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Abstract of the Dissertation

Scalable Particle and Mesh Algorithms for
Elliptic Components of Multiphase Problems

by

Tongfei Guo

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2013

New mesh and meshless algorithms for elliptic boundary and elliptic in-

terface problems have been developed. By utilizing the embedded boundary

method, a mesh based algorithm to solve elliptic interface problem is imple-

mented as an extension of hybrid Eulerian-Lagrangian hydrodynamic library

FronTier which employs the method of front tracking for interface propaga-

tion and this implementation is parallelized for distributed memory clusters.

The use of embedded boundary method supports arbitrary discontinuities of

density and other physics properties across the interfaces and significantly im-

proves methods that smear interface discontinuities across several grid cells.
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This code has been applied to process simulation for heat transfer problem,

stefan problem and magnetohydrodynamics at low magnetic Reynolds num-

ber. To handle problems brought by the complexity of interfaces, algorithms

for solving elliptic boundary and elliptic interface problems have been pro-

posed based on meshless particle-based method. The typical feature of the

elliptic interface problem is the presence of a geometrically complex internal

boundary across which material properties or solutions rapidly change. The

main motivation for the development of particle-based methods for elliptic

problems is to carry out numerical simulation of free surface of multiphase

systems described by coupled hyperbolic and elliptic equations. A Lagrangian

particle technique, smoothed particle hydrodynamics(SPH) has been imple-

mented and tested. To overcome the drawbacks of poor numerical accuracy

of SPH, another Lagrangian particle technique with local polynomial fitting

has been developed and implemented. All the implementation is fully paral-

lelized. The current work deals with methods for elliptic components of cou-

pled systems. And, the developed elliptic methods, if used independently, also

favorably compare to unstructured finite element methods that require mesh

generation and depend on the mesh quality. Currently, a second order accurate

algorithm has been used and higher order discretization is also possible. Key

Words: front tracking, embedded boundary method, MHD, smoothed particle

hydrodynamics, Lagrangian particle method, local polynomial fitting
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Chapter 1

Introduction

1.1 Overview and Motivation

The coupled elliptic-hyperbolic system is a fundamental partial differ-

ential equation system that governs a large number phenomena, such as the

heat transfer problem, the phase transition problem as well as magnetohydro-

dynamic(MHD) problems. The study of numerical algorithms to solving such

system provides stronger and stronger mathematical tools to understand the

physics nature of problems mentioned above.

Significant part of this dissertation will be focused on hydrodynamics

related problems. There are two approaches to deal with fluid dynamics, Eu-

lerian method and Lagrangian method (Figure 1.1). In the Eulerian method,

both coordinate frame(or computational mesh) is fixed to laboratory frame

and the flows moves with respect to the coordinate frame. With Eulerian

method, the evaluation of fluid states are relatively simpler and easier to be

extended to higher dimension. A major drawback of Eulerian method is that

the difficulty to capture dynamic interfaces. In the Lagrangian method, the
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(a)

(b)

Figure 1.1: Mesh of Eulerian and Lagrangian method

moving substance is represented by material parcels that move together with

the flow. It is a natural resolution of the interface but the material parcels are

severely distorted by the flow. In high dimension, the untangling of material

parcels becomes unrealistic. Lagrangian method is ideal for solid dynamics

cause the deformation of material parcel is relatively small.

Mesh and meshless algorithms have been developed for elliptic boundary

and elliptic interface problems. A hydrodynamics library named FronTier[9]

is utilized to be the base for extension of elliptic solver. FronTier library em-

ploys hybrid Eulerian-Lagrangian approach to perform hydrodynamics sim-

ulation. The free surface or interior interface between two components is

2



represented by Lagrangian mesh which moves independently to the Cartesian

mesh background. The propagation of the Lagrangian mesh is performed by

Front Tracking method. On the other hand, the interior states of the fluid is

solved on the Cartesian mesh. Both compressible and incompressible solvers

are implemented in the FronTier library. The FronTier code always keeps

discontinuities sharp and eliminates or strongly restricts numerical diffusion

across material interfaces. It supports large number of geometrically complex

interfaces in two- and three-dimensional spaces and robustly resolves their

topological changes. FronTier has been widely used for variety of fundamen-

tal science (turbulent fluid mixing [30]) and applied problems (liquid targets

for particle accelerators [45], pellet ablation in tokamaks [48], and plasma jet

liners for magneto-inertial fusion [26]). The compressible FronTier-MHD code

[47] is an extension of FronTier and it is the first implementation of embed-

ded boundary method for FronTier. The code is well suited for free surface

MHD phenomena driven by hydro waves, for instance in the case of matter

interacting with strong energy sources. The obvious limitation of this code for

the simulation of slow flows of liquid metals is the restriction of time steps by

the CFL condition due to acoustic waves. Shuqiang Wang extended the em-

bedded boundary method for elliptic interface problem[54] and applied such

method for incompressible fluid solver[53], which eliminates all acoustic waves

and allows big time steps.

In order to overcome this limitation but keep all advantages of front track-

ing, a sharp interface MHD algorithm for incompressible multiphase MHD

flows in the low magnetic Reynolds number approximation has been devel-

3



oped. As the method is dependent on the quality of the Navier-Stokes equation

solver, we would like to comment first on the hydrodynamic component of the

code. Front tracking has already been used for the simulation of incompress-

ible Navier-Stokes equations [52, 15]. But unlike the front tracking method for

compressible flows [9] which always keeps the density discontinuity sharp, pre-

vious implementations of the front tracking for incompressible flows employed

the smoothing of density similar to the level set method. Other methods such

as the ghost fluid method [32, 25] and the immersed interface method [28, 27]

also have difficulties with large density ratios across the interface. A front

tracking algorithm for incompressible Navier-Stokes approximations that suc-

cessfully deals with the large density discontinuity problem has been recently

proposed by collaborators [53] by using the embedded boundary method [23]

.

The pure Lagrangian method attracts a lot interests again, because many

free surface problems would benefit from Lagrangian methods. The Smoothed

Particle Hydrodynamics is a widely used Lagrangian particle technique[35, 33].

In the Smoothed Particle Hydrodynamics method, material parcel is replaced

by a geometric point, called particle, which carries all physics properties of

the corresponding material parcel. A Smoothed Particle Hydrodynamics code

has been implemented and couple of testing cases have been performed. Be-

cause of poor derivatives calculation, the governing equations of the motion

of fluid is not solved correctly. however the final physics picture is similar to

the reality. It is argued[41] that this self-contradiction outcome is due to the

4



conservative property of the Smooth Particle Hydrodynamics technique.

In order to overcome the weakness of Smoothed Particle Hydrodynamics

technique, a different approach, local polynomial fitting, is employed to ap-

proximate the derivatives. The local polynomial fitting has long been used

to construct estimators for function value and derivatives. By choosing local

particles with certain criteria and preprocessing the particle positions informa-

tion, the estimation of derivatives can reach high accuracy. However, because

of the unstructured distribution property of particles, the computational cost

of acquiring estimation for derivatives with particles is much higher than ac-

quiring such estimation with structured Cartesian grid. A method proposed

by Robert D. Richtmyer and K. W. Morton[44] is employed to estimate the

change of specific volume of flow.

1.2 Dissertation Organization

In Chapter 2, the technical detail of Embedded Boundary Method and

the physics background of the problem will be present. And, the discretization

governing equations of the MHD system as well as the accuracy of the sim-

ulation will be discussed. Chapter 3 presents the mathematical background

of Smoothed Particle Hydrodynamics technique. Also, the implementation of

the code and several specific technical problems are involved. Chapter 4 is

about the approach to obtain approximation of derivatives with local polyno-

mial fitting and the verification as well validation of such technique is present.

The discretization of Lagrangian equations is also discussed.

5



Chapter 2

Finite Volume Elliptic Algorithms for Frontier

The FronTier library employs hybrid Eulerian-Lagranian method to solve

CFD problems. By utilizing Front tracking[16], a Lagrangian mesh algo-

rithm, to propagate the interface and grid based method to solve interior

states of fluid, FronTier library is capable to simulate multi-components prob-

lem(Figure 2.1) with interfaces accurately. In this chapter, a front track-

ing MHD algorithm for free surface / multiphase flows at the low magnetic

Reynolds numbers, coupled with the incompressible hydrodynamic solver, as

well as validation and verification tests will be presented[19]. With the ad-

vantage of incompressible hydrodynamic solver, the code can deal with the

simulation of large time scales, in particular, with flows of free surface liq-

uid metals in magnetic fields. Meanwhile, the application on heat transfer

problems will also be discussed.
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Figure 2.1: Multiphase Domain

2.1 Embedded Boundary Algorithm for Elliptic Prob-

lems in Irregular Domains

The governing equation of elliptic boundary problem is

∇β∇Φ = f (2.1)

where f is the source term. With the divergence theorem, the governing equa-

tion can be written in integral form 2.2 in a given control volume Ω.

∫

Ω

∇ · (β∇Φ) dv =

∮

∂Ω

β∇Φ · n ds =

∫

Ω

f dV (2.2)

Further more, if the source term can be expressed by the divergence of a vector

field,

f = ∇ · (V) (2.3)

7



the equation can be written as 2.4

∮

∂Ω

β∇Φ · n ds =

∫

Ω

f dV =

∮

∂Ω

V · n ds (2.4)

There are many methods for the solving of elliptic problem in the support

domain (where the governing equation is defined) of regular boundaries. How-

ever, for geometric complex support domain, many methods will fail or be

unable to achieve satisfying accuracy, because of the inaccurate discretization

of boundary conditions. Here, the embedded boundary method is adopted

to overcome this problem. The embedded boundary method([54, 23, 34, 49])

is a finite volume method for an irregular domain embedded on a Cartesian

grid. By utilizing the embedded boundary method, the governing equation

as well as boundary condition are discretized in each control cell. There are

two types of cells, one is interior cell, and the other one is boundary cell. The

boundary cell is split by the boundary to be two parts while only one of the

parts belongs to the computational domain and it is called partial cell. On the

contrary, all interior cells are full cells. When embedded boundary method is

used to solve the elliptic boundary value problem, unknowns are defined at

the computational cell centers for both interior cells (Full cells), and boundary

cells (partial cells) which intersect with the interior boundary.

For the purpose of visually simplicity, a 2D example is presented to describe

embedded boundary method. For interior cells, the discretization is similar to

5 point stencil second order finite difference, as shown in 2.2. For cell (i,j),

Fi+ 1

2
,j + Fi− 1

2
,j + Fi,j+ 1

2
+ Fi,j− 1

2
= S ∗ fi,j (2.5)
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Figure 2.2: Stencil for the the interior flux

where S is the area of the corresponding cell.

Flux Fi+ 1

2
,j can be expressed by

Fi+ 1

2
,j = ∆yβi+ 1

2
,j

Φi+1,j − Φi,j

∆x
(2.6)

and Fi− 1

2
,j, Fi,j+ 1

2
, Fi,j− 1

2
can also be expressed in the similar way.

