Stony Brook University

OFFICIAL COPY

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Cumulative effects of ocean acidification, eutrophication, and competition on the growth of

two bloom-forming, estuarine macroalgae

A Thesis Presented

by

Craig S. Young

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Marine and Atmospheric Science

Stony Brook University

December 2016

Stony Brook University

The Graduate School

Craig S. Young

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Dr. Christopher J. Gobler, Professor - Thesis Advisor School of Marine and Atmospheric Sciences

Dr. Brad Peterson, Professor - Second Reader School of Marine and Atmospheric Sciences

Dr. Glenn Lopez, Professor - Third Reader School of Marine and Atmospheric Sciences

This thesis is accepted by the Graduate School

Charles S. Taber Dean of the Graduate School

Abstract of the Thesis

Cumulative effects of ocean acidification, eutrophication, and competition on the growth of

two bloom-forming, estuarine macroalgae

by

Craig S. Young

Master of Science

in

Marine and Atmospheric Science

Stony Brook University

2016

Abstract

While there is a growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, riverine discharge, and eutrophication. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO₂. Additionally, while the ability of some marine autotrophs to benefit from elevated CO₂ over others may result in shifts in community structure, such shifts can also be affected by competition between primary producers. In order to examine what role ocean acidification, eutrophication, and competition plays in the growth of marine macroalgae, a series of experiments were performed during summer through fall 2014 and 2015 with North Atlantic populations of *Gracilaria tikvahiae* and *Ulva rigida* that were grown *in situ* within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO₂ and/or nutrients (nitrogen and phosphorus), as well as being subjected to

iii

competition with each other as well as with diatom and dinoflagellate assemblages (2015). Across the 2014 and 2015 experiments, the growth rates of *Gracilaria* were significantly increased by 70% (2014) and 34% (2015) when exposed to elevated levels of pCO_2 (p < 0.05). Under the same conditions, the growth rates of Ulva were increased by 30% (2014) and 41%(2015). For nearly all 2014 experiments, Gracilaria was unaffected by nutrient enrichment. In contrast, the growth response of *Ulva* was more complex as this alga experienced significantly (p < 0.05) increased growth rates in response to both elevated pCO₂ and nutrients and, in two cases, pCO₂ and nutrients interacted to provide synergistically enhanced growth. For the 2015 experiments, growth rates of *Gracilaria* with or without elevated pCO₂ were unaffected by the presence of competing plankton or Ulva. In contrast, growth of Ulva was significantly reduced when grown with *Gracilaria* (p < 0.05) and in several experiments, growth rates of *Ulva* were found to be significantly reduced when competing with plankton (p < 0.05). Dinoflagellates grew significantly faster when exposed to elevated pCO_2 (p<0.05) but experienced significantly reduced growth rates grown with *Gracilaria* (p<0.05). Across all experiments, *Gracilaria* and *Ulva* experienced significant declines in tissue δ^{13} C signatures, suggesting that increased growth rates were associated with a shift from use of HCO₃⁻ to CO₂ use. This shift in carbon use coupled with significantly increased growth in response to elevated pCO₂ suggests that photosynthesis of these algae was limited by their inorganic carbon supply. For the 2015 experiments, elevated C:N ratios among macroalgae suggested that competition for N also shaped interactions among autotrophs, particularly for *Ulva*. Collectively, these study demonstrates that while several types of estuarine autotrophs can benefit from elevated pCO_2 levels, their relative benefit can change when direct competition with other primary producers is considered with Gracilaria outcompeting Ulva and dinoflagellates outcompeting diatoms under high pCO₂.

iv

Table of Contents

Abstract	iii
List of Tables	vii
List of Figures	viii
Chapter 1	
Introduction	2
Methods	4
Macroalgae Collection and Preparation	4
In situ Growth Experiments	5
Assessing the Effects of Elevated Nutrients and pCO ₂	6
Tissue Analyses	9
Results	
Gracilaria	
Ulva	
Discussion	
Tables	
Figures	
References	
Chapter 2	
Introduction	
Methods	
Macroalgae Collection and Preparation	
In situ Growth Experiments	
Assessing the Effects of Elevated pCO ₂ and Competition	

Tissue Analyses	
Results	
Gracilaria	
Ulva	
Plankton	
Discussion	
Tables	
Figures	
References	
Appendix	
S1 Tables	
S2 Tables	
S3 Tables	
S4 Tables	
S5 Tables	
S6 Tables	
S7 Tables	
S8 Tables	
S1 Figure	
S2 Figure	
S3 Figure	

List of Tables

Chapter 1

Table 1: Values of pH (NBS scale), temperature (°C), salinity (g kg⁻¹), pCO₂ (μatm), DIC (μmol kgSW⁻¹), HCO₃⁻ (μmol kgSW⁻¹), alkalinity (μmol kgSW⁻¹), DIN (μM), and DIP (μM) for *Gracilaria* and *Ulva* for June through November experiments. Values represent means ±

SE. Data from individual experiments appear within supplementary tables (S1 Tables). .. 23 Chapter 2

