                                 (7.5.4)          

   𝜀𝑖𝑗 ≜ (𝜀𝑖𝑗
1 , ⋯ , 𝜀𝑖𝑗

𝐾) and 𝜀𝑖 ≜ (𝜀𝑖1
𝑇 , ⋯ , 𝜀𝑖𝐽

𝑇 )
𝑇
                                  (7.5.5) 

𝜏𝑖𝑗 ≜ (𝜏𝑖𝑗
1 , ⋯ , 𝜏𝑖𝑗

𝐾) and 𝜏𝑖 ≜ (𝜏𝑖1
𝑇 , ⋯ , 𝜏𝑖𝐽

𝑇 )
𝑇
                                  (7.5.6) 

𝑉𝛿𝑖
≜ 𝑉𝐴𝑅(𝛿𝑖) = 𝜎𝛿𝑖

2 𝐼𝐽𝐾, 𝑉𝜀𝑖
≜ 𝑉𝐴𝑅(𝜀𝑖) = 𝜎𝑣𝑖

2 𝐼𝐽𝐾, and 𝑉𝜀𝑖
≜ 𝑉𝐴𝑅(𝜀𝑖) = 𝜎𝑣𝑖

2 𝐼𝐽𝐾    (7.5.7) 

𝜉𝑖 ≜ (𝜉𝑖1,⋯ , 𝜉𝑖𝐽)
𝑇
 and 𝑉

𝜉⃑⃑𝑖
≜ 𝑉𝐴𝑅(𝜉𝑖) = 𝜎𝜉𝑖

2 𝐼𝐽                              (7.5.8) 

𝑉
𝜉⃑⃑𝑖,𝐷𝑖

≜ 𝐶𝑂𝑉(𝜉𝑖, 𝐷𝑖) = [𝜎𝜉𝑖

2𝐸𝐽𝐾, 𝛽1𝜎𝜉𝑖

2𝐸𝐽𝐾, 𝛾1𝜎𝜉𝑖

2𝐸𝐽𝐾]                         (7.5.9) 

𝑉𝛿𝑖,𝐷𝑖
≜ 𝐶𝑂𝑉(𝛿𝑖, 𝐷𝑖) = [𝑉𝛿𝑖

, 0𝐽𝐾×𝐽𝐾, 0𝐽𝐾×𝐽𝐾]                             (7.5.10) 

𝑉𝜀𝑖,𝐷𝑖
≜ 𝐶𝑂𝑉(𝜀𝑖, 𝐷𝑖) = [0𝐽𝐾×𝐽𝐾, 𝑉𝜀𝑖

, 0𝐽𝐾×𝐽𝐾]                             (7.5.11) 

𝑉𝜏𝑖,𝐷𝑖
≜ 𝐶𝑂𝑉(𝜏𝑖, 𝐷𝑖) = [0𝐽𝐾×𝐽𝐾, 0𝐽𝐾×𝐽𝐾 , 𝑉𝜏𝑖

]                              (7.5.12) 

𝑉𝐴𝑖1,𝐷𝑖
≜ 𝐶𝑂𝑉(𝐴𝑖1, 𝐷𝑖) = [𝜉𝑖𝜎𝑅1

2 , 01×𝐽𝐾, 01×𝐽𝐾]                           (7.5.13) 

𝑉𝐵𝑖1,𝐷𝑖
≜ 𝐶𝑂𝑉(𝐵𝑖1, 𝐷𝑖) = [01×𝐽𝐾, 𝜉𝑖𝜎𝑅1

2 , 01×𝐽𝐾]                           (7.5.14) 

𝑉𝐶𝑖1,𝐷𝑖
≜ 𝐶𝑂𝑉(𝐶𝑖1, 𝐷𝑖) = [01×𝐽𝐾, 01×𝐽𝐾, 𝜉𝑖𝜎𝑅1

2 ]                           (7.5.15) 

it could be obtained that 

𝛿𝑖
(𝑡)

≜ 𝐸[𝛿𝑖|𝐷𝑖 , 𝛩̂
(𝑡)] = 𝑉̂𝛿𝑖,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑡)

]                       (7.5.16) 

𝜎̃𝛿𝑖

2(𝑡)
≜ 𝑉𝐴𝑅(𝛿𝑖|𝐷𝑖, 𝛩̂

(𝑡)) = 𝑉̂𝛿𝑖

(𝑡)
− 𝑉̂𝛿𝑖,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝑉̂𝛿𝑖,𝐷𝑖

(𝑡) ]
𝑇

                (7.5.17) 
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𝜀𝑖̃
(𝑡)

≜ 𝐸[𝜀𝑖|𝐷𝑖, 𝛩̂
(𝑡)] = 𝑉̂𝜀𝑖,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑡)

]                        (7.5.18) 

𝜎̃𝜀𝑖

2(𝑡)
≜ 𝑉𝐴𝑅(𝜀𝑖|𝐷𝑖, 𝛩̂

(𝑡)) = 𝑉̂𝜀𝑖

(𝑡)
− 𝑉̂𝜀𝑖,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝑉̂𝜀𝑖,𝐷𝑖

(𝑡) ]
𝑇

                 (7.5.19) 

𝜏̃𝑖
(𝑡)

≜ 𝐸[𝜏𝑖|𝐷𝑖, 𝛩̂
(𝑡)] = 𝑉̂𝜏𝑖,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑡)

]                        (7.5.20) 

𝜎̃𝜏𝑖

2(𝑡)
≜ 𝑉𝐴𝑅(𝜏𝑖|𝐷𝑖, 𝛩̂

(𝑡)) = 𝑉̂𝜏𝑖

(𝑡)
− 𝑉̂𝜏𝑖,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝑉̂𝜏𝑖,𝐷𝑖

(𝑡) ]
𝑇

                 (7.5.21) 

𝜉𝑖
(𝑡)

≜ 𝐸[𝜉𝑖|𝐷𝑖, 𝛩̂
(𝑡)] = 𝑉̂

𝜉⃑⃑𝑖,𝐷𝑖

(𝑡)
∙ [𝑉̂𝑖

(𝑡)
]
−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑡)

]                        (7.5.22) 

𝜎̃𝜉𝑖

2(𝑡) ≜ 𝑉𝐴𝑅(𝜉𝑖|𝐷𝑖 , 𝛩̂
(𝑡)) = 𝑉̂

𝜉⃑⃑𝑖

(𝑡)
− 𝑉̂

𝜉⃑⃑𝑖,𝐷𝑖

(𝑡)
∙ [𝑉̂𝑖

(𝑡)]
−1

∙ [𝑉̂
𝜉⃑⃑𝑖,𝐷𝑖

(𝑡)
]
𝑇

                (7.5.23) 