For boundary cells, fluxes can be divided into three types:full edge flux, partial

edge flux(flux F(i+1,j) and flux F(i,j+1) in Figure 2.3) and boundary flux(flux

Ff in Figure 2.3). The approximation of full edge flux is the same as interior

cells. The approximation of partial edge flux is obtained by interpolation of

two nearest full edge fluxes that

Fi+ 1

2
,j = a∆yβm[

(1 + a)

2

Φi+1,j − Φi,j

∆x
+

(1− a)

2

Φi+1,j+1 − Φi,j+1

∆x
] (2.7)
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and

Fi,j+ 1

2
= a∆xβm[

(1 + a)

2

Φi,j+1 − Φi,j

∆y
+

(1− a)

2

Φi+1,j+1 − Φi+1,j

∆y
] (2.8)

Here, a is the proportion of partial edge to the full edge. With equation(2.7),

second order approximation of the partial edge flux can be obtained. For

boundary flux, the approximation for Neumann boundary condition can be

obtained directly from the boundary condition. While with Dirichlet bound-

ary condition, approximation is obtained by interpolation in the normal direc-

tion[Fig 2.3]. To do this, the first pair of parallel cell center lines that intersect

with the line in the normal direction of the interface while not passing through

the current cell are selected. First, the interpolation of two values in the in-

tersections of the line in the normal direction and two cell center lines are

obtained. Then, boundary flux are acquired with interpolation of these two

interpolated values together with the boundary value given by the boundary

condition.

To obtain the approximation of gradient with second order accuracy, quadratic

polynomial interpolation along grid lines is used and the gradient formula is

applied as in one dimension:

qf =
1

d2 − d1
(
d2
d1

(Φf − ΦI
1)−

d1
d2

(Φf − ΦI
2)) (2.9)

Here,Φf is the value of function in the boundary which is given by the Dirichlet

boundary condition at the boundary segment midpoint. With interpolation

along grid lines, we can obtain ΦI
1 and ΦI

2 at the points distance d1 and d2

10



Figure 2.3: Stencil for the the boundary flux

away from the interface. Finally, the boundary flux is evaluated by

F f = βfAfqf (2.10)

where βf is the β value in the midpoint of boundary segment and Af is the

length of the boundary segment. The discretization of governing equation in

each control cell forms a linear system. The resulting matrix will be a large

sparse matrix and the number of unknowns is big.

2.2 Embedded Interface Algorithm for Multiphase prob-

lems

The embedded boundary method has been extended to solve elliptic and

parabolic interface problems in this section. In these problems, there are

more than one components. For each component i, the governing equation is

11



different and jump conditions are imposed on the interior interface(2.12).

∇βi∇T = fi (2.11)

and the jump condition in the interface

[T ] = J1

[

β
∂T

∂n

]

= J2 (2.12)

The feature that defining unknowns in cell center for all cells of EBM is re-

tained in the algorithm for the elliptic interface problem. Instead of define

one unknown in each cell center for elliptic boundary value problem, more un-

knowns are needed in order to discretize the elliptic equation consistent with

two interface jump conditions for internal partial cells. In 2D, (Figure 2.4)

shows the placement of unknowns in cell with interior interface. The whole

cell contains two partial cells representing two components(A and B) which

are separated by the interior interface. Two unknowns are defined in the cell

center for each part of the cell. In order to comply the jump conditions (equa-

tions 2.12 and 2.12), two more unknowns are defined in the geometry center

of the segment of the interior interface which intersects with the cell for both

partial cell A, B.

A schematic of corresponding stencil for the interpolation of boundary

unknowns are shown in (Figure 2.5). Two unknowns Ta and Tb are defined

respectively at the segment of interior boundary for both parts in cell (i,j).

The direction of normal of the interior boundary is defined as pointing from

A to B. The discretization of jump condition (2.12) is simply
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A
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Figure 2.4: Placement of unknowns in a cell containing the interface

A

B

(i,j-1)
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(i-1,j) (i+1,j)(i,j)

Tb Ta

Figure 2.5: Stencil for the interface unknowns for the jump condition

13



TA − TB = J1 (2.13)

The discretization of jump condition (2.12) is more complicated that the nor-

mal derivatives of unknowns in both sides of the interior boundary have to

be evaluated. This is carried out by fitting a quadratic polynomial with two

variables[23, 34]. The main idea is use one unknown in cell (i,j), two unknowns

in the first layer neighbours of cell (i,j) and three unknowns in the second layer

neighbours of cell (i,j) that six unknowns in total are given for six coefficients

of the quadratic polynomial. For example, in order to construct the quadratic

polynomial to evaluate the flux at the interior boundary segment center where

Ta is defined for component A, the six unknowns are Ta, Ti+1,j, Ti+1,j−1, Ti+2,j ,

Ti+2,j−1, and Ti+2,j−2. Similarly, we can construct the quadratic polynomial

for component B. Taking the normal derivatives of the fitted polynomials for

two components to get ∂T
∂n

∣

∣

A
, ∂T
∂n

∣

∣

B
, respectively, and using the jump condition

(2.12), we obtain,

β|B
∂T

∂n

∣

∣

∣

∣

B

− β|A
∂T

∂n

∣

∣

∣

∣

A

= J2 (2.14)

The embedded boundary method is used to setup two equations for two

unknowns in the cell center separately. For partial cell cdef, a similar stencil as

the previous paragraph is used to discretize the elliptic operator(Figure 2.6).

With equation (2.2), we obtain

∫

cdef

∇ · (β∇T ) ds =

∮

∂(cdef)

β∇T · n dl =

∫

cdef

f ds (2.15)
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Figure 2.6: Stencil for the cell center unknowns

which is

∫

cd

β∇T · n dl +

∫

de

β∇T · n dl +

∫

ef

β∇T · n dl +

∫

fc

β∇T · n dl =

∫

cdef

f ds(2.16)

and the discretized form is

lcd · F luxcd + lde · F luxde + lef · F luxef (2.17)

+lfc · F luxfc = T (i, j)

∫

cdef

ds

where lxy is the length of the segment between x and y. Thus only fluxes across

the center of segment of interior boundary and the center of cell edge shall be

evaluated. For F luxcd, a second order derivative is calculated by using linear

interpolation of
Ti,j−1−Ti,j

∆x
and

Ti+1,j−1−Ti+1,j

∆x
in the center of segment cd and

multiplied by β[54]. For F luxde, we simply use central difference
Ti+1,j−Ti,j

∆y

to calculate the derivative and multiply β. F luxef is obtained in the similar

way as F luxcd by evaluating linear interpolation of
Ti,j+1−Ti,j

∆x
and

Ti+1,j+1−Ti+1,j

∆x
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in the center of ef and multiplied by β. F luxfc is evaluated in the previous

paragraph which is β|A
∂T
∂n

∣

∣

A
. In the same way, fluxed of other partial cells are

obtained. In the implementation, it is not necessary to have two unknowns

in the segment center of interior boundary that these unknowns can be rep-

resented by corresponding cell center unknowns by solving jump conditions

(2.12),(2.12). And the resulting system of equations will only have unknowns

defined at cell centers.

In 3D cases, the evaluation is similar. For linear interpolation of two edge

center fluxes(e.g F luxcd in the previous paragraph), a bi-linear interpolation is

used. Also, a 3-D quadratic polynomial has 10 coefficients thus 10 unknowns

are required to construct such polynomial. Details of such interpolation and

construction mentioned above can be found in [49].

2.3 Applications

The embedded boundary parabolic interface technique has been applied

to several physics phenomenons

2.3.1 Stefan problem and phase transitions in incom-

pressible media

Numerical algorithm for the Stefan problem

Let us consider the melting and solidification processes in multi-material

systems. Let Ω be a bounded domain containing multiple materials in the

solid and liquid states. We define the material interface as a contact surface
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between different materials and the phase boundary a contact surface between

different phases of the same material. We denote as ∂Ω the collection of

interfaces, phase boundaries, and the external boundary of the domain Ω.

The equation of the heat transport in Ω \ ∂Ω is [2]

∂ρCPT

∂t
= ∇ · k∇T +Q, (2.18)

where T is the temperature, ρ is the density, CP is the heat capacity at constant

pressure, k is the thermal conductivity, and Q is the external heat source. If

equation 2.18 is applied to a single phase, ρ, CP , and k are typically constants.

But since the material properties change with the change of temperature, we

do not restrict the algorithm by assuming constant values for these variables.

The continuity of temperature and heat flux is satisfied at material interfaces:

[T ]material interface = 0, (2.19)
[

k
∂T

∂n

]

material interface

= 0, (2.20)

where [.] denotes the jump of quantity across the interface and n is the normal

to the interface. At the phase transition boundary, the following conditions

are satisfied:

[T ]phase boundary = 0, Tphase boundary = TM , (2.21)
[

k
∂T

∂n

]

phase boundary

= −ρLv, (2.22)
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where TM is the melting temperature, L is the latent heat, and v is the velocity

of the phase boundary. In the last equation, we assumed that the density does

not change during the phase transition. It is the standard approximation in

the theory of melting and solidification [2].

In addition, the Gibbs-Thomson condition must be satisfied at the phase

boundary. The Gibbs-Thomson effect is the dependence of TM on the interface

curvature. Its thermodynamic foundation can be found in [2]. The equation

of the Gibbs-Thomson effect is

TM = TM,0 −
Kγ

∆Sf

, (2.23)

where TM,0 is the melting temperature at the flat interface, K is the interface

curvature, γ is the interfacial tension, and ∆Sf is the fusion entropy. Since the

change of TM is small at moderate surface curvatures, it is usually negligible

during melting. The unsteady solidification which occurs in undercooled liq-

uids (when the liquid temperature is lower then TM) results in the growth of

dendrites of very complex shape. The inclusion of the Gibbs-Thomson effect is

necessary for the accurate resolution of the dynamics of unsteady solidification.

Finally, various Dirichlet or Neumann or mixed type boundary conditions can

be applied on the outside boundaries of the multi-phase domain.

We call the heat conduction problem in multi-material system without

phase transitions, described by equations (2.18-2.20), the parabolic interface

problem. Phase boundaries described by the jump condition (2.22) decouple

the problem in a set of parabolic problems with geometrically complex and
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Figure 2.7: Schematic of the nuclear fuel rod cross-section: (a) is the fuel
pellet, (b) is the gas gap, (c) is the stainless steel cladding, and (d) is the
liquid sodium.

moving external boundaries (phase boundaries) with the Dirichlet boundary

condition Tboundary = TM

Simulations of failure of nuclear fuel rods during accidents

This application is part of DOE Nuclear Energy Research Initiative for

coupled multiscale simulation of nuclear rod failure consortium of RPI, SBU,

Columbia and BNL. NPHASE-CMFD code, using Reynolds-Averaged Navier

Stokes (RANS, e.g. k-e model) approach to multiphase modeling, will sim-

ulate flow of liquid sodium coolant and fission gas around reactor fuel rods.

PHASTA code, using direct numerical simulation (DNS) with Level Set method

to track the interface between gas and liquid phases, will simulate high pres-

sure fission gas entering coolant channels. Our FronTier code, which is a

front tracking code capable of simulating multiphase compressible fluid dy-
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Figure 2.8: Shape of the gas gap between the fuel and cladding.
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Figure 2.9: Temperature across the fuel rod at normal operating conditions
and transient overheating.
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Figure 2.10: Temperature distribution across the fuel rod during transient
overheating and the surface of the molten fuel.

namics, will simulate fuel rod overheating and melting of cladding in case of

coolant-blockage accident. Code using molecular dynamics approach analysis

the irradiated fuel properties will give prediction of fuel properties evolution.

A nuclear fuel rod contains 8 mm diameter pellets of metallic or oxide

uranium fuel in a stainless still cladding of 0.5 mm thickness. The total length

of the fuel rod is about 2.5 m. A narrow (0.1 mm), irregular gap between the

fuel and the cladding is used to transport fission gas from the fuel to the gas

plenum on the top of the reactor core. Fuel rods are assembled in hexagonal

structures and placed into liquid sodium coolant that circulates in the reactor

core and transports the thermal energy from fuel rods to the heat exchangers.