List of Figures

Figure 1: Map of Shinnecock Bay, NY, USA. The star represents the shallow-water region where macroalgal collections occurred and <i>in situ</i> experiments were performed
Figure 2: Growth rates of <i>Gracilaria</i> exposed to ambient and elevated CO ₂ conditions with and without nutrient additions for experiments performed August through November. Columns with an asterisk over them indicate significant results
Figure 3: δ ¹³ C content of <i>Gracilaria</i> and <i>Ulva</i> exposed to ambient and elevated CO ₂ conditions with and without nutrient additions for experiments performed August through November.
Figure 4: δ^{13} C content of A) <i>Gracilaria</i> and B) <i>Ulva</i> exposed to elevated CO ₂ conditions compared with the δ^{13} C signature expected from the exclusive use of CO ₂ or the exclusive use of HCO ₃ ⁻ . Box plots depict the mean median (line within the boxes), 25th and 75 th percentiles (lower and upper edges of the boxes), and 10th and 90 th percentiles of the data (lower and upper error bars)
Figure 5: Tissue nitrogen, carbon, and C:N content of <i>Gracilaria</i> exposed to ambient and elevated CO ₂ conditions with and without nutrient additions for experiments performed August through November
Figure 6: Growth rates of <i>Ulva</i> exposed to ambient and elevated CO ₂ conditions with and without nutrient additions for experiments performed August through November. Columns with an asterisk over them indicate significant results
Figure 7: Tissue nitrogen, carbon, and C:N content of <i>Ulva</i> exposed to ambient and elevated CO ₂ conditions with and without nutrient additions for experiments performed August through November

Chapter 2

Chapter 1

Figure 2: Growth rates of <i>Gracilaria</i> exposed to ambient and elevated CO ₂ conditions, with and without competition from <i>Ulva</i> , and with and without competition from phytoplankton for
experiments performed July through October
Figure 3: δ^{13} C content of <i>Gracilaria</i> and <i>Ulva</i> exposed to ambient and elevated CO ₂ conditions, with and without competition from <i>Ulva</i> , and with and without competition from
phytoplankton for experiments performed July through October
Figure 4: Tissue nitrogen, carbon, and C:N content of <i>Gracilaria</i> exposed to ambient and elevated CO ₂ conditions, with and without competition from <i>Ulva</i> , and with and without competition from phytoplankton for experiments performed July through October
Figure 5: Growth rates of <i>Ulva</i> exposed to ambient and elevated CO ₂ conditions, with and without competition from <i>Gracilaria</i> , and with and without competition from
phytoplankton for experiments performed July through October
Figure 6: Tissue nitrogen, carbon, and C:N content of <i>Ulva</i> exposed to ambient and elevated CO ₂ conditions, with and without competition from <i>Gracilaria</i> , and with and without competition from phytoplankton for experiments performed July through October
Figure 7: Growth rates of diatoms and dinoflagellates exposed to ambient and elevated CO ₂
conditions, with and without competition from <i>Gracilaria</i> and/or <i>Ulva</i>

Chapter 1

Ocean acidification accelerates the growth of two bloom-forming macroalgae

Published in PLoS ONE in May 2016

Introduction

Ocean acidification is changing the chemistry of the ocean. Beyond reducing pH, the anthropogenic delivery of CO_2 into surface oceans this century will differentially affect various pools of inorganic carbon, with CO_2 and HCO_3^- expected to increase 260% and 20%, respectively, and CO_3^{2-} levels expected to decrease 60% (Koch et al., 2013). As the total dissolved inorganic carbon (DIC) pool shifts towards these predicted values, marine flora and fauna are expected to have a varied response with lower availability of CO_3^{2-} inhibiting the growth of calcifying organisms (Gazeau et al., 2007; Doney et al., 2009; Talmage and Gobler, 2010) and higher CO_2 levels potentially benefiting some, but not all, photosynthetic organisms (Palacios and Zimmerman, 2007; Doney et al., 2009, Hattenrath-Lehmann et al., 2015).

The extent to which uncalcified marine macroalgae benefit from anthropogenicallyinduced changes in carbonate chemistry is complex and not fully understood. While CO₂ is an important carbon source for photosynthesis, the likelihood of elevated CO₂ benefiting autotrophs is partly dependent on photosynthetic pathways utilized by algae. C₃ plants that utilize RuBisCO as their initial carboxylating enzyme experience loss of fixed carbon due to photorespiration and may benefit from increased CO₂ concentrations since RuBisCO is not substrate-saturated at current CO₂ levels (Reiskind et al., 1988; Koch et al., 2013). In contrast, C₄ plants that utilize phosphenolpyruvate carboxylase (PEPC) experience little photorespiratory loss due to use of carbon concentrating mechanisms (CCM) and thus may not benefit from increased CO₂ since PEPC is substrate-saturated at current CO₂ levels (Reiskind et al., 1988; Koch et al., 2013). Marine macroalgae acquire carbon through direct diffusive uptake of CO₂ as well as active transport of CO₂ and HCO₃⁻ (Badger, 2003). Although the majority of macroalgae are C₃ plants, they often make use of CCMs and extracellular carbonic anhydrase (CA) to convert HCO₃⁻⁻ to

CO₂ for use by RuBisCO (Gao and McKinley, 1994; Israel and Hophy, 2002; Badger, 2003; Koch et al., 2013). However, there is significant variation in the photosynthetic strategies employed by different macroalgae regarding the use of extracellular CA as well as the degree to which HCO₃⁻ and/or CO₂ can or cannot be utilized for photosynthesis (Badger, 2003). Macroalgal growth in response to elevated pCO₂ can also be manifested through nonphotosynthetic means. Webber et al. (1994) and Roger et al. (1998) found that acclimation to elevated CO₂ can result in decreased concentrations of RuBisCO, but results in an increase in soluble carbohydrate content that could enhance growth rates and alter the total carbon content of algal tissues.

