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Abstract of the Dissertation 

Statistical Methods for Association Analysis of Biological Data 

by 

Erya Huang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2015 

 
Genome-wide association studies (GWA studies) are an important tool for 

identifying disease susceptibility variants for common and complex diseases. Traditional 

approaches to data analysis in GWA studies suffer with the multiple testing problem and 

also ignore any potential relationships between gene variants. We introduced here a 

novel two-stage framework with the combination of partial correlation network analysis 

(PCNA) and data mining techniques. This network-based technique, focusing on SNPs 

in joint modeling and their partial associations, alleviated the multiple testing problem and 

consequently increased the power to detect biologically relevant variants and their 

associations. Variable selection was achieved through penalized logistic regression using 

sparse-group lasso (SGL) penalty by grouping SNPs based on their: 1) pairwise canonical 

correlation measurement; or 2) biological information such as gene mapping. Network 

construction was based on pairwise partial correlation coefficients.  
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Simulation studies have indicated that this two-stage approach achieved high 

accuracy and a low false-positive rate in the identification of known individual and two-

way association targets, which elucidated that it is possible to recover the true direct 

relationship even for high-dimensional situation. Subsequently, we illustrated the 

proposed approach in a search for potential significant SNP-SNP/gene-gene associations 

with nicotine dependence using a real data example from a GWA study conducted by the 

Washington University at St. Louis. The result would provide researchers potentially 

biologically relevant genetic networks for further investigation. 

 

Another contribution of this thesis is the exploration of miRNA-mRNA regulatory 

set associated with essential thrombocytosis (ET) through the introduction of an 

application of penalized technique to canonical correlation analysis on microarray data 

sets. The identified variables were successfully tested by leave-one-out cross validation 

and a network exploration system.  
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1. Introduction  
 

1.1. Single Nucleotide Polymorphism (SNP) 
 

Variations in the human genome can alter the risk of developing a disease. Among 

a variety of genetic polymorphisms, including copy number polymorphisms, inversions, 

and short tandem repeats, single nucleotide polymorphisms (SNPs, pronounced as 

‘SNiP’) are the most common form of genetic variations, accounting for approximately 90% 

of human DNA polymorphisms (Collins, Brooks and Chakravarti 1998). An estimated 10 

million SNPs are commonly occurring in the human genome (Norrgard 2008). By 

definition, a SNP represents a single base pair change in DNA sequence (Figure 1) (Onay, 

et al. 2006). Within a population, typically two different sequence alternatives correspond 

to the same SNP location. These alternatives are called alleles and such SNP is 

categorized as bi-allelic polymorphism. Scarcely, there are also tri- and tetra-allelic 

polymorphisms existing in human genome. The frequency of a SNP is defined as minor 

allele frequency (m.a.f.), referring to the frequency of the less common allele (Bush and 

Moore 2012). Strictly speaking, SNPs should be distinguished from rare variations, with 

the criterion that the m.a.f. of SNPs are 1% or larger. A combination of functionally 

relevant SNPs may additively or synergistically affect the intrinsic properties and the 

function of the proteins to a variable degree (Onay, et al. 2006). On the other hand, the 
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term mutation is referred to rare genetic variant (m.a.f. < 1%), which corresponds to 

obvious functional consequences on the protein level and ultimately leads to the disease 

state.  

 

Figure 1. SNPs represent single base pair changes in DNA sequence (Gibbs, et al. 2003). 

 

Mendelian disorders are typically regarded as diseases of largely genetic 

causation, in which disease phenotypes are mainly driven by rare genetic variants in a 

single gene locus (Lu, Latourelle, O’Connor, Dupuis and Kolaczyk 2013). Most Mendelian 

disorder diseases are rare, including Huntington’s disease, Phenylketonuria, Cystic 

fibrosis, Sickle cell anemia, and Oculocutaneous albinism (MacDonald, et al. 1992, Chial 

2008, Bush, et al. 2012). Because of its simple genetic architecture, Mendelian disorders 

follow an autosomal dominant or recessive inheritance pattern in families with the disease 

and the identification of the disease-causing mutation(s) in a single gene is relatively 

straightforward with the collection of sufficient family materials (Cho 2010). A typical 

strategy is called linkage analysis, in which a collection of genomic markers from the 

affected family are genotyped and the shared inheritance of genetic variants is linked to 

that of the disease phenotype. In 1989, linkage analysis has been successfully applied to 

the identification of missense multiple mutations within the CFTR (cystic fibrosis 

transmembrane regulator) gene as the main cause of Cystic fibrosis (Riordan, et al. 1989). 
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It is rapidly followed with subsequent successes in uncovering many disease-associated 

mutations for Mendelian disorders.  

 

Apart from the rare Mendelian diseases, a majority of common diseases are 

complex diseases, including asthma, Autism, Alzheimer’s, Type II Diabetes, and various 

types of common cancer (Stevenson 1992, Gatz, et al. 1997, Altshuler, et al. 2000, Easton, 

et al. 2007). Unlike Mendelian diseases, complex diseases arise as a result of various 

combinations of multiple factors, such as genetic, environmental and developmental 

factors (Freimer and Sabatti 2007, Stratton and Rahman 2007). Therefore, any individual 

SNP only accounts for a small to moderate contribution to the overall risk of a disease 

phenotype of interest (Bush, et al. 2012). Unsurprisingly, traditional analysis methods for 

Mendelian diseases, such as family-based linkage analysis, to identify individually 

important variant, may not be likely to succeed in genetic studies of complex diseases. 

This in turn, calls for population-based association studies or genome-wide association 

studies.  

 

1.2. Genome-Wide Association Study (GWA Studies) 
 

1.2.1. Association Study 

 

The idea of association studies is to compare the allele frequency of an individual 

SNP, or a set of SNPs, in a cohort of unrelated cases to that of unrelated control subjects 
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conditioning on the confounding effects (gender, age, etc.). SNPs with higher frequency 

in the case cohorts are considered to be potentially associated with the disease 

phenotype of interest. Association study is claimed to be more powerful than linkage 

analysis in the capability of detecting lower penetrance alleles (Greenberg 1993, Hodge 

1994, Risch and Merikangas 1996). Despite of some notable findings, early association 

studies (before 2005) have not achieved much success, limited by several crucial factors, 

such as the number of available polymorphisms. As a result of the following advances, 

interests in association studies have been renewed in the last few years.  

1) The International HapMap Project 

Collaborating participants from multiple countries including Japan, China, the 

United Kingdom, Canada, Nigera, and the United States, the International HapMap 

Project started in 2002, aiming to identify and localize genetic variants across the genome, 

to characterize correlations among variants, and to learn how the variants are distributed 

among people within or among populations from different parts of the world (Gibbs, et al. 

2003). The project has since included eleven human populations of European, Asian, and 

African ancestry, and has genotyped 1.6 million common SNPs (Consortium 2010). The 

free HapMap information provided by the project for researchers from worldwide, greatly 

facilitates both the design and analysis of association studies, which will lead to the 

revolution of diagnosis, treatment, and prevention of diseases.  

2) Development of genotyping technologies 

Novel and improved genotyping technologies have been developed rapidly to 

efficiently and very accurately genotype genomic DNA from large numbers of individuals. 
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Chip-based microarray platforms primarily from Illumina (San Diego, CA) and Affymetrix 

(Santa Clara, CA) can assay one million or more SNPs (Bush, et al. 2012). The next-

generation sequencing approaches are also available recently to provide all the DNA 

sequence variation in the genome. The development and mature of these technologies 

have and will continue substantially reducing the costs and increasing the rates for high-

throughput SNP discovery, which makes genome wide association studies technically 

and financially feasible.  

3) Sufficiently large number of participants 

Appropriately large and well-characterized clinical samples have been assembled 

for many common diseases.  

 

1.2.2. Genome-Wide Association Study 

 

These significant accomplishments have made possible the extension of 

association studies to the whole genome level, which becomes genome-wide association 

study. Genome-wide association study (GWA study), also known as whole genome 

association study, is an important tool to systematically investigate the entire genome in 

large population (between case and control cohorts) in the effort to identify disease 

susceptibility polymorphisms for common and complex diseases (Burton, et al. 2007). 

GWA studies can be conducted without prior knowledge of position or function, and are 

thus one step beyond candidate gene studies, which study at most hundreds of variants 

selected based on limited biological pathway information (Pearson and Manolio 2008). In 
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the last decade, GWA studies have revolutionized in the field of genetics, enjoying plenty 

of successes in the search of genetic factors associating with common complex traits 

(Risch, et al. 1996, Arnaud-Lopez, et al. 2008, Easton and Eeles 2008, Lettre and Rioux 

2008). According to the National Human Genome Institute Published Genome-wide 

Association Studies Catalog (www.genome.gov/gwastudies, accessed August 28, 2014), 

by the end of 2013, more than 12,000 SNPs associated with 17 trait categories have been 

identified by 1,778 published GWA studies. The ultimate goal of GWA studies is to identify 

SNPs for a better understanding of disease etiology, risk prediction, new leads for 

studying underlying biology of disease susceptibility for developing new prevention and 

treatment strategies (Kooperberg, LeBlanc and Obenchain 2010).  

  

In most circumstances, the study design of GWA studies is the case-control design, 

which classifies individuals as a binary categorical variable – affected or unaffected. This 

design is relatively easier and less expensive than others. However, without well 

established, it can also lead to spurious association results, with the concern that the 

underlying population structure divergence (also referred to as population stratification), 

at genomic regions irrelevant to the disease of interest would result to the allele frequency 

difference (Chen 2011). The family-based trio design, which compares the frequencies of 

transmitted (to an affected offspring) and un-transmitted (from heterozygous parents) 

alleles, could address this concern (Cho 2010). Besides of qualitative traits, GWA studies 

have also gained successes in quantitative traits such as height (Weedon, et al. 2007) or 

high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol levels in heart 

disease (Teslovich, et al. 2010). This dissertation focuses exclusively on GWA studies in 
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case-control design. With this design, GWA studies typically share four common steps: 

(1) selecting sufficient large number of affected and unaffected subjects with the disease 

or trait of interest; (2) isolating and genotyping DNA for high genotyping quality data; (3) 

performing statistical analysis to test associations between SNPs and the disease or trait 

of interest; (4) verifying results by replicating the identified SNPs in an independent 

population or examining the functional implications via experiments (Pearson, et al. 2008).  

 

The Common Disease/Common Variant (CD/CV) hypothesis was proposed based 

on the idea of complex diseases (Reich and Lander 2001) and is theoretically 

fundamental for GWA studies. As its name suggests, common diseases are caused by 

common genetic variations. According to this hypothesis, each related SNP would be 

merely slightly correlated to the prevalence of the disease (i.e. with small effect size or 

penetrance), and the overall genetic risk of the disease of interest would be spread across 

multiple genetic factors. Thus large sample size and a significant number of genetic 

markers are required for a significant finding. A conjugate of CD/CV is the Common 

Disease/Rare Variant (CD/RV) hypothesis, which postulates common disease is caused 

by multiple rare variants of moderate to large effect (Figure 2) (Zhou, Sehl, Sinsheimer 

and Lange 2010). Published in 2005, the first GWA study paper investigating on age-

related macular degeneration (AMD; Figure 3) is cited as a supporting example of CD/RV 

(Klein, et al. 2005). With a relatively small sample size, this study has successfully 

identified SNPs within the complement factor H gene with exceptionally large effect size 

(odds ratio > 2) on risk for developing AMD. However in general, the CD/CV hypothesis 
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is true for most common diseases (typically with odds ratio range between 1.2 - 2) 

(Hindorff, et al. 2009).  

 

 

Figure 2. Spectrum of disease allele effects (Bush, et al. 2012) 

 

 

Figure 3. Three categories of AMD on the basis of the risk of developing vision loss.  
(Coleman, Chan, Ferris III and Chew 2008) 
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1.2.3. Association Tests 

 

1.2.3.1. Single-locus Analysis 

 

The typical data for GWA studies usually contains hundreds of thousands of SNPs 

and thousands of samples. While the number of SNPs has been increased greatly as a 

result of the development of genotyping technologies, it is impractical to expect the 

number of samples to be similarly expanded. As a result, one of the challenges of 

analyzing GWA study data is the “small n, large p” high-dimensional problem, which 

induces the naïve implementation (for example, incorporating all SNPs of interest in the 

standard methods) to be infeasible and undesirable (i.e. inversion of ill-definite sample 

covariance matrix or ill-posed least squares criterion in multivariate regressions).  

 

Currently the standard approach to study the association between SNPs and the 

trait of interest in GWA studies is single-locus analysis, which examines each individual 

SNP independently at a time with a specified model, relating disease trait to the SNP and 

other potentially relevant covariates, and qualifies the significance of SNP via the p-value 

of an appropriate test. Case-control design GWA studies are usually analyzed using 

either contingency table method (with chi-square test of association, or Fisher’s exact 

test), or logistic regression model (with single SNP as the predictor). The latter one is 

usually more preferred by its ability to incorporate other covariates (Chen 2011). In either 

method, SNP can be coded as 0, 1, and 2, according to the number of minor alleles. 
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Analyses could be performed assuming a dominant, recessive or additive effect for each 

SNP. In the dominant model, it assumes that having one or more copies of the major 

alleles increases the risk compared to the minor allele. A recessive model combines 

variants with one or more minor alleles. An additive model assumes that there is a uniform, 

linear increase in the risk for each copy of major allele. (Onay, et al. 2006, Bush, et al. 

2012))  

 

Analyzing a typical GWA study using the single-locus analysis means that 

hundreds of thousands to millions of association tests will be conducted, and the 

conventional p-value criteria (� < 0.05) for statistical significance in a single test would 

be no longer suitable; otherwise, the cumulative likelihood of false positives (falsely 

detecting significant SNPs while in fact they are irrelevant) would be considerably high. 

This so-called multiple testing problem is counted as one of the challenging problems in 

GWA studies. Fortunately, this problem can be corrected to some degree. The simplest 

yet most conservative method is the Bonferroni correction (Bland and Altman 1995), 

which adjusts the level of significance �  to be �/�  (�  is the total number of tests). 

However, the assumption of this correction -- each test to be mutually independent -- is 

generally unmet since linkage disequilibrium between SNPs can induce correlation 

between many of the tests. Moreover, the stringent threshold of significance level would 

result in the missing of many biologically relevant SNPs. Another approach is permutation 

testing. By randomly resampling the disease phenotypes with replacement from the 

original data and repeating a predefined large number of times, it generates an empirical 

distribution of test statistics under the null hypothesis, providing information on parameter 
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estimate and model selection (Onay, et al. 2006). Albeit straightforward, it is noticeably 

computationally intensive. False discovery rate (FDR) serves as another alternative. The 

idea was brought in by Benjamini and Hochberg in 1995 (Benjamini and Hochberg 1995) 

and is to estimate the proportion (usually 5%) of significant findings to be false positives 

(in another way, the proportion of errors among the rejected null hypotheses). These 

approaches have been widely applied to GWA studies (van den Oord 2008). The end 

result after the correction is a list of SNPs potentially significantly associated with the 

disease of interest, which in turn can be mapped to their closest genes (Lu, et al. 2013).  

 

Despite of the success of single-locus analysis (Hindorff LA , Lu, et al. 2013), there 

are several potentially large problems. It is widely argued that this strategy often lacks the 

power to uncover the relatively small effect sizes of most genetic variants (Wang, Li and 

Hakonarson 2010). Neither does it adjust for correlation among SNPs (Lu, et al. 2013). 

Though corrections are applied, the multiple testing problem does not vanish. Additionally, 

this approach does not extend in a natural manner to search for interactions between 

variants and thus failed to explain entire underlying genetic variation in complex diseases 

(Kogelman and Kadarmideen 2014).  

 

1.2.3.2. SNP-SNP Interactions 

 

Realizing the limitations of traditional single-locus analysis, alternative approaches 

such as SNP-SNP interaction analyses have been developed recently. It has recently 
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been established that genes do not work alone; biological processes in the cell such as 

biochemical interactions and regulatory activities lead to complicated interaction patterns 

among genes and SNPs (Schäfer and Strimmer 2005). Therefore gene-gene/SNP-SNP 

interactions in molecular networks or pathways may have a great impact on unveiling the 

mechanism of complex diseases (Lin, et al. 2013). The motivation of SNP-SNP interaction 

analyses is to increase the power to detect disease-associated SNPs, and furthermore, 

to detect statistical interactions between loci that are informative about the biological and 

biochemical pathways that underpin the diseases (Cordell 2009). 