The cross-section of the fuel rod is shown schematically in Figure 2.7.

The temperature distribution across the fuel rod at normal operating

conditions is shown in Figure 2.9. The power production of about 60 kW/m

in the fuel rod is balanced by the heat removal, achieved by the sodium coolant,

so that the temperature is in the steady state. The picture shows rapid changes

of the temperature gradients across the fuel rod due to sharp changes of the
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heat conductivity in the fuel, gap, and cladding. After years of operation, the

surface of the fuel erodes and comes to a point-wise contact with the clad as

shown in Figure 2.8. The interior of the gas gap is not resolved on the mesh

level and an empirical formula for the temperature jump across the gap [11]

is applied for the heat transport calculations. For the related problem of the

movement of fission gases in the gas gap, the equations of flow in porous media

are solved.

During either transient overheating or loss of coolant accidents, the heat

transfer balance is changed and the temperature in the fuel rod increases. It

can cause melting of the fuel rod and even stainless steel cladding. However,

because of the change of cladding properties as the temperature increases, the

cladding usually fails before melting, causing the ejection of molten fuel and

fission gases into the coolant reservoir. Figures 2.10 and 2.9 depict the increase

of temperature and melting of the fuel in the transient overheating accident.

2.3.2 Incompressible magnetohydrodynamics

Governing Equations

We are interested in the description of multiphase or multi-material sys-

tems involving conducting fluids interacting with neutral fluids or gases in the

presence of magnetic fields. Interfaces of the phase or material separation are

assumed to be sharp (the thickness of the interface is negligible) and, in gen-

eral, geometrically complex. The numerical simulation of liquid metals, liquid

salts, and weakly ionized plasmas, which are relatively weak electrical conduc-
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tors, is difficult using the standard full systems of MHD equations [14]. Fast

diffusion of the magnetic field, caused by low value of electrical conductivity,

introduces unwanted small time scales into the problem. If the time scale of

the diffusion of the magnetic field is small compared to hydrodynamic time

scale, the magnetic Reynolds number [42]

ReM =
4πuσL

c2
,

where L is the typical length scale, u is the fluid velocity, and σ is the electric

conductivity, is small. If, in addition, the eddy-current-induced magnetic field

δB is small compared to the external field B, the full system of MHD equations

can be simplified by neglecting the time evolution of the magnetic field. In this

case, the generalized Ohm’s law is used for the evaluation of the current-density

distribution instead of the Maxwell equation J = c
4π
∇×H, where the magnetic

fieldH and the magnetic induction B are related by the magnetic permeability

coefficient µ: B = µH. The governing equations of incompressible conductive

fluids in the low magnetic Reynolds number approximation are

ρ

(

∂

∂t
+ u · ∇

)

u = µ∆u−∇P + ρg +
1

c
(J×B) (2.24)

∇ · u = 0 (2.25)

J = σ

(

−∇ϕ+
1

c
u×B

)

(2.26)

∇ · J = 0 (2.27)
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Taking the divergence of both sides of equation (2.26) together with equation

(2.27), an elliptic equation for the electric potential is obtained:

∇ · (σ∇ϕ) = ∇ ·
σ

c
(u×B) (2.28)

If a conductive fluid interfaces a neutral fluid or gas, the current density vector

is tangential to the material interface. This statement is expressed by the

following Neumann boundary condition for the Poisson equation (2.28).

∂ϕ

∂n

∣

∣

∣

∣

Γ

=
1

c
(u×B) · n

∣

∣

∣

∣

Γ

(2.29)

where Γ is the boundary of conductive fluid.

Hydro- and MHD Algorithms

The system of MHD equations (2.24)− (2.27), a coupled parabolicelliptic

system in a geometrically complex domain, is solved using operator splitting

and front tracking. The propagation and redistribution of the interface using

the method of front tracking ([9],[17]) is performed at the beginning of each

time step. Interfaces are represented by triangle meshes that are propagated

in each time step. The topology issues of the interface are resolved by the

FronTier library and the only information required by the FronTier library is

the discretized velocity filed in the computational domain, which is stored in

the center of each computation grid. Velocity of each vertex in the interface

mesh is the result of interpolation of nearby cell center velocities. Then interior

states are updated by the incompressible hydro solver.
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The magnetic source term (1
c
(J×B)) is evaluated first. The discretiza-

tion of equation (2.28) is similar to that in section (2.2), while the boundary

condition is much simpler. Similarly, integrating equation (2.28) together with

divergence theorem, we obtain.

∫

v

∇ · (∇ϕ) dv =

∮

∂v

∇ϕ · n ds =

∮

∂v

1

c
(u×B) · n ds, (2.30)

which is

∮

∂v

∂ϕ

∂n
ds =

∮

∂v

1

c
(u×B) · n ds. (2.31)

With the boundary condition (2.29), we can see that the integral along the

boundary of conductive fluid in each partial cell is canceled in both sides of

(2.31), and the discretization equation is greatly simplified.

After solving equation (2.28), the gradient of the electric potential ϕ is

substituted into equation (2.26) and the current density J is obtained. Sec-

ondly, we deal with the equation (2.24), without regarding the divergence

constraint, for an intermediate velocity u∗. Employing an operator splitting

technique, we resolve the step

u
′

− un

∆t
= −(un · ∇)un. (2.32)

Only for the advection step, the density jump across the interface of two

fluid components is smoothed with a certain smoothing radius of computation

cells [52]. The advection part, equation (2.32), is evaluated explicitly, with a
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second order Godunov type scheme ([6]). For the diffusion part, we employ the

implicit Crank-Nicolson method. Two fluid components are solved together,

disregarding the interface.

Thirdly, the diffusion step and the source term are resolved

u∗ − u
′

∆t
+∇q = ρg +

1

c
(J×B) +

µ

2
∇2(u∗ + u

′

), (2.33)

where q is the pressure of the previous time step. Finally, we perform the

projection step. Applying the divergence operator in both sides of equation

u∗ = un+1 +
∆t

ρ
∇φn+1 (2.34)

and using the divergence constraint ∇ · un+1 = 0, we obtain the following

elliptic equation for pressure

∇2φn+1 =
ρ

∆t
∇ · u∗. (2.35)

The projection step is an elliptic interface problem discussed in section (2.2).

Two jump conditions for pressure are

[p] = σκ (2.36)
[

1

ρ

∂p

∂n

]

= 0 (2.37)

where κ is the curvature and σ is the surface tension coefficient. A matrix to

solve such elliptic interface problem is set according to the algorithm described
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in section (2.2).

The pressure is updated using the solution of the projection step:

p = q + φn+1 (2.38)

The described algorithm achieves the second order convergence.

The implementation is carried out with C++ and MPI for the commu-

nication between processors. FronTier’s hyperbolic solvers demonstrate good

scalability on large machines of the IBM BlueGene series. The scalability of

elliptic solvers is determined by the scalability of commonly used parallel li-

braries for sparse linear system of equations (preconditioned Krylov subspace

iterative solvers of the PETSc library have been used in our MHD code).

2.3.3 Verification and Validation

Verification and validation tests for the three-dimensional FronTier-MHD

code have been performed using experimental and theoretical studies of liquid

mercury jets in magnetic fields. Experimental studies of a mercury jet entering

a magnetic field with the magnitude satisfying the hyperbolic tangent profile

have been performed in [39]. An asymptotic theoretical analysis has also been

done by the same group. The experiment setup is as follows. A mercury

jet with the initial diameter of 8 mm is shot horizontally into a transverse

magnetic field with the initial velocity of 2.1 m/s. The amplitude of the
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transverse magnetic field satisfies the following equation

(
By

Bmax

)2 =
1

2
[1− tanh(

z − z0
Lm

)], (2.39)

where z0 is the center and Lm is the characteristic length of the magnetic field.

In our simulations, z0 = 1.5 cm and Lm = 0.62 cm.

As predicted in [39], the magnitude of expansion of the jet depends on

the z value:

g∗s2(z
′∗) = βsin(αz

′∗)

∫ z
′
∗

−∞

cos(αt)

cosh2(εmt)
dt

−βcos(αz
′∗)

∫ z
′
∗

−∞

cos(αt)

cosh2(εmt)
dt (2.40)

where α =
√

6/Wa and β = εmNa/8α. And

• Na = σeB
2
maxa/ρfω0 is the Stuart number of the jet, σe is the electric

conductivity of mercury, a is the radius of the cross-section of the jet,

ρf is the density of mercury and ω0 is the main flow velocity which is

2.1m/s.

• Wa = ρfaω
2
0/σ is the Weber number of the jet, σ is the surface tension

of mercury.

• εm = a/Lm and z
′∗ = z/a.

Numerical simulation was performed using the magnetic filed strength

Bmax of 1.41 T and 1.88 T. In order to save computation time, simulations
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(a) (b) (c)

Figure 2.11: FronTier-MHD simulation of jet deformation in magnetic field.
Cross sections of the jet are shown at observation points located at 0, 3.5, and
5.5 cm.

were performed in a frame moving with the initial jet velocity. In the asymp-

totic analysis of [39], the jet was assumed to extend infinitely and reach the

steady state. To simulate similar conditions, initially long cylindrical jet was

moving through the magnetic field rather then being ejected from the nozzle.

Also, the jet is assumed to be in the vacuum while in the simulation, the vac-

uum was substituted with light gas, with the density 104 times smaller than

the density of mercury. With such a large density ratio, the influence of gas

on the momentum of the mercury jet can be ignored. In order to obtain accu-

rate profile of the electric current density, the computational mesh contained

approximately 20 cells across the cross-section of the mercury jet.

Experimental results of the jet deformation from [39], results of asymp-

totic analysis, and numerical simulations are plotted in Figure 2.12 for 1.88

T magnetic field and in Figure 2.13 for 1.41 T field. We observe a very good

agreement of simulations with asymptotic calculations at small distances from

the magnetic field center corresponding to smaller jet deformations. The ex-
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Figure 2.12: Mercury jet deformation as function of the distance from the
magnetic field center for 1.88 T magnetic field. Results of simulations (green
dashed line), asymptotic calculations (red dash-dotted line), and experiments
(blue dotted line) are shown.
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Figure 2.13: Mercury jet deformation as function of the distance from the
magnetic field center for 1.41 T magnetic field. Results of simulations (green
dashed line), asymptotic calculations (red dash-dotted line), and experiments
(blue dotted line) are shown.

pected disagreement with experimental results at small distances can be ex-

plained by the fact that experiments were carried out using a cylindrical nozzle

located at z = 0 that reduced jet deformations compared to long free jets.

But at larger distances from the nozzle corresponding to larger jet deforma-

tions, numerical simulations, theoretical calculations, and experiments are all

in agreement.

We would like to comment on the importance of maintaining a sharp
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Figure 2.14: Degradation of accuracy without sharp density discontinuity.
Mercury jet deformation as function of the distance from the magnetic field
center for 1.88 T magnetic field. Results of untracked simulations (green
dashed line), asymptotic calculations (red dash-dotted line), and experiments
(blue dotted line) are shown.

density discontinuity via the front tracking and embedded boundary meth-

ods. Without the embedded boundary method, the density ratio that interior

solving can handle is limited by high condition number of the corresponding

matrix of projection step. In order to perform the simulation without the em-

bedded boundary method, we artificially increased the density of ambient gas

so that the density ratio dropped to 10. Figures 2.14 and 2.15 demonstrate the

degradation of accuracy of simulations if the correct density ratio and sharp

density discontinuity are not resolved. Keeping the discontinuity sharp is even

more important for applications involving more extreme flow regimes.