𝐴̃𝑖1
(𝑡)

≜ 𝐸[𝐴𝑖1|𝐷𝑖, 𝛩̂
(𝑡)] = 1 + 𝑉̂𝐴𝑖1,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑡)

]                  (7.5.24) 

𝜎̃𝐴1

2(𝑡) ≜ 𝑉𝐴𝑅(𝐴𝑖1|𝐷𝑖 , 𝛩̂
(𝑡)) = 𝜎̂𝐴1

2(𝑡) + 𝑉̂𝐴𝑖1,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝑉̂𝐴𝑖1,𝐷𝑖

(𝑡) ]
𝑇

             (7.5.25) 

𝐵̃𝑖1
(𝑡)

≜ 𝐸[𝐵𝑖1|𝐷𝑖, 𝛩̂
(𝑡)] = 𝛽̂1

(𝑡) + 𝑉̂𝐵𝑖1,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑡)

]                (7.5.26) 

𝜎̃𝐵1

2(𝑡) ≜ 𝑉𝐴𝑅(𝐵𝑖1|𝐷𝑖 , 𝛩̂
(𝑡)) = 𝜎̂𝑅1

2(𝑡) + 𝑉̂𝐵𝑖1,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝑉̂𝐵𝑖1,𝐷𝑖

(𝑡) ]
𝑇

             (7.5.27) 

𝐶̃𝑖1
(𝑡)

≜ 𝐸[𝐶𝑖1|𝐷𝑖, 𝛩̂
(𝑡)] = 𝛾1

(𝑡) + 𝑉̂𝐶𝑖1,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑡)

]                (7.5.28) 

𝜎̃𝐶1

2(𝑡) ≜ 𝑉𝐴𝑅(𝐶𝑖1|𝐷𝑖, 𝛩̂
(𝑡)) = 𝜎̂𝑅1

2(𝑡) + 𝑉̂𝐶𝑖1,𝐷𝑖

(𝑡) ∙ [𝑉̂𝑖
(𝑡)]

−1

∙ [𝑉̂𝐶𝑖1,𝐷𝑖

(𝑡) ]
𝑇

             (7.5.29) 

The objective of M step is to find 𝛩̂(𝑡+1) that maximizes 𝐸[𝑙𝑐|𝐷𝑖, 𝛩̂
(𝑡)], therefore  
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𝜎̂𝛿𝑖

2(𝑡+1)
=

𝛴𝑗=1
𝐽

𝛴𝑘=1
𝐾 [(𝛿̃𝑖𝑗

𝑘(𝑡)
)
2
+𝜎̃

𝛿𝑖𝑗
𝑘

2(𝑡)
]

𝐽𝐾
                                        (7.5.30) 

𝜎̂𝜀𝑖

2(𝑡+1)
=

𝛴𝑗=1
𝐽

𝛴𝑘=1
𝐾 [(𝜀̃𝑖𝑗

𝑘(𝑡)
)
2
+𝜎̃

𝜀𝑖𝑗
𝑘

2(𝑡)
]

𝐽𝐾
                      (7.5.31) 

𝜎̂𝜏𝑖

2(𝑡+1)
=

𝛴𝑗=1
𝐽

𝛴𝑘=1
𝐾 [(𝜏̃𝑖𝑗

𝑘(𝑡)
)
2
+𝜎̃

𝜏𝑖𝑗
𝑘

2(𝑡)
]

𝐽𝐾
                          (7.5.32) 

𝜉𝑖
(𝑡+1)

=
𝛴𝑗=1

𝐽
𝜉̃𝑖𝑗

(𝑡)

𝐽
 and 𝜎̂𝜉𝑖

2(𝑡+1)
=

𝛴𝑗=1
𝐽

[(𝜉̃𝑖𝑗
(𝑡)

−𝜉̂𝑖
(𝑡+1)

)
2
+𝜎̃𝜉𝑖

2(𝑡)
]

𝐽
                      (7.5.33) 

𝛽̂1
(𝑡+1)

=
𝛴𝑖=1

𝐼 𝐵̃𝑖1
(𝑡)

𝐼
 and 𝛾1

(𝑡+1) =
𝛴𝑖=1

𝐼 𝐶̃𝑖1
(𝑡)

𝐼
    (7.5.34)  

𝜎̂𝑅1

2(𝑡+1)
=

𝛴𝑖=1
𝐼 [(𝐴̃𝑖1

(𝑡)
−1)

2
+𝜎̃𝐴1

2(𝑡)
+(𝐵̃𝑖1

(𝑡)
−𝛽̂1

(𝑡+1)
)
2

+𝜎̃𝐵1

2(𝑡)
+(𝐶̃𝑖1

(𝑡)
−𝛾̂1

(𝑡+1))
2
+𝜎̃𝐶1

2(𝑡)
]

3𝐼
            (7.5.35) 

where 𝛿𝑖𝑗
𝑘(𝑡)

 denotes 𝐸[𝛿𝑖𝑗
𝑘 |𝐷𝑖, 𝛩̂

(𝑡)] which could be obtained from (7.5.16), 𝜎̃
𝛿𝑖𝑗

𝑘

2(𝑡)
 denotes 

𝑉𝐴𝑅(𝛿𝑖𝑗
𝑘 |𝐷𝑖, 𝛩̂

(𝑡)) which could be obtained from (7.5.17), and similarly for 𝜀𝑖̃𝑗
𝑘(𝑡)

, 𝜎̃
𝜀𝑖𝑗
𝑘

2(𝑡)
, 𝜏̃𝑖𝑗

𝑘(𝑡)
, 

𝜎̃
𝜏𝑖𝑗
𝑘

2(𝑡)
, 𝜉𝑖𝑗

(𝑡)
 and 𝜎̃𝜉𝑖𝑗

2(𝑡)
.  