 

The most common way to detect interactions is to fit a standard logistic regression 

model including all the main effects and relevant interaction terms on the log odds scale 

and test whether the interaction terms have significant effects (Cordell 2009). It is obvious 

that this model is limited by the high-dimensional problem. An alternative is to identify 

individual SNPs via single-locus analysis first and perform an exhaustive examine for all 

pair-wise SNP combinations between the chosen loci. Theoretically, methods such as 

chi-square test could be used in the exhaustive search to analyze all SNP-SNP 

interactions; however, the time required to perform such analysis increases exponentially 

with the number of variants analyzed (Li, et al. 2011). Another familiar exhaustive 

searching method for analyzing interaction effects is stepwise regression (Cordell and 

Clayton 2002). The forward stepwise selection starts with a model including all SNPs and 

covariates and search for the most significant interactions to enter into the model based 

on the score statistics; while backward elimination was done through the likelihood ratio 

test. Stepwise selection is popular yet suffers a number of failures too, i.e. overfitting or 
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instability due to sparsity of data. In short, exhaustive searching methods have 

successfully picked out potential disease-associated genes in some areas, e.g. breast 

cancer (Onay, et al. 2006); however, they are computationally intractable, even for highly 

efficient algorithms, and will encounter the multiple testing issue analogous to that in 

single-locus analysis. 

 

Pathway-based approaches have also been recently developed on the grounds 

that, complex cellular pathways are often involved in disease susceptibility and 

functionally related genes can have coordinated gene expression patterns (Wang, et al. 

2010). In this strategy, SNPs could be grouped together into SNP sets on the basis of 

certain biological criterion, i.e. gene mapping or pathway information. Then genome-wide 

test was performed on SNP sets, instead of individual SNPs. With the use of prior 

biological knowledge on gene function or pathways, the analyses of GWA studies would 

be facilitated to be more powerful and to have a better chance to identify genes and 

biological mechanisms. Moreover, by reducing the number of tests substantially 

compared to the single-locus analysis, the pathway-based approaches have kept the 

multiple testing problems in a benign form.  

 

On top of the above methods, data mining techniques are considered as the 

mainstream in the current analysis approaches. They attempt to step through a particular 

sequence of regression models and to find the model that best fits the data (Cordell 2009). 

Allowing a large number of predictors, along with considering sparsity property of data, 
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the use of techniques such as penalized regression for identifying disease-associated 

SNPs and SNP-SNP interactions has been emerged. We will introduce and discuss these 

approaches in depth in the following chapters.  

 

1.3. Goal 
 

We introduced here a novel two-stage framework with the combination of partial 

correlation network analysis (PCNA) and data mining techniques. The proposed 

approach dealt with the multiple testing problem, along with the ignorance of potential 

relationships between gene variants by traditional methods to data analysis in GWA 

studies. The primary goal of the study was to achieve a reasonably sparse structure with 

the application of PCNA in GWA studies; and to thus extend PCNA for categorical/mixed 

variables to the high-dimensional arena. The approach would be tested through 

simulation studies, and be performed in a search for potential significant SNP-SNP/gene-

gene associations with nicotine dependence in a GWA study.  

 

1.4. Outline of the Dissertation 
 

The rest of this dissertation was organized as follows. Chapter 2 introduced 

penalized regression models for categorical data, including penalties such as lasso, group 

lasso and sparse-group lasso. In Chapter 3, we presented our two-stage approach, and 

investigated its performance by means of simulation studies. Thereafter we illustrated the 
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method by analyzing COGEND data set, a GWA study data set in Chapter 4. Chapter 5 

described the incorporation of sparse method in canonical correlation analysis and its 

application to microarray data for genetic regulatory network associated to essential 

thrombocytosis. We concluded the dissertation with a discussion of our methodology and 

future work.  
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2. Penalized Regression Methods 
 

Analyzing SNPs together in a regression model enables us to consider the impact 

of SNPs among others. However, as introduced in the previous chapter, particularly in 

the situation of GWA studies, where there is the high-dimensional problem or where 

variables are highly correlated, traditional logistic regression model breaks down (Schäfer, 

et al. 2005). It is also believed that among the large number of SNPs, only a small 

proportion express under a certain set of conditions and affect the phenotype (Onay, et 

al. 2006). Thus we expect the coefficient vector to be sparse. Motivated by these 

challenges, penalized regression methods, such as the lasso (Tibshirani 1996) and the 

elastic net (Zou and Hastie 2005), were introduced and extended to offer an attractive 

and powerful alternative in GWA studies. They simultaneously carry out variable selection 

and provide coefficient estimates (Kooperberg, et al. 2010). There are different sparsity 

patterns of the penalty term. All of them shrink down the size of the coefficients of 

variables with little or none effects on the trait of interest with various degrees of 

constraints, some of which would coerce these coefficients to be zero. Penalized 

regression methods have prevailed conventional single-locus methods by the fact that it 

would yield fewer correlated variants (Ayers and Cordell 2010), be more powerful with a 

lower false discovery rate (He and Lin 2011), and could incorporate SNP-SNP 

interactions in a natural way (Lu, et al. 2013).  
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2.1. Penalized Linear Regression Methods 
 

For a continuous trait, penalized regression methods minimize the sum of squared 

deviations of predicted values from observed ones with a penalty term. Suppose we have 

� samples and � predictors represented by an � ∗ � matrix � = ���, … , ����, where �� =
����, … , �����

 as the predictor matrix and an � ∗ 1 vector � = � �, … ,  ��� as the response 

variable. Assume the observations are independent and all ��!  are standardized (i.e. 

∑ #$%$� = 0, ∑ #$%&� = 1, ' = 1,   2, … , � � ), thus the interaction term *+ is ignored. In ordinary 

linear regression model, estimates of coefficients are derived by  

*,  =  -./ 0'�1  �12 ‖  −  4*‖55  +  7�8�� 

where * is the vector of coefficients, and ‖-‖55 = ∑ -!5!   is the 95 norm. The first term in 

the above function (‖  −  4*‖55) represents the loss function minimized in ordinary least 

squares. The second term (7�8�) is the penalty. The most well-known penalty is a 9� 

penalty of the form  

7�8� =  :‖*‖� =  : ; <*!<!  

introduced by Tibshirani in 1996 and is called “least absolute shrinkage and selection 

operator”, or the lasso (Tibshirani 1996). Here : �> 0�, the tuning constant, controls the 

strength of the penalty which constrains each *!  toward the origin and thus enforces 

sparse solutions. The regression based on the penalty with a squared 95 penalty of the 

form  
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7�8� = :‖*‖55 = : ; *!5!  

to the coefficients is called the ridge regression (Hoerl 1962, Hoerl and Kennard 1970). It 

has been claimed to be possible to distinguish causative from non-causative SNPs for 

quantitative traits (Malo, Libiger and Schork 2008) (Figure 4). A mixture of 9� and 95 

penalties is called the elastic net (Zou, et al. 2005), which can be written as  

7�8� = : �� ∗ ‖*‖� + �1 − �� ∗ ‖*‖55� = : �� ∗ ; <*!<! + �1 − �� ∗ ; *!5! � 

It is obvious to tell that when � equals to one, the elastic net has reduced to the standard 

lasso and when � equals to zero, we have the ridge regression.   

 

Figure 4. Geometric insight of the lasso (left) and the ridge (right) regression for two 
predictors (Tibshirani 1996).  

 

To compare, the lasso encourages sparsity, selecting a subset of variables whose 

main effects best predict the response, and coercing the coefficients of other variables to 

be zero. It has been shown to outperform both subset selection and the ridge regression 

(Tibshirani 1996). However, its shortcomings include: a) will also impose heavy shrinkage 



 

19 

 

on large coefficients (Ayers, et al. 2010) and thus select unimportant variables to 

compensate this over-shrinkage (Huang, Breheny and Ma 2012), b) can only select at 

most  � (sample size) nonzero variables (Ayers, et al. 2010), and c) when the variables 

are highly correlated or nearly linear dependent, the lasso tends to select only one of 

them at random (Bühlmann, Rütimann, van de Geer and Zhang 2013, Silver, et al. 2013). 

These drawbacks would be noteworthy especially in GWA studies, where SNPs are 

highly correlated or linearly dependent due to linkage disequilibrium (Balding 2006). For 

the ridge penalty, the estimates of coefficients have been only shrunk to small values, yet 

not been vanished (Figure 4). Thus it does not lead to sparse solutions. This difference 

is based on the fact that <*!< is much larger than *!5 for small *’s (Wu, Chen, Hastie, Sobel 

and Lange 2009b). On the other hand, the elastic net is more stable than the lasso by the 

fact that it encourages groups of correlated variables to enter the model together, since 

the 95 penalty form encourages similar coefficients for highly correlated variables  (Ayers 

and Cordell 2013, Silver, et al. 2013). However, it is still unsatisfied of its ability of dealing 

with groups of variables with nearly linearly dependent, nor does it take linkage 

disequilibrium or biological information into account (Bühlmann, et al. 2013).  

  

2.2. Penalized Logistic Regression Methods 
 

Logistic regression model has been proven to be one of the most versatile 

techniques in the class of generalized linear models (Czepiel 2002). For a dichotomous 

response variable  � (coded as 1 for cases and 0 for controls), the probability of being a 

case for subject ' is  
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�.>?� � = 1� = �� =  @���4*��1 + @���4*�� 

With the logit transform, that is, the natural logarithm of the odds ratio of ��, the logistic 

regression function can be written as  

A>/ B ��1 − ��C = D� = 4* 

To estimate the coefficients, instead of minimizing the loss function to a sum of squares 

in the linear regression model, we maximize the likelihood function, which is 

9�*� =  E ��F$  �1 − ����GF$�
�H�   

It is equivalent to maximize the log-likelihood function:  

A�*� =  ;  � log���� + �1 −  ��log �1 − ����
�H� =  ;  � log ��1 − ��

�
�H� +  log�1 − ���  

=  ;  �D� −  log [1 + exp�D��] �
�H�  

 

The idea of the lasso has also been applied to logistic regression model (Tibshirani 

1996). The lasso penalized logistic regression model maximizes the above log-likelihood 

subject to an 9�  penalty which is dependent on the magnitude of the estimated 

parameters. Notice here that now we take the maximization, the penalty term is thus been 

subtracted. The derive of estimates of coefficients is written as   



 

21 

 

*,�:� =  -./ 0-�1 �A�*� −  7�8��  =  -./ 0-�1  Q;  �D�  − log[1 + exp�D��]  

�
�H� − :‖*‖�R = 

= -./ 0-�1  �;  �D� −  log[1 + exp�D��]�
�H� −  : ; <*!<! � 

The penalty constant : can be tuned to give any desired number of predictors through 

methods such as cross validation. With a very large value of :, there will be no variables 

selected in the model. As the value of : decreases, number of variables entering the 

model would increase accordingly, with an order that is roughly determined by the impact 

of predictors on the response, except for correlated ones. Analogy to penalized linear 

regression, both the ridge and the elastic net penalties could be applied to logistic 

regression model by substituting the 9� penalty term with an 95 term and a mixture of 9� 

and 95 penalties, respectively.  

 

An equivalent expression of the lasso penalized logistic regression model is to 

maximize 

0-�1  �;  �D� − log[1 + exp�D��]�
�H� � 

under the constraint ∑ <*!<!  ≤ T. Like :, T is also a user-specified parameter, which can 

be selected via model selection procedure, for example, cross-validation. Actually, there 

is a one-to-one correspondence between : and T, i.e., if we have found *,�:�, we can 

obtain T by T =  ∑ <*UV �:�<!  (Friedman, Hastie, Höfling and Tibshirani 2007).  
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2.3. The Group Lasso Penalty 
 

Considering the fact that gene is a functional biological unit and variants within the 

same gene may affect the disease phenotype to a similar degree, it is not surprising that 

researchers would like to pursue a model fit for clustered or grouped variables. This 

shows the need of encouraging variables within the same group to enter a model together 

and encouraging sparsity between groups. Under the lasso and the ridge penalty, if a 

SNP is selected into the model, it does not strongly encourage or discourage another 

SNP within the same group -- located in the same gene or with high correlation -- from 

entering the model. It thus raises the discussion of how to select the penalty for a group 

of variables. Proposed by Yuan and Lin (Yuan and Lin 2006) for linear regression model 

and by Kim et al. (Kim, Kim and Kim 2006) and Meier et al. (Meier, Van De Geer and 

Bühlmann 2008) for logistic regression model, the group lasso penalty aims to address 

this problem by automatically including whole groups into the model if one variable 

amongst them is selected.  

 

Suppose � = ���, … , ���� , where �� = ����, … , �����
 is an � ∗ � genotype design 

matrix which can be divided into W groups and � = � �, … ,  ��� , an � ∗ 1 binary vector 

represents the response variable. Assume all observations are independent and 

standardized. If / indexes the W groups, the estimates of coefficients could be written as:  
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*,�:�  =  -./ 0-�1 �A�*� −  7�8��  
=  -./ 0-�1  �;  �D� −  log[1 + exp�D��]  

�
�H� − : ; X�Y

Z
YH� [*�Y�[5� 

where [*�Y�[5  is the Euclidean (A5 ) norm ([*�Y�[5 =  \∑ *!�Y�5! ]�/5
), applying in each 

group, which can be treated as an intermediate between the 9� and 95 penalty terms 

(Figure 5); �Y represents group size, that is, the number of variables in group /; and : is 

the tuning parameter controlling the sparsity degree. The group lasso penalty term 7�8� 
is a weighted sum of A5  norms. The weight X�Y  could be replaced by other choices, 

allowing each group to be penalized to different extents; while itself penalizes large 

groups more heavily (Huang, et al. 2012). When �Y = 1 for all groups, the group lasso 

penalty will simplify to the standard lasso. It has been shown that under certain conditions, 

such as strong group sparsity, the performance of the group lasso penalty exceeds the 

standard lasso (Huang and Zhang 2010).  

 

Figure 5. Illumination of penalty function of the standard lasso 9� (left), the group lasso 
(center), and the ridge penalty 95 (right) for two-variable continuous case (Yuan, et al. 
2006).  

 

There are many antecedents of incorporating penalized regression methods into 

GWA studies. To illustrate, the lasso penalized logistic regression model was used to pick 
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out significant SNP-SNP/gene-gene interactions in GWA study data (Wu, et al. 2009b, 

Lu, et al. 2013); the elastic net has been employed in GWA studies for the exploration of 

disease-causing SNPs (Cho, Kim, Oh, Kim and Park 2009); after being proposed by Yuan 

and Lin (Yuan, et al. 2006), the group lasso penalty has been applied for GWA study data 

to recognize pairwise interactions via hierarchical structure (Lim and Hastie 2013) and to 

identify pathways associated with quantitative traits of interest (Silver, Janousova, Hua, 

Thompson and Montana 2012). 

 

2.4. The Sparse-group Lasso Penalty 
 

Applying the group lasso means that once a variable is selected, all the other 

variables in the same group would also enter the model. If we are not interested in 

recognizing individual variables, group selection is a proper choice. However, in the field 

of genetics, if the predictors are biological molecules, such as genes or SNPs, 

researchers would like to identify not only particular gene groups or pathways that are 

closely related to the traits of interest, but also within the chosen groups, the particular 

“standouts” that play a more important role than their “group mates”. For this reason, they 

would embrace the idea of selecting significant individual variables together with 

important groups, which leads to a mixture of the group and the lasso penalties.  

 

In 2010, Friedman et al. (Friedman, Hastie and Tibshirani 2010) have briefly 

proposed a method combining the lasso with the group lasso penalty in an unpublished 
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note, which can be directly applied on non-orthonormal model matrices. Recently, Simon 

et al. (Simon, Friedman, Hastie and Tibshirani 2013) have continued this work, discussing 

this method, the so-called “sparse-group lasso” (SGL), in details and extended it to 

generalized regression models. The sparse-group lasso (SGL) penalty is one of the 

comparatively recent developments in sparse modelling. Simulation studies demonstrate 

that SGL accurately imposes the dual-level (between group and within group) sparsity 

pattern when comparing to both the group lasso penalty and the standard lasso 

(Friedman, et al. 2010, Simon, et al. 2013).  

 

The sparse-group lasso method has integrated the lasso (9�) and the group lasso 

(A5) penalties to allow considerations of sparse effects both on the group-wise and within 

group levels. Consider the similar notation as the group lasso, that � = ���, … , ���� is an 

� ∗ � genotype design matrix which can be divided into W groups, � = � �, … ,  ���, an � ∗
1 binary vector represents the response variable, and / indexes the W groups, sparse 

estimate for the coefficient vector is given by 

*,�:�  =  -./ 0'�1 �−A�*�  +  7�8��  
=  -./ 0'�1  �−A�*� + �1 − ��: ; X�Y

Z
YH� [*�Y�[5 + �:‖*‖�� 

where A�*� =  ∑  �D� − log[1 + exp�D��]��H�  is the log-likelihood function of logistic 

regression model; *�Y� is the corresponding coefficient vector for 4�Y� in group / (4�Y� is 

the sub-matrix of 4 containing only variables from group /); �Y is the number of variables 

in group g; both � ∈ [0, 1] and : > 0 are parameters controlling sparsity. The group lasso 
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penalty (in Euclidean/A5 form) enforces the sparsity at the group level; while the standard 

lasso (in 9� form) enforces sparsity at individual level within selected groups (Silver, et al. 