Beyond the progressively increasing levels of CO_2 in the world's oceans due to the combustion of fossil fuels, there are strong sources of CO_2 in coastal zones (Waldbusser and Salisbury, 2014). One of the most prominent CO_2 sources in coastal zones appears to be eutrophication-enhanced microbial respiration (Cai et al., 2011; Melzner et al., 2013; Wallace et al., 2014). The accumulation of respiratory CO_2 from the degradation of excessive organic matter can lower seawater pH and commonly result in CO_2 levels (>1,000 µatm) not predicted to occur in open ocean regions for more than a century (Wallace et al., 2014). The combination of excessive nutrients and elevated CO_2 could have a variety of impacts on primary producers. It has been well-established that with excessive nutrient loading, dominance among benthic autotrophs can shift from seagrasses to fast-growing, ephemeral macroalgae such as *Ulva* and *Gracilaria* (Pedersen and Borum, 1997; Valiela et al., 1997). Furthermore, some species of *Ulva* including *U. rigida* and *U. lactuca* have been shown to experience increased growth under elevated CO_2 concentrations (Björk et al., 1993; Olischläger et al., 2013) while others have not (Rautenberger et al., 2015). Additionally, elevated CO_2 levels could aid in the assimilation of

nutrients by *Ulva* (Gordillo et al., 2001). *Ulva* is well-known for the formation of green tides along eutrophied coastlines such as Brittany, France, and Qingdao, China (Zhao et al., 2013). Common rhodophytes such as *Gracilaria* have been shown to bloom in response to high nutrient concentrations (Ye et al., 2013) and, like some *Ulva*, may also benefit from elevated CO_2 concentrations, although this has never been examined. In general, the dynamics of macroalgal communities in response to eutrophication and elevated CO_2 are difficult to generalize, as both the slow-growing (e.g. *Gracilaria*) and fast-growing (e.g. *Ulva*) species have been hypothesized to benefit from elevated CO_2 and nutrients and studies assessing the response of macrophytes to elevated CO_2 have been limited (Koch et al., 2013).

The objective of this study was to assess how elevated concentrations of CO₂ alone, and combined with elevated nutrient levels, affect the growth rates of two common species of temperate, bloom-forming macroalgae; the rhodophyte, *Gracilaria tikvahiae*, and the chlorophyte, *Ulva rigida*. The overabundance of these macroalgae is commonly interpreted as a symptom of eutrophication and their overgrowth within estuaries can have a series of negative impacts on marine plants and animals (Valiela et al., 1997; Nelson et al., 2003; Liu et al., 2009). Macroalgae were exposed to ambient and elevated concentrations of CO₂ with and without nutrient enrichment during experiments performed throughout their growing season and their growth responses, δ^{13} C signatures, and elemental composition were evaluated.

Methods

Macroalgae Collection and Preparation

Macroalgae used for this study were collected from shallow regions of eastern Shinnecock Bay, NY, USA (40.85° N, 72.50° W; Fig. 1) during low tide. Permission to access

the water and collect the water and macroalgae was received from the Southampton Town Trustees, Southampton, NY, USA, who hold jurisdiction over Shinnecock Bay. Collections targeted large, well-pigmented, robust fronds of Ulva and Gracilaria that were transferred to dark, temperature-controlled containers filled with seawater and returned to the Stony Brook Southampton Marine Science Center within 15 minutes of collection. Individual thalli of Gracilaria approximately 5 cm in length were cut from the main organism and spun in a salad spinner to remove debris and epiphytes. Samples were then extensively rinsed with filtered (0.2 μ m) seawater and placed into the salad spinner a second time to further remove debris, epiphytes, and excess seawater. *Ulva* samples were prepared by use of a small brass ring to cut circular sections approximately 3 cm in diameter from a singular, large sheet of Ulva with care taken to avoid the outer, potentially reproductive region of the plant (Wallace and Gobler, 2015). *Ulva* circles were brought through the same cleaning procedures described for *Gracilaria*. Five additional circular samples of Ulva were created from the same vegetative plant and were placed between two transparency films and frozen for future analysis described below. All samples were weighed on an A&D EJ300 digital scale (± 0.01 g) to obtain initial wet weights in grams. To prevent desiccation, all samples were kept in individual, 100 mL filtered (0.2 µm) seawater-filled containers after spinning prior to use in experiments.

In situ Growth Experiments

In situ growth experiments with *Gracilaria* and *Ulva* were performed to assess the rate at which the macroalgae grew within the region of Shinnecock Bay from which they were collected. Experiments were performed monthly from June through November with two experiments performed September and October, for a total of eight experiments. Quadruplet,

0.25 m² incubation cages constructed from ~1 cm² wire mesh were attached to a four-armed (25 cm) umbrella fishing apparatus on a line with surface flotation and a bottom weight that kept cages suspended at 0.2 m below the surface (Wallace and Gobler, 2015). Discrete and continuous measurements of light and temperature present during experiments were made using a LI-COR LI-1500 light sensor logger and HOBO pendant temperature and light loggers, respectively. Quadruplet thalli of each macroalgae species were placed in each cage for ~7 days after which the samples were recovered, brought to the lab, and rinsed, spun, re-rinsed, re-spun, and weighed as described above. *Gracilaria* samples were placed into small freezer bags for further analysis, whereas *Ulva* samples were placed between two transparency films and flattened with care to minimize folds. The surface areas of the experimental *Ulva* samples, in addition to the five initial *Ulva* samples were analyzed using SigmaScan Pro 5 (Wallace and Gobler, 2015). Weight-based growth rates for both species were determined using the relative growth rate formula (growth d⁻¹) = (ln W_{final} – ln W_{initial}) / (Δ t) where W_{final} and W_{initial} are the final and initial weights in grams and Δ t is the duration of the experiment in days.