 

It is worth noticing that 𝛼0, 𝛽0 and 𝛾0 did not appear in the likelihood function of 

completed data defined by (7.5.3), then in order to update their value, at the end of M step of 

each iteration, they would be replaced by solving likelihood function of observed data defined by 

(7.4.11). To be more specific, if denoting 𝑉𝑖
−1 ≜ 𝛤𝑖 = [

𝛤𝑖11 𝛤𝑖12 𝛤𝑖13

𝛤𝑖21 𝛤𝑖22 𝛤𝑖23

𝛤𝑖31 𝛤𝑖32 𝛤𝑖33

] with each block of 
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dimension 𝐽𝐾 × 𝐽𝐾, defining 𝑆(𝑀) as the function returning summation of all the elements in 

matrix 𝑀, and defining 𝐶𝑜𝑙𝑆(𝑀) as the function returning the column summation of all the 

columns in matrix 𝑀, then it could be obtained that 

[

𝛼̂0
(𝑡+1)

𝛽̂0
(𝑡+1)

𝛾0
(𝑡+1)

] =

(

 
 

𝛴𝑖=1
𝐼

[
 
 
 
 𝑆(𝛤̂𝑖11

(𝑡)) 𝑆(𝛤̂𝑖12
(𝑡)) 𝑆(𝛤̂𝑖13

(𝑡))

𝑆(𝛤̂𝑖21
(𝑡)) 𝑆(𝛤̂𝑖22

(𝑡)) 𝑆(𝛤̂𝑖23
(𝑡))

𝑆(𝛤̂𝑖31
(𝑡)) 𝑆(𝛤̂𝑖32

(𝑡)) 𝑆(𝛤̂𝑖33
(𝑡))]

 
 
 
 

)

 
 

−1

∙

𝛴𝑖=1
𝐼

[
 
 
 
 𝐶𝑜𝑙𝑆[𝛤̂𝑖11

(𝑡), 𝛤̂𝑖12
(𝑡), 𝛤̂𝑖13

(𝑡)] ∙ (𝐷𝑖 − 𝜇𝑖
(𝑡)

)

𝐶𝑜𝑙𝑆[𝛤̂𝑖21
(𝑡), 𝛤̂𝑖22

(𝑡), 𝛤̂𝑖23
(𝑡)] ∙ (𝐷𝑖 − 𝛽̂1

(𝑡+1)
𝜇𝑖

(𝑡)
)

𝐶𝑜𝑙𝑆[𝛤̂𝑖31
(𝑡), 𝛤̂𝑖32

(𝑡), 𝛤̂𝑖33
(𝑡)] ∙ (𝐷𝑖 − 𝛾1

(𝑡+1)
𝜇𝑖

(𝑡)
)]
 
 
 
 

  

(7.5.36) 

To prove (7.5.36), from (7.4.11), it could be obtained that 

𝜕𝑙

𝜕𝛼0
= Σ𝑖=1

𝐼 ([1𝐽𝐾
𝑇 , 01×𝐽𝐾, 01×𝐽𝐾] ∙ Γ𝑖 ∙ [𝐷𝑖 − 𝜇𝑖]) 

= Σ𝑖=1
𝐼 (𝐶𝑜𝑙𝑆[Γ𝑖11, Γ𝑖12, Γ𝑖13] ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

] − [

𝛼01𝐽𝐾

𝛽01𝐽𝐾

𝛾01𝐽𝐾

])) 

and setting it to zero will yield 

Σ𝑖=1
𝐼 [𝑆(Γ𝑖11), 𝑆(Γ𝑖12), 𝑆(Γ𝑖13)] ∙ [

𝛼0

𝛽0

𝛾0

] = Σ𝑖=1
𝐼 (𝐶𝑜𝑙𝑆[Γ𝑖11, Γ𝑖12, Γ𝑖13] ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

])) 

Similarly, from 
𝜕𝑙

𝜕𝛽0
= 0 and 

𝜕𝑙

𝜕𝛾0
= 0, we have 

Σ𝑖=1
𝐼 [𝑆(Γ𝑖21), 𝑆(Γ𝑖22), 𝑆(Γ𝑖23)] ∙ [

𝛼0

𝛽0

𝛾0

] = Σ𝑖=1
𝐼 (𝐶𝑜𝑙𝑆[Γ𝑖21, Γ𝑖22, Γ𝑖23] ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

])) 
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and  

Σ𝑖=1
𝐼 [𝑆(Γ𝑖31), 𝑆(Γ𝑖32), 𝑆(Γ𝑖33)] ∙ [

𝛼0

𝛽0

𝛾0

] = Σ𝑖=1
𝐼 (𝐶𝑜𝑙𝑆[Γ𝑖31, Γ𝑖32, Γ𝑖33] ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

])) 

 

As a result, it could be shown that 

Σ𝑖=1
𝐼 [

𝑆(Γ𝑖11) 𝑆(Γ𝑖12) 𝑆(Γ𝑖13)

𝑆(Γ𝑖21) 𝑆(Γ𝑖22) 𝑆(Γ𝑖23)

𝑆(Γ𝑖31) 𝑆(Γ𝑖32) 𝑆(Γ𝑖33)
] ∙ [

𝛼0

𝛽0

𝛾0

] = Σ𝑖=1
𝐼 ([

𝐶𝑜𝑙𝑆[Γ𝑖11, Γ𝑖12, Γ𝑖13]

𝐶𝑜𝑙𝑆[Γ𝑖21, Γ𝑖22, Γ𝑖23]

𝐶𝑜𝑙𝑆[Γ𝑖31, Γ𝑖32, Γ𝑖33]
] ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

])) 

 

which subsequently yields (7.5.36). 

 

When the difference between estimates of two consecutive steps, i.e. Θ̂(t) and Θ̂(t+1) is 

smaller than a certain tolerance, 1e-8 in this study, EM algorithm reaches convergence. 

 

Upon convergence, prediction of elements in 𝛬 defined by (7.5.2) is a by-product of EM 

algorithm, where 𝐴𝑖1, 𝐵𝑖1 and 𝐶𝑖1 are of major interest since they imply the relation between 

measurements and true abundance of each individual bacterial across all three platforms. From 

(7.5.24), (7.5.26) and (7.5.28), it is obvious that  

𝐴̃𝑖1
(𝑁)

≜ 𝐸[𝐴𝑖1|𝐷𝑖, 𝛩̂
(𝑁)] = 1 + 𝑉̂𝐴𝑖1,𝐷𝑖

(𝑁)
∙ [𝑉̂𝑖

(𝑁)
]
−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑁)

]                 (7.5.37) 

𝐵̃𝑖1
(𝑁)

≜ 𝐸[𝐵𝑖1|𝐷𝑖, 𝛩̂
(𝑁)] = 𝛽̂1

(𝑁)
+ 𝑉̂𝐵𝑖1,𝐷𝑖

(𝑁)
∙ [𝑉̂𝑖

(𝑁)
]
−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑁)

]              (7.5.38) 

𝐶̃𝑖1
(𝑁)

≜ 𝐸[𝐶𝑖1|𝐷𝑖, 𝛩̂
(𝑁)] = 𝛾1

(𝑁)
+ 𝑉̂𝐶𝑖1,𝐷𝑖

(𝑁)
∙ [𝑉̂𝑖

(𝑁)
]
−1

∙ [𝐷𝑖 − 𝜇̂𝑖
(𝑁)

]               (7.5.39) 
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where N is the number of steps for EM algorithm to converge. 