Further Applications

Both compressible and incompressible fluid FronTier-MHD code are used

for the simulation of processed relevant to energy research and accelerator ap-

plications. Simulations of the mercury target for the Muon Accelerator Project

(http://map.fnal.gov) is among the most important applications of the code.
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Figure 2.15: Degradation of accuracy without sharp density discontinuity.
Mercury jet deformation as function of the distance from the magnetic field
center for 1.41 T magnetic field. Results of untracked simulations (green
dashed line), asymptotic calculations (red dash-dotted line), and experiments
(blue dotted line) are shown.

The target will contain a series of 30-cm-long and 1-cm-diameter mercury jets

entering a strong (∼ 15 Tesla) magnetic field at a small angle to the solenoid

axis. When each jet reaches the center of the solenoid, it interacts with a pow-

erful proton pulse penetrating the jet and depositing energy[46] of the order of

100 J/g into mercury. The purpose of our numerical simulations is to evaluate

states of the target before and after the interaction with protons to optimize

the target design. The compressible code deals with the jet instabilities due

to external energy deposition and their partial stabilization by the magnetic

field [45]. The incompressible FronTier MHD code is used for the simulation

of liquid metal jets in magnetic fields of different configurations prior to the

interaction with proton pulses. Other applications involve pellet ablation in

tokamaks [48], and plasma jet liners for magneto-inertial fusion [26].
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Chapter 3

Smoothed Particle Hydrodynamics

3.1 Main Equations and Approximations

Although the hybrid Lagrangian-Eulerian fluid algorithm has been devel-

oped for years, it still faces huge difficulties when solving problems involving

complex interfaces. In this chapter and the following chapter, the pure La-

grangian techniques will be discussed. The particle techniques are Lagrangian

techniques that discretize continuous volume into small elements called parti-

cles and solves the underlying governing equations based on such discretiza-

tion. For flows, the particles will be Lagrangian material parcels forming the

discretization of Lagrangian specification of the flow field. There are several

advantages of the particle technique[37]. First, the technique can exactly pro-

cess pure convection because of the intrinsic Lagrangian property. Second, it

is a mass conservative technique. Each particle has unchanged mass and such

quantity is carried along with the movement of particle. Third, by replacing

the material parcels with particles, it is easy to handle free surface problems.
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3.1.1 Approximation of a field function

Smoothed particle hydrodynamics[37, 38, 35, 31, 21] method is one of

Lagrangian particle techniques. It has been utilized to study astrophysics[51]

in the beginning and later extended to study fluid dynamics[50] and solid

mechanics[29]. It replaces the material parcels to be particles and there is no

need to consider the deformation of material parcels. By using the δ function,

the value a function can be written in integral form(3.1)

f(x) =

∫

f(ξ)δ(x− ξ) dξ (3.1)

Using a bell shaped kernel function W (x− ξ, h) to approximate the δ function

with second order accuracy in terms of h, we obtain (3.2)

f(x) =

∫

Ω(x,h)

f(ξ)W (x− ξ, h) dξ (3.2)

Here, Ω(x, h) is a domain described by | x − ξ |≤ h. By descretizing Ω, we

obtain (3.3)

fi =
∑

j

fjW (xi − xj, h)Vj (3.3)

Replacing the volume by division of mass and density

fi =
∑

j

mj

fj
ρj
W (xi − xj, h) (3.4)

This is the kernel estimation of a function value. As an example of the use of

kernel estimation, suppose f is the density ρ. The interpolation formula then
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gives the following estimation for the density at a point x

ρi =
∑

j

mjW (xi − xj, h) (3.5)

showing that the mass is smeared to estimate the density.

3.1.2 First derivatives

With the theorem of integration by parts, if f is a differentiable function,

(∇f)i =
∑

j

mj

fj
ρj
∇W (xi − xj, h) (3.6)

In smoothed particle hydrodynamics, the derivative is evaluated by the exact

derivative of an approximate function. However, this formula is not equal to

zero when f is a constant. One way to guarantee that the derivative vanishes

is rewriting

∇f =
1

g
(∇(gf)− f∇g) (3.7)

where g is a differentiable function. The corresponding smoothed particle

hydrodynamics form is

(∇f)i =
1

gi

∑

j

mj

gj
ρj
(fj − fi)∇W (xi − xj, h) (3.8)

which vanishes if f is a constant. if choosing g = 1, (3.8) becomes

(∇f)i =
∑

j

mj

ρj
(fj − fi)∇W (xi − xj, h) (3.9)
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and, if choosing g = ρ, (3.8) becomes

(∇f)i =
1

ρi

∑

j

mj(fj − fi)∇W (xi − xj, h) (3.10)

3.1.3 Kernel function

The kernel function plays an important role in the smoothed particle

hydrodynamics method and has significant impact on the performance of such

method. Basically, kernel function should satisfy several conditions, such as

positivity, compact support, and unity and monotonicity. Positivity means

that the kernel function will always be positivity in the interior area of the

support domain. Compact support means that the kernel function should

vanish in the boundary of support domain. Unity condition is that the integral

of kernel function in the support domain is one. Monotonicity is that the kernel

function will decrease with the increasing of distance. There are many kernel

functions and how to choose a proper kernel function is quite empirical and

problem dependent. Here, four common kernel functions are listed. And, for

simplicity, let r =| x− x′ |, q = q

h

Gaussian

W (r, h) = αDexp(−q2) (3.11)

where αD is 1
πh2 in 2D and 1

π
3
2 h2

in 3D.

Gaussian function is smooth and infinite differentiable. The only drawback
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of Gaussian function is that it vanishes in the positive and negative infinity.

Usually, the support domain is 2h, thus all the above mentioned conditions do

not strictly hold.

Quadratic

W (r, h) = αD

[

3

16
q2 −

3

4
q +

3

4

]

0 ≤ q ≤ 2 (3.12)

where αD is 2
πh2 in 2D and 4

4πh3 in 3D.

Cubic spline

W (r, h) = αD































1− 3
2
q2 + 3

4
q3 0 ≤ q ≤ 1

1
4
(2− q)3 1 ≤ q ≤ 2

0 q ≥ 2

(3.13)

where αD is 10
7πh2 in 2D and 1

πh3 in 3D.

Cubic spline function is the most common used kernel function.

Quintic

W (r, h) = αd(1−
q

2
)2(2q + 1) 0 ≤ q ≤ 2 (3.14)

where αD is 7
4πh2 in 2D and 21

16πh3 in 3D.
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3.1.4 Analysis for the accuracy [31]

Approximation of a field function

With smoothed particle hydrodynamics method, the approximation of

a field function can be obtained by the form of integral representation (3.2).

Gui-Rong Liu and M. B. Liu offer an analysis of the accuracy of kernel ap-

proximation in their book [31]. If f(x) is sufficiently smooth, by applying the

Taylor series expansion of f(x′) in the vicinity of x, we can obtain

f(x′) = f(x) + f ′(x)(x′ − x) +
1

2
f ′′(x)(x′ − x)2

=

n
∑

k=0

(−1)khkf (k)(x)

k!
(
x′ − x

h
)k +O((

x′ − x

h
)n+1) (3.15)

where O((x
′−x
h

)n+1) is the remainder of the Taylor series expansion. Substi-

tuting equation (3.15) into (3.2) yields

f(x) =

∫

Ω

n
∑

k=0

(−1)khkf (k)(x)

k!
(
x′ − x

h
)kW (x′ − x, h) dx′ + rn(

x′ − x

h
)

=

n
∑

k=0

(−1)khkf (k)(x)

k!

∫

Ω

(
x′ − x

h
)kW (x′ − x, h) dx′ + rn(

x′ − x

h
)

=

n
∑

k=0

Ckf
(k)(x) + rn(

x′ − x

h
) (3.16)

where

Ck =
(−1)khk

k!

∫

Ω

(
x′ − x

h
)kW (x′ − x, h) dx′ (3.17)

By comparing two sides of equation (3.16), in order for f(x) to have n-th

order approximation, we can notice that the coefficients Ck must equal to the

38



counterparts for f (k)(x) in the left hand side of equation(3.16). Thus, we can

obtain the following conditions for kernel function W (x′ − x, h)

C0 =

∫

Ω

W (x′ − x, h) dx′ = 1

C1 = −h

∫

Ω

(
x′ − x

h
)W (x′ − x, h) dx′ = 0

C2 =
h2

2!

∫

Ω

(
x′ − x

h
)2W (x′ − x, h) dx′ = 0

...

Cn =
(−1)nhn

n!

∫

Ω

(
x′ − x

h
)nW (x′ − x, h) dx′ = 0 (3.18)

“These conditions could be further written in the following simplified expres-

sions in terms of the k-th moments Mk of kernel function”[31]

M0 =

∫

Ω

W (x′ − x, h) dx′ = 1

M1 =

∫

Ω

(x′ − x)W (x′ − x, h) dx′ = 0

M2 =

∫

Ω

(x′ − x)2W (x′ − x, h) dx′ = 0

...

Mn =

∫

Ω

(x′ − x)nW (x′ − x, h) dx′ = 0 (3.19)

We can notice that the first equation in (3.19) is the unity condition, while

the second equation is the symmetric condition for the kernel function[31].

Imposing these two conditions ensures the first order consistency for smoothed

particle hydrodynamics kernel approximation of a function.
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Approximation of the derivatives

In many physics systems, the governing equations are up to second order.

Thus, the analysis of approximation of the first and second derivatives of a

field function will be focused on.

For First derivative, the approximation can be obtained by substituting the

function f(x) in equation(3.2) with its first derivative f ′(x),

f ′(x) =

∫

Ω

f ′(x′)W (x′ − x, h) dx′ (3.20)

Withe the theorem of integral by parts

f ′(x) =

∫

S

f(x′)W (x′ − x, h) · n dS −

∫

Ω

f(x′)W ′(x′ − x, h) dx′ (3.21)

Replacing f(x′) with equation(3.15)

f ′(x) =

∫

S

f(x′)W (x′ − x, h) · n dS

−

∫

Ω

n
∑

k=0

(−1)khkf (k)(x)

k!
(
x′ − x

h
)kW ′(x′ − x, h) dx′ + rn(

x′ − x

h
)

=

∫

S

f(x′)W (x′ − x, h) · n dS

−

n
∑

k=0

(−1)khkf (k)(x)

k!

∫

Ω

(
x′ − x

h
)kW ′(x′ − x, h) dx′ + rn(

x′ − x

h
)

=

∫

S

f(x′)W (x′ − x, h) · n dS +

n
∑

k=0

C ′
kf

(k)(x) + rn(
x′ − x

h
) (3.22)

where

C ′
k =

(−1)k+1hk

k!

∫

Ω

(
x′ − x

h
)kW ′(x′ − x, h) dx′ (3.23)
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Similar to the previous section, if the following equations hold, the approxi-

mation of f ′(x) is n-th order consistent.

M ′
0 =

∫

Ω

W ′(x′ − x, h) dx′ = 1

M ′
1 =

∫

Ω

(x′ − x)W ′(x′ − x, h) dx′ = 0

M ′
2 =

∫

Ω

(x′ − x)2W ′(x′ − x, h) dx′ = 0

...