Assessing the Effects of Elevated Nutrients and pCO₂

Parallel experiments were established to assess the effects of elevated nutrients and pCO₂ on the growth of *Gracilaria* and *Ulva*. Thirty-six, 2.5 L polycarbonate bottles were acid-washed (10% HCl), liberally rinsed with deionized water before use, and rinsed and filled with 0.2 μ m filtered seawater from eastern Shinnecock Bay. Experimental bottles were placed in an environmental control chamber set to approximate the temperature (16 – 21°C) and light intensity (~450-500 μ mol s⁻¹ m⁻² on a 14 h : 10 h light dark cycle) present during *in situ* experiments and were randomly assigned, in triplicate (n=3), to one of four treatments for each

species: a control with ambient levels of pCO₂ (~400 µatm) and no nutrients added, a treatment of enhanced nutrient levels (50µM nitrate, 3 µM phosphate), a treatment of elevated pCO₂ (~2000 μ atm), and a treatment of elevated pCO₂ and nutrient levels (~2000 μ atm, 50 μ M nitrate, 3 μ M phosphate). These nutrient and pCO₂ levels were higher than levels present at the collection site, but consistent with concentrations present in eutrophic US East Coast estuaries (Wallace et al., 2014; Wallace and Gobler, 2015). Each bottle was aerated via a 1 mL, polystyrene serological pipette inserted to the bottom of each experimental bottle and via tygon tubing to an air source. Bottles were subjected to the control level of pCO_2 (~400 µatm) and elevated (~2000 µatm) via use of a gas proportionator system (Cole Parmer® Flowmeter system, multitube frame) that mixed ambient air with 5% CO₂ gas (Talmage and Gobler, 2010). The δ^{13} C of this tanked CO₂ gas was determined to be -27.7‰ by syringe injection into a split/splitless inlet of a continuous flow gas chromatograph isotope ratio mass spectrometer (cf-GCIRMS, Finnegan MAT 253) using a 0.25µm x 30m poraplot column and a secondary standard referenced to V-PDB in the laboratory of Dr. John Mak (Stony Brook University). The mixtures of air and CO₂ gas were delivered at a net flow rate of 500 ± 5 mL min⁻¹ through an 18-way gang valve into the serological pipettes that fit through an opening drilled into the closed cap to the bottom of polycarbonate bottles. This delivery rate turned over the volume of experimental bottles >100 times daily, ensuring that desired pCO₂ concentrations and pH levels were generally maintained (Talmage and Gobler, 2010). Bubbling was established two days before the beginning of each experiment to ensure that pCO₂ concentrations and pH levels had reached a state of equilibrium and experiments persisted for ~ one week. Measurements of pH within bottles were made throughout each experiment using an Orion Star A321 Plus electrode (± 0.001) calibrated prior to each use using National Institute of Standards and Technology (NIST)

traceable standards. Measurements using this pH meter were highly similar to and never significantly different from scale-adjusted spectrophotometric pH measurements made using mcresol purple as described by Dickson et al. (2007). DIC concentrations in bottles were measured using an EGM-4 Environmental Gas Analyzer (PP Systems) system that quantifies DIC levels after separating the gas phase from seawater via acidification using a Liqui-Cel Membrane (Membrana) (Talmage and Gobler, 2010). This instrument provided a methodological precision better than $\pm 1\%$ for replicated measurements of total dissolved inorganic carbon. The levels of DIC and pH within Dr. Andrew Dickson's (University of California, San Diego, Scripps Institution of Oceanography) certified reference material (Batch 138, 141) were measured during every analytical run as a quality assurance measure; analysis of samples proceeded only after complete recovery of certified reference material was attained. pCO₂ levels (mean of t=initial and t=final, Table 1) were calculated using measured levels of DIC, pH (NIST), temperature, and salinity, as well as the first and second dissociation constants of carbonic acid in seawater according to Roy et al. (1993) using the program CO2SYS (http://cdiac.ornl.gov/ftp/co2sys/). The targeted levels of pCO₂ resulted in actual pCO₂ and pH values of 441 \pm 72 µatm and 7.9 \pm 0.1, respectively, for ambient conditions and 1941 ± 141 µatm and 7.3 ± 0.1 , respectively, for the elevated CO₂ conditions (Table 1).

Experiments began with the addition of nutrients and introduction of macroalgae into experimental bottles. Experiments were maintained for seven days, during which daily pH and temperature measurements of each individual bottle were made with the Orion Star A321. Continuous measurements of light and temperature present during experiments were made using a LI-COR LI-1500 light sensor logger and HOBO pendant temperature and light data loggers and continuous pH measurements were made within selected bottles using the Orion Star A321

pH meter. At the termination of experiments, final pH and temperature measurements were made and a final DIC sample from each bottle was analyzed as described above. After measuring DIC, each macroalgae sample was removed from their respective bottles and rinsed, spun, rerinsed, re-spun, and weighed as described above. *Gracilaria* samples were placed into small freezer bags for further analysis, whereas *Ulva* samples were placed between two transparency films and flattened with care to minimize folds. The surface areas of the samples were analyzed using SigmaScan Pro 5. Weight-based growth rates for both species were determined as described above. Significant differences in growth rates during experiments were assessed using a three-way ANOVA within SigmaPlot 11.0 where the main treatment effects were pCO₂ treatment (ambient or elevated), nutrients (none or enhanced), and date of experiment.