 

7.6 Hypothesis test 

After obtaining estimates, it is of our interest know whether V1V2, V1V3 and V3V4 are 

consistent or not, and thus there are four related hypothesis tests, which are 

(1) 𝐻0: (𝛼0, 1) = (𝛽0, 𝛽1) = (𝛾0, 𝛾1) is used to test whether V1V2, V1V3 and V3V4 are 

consistent together 

(2) 𝐻0: (𝛼0, 1) = (𝛽0, 𝛽1) is used to test whether V1V2 and V1V3 are consistent; 

(3) 𝐻0: (𝛼0, 1) = (𝛾0, 𝛾1) is used to test whether V1V2 and V3V4 are consistent; 

(4) 𝐻0: (𝛽0, 𝛽1) = (𝛾0, 𝛾1) is used to test whether V1V3 and V3V4 are consistent. 

 

Likelihood ratio test (LRT) is adopted to test each one of them [33], where −2(𝑙0 −

𝑙1) 𝜒𝑑𝑓
2

∼
∙  with 𝑙0 being the log likelihood under the null hypothesis, 𝑙1 being the log likelihood 

without any restriction, and 𝑑𝑓 being the degrees of freedom lost when applying the restrictions 

in 𝐻0. 

 

Under the null hypothesis of (1), to obtain the corresponding estimates, (7.5.34) should 

be modified to 𝛽̂1
(𝑡+1)

= 𝛾1
(𝑡+1)

= 1. As for 𝛼0, 𝛽0 and 𝛾0, since under 𝐻0 they are identical, then 

similar to the process of deriving (7.5.36), in (7.4.11) if defining 𝛼0 = 𝛽0 = 𝛾0 = Δ0, it follows 

that 
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𝜕𝑙

𝜕Δ0
= Σ𝑖=1

𝐼 ([1𝐽𝐾
𝑇 , 1𝐽𝐾

𝑇 , 1𝐽𝐾
𝑇 ] ∙ 𝛤𝑖 ∙ [𝐷𝑖 − 𝜇𝑖]) = Σ𝑖=1

𝐼 (𝐶𝑜𝑙𝑆(𝛤𝑖) ∙ [𝐷𝑖 − 𝜇𝑖])       (7.6.1) 

thus by 
𝜕𝑙

𝜕Δ0
= 0 we have  

Σ𝑖=1
𝑁 𝑆(𝛤𝑖) ∙ Δ0 = Σ𝑖=1

𝐼 (𝐶𝑜𝑙𝑆(𝛤𝑖) ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

]))                     (7.6.2) 

As a result, (7.6.36) should be modified to 

 𝛼̂0
(𝑡+1)

= 𝛽̂0
(𝑡+1)

= 𝛾0
(𝑡+1)

=

Σ𝑖=1
𝐼 (𝐶𝑜𝑙𝑆(𝛤𝑖)∙(𝐷𝑖−[

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

]))

Σ𝑖=1
𝑁 𝑆(𝛤𝑖)

                     (7.6.3) 

Due to 𝐻0: (𝛼0, 1) = (𝛽0, 𝛽1) = (𝛾0, 𝛾1), the degrees of freedom lost is 4, i.e. 𝑑𝑓 = 4. 

 

 As for the null hypothesis of (2), 𝛽̂1
(𝑡+1)

 in (7.5.34) should always be kept at 1, and if 

defining 𝛼0 = 𝛽0 = Δ0, then similarly from 
𝜕𝑙

𝜕Δ0
= Σ𝑖=1

𝐼 ([1𝐽𝐾
𝑇 , 1𝐽𝐾

𝑇 , 01×𝐽𝐾] ∙ Γ𝑖 ∙ [𝐷𝑖 − 𝜇𝑖]) = 0 it 

could be obtained that 

Σ𝑖=1
𝐼 [𝑆 ([

Γ𝑖11 Γ𝑖12

Γ𝑖21 Γ𝑖22
]) , 𝑆 ([

Γ𝑖13

Γ𝑖23
])] ∙ [

Δ0

𝛾0
] 

= Σ𝑖=1
𝐼 (𝐶𝑜𝑙𝑆 ([

Γ𝑖11 Γ𝑖12 Γ𝑖13

Γ𝑖21 Γ𝑖22 Γ𝑖23
]) ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

])) 

And from 
𝜕𝑙

𝜕γ0
= Σ𝑖=1

𝐼 ([01×𝐽𝐾, 01×𝐽𝐾 , 1𝐽𝐾
𝑇 ] ∙ Γ𝑖 ∙ [𝐷𝑖 − 𝜇𝑖]) = 0 we have  
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Σ𝑖=1
𝐼 [𝑆([Γ𝑖31 Γ𝑖32]), 𝑆(Γ𝑖33)] ∙ [

Δ0

𝛾0
] = Σ𝑖=1

𝐼 (𝐶𝑜𝑙𝑆([Γ𝑖31 Γ𝑖32 Γ𝑖33]) ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

])) 

Together it could generate that 

Σ𝑖=1
𝐼 [

𝑆 ([
Γ𝑖11 Γ𝑖12

Γ𝑖21 Γ𝑖22
]) 𝑆 ([

Γ𝑖13

Γ𝑖23
])

𝑆([Γ𝑖31 Γ𝑖32]) 𝑆(Γ𝑖33)
] ∙ [

Δ0

𝛾0
] 

= Σ𝑖=1
𝐼 ([

𝐶𝑜𝑙𝑆 ([
Γ𝑖11 Γ𝑖12 Γ𝑖13

Γ𝑖21 Γ𝑖22 Γ𝑖23
])

𝐶𝑜𝑙𝑆([Γ𝑖31 Γ𝑖32 Γ𝑖33])
] ∙ (𝐷𝑖 − [

𝜉𝑖1𝐽𝐾

𝛽1𝜉𝑖1𝐽𝐾

𝛾1𝜉𝑖1𝐽𝐾

])) 

Therefore, (7.6.36) should be updated to  

[
Δ̂0

(𝑡+1)

𝛾0
(𝑡+1)

] = Σ𝑖=1
𝐼

(

 
 

[
𝐶𝑜𝑙𝑆 ([

Γ̂𝑖11
(𝑡)

Γ̂𝑖12
(𝑡)

Γ̂𝑖13
(𝑡)

Γ̂𝑖21
(𝑡)

Γ̂𝑖22
(𝑡)

Γ̂𝑖23
(𝑡)

])

𝐶𝑜𝑙𝑆([Γ̂𝑖31
(𝑡)