M ′
n =

∫

Ω

(x′ − x)nW ′(x′ − x, h) dx′ = 0 (3.24)

and

W (x′ − x, h)|S = 0 (3.25)

For second derivative, similarly, we have

f ′′(x) =

∫

Ω

f ′′(x′)W (x′ − x, h) dx′ (3.26)

Integrating by parts, where S is the boundary of Ω we obtain

f ′′(x) =

∫

S

f ′(x′)W (x′ − x, h) · n dS −

∫

Ω

f ′(x′)W ′(x′ − x, h) dx′

=

∫

S

f ′(x′)W (x′ − x, h) · n dS −

∫

S

f(x′)W ′(x′ − x, h) · n dS

+

∫

Ω

f(x′)W ′′(x′ − x, h) dx′ (3.27)
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Substituting f(x′) with equation(3.15) again

f ′′(x) =

∫

S

f ′(x′)W (x′ − x, h) · n dS −

∫

S

f(x′)W ′(x′ − x, h) · n dS

+

∫

Ω

n
∑

k=0

(−1)khkf (k)(x)

k!
(
x′ − x

h
)kW ′′(x′ − x, h) dx′ + rn(

x′ − x

h
)

=

∫

S

f ′(x′)W (x′ − x, h) · n dS −

∫

S

f(x′)W ′(x′ − x, h) · n dS

+

n
∑

k=0

(−1)khkf (k)(x)

k!

∫

Ω

(
x′ − x

h
)kW ′′(x′ − x, h) dx′ + rn(

x′ − x

h
)

=

∫

S

f ′(x′)W (x′ − x, h) · n dS −

∫

S

f(x′)W ′(x′ − x, h) · n dS

+

n
∑

k=0

C ′′
kf

(k)(x) + rn(
x′ − x

h
) (3.28)

where

C ′′
k =

(−1)k+1hk

k!

∫

Ω

(
x′ − x

h
)kW ′′(x′ − x, h) dx′ (3.29)

We can see that if the following equations hold, the approximation of f ′′(x) is

n-th order consistent.

M ′′
0 =

∫

Ω

W ′′(x′ − x, h) dx′ = 1

M ′′
1 =

∫

Ω

(x′ − x)W ′′(x′ − x, h) dx′ = 0

M ′′
2 =

∫

Ω

(x′ − x)2W ′′(x′ − x, h) dx′ = 0

...

M ′′
n =

∫

Ω

(x′ − x)nW ′′(x′ − x, h) dx′ = 0 (3.30)
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and

W (x′ − x, h)|S = 0 (3.31)

W ′(x′ − x, h)|S = 0 (3.32)

Conditions for n-th order approximations of field function and the

first two derivatives

Using the theorem of integral by parts, given equation (3.25), we can

obtain first expression in equation (3.24).

∫

Ω

W ′(x′ − x, h) dx′ =

∫

S

1 ·W (x′ − x, h) · n dS −

∫

Ω

(1)′ ·W (x′ − x, h) dx′

=

∫

S

W (x′ − x, h) · n dS = 0 (3.33)

Similarly, given equation (3.32)

∫

Ω

W ′′(x′ − x, h) dx′ =

∫

S

1 ·W ′(x′ − x, h) · n dS −

∫

Ω

(1)′ ·W ′(x′ − x, h) dx′

=

∫

S

W ′(x′ − x, h) · n dS = 0 (3.34)

If equations (3.25) and (3.32) are satisfied, equations (3.24) and (3.30) except

the first equations can be obtained with equations(3.19) by using the following
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integration by parts

∫

Ω

(x′ − x)kW (x′ − x, h) dx = −
1

k + 1

∫

Ω

[

(x′ − x)k+1
]′
W (x′ − x, h) dx

= −
1

k + 1
(

∫

S

(x′ − x)k+1W (x′ − x, h) · n dS

−

∫

Ω

(x′ − x)k+1W ′(x′ − x, h) dx)

=
1

k + 1

∫

Ω

(x′ − x)k+1W ′(x′ − x, h) dx (3.35)

and

∫

Ω

(x′ − x)kW ′(x′ − x, h) dx = −
1

k + 1

∫

Ω

[

(x′ − x)k+1
]′
W ′(x′ − x, h) dx

= −
1

k + 1

∫

S

(x′ − x)k+1W ′(x′ − x, h) · n dS

−

∫

Ω

(x′ − x)k+1W ′′(x′ − x, h) dx

=
1

k + 1

∫

Ω

(x′ − x)k+1W ′′(x′ − x, h) dx (3.36)

In conclusion, in order to ensure the approximation of field function and its

first two derivatives to be n-th order consistent, the kernel function should

satisfy equations (3.19), (3.25) and (3.32). Many kernel functions can satisfy

such equations.
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3.2 Discretization of Lagrangian fluid equations and re-

lated algorithms

A parallelized smoothed particle hydrodynamics code has been developed

with C++ and MPI. The code structure is inspired by the ideas of SPHyics

code developed by Gmez-Gesteira et al. [20]. This code is capable to simulate

compressible flow of free surface by solving the Euler equations that govern

the system.

3.2.1 Algorithms of the code

The spatial discretization of the governing equations is undertaken by

smoothed particle hydrodynamics method. And, the time integral is performed

by a second order Runge-Kutta scheme. There is a main loop in the code

to control the total physics time of the code as well as the maximum time

steps. In each time step, the states of each particle are updated through the

solving of corresponding equations. To ensure the stability, artificial viscosity

is introduced to the code.
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Governing equations of the system

The basic form of Euler equations for compressible flow (omitting the

diffusion term) is

∂ρ

∂t
+∇ · (ρu) = 0 (3.37)

∂(ρu)

∂t
+∇p = 0 (3.38)

∂E

∂t
+∇ · (u(E + p)) = 0 (3.39)

To close this system, an equation of state is required

E = E(ρ, p) (3.40)

By substituting the Nabla(∇) operator with smoothed particle hydrodynamics

method representation, and including artificial viscosity as well as some other

particle related modification terms into the equations, the following equations

are obtained

dρa
dt

=
∑

b

mbvab∇aWab (3.41)

dva

dt
= −

∑

b

mb(
Pb

ρ2b
+

Pa

ρ2a
+Πab)∇aWab + g (3.42)

dea
dt

=
1

2

∑

b

mb(
Pb

ρ2b
+

Pa

ρ2a
+ Φab)vab∇aWab (3.43)
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The Πab is the artificial viscosity[38]

Πab = αD















−αC̄abµab

¯ρab
~vab~rab < 0

0 ~vab~rab > 0

(3.44)

with µab =
h~vab~rab
~r2
ab
+η2

, ~rab = ~ra − ~rb, ~vab = ~va − ~vb, C̄ab =
Ca+Cb

2
, ρ̄ab =

ρa+ρb
2

, and

η2 = 0.01h2. α is a free parameter for problem. The stiffened polytropic EOS

model is

e =
p + γpinf
(γ − 1)ρ

− einf (3.45)

A feature of Lagrangian particle is that it moves with the flow, the updating

formula for the particle position is in need. In the code, particles are moved

with XSPH variant[36].

dra
dt

= va + ǫ
∑

b

mb

ρ̄ab
vbaWab (3.46)

Here, ǫ = 0.5, ρ̄ab = (ρa+ ρb)/2. By utilizing this method, particles are moved

with a velocity close to the average velocity in it vicinity.

Time integral scheme

Second order Runge-Kutta scheme and symplectic Verlet scheme have

been implemented. Write the Euler equations and the position updating for-
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mula in the following form

dva

dt
= Aa

ρa
dt

= Fa

ea
dt

= Ea

dra
dt

= Va (3.47)

The second order Runge-Kutta explicit scheme

yn+1 = yn + hf(tn +
1

2
h, yn +

1

2
hf(tn, yn)) (3.48)

Substituting equations (3.47) individually into equation (3.48), we obtain

vn+1
a = vn

a +∆tA(tn +
∆t

2
,vn

a +
∆t

2
A(tn,v

n
a))

ρn+1
a = ρna +∆tF (tn +

∆t

2
, ρna +

∆t

2
F (tn, ρ

n
a))

en+1
a = ena +∆tE(tn +

∆t

2
, ena +

∆t

2
E(tn, e

n
a))

rn+1
a = rna +∆tV(tn +

∆t

2
, rna +

∆t

2
V(tn, r

n
a)) (3.49)

There is a trade off between order of accuracy and space complexity. The

higher the order is, the more temporary space will be needed.

The predictor-corrector scheme is not a symplectic scheme thus the energy

is not conservative. In order to simulate some real world phenomena, the

conservation of energy is critical to ensure the stability of the system. The
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Verlet Scheme is

vn+1
a = vn−1

a + 2∆tAn
a

ρn+1
a = ρn−1

a + 2∆tDn
a

en+1
a = en−1

a + 2∆tEn
a

rn+1
a = rn−1

a +∆tVn
a + 0.5∆t2An

a (3.50)

3.2.2 Neighbour searching

In the development of the code, one of the crucial part is the neigh-

bour searching method The performance of neighbour searching algorithm

will greatly affect the performance of the code. The kernel function is effective

in a radial domain with finite radius, in many cases, which is two times the

smoothing radius h.

Bucket Searching

In the code, the bucket searching method is employed. Since each par-

ticle only interacts with adjacent neighbour particles, by dividing the whole

computation domain with searching bucket (square in 2D and cube in 3D)

and leveraging the locality of searching buckets, it is trivial to build up the

neighbour list of a certain particle.

For visually simplicity, a 2D example is presented here. The searching ra-

dius is 2h, and, if the searching bucket edge length is 2h, it is obvious that
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Figure 3.1: Bucket Searching

all neighbours of a particle will be in the same bucket that the center parti-

cle lies in and one layer of neighbour searching bucket because the minimum

distance between center particle and the boundary of this searching stencil is

2h. From Figure 3.1, particle 1 is the particle of interest, and particles lying

in the searching circle are neighbour particles. It is always that the union of

searching buckets does not exactly overlap but is larger than the computa-

tional domain.

With bucket searching method, the time complexity is O(N) when building

the buckets and O(1) when searching for neighbours for most cases. Given the

edge length of bucket and the starting point, it costs O(1) time to find out in

which bucket a certain particle lies. In addition, bucket searching method is

relatively easy to be parallelized, because of the spatial domain decomposition

nature of such method. The bucket searching method is very efficient when

the distances between particles are relatively a constant.
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Octree Searching

The octree searching[8] routine is also implemented(for 2D, it is quadtree)

by our group. The idea is building up an 2n-tree data structure to divide the

spatial domain, storing all the particle position in such data structure and

searching the neighbours via the tree. The depth of the tree is very important.

As the increasing of the depth, building time is also increasing. An empirical

number is 4 or 5. The tree searching method costs O(NlogN) time to build

up the tree and roughly O(logN) time to obtain the neighbour list. Generally

speaking, octree searching routine is not efficient in some circumstances. The

details of octree searching algorithm will be discussed in the next chapter.

3.2.3 Parallelization

In many simulation, it is necessary to process with large number of par-

ticles. If the particle number is too large, there could be two problems. One

is that the memory of a single computer can not store all the data structure,

and the other one is that the simulation time is very long. Thus, it is critical

for the code to be parallelized for real world simulation.

Based on the bucket searching method, the computation domain can be di-

vided into many subdomains. For each subdomain, there is a buffer layer.