Tissue Analyses

Identification of macroalgae was based on morphology, microscopy, known biogeography, and DNA sequencing. *Gracilaria tikvahiae* is one of the most common species of red algae along the North American east coast, is the only *Gracilaria* species native to the Northeast US (Schneider et al., 1979; Sears, 1998; Kim et al., 2014), and displays a distinct, continuous, phylogenic lineage across the Canadian-Northeast-Mid-Atlantic US region (Gurgel et al., 2004). The morphology and pigmentation of *Gracilaria* fronds used in this study were fully consistent with prior descriptions of *Gracilaria tikvahiae* in the region (Schneider et al., 1979; Sears, 1998; Gurgel et al., 2004) and this was considered to be the species of *Gracilaria* used during this study. In contrast to *Gracilaria*, identifying *Ulva* spp. across the Northeast US is more challenging due to the co-occurrence of multiple, morphologically similar species (Hofmann et al., 2010). For this study, selected frozen *Ulva* samples were dried at 55°C and

then homogenized into a fine powder using a mortar and pestle. DNA from selected samples were extracted using the CTAB method and the quality and quantity of nucleic acids were assessed by use of a Nanodrop 2000 spectrophotometer (Wallace and Gobler, 2015). Next-generation DNA sequencing of ITS1 and ITS2 regions of the ribosome of samples (Hofmann et al., 2010; Wallace and Gobler, 2015) was performed on extracted samples using an Illumina MiSeq at the Molecular Research Laboratory (Shallowater, TX, USA). Forward primer 18S1763 (5`-GGTGAACCTGCGGAGGGATCATT-3`) and reverse primer 5.8S142 (5`-

TATTCCGACGCTGAGGCAG-3`) were used for amplification of ITS1 whereas for ITS2, forward primer 5.8S30 (5`-GCAACGATGAAGAACGCAGC-3`) and reverse primer ENT26S (5`-GCTTATTGATATGCTTAAGTTCAGCGGGGT-3`) were used (Wallace and Gobler, 2015). The sequences in samples (Genbank Accession #KU306346) had the greatest similarity with *Ulva rigida* which has been previously identified in NY estuaries (Wallace and Gobler, 2015) and the US Northeast (Hofmann et al., 2010) and are synonymous with other *Ulva* spp. (*Ulva lactuca var. rigida*). Due to the plastic nature of macroalgal taxonomic nomenclature as well as the high similarity in ITS sequences among *Ulva* species (Hofmann et al., 2010; Kirkendale et al., 2010) for the purposes of this study, we refer to these algae simply as *Ulva* and for consistency, refer to *Gracilaria tikvahiae* as *Gracilaria*.

For carbon (C) and nitrogen (N) analyses, frozen samples were dried at 55°C, and then homogenized into a fine powder using a mortar and pestle. The total tissue nitrogen and carbon content of the homogenized samples were analyzed using a CE Instruments Flash EA 1112 elemental analyzer (Sharp, 1974). Samples were analyzed for δ^{13} C signatures using an elemental analyzer interfaced to a Europa 20-20 isotope ratio mass spectrometer at the UC Davis Stable

Isotope Facility (Wallace and Gobler, 2015). Concentrations of nitrate, ammonium, and phosphate were measured using standard wet chemical methods (Parsons, 2013).

Finally, isotope mixing models were developed to estimate the use of CO_2 and $HCO_3^$ during experiments. The models considered the δ^{13} C and biomass of macroalgal tissue before and after experiments, the δ^{13} C of the tanked gas used for experiments (-27.7‰), the δ^{13} C of the marine CO₂ and HCO₃⁻ pool (-10‰ and 0‰, respectively; Mook et al., 1974; Maberly et al., 1992; Raven et al., 2002), the fractionation of C during macroalgal uptake of CO_2 and HCO_3^- (-20‰ and -10‰, respectively; Mook et al., 1974; Maberly et al., 1992; Raven et al., 2002), the fractionation of C during conversion of tanked CO₂ bubbled into experimental vessels to HCO₃⁻ (+10‰, respectively; Mook et al., 1974; Maberly et al., 1992; Raven et al., 2002), and the concentration of DIC with and without the addition of tanked CO₂ with the later providing an indication of the fraction of DIC contributed by the tanked gas compared to ambient air. We assumed that during the course of the experiment, the tanked CO_2 gas came to equilibrium with the total DIC pool and thus that the HCO₃⁻ pool took on a lighter δ^{13} C signature in a manner proportional to the fraction of the DIC pool comprised of tanked gas compared to ambient air. Next, since we dried and homogenized the entire experimental macroalgal fronds for subsequent analyses, we assumed that the δ^{13} C signature of the algal tissue was proportionally representative of the fraction of original tissue (pre-experiment) with its original δ^{13} C signature and that the tissue grown during the experiment would take on a δ^{13} C value representative of the CO₂ or HCO_3^{-} pool with a value made proportionally more negative by the tanked CO₂. Finally, two sets of mixing models were run for each macroalgal species to determine what their $\delta^{13}C$ signature would be if they were using exclusively CO_2 and exclusively HCO_3^- during experiments. One-way ANOVAs were used to assess the differences between the measured $\delta^{13}C$ signature of the macroalgae and signatures calculated based on exclusive CO₂ or HCO₃⁻ use and Tukey tests were used to assess differences between individual groups.