Γ̂𝑖32
(𝑡)

Γ̂𝑖33
(𝑡)])

] ∙

(

 𝐷𝑖 −

[
 
 
 𝜉𝑖

(𝑡)
1𝐽𝐾

𝛽̂1
(𝑡)𝜉𝑖̂

(𝑡)
1𝐽𝐾

𝛾1
(𝑡)

𝜉𝑖
(𝑡)

1𝐽𝐾 ]
 
 
 

)

 

)

 
 

∙

(

 
 

Σ𝑖=1
𝐼

[
 
 
 
 𝑆 ([

Γ̂𝑖11
(𝑡)

Γ̂𝑖12
(𝑡)

Γ̂𝑖21
(𝑡)

Γ̂𝑖22
(𝑡)

]) 𝑆 ([
Γ̂𝑖13

(𝑡)

Γ̂𝑖23
(𝑡)

])

𝑆([Γ̂𝑖31
(𝑡)

Γ̂𝑖32
(𝑡)]) 𝑆(Γ̂𝑖33

(𝑡)
) ]

 
 
 
 

)

 
 

−1

 

and 𝛼̂(𝑡+1) = 𝛽̂(𝑡+1) = Δ̂0
(𝑡+1)

 with 𝑑𝑓 = 2. 

 

 In parallel, for the test in (3), 𝛾1
(𝑡+1)

 should always be 1, (7.6.36) should be changed to  
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[
Δ̂0

(𝑡+1)

𝛽̂0
(𝑡+1)

] = Σ𝑖=1
𝐼

(

 
 

[
𝐶𝑜𝑙𝑆 ([

Γ̂𝑖11
(𝑡)

Γ̂𝑖12
(𝑡)

Γ̂𝑖13
(𝑡)

Γ̂𝑖31
(𝑡)

Γ̂𝑖32
(𝑡)

Γ̂𝑖33
(𝑡)

])

𝐶𝑜𝑙𝑆([Γ̂𝑖21
(𝑡)

Γ̂𝑖22
(𝑡)

Γ̂𝑖23
(𝑡)])

] ∙

(

 𝐷𝑖 −

[
 
 
 𝜉𝑖

(𝑡)
1𝐽𝐾

𝛽̂1
(𝑡)𝜉𝑖̂

(𝑡)
1𝐽𝐾

𝛾1
(𝑡)

𝜉𝑖
(𝑡)

1𝐽𝐾 ]
 
 
 

)

 

)

 
 

∙

(

 
 

Σ𝑖=1
𝐼

[
 
 
 
 𝑆 ([

Γ̂𝑖11
(𝑡)

Γ̂𝑖13
(𝑡)

Γ̂𝑖31
(𝑡)

Γ̂𝑖33
(𝑡)

]) 𝑆 ([
Γ̂𝑖12

(𝑡)

Γ̂𝑖32
(𝑡)

])

𝑆([Γ̂𝑖21
(𝑡)

Γ̂𝑖23
(𝑡)]) 𝑆(Γ̂𝑖22

(𝑡)
) ]

 
 
 
 

)

 
 

−1

 

and 𝛼̂0
(𝑡+1)

= 𝛾0
(𝑡+1)

= Δ̂0
(𝑡+1)

 with 𝑑𝑓 = 2. As for test in (4), (7.5.34) should be modified to  

𝛽̂1
(𝑡+1)

= 𝛾1
(𝑡+1)

=
Σ𝑖=1

𝐼 (𝐵̃𝑖1
(𝑡) + 𝐶̃𝑖1

(𝑡)
)

2𝐼
 

And (7.6.36) should be updated to  

[
𝛼̂0

(𝑡+1)

Δ̂0
(𝑡+1)

] = Σ𝑖=1
𝐼

(

 
 

[

𝐶𝑜𝑙𝑆([Γ̂𝑖11
(𝑡)

Γ̂𝑖12
(𝑡)

Γ̂𝑖13
(𝑡)])

𝐶𝑜𝑙𝑆 ([
Γ̂𝑖21

(𝑡)
Γ̂𝑖22

(𝑡)
Γ̂𝑖23

(𝑡)

Γ̂𝑖31
(𝑡)

Γ̂𝑖32
(𝑡)

Γ̂𝑖33
(𝑡)

])
] ∙

(

 𝐷𝑖 −

[
 
 
 𝜉𝑖

(𝑡)
1𝐽𝐾

𝛽̂1
(𝑡)𝜉𝑖̂

(𝑡)
1𝐽𝐾

𝛾1
(𝑡)

𝜉𝑖
(𝑡)

1𝐽𝐾 ]
 
 
 

)

 

)

 
 

 

∙

(

 
 

Σ𝑖=1
𝐼

[
 
 
 𝑆(Γ̂𝑖11

(𝑡)) 𝑆([Γ̂𝑖12
(𝑡) Γ̂𝑖13

(𝑡)])

𝑆 ([
Γ̂𝑖21

(𝑡)

Γ̂𝑖31
(𝑡)

]) 𝑆 ([
Γ̂𝑖22

(𝑡) Γ̂𝑖23
(𝑡)

Γ̂𝑖32
(𝑡) Γ̂𝑖33

(𝑡)
])

]
 
 
 

)

 
 

−1

 

and 𝛽̂0
(𝑡+1)

= 𝛾0
(𝑡+1)

= Δ̂0
(𝑡+1)

 with 𝑑𝑓 = 2. 
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7.7 Generalized method of moments 

To simplify the model, sample means of all the technical replicates are computed and 

thus (7.4.1) could be expressed as 

{

𝑋̅𝑖𝑗 = 𝛼0 + 𝐴𝑖1𝜉𝑖𝑗 + 𝛿𝑖̅𝑗

𝑌̅𝑖𝑗 = 𝛽0 + 𝐵𝑖1𝜉𝑖𝑗 + 𝜀𝑖̅𝑗

𝑍̅𝑖𝑗 = 𝛾0 + 𝐶𝑖1𝜉𝑖𝑗 + 𝜏𝑖̅𝑗

                                                      (7.7.1) 

 

To establish orthogonal conditions for (7.7.1), (𝐴𝑖1, 𝐵𝑖1, 𝐶𝑖1), or equivalently (𝑎𝑖1, 𝑏𝑖1, 𝑐𝑖1) are 

treated as fixed parameters instead of random variables here and (7.7.1) is re-arranged as 