The buffer is crucial for calculating the interaction of particles. The thick-

ness of the buffer is the same as the edge length of searching bucket ensuring

that each particle will obtain the same neighbour list in both serial case and

parallel case with same initial settings. In the beginning of each time step,
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the latest particle information is put into the buffer layer. In the end of each

time step, because particles can move into the buffer layer, a particle synchro-

nization procedure is carried out to update the particle information in each

subdomain. This is a major difference between particle based parallelization

and structure grid based parallelization. Such procedure is sometimes called

particle management.

The load balance and scaling of this parallelization depend on the distribution

of particles. When particles concentrate to a relatively small cubic (in 2D it

is square) domain with almost constant distance, the parallelization will have

good performance.

3.3 Applications of SPH

Two simulations which are in weakly compressible regime are performed

by the code. The stiffened polytropic EOS(Equation of State) model as well

as Tait’s EOS model are employed to simulate the weakly compressibility of

the fluid flow.

3.3.1 Mercury jet entrance into mercury pool

Physics Background[46]

The main driver for computational magnetohydrodynamics is the research

in magnetically conned nuclear fusion which has recently been boosted by

the International Thermonuclear Experimental Reactor project (ITER, [1]).

Numerical algorithms for nuclear-fusion-simulation research are optimized for
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highly conductive, fully ionized plasmas. In simplied studies, even the innite-

conductivity approximation is widely used (ideal MHD approximation [13]).

But even in thermonuclear fusion devices such as tokamaks, low-conductivity,

weakly ionized plasma may still be present under special conditions despite

very high temperature (the nuclear fusion ignition temperature is of the order

of 10 keV or 108 K). In tokamaks, weakly ionized plasma is found in the ab-

lated clouds of cryogenic fuel pellets. The injection of such frozen deuterium

- tritium pellets is considered the most ecient technique for the fueling of

tokamaks[40]. In order to visualize the movement of mercury, a level function

liked approach is adopted. This approach allows approximated interfaces to be

shown and calculating interpolated interior state values on a Cartesian mesh.

With the state values in a regular grid, better analysis of the simulation result

can be processed.

Simulation result

Simulation has been done with smoothed particle hydrodynamics code,

as shown in Figures 3.2,3.3,3.4.

3.3.2 Mercury jet interacting with proton beams

Physics Background and simulation

As mentioned in the previous section, the mercury target is proposed to

be collided with proton beams. This collision will bring forth high energy

density in the mercury as well as trigger the mercury to blow up. In order to
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Figure 3.2: Initial state of the jet

Figure 3.3: The state in the middle of simualtion
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Figure 3.4: The state in end of simulation

study such phenomenon, an experiment was designed. Mercury was placed in

a thimble(Figure 3.5) and bombarded by proton beams. As the increasing of

energy deposition, the mercury will erupt from the thimble.

Simulation result

A collaborator Hsin-Chiang Chen made some simulation with smoothed

particles hydrodynamics code. By comparing the simulation result and exper-

iment result(Figures 3.6, 3.7, 3.8), we can see that the pressure, velocity and

height values obtained by simulation is similar to experiment results.

3.4 Analysis of Accuracy and Deficiency of SPH

Smoothed Particle Hydrodynamics is a conserved method and has great

stability over time which comes from the conservative nature of such technique.

However, there is also a significant drawback preventing a broader application
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Figure 3.5: Mercury thimble

Figure 3.6: Mercury splash (thimble)
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Figure 3.7: Mercury splash (thimble) at time 0.5 ms produced by Hsin-Chiang
Chen

Figure 3.8: Mercury splash (thimble) at time 0.7 ms produced by Hsin-Chiang
Chen
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Figure 3.9: The testing particles for Smoothed Particle Hydrodynamics

of such approach, the accuracy. The error of approximation of derivatives by

smoothed particle hydrodynamics is neither with small absolute value compar-

ing with result obtained by finite difference, nor with acceptable convergence

rate. In the discretized form, the summation(integral) of kernels no longer

satisfied the previous conditions(3.19), (3.25) and (3.32) for consistency. A

test for the approximation of gradient obtained by smoothed particle hydro-

dynamics has been carried out. The test function is chosen as f(r) = exp(r2)

both in 2D and 3D(r = x2+y2 in 2D, r = x2+y2+z2 in 3D). The test domain

is r < 1 and all particles are placed with structured square packing(Figure

3.9). Because of the symmetry, L2 norm of error in all directions will be the

same, and only the result in x direction is shown. From the following tables

we can see that the absolute value of errors are very large and there is only

zero-th convergence rate.

This brings the result that Smoothed Particles Hydrodynamics is not a
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particle distance error of ∂U
∂x

with
SPH

error of ∂U
∂x

with FD

0.1 1.0497 1.32× 10−2

0.05 1.0224 3.2× 10−3

0.025 1.0107 7.79× 10−4

Table 3.1: The mesh refinement test for SPH in 2D

particle distance error of ∂U
∂x

with
SPH

error of ∂U
∂x

with FD

0.1 1.1995 1.35× 10−2

0.05 1.1044 3.3× 10−3

0.025 1.0401 7.98× 10−4

Table 3.2: The mesh refinement test for SPH in 3D

good option for study phenomenon govern by linear waves. Meanwhile, for

phenomenon govern by nonlinear waves, Smoothed Particle Hydrodynamics

may perform better[41].
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Chapter 4

Lagrangian Particle Method with Local

Polynomial Fitting

In this chapter, an Lagrangian Particle Method with local Polynomial

Fitting will be discussed. The motivation of developing such method is that

poor derivatives accuracy strongly limits the applications of SPH. This ap-

proach utilizes local polynomial fitting to obtain estimators for derivatives,

and solves the underlying Lagrangian equation for fluid. Here we keep only

one idea of SPH, replacing material parcel to be particle. Some novel features

including

• The method is free of artificial parameter: smoothing length.

• The change of density is evolved using Jacobian of particle position

• Local polynomial fitting is employed to perform derivative approximation
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4.1 Lagrangian Equations

The Lagrangian equations with artificial viscosity for flow are

∂R

∂t
= u (4.1)

∂u

∂t
= V0(

R(r, t)

r
)α−1∇r(p+ q) (4.2)

∂E

∂t
= −(p+ q)

∂V

∂t
(4.3)

where V0 =
1
ρ0
, and two auxiliary equations

V = V0(
R(r, t)

r
)α−1∂R

∂r
(4.4)

E = EOS(p, V ) (4.5)

A discretization of such equations in 3D(1D formula can be found in[44], 3D

induction provided by Wei Li) is here. Let R = (x, y, z) and u = (u, v, w), we
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have

xn+1 = xn +∆tun+1 (4.6)

yn+1 = yn +∆tvn+1 (4.7)

zn+1 = zn +∆twn+1 (4.8)

un+1 = un −∆tV n(
∂p

∂x
+

∂q

∂x
)n (4.9)

vn+1 = vn −∆tV n(
∂p

∂y
+

∂q

∂y
)n (4.10)

wn+1 = wn −∆tV n(
∂p

∂z
+

∂q

∂z
)n (4.11)

En+1 = En − (
pn+1 + pn

2
+ qn+1)(V n+1 − V n) (4.12)

V n+1 = V nJ(
∂Rn + 1

∂Rn
) (4.13)

pn+1 = eos(En+1, V n+1) (4.14)

The artificial viscosity term is

qn =















2(a∆x)2

V n−1(V n+V n−1)
(V

n−V n−1

∆t
)2 V n − V n−1 < 0

0 otherwise

(4.15)

The Jacobian is

J(
∂Rn+1

∂Rn
) ==

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂xn+1

∂xn
∂xn+1

∂yn
∂xn+1

∂zn

∂yn+1

∂xn

∂yn+1

∂yn
∂yn+1

∂zn

∂zn+1

∂xn
∂zn+1

∂yn
∂zn+1

∂zn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.16)
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4.2 Approximation for derivatives and discretization of

governing equation

4.2.1 Local Polynomial Fitting

To discretize the partial differential equations, local polynomial fitting

will be employed. The local polynomial fitting has long been used to obtain

the estimators for original function and corresponding derivatives[12, 22, 7],

and the accurracy of it has also been discussed. Normally, with n − th order

polynomial, for ν − th order derivative, an estimator with (n− ν + 1)− th to

(n− ν + 2)− th order of accuracy can be obtained. For visually simplicity, a

2D example is discussed here. As shown in Figure ??, in the vicinity of point

0, the function value in point i can be expressed by

Ui = U0 + hi

∂U

∂x

∣

∣

∣

∣

0

+ ki
∂U

∂y

∣

∣

∣

∣

0

+
1

2
(h2

i

∂2U

∂x2

∣

∣

∣

∣

0

+ k2
i

∂2U

∂y2

∣

∣

∣

∣

0

+ 2hiki
∂2U

∂x∂y

∣

∣

∣

∣

0

) + . . .

(4.17)

where, Ui and U0 are the corresponding function values in points i and 0. A

polynomial can be used to approximate the original function and let us employ

second order polynomial for example.

Ũ = U0 + hiθ1 + kiθ2 +
1

2
h2
i θ3 +

1

2
k2
i θ4 + hikiθ5 (4.18)

And the variables θ1, θ2, θ3, θ4 and θ5 can be the estimators for ∂U
∂x
, ∂U
∂y
, ∂

2U
∂x2 ,

∂2U
∂y2

and ∂2U
∂x∂y

respectively. In order to obtain these variables, we can do local polynomial

fitting with some points in the vicinity of center point 0. Suppose there are n
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points in the neighbourhood of point 0 and they are called neighbours of point

0. A linear system can be built respectively



















h1 k1
1
2
h2
1

1
2
k2
1 h1k1

h2 k2
1
2
h2
2

1
2
k2
2 h2k2

...
...

...
...

...

hn kn
1
2
h2
n

1
2
k2
n hnkn













































θ1

θ2

θ3

θ4

θ5



























=



















U1 − U0

U2 − U0

...

Un − U0



















And, by solving this linear system, the variables can be obtained. In

order to guarantee that a meaningful result to be acquired, there are some

technical details about neighbour searching and will be discussed later.

To solve the linear system, the QR decomposition with pivoting is em-

ployed. An optimum solution is a solution x that minimize the L2 norm of

residual

min‖Ax− b‖2 (4.19)

and QR decomposition with column pivoting is employed to obtain x. Suppose

m ≥ n(m is the number of rows and n is the number of columns),

A = Q







R

0






P T , m ≥ n (4.20)

where Q is an orthonomal matrix, R is an upper triangle matrix and P is a

permutation matrix, chosen(in general) so that

|r11| ≥ |r22| ≥ · · · ≥ |rnn| (4.21)
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and moreover, for each k,

|rkk| ≥ ‖Rk:j,j‖2forj = k + 1, · · · , n. (4.22)

In numerical computation, by determine an index k, such that the leading

submatrix R11 in the first k rows and columns is well conditioned and R22 is

negligible:

R =







R11 R12

0 R22






≃







R11 R12

0 0






(4.23)

Then k is the effective rank of A. Discussion about the numerical rank de-

termination can be found in Golub and Van Loan[18]. A simple way to do

numerical rank determination is to set a tolerance ǫ such that

ǫR11 ≥ Rkk (4.24)

and an appropriate choice of ǫ could be 10−8. But, this approach is not stable.