Results

<u>Gracilaria</u>

The in situ growth of Gracilaria in Shinnecock Bay was found to be highly similar to and not significantly different from growth rates within experimental control bottles with the exception of the August experiment, when experimental growth rates exceeded those in situ (Two-way ANOVA; p > 0.05; Fig. 2; S2 Tables). Gracilaria growth rates differed seasonally (Three-way ANOVA; p < 0.05; Fig. 2; S2 Tables). The experimental growth rates of *Gracilaria* were highly sensitive to changes in CO₂ concentrations (Three-way ANOVA; p < 0.05; Fig. 2; S2 Tables). For six of the eight experiments, the growth of *Gracilaria* increased significantly when exposed to elevated CO₂ concentrations (Tukey test; p < 0.05; Fig. 2; S2 Tables) with experiments during late September and late October being the exceptions to this trend. On average, growth rates under elevated CO₂ were 70% higher than growth under ambient conditions (Fig. 2). In contrast, the addition of nutrients did not significantly alter the growth rates of Gracilaria or yield statistically significant interactions with elevated pCO₂ concentrations during any experiment (S2 Tables). As a final observation, there did not appear to be any obvious signs of epiphytes on the Gracilaria samples at the conclusion of the experiments, as per the extensive rinsing and spinning phases.

The stable carbon isotope (δ^{13} C) content of *Gracilaria* was significantly reduced by exposure to elevated pCO₂, with the average δ^{13} C value of the ambient and elevated CO₂ groups being, on average, -13‰ and -21‰, respectively (Three-way ANOVA; *p*<0.001; Fig. 3; S2 and

S3 Tables). The δ^{13} C signatures of *Gracilaria* were not altered by nutrients but did differ by experiment (Three-way ANOVA; *p*<0.001; S2 and S3 Tables). Isotope mixing models demonstrated that when incubated with elevated pCO₂ concentrations, *Gracilaria* δ^{13} C signatures (-21‰) were significantly lower than values expected if their DIC was exclusively from use of HCO₃⁻ (-14‰) and significantly higher than expected from the use of exclusively CO₂ (-28‰; Tukey test; *p*<0.001; Fig 4; S2 and S3 Tables). Quantitatively, the model suggested *Gracilaria* was using equal amounts of HCO₃⁻ and CO₂ during experimental incubations with CO₂ (Fig. 4).

The nitrogen content of *Gracilaria* during experiments was found to be significantly higher in treatments that received nutrients and was found to differ seasonally (Three-way ANOVA; p < 0.05; S2 Tables). On average, ambient and elevated nutrient treatments were found to have tissue nitrogen concentrations of 0.029 ± 0.005 and 0.032 ± 0.004 g N per g dry tissue, respectively (Fig. 5; S4 Tables). In contrast, the carbon content of *Gracilaria* was not significantly altered by pCO₂ or nutrients, but did differ by seasonally (Three-way ANOVA; p <0.05; Fig. 5; S2 and S4 Tables). The tissue C:N ratio of *Gracilaria* was found to be significantly lower under elevated nutrient treatments (10.7 ± 0.2) compared to ambient nutrient treatments (12.3 ± 0.4) and differed seasonally (Three-way ANOVA; p < 0.05; Fig. 5; S2 and S4 Tables). Tissue C:N ratio was not significantly changed in the CO₂ treatments (S2 Tables).

<u>Ulva</u>

The growth rates of *Ulva* during *in situ* experiments did not differ statistically from those found within experimental control bottles except during experiments in early October and November when experimental control growth rates were greater than those observed *in situ* (Two-way ANOVA; p > 0.05; Fig. 6; S2 Tables). *Ulva* growth rates differed by experiment

(Three-way ANOVA; p < 0.05; Fig 5; S2 Tables). *Ulva* displayed more complex responses to nutrients and CO₂ concentrations during experiments compared to *Gracilaria*. During experiments in June, July, and late October, *Ulva* growth rates significantly increased in response to elevated CO₂ concentrations (Tukey test; p < 0.05; Fig 6; S2 Tables; S1 Figure). In addition, *Ulva* experienced significantly higher growth rates in response to higher nutrient levels during experiments performed during July and early September (Fig. 6; Tukey test; p < 0.05; S2 Tables; S2 Figure). Finally, there was an interactive effect of CO₂ and nutrients during the late October and November experiments during which these two factors synergistically increased the growth rates of *Ulva* (p < 0.05; S2 Tables; S3 Figure). On average, for all experiments, *Ulva* growth rates when exposed to elevated CO₂ were 30% higher than ambient conditions (Fig. 5; p<0.05; Three-way ANOVA; S2 Tables) whereas the nutrients yielded a smaller, non-significant increase in growth rates (13%; Fig. 6). As a final observation, there did not appear to be any obvious signs of epiphytes on the *Ulva* samples at the conclusion of the experiments, as per the extensive rinsing and spinning phases.

In a manner similar to *Gracilaria*, the δ^{13} C content of *Ulva* was significantly reduced by exposure to elevated pCO₂ (to -27‰) relative to control treatments value of -7‰ (Three-way ANOVA; *p*<0.001; Fig. 3; S2 and S3 Tables). Unlike *Gracilaria*, however, the δ^{13} C of *Ulva* was also affected by nutrients that yielded significantly higher values (-5‰) relative to control treatments (-7‰) and the δ^{13} C differed by experiment (Three-way ANOVA; *p*<0.05; Fig. 3; S2 and S3 Tables). Nutrients and CO₂ did not interact to alter the δ^{13} C of *Ulva*. Isotope mixing models demonstrated that when incubated with elevated pCO₂ concentrations, *Ulva* δ^{13} C signatures (-27‰) were significantly lower than values expected from the strict use of HCO₃⁻ (-12‰) and significantly higher than expected from the strict use of CO₂ (-33‰; Tukey test;

p<0.001; Fig 4; S2 Tables). Quantitatively, the model suggested that for *Ulva*, during experimental incubations with elevated CO₂, 70% of their carbon came from CO₂ and 30% came from HCO₃⁻ (Fig. 4).