2013, Simon, et al. 2013).   

 

Though looked similar to the elastic net penalty, the Euclidean form penalty in SGL 

does not differentiate at 0; however, within each non-zero group, it gives an elastic net fit 

(Simon, et al. 2013). SGL gains its popularity over other regular penalized regressions by 

the fact that, in SGL, both the group and the lasso penalties could improve the 

convergence rate in minimizing the objective function, and they are both compatible with 

coordinate descent for a fast optimization (Zhou, et al. 2010).  
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3. Two-stage Approach 
 

3.1. Partial Correlation 

 

Correlation is a widely used concept describing how two variables are related 

between mean values. This concept was first created by Francis Galton in 1888 to related 

measurements under different conditions (Stigler 1989). The degree of correlation is 

measured by correlation coefficient, which is denoted by _ (pho) for a population and by 

. for a sample. One of the most familiar measurements is Pearson product-moment 

correlation coefficient (or Pearson’s r). Defined in terms of moment, it was introduced by 

Karl Pearson to measure the linear dependence between two variables (Pearson 1920). 

The value of Pearson’s r is always between -1 and 1. The geometrical interpretation of 

Pearson’s r can be considered as the cosine of the angle between the two vectors in 

Euclidean space, each of which forms by pointing from the variable mean to the origin 

point (Fisher 1924). By Fisher transformation, correlation coefficients would 

approximately follow a normal distribution and can thus perform hypothesis tests and 

calculate confident intervals; otherwise, bootstrap resampling (Efron and Tibshirani 1994) 

could act as an alternative.  

 

As it is well agreed, a high correlation coefficient between two variables in a 

network system may be indicative of three potential situations: (1) directly interacted; (2) 
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indirectly interacted; and (3) regulated by a common variable (Figure 6). However, to 

explore the interactions between biological molecules, the investigators are primarily 

interested in the direct interaction solely. Therefore in this section we would like to 

introduce the partial correlation coefficient (Yule 1907, Pearson 1915, Fisher 1924), which 

focuses specifically on the measurement of the strength of direct interaction. 

 

Figure 6. Potential relationships between variables 4  and `  with a high correlation 
coefficient. In the situations depicted in the center and right-hand side of the figure, the 
partial correlation coefficients of 4  and `  given a  would be zero (assuming ideal 
experimental conditions). Hence partial correlation coefficient prevents false positives 
due to indirect, rather than direct effects between two variables.  

 

The partial correlation coefficient measures the degree of dependence between 

two random variables (e.g. gene activities) while controlling on the effects from one or 

several other variables. For example, the correlation .�!.�  between variables 4�  and 4! 

conditioning on 4� is the correlation between the parts of 4� and 4! that are uncorrelated 

with 4�. Under the assumption of normality, a partial correlation coefficient equals to zero 

if and only if the two variables are conditionally independent given the remaining variables. 

With a large set of variables, investigators may be of interest of the direct interaction 

relationships between all possible pairs. Proper statistic allows us to 1) measure the 



 

29 

 

strength of a relationship (i.e. the magnitude of a partial correlation coefficient); 2) 

determine whether a relationship is significant; and 3) compare the relationship of the 

same pair of variables between different groups. This is accomplished via different 

techniques considering the types of variables (e.g. continuous, categorical, or mixed data).  

 

3.1.1. Partial Correlation with Continuous Data 

 

Given �  continuous random variables  {4�, ' = 1, 2, … , �} , each of which has � 

samples, denote the set of variables as  

4 = �4�, 45, … … , 4d��  ∈ ℛ�∗� 

The rows of the matrix represent the samples and the columns represent the variables. 

Within each column (variable), the data are centered to the column mean. For any two 

random variables 4� and 4!, denote the set of all other variables as 4G��,!�, i.e.  

4G��,!� = 4 ∖ g4�, 4!h = {4i, 1 ≤ j ≠ ', l ≤ �} 
where 4�  and 4!  ∈  ℛ�  are the ' th and l th columns of 4  and 4G��,!�  ∈  ℛ�∗��G5�  is the 

matrix obtained from 4 by deleting the 'th and lth columns. Without loss of generality, we 

assume ' < l. When the sample size ��� is larger than the number of variables ���, the 

standard estimate of partial correlation coefficient of 4� and 4! while controlling the effects 

of variables in the set of 4G��,!�, can be calculated via three different methods.  

 



 

30 

 

The first method is achieved by “matrix inversion” (Schäfer, et al. 2005) and can 

be accomplished in the computation time of m��n�. Denote the covariance matrix of 4 as 

Σ = �p�!��∗�, which can be further decomposed into the variance components p�5 and the 

Pearson correlation matrix � = �.�!��∗�. Since the data are column-centered, the estimate 

of covariance matrix Σ is obtained as 

Σ′V �∗� = �4 − r4���4 − r4�  = 4�4 

where  � denotes the transpose of a matrix and thus 4�4 is the inner product of 4 itself, 

that is, the sum of squares of all elements in 4. The standard unbiased estimate of Σ is 

then given by  

Σs�∗� =  1� − 1 Σ′V �∗� =  1� − 1 4�4 

In the setting of � > �, the above p-by-p matrix is symmetric and positive-semidefinite. If 

Σs is invertible, denote the precision (or concentration) matrix ΩV as the inverse of Σs such 

that  

ΩV = �uv�!��∗� =  ΣsG� 

Therefore, an unbiased estimate of partial correlation coefficient of 4� and 4! giving 4G��,!� 
is estimated as 

_w�! =  − uv�!Xuv��uv!! 
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Another simple way to compute partial correlation coefficient is by least square 

regression. Consider the two linear regression models 

4� = 4G��,!�*���  +  x� =  ; *i��� 4i +  x�i y�,!  

4! = 4G��,!�*�!�  +  x! =  ; *i�!� 4i +  x!i y�,!  

where x� and x! are the i.i.d. noises. The intercept term is not included in either model 

since all the variables are centered. The least square estimates of *i���
 and *i�!�

 can be 

obtained by solving the optimization problems of  

*,��� = \*,����, *,5���, … , *,�G���� , *,�z���� , … , *,!G���� , *,!z���� , … , *,����] 

      = arg min1 ∈ ℛ��& [4� − 4G��,!�*[5
 

*,�!� = \*,��!�, *,5�!�, … , *,�G��!� , *,�z��!� , … , *,!G��!� , *,!z��!� , … , *,��!�] 

      = arg min1 ∈ ℛ��& [4! − 4G��,!�*[5
 

‖-‖55 = ∑ -!5!   is the 95 norm, indicating the sum of squared elements of the matrix. The 

corresponding residuals are 

��V = 4� −  4G��,!�*,��� = 4� −  ; *,i��� 4ii y�,!  

�UV = 4! −  4G��,!�*,�!� = 4! −  ; *,i�!� 4ii y�,!  
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The correlation between residuals is a measurement of the strength of the relationship 

between 4� and 4! when the effect of 4G��,!� has been removed and can thus represent 

the sample partial correlation coefficient  

_w�! =  �>.. ���V , �UV �. 
 

A third version of the estimation of partial correlation coefficient also relates to the 

least square regression problem (Peng, Wang, Zhou and Zhu 2009). Construct � linear 

regression models 

4� = 4G���*���  +  x =  ; *i��� 4i +  xi y� , ' = 1, 2, … , �  
where x  are i.i.d. disturbance terms. The least square estimate of the regression 

coefficient vector is calculated as 

*,��� = \*,����, *,5���, … , *,�G���� , *,�z���� , … , *,����]  = arg min1 ∈ ℛ��� [4� − 4G���*[5

= �4G���� 4G����G�4G���� 4�,   �>. ' = 1, 2, … , � 

The sample partial correlation coefficient is then estimated as 

_w�! =  T'/�\*,!���]�*,!���*,��!�
 

Given � > �, the two coefficient vectors *,!���
 and *,��!�

 always have the same sign and thus 

the term of square root in the above equation is well-defined. Based on the above formula, 

the process of searching for non-zero partial correlation coefficients is equivalence to the 

model selection problem under the regression setting.  
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The distribution of the sample partial correlation for continuous variables was 

described by Fisher (Fisher 1924). Assuming the original data of all variables come from 

a multivariate Gaussian distribution. It states that the random sampling distribution of a 

partial correlation coefficient controlling j variables, is exactly that of a total correlation 

coefficient with j fewer degrees of freedom. Thus, we can test the null hypothesis that 

the population partial correlation coefficient vanishes via an �-test: 

� =  _w�!51 − _w�!5 ∗ �� − j − 2� ~ ��,�GiG5 

where � is the sample size and j is the number of variables being controlled. Similarly, 

Fisher transformation can also be used: 

a =  12 ln �1 +  _w�!1 −  _w�!�  ~�  ��0, 1� 

 

There is no exact tests for the comparison of the equality between two partial 

correlation coefficients. For data with sufficiently large sample size, some methods of 

approximation are known. One of the most widely used is Fisher transformation (Fisher 

1915). To compare two population partial correlation coefficients _�!���  and _�!�5� 
conditioning on j variables, draw an independent sample from each of the population with 

sample size ��  and �5  respectively, and calculate the sample partial correlation 

coefficients _w�!��� and _w�!�5�. The test statistics of the null hypothesis that two population 

partial correlation coefficients _�!��� and _�!�5� are equal is obtained as 
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a =  1 2�  Qln Q1 + _w�!���
1 − _w�!���R − ln Q1 + _w�!�5�

1 − _w�!�5�RR
� 1�� − j − 3 +  1�5 − j − 3  ~�  ��0, 1� 

As has been noted previously, the bootstrap resampling method (Efron, et al. 1994) is a 

widely used non-parametric alternative for data failed to meet normality assumption. To 

determine whether two partial correlation coefficients are equal, one could perform either 

of the following: 1) to generate a bootstrap confidence interval for each sample partial 

correlation coefficient and see whether the two confidence intervals overlap; or 2) to 

bootstrap the difference between two partial correlation coefficients and see whether the 

bootstrap confidence interval of the difference contains zero.  

 

Pradhan (Pradhan 2009) proposed a two-level regression method to convert the 

test to that of a regression coefficient. Denote the binary covariate as W = {0,1}, which 

effect on the pair of partial correlation coefficients is of interest. In the first step, two 

residual terms (prediction errors) ��V  and �UV  are obtained via linear regressions of 4� and 

4! on 4G��,!� respectively.  

4� = 4G��,!�*���  +  x� 
4! = 4G��,!�*�!�  +  x! 

��V = 4� −  4G��,!�*,��� = 4� −  ; *,i��� 4ii y�,!  

�UV = 4! −  4G��,!�*,�!� = 4! −  ; *,i�!� 4ii y�,!  
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The test of the Pearson correlation coefficient between two residuals gives the same 

significance to that of the slope coefficient in the linear regression model of ��V  and �UV .  

��V = -+ + -��UV +  x 

Or equivalently, 

�UV = �+ + ����V +  � 

Integrate covariate W into the above regressions brings the second stage of the model: 

��V  =  -+  +  -��UV  +  x =  -+  +  �?+  +  ?�W� �UV  +  x =  -�  +  ?+�UV  +  ?�W�UV  +  x 

�UV  =  �+  +  ����V  +  � =  �+  +  ��+  +  ��W� ��V  +  � =  ��  +  �+��V  +  ��W��V  +  � 

Therefore, the significance of coefficients ?� and ��, (i.e. the average p-value from tests 

of significance for ?�  and ��) represents the significance of covariate effect W  on the 

partial correlation coefficient between 4� and 4! controlling on 4G��,!�.  
 

3.1.2. Partial Correlation with Categorical and Mixed Data 

 

While partial correlation and its corresponding properties and statistic are well 

defined for continuous variables, its application based upon categorical and mixed data 

has not yet been thoroughly investigated. Recently, a new estimate of partial correlation 

was proposed aiming at a solution to this problem (Chen 2011). Unlike other methods 

such as partial phi coefficient and partial polychoric correlation, this new estimate method 

is innovative and superior in the aspects of being capable to easily control for more than 
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one variables and also embracing both categorical and continuous variables 

simultaneously in the analysis (Chen 2011, Leong 2012).  

 

Details of this new method are as follows. First consider the two-categorical case. 

Suppose we have � binary random variables {4�, ' = 1, 2, … , �}. To estimate the partial 

correlation coefficient between 4�  and 4!  when controlling on 4G��,!� , two logistic 

regression models are performed with 4G��,!�  as predictor variables and 4�  and 4!  as 

response variables respectively. 

�i = �.>?�4i = 1| 4G��,!�� =  @���$,%�1���
1 +  @���$,%�1��� = 1 − �.>?�4i = 0| 4G��,!��,    j = ', l 

A>/'� B ��1 − ��C =  4G��,!�*���  
  

A>/'� � �!1 − �!� =  4G��,!�*�!�  
Pearson residuals are obtained as  

�s� =  4� − ��vX��v  �1 −  ��v � ;  �s! =  4! −  �UvX�Uv  �1 −  �Uv � 

And the sample partial correlation coefficient is the conventional Pearson correlation 

coefficient between the two residuals  

_w�! =  �>.. ���V , �UV �. 
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The estimate method can be easily extended to a multi-categorical case. Consider 

variables with three classes as an example. Running two independent binary logistic 

models provides two sets of generalized residuals.  

� A>/'� B�����+C =  4G��,!�*���� 
A>/'� B��5��+C =   4G��,!�*��5� ;         

���
��A>/'� ��!��!+� =  4G��,!�*�!�� 

A>/'� ��!5�!+� =   4G��,!�*�!5�  
For each observation �i , assign  

�i  = ¡1, '� �  ?@A>�/T �> �-�@/>.  ¢0, >�ℎ@.¤'T@ , ¢ = 1, 2; j = 1, 2, … , � 

Residuals are calculated as follows:  

���
���s�� =  4�� −  ���¥X���¥  �1 −  ���¥ ��s�5 =  4�5 −  ��5¥X��5¥  �1 −  ��5¥ �

;     
���
���s!� =  4!� −  �U�¥X�U�¥  �1 −  �U�¥ �

�s!5 =  4!5 −  �U5¥X�U5¥  �1 −  �U5¥ �
 

The first canonical correlation coefficient between residual sets g�s��, �s�5h and g�s!�, �s!5h 
can define the partial correlation coefficient between 4� and 4!. Canonical correlation test 

is readily available for significant partial correlation coefficient.   

   

For mixed variables, the estimate could be determined similarly. Assume 4� is a 

three-class categorical variable, and also introduce continuous variable 4! into the 

model. For 4�, we have 
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� A>/'� B�����+C =  4G��,!�*���� 
A>/'� B��5��+C =   4G��,!�*��5�   ⟹  

���
���s�� =  4�� −  ���¥X���¥  �1 −  ���¥ ��s�5 =  4�5 −  ��5¥X��5¥  �1 −  ��5¥ �

 
where for each observation in 4� 

��  = ¡1, '� �� ?@A>�/T �> �-�@/>.  ¢0, >�ℎ@.¤'T@ , ¢ = 1, 2 

and for 4!,  

4!  =  4G��,!�*�!�    ⟹   �UV = 4! −  4G��,!�*,�!� 
The partial correlation coefficient between 4� and 4! is thus the first canonical correlation 

coefficient between residuals g�s��, �s�5h and �UV ; and an ANOVA F-test on the significance 

of regressing �UV  on �s��  and �s�5  would be able to detect significant partial correlation 

coefficient (Chen 2011). 

 

3.1.3. Partial Correlation Network Analysis (PCNA) 

 

Given a group of multiple variables of interest, partial correlation coefficients 

distinguish direct from indirect interactions among all potential pairs. A corresponding 

partial correlation network analysis (PCNA) is a functional tool to represent graphically 

this direct interaction relationship. Formally, PCNA is an undirected graph, denoted by 

W =  {§, r}, where the set § contains � nodes corresponding to � variables and the edge 

set r describes the conditional dependency relationship among 4�, 45, … , 4� (Yuan and 
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Lin 2007) (Figure 7). An edge between two nodes 4� and 4! is present if and only if two 

corresponding variables are conditionally dependent on the other variables and such 

dependence does not have directional information (Chen 2011, Wang, Chao and Hsu 

2011), i.e.  

r = {�', l�| 4� -�� 4!  -.@ �>��'�'>�-AA  �@�@��@��; ', l ∈ §, 1 ≤ ' < l ≤ �} 
4�  ¨  4! < 4G��,!�  ⟺ 4!  ¨  4� <4G��,!�. 

 

 

Figure 7. Partial correlation network analysis (PCNA). V = {A, B, C, D, E}. Two 
unconnected variables are not partially correlated and thus independent from each other 
when controlling the effects from all the other variables, i.e. B is independent to D given 
{A, C, E}.  