{
𝑌̅𝑖𝑗 = 𝛽𝑖0

∗ + 𝛽𝑖1
∗ 𝑋̅𝑖𝑗 + 𝜀𝑖𝑗

∗

𝑍̅𝑖𝑗 = 𝛾𝑖0
∗ + 𝛾𝑖1

∗ 𝑋̅𝑖𝑗 + 𝜏𝑖𝑗
∗                                               (7.7.2) 

where  

𝛽𝑖0
∗ = 𝛽0 −

𝛽1+𝑏𝑖1

1+𝑎𝑖1
𝛼0 and 𝛾𝑖0

∗ = 𝛾0 −
𝛾1+𝑐𝑖1

1+𝑎𝑖1
𝛼0                              (7.7.3) 

𝛽𝑖1
∗ =

𝛽1+𝑏𝑖1

1+𝑎𝑖1
 and 𝛾𝑖0

∗ =
𝛾1+𝑐𝑖1

1+𝑎𝑖1
                                           (7.7.4) 

𝜀𝑖̅𝑗
∗ = 𝜀𝑖̅𝑗 −

𝛽1+𝑏𝑖1

1+𝑎𝑖1
𝛿𝑖𝑗 and 𝜏𝑖̅𝑗

∗ = 𝜏𝑖̅𝑗 −
𝛾1+𝑐𝑖1

1+𝑎𝑖1
𝛿𝑖̅𝑗                           (7.7.5) 

It is not hard to see that 𝑐𝑜𝑣(𝑍̅𝑖𝑗, 𝜀𝑖̅𝑗
∗ ) = 𝑐𝑜𝑣(𝑌̅𝑖𝑗, 𝜏𝑖̅𝑗

∗ ) = 0, thus 𝑍̅𝑖𝑗 and 𝑌̅𝑖𝑗 could be considered as 

the instrumental variables for the two equations in (7.7.2) respectively, together with 𝐸[𝑌̅𝑖𝑗] =

𝛽𝑖0
∗ + 𝛽𝑖1

∗ 𝐸[𝑋̅𝑖𝑗] and 𝐸[𝑍̅𝑖𝑗] = 𝛾𝑖0
∗ + 𝛾𝑖1

∗ 𝐸[𝑋̅𝑖𝑗], we have  

𝐸[𝑌̅𝑖𝑗] − 𝛽𝑖0
∗ − 𝛽𝑖1

∗ 𝐸[𝑋̅𝑖𝑗] = 0                                            (7.7.6) 
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𝐸[𝑍̅𝑖𝑗] − 𝛾𝑖0
∗ − 𝛾𝑖1

∗ 𝐸[𝑋̅𝑖𝑗] = 0                                            (7.7.7) 

𝐸[𝑍̅𝑖𝑗 ∙ (𝑌̅𝑖𝑗 − 𝛽𝑖0
∗ − 𝛽𝑖1

∗ 𝑋̅𝑖𝑗)] = 0                                         (7.7.8) 

𝐸[𝑌̅𝑖𝑗 ∙ (𝑍̅𝑖𝑗 − 𝛾𝑖0
∗ − 𝛾𝑖1

∗ 𝑋̅𝑖𝑗)] = 0                                          (7.7.9) 

where substituting the population expectations with sample ones will give 

𝑌̅̅𝑖 − 𝛽𝑖0
∗ − 𝛽𝑖1

∗ 𝑋̅̅𝑖 = 0                                                   (7.7.10) 

𝑍̅̅𝑖 − 𝛾𝑖0
∗ − 𝛾𝑖1

∗ 𝑋̅̅𝑖 = 0                                                   (7.7.11) 

𝑌𝑍̅̅̅̅̅̅ ̅̅
𝑖 − 𝛽𝑖0

∗ 𝑍̅̅𝑖 − 𝛽𝑖1
∗ 𝑋𝑍̅̅ ̅̅̅̅ ̅̅

𝑖 = 0                                               (7.7.12) 

𝑌𝑍̅̅̅̅̅̅ ̅̅
𝑖 − 𝛾𝑖0

∗ 𝑌̅̅𝑖 − 𝛾𝑖1
∗ 𝑋𝑌̅̅ ̅̅̅̅ ̅̅

𝑖 = 0                                                (7.7.13) 

where 𝑋̅̅𝑖 =
𝛴𝑗=1

𝐽
𝑋̅𝑖𝑗

𝐽
, 𝑌̅̅𝑖 =

𝛴𝑗=1
𝐽

𝑌̅𝑖𝑗

𝐽
, 𝑍̅̅𝑖 =

𝛴𝑗=1
𝐽

𝑍𝑖𝑗

𝐽
, 𝑋𝑌̅̅ ̅̅̅̅ ̅̅

𝑖 =
𝛴𝑗=1

𝐽
𝑋̅𝑖𝑗𝑌̅𝑖𝑗

𝐽
, 𝑋𝑍̅̅ ̅̅̅̅ ̅̅

𝑖 =
𝛴𝑗=1

𝐽
𝑋̅𝑖𝑗𝑍𝑖𝑗

𝐽
 and 𝑌𝑍̅̅̅̅̅̅ ̅̅

𝑖 =

𝛴𝑗=1
𝐽

𝑌̅𝑖𝑗𝑍𝑖𝑗

𝐽
. Apparently (7.7.10) – (7.6.13) could not be satisfied simultaneously for 𝑖 = 1,⋯ , 𝐼,  

therefore the GMM estimator Θ̂𝐺𝑀𝑀 should be the one which minimizes the weighted sum of 

squares of them.  

 

Following the same strategy used in two step efficient GMM provided in Section 5.4.1, 

an intuitive initial estimate of Θ would be of no weights, i.e.  

Θ̂𝑖𝑛𝑖𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛩

𝛴𝑖=1
𝐼 [(𝑌̅𝑖 − 𝛽𝑖0

∗ − 𝛽𝑖1
∗ 𝑋̅𝑖)

2 + (𝑍̅𝑖 − 𝛾𝑖0
∗ − 𝛾𝑖1

∗ 𝑋̅𝑖)
2 + (𝑌𝑍̅̅̅̅

𝑖 − 𝛽𝑖0
∗ 𝑍̅𝑖 − 𝛽𝑖1

∗ 𝑋𝑍̅̅ ̅̅
𝑖)