Also similar to *Gracilaria*, the nitrogen content of *Ulva* was significantly higher in elevated nutrient treatments (0.022 ± 0.004 g N per g dry tissue) compared to ambient nutrient treatments, regardless of pCO₂ concentrations (0.019 ± 0.006 g N per g dry tissue; Three-way ANOVA; p < 0.05; Fig. 7; S2 and S4 Tables). The carbon content of *Ulva* was not significantly altered by CO₂ but was significantly increased by nutrients and differed by experiment (Three-way ANOVA; p < 0.05; Fig. 7; S2 and S4 Tables). Tissue C:N was significantly lower in the elevated nutrient treatments (16.9 ± 0.6) than ambient nutrient treatments (21.5 ± 1.6) and differed by experiment (Three-way ANOVA; p < 0.05; Fig. 7; S2 and S4 Tables).

Discussion

During this study, elevated levels of pCO₂ were found to significantly enhance the growth rates of two bloom-forming, estuarine macroalgae, *Gracilaria* and *Ulva*. These enhanced growth rates were accompanied by large and significant reductions in the δ^{13} C content of the macroalgae. Concurrently, nutrients were found to enhance the growth of *Ulva* but not *Gracilaria*, and the combination of elevated nutrients and pCO₂ were capable of synergistically promoting the growth of *Ulva*. Given that elevated pCO₂ and acidification of coastal ecosystems are symptoms of eutrophication and that ocean acidification is enriching pCO₂ concentrations in these systems, this study provides new insight regarding the present and future overgrowth of macroalgae in estuaries.

The effects of elevated CO₂ concentrations on the growth of algae can depend on the precise carbon acquisition pathways utilized. C₃ algae can benefit from high CO₂ as their RuBisCO is not substrate-saturated at current CO₂ levels (~400ppm) (Reiskind et al., 1988; Gao et al., 1999). Many macroalgae use HCO₃⁻ rather than dissolved CO₂ under current seawater pCO₂ concentrations and utilize CA to convert HCO₃⁻ to CO₂ for use by RuBisCO (Gao and McKinley, 1994; Israel and Hophy, 2002; Badger, 2003; Koch et al., 2013). For example, Mercado et al. (1998) found that the chlorophytes *Ulva rigida* and *U. compressa* (formerly *Enteromorpha*) do not receive enough CO₂ through diffusive uptake alone at current CO₂ levels and thus must use CCMs to acquire HCO₃⁻. However, when exposed to elevated pCO₂, macroalgae may down-regulate their CCMs, reduce the use of HCO₃⁻, and begin to rely on CO₂ as a primary C source (Björk et al., 1993; Gao et al., 1993; Xu et al., 2010; Cornwall et al., 2012). The energy made available from the down-regulation of the CCM may, in turn, be used for other purposes, such as increased vegetative growth (Koch et al., 2013) which we observed during this study.

Values of δ^{13} C are often used to assess the types of carbon utilized by macroalgae. The δ^{13} C of HCO₃⁻ is significantly higher (less negative) than that of CO₂ in seawater and values of - 10‰ or higher in macroalgae are reflective of the sole use HCO₃⁻ and CCMs whereas macroalgae relying wholly on diffusion of CO₂ for carbon attain a value of -30‰ (Maberly et al., 1992; Raven et al., 2002; Hepburn et al., 2011). When grown in ambient seawater, *Ulva* and *Gracilaria* had δ^{13} C values of -8 and -13‰, values indicative of exclusive and near exclusive (85%) HCO₃⁻ use, respectively (Maberly et al., 1992; Raven et al., 2002; Hepburn et al., 2011). The use of tanked CO₂ gas with a known δ^{13} C signature (-27.7‰) permitted that CO₂ to be used as a tracer in mixing models and demonstrated that when incubated with elevated CO₂, both

macroalgal species switched their primary source of DIC. For Ulva, the change was the most dramatic as the three-fold decrease in δ^{13} C signature was indicative of these algae going from exclusive use of HCO₃⁻ to, on average, 70% of their DIC originating from CO₂ and only 30% from HCO₃⁻. For *Gracilaria*, the change was less dramatic with but still notable as the alga went from ~85% HCO₃⁻ use under low pCO₂ conditions to 50% CO₂ use under high pCO₂ conditions. Given the switch to increasing CO₂ use by Ulva and Gracilaria and concurrent increase in growth experienced under elevated pCO₂ concentrations, these algae may have down-regulated their CCMs permitting more energy to be dedicated to vegetative growth (Koch et al., 2013). The significant increase in δ^{13} C of *Ulva* when provided with nutrients further supports these hypotheses given that they experienced enhanced growth and presumably greater photosynthetic rates due to higher nutrient levels, causing a greater use of HCO₃⁻ via CCMs since additional CO₂ was not available (Rautenberger et al., 2015). Finally, there are additional factors that could contribute to lowered δ^{13} C values including preferential synthesis of lipids depleted in δ^{13} C compared to proteins and carbohydrates (Hoefs, 2009) although the extent of fractionated C associated with this process is small compared to changes observed during experiments presented here. Hence, the change in δ^{13} C values during experiments suggest that when exposed to high concentrations of CO₂, these bloom-forming macroalgae obtained a significantly larger fraction of their DIC from CO₂ and often grew faster.