 

A partial correlation network is popular for investigators by the fact that 1) the 

existence of an edge represents the significance of the corresponding partial correlation 

coefficient and 2) the strength of an direct interaction, if exists, can be measured by the 

magnitude of the partial correlation coefficient. It is informative compared to other 

methods (i.e., hierarchical clustering), which examine only the marginal pairwise 

correlations (Wang, et al. 2010).  
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Regular methods of PCNA such as exhaustive search do not account for the 

sparsity property and/or high-dimension problems, that is � ≪ �, of the networks and thus 

would not work properly in these situations, i.e. the precision matrix is not unique in the 

high-dimensional case. Lately, a number of solutions are available focusing on PCNA 

with continuous variables, which application is computationally feasible and have 

successfully identified biologically meaningful genetic networks. Naïve improvements 

have been proposed by Fuente et al. (2004) to systematically testing all pair-wise 

correlations without conditioning first, then by conditioning on all other individual variables 

and subsequently on all possible pairs; in each step edges with non-significant 

coefficients are removed (De La Fuente, Bing, Hoeschele and Mendes 2004); and also 

by Schäfer and Strimmer (2005) for a shrinkage covariance estimation procedure 

(Schäfer, et al. 2005). However, as noted by Li and Gui (2006), neither of them accounted 

for sparsity during network estimation. Meinshausen and Bühlmann further developed a 

computationally attractive yet variable-by-variable approach, neighborhood selection with 

the lasso, which has been shown as an approximation to the exact problem by later 

studies (Meinshausen and Bühlmann 2006, Yuan, et al. 2006, Friedman, Hastie and 

Tibshirani 2008). Li and Gui (2006) have adopted a threshold gradient descent (TGD) 

regularization in the estimation of precision matrix (Li and Gui 2006); Yuan and Lin (2007) 

have introduced penalized maximum likelihood to the estimation of precision matrix with 

the constraint of positive definiteness, yet could not handle high-dimensional data (Yuan, 

et al. 2006); and Friedman et al. (2008) have presented the graphical lasso to use a 

coordinate descent procedure for the lasso with an impressive computational time 
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(Friedman, et al. 2008). In 2009, Peng et al. have further contributed to this problem by 

introducing an extension of algorithm for solving penalized optimization problems (Peng, 

et al. 2009). 

 

It is noteworthy that so far sparse methods of PCNA mainly focus on continuous 

variables. It gives rise to needs of innovative extensions of PCNA when categorical 

variables are involved.  

 

3.2. Two-stage Approach 
 

When applying to the field of genetics, partial correlation estimates the degree of 

dependence between individual SNP and another SNP, or continuous/ categorical 

covariate while effects from other variables being controlled. PCNA performed graphically 

based on pairwise partial correlations and would be informative for pathway findings. 

However to date, this powerful tool, PCNA for categorical/mixed data proposed by Chen 

(Chen 2011), has not yet been directly applied to GWA studies for significant SNP-

SNP/gene-gene associations. With the aim of achieving a reasonably sparse structure 

for SNP-SNP associations most related to disease of interest, and to thus extend PCNA 

for categorical/mixed variables to the high-dimensional arena, we described in this section 

a novel sequential analysis, combining variable selection process via SGL and connection 

identification stage through PCNA with categorical data. This approach enables us to 
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detect highly interconnected SNPs/genes that may work cooperatively in a pathway, and 

refines the multiple testing problem of traditional analysis methods in GWA studies. 

 

Figure 8 shows the workflow of this two-stage approach. The main objective of this 

method is to firstly bring down dimension of variables and thus simultaneously identifies 

disease-susceptible SNPs with focus on variant association or biological information, and 

then to develop an association network in order to detect any potential genetic biomarkers, 

patterns and pathways for complex diseases and traits.  

 

Figure 8. Workflow of two-stage approach. 

 

The approach starts with variable selection accomplished through penalized 

regression using sparse estimation principles. Specifically, sparse-group lasso is 

performed on the data set as dimension reduction to detect any potential disease-

susceptible SNPs. We also would like the estimation to allow for the use of biological 

knowledge or variant association in fitting the model. Details of the setting and processing 

are as follows.  
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3.2.1. Selection of Parameters  

 

For the two-dimensional parameter (�, :), �, as a convex combination of the lasso 

and the group lasso penalties, controls how the sparsity constraint is distributed between 

them (� = 0  gives the group-lasso fit and � = 1  gives the standard lasso fit) and : 

regulates the degree of sparsity. When � ∈ [0, 1], as �  approaches to 0, the model 

encourages greater sparsity at the group level than at the within group level. Thus, it is 

recommended to fix the value of � according to the reality of the problem (Simon, et al. 

2013), i.e. � = 0.95 would work for problems expected with strong overall sparsity and 

encouraged grouping; and � = 0.05 would be preferred to problems with strong group-

wise and medium or small within group sparsity. Considering the (biological) property of 

GWA study data, it is reasonable to set � = 0.95 with the expectation of strong overall 

sparsity in our approach. 

 

The value of :  can be tuned to select a user-predetermined number of SNP 

variants and/or other predictors. Reducing the value of : would relax the penalty and 

hence encourage more variables entering the model.  The number of non-zero variables 

selected by the model is generally a decreasing function of :. Therefore once a variable 

been selected into the model, it will usually remain as : decreases. In the situation of no 

preference in predetermined number of SNPs, the value of : can be allowed to vary freely 

and be optimized by K-fold cross-validation process. To start with, : was set to be large 
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enough (denoted as :¬­#) that all estimates are zero. Decreasing the value of : along a 

grid of values until some small proportion of :¬­# results in a path of solutions, from which 

an optimal : can be chosen by K-fold cross validation. In K-fold cross validation, we 

randomly divided the data into � equal-sized groups, leave out group j at a time, fit the 

model on data from the other �� − 1� groups (combined), and estimate parameters for 

the leave-out jth group. The testing errors would be averaged across all the � groups. 

Given different values of : , the cross-validation curve ��:�  represents the averaged 

testing error for each :. The one with the smallest testing error would be the best value 

of :. In our study, the default value for � is 10, i.e. the value of : is selected via a 10-fold 

cross validation process.  

 

3.2.2. Basis of Grouping  

 

Grouping structure of variables could be decided according to different study goals 

and/or the availability of information. In GWA studies, to take advantage of prior 

biological/pathway information, SNPs mapped to the same gene can be clustered into 

one group (Huang, et al. 2012). 

 

When biological information is unavailable or insufficient, clustering method is 

always a popular alternative. Variables with high associations are expected to be in the 

same group and to have low associations with those from different groups. Here we built 

the grouping structure of SNPs based on hierarchical clustering with a newly-proposed 
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pairwise association measurement – the canonical correlation measurement. Bühlmann 

et al. (Bühlmann, et al. 2013) have previously introduced canonical correlation for 

clustering variables in linear model and claimed that canonical correlation reflects the 

linear dependence among variables and thus addressed the identifiability problem. For 

categorical variables, Chen (Chen 2011) has also proposed using canonical correlation 

as pairwise association measurement.  

 

Consider each SNP as a three-category variable – C/C, T/C, and T/T, with 

polynomial coding,  

C/C: ® =  0, ®5 = 0 

T/C: ® =  1,  ®5 = 1 

T/T: ® =  2, ®^2 = 4 

The pairwise association between two SNPs 4� and 4! is defined as the first canonical 

correlation coefficient between �{®#�, ®#�5 }, g®#!, ®#!5 h� , which has been shown to be 

positively related to chi-square statistics and thus imply association strength.  

±TT>�'-'�>� �4�,  4!� = �'.T� �-��>.�g®#�,  ®#�5 h,  g®#!,  ®#!5 h� 

We thus applied the pairwise (first) canonical correlation coefficient as the dissimilarity 

matrix input in hierarchical clustering for SGL grouping basis. Notice that this 

measurement would not be affected by different coding schemes. 
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3.2.3. Algorithm 

 

The traditional algorithm to fit the regular (unpenalized) logistic regression model 

is Newton’s method (also known as the Newton-Raphson method). Recall that the log-

likelihood function, along with its score function and Hessian matrix is expressed as 

follows:  

A�*� =  ;� �D� −  log[1 + exp�D��]��
�H� ; 

∇ A�*� =  ; ��  � � −  D��; �
�H�  

d5 A�*� =  ; ��5 D�  �1 −  D�� �
�H�  

and the Newton’s update of the estimates is  

*��z�� = *��� −  ∇ A�*����d5 A�*����. 
Fast and reliable, the Newton’s method is a popular choice for low-dimensional problems 

welcomed by most statisticians (Wu, et al. 2009b); however, it  is claimed to be 

computationally uncompetitive for high-dimensional problems (Zhou, et al. 2010).  

 

The sparse-group lasso is fitted using blockwise descent: optimizes the penalized 

function with respect to a single group at a time, and cycles through disjoint groups until 
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convergence. For each group j, fix the coefficients of the other groups and estimate *�i� 
via an “accelerated generalized gradient descent algorithm with backtracking” to minimize 

−A�*� + �1 − ��:[*�i�[5 + �:[*�i�[� 

The term X�´  is suppressed and can be simply added back by replacing all future 

�1 − ��: by X�´  �1 − ��:. The “accelerated generalized gradient descent algorithm” has 

introduced to the generalized gradient algorithm a momentum term proposed by Nesterov 

(Nesterov 2007) to improve the algorithm to µ�1/√·� , where ·  is the convergence 

threshold, and a step size (�) optimization. The details of the algorithm idea are as follows 

(Simon, et al. 2013). First, denote the unpenalized negative log-likelihood function as  

Ai�*�Gi�, *�i�� = 

− 1� ;  �����Gi��*�Gi� +  ���i��*�i�� − log�1 + exp ����Gi��*�Gi� + ���i��*�i����
�H� ; 

Apply the majorization minimization (MM) scheme to the function by 

Ai�*�Gi�, *�i��  ≤  Ai�*�Gi�, *+� + �* −  *+��∇Ai�*�Gi�, *+� + 12�  ‖* −  *+‖55 

where *+ is an initial point. Add the penalty terms and set the goal to find *, optimizing the 

following function  

¸�*� =  Ai�*�Gi�, *+� + �* −  *+��∇Ai�*�Gi�, *+� 

+ 12�  ‖* −  *+‖55  + �1 − ��:[*�i�[5 + �:[*�i�[� 
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=  12�  [* − �*+ − �∇Ai�*�Gi�, *+��[55 + �1 − ��:[*�i�[5 + �:[*�i�[� 

Therefore we get that 

a) *, = 0 if  
[®�*+ − �∇Ai�*�Gi�, *+�, ��:�[5  ≤ ��1 − ��: 

where ®�-, ?� = T'/��-��|-| − - ∗ ?�z. 

b) Otherwise *, satisfies the updated formula for the generalized gradient step:  

*, = �1 −  ��1 − ��:‖®�*+ − �∇Ai�*�Gi�, *+�, ��:�‖5�z  ®�*+ − �∇Ai�*�Gi�, *+�, ��:�. 
The right-hand side of the equation is denoted as ¹ �*+, �� in the following description 

¹ �*+, �� =  �1 −  ��1 − ��:‖®�*+ − �∇Ai�*�Gi�, *+�, ��:�‖5�z  ®�*+ − �∇Ai�*�Gi�, *+�, ��:�. 
 

An overview of the algorithm can thus be represented as: 

1) (Group wise) Cycle through disjoint groups; at each group j, fix the coefficients of 

the other groups and execute the following steps; 

2) Check if *,�i� satisfies the condition below. If yes, set *,�i� = 0 for the whole group; 

if not, continue to the next step. 

º® Q4�i��D�Gi�� , �:Rº5  ≤ �1 − ��:; 
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 where D�Gi� =  »¼½ ������¾1������z»¼½ ������¾1�����. 
3) (Within group) Start with *�i,´� = ¿�i,´� = *+�i�, � = 1, and A = 1 (¿ is the center; *+ 

is the initial center point). Iterate the following steps until reach convergence:  

a. Update the score function by / =  ∇Ai\*�Gi�, *+�i�]; 
b. Optimize step size � by repeating � = 0.8 ∗ � until 

Ai�¹�*�i,´�, ���  ≤  Ai�*�i,´�� + /�∆�Â,Ã� + 12� [∆�Â,Ã�[55; 
c. Update ¿�i,´� by 

¿�i,´z��  ←  ¹�*�i,´�, ��; 
d. Update *�i,´z�� by 

*�i,´z��  ←  ¿�i,´� + AA + 3 �¿�i,´z�� − ¿�i,´��; 
e. Set A = A + 1. 

where ∆�Â,Ã�= ¹�*�i,´�, �� − *�i,´� is the difference between the old and new estimates.  

 

Following the sparse-group lasso, PCNA is performed on the selected SNPs from 

SGL. An edge connecting two nodes (variables) represents significant pairwise partial 

correlation estimate. Two networks are created in case and control groups respectively. 

Within each group, multiple testing problem has been taken into full consideration in the 

view of the fact that false discovery rate (FDR) was assessed for the p-values from 
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significant tests and has been controlled at 0.05 (�). The process is as follows: with � =
��Å5 � null hypotheses, rank the � corresponding p-values from smallest to largest to have 

g����, … , ����h; for a given level of significance � ≥ 0, compared ���� with \ ��] ∗ � starting 

from ���� and stop whenever it comes to an integer l satisfied with ��!� ≥ \ ��] �, 1 ≤ l ≤ �; 

we then can reject the hypotheses Ç�!�, … , Ç��� at an FDR of � or better. Through the 

comparison of the existence of edge between the same pair of variables in two networks, 

difference of connectivity is considered as potential significant SNP-SNP association 

related to the trait of interest. When biological information is available, the PCNA result 

could further indicate information on potential gene-gene associations or biological 

pathways/patterns.  

 

Traditional approaches in GWA studies usually consider SNPs in isolation, testing 

them one by one at a time and thus would be likely to fail to capture the inherent 

relationship among variants. Many approaches also ignore any potential functional 

relationships between variants. Our two-stage sequential analysis approach analyzes the 

variables together in the model to allow the consideration of the effect of one variable to 

another, which has been discussed to improve power in certain situations (Ayers, et al. 

2010). Moreover, it takes account of factors specific to genome-wide data sets, such as 

variant association and/or biological information. In the following section, we further tested 

the approach through simulation studies.  
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3.3. Simulation 
  

The performance of our proposed method is assessed in simulation studies. 

Simulation data were generated using statistical programming language R 2.15.3 

(http://www.r-project.org/) with package – scrime (http://cran.r-

project.org/web/packages/scrime/index.html). A data matrix containing � �= 1000� 

observations and � �= 50 >. 1000� SNPs was simulated given the selected minor allele 

frequencies (m.a.f.) of SNPs. All SNPs are firstly simulated mutually independently and 

thus unlinked. In the next step, the binary response variable ` is determined. For each 

observation, the probability of ` = 1 is calculated via a logistic regression model, with the 

pre-specified significant individual SNPs and SNP-SNP interactions as predictors. The 

value of the response is then determined by a random draw from a Bernoulli distribution 

using this probability (Schwender and Fritsch 2008).  

 

The simulation studies address two scenarios (Table 1). Both settings involve an 

� ∗ � SNP data matrix and an � ∗ 1 case/control status indicator   (  = 1 for case group 

and  = 0 for control group). For both settings, the sample size is fixed at � = 1000. The 

total numbers of SNPs are set to be � = 50 and � = 1000, representing low- and high-

dimensional situations respectively. For each SNP, the minor allele frequency (m.a.f.) is 

drawn from a uniform distribution ¹�'�0.2, 0.4�. Significant individual SNPs are set to be 

SNP 2, 3, 7, and 8; as well as two pairwise SNP-SNP interactions: SNP2*SNP3 and 

SNP7*SNP8. Replications �T = 50 >. 1000� in each scenario are performed to average 
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out variability due to random sampling as recommended by Krämer et al. (Krämer, 

Schäfer and Boulesteix 2009).  

Table 1. Simulation Settings 

 Scenario 1 Scenario 2 

Number of Data sets (s) 1000 50 

Total Number of SNPs (P) 50 1000 

Sample Size (N) 1000 1000 

Minor Allele Frequency 
(m.a.f.) of Each SNP 

drawn from a uniform distribution of [0.2, 0.4] 

Significant Items 
Individual SNPs: SNP2, SNP3, SNP7, SNP8; 

SNP-SNP interactions: SNP2*SNP3; SNP7*SNP8. 