2 +

(𝑌𝑍̅̅̅̅
𝑖 − 𝛾𝑖0

∗ 𝑌̅𝑖 − 𝛾𝑖1
∗ 𝑋𝑌̅̅ ̅̅

𝑖)
2]                                                                                                      (7.7.14) 
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Because (7.7.10) and (7.7.12) are generated based on (7.7.6) and (7.7.8) for 𝑗 = 1,⋯ , 𝐽, then a 

natural weight matrix 𝑊𝑖1 would be the inverse of the sample covariance matrix of left hand 

sides of (7.7.6) and (7.7.8) for 𝑗 = 1,⋯ , 𝐽 after substituting Θ with Θ̂𝑖𝑛𝑖𝑡, and similarly 𝑊𝑖2 is 

available for (7.7.11) and (7.7.13).  Finally, the GMM estimator Θ̂ should be 

Θ̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
Θ

Σ𝑖=1
𝐼 [𝐷𝑖1

𝑇 𝑊𝑖1𝐷𝑖1 + 𝐷𝑖2
𝑇 𝑊𝑖2𝐷𝑖2]                          (7.7.15) 

where 𝐷𝑖1 = [𝑌̅𝑖 − 𝛽𝑖0
∗ − 𝛽𝑖1

∗ 𝑋̅𝑖, 𝑌𝑍̅̅̅̅
𝑖 − 𝛽𝑖0

∗ 𝑍̅𝑖 − 𝛽𝑖1
∗ 𝑋𝑍̅̅ ̅̅

𝑖]
𝑇 and 𝐷𝑖2 = [𝑍̅𝑖 − 𝛾𝑖0

∗ − 𝛾𝑖1
∗ 𝑋̅𝑖, 𝑌𝑍̅̅̅̅

𝑖 −

𝛾𝑖0
∗ 𝑌̅𝑖 − 𝛾𝑖1

∗ 𝑋𝑌̅̅ ̅̅
𝑖]

𝑇. 

 

 To illustrate the quality of this method of moment estimator, data was simulated 20 times 

based on the MLE parameter estimates obtained by EM algorithm, and its comparison with MLE 

results in terms of 𝛼0, 𝛽0, 𝛾0, 𝛽1 and 𝛾1,  is shown in Figure 7.3A–E.  

 

 

Figure 7.3. A (left) – Comparison of 𝛼̂0 between MLE and GMM; B (right) – Comparison of 𝛽̂0 

between MLE and GMM 
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Figure 7.3C – Comparison of 𝛾0 between MLE and GMM 

 

 

Figure 7.3. D (left) – Comparison of 𝛽̂1 between MLE and GMM; E (right) – Comparison of 𝛾1 

between MLE and GMM 

 

 It could be seen that GMM and MLE perform quite consistently across 20 simulations, 

and to further demonstrate the quality of GMM estimators, 500 simulations under the same 

setting but on GMM alone was run, and the MSE of 𝛼0, 𝛽0, 𝛾0, 𝛽1 and 𝛾1 are 5.1𝑒 − 3, 3.7𝑒 −

3, 4.0𝑒 − 3, 6.3𝑒 − 3 and 5.7𝑒 − 3 respectively, indicating reasonable quality. 
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7.8 Pairwise Comparison 

To perform the similar analysis when only two platforms are available, and to further test 

the outputs generated by the model above, EIV with random effects is proposed here to handle 

the problem. For example with data from V1V2 and V1V3, the model would be  

{
𝑋𝑖𝑗

𝑘 = 𝛼0 + 𝐴𝑖1𝜉𝑖𝑗 + 𝛿𝑖𝑗
𝑘

𝑌𝑖𝑗
𝑘 = 𝛽0 + 𝐵𝑖1𝜉𝑖𝑗 + 𝜀𝑖𝑗

𝑘                                                 (7.8.1) 

with 𝐴𝑖1 = 1 + 𝑎𝑖1 and 𝐵𝑖1 = 𝛽1 + 𝑏𝑖1 like in Section 7.4. EM algorithm in Section 7.5 could be 

applied for estimation, after which 𝐻0: (𝛼0, 1) = (𝛽0, 𝛽1) versus 𝐻1: (𝛼0, 1) ≠ (𝛽0, 𝛽1) could 

used to test whether V1V2 and V1V3 are consistent. Similarly for V1V2 versus V3V4, and 

V1V3 versus V3V4. 

 

7.9 Reliability 

 Conditioning on each 𝐴𝑖1, 𝐵𝑖1 and 𝐶𝑖1, it follows naturally that the reliabilities of each 

platform for this particular bacterium 𝑖 would be, 𝑅𝑋𝑖

2 =
𝐴𝑖1

2 𝜎𝜉𝑖

2

𝐴𝑖1
2 𝜎𝜉𝑖

2 +𝜎𝛿𝑖
2 , 𝑅𝑌𝑖

2 =
𝐵𝑖1

2 𝜎𝜉𝑖

2

𝐵𝑖1
2 𝜎𝜉𝑖

2 +𝜎𝜀𝑖
2  and 𝑅𝑍𝑖

2 =

𝐶𝑖1
2 𝜎𝜉𝑖

2

𝐶𝑖1
2 𝜎𝜉𝑖

2 +𝜎𝜏𝑖
2  for V1V2, V1V3 and V3V4 respectively. A naïve estimates on overall reliability of 

each platform across all bacteria would be 
Σ𝑖=1

𝐼 𝑅𝑋𝑖
2

𝐼
, 

Σ𝑖=1
𝐼 𝑅𝑌𝑖

2

𝐼
 and  

Σ𝑖=1
𝐼 𝑅𝑍𝑖

2

𝐼
, but that does not take into 

account any weight on each 𝑖.  
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Since 𝐴𝑖1, 𝐵𝑖1 and 𝐶𝑖 are all random slopes with probability density function 𝑓(𝐴𝑖1) =

1

𝜎𝑅1√2𝜋
𝑒

−
(𝐴𝑖1−1)

2

2𝜎𝑅1
2

, 𝑓(𝐵𝑖1) =
1

𝜎𝑅1√2𝜋
𝑒

−
(𝐵𝑖1−𝛽1)

2

2𝜎𝑅1
2

 and 𝑓(𝐶𝑖1) =
1

𝜎𝑅1√2𝜋
𝑒

−
(𝐶𝑖1−𝛾1)

2

2𝜎𝑅1
2

, then these pdf’s 

could be used as weights for each 𝑖. Consequently, the overall reliability of each platform is 

defined as 𝑅𝑋
2 =

Σ𝑖=1
𝐼 𝑅𝑋𝑖

2 𝑓(𝐴𝑖1)

Σ𝑖=1
𝐼 𝑓(𝐴𝑖1)

, 𝑅𝑌
2 =

Σ𝑖=1
𝐼 𝑅𝑌𝑖

2 𝑓(𝐵𝑖1)

Σ𝑖=1
𝐼 𝑓(𝐵𝑖1)

 and  𝑅𝑍
2 =

Σ𝑖=1
𝐼 𝑅𝑍𝑖

2 𝑓(𝐶𝑖1)

Σ𝑖=1
𝐼 𝑓(𝐶𝑖1)

, where denominators are 

used to guarantee the range of reliability is from 0 to 1.   