The solution for linear system (4.19) can be obtained as

x = P







R−1
11 c1

0






(4.25)

where c1 is the first k elements of c = QT b. This can also be written as

x = A+b (4.26)
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particle distance error of ∂U
∂x

with
LPF

error of ∂U
∂x

with FD

0.1 2.08× 10−2 1.32× 10−2

0.05 5.4× 10−3 3.3× 10−3

0.025 1.4× 10−3 7.79× 10−4

Table 4.1: The mesh refinement test for local polynomial in 2D, LPF stands
for local polynomial fitting and FD stands for finite difference

particle distance error of ∂U
∂x

with
LPF

error of ∂U
∂x

with FD

0.1 2.64× 10−2 1.35× 10−2

0.05 7.1× 10−3 3.3× 10−3

0.025 1.8× 10−3 7.98× 10−4

Table 4.2: The mesh refinement test for local polynomial in 3D, LPF stands
for local polynomial fitting and FD stands for finite difference

where

A+ = P







R−1
11 0

0 0






QT (4.27)

is the pseudoinverse of matrix A.

A test for first derivative in structured grid is carried out. The test

function is f = ex
2+y2 in a unit circle. The result of second order finite

difference is used to be the control. Test results are listed on tables 4.2.1

and 4.2.1. We can see that local polynomial fitting approximation has good

convergence rate and the absolute value of error is comparable to the result of

second order finite difference.
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4.2.2 Neighbour searching and boundary particle find-

ing

As mentioned in the previous section, the neighbour searching algorithm

may greatly affect the result. With too small number of neighbours, the ac-

curacy of estimators may be very low. With too large number of neighbours,

the accuracy may also be very low and the computational cost will be very

high. Meanwhile, the distribution of neighbours also affects the result. If all

neighbours gather in a small area near the center point, we can expect relative

bad outcome to be obtained. We suggest that number of neighbours should

be greater of equal to twice of number of variables. For example, with second

order polynomial, 10 neighbours will be a good choice, while slightly smaller

number may still be doable. Also, the number of neighbours can be different

for each center particle. The distribution of particles is a even difficult issue to

be control cause the distribution of points are already fixed. We suggest that

the distances of neighbours to the center point should be differs less than 2

times and the neighbours should be relatively equally distributed in the vicin-

ity of center particle. A viable approach in 2D will be dividing the vicinity of

center particle to 4 quadrants and selecting 2 to 3 neighbours in each quad-

rant, and in 3D, it will be dividing the vicinity to be 8 octants and selecting

neighbours respectively.

For elliptic problem, the imposing of boundary condition is very impor-

tant and in order to impose the boundary condition, boundary particles need

to be found. With sufficient resolution of boundary, we can expect that the
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number of points in a circle with fix radius to the center point will be smaller

in the boundary point than interior point. By setting a threshold and checking

all the points, all the boundary points can be located. For Dirichlet boundary

condition, knowing the position of boundary points is enough. For Neumann

boundary condition, the normal direction in the boundary point has to be

calculated. In 2D, the boundary is a curve. By selecting adjacent boundary

points of a given boundary points, a polynomial can be obtained by fitting.

After obtaining the polynomial, the normal direction of can be calculated an-

alytically. In 3D, same approach can be applied to surface.

4.2.3 Elliptic Boundary problem and discretization

The governing equation of elliptic boundary problem is

∇β∇Φ = f (4.28)

with Neumann boundary condition

∂Φ

∂n

∣

∣

∣

∣

Γ

= g (4.29)

or Dirichlet boundary condition

Φ|Γ = h (4.30)
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Figure 4.1: The stencil for boundary particle

Neumann Boundary Condition

The governing equation of elliptic Neumann boundary problem is

∇ · (k∇ϕ) = f (4.31)

with boundary condition

∂U

∂n

∣

∣

∣

∣

∂Ω

= g (4.32)

Let’s consider the discretization of governing equation for interior particles

first. As shown in Figure 4.1, particle 0 is the particle of interest and there

are n neighbour particles in the interaction domain. A linear system Ax = b
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can be obtained. As described before, the solution x can be solved as A+b.

Donoting

A+ =













d11 d12 · · · d1n

· · · · · ·
. . . · · ·

d51 d52 · · · d5n













(4.33)

the estimator for derivatives can be written as

∂U

∂x
=

n
∑

i=1

d1iUi − c1U0 (4.34)

∂U

∂y
=

n
∑

i=1

d2iUi − c2U0 (4.35)

∇2U =
n

∑

i=1

(d3i + d4i)Ui − (c3 + c4)U0 =
1

k
f (4.36)

where

ci =
n

∑

j=1

dij (4.37)

For boundary particles( Figure 4.2), both the governing equation and bound-

ary condition need to be discretized. In order to couple both the boundary

condition and governing equation, a ghost particle is introduced. Also, as men-

tioned in the previous chapter, the approximation of the normal direction is

obtained by the summation of all directed edges from surrounding particles to

the central particle, n = 1
n

∑n
j=1 ej. To scale the length of the normal vector,

it is divided by n. The ghost particle is placed in (x0, y0) + n, where (x0, y0)

is the position of particle 0. Together with ghost particle, there are m = n+1

neighbour particles, while particle m is the ghost particle. Let n = nxex+nyey

, while nx and ny are the x and y components of n correspondingly, ex and ey
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Figure 4.2: The stencil for boundary particle

are the base vector in x and y directions correspondingly. nx and ny can be

further expressed by hj and kj

nx = −
1

n

n
∑

j=1

hj

ny = −
1

n

n
∑

j=1

kj

And, obviously, hm = nx, km = ny. So, a similar linear system Ax = b can be

constructed and by discretizing the governing equation, and we obtain

∇2U =

m
∑

j=1

(c3j + d4j)Uj − (c3 + c4)U0 =
1

k
f (4.38)
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The boundary condition can be written as

∂U

∂x
nx +

∂U

∂y
ny = g (4.39)

and we obtain

m
∑

j=1

(d1jnx + d2jny)Uj − (c1nx + c2ny)U0 = g (4.40)

thus

Um =
g + (c3nx + c4ny)U0 −

∑l
j=1(d1jnx + d2jny)Uj

d1mnx + d2mny

(4.41)

Substitute equation (4.41) into equation (4.38)

l
∑

j=1

[

d3j + d4j −
d3m + d4m

d1mnx + d2mny

(d1jnx) + d2jny

]

Uj

−

[

c3 + c4 −
d3m + d4m

d1mnx + d2mny

(c1nx + c2ny)

]

U0

=
1

k
f −

d3m + d4m
d1mnx + d2mny

g (4.42)

With equation (4.34) and equation (4.42), the governing equation on all par-

ticles can be discretized. By solving the linear system consisting of all the

discretization, the values of ϕ on each particle can be obtained. Since the

boundary condition is Neumann boundary condition, the solution can be dif-

fer up to a constant. If we are interested in the gradient of ϕ, it can be

calculated in a similar way of discretizing the governing equation. For interior
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particles,

∇ϕ =
n

∑

j=1

(d1jex + d2jey)Uj − (c1ex + c2ey)U0 (4.43)

for boundary particles, the value of ghost particle should be calculated from

the discretization of governing equation first

Um =
1
k
f + (c3 + c4)U0 −

∑n
j=1(d3j + d4j)Uj

d3m + d4m
(4.44)

then the gradient can be obtained by,

∇ϕ =
n

∑

j=1

((d1j −
d1m(d3j + d4j)Uj)

d3m + d4m
)ex

+(d2j −
d2m(d3j + d4j)Uj)

d3m + d4m
)ey)Uj

−((c1 −
d1m(c3 + c4)

d3m + d4m
)ex

+(c2 −
d2m(c3 + c4)

d3m + d4m
)ey)U0

+
f

k(d3m + d4m)
(d1mex + d2mey) (4.45)

Dirichlet Boundary Condition

The discretization of Dirichlet boundary condition is relatively simpler.

All the function values of boundary particle are given so that linear system

will be built only on interior particles. When a boundary particle is included

in the neighbours of an interior particle, supposing the boundary particle is
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particle 1, equation

9
∑

i=1

(d3i + d4i)Ui − (c3 + c4)U0 =
1

k
f (4.46)

can be rewrite as

9
∑

i=2

(d3i + d4i)Ui − (C3 + c4)U0 =
1

k
f − (d31 + d41)U1 (4.47)

4.2.4 Solving of the global system

After building the unknown matrix and corresponding right-hand-side, a

global linear system is obtained. For Dirichlet boundary condition, this matrix

is with full rank, while for Neumann Boundary condition, the matrix is with

rank deficiency one. LSQR method can be adopted to solve both these two

cases, and theoretically, LSMR method will be with better performance.

4.2.5 Verification

In this part, 2D and 3D verification for both Neumann and Dirichlet

boundary condition will be discussed.

The distribution of particle is constructed in the following way in 2D. First,

particles were evenly placed in a domain Ω = [−1 : 1] × [−1 : 1] with cer-

tain interval in x direction ∆x and y direction ∆y and ∆x = ∆y. Parti-

cles in circle x2 + y2 ≤ 1 were selected. Then, random perturbation was

applied to each particle. The perturbation vector is p = (px, py) where

|p| = 0.2∆x. One distribution of particles is shown in Fig (4.3). For Neu-
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Figure 4.3: The distribution of particles

Mesh Size error for Neu-
mann Boundary
condition

rate error for Dirich-
let Boundary
condition

rate

0.1 4.30× 10−2 9.66× 10−3

0.05 1.23× 10−2 1.81 2.70× 10−3 1.83
0.025 3.16× 10−3 1.96 7.22× 10−4 1.9

Table 4.3: The mesh refinement test in 2D

mann boundary condition, the normal vector of boundary particle is obtained

as described in section (4.2.3,??). Simulation was run for 100 times for Neu-

mann boundary condition and 50 times for Dirichlet boundary condition. For

Neumann boundary condition, the error is a vector and the relative error is

|numerical gradient−exact gradient|
|exact gradient|

. For Dirichlet boundary condition, relative er-

ror is |numerical solution−exact exact solution|
|exact solution|

. Neumann Boundary condition results

are shown in the Figures 4.4,4.5,4.6. The horizontal line in each figure is the

average error of 40 different random events.

The table(4.2.5) shows the summary of such results In 3D, the particles

inside the ball x2 + y2 + z2 ≤ 1 were selected and similar perturbation as 2D
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Figure 4.4: The RMS relative error of 2D Neumann Boundary Condition test
with 0.1 average shortest particle distance
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Figure 4.5: The RMS relative error of 2D Neumann Boundary Condition test
with 0.05 average shortest particle distance
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Figure 4.6: The RMS relative error of 2D Neumann Boundary Condition test
with 0.025 average shortest particle distance

was applied:p = (px, py, pz) where |p| = 0.2∆x. Figures 4.7, 4.8, 4.8 show the

results and the horizontal line in each figure is the average error of 10 events.

The table (4.2.5) shows the summary of the results we can see approxi-

mate second order convergence rate from the above tables.