 

Our two-stage approach is performed on both scenarios, while controlling false 

positive rate to be 5%. Since gene mapping information is not available, we only consider 

grouping variables with dissimilar matrix based on pairwise canonical correlations (Figure 

9). The performance is determined and compared by the difference between the detected 

and true targets, which is measured in terms of true positive rate (TPR) and positive 

predictive rate (PPR). We here defined the true positive rate (TPR) as the ratio of the 

number of times the true targets been identified out of the total number of simulations. In 

each simulation, we also take the record on whether all detected individual targets are 

true ones and define positive predictive rate (PPR) as the ratio of the number of times 

when all detected individual targets are true ones over the total number of simulations.  
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È.É@ �>T'�'Ê@ .-�@ =  # >� �'0@T {�.É@ �-./@�T -.@ �@�@��@�}# {.@�A'�-�'>�T >� T'0ÉA-�'>�T} ; 
�>T'�'Ê@ �.@�'��'Ê@ .-�@ =  # >� �'0@T {-AA �@�@��@� �-./@�T -.@ �.É@ >�@T }# {.@�A'�-�'>�T >� T'0ÉA-�'>�T}  

 

 

Figure 9. Workflow of two-stage approach applied on simulation data. 

 

For comparison, a penalized forward-stepwise logistic regression model was also 

fit on the same simulation data using R package – stepPLR (Park, Hastie and Park 2009). 

In the model, a 95 penalized term is added to the log-likelihood function:   

max1 �A�*� − :‖*‖55� 

Bayesian information criterion (BIC) is used to guide the forward growing and : is set to 

a default value as : = 1@ − 4. Maximum number of terms to be added in the forward 

selection procedure is set as 10. The model allows interactions to enter if at least one of 

the main effects are present. The performance of penalized stepwise logistic regression 

model was compared to that of the two-stage approach (Table 3-4).  
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Table 2 summarized the performance of our two-stage approach in simulation data 

with both low- and high-dimensional settings. In the low-dimensional scenario, the two-

stage approach has a high performance in identifying the true targets. Each of the four 

true individual SNPs has been successfully detected more than 80% of times, with the 

highest being 92.2%, out of total 1000 simulations. For SNP-SNP interactions, given the 

fact that PCNA can only functioned when there are more than two variables, we only 

focus on the simulations which more than two SNPs are identified by SGL. There are 821 

out of 1000 satisfying this criteria. Out of these 821 simulations, 92.4% have identified the 

true SNP-SNP interaction between SNP 2 and 3, and ~90% (89.3%) have identified 

interaction between SNP 7 and 8. The comparatively high TPR comes at the prize of 

rather low positive predictive rate. 25.8% out of 1000 simulations have detected only 

individual targets that are true ones.  

 

In high-dimensional scenario, the two-stage approach exhibits a little differently 

comparing to in low-dimensional setting. The TPRs of true individual targets are relatively 

low, with the highest one being only 52%. However, among the 14 (out of 50) simulations 

that more than two variables are spotted by SGL, the two-stage approach has 

successfully recognized interaction SNP2*SNP3 with an 85.7% TPR and SNP7*SNP8 

with a 71.4% TPR. Though slightly lower than those in low-dimensional setting, the TPRs 

of SNP-SNP interactions for high-dimensional scenario are still satisfying. Surprisingly, 

96% of the simulations have pinpointed only true individual targets. We thus claimed that 

in the high-dimensional situation, although the two-stage approach performed 
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conservatively in the identification of true individual variables, yet it preserved the similarly 

and impressively high performance in detecting true SNP-SNP interactions  and a notably 

low false discovery rate when compared to that in low-dimensional setting.  

 

The exciting performance of the two-stage approach was confirmed by the 

comparison with the stepwise penalized logistic regression model. Considering the TPRs 

in low-dimensional scenario, the two-stage approach performed as well as, if not better 

than, the stepwise penalized logistic regression model for individual variables. While the 

latter model recognized the true interactions with merely 23.1% and 11.6% TPRs, the 

proposed method has greatly surpassed it by TPRs three to six times higher concerning 

total 1,000 replications (Table 3).  
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Table 2. Result summary of the two-stage approach in simulation data 

 Scenario 1 Scenario 2 Summary 

Number of Simulations (s) 1,000 50  

Total Number of SNPs (P) 50 1,000 ↑ 

Sample Size (N) 1,000 1,000  

True 
Positive 

Rate 

SNP2 92.2% (out of 1,000) 52% (out of 50) 

↓ 
SNP3 81.7% (out of 1,000) 26% (out of 50) 

SNP7 81.5% (out of 1,000) 32% (out of 50) 

SNP8 80.3% (out of 1,000) 30% (out of 50) 

SNP2_vs_SNP3 92.4% (out of 821) 85.7% (out of 14) ≈ 

SNP7_vs_SNP8 89.3% (out of 821) 71.4% (out of 14) ≈ 

Positive Predictive Rate 25.8% (out of 1,000) 96% (out of 50) ↑ 
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Table 3. Result summary of two methods in Scenario 1 

Scenario 1 Two-stage StepPlr 

Number of Simulations (s) 1,000 

Total Number of SNPs (P) 50 

Sample Size (N) 1,000 

True 
Positive 

Rate 
 
 
 

SNP2 92.2% (out of 1,000) 100% (out of 1,000) 

SNP3 81.7% (out of 1,000) 74.4% (out of 1,000) 

SNP7 81.5% (out of 1,000) 79.9% (out of 1,000) 

SNP8 80.3% (out of 1,000) 79.0% (out of 1,000) 

SNP2_vs_SNP3 
92.4% (out of 821) 

75.9% (out of 1,000) 
23.1% (out of 1,000) 

SNP7_vs_SNP8 
89.3% (out of 821) 

73.3% (out of 1,000) 
11.6% (out of 1,000) 

* Two-stage: two-stage approach; StepPlr: penalized stepwise logistic regression.  

 

With regards to the high-dimensional setting, the stepwise penalized model has 

recognized the individual true SNP with more than 50% of times (even reach 100% for 

SNP2); nevertheless, the TPRs of SNP-SNP interactions were considerately low, at 26% 

and 6% for SNP2*SNP3 and SNP7*SNP8, respectively. On the other hand, as noted 

previously, the two-stage approach did not have high TPRs for true individual targets, but 

has successfully detected SNP-SNP interactions in most of the simulations with more 

than two significant individuals identified (Table 4). Even considering the full situation with 

all 50 replications, these TPRs were still comparable to those of stepwise penalized model. 

We did not consider PPR here since for stepwise penalized model, the number of selected 

variables was user-specified, rendering the comparison of PPR less meaningful.    
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Table 4. Result summary of two methods in Scenario 2 

Scenario 2 Two-stage StepPlr 

Number of Simulations (s) 50 

Total Number of SNPs (P) 1,000 

Sample Size (N) 1,000 

True 
Positive 

Rate 

SNP2 52% (out of 50) 100% (out of 50) 

SNP3 26% (out of 50) 56% (out of 50) 

SNP7 32% (out of 50) 64% (out of 50) 

SNP8 30% (out of 50) 70% (out of 50) 

SNP2_vs_SNP3 
85.7% (out of 14) 
24.0% (out of 50) 

26% (out of 50) 

SNP7_vs_SNP8 
71.4% (out of 14) 
20.0% (out of 50) 

6% (out of 50) 

* Two-stage: two-stage approach; StepPlr: penalized stepwise logistic regression. 

 

To summarize, analysis results in simulation data indicated that, our two-stage 

approach performed well in finding true main effects and interactions in low-dimensional 

scenario. The fact that this approach had an impressively high (96%) positive predictive 

rate of true individual variables and satisfying true positive rates of SNP-SNP interactions 

particularly in high-dimensional situation is very encouraging to its application in the field 

of genetics for the exploration of biologically-relevant genomic associations. When 

compared with the stepwise penalized logistic regression model, the two-stage approach 

has notably outperformed it, especially with respect to SNP-SNP interactions.  



 

59 

 

4. Application to GWA Studies 
 

Smoking has produced negative health and economic burdens. According to a 

report from US Department of Health and Human Services published in 2014 (Health and 

Services 2014), smoking is responsible for more than 480,00 deaths and $289 billion cost. 

Though a majority of smokers would like to quit, yet few are successful. Addiction to 

nicotine, a naturally occurring alkaloid found in tobacco, is considered as the main reason. 

The GWA study COGEND (Collaborative Genetic Study of Nicotine Dependence) was 

initiated in 2001, aiming to detect biological mechanisms, genes and environmental 

factors associated with heavy tobacco consumption, nicotine dependence, and related 

phenotypes (NCBI , COGEND 2013). Subjects in COGEND study age from 25 to 44. 

Case subjects are smokers defined as nicotine dependence (with a FTND (Fagerström 

Test for Nicotine Dependence) score of 4 or greater) and control subjects are smokers 

(smoked at least 100 cigarettes lifetime) who never had any symptoms of dependence 

(with lifetime FTND = 0) (COGEND 2013). The COGEND data used in this dissertation is 

from Dr. Laura Bierut’s group, which is a subset of COGEND data set. It contains 2022 

subjects (1114 cases and 908 controls). Totally 215 SNPs are included in the data set, 

locating in eight chromosomes (Table 5). SNPs are coded as (0, 1, 2) according to the 

number of minor alleles, whichever is identified with lower frequency in population. 
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Table 5. Chromosome information of SNPs 

Chromosome 1 2 4 8 11 15 17 20 

# of SNPs 4 17 10 37 4 112 20 11 

 

The data were analyzed by our two-stage approach, which results were compared 

to that from the penalized stepwise logistic regression model. Since for real data the 

ground truth (i.e. the true underlying associations and networks) is unknown, the 

performance of different methods could not be directly compared. We thus focused on 

the similarities and dissimilarities of the results from the investigated methods.  

 

4.1. Two-stage Approach  
 

Our approach can be applied to the COGEND data set by grouping SNPs based 

on their: 1) pairwise canonical correlation measurement; or 2) biological information such 

as gene mapping (Figure 10). We denoted them as “Method A” and “Method B” 

respectively in the following description.  
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Figure 10. Workflow of two-stage approach in COGEND data analysis. 

 

4.1.1. Method A: Grouping by Pairwise Canonical Correlation Measurements 

 

Clustering was performed according to the dissimilarity matrix input based on 

pairwise canonical correlation measurements. R package – DynamicTreeCut (Langfelder, 

Zhang and Horvath 2008) was implemented to determine the clusters with criteria of 

threshold to be at least 10 SNPs per group. This procedure resulted in 11 clusters plus 

Cluster0 for outliers (containing 7 SNP that did not meet the clustering criteria; Table 6). 

As discussed in (Chen 2011), the clustering result based on canonical correlation 

measurement is extremely similar to those based on linkage disequilibrium and Cramér’s 

V and is superior compared to those of Kendall’s �  and Pearson’s . . Based on this 

grouping structure, sparse-group lasso was applied, with �  being set as 0.95 

(corresponding to the expectation of strong overall sparseity), and the value of : being 

optimized via 10-fold cross validation (Figure 11).  

 

Table 6. Clustering results of Method A (minimum cluster size = 10 SNPs) 

Cluster 0 1 2 3 4 5 

# of SNPs 7 41 32 24 24 15 

Cluster 6 7 8 9 10 11 

# of SNPs 15 14 12 11 10 10 
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Figure 11. Workflow of Method A 

 

The analysis of data with sparse-group lasso resulted in 14 SNPs with non-zero 

coefficients from two chromosomes (Chr15 and Chr20) and four clusters (Table 7). 

Following this, we further explored the pairwise conditional relationship among these 14 

SNP candidates that would be potentially associated to nicotine dependence. Data of 

these 14 SNPs were divided into case and control groups. Within each group, pairwise 

partial correlations were calculated, followed by tests of significance. Multiple testing 

problem has been taken into full consideration here in the view of the fact that false 

discovery rate (FDR) was assessed for the p-values from significant tests and has been 

controlled at 0.05 (�). Through the variable selection process via sparse-group lasso, we 

have brought down the number of testing dramatically and have thus kept the multiple 

testing problem in a more benign form. After carefully comparing the two partial 

correlation networks between groups, we have identified 15 pairs of SNP-SNP 

associations in interests, the significance of partial correlation of which was detected in 

one group yet not in the other (Table 8; Figure 12-15).  
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Table 7. SNPs with non-zero coefficients recognized by sparse-group lasso in Method A 

SNP CHROMOSOME CLUSTER 

rs2036534 15 2 

rs3813570 15 2 

rs905739 15 2 

rs667282 15 2 

rs6495309 15 2 

rs12440014 15 2 

rs3813567 15 2 

rs12914008 15 3 

rs2036527 15 5 

rs17486278 15 5 

rs2236196 20 9 

rs3787137 20 9 

rs3787138 20 9 

rs2229959 20 9 

 

Table 8. Partial correlations of 15 SNP pairs in case and control groups 
 

SNP1 SNP2 

Partial Correlation 
Coefficients 

Group 
(1 -- case; 

0 -- control) Smoking 
Non-

smoking 

rs2036527 rs2036534 0.120 0.096 1  

rs17486278 rs2036534 0.115 0.103 1 

rs12914008 rs2036534 0.125 0.035 1 

rs2036527 rs3813570 0.126 0.086 1 

rs12914008 rs3813570 0.140 0.038 1 

rs2036527 rs905739 0.115 0.089 1 
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rs17486278 rs905739 0.128 0.104 1 

rs6495309 rs2036527 0.107 0.103 1 

rs2236196 rs2036527 0.103 0.058 1 

rs2229959 rs2036527 0.164 0.055 1 

rs6495309 rs17486278 0.118 0.103 1 

rs3813567 rs17486278 0.118 0.079 1 

rs3787137 rs6495309 0.094 0.057 1 

rs17486278 rs3813570 0.099 0.133 0  

rs3787138 rs12914008 0.035 0.183 0 
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Figure 12. Numbers of edge(s) for each SNP in PCNA networks of case (above) and 
control (below) groups.  
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Figure 13. Correlation plots representing pairwise partial correlation coefficients among 
14 selected SNP targets in case (above) and control (below) groups. Numbers indicated 
significant partial correlations translated into percentage and controlled with FDR at 5%. 
Insignificant partial correlations were suppressed to be expressed. Degree of 
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transparency represented the magnitude of partial correlation coefficients. Numbers in 
blue indicated positive partial correlations and red for negative partial correlations. 

 

 

 

Figure 14. Partial correlation networks in case (above) and control (below) groups. 
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Figure 15. Partial correlation network with 14 selected SNP targets. Nodes represent SNP targets; while edges are 
recognized by pairwise partial correlations significant in one group yet not in the other (signified by different colors: Orange 
– Case; Blue – Control). Degree of transparency of edges represents the magnitude of partial correlations between the two 
connected nodes. 
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4.1.2. Method B: Grouping by Gene Mapping Information 

 

The 215 SNPs can also be clustered according to their gene mapping information. 

In the database provided by National Institutes of Health (NIH; 

http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm), we have mapped the SNPs to their 

corresponding genes, which formed 29 groups in total. The number of SNPs mapped per 

gene ranged from 1 to 40 (Table 9-10). While majority of SNPs are within gene boundaries, 

there are 49 (~22.8%) SNPs identified in inter-genic regions. It has been suggested that 

these variants may still be potentially located in functionally significant regions that are 

outside gene boundaries (Silver, et al. 2013). Thus, these 49 SNPs were mapped to 

whichever nearby genes with shorter distance in base pairs (bp; Table 13). Based on this 

grouping structure, sparse-group lasso was performed, with � being set as 0.95 and the 

value of : being optimized via 10-fold cross validation (Figure 16).  