 

7.10 Results 

Upon completion of the EM algorithm proposed in Section 7.5, it could be obtained that 

𝛼̂0 = −3.5𝑒 − 4, 𝛽̂0 = 5.8𝑒 − 4, 𝛾0 = 2.2𝑒 − 4, 𝛽̂1 = 0.83 and 𝛾1 = 0.88, meaning that 

compared with V1V2, both V1V3 and V3V4 tended to underestimate the abundance level in 

average.    

 

Test (1) in Section 7.6 generated p value of 1.03𝑒 − 5, meaning V1V2, V1V3 and V3V4 

do not have overall consistency, while test (2), (3) and (4) gave p values of 2.4𝑒 − 7,  0.105, and 

0.063 respectively, indicating the consistency between V1V2 and V3V4, V1V3 and V3V4, but 

the discrepancy between V1V2 and V1V3. 

 

Figure 7.4 shows the relation between estimated mean of abundance of all the bacteria, 

i.e. 𝜉𝑖, 𝑖 = 1,⋯ , 𝐼, and the corresponding predicted slopes for all three platforms, i.e. 
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𝐴𝑖1, 𝐵𝑖1, 𝐶𝑖1, 𝑖 = 1,⋯ , 𝐼 obtained by (7.5.37) – (7.5.39), and it indicates the existence of 

significant proportional systematic errors when the abundance is low and hence the necessity to 

include random slopes for each bacterium. 

 

Figure 7.4. Scatter plot of estimated 𝜉𝑖′𝑠 versus 𝐴𝑖1, 𝐵𝑖1, 𝐶𝑖1. 

 

 

Table 7.2 includes the method of moments estimates and their bootstrap confidence 

intervals [15] obtained by procedures described in Section 7.7. Unfortunately the corresponding 

hypothesis tests like in Section 7.6 is still undeveloped, but the estimations did show the same 

pattern as the ones from EM algorithm, that is compared with V1V2, V1V3 and V3V4 tended to 

underestimate the abundance. 
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Table 7.2. Method of moments estimates and the corresponding bootstrap confidence intervals 

 Estimates Bootstrap confidence interval 

𝛼̂0 −3.16𝑒 − 4  (-0.0038, 0.0101 )  

𝛽̂0 −2.96𝑒 − 4  (-0.0032, 0.0087 )  

𝛾0 −2.88𝑒 − 4  (-0.0035,  0.0094 )  

𝛽̂1 0.94  ( 0.6719, 1.1305 )  

𝛾1 0.92  ( 0.7950, 1.0932 )  

 

Pairwise comparison with two platforms analyzed at a time as mentioned in Section 7.8 

generates coherent results. As Table 7.3 shows, V3V4 is consistent with V1V2 and V1V3, while 

V1V2 and V1V3 are discrepant with each other. 

Table 7.3. Results of coefficient estimates and hypothesis testing of pairwise comparison with 

two platforms analyzed at a time.  

 𝛼̂0 𝛽̂0 𝛽̂1 p value of 𝐻0: (𝛼0, 1) = (𝛽0, 𝛽1) 

V1V2 v.s. V1V3 0.00 -3.09e-5 0.82 3.08e-17 

V1V3 v.s. V3V4 0.00 0.00 0.87 1.00 

V1V3 v.s. V3V4 7.43e-5 0.00 0.99 0.28 

  

Figure 7.5A – C the relation between estimated mean of abundance of all the bacteria, i.e. 𝜉𝑖 , 𝑖 =

1,⋯ , 𝐼, and the corresponding predicted slopes from two platforms, i.e. 𝐴𝑖1, 𝐵𝑖1, 𝑖 = 1,⋯ , 𝐼, and 

they have the same pattern as it is in Figure 7.4, which helps to confirm that the pairwise 

comparison works reasonably.  
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Figure 7.5. A (left) – relation between estimated mean of abundance of all the bacteria, i.e. 

𝜉𝑖, 𝑖 = 1,⋯ , 𝐼, and the corresponding predicted slopes from two platforms, i.e. 𝐴𝑖1, 𝐵𝑖1, 𝑖 =
1,⋯ , 𝐼 when comparing V1V2 and V1V3; B (right) – corresponding plot of comparing V1V2 

and V3V4. 

 

Figure 7.5C. Relation between estimated mean of abundance of all the bacteria, i.e. 𝜉𝑖 , 𝑖 =
1,⋯ , 𝐼, and the corresponding predicted slopes from two platforms, i.e. 𝐴𝑖1, 𝐵𝑖1, 𝑖 = 1,⋯ , 𝐼 

when comparing V1V3 and V3V4. 
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Besides, based on the reliability defined in Section 7.9, V1V2, V1V3 and V3V4 have 

reliabilities 0.40, 0.21 and 0.42, indicating V1V2 and V3V4 have similar overall quality across 

all the bacteria, while V1V3 gives poor measurements comparatively. Figure 7.6 shows the 

conditional reliability of each bacterium, i.e. 𝑅𝑋𝑖

2 , 𝑅𝑌𝑖

2  and 𝑅𝑍𝑖

2  across 𝜉𝑖, which also helps to 

confirm that V1V3 tends to perform worse than the other two platforms, and measurements 

would be unreliable when bacteria are rare. 

 

Figure 7.6. Conditional reliabilities of three platforms across each bacteria ordered by the 

estimated mean abundance 𝜉𝑖. 

 

7.11 Contributions and future work 

In this dissertation a model that could compare platforms across large number of genes or 

bacteria while allowing for heterogeneity for each gene or bacterium was proposed by 

introducing random effects, while most of the related literatures in terms of platform comparison 

ignore the individual properties from per gene or bacterium.  
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Currently our newly developed random effect SEM model is able to handle situations 

where there are two or three platforms, although the EM algorithm could be easily adjusted to 

cases where more than three platforms are present, the computing time would increase 

dramatically, thus it is necessary to work on other algorithms to accelerate the process. More 

importantly, the performance of MLE should be compared with models with only fixed effects 

through simulations, which is another reason why a much more time-efficient algorithm is in 

need. 

 

In parallel with the definition of functional and structural EIV, it is natural that we should 

consider functional and structural SEM. The model above is clearly structural EIV because 𝜉𝑖𝑗 ∼

𝑁(𝜉𝑖, 𝜎𝜉𝑖

2 ), thus the model with 𝜉𝑖𝑗′𝑠 treated as fixed unknown parameters is worth studying. 

Besides, the statistical inference of method of moments described in Section 7.7 is still 

undeveloped. 
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