Verification on complex interfaces(Figures 4.10, 4.11) has also been car-

ried out with Neumann Boundary Condition and same testing function. 2D

has been done with interface formula

r = 1 + 0.2sin(5θ)
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Figure 4.7: The RMS relative error of 3D Neumann Boundary Condition test
with 0.1 average shortest particle distance
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Figure 4.8: The RMS relative error of 3D Neumann Boundary Condition test
with 0.05 average shortest particle distance
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Figure 4.9: The RMS relative error of 3D Neumann Boundary Condition test
with 0.025 average shortest particle distance

Mesh Size error for Neu-
mann Boundary
condition

rate error for Dirich-
let Boundary
condition

rate

0.1 3.58× 10−2 1.05× 10−2

0.05 9.96× 10−3 1.85 2.96× 10−3 1.83
0.025 2.66× 10−3 1.9 7.9× 10−4 1.91

Table 4.4: The mesh refinement test in 3D
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Mesh Size 2D Test convergence rate 3D Test convergence rate
0.13 0.1064 0.1773
0.053 0.0318 1.74 0.0517 1.78
0.0253 0.0085 1.9 0.0142 1.86

Table 4.5: The mesh refinement test for complex domain

so that, in 2D Cartesian coordinate system, the formula would be

x = (1 + 0.2sin(5θ))cos(θ)

y = (1 + 0.2sin(5θ))sin(θ)

3D has been done with interface formula

r = 1 + 0.03e−|tan(ϕ)|sin(5θ)

and the formula in Cartesian coordinate system is

x = (1 + 0.03e−|tan(ϕ)|sin(5θ))cos(ϕ)cos(θ)

y = (1 + 0.03e−|tan(ϕ)|sin(5θ))cos(ϕ)sin(θ)

z = (1 + 0.03e−|tan(ϕ)|sin(5θ))sin(ϕ)

Boundary particles are put exactly on the surface(curve in 2D) and the nor-

mal direction is analytically given. In 3D test, Spherical Centroidal Voronoi

Tesselation(SCVT)[10, 24, 43] is used to initialize the positions of boundary

particles.
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Figure 4.10: Testing domain for 2D
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Figure 4.11: Testing domain for 3D

The electric potential problem mentioned mentioned in chapter ?? is used

to validate this approach.

∇2ϕ = ∇ · (
1

c
u× b) (4.48)

∂ϕ

∂n

∣

∣

∣

∣

Ω

=
1

c
(u× b) · n (4.49)

Figure 4.12 shows the results obtained. The absolute values of current density

and the direction of the current density are close to that obtained by mesh

technique.

4.3 Development of Parallel Lagrangian Particle Code

A parallel Lagrangian particle code employing local polynomial fitting

method is implemented. The code consists of the following classes
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Figure 4.12: The current density obtained by local polynomial fitting method

1. Controller module

2. Particle management and physics module

(a) Visualization module

(b) Equation of state model

3. parallel communication module

4. Neighbour searching module

5. Local polynomial fitting coefficient calculation module

6. Time integral module

7. Spatial discretization module

8. Elliptic solver
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9. Matrix solver

4.3.1 Controller Module

The controller is designed for controlling the work flow of the code. Con-

troller reads initial settings from input file first. After that, the initialization

module set initial states for all the particles. For pure elliptic problem, the

elliptic solver will then be called, solve the corresponding problem store the

result. For hyperbolic problem, the selection of temporal and spatial dis-

cretization schemes is read from the input file and a loop is create to carry

out the time integral. For elliptic problem, there is only one set of output

information, while for hyperbolic problem, customized output time interval

can be set from the input file.

4.3.2 Particle Management and Physics Module

This module is designed for the management of Lagrangian particles and

applying corresponding physics for each particle. A particle has the following

states

1. velocity

2. density

3. specific energy(for compressible assumption)

4. pressure

5. position
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Also, for each particle, the neighbour list is built in the beginning of each

step, and the corresponding coefficients of all neighbours for the approximation

of derivatives are also calculated. Equation of state module is for particle

with compressible assumption. Currently, polytropic and stiffed-polytropic

equation of state model are implemented. The visualization of interior states

is critical in research. Both scalar field and vector field of interior states are

printed into VTK files. To do mesh based visualization of states, a visualization

mesh is built and states are deposit into the mesh.

4.3.3 Parallel Communication Module

The parallelization of local polynomial fitting Lagrangian code is similar

to that of smoothed particle hydrodynamics code. It includes two main steps,

the moving of particle between subdomains and the synchronization of buffer

zone. For weakly compressible code, the distance between particles is varying

in a relatively small range. The size of the buffer zone is determined by the

maximum distance between central particle and neighbours to ensure that

all interior particles have sufficient neighbour information. In the first step

of communication, information of particles moving into the buffer zones is

transfered to the corresponding adjacent subdomains. Next, information of

particles in the area corresponding to the buffer zone of adjacent subdomains

is transfered.
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Figure 4.13: The partition of quadtree

4.3.4 Neighbour Searching Module[8]

Octree searching algorithm is employed to perform neighbour searching.

For visual simplicity, the corresponding algorithm in 2D, quadtree searching,

is discussed here. M De Berg, O Cheong, M van Kreveld, M Overmars offer a

nice description of the quatree searching algorithm in their book[8]. A quadtree

is a rooted tree that every subtreenode has four children. Every node in the

quadtree is corresponding to a square in the searching domain. If a node

n has children, then the corresponding squares of such children are the four

quadrants of the square of n. The four quadrants of the subtree nodes together

form the square of the parent(Figure 4.13). The children can be labeled as

NE, NW, SW, and SE indicating the corresponding quadrants. Here is a

definition[8] of quadtree for a set P of points inside a square Ω. Let Ω = [xΩ :

x′
Ω]× [yΩ : y′Ω].
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• If size(P) ≤ 1, then the quadtree consists of a single leaf where the set

P and the square Ω is stored.

• Otherewise, let ΩNE , ΩNW , ΩSw and ΩSE denote the four quadrants of

Ω. Let xmid =
xΩ+x′

Ω

2
and ymid =

yΩ+y′
Ω

2
.

Define

PNE = p ∈ P : px > xmid and py > ymid

PNW = p ∈ P : px ≤ xmid and py > ymid

PSW = p ∈ P : px ≤ xmid and py ≤ ymid

PSE = p ∈ P : px > xmid and py ≤ ymid

The quadtree now consists of root node n where the square Ω is stored, and

the square stored at n is denoted by Ω(n).

In practice, it is not necessary for each node to store its corresponding square

as along as traversing the tree, the squares can be calculated.

The quadtree can be built recursively. Firstly, split the current square into

four quadrants, and split the point set accordingly. Then, construct quadtree

for each quadrants with its associated point set. The stopping criterion for

the recursion is that the size of point set is smaller than two[8].

A basic operation on quadtrees is neighbour finding: given a node n and a

direction, find a node n′ such that Ω(n′) is adjacent to Ω(n) in the given direc-

tion. This corresponds to finding an adjacent square of a given square. Let’s

take the finding of south neighbour as example. The pseudocode is as follows.
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SOUTHNEIGHBOUR(n,T) input: a node in a quadtree T. output: The deep-

est node n’ whose depth is at most the depth of n such that Ω(n′) is a south-

neighbour of Ω(n), and NULL if there is no such node.

1. if n is root(T) then return NULL

2. if n is the NW-child of parent(n) then return SW-child of parent(n)

3. if n is the NE-child of parent(n) then return SE-child of parent(n)

4. let µ be SOUTHNEIGHBOUR(parent(n),T)

5. if µ is NULL or µ is a leaf then return µ

6. else if n is the SW-child of parent(n) then return NW-child of µ

7. else return NE-child of µ

In the implementation, several things are different. The minimum area of a

square corresponding to a leaf is determined by the searching radius, thus more

than one points are allowed to reside in the smallest square and the stopping

criterion is the depth of the quadtree. To obtain all the particles with distance

smaller than certain value to a certain particle, the searching will be in eight

direction, that is east, north-east, north, north-west, west, south-west, south

and south-east for adjacent square. By calculating the distance between all

points in the same square as well as adjacent squares to the point of interest,

a neighbour list can be obtained. There is a trade off between the depth of the

tree and point number in each square. If the depth is smaller, the constructing
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time of the tree will be smaller while the comparison time for each adjacent

square will be larger. As mentioned in the previous chapter, normally, the

max depth is set to be 6 in our application.

4.3.5 Derivatives Estimator coefficient calculation mod-

ule

For a certain distribution of particles, the coefficients of approximation

for both first and second derivatives of all particles can be obtained together

by the solving of corresponding local linear system of least square problems.

Hyperbolic solver may use both first and second derivatives and elliptic solver

uses the second derivative. In order to reuse the approximation information,

the coefficients are evaluated after the parallel communication(for parallel run)

and neighbour list building for each particle. The coefficients of all first and

second partial derivatives are stored along side the neighbour list, meaning

that for each particle there is a set of coefficients associating with it. In the

current code, LAPACK is utilized to obtain the pseudoinverse.

4.3.6 Time Integral and Hyperbolic solver module

In the current code, forward Euler and second order Runge-Kutta schemes

are implemented.

For partial differential equation

∂y

∂t
= f(t, y) (4.50)

89



The forward Euler scheme is

yn+1 = yn + hf(t, y) (4.51)

The spatial derivatives in f is approximated by the local polynomial fitting.

yn is the value of an interior state of a particle in the current time step, yn+1 is

the value of the next time step and h is the time stepping size. With forward

Euler scheme, the solution is with first order in time and the time stepping

size is constrained by CFL condition. The second order Runge-Kutta scheme

is also called predictor-corrector scheme in some resource. It is

yn+1 = yn + hf(tn +
1

2
h, yn +

1

2
hf(tn, yn)) (4.52)

This is a two stages scheme with midpoint method. The solution is with second

order accuracy in time. The implementation of the second order Runge-Kutta

scheme costs more memory space than forward Euler scheme, because that an

extra particle management module instance is used to store the information

of the intermediate step besides two instances storing the information for the

current step and the next step.

4.3.7 Elliptic solver module

The elliptic solver can be called alone or together with the hyperbolic

solver if there is elliptic component in the corresponding problem. The elliptic

equation together with the boundary condition are discretized by local poly-
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nomial fitting. A linear system for all the discretizing equations of all particles

is constructed after that. To solve such linear system, PETSc[4, 3, 5] is em-

ployed. In the current code, a wrapper for the Krylov Subspace Methods are

implemented. There are two linear solvers in the wrapper, which are BiCGSL

solver and GMRES solver.

4.4 Applications

Lagrangian fluid solver can perform the same simulation discussed in

chapter one while with relatively less computational cost since only one type

of particle will be used. For phenomena discussed in chapter 2, by using local

polynomial fitting, the accuracy of solution will be greatly improved while keep

the basic physics facts. Currently, the hyperbolic solver is under development

and both verification and validation for the code will be carried out soon.
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Chapter 5

Conclusion

Mesh based as well as meshless algorithms have been developed and im-

plemented in parallel which are capable of solving elliptic boundary and elliptic

interface problem. Embedded interface method is implemented as a part of

FronTier library to solve incompressible MHD problems. This code is capable

of dealing with sharp interface with high jump of physics states. Simulation

for MHD jet and stefan problems have been carried out and there is good

agreement between numerical results and experiment results as well as theo-

retical results. The stefan problem benefits from the capability of preserving

sharp interface. Meanwhile, for MHD jet simulation, the code allows more

realistic conditions. Without embedded interface method, the sharp interface

may need to be smeared into a band. We can see much better simulation

results with the code employing embedded interface method.

A Smoothed Particle Hydrodynamics code is implemented and tested.

The test results show that SPH method can only obtain very poor derivatives

approximation. This fact limits the application of SPH method and it is
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actually solving the Hamiltonian system of particles. For acoustic wave driven

problems, the SPH method will not work. Also, SPH method highly depends

on artificial and ad-hoc parameters. These drawbacks of SPH became the

motivation of the developing of a new Lagrangian particle technique with local

polynomial fitting. With local polynomial fitting, accurate approximation of

derivatives can be obtained and there is no need any artificial parameters. We

can see very good convergence rate for approximation of derivatives by using

local polynomial fitting. The elliptic problems on complex boundary are also

tested and the results are with good accuracy.
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