 

Figure 16. Workflow of Method B 
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Table 9. Summary of gene mapping information of SNPs 

CHRNA7 CHRNA3 CHRNA5 CHRNB3 IREB2 CHRNA2 

40 20 18 17 13 11 
CHRNB4 CHRNA9 CHRNA4 CHRNA6 CHRNB1 CHRNG 

11 10 9 9 9 6 
CHRNA1 LOC100130311 LOC123688 PSMA4 CHRNB2 CHRND 

5 5 5 5 4 4 
CHRNA10 EIF4E2 FGF11 ART1 LOC100130587 LOC100133187 

2 2 2 1 1 1 
MINK1 NUP98 POLR2A TMEM102 ZBTB4 

1 1 1 1 1 
 

Table 10. Summary of gene mapping and chromosome information 

Gene 
Chromosome 

1 2 4 8 11 15 17 20 

ART1 0 0 0 1 0 0 0 0 
CHRNA1 0 0 0 1 1 2 1 0 
CHRNA10 0 0 0 0 0 2 0 0 
CHRNA2 0 0 0 1 0 8 1 1 
CHRNA3 0 2 0 2 0 11 4 1 
CHRNA4 0 1 0 0 0 8 0 0 
CHRNA5 0 1 0 3 0 13 0 1 
CHRNA6 1 2 0 0 1 1 2 2 
CHRNA7 0 3 5 6 2 16 7 1 
CHRNA9 3 0 0 0 0 6 0 1 
CHRNB1 0 0 0 1 0 8 0 0 
CHRNB2 0 0 0 3 0 1 0 0 
CHRNB3 0 1 0 7 0 8 1 0 
CHRNB4 0 3 2 2 0 3 0 1 
CHRND 0 0 1 0 0 3 0 0 
CHRNG 0 1 0 2 0 3 0 0 
EIF4E2 0 0 0 0 0 2 0 0 
FGF11 0 0 0 0 0 2 0 0 
IREB2 0 0 0 5 0 7 0 1 
LOC100130311 0 0 0 1 0 3 1 0 
LOC100130587 0 0 0 0 0 0 1 0 
LOC100133187 0 1 0 0 0 0 0 0 
LOC123688 0 1 0 1 0 2 1 0 
MINK1 0 0 1 0 0 0 0 0 
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NUP98 0 0 0 0 0 1 0 0 
POLR2A 0 0 0 0 0 0 0 1 
PSMA4 0 1 1 0 0 1 1 1 
TMEM102 0 0 0 0 0 1 0 0 
ZBTB4 0 0 0 1 0 0 0 0 

 

The sparse-group lasso picked out 14 SNPs with non-zero coefficients from three 

chromosomes (Chr8, Chr15 and Chr20) and seven genes (Table 11). Subsequently, 

pairwise partial correlation coefficients of these chosen SNPs were calculated in case 

and control groups respectively. The significance of coefficients was tested and controlled 

at FDR = 0.05. By comparing the two partial correlation networks between groups, 13 

SNP-SNP associations of interests were identified, the partial correlations of which were 

significant in one group yet not in the other (Table 12; Figure 17-20).  

 

Table 11. SNPs with non-zero coefficients recognized by sparse-group lasso in Method 
B 

SNP CHROMOSOME GENE MAPPING 

rs2292974 8 CHRNA2 

rs12440014 15 CHRNB4 

rs12914008 15 CHRNB4 

rs1317286 15 CHRNA3 

rs17486278 15 CHRNA5 

rs2036527 15 CHRNA5 

rs2036534 15 LOC123688 

rs3813567 15 CHRNB4 

rs3813570 15 PSMA4 

rs667282 15 CHRNA5 

rs2229959 20 CHRNA4 
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rs2236196 20 CHRNA4 

rs3787137 20 CHRNA4 

rs3787138 20 CHRNA4 

 

 
Table 12. Partial correlations of 13 SNP pairs in case and control groups 

SNP1 SNP2 

Partial Correlation 
Coefficients 

Group 
(1 -- case; 

0 -- control) Smoking 
Non-

smoking 

rs2292974 rs12440014 0.113 0.055 1 

rs2036534 rs12914008 0.222 0.034 1 

rs3813570 rs12914008 0.136 0.035 1 

rs2036534 rs17486278 0.128 0.103 1 

rs3813567 rs17486278 0.120 0.096 1 

rs2036534 rs2036527 0.120 0.099 1 

rs2229959 rs2036527 0.244 0.062 1 

rs3813570 rs2036527 0.129 0.089 1 

rs3787137 rs2036534 0.121 0.023 1 

rs3787138 rs12914008 0.049 0.182 0 

rs2229959 rs1317286 0.061 0.122 0 

rs3813570 rs17486278 0.101 0.129 0 

rs3813570 rs2229959 0.044 0.098 0 
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Table 13. Summary of 49 SNPs located in inter-gene regions 

SNP Position Nearby Genes Distance (bp) Gene Mapping 

rs4796305 7276779 C17orf74||TMEM102 -5168||-2707 TMEM102 

rs10958726 42655066 C8orf40||CHRNB3 -127786||-16653 CHRNB3 

rs13277254 42669139 C8orf40||CHRNB3 -141859||-2580 CHRNB3 

rs13277524 42669214 C8orf40||CHRNB3 -141934||-2505 CHRNB3 

rs13280301 42669174 C8orf40||CHRNB3 -141894||-2545 CHRNB3 

rs1530847 42667396 C8orf40||CHRNB3 -140116||-4323 CHRNB3 

rs1955185 42668804 C8orf40||CHRNB3 -141524||-2915 CHRNB3 

rs1955186 42668648 C8orf40||CHRNB3 -141368||-3071 CHRNB3 

rs5005909 42647824 C8orf40||CHRNB3 -120544||-23895 CHRNB3 

rs6474412 42669655 C8orf40||CHRNB3 -142375||-2064 CHRNB3 

rs6474413 42670221 C8orf40||CHRNB3 -142941||-1498 CHRNB3 

rs2231529 3649829 CHRNA10||NUP98 -639||-2987 CHRNA10 

rs2231532 3649696 CHRNA10||NUP98 -506||-3120 CHRNA10 

rs6578411 3652548 CHRNA10||NUP98 -3358||-268 NUP98 

rs2565055 27393297 CHRNA2||EPHX2 -567||-11265 CHRNA2 

rs6495309 76702300 CHRNA3||CHRNB4 -1923||-1391 CHRNB4 

rs10107450 42749052 CHRNA6||THAP1 -6276||-61922 CHRNA6 

rs7828365 42748471 CHRNA6||THAP1 -5695||-62503 CHRNA6 

rs17732878 7303083 CHRNB1||ZBTB4 -1427||-338 ZBTB4 

rs9298628 42725148 CHRNB3||CHRNA6 -13782||-1772 CHRNA6 

rs9298629 42725343 CHRNB3||CHRNA6 -13977||-1577 CHRNA6 

rs6987323 42716389 CHRNB3||CHRNA6 -5023||-10531 CHRNB3 

rs7012713 42711460 CHRNB3||CHRNA6 -94||-15460 CHRNB3 

rs3813567 76721606 CHRNB4||LOC390612 -964||-18832 CHRNB4 

rs3971872 76729090 CHRNB4||LOC390612 -8448||-11348 CHRNB4 

rs4790235 4746831 CHRNE/LOC100130311 4991/3339||317/175 LOC100130311 

rs2276560 233159163 EIF4E2||EFHD1 -16999||-47405 EIF4E2 
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rs6749955 233146161 EIF4E2||EFHD1 -3997||-60407 EIF4E2 

rs17483548 76517368 LOC100129388||IREB2 -48810||-205 IREB2 

rs16954243 4753179 LOC100130311||GP1BA -6173||-23193 LOC100130311 

rs3760490 4748705 LOC100130311||GP1BA -1699||-27667 LOC100130311 

rs7214776 4752393 LOC100130311||GP1BA -5387||-23979 LOC100130311 

rs8080668 4758494 LOC100130311||GP1BA -11488||-17878 LOC100130311 

rs12442690 30088689 LOC100130857||CHRNA7 -32697||-21329 CHRNA7 

rs1514246 30106782 LOC100130857||CHRNA7 -50790||-3236 CHRNA7 

rs3087454 30108259 LOC100130857||CHRNA7 -52267||-1759 CHRNA7 

rs3826029 30108777 LOC100130857||CHRNA7 -52785||-1241 CHRNA7 

rs6494165 30108578 LOC100130857||CHRNA7 -52586||-1440 CHRNA7 

rs4603829 61439336 LOC100131010||CHRNA4 -9679||-5773 CHRNA4 

rs4469116 40032005 LOC100132141||CHRNA9 -4812||-221 CHRNA9 

rs4602530 40031981 LOC100132141||CHRNA9 -4788||-245 CHRNA9 

rs6823439 40031357 LOC100132141||CHRNA9 -4164||-869 CHRNA9 

rs1107953 61471990 LOC100133187||LOC100130152 -1900||-22377 LOC100133187 

rs12916483 76619452 LOC123688||PSMA4 -2682||-350 PSMA4 

rs9901643 7360548 POLR2A||TNFSF12 -1895||-32551 POLR2A 

rs2036527 76638670 PSMA4||CHRNA5 -10053||-6291 CHRNA5 

rs503464 76644951 PSMA4||CHRNA5 -16334||-10 CHRNA5 

rs880395 76631411 PSMA4||CHRNA5 -2794||-13550 PSMA4 

rs905739 76632165 PSMA4||CHRNA5 -3548||-12796 PSMA4 
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Figure 17. Numbers of edge(s) for each SNP in PCNA networks of case (above) and 
control (below) groups.  
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Figure 18. Correlation plots representing pairwise partial correlation coefficients among 
14 selected SNP targets in case (above) and control (below) groups. Numbers indicated 
significant partial correlations translated into percentage and controlled with FDR at 5%. 
Insignificant partial correlations were suppressed to be expressed. Degree of 
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transparency represented the magnitude of partial correlation coefficients. Numbers in 
blue indicated positive partial correlations and red for negative partial correlations. 

 

 

 
Figure 19. Partial correlation networks in case (above) and control (below) groups. 
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Figure 20. Partial correlation network with 14 selected SNP targets. Nodes represent SNP targets; while edges are 
recognized by pairwise partial correlations significant in one group yet not in the other (signified by different colors: Orange 
– Case; Blue – Control). Degree of transparency of edges represents the magnitude of partial correlations between the two 
connected nodes. 
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4.1.3. Summary 
 

Comparing the results from Method A and Method B, 12 individual SNPs (Table 

14) and 9 pairs of SNP-SNP associations (Table 15) were identical. The fact that most 

detected targets from Method A and Method B were the same demonstrates that the 

pairwise association measurement based on canonical correlation may well represent the 

relationship of SNPs concerning their gene mapping, and can thus be considered as an 

alternative when biological information of SNPs is insufficient or unavailable.  

 

Table 14. Identical individual SNPs recognized by Method A and Method B 

SNP 
CHROMO-

SOME 

GENE 
MAPPING 

SNP 
CHROMO-

SOME 

GENE 
MAPPING 

rs3813567 15 CHRNB4 rs2036534 15 LOC123688 

rs17486278 15 CHRNA5 rs3813570 15 PSMA4 

rs2036527 15 CHRNA5 rs2229959 20 CHRNA4 

rs667282 15 CHRNA5 rs2236196 20 CHRNA4 

rs12440014 15 CHRNB4 rs3787137 20 CHRNA4 

rs12914008 15 CHRNB4 rs3787138 20 CHRNA4 

 

Table 15. Identical SNP-SNP associations detected by Method A and Method B 

SNP1 SNP2 SNP1 SNP2 

rs2036534 rs12914008 rs2229959 rs2036527 

rs3813570 rs12914008 rs3813570 rs2036527 

rs2036534 rs17486278 rs3787138 rs12914008 

rs3813567 rs17486278 rs3813570 rs17486278 

rs2036534 rs2036527  

 

4.2. Method C: Penalized Stepwise Logistic Regression Model 
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The penalized stepwise logistic regression model was once again employed on 

the COGEND data set for comparison (denoted as “Method C”) using R package 

“stepPLR”. The value of : was determined through a 5-fold cross-validation process and 

set as : = 1. Items were picked via forward selection, followed by a backward deletion. 

Maximum number of items to be added in the selection procedure was set to be 30. The 

final model included 28 items, including individual SNPs and up to 7-way SNP-SNP 

interactions (Table 16). 

 

Table 16. Individual targets and interactions (up to 7-way) identified in Method C  

Individual SNPs 

rs12440014 

rs2236196 

rs12914008 

rs16925377 

Two-way Interactions 

rs2292974:rs12440014  

rs6494212:rs2236196 

rs1376866:rs12440014 

Three-way Interactions 

rs8192479:rs2292974:rs12440014 

rs3787138:rs2292974:rs12440014 

rs2767:rs2292974:rs12440014 

rs6474412:rs1376866:rs12440014 

rs2289080:rs6494212:rs2236196 
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Four-way Interactions 

rs11636605:rs8192479:rs2292974:rs12440014 

rs4950:rs3787138:rs2292974:rs12440014 

rs12442690:rs3787138:rs2292974:rs12440014 

rs8192475:rs2289080:rs6494212:rs2236196 

rs3971872:rs3787138:rs2292974:rs12440014 

Five-way Interactions 

rs16956223:rs4950:rs3787138:rs2292974:rs12440014 

rs1051730:rs4950:rs3787138:rs2292974:rs12440014 

rs950776:rs12442690:rs3787138:rs2292974:rs12440014 

rs2036527:rs11636605:rs8192479:rs2292974:rs12440014 

rs4796305:rs3971872:rs3787138:rs2292974:rs12440014 

Six-way Interactions 

rs1376866:rs16956223:rs4950:rs3787138:rs2292974:rs12440014 

rs6495309:rs950776:rs12442690:rs3787138:rs2292974:rs12440014 

rs10009228:rs1051730:rs4950:rs3787138:rs2292974:rs12440014 

rs1500948:rs4796305:rs3971872:rs3787138:rs2292974:rs12440014 

Seven-way Interactions 

rs578776:rs1376866:rs16956223:rs4950:rs3787138:rs2292974:rs12440014 

rs1827294:rs1500948:rs4796305:rs3971872:rs3787138:rs2292974:rs12440014 
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The individual targets recognized by Method C were similar to those from Method 

A and B (3 out of 4 are the same). One of the two-way interactions -- 

rs2292974:rs12440014 was also detected by Method B (grouping by gene mapping 

information). Comparing to the two-stage approach (Method A and B), the penalized 

stepwise model (Method C) has identified relatively small number of either individual or 

two-way interaction targets. On the other hand, this model recognized interactions as long 

as at least one of the main effects is in the model; furthermore, interactions more than 

two-way were taken into consideration.  

 

4.3. Discussion 
 

Information of individual SNPs picked out by the three methods and corresponding 

phenotype-associated reference were summarized in Table 19. All selected single SNPs 

from three methods come from 8 genes (CHRNA3, CHRNB4, CHRNA5, PSMA4, 

LOC123688, CHRNA4, CHRNA2 and ART1; Table 17). Among them, the first five genes 

are from the so-called “Chromosome 15q25.1 region” (Table 18). This region has been 

identified to be associated with smoking behavior and would increase the risks of nicotine 

dependence, and smoking-related diseases, such as lung cancer (Saccone, et al. 2009, 

VanderWeele, et al. 2012). The first three genes (CHRNA3, CHRNB4, and CHRNA5) lie 

very close to each other and are in strong linkage disequilibrium (LD) with each other. 

They are treated as the “CHRNA5-CHRNA3-CHRNB4” cluster in most studies. This 

nicotinic acetylcholine receptor (nAChR) subunit gene cluster located on Chromosome 

15q24-25 has been claimed by GWA study findings, to be associating with nicotine 
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dependence (Hung, et al. 2008), smoking behavior (Berrettini, et al. 2008, Thorgeirsson, 

et al. 2008, Caporaso, et al. 2009, David, et al. 2012), and lung cancer (Amos, et al. 2008, 

Hung, et al. 2008). Totally 8 SNPs identified by at least one of the three methods located 

in this cluster. PSMA4 (proteasome subunit, alpha type 4), a 20S proteasome structural 

protein gene, has been claimed as a strong candidate mediator of lung cancer cell 

proliferation and apoptosis (Liu, et al. 2009, Hansen, et al. 2010). Down-regulation of 

PSMA4 expression decreases proteasome activity and induces apoptosis. In this gene, 

we have identified SNPs rs3813570 and rs905739, which have been shown to relate to 

smoking behavior and nicotine dependence, respectively (Wang, et al. 2009, David, et al. 

2012, Meyers, et al. 2013). LOC123688 is a hypothetical gene and we have identified 

rs2036534 from it.  

 

Table 17. Corresponding genes mapped with SNPs identified by the three methods  

Gene 
SNPs Selected 
by Method A 

SNPs Selected 
by Method B 

SNPs Selected 
by Method C 

CHRNA3  rs1317286  

CHRNB4 

rs12440014 rs12440014 rs12440014 

rs12914008 rs12914008 rs12914008 

rs3813567 rs3813567  

rs6495309   

CHRNA5 

rs17486278 rs17486278  

rs2036527 rs2036527  

rs667282 rs667282  

PSMA4 

rs3813570 rs3813570  

rs905739   
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LOC123688 rs2036534 rs2036534  

CHRNA4 

rs2229959 rs2229959  

rs2236196 rs2236196 rs2236196 

rs3787137 rs3787137  

rs3787138 rs3787138  

CHRNA2  rs2292974  

ART1   rs16925377 

 

Table 18. Chromosome 15q25.1 region and the included genes  

Chromosome 
15q25.1 Region 

Gene Description 

CHRNA5 

nicotinic cholinergic 
receptor subunit genes 

CHRNA3 

CHRNB4 

PSMA4 
a proteasome subunit 

encoding gene 

LOC123688 a hypothetical gene 

IREB2 
an iron responsive 

element-binding protein 

 

 Both CHRNA4 and CHRNA2 are nicotinic acetylcholine receptor (nAChR) subunits. 