Elevated pCO₂ concentrations did not alter the rate at which macroalgae took up and stored carbon (C) or nitrogen (N). The lack of change in tissue C content is consistent with the findings of Gordillo et al. (2001) who reported no accumulation of soluble carbohydrates and no change in tissue C content for *Ulva rigida* fronds exposed to pCO₂-enriched conditions. Despite the unchanged tissue C content, there were expected, significant increases in tissue N content

within nutrient treatments. Both *Ulva* and *Gracilaria* have been shown to be able to rapidly assimilate and store nitrate (Ryther et al., 1981; Fan et al., 2014) and have been shown to experience enhanced tissue N content when exposed to elevated levels of nitrate (Naldi and Wheeler, 1999; Liu et al., 2009). While increases in the C:N ratio of macroalgae can reflect an increase in soluble carbohydrates during stimulation of growth rates in certain plants (Fonseca et al., 1997), during our study tissue C:N levels did not track growth rates. Given the observed changes in δ^{13} C during exposure to high pCO₂, we hypothesize that macroalgae responded to increased C availability by increasing, stoichiometrically-balanced growth rather than by storing more carbohydrates.

Eutrophication has been shown to promote coastal ocean acidification due to the accumulation of respiratory CO₂ emanating from the microbial degradation of the excessive organic matter (Wallace et al., 2014). The present study has shown that *Gracilaria* and *Ulva* are capable of enhanced growth under elevated pCO₂ levels and that *Ulva* can, on occasion, synergistically benefit from concurrently higher nutrient concentrations. Going forward, this finding may have broad implications as it demonstrates that, in some cases, the true impacts of elevated pCO₂ on macroalgae may only be realized when excessive nutrients are present. Prior studies have demonstrated that elevated CO₂ levels may have little effect on photosynthetic rates of some algae (Björk et al., 1993; Israel and Hophy, 2002; Cornwall et al., 2012) but can result in increased biomass of *Gracilaria* sp., *G. chilensis*, and *G. lemaneiformis* (Gao et al., 1993; Xu et al., 2010) and *Ulva rigida* and *U. lactuca* (Gordillo et al., 2001; Olischläger et al., 2013). While *Gracilaria* can benefit from high nutrient concentrations (Ye et al., 2013), *Ulva* is capable of undergoing more rapid growth in eutrophic settings (Wallace and Gobler, 2015) due to a high maximum rate of uptake of ammonium and nitrate (Pedersen and Borum, 1997). This was

observed during the present study as *Ulva* growth rates were significantly higher than *Gracilaria*, and *Ulva* responded to nutrients more consistently than *Gracilaria*. *Ulva* is known to outcompete slower-growing algae in eutrophic estuaries, such as Saldanha Bay, South Africa (Andersen et al., 1996), Britanny, France (Perrot et al., 2014), and Qingdao, China (Zhao et al., 2013). The current study demonstrates that within eutrophied estuaries, seasonally elevated levels of pCO₂ may be equally or more important than excessive nutrients in promoting algal growth. For example, *Gracilaria* grew faster in the presence of higher pCO₂ levels but was unaffected by nutrients. Previously, it has been noted that more pristine estuaries are characterized by numerous, slower-growing macroalgal species while eutrophic estuaries are typically dominated by fewer, fast-growing, ephemeral macroalgal species (Pedersen and Borum, 1997; Valiela et al., 1997; Smetacek and Zingone, 2013). While nutrient loading and changes in light levels have been ascribed as the factors controlling these trends, the findings presented here suggest that elevated levels of pCO₂ may be equally or more important for shaping estuarine macroalgal community composition.

The extent to which elevated levels of pCO₂ affect the growth of macroalgae in estuaries will likely be influenced, in part, by physical mixing and circulation. In poorly flushed and/or mixed estuarine regions, diffusive boundary layers around seaweeds may limit DIC uptake (Wheeler, 1980; Koch, 1993) and thus higher ambient pCO₂ may be more likely to be beneficial. In contrast, in high energy environments with fast-moving currents or wave-flow, boundary layers are less likely to develop (Wheeler, 1980; Koch, 1993) and additional pCO₂ may be less likely to affect growth. During this study, macroalgae were vigorously bubbled at a rate that turned over the dissolved gas pool more than 700-times daily, a process that was unlikely to permit the development of boundary layers. This hypothesis is supported by the highly similar

growth rates of thalli in a fairly high energy region of Shinnecock Bay during *in situ* experiments and in our control, experimental bottles for nearly all experiments. Hence, in our experiments, enhanced growth experienced during exposure to high levels of pCO₂ were more likely a consequence of an intra-cellular, photosynthetic benefit for the algae rather than changes in external conditions.

The full implications of climate change for macroalgal communities are not fully understood, as studies of the effects of processes such as ocean acidification, rising temperatures, and changes in nutrient loading rates have been performed on a limited number of species. Porzio et al. (2011) examined >100 species of macroalgae near volcanic CO₂ vents in the Gulf of Naples, Italy, and found 20 species of calcium carbonate-containing macroalgae were no longer present under the acidification, whereas the ochryophyte Dictyota dichotoma and the rhodophyte Hildenbrandia rubra were most abundant within the high CO₂ environment. Other studies have similarly found that tropical calcifying macroalgae indigenous to coral reefs are likely to be negatively impacted by ocean acidification (Harley et al., 2012; Hofmann et al., 2012; Hofmann et al., 2015). Connell