There are in total 11 nAChR subunit-encoding genes – CHRNA2, 3, 4, 5, 6, 7, 9, 10; 

CHRNB2, 3, 4 –located on 6 chromosomes (Chr1, 4, 8, 11, 15, and 20). They code for 
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proteins that form receptors present in neuronal and other tissues and are strong 

candidate genes for smoking-related disease (Hung, et al. 2008). In the mouse models, 

the cholinergic receptor, nicotinic, alpha 4 (CHRNA4), encodes the �4 subunit of nAChRs, 

which, together with CHRNB2, form the most prevalent nAChRs in brain (Lou, et al. 2007) 

and has been reported to be involved in nicotine-induced reward, tolerance and 

sensitization (Tapper, et al. 2004). Both rs2236196 (located in 3’ UTR) and rs3787137 

(located in the intron) were reported to associate with smoking behavior (Li, et al. 2005, 

Hutchison, et al. 2007). CHRNA2 has been linked to tobacco dependence and smoking 

intensity (Faraone, et al. 2004, Swan, et al. 2006); yet rs2292974 has been reported to 

potentially associated with nicotine dependence (Philibert, et al. 2009). Recognized by 

stepwise penalized model, rs16925377 located in Chr11, referring to gene ART1 (ADP-

Ribosyltransferase 1) that does not belong to neuronal nicotinic receptor family, although 

it may have modest effect on nicotine dependence (Saccone, et al. 2010).  

 

In a genome-wide meta-analysis of smoking behaviors in African-Americans, both 

rs667282 and rs3813570 were reported to be weakly correlated with rs2036527 in the 

study of CPD (cigarettes per day; r2=0.2 in CEU (Northern and Western Europe) and 0.12 

in YRI (Yoruba in Ibadan, Nigeria)); while they were also correlated with each other 

(r2=0.60 in CEU and 0.32 in YRI) (David, et al. 2012). In our study, we have identified the 

SNP-SNP association, rs2036527:rs3813570 in both Method A (partial correlation: 0.126 

in case group, 0.086 in control group) and Method B (partial correlation: 0.129 in case 

group, 0.089 in control group) (Table 8, Table 12).  
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To gain further insight, we transferred the SNP partial correlation network to the 

corresponding gene network. For gene pairs associated with more than one SNP-SNP 

interactions in the same group, we simplified them to one; yet we keep both edges for the 

same gene pair if they are from different groups 

(  

Figure 21-22). Both methods have recognized the close relationship among genes 

in the “Chromosome 15q25.1 region”. Besides, they also pinpointed the association of 

this region with CHRNA4. CHRNA4 has been reported to be up-regulated under chronic 

nicotine exposure (Marks, et al. 1992) and its activation is sufficient for nicotine-induced 

reward, tolerance, and sensitization (Tapper 2004). It has been demonstrated that 

CHRNA4 interacts with CHRNB2 experimentally, and acts jointly with BDNF (Brain-

Derived Neurotrophic Factor) or NTRK2 (Neurotrophic Tyrosine Kinase, Receptor, Type 

2) contributing to nicotine dependence in a yet unknown indirect manner (Li, Lou, Chen, 

Ma and Elston 2008). Our result proposed another potential jointly direct relationship of 

CHRNA4 and genes in the “Chromosome 15q25.1 region” to associate with nicotine 

dependence. 
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Table 19. Summary of phenotype-associated reference of SNPs 

SNP Chr 
Position 

(bp) 
Gene 

SNP 
Function 

Phenotype Reference 

rs1317286 15 78603787 CHRNA3 Intron 

Smoking behavior (Berrettini, et al. 2008) 

Nicotine 
dependence 

(Saccone, et al. 2009, Li, et al. 
2010) 

Lung cancer 
(Hung, et al. 2008, Amos, et 
al. 2010) 

rs6495309 15 76702300 CHRNB4 Locus Lung cancer 
(Amos, et al. 2010, Yang, et al. 
2012) 

rs12914008 15 76710560 CHRNB4 Nonsynon 
Nicotine 

dependence 
(Zhang, Summah, Zhu and Qu 
2011) 

rs12440014 15 76713781 CHRNB4 Intron 
Smoking behavior (Stevens, et al. 2008) 

Lung cancer (Amos, et al. 2010) 

rs3813567 15 76721606 CHRNB4 
(5’ near 
gene) 

Nicotine 
dependence 

(Saccone, et al. 2007) 

rs2036527 15 76638670 
Upstream of 

CHRNA5 
 
 

Smoking behavior 

(Stevens, et al. 2008, 
Caporaso, et al. 2009, Broms, 
et al. 2012, David, et al. 2012, 
Zhu, et al. 2014)  

Nicotine 
dependence 

(Greenbaum and Lerer 2009) 

Lung cancer 
(Amos, et al. 2010, Scherf, et 
al. 2013) 

rs667282 15 76650527 CHRNA5 Intron Lung cancer (Amos, et al. 2010) 

rs17486278 15 76654537 CHRNA5 Intron Smoking behavior 
(Bierut, et al. 2008, Stevens, 
et al. 2008, Greenbaum, et al. 
2009) 

rs17486278 15 76654537 CHRNA5 Intron 
Nicotine 

dependence 
(Weiss, et al. 2008, Saccone, 
et al. 2009) 

Lung cancer (Hansen, et al. 2010) 
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rs3813570 15 76619887 PSMA4 mRNA-UTR Smoking behavior 
(David, et al. 2012, Meyers, et 
al. 2013) 

rs905739 15 76632165 PSMA4  
Nicotine 

dependence 
(Wang, et al. 2009) 

rs2036534 15 76614003 LOC123688  

Nicotine 
dependence 

(Saccone, et al. 2009) 

Lung cancer 
(Wu, et al. 2009a, Bae, et al. 
2012) 

rs2236196 20 61448000 CHRNA4 mRNA-UTR 

Nicotine 
dependence 

(Saccone, et al. 2007, Li, et al. 
2008, Portugal and Gould 
2008, Li and Burmeister 2009) 

Smoking behavior 
(Li, et al. 2005, Hutchison, et 
al. 2007, Han, et al. 2011) 

rs3787138 20 61449668 CHRNA4 Intron 
Nicotine 

dependence 
(Saccone, et al. 2010) 

rs3787137 20 61449544 CHRNA4 Intron 
Smoking behavior 

(Li, et al. 2005, Portugal, et al. 
2008) 

Nicotine 
dependence 

(Lou, et al. 2007, Li, et al. 
2008) 

rs2229959 20 61451998 CHRNA4 Synon 
Nicotine 

dependence 

(Lou, et al. 2007, Breitling, et 
al. 2009, Greenbaum, et al. 
2009) 

rs2292974 8 27374308 CHRNA2 mRNA-UTR 
Nicotine 

dependence 
(Philibert, et al. 2009) 

rs16925377 11 3677075 ART1  
Nicotine 

dependence 
(Saccone, et al. 2010) 
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Figure 21. (Method A) Gene partial correlation network by mapping SNPs to their 
corresponding/nearest genes for potential gene-gene associations. Partial correlation 
coefficients of gene pairs with multiple SNP pair mappings would be the largest one 
amongst. Colors of edges represent different groups: Orange – Case; Blue – Control. 
Degree of transparency of edges represents the magnitude of partial correlations 
between the two nodes connected.  

 

 
Figure 22. (Method B) Gene partial correlation network by mapping SNPs to their 
corresponding/nearest genes for potential gene-gene associations. Partial correlation 
coefficients of gene pairs with multiple SNP pair mappings would be the largest one 
amongst. Colors of edges represent different groups: Orange – Case; Blue – Control. 
Degree of transparency of edges represents the magnitude of partial correlations 
between the two nodes connected.  
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5. Exploring MicroRNA/Messenger RNA Regulatory Network on 
Essential Thrombocytosis 
 

Platelets are anucleate blood cells which play an important key in haemostasis 

and thrombosis. Thrombocytosis is a disorder of platelet overproduction in the blood. It is 

classified as essential/primary thrombocytosis (ET) or reactive/secondary thrombocytosis 

(RT) due to the causes. Essential thrombocytosis is caused by a chronic 

myeloproliferative disorder with an unregulated surplus of platelets attributed to a 

malfunction in the body’s feedback system. Complications of ET include stroke, heart 

attack, and formation of blood clots. To date, the genetic basis of ET is still under full 

investigation and no direct diagnostic tests are available (Gnatenko, et al. 2005).  

 

Messenger RNA (mRNA) is an RNA molecule that is transcribed from a DNA 

template. It brings the genetic information and acts as the template in the process of 

protein synthesis (Kozak Mar. 1983). MicroRNA (miRNA) is single-stranded 21 to 23 

nucleotide RNA molecule, which targets mRNAs through complementary pairing to the 

3’-untranslated region (UTR) of mRNAs (Edelstein and Bray 2011) and regulates mRNA 

translation or stability (Filipowicz, Bhattacharyya and Sonenberg 2008). miRNAs have 

effects on protein synthesis through regulating mRNA destabilization or translational 

repression (Filipowicz, et al. 2008).  
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In this study, we have explored the potential miRNA/mRNA regulatory networks 

associated to essential thrombocytosis based on a 43-member cohort, through a 

combination of data-driven and knowledge-based analyses. 

 

5.1. Analysis Method Introduction  
 

5.1.1. Canonical Correlation Analysis (CCA) 

 

Introduced by Hotelling in 1936 (Hotelling 1936), canonical correlation between 

two variable sets looks for the weighted combination of all variables within each variable 

set such that the correlation of the two combinations is maximized. The weighted 

combinations are called canonical variables or components. Canonical correlation is 

considered as a general model since it can be used when both the dependent and 

independent variables are either continuous or categorical data.  

 

Consider an � ∗ � matrix 4 and an � ∗ Ì matrix `.  Without loss of generality, we 

assume � < Ì. Canonical correlation analysis (CCA) (Hotelling 1936) seeks for coefficient 

vectors Í and Î, such that the correlation between the linear combinations u = Í′4 and 

Ï = Î′` is maximized, i.e. 

 maxÍ,Î �>..�u, Ï� =  maxÍ,Î  Í�Σ�ÐÎXÍ�Σ��Í XÎ�ΣÐÐÎ 
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where Σ�� , ΣÐÐ , and Σ�Ð  are the variance for 4 , ` , and the covariance for 4  and ` , 

respectively. It is attained by the canonical variate pairs 

u = Í�4 = @�Σ��G�5 4;           Ï = Î�` = ��ΣÐÐG�5 ` 

with @ and � from the singular value decomposition (SVD) of a matrix � given by 

� =  Σ��G�&Σ�ÐΣÐÐG�& = @Ñ�� (Parkhomenko, Tritchler and Beyene 2007). 

 

5.1.2. Sparse Supervised Canonical Correlation Analysis (Sparse sCCA) 

 

In canonical correlation analysis, all variables are included in the linear 

combinations, yet for genetic data obtained via microarray studies or other high 

throughput methods, the number of variables usually surpasses tens of thousands, 

exceeding the number of study subjects. Thus the fitted linear combinations may not be 

easily interpreted and the application of standard algorithms may fail. These problems 

may be solved by introducing sparse loadings in the canonical components. Motivated by 

this idea, sparse canonical correlation analysis (SCCA) has been firstly proposed in 2007 

(Parkhomenko, et al. 2007) and has been extended and widely applied in the genetic 

area. The idea of SCCA in the field of genetics is consistent with the belief that only a 

small section of genes are expressed under a certain conditions.  

 

Sparse canonical correlation analysis can be accomplished via different methods, 

all of which has gained successes in studies of high-dimensional genomic data. 
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Parkhomenko et al. have firstly proposed an iterative algorithm to approximate singular 

vectors through soft-thresholding and applied it for the exploration of relationships 

between correlated sets of genome-wide SNP data and gene expression phenotypes 

(Parkhomenko, et al. 2007). Waaijenborg et al. have adapted the elastic net penalty to 

the estimates of canonical vectors and have successfully performed it to the examination 

of associations between gene expression and DNA markers data (Waaijenborg, 

Verselewel de Witt Hamer and Zwinderman 2008). Witten et al. in 2009 have introduced 

a regularized version of singular value decomposition (SVD) with the use of 9� and/or 

fused lasso penalties and have then investigated genetic data of the same set of subjects 

obtained from multiple assays (Witten, Tibshirani and Hastie 2009a). In the same year, 

Waaijenborg et al. took a step further to incorporate ridge and elastic net penalties in 

SCCA for the identification of pathway genes (Waaijenborg and Zwinderman 2009). 

SCCA has also been extended to include more than two sets of variables to address the 

need of high-throughput data by Lee et al. (Lee, Lee, Lee and Pawitan 2011).    

 

Based on the foundation of SCCA, Witten and Tibshirani (Witten and Tibshirani 

2009b) have further presented “sparse supervised canonical correlation analysis (sparse 

sCCA)”, targeting on finding the sparse linear combinations of the two variable sets that 

are correlated with each other and also associated with the trait of interest.  

 

Still consider an � ∗ �  matrix 4  and an � ∗ Ì  matrix ` , and assume that the 

columns of 4  and `  have been standardized with mean 0 and standard deviation 1. 
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Suppose in addition a categorical outcome vector ¢ ∈ ℝ�. The estimates of canonical 

vectors are defined as  

maxÓ,Ô É�4�`Ê, subject to 

‖É‖5 ≤ 1, ‖Ê‖5 ≤ 1, ���É� = ‖É‖� ≤ �Ó, �5�Ê� = ‖Ê‖� ≤ �Ô, 

É! = 0 ∀ l ∉ ×Ó, Ê! = 0 ∀ l ∉ ×Ô, 

where �� and �5 are convex penalty functions; �Ó and �Ô are assumed to be 1 ≤ �Ó ≤ X� 

and 1 ≤ �Ô ≤ XÌ; ×Ó and ×Ô are the sets of variables with highest univariate association 

with the outcome ¢ in 4 and `, respectively; the threshold for variables to be included in 

×Ó and ×Ô can either be fixed or be defined as a tuning parameter. É and Ê are obtained 

using an iterative algorithm with soft-thresholding. We have performed this sparse sCCA 

method on our genetic data set to investigate whether the expression of miRNA would 

have a significant effect on that of genes and vice versa. 

 

5.2. Data Analysis 
 

5.2.1. Data Structure and Processing 

 

Our data included two data sets: 354 platelet-specific mRNA data from custom 

array and 939 miRNA data from Agilent microarray (Santa Clara, CA), which were paired 

with each other from 13 patients with essential thrombocytosis (ET) disease and 30 

control subjects (Table 20).  
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Table 20. Data structure 

 ET Control Total 
# of Paired Subjects 13 30 43 

 miRNA mRNA Subject 

Total # of Items 939 354 43 
 

Data were preprocessed and analyzed using R 2.15.3 with Bioconductor packages 

(http://www.bioconductor.org/). The original miRNA data set was filtered by two steps: 

The first step was performed using spot-flagging information provided by Agilent Feature 

Extraction Software (Glenda Delenstarr and Nair), keeping only miRNAs with more than 

70% non-absent cells in any group. Next, miRNAs with more than 40% missing values in 

the sample sets were also been singled out. For mRNA data, proportion of missing 

expression data in the sample set for each mRNA was calculated and those with 50% or 

more absent data have been excluded. In addition, potential outlier was checked and 

filtered with a criteria of 3 standard deviations from the mean expression value. In both 

data sets, quantile normalization was applied to correct between-array variation 

(Pradervand, et al. 2009), followed by K-nearest neighbors algorithm for imputing missing 

expression data.  

 

After data filtering and processing, there were totally 354 platelet-specific mRNAs 

and 392 miRNAs left. We further applied significance analysis of microarrays (SAM) (Chu, 

Li, Narasimhan, Tibshirani and Tusher 2001) on miRNA data to identify differentially 

expressed miRNAs between two groups. Established in 2001, SAM is a powerful 
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statistical technique aiming at determining significant changes in a set of microarray 

experiments. For each gene, specific empirical t-test was performed, followed by 

permutations of repeated measurements to identify the false discovery rate (FDR). By 

setting criteria with FDR equal to 0.05 and threshold of fold change (FC; ET versus control) 

to be 2 (or ½), SAM has pinpointed 50 significant miRNAs (Figure 23; Table 21-21). 

 

Figure 23. Workflow of data processing and analysis. (ET: Essential Thrombocytosis; 
SAM: Significance analysis of microarrays; FDR: False discovery rate; FD: Fold change 
(ET versus control)) 

 

Table 21. miRNAs identified by SAM up-regulated in ET group [Fold change (ET versus 
control) > 2] (28 miRNAs in total)  

miRNA Fold Change miRNA Fold Change 

hsa-miR-490-5p 9.729 hsa-miR-1274b 2.391 
hsa-miR-490-3p 6.085 hsa-miR-1914* 2.356 
hsa-miR-34a 4.707 hsa-miR-29b-1* 2.348 
hsa-miR-34b* 3.990 hsa-miR-299-5p 2.330 
hsa-miR-9 3.773 hsa-miR-424* 2.166 
hsa-miR-424 3.183 hsa-miR-493* 2.166 
hsa-miR-1274a 2.982 hsa-miR-487b 2.155 
hsa-miR-9* 2.912 hsa-miR-449a 2.143 
hsa-miR-148a 2.791 hsa-miR-656 2.143 



 

98 

 

hsa-miR-1308 2.742 hsa-miR-127-3p 2.124 
hsa-miR-1260 2.723 hsa-miR-625 2.119 
hsa-miR-380 2.575 hsa-miR-379* 2.073 
hsa-miR-148a* 2.570 hsa-miR-548c-5p 2.059 
hsa-miR-550 2.427 hsa-miR-1287 2.038 

 

Table 22. miRNAs identified by SAM down-regulated in ET group [Fold change (ET 
versus control) < ½] (22 miRNAs in total) 

miRNA Fold Change miRNA Fold Change 

hsa-miR-219-5p 0.499 hsa-miR-181a 0.417 
hsa-miR-181a* 0.498 hsa-miR-181c 0.394 
hsa-miR-196b 0.496 hsa-miR-144* 0.383 
hsa-miR-342-5p 0.495 hsa-miR-33a 0.383 
hsa-miR-28-3p 0.492 hsa-let-7d* 0.376 
hsa-miR-10a 0.492 hsa-miR-1301 0.361 
hsa-miR-328 0.489 hsa-miR-182 0.345 
hsa-miR-106b* 0.487 hsa-miR-150 0.315 
hsa-miR-423-5p 0.474 hsa-miR-181c* 0.315 
hsa-miR-101* 0.470 hsa-miR-144 0.262 
hsa-miR-330-3p 0.440 hsa-miR-551b 0.218 

 

5.2.2. Result of Data Analysis 

 

With the 50 selected miRNAs as one variable set, all 354 mRNAs as the other, 

and the vector of subject disease status as a binary outcome vector,  sparse sCCA was 

performed using R package “PMA” (Witten, et al. 2009b), aiming to identify significant 

miRNA sets whose expression may be associated with genomic gain or loss (changes of 

mRNA expression) that were also associated with essential thrombocytosis disease. In 

the result, one miRNA (hsa-miR-34a) was stood out with 10 corresponding mRNAs (Table 

23). The canonical correlation coefficient between the two sets was 0.790.  
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Table 23. miRNA and mRNAs with non-zero weights by sparse sCCA 

Name Weight 

hsa-miR-34a 1.000 
HSD17B12 0.551 

GLA 0.519 
MMP1 0.448 
PKIG 0.324 

SERPINI1 0.241 
CAV2 0.182 

WASF1 0.161 
NME4 0.058 
TIMP1 0.030 

TGFB1I1 0.014 
 

Boxplot showing the canonical variables of both miRNA and mRNAs, stratified by 

disease types was given (Figure 24). It was clear that the values of both canonical 

variables were different by disease types. Scatter plot in Figure 25 shown the relationship 

between two canonical variables by groups. The two variable sets were highly correlated 

in both ET and control group, especially in the former; and was also well separated 

between groups. Correlation plot (Figure 26)Error! Reference source not found. 

indicated most variables were highly positively correlated pair-wisely.  
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Figure 24. Boxplot of canonical variables stratified by groups. Boxes in blue represent ET 
subjects and boxes in green for control subjects.  
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Figure 25. Scatter plot of canonical variables by groups. Points in blue represent control 
subjects and inverted triangles in red represent ET subjects.  
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Figure 26. Upper triangle correlation plot showing pairwise correlation coefficients among 
variables. Numbers indicated correlation coefficients translated into percentage. The 
degree of transparency represented the magnitude of correlations. Numbers in blue 
indicated positive correlations and red for negative correlations.   

 

To focus only on direct interaction between variables, we calculated pairwise 

partial correlation coefficients for each group (Figure 27). In ET group, when controlling 

other variables, almost every pair of variables were highly correlated, except for NME4. 

On the other hand, in control group, only 4 pairs of variables had significant correlations. 

Moreover, most of them had opposite directions comparing to themselves in ET group. 
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Figure 27. Correlation plot showing pairwise partial correlation coefficients among 
variables by groups. Upper triangle represents ET group and lower triangle for control 
group. Numbers indicated partial correlations translated into percentage. Multiple testing 
correction was applied and FDR was controlled at level of significance at 5%. Insignificant 
correlations were suppressed to be expressed. The degree of transparency represented 
the magnitude of partial correlation. Numbers in blue indicated positive partial correlations 
and red for negative partial correlations.   

 

What’s more, the 10 identified mRNAs along with hsa-miR-34a can serve as 

features in a multinomial logistic regression model to predict the disease type. This was 

confirmed by the leave-one-out cross validation result. The algorithm was as follows:  

1. For ' ∈ 1, … , �, where N is the sample size: 

a. Split the data set into training and test data. The training data, denoted as 

�4¬�Ø�ÙÚÛ­�� , 4¬Ø�ÙÚÛ­�� ,  �ÚÛ­���, includes all the data except for the 'ÚÜ subject, while 
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the test data, denoted as ��¬�Ø�ÙÚÝÞÚ , �¬Ø�ÙÚÝÞÚ ,  �ÚÝÞÚ�, includes only the data from 

the 'ÚÜ subject.  

b. Perform a generalized linear model (GLM) with the training data 

�4¬�Ø�ÙÚÛ­�� , 4¬Ø�ÙÚÛ­�� ,  �ÚÛ­��� to obtain coefficients ΒÚÛ­��. 

c.  Use ��¬�Ø�ÙÚÝÞÚ , �¬Ø�ÙÚÝÞÚ �� ∙  ΒÚÛ­��  as features in the GLM model to predict 

disease type  ��ÛÝá. 

2. Calculate the predicted rate:  

. = 1� ; âF$�ãäåHF$æäçæ�
�H�  

 

Result shown that the 11 variables (10 mRNAs and 1 miRNA) have correctly 

predicted the disease type of 35 samples, with a positive predicted rate equals to 81.40%. 

Predictions using only the 10 mRNAs produced a similar result, with 34 samples (79.07%) 

being correctly predicted (Table 24).  

 

Table 24. Prediction results of leave-one-out cross validation  

Variable Sets 
# of Subjects with Correct 

Prediction 
Positive Predicted 

Rate (%) 

11 
(hsa-miR-34a  

plus 10 mRNAs) 
35 81.4 

10 
(mRNAs only) 

34 79.07 
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5.3. Discussion 
 

As in Table 21, the only miRNA hsa-miR-34a identified by sparse sCCA expressed 

around 4.7 times higher in ET group comparing to that in control group. It has been 

previously shown to express aberrantly in polycythemia vera (PV) granulocytes 

(Bruchova, Merkerova and Prchal 2008) and to be one of the miRNA members that 

expressed most differentially among ET, RT, and control groups (Xu, et al. 2012).    

 

The platelet-expressed gene HSD17B12, standing for “Hydroxysteroid (17-β) 

Dehydrogenase 12”, has been claimed previously to be associated with the distinction of 

ET platelets from normal ones (Gnatenko, et al. 2005). Two encoded protease/protease 

inhibitors – MMP1 (Matrix Metallopeptidase 1) and SERPINI1 (Serpin Peptidase Inhibitor, 

Clade I (Neuroserpin), Member 1) are a class of proteins well-associated in tumor 

invasiveness and cancer metastases and have both been detected over-expressed in ET 

group comparing to normal (Gnatenko, et al. 2005, Saito and Bunnett 2005). MMP1 has 

been demonstrated to be related to inflammation in several studies (Brassart, et al. 2001, 

Herouy, et al. 2001, Zhang, et al. 2003, Andonovska, Dimova and Panov 2008). Moreover, 

members in matrix Metallopeptidase family have be indicated to be involved in the 

migration and invasion of leukemia cell (MMP-2) (He, et al. 2009); and to mediate 

megakaryocyte transendothelial migration and proplatelet formation (MMP-9) (Lane, et al. 

2000). 
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CAV2 (Caveolin 2), TGFB1I1 (Transforming Growth Factor Beta 1 Induced 

Transcript 1), and NME4 (NME/NM23 Nucleoside Diphosphate Kinase 4) have been 

inferred to associate with tumors, metastasis, and multiple types of cancer. TIMP1 (TIMP 

Metallopeptidase Inhibitor 1) has been discussed to be highly related to tumors, cancer 

metastasis and inflammation. WASF1 (WAS Protein Family, Member 1) has been 

predicted as a potential target of hsa-miR-34a by a popular miRNA target prediction tools, 

TargetScan (http://www.targetscan.org/), which predicts regulatory targets using 

conserved complementary (Lewis, Burge and Bartel 2005). Moreover, the WAS protein 

family has been shown to be related to nucleosome and chromatin assembly, performing 

an important role in gene transcription that may regulate megakaryocytopoiesis and/or 

proplatelet formation (Schulze and Shivdasani 2004). A recent study in class prediction 

models of ET included a member from this family, WASF3, as one of the biomarkers 

segregating ET, RT and normal groups (Gnatenko, et al. 2010). Although instead of 

WASF1, the study pointed to WASF3, our result would implicate a specific role WASF1 

plays in the classification and prediction models for ET and normal cohorts.  

 

Considering gene regulatory network, we referred to the Ingenuity Pathways 

Analysis (IPA) system (http://www.ingenuity.com/products/ipa), which helps build and 

explore transcriptional networks for researchers to gain insight into molecular interactions 

and disease processes. The IPA system has identified two networks with the 10 mRNA 

variables spotted by sparse sCCA. The network with the higher score is associated with 

functions of “Cardiac Hypertrophy, Cardio vascular Disease, and Developmental 

Disorder”, involving 9 selected mRNAs GLA, HSD17B12, CAV2, MMP1, TIMP1, 
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SERPINI1, WASF1, PKIG, and TGFB1I1 (Figure 28). The other network with NME4 is 

related to “Cellular Assembly and Organization, Cellular Function and Maintenance, and 

Nucleic Acid Metabolism” (Figure 29). This prediction result is remarkably consistent with 

the partial correlation result (Figure 27) that NME4 is conditionally independent to all the 

other variables.  

 

In conclusion, our data analysis on miRNA and mRNA data has predicted a close 

relationship of miRNA hsa-miR-34a and an mRNA set (including HSD17B12, GLA, MMP1, 

PKIG, SERPINI1, CAV2, WASF1, NME4, TIMP1 and TGFB1I1). A majority of the 

identified variables have been linked to hematologic function by a sizable number of 

studies. Additionally, all 10 mRNAs are involved in two transcriptional networks 

corresponding to several essential functions. Altogether it alluded that the identified 

mRNA set might be considered as a contributor in the regulatory mechanism of ET 

disease; and the expression of miRNA hsa-miR-34a might had an effect on that of the 

mRNA set. Experiments focusing on this regulatory relationship are in demand for further 

confirmation.   
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Figure 28. Structure of the first genetic network predicted by IPA system 
(http://www.ingenuity.com/products/ipa). mRNAs recognized by sparse sCCA are 
highlighted in shades. 
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Figure 29. Structure of the second genetic network predicted by IPA system 
(http://www.ingenuity.com/products/ipa). mRNA NME4 recognized by sparse sCCA is 
centered.      
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6. Discussion and Future Work 
 

In 2011, Chen (Chen 2011) has proposed a new partial correlation coefficient 

estimating method for categorical/mixed variables. Firstly logistic regression models are 

performed, then the residuals are correlated via canonical correlation. The Pearson 

residuals are used for their asymptotic properties. It has been discussed later by a 

simulation study that this method and the partial phi coefficient converge in estimate and 

inference in a limiting case (Leong 2012); yet the former one outperforms the latter by its 

well-defined in the multi-categorical case and its readily capability in controlling for more 

than one variable. Moreover, this new estimating method can in a natural manner be 

extended to embrace mixed variables, measuring the relationship between continuous 

and categorical variables, which raises its potential as a powerful tool in the analysis of 

GWA studies.   

 

In spite of the exciting fact, currently this method is not designed for the high-

dimensional situation (� ≪ �), and did not obtain reasonably sparse structure with GWA 

study data set in Chen’s study. Accordingly, we introduced here a novel two-stage 

sequential analysis framework to approach this problem. The approach is a combination 

of penalized logistic regression model based on grouping SNPs and partial correlation 

network analysis. In this thesis, we have shown that it can naturally incorporate 

information of either variable association defined by pairwise canonical correlation 
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measurement, or of biological information, such as gene mapping, both of which have 

satisfying performance in simulation studies and/or the real data example. Other 

information, such as linkage disequilibrium, rare/common variants, pathway, etc. can also 

be easily embedded according to the desires of researchers. In numerical simulations of 

both low- and high-dimensional settings, this two-stage approach is, in general, found to 

be more powerful and at the same time less conservative than the traditional stepwise 

penalized logistic regression model. We illustrated the approach to a GWA study data set 

COGEND. The approach has identified the close relationship relating to nicotine 

dependence among genes in the so-called “Chromosome 15q25.1 region”, after 

controlling all other SNPs/genes. The effects of genes in this region on nicotine 

dependence have been described and well discussed by many previous studies. We also 

inferred potential disease-susceptible interactions of gene CHRNA4 and genes in the 

“Chromosome 15q25.1 region”.  

 

A sequential analysis was also applied in Chen’s study in GWA study data set by 

combining clustering and network techniques. First, hierarchical clustering was 

conducted according to pairwise canonical correlation measurement. Then within each 

cluster, SNP with overall highest canonical correlation (similarities) to all the others was 

selected. Following this, PCNA was performed considering these “representative SNPs”. 

Our approach has polished this stage-wise method by embedding the sparse-group lasso 

penalty and thus taking account of both group-wise and within group sparsity of genetic 

data, as well as integrating variable association and biological information into the 

analysis. 
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SGL has been used to data with high-dimensional predictors for the identification 

of genomic regions (Peng, et al. 2010), and has also been extended to multinomial 

classifier (Vincent and Hansen 2012) and network-based Cox regression model (Zhang, 

et al. 2013). Zhou et al. (Zhou, et al. 2010) have firstly applied the idea of “generalized 

linear models with mixed group and lasso penalties” on the arena of GWA studies, 

identifying rare variants by grouping SNPs into genes. Later on, Ayers and Cordell (Ayers, 

et al. 2013) have performed the sparse-group lasso to identify grouped common and rare 

variants in GWA studies, incorporating weighting methods to allow different contributions 

of variants. Focusing on the potential functional relationships between gene variants, 

Silver et al. (Silver, et al. 2013) conducted SGL to simultaneously identify pathways and 

genes that are related to the trait of interest. SNPs were grouped according to the prior 

mapping information to gene pathways. Since one SNP may be associated to more than 

one pathway, they also discussed a modification to deal with overlapping groups. 

However impressive their work has been, in our study, SGL was the first time introduced 

to PCNA for the detection of significant SNP-SNP associations in the GWA study arena, 

with the ability of incorporating with not only biological information but also pairwise 

association measurements among SNPs.  

 

Partial correlation network analysis is a data-driven method and no assumptions 

about the network structure are required for the initiation of analysis. The goal of our 

approach is not to infer the network correctly; but instead to develop new hypotheses of 

associations between variants with confidence. This approach could be seen as a post-
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GWA study method to explain more underlying genetic variation and unravel genome-

wide genetic associations or biologically relevant pathways. 

 

In all, this novel two-stage approach has several advantages:  

a. Analyze all variables at once to consider the impact of one variable on another and 

to improve restricted power of single-locus analysis for detecting SNPs with small 

or moderate effects. 

b. Reduce data dimension via sparse regression to keep the multiple testing problem 

in a more benign form and to identify potential target variables simultaneously.  

c. Allow for the incorporation of biological information and/or variable association into 

the analysis by forming SNP clusters. 

d. Focus on conditional dependence between variables and graphically present the 

differential connections between case and control groups. 

e. Provide easy and direct results for a meaningful biological interpretation indicating 

potential gene-gene associations.  

 

We have also introduced the application of sparse techniques to canonical 

correlation analysis for the establishment of regulatory network among genetic data. One 

miRNA together with ten mRNAs was pinpointed to be associated with essential 

thrombocytosis (ET), which has been verified via leave-one-out cross validation. Two 
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networks have been predicted to be potentially related to the genetic regularization basis 

of ET with the help of a network exploration system.  

 

The following aspects of PCNA deserve main attentions in our future study, 

concerning especially its application in the arena of GWA studies. First is the test of 

significance for partial correlation pair. In most circumstances, GWA studies are in the 

case-control design. Tests discovering which edges are significantly different between 

groups would address the question whether the trait of interest is affected by the strength 

of variant pair associations. Equally important, PCNA accounting for nonlinear 

relationships should also be brought into focus. Various nonlinear regression models 

could be introduced into the analysis and new terminology is of necessity since we would 

be no longer dealing with partial correlations as traditionally defined.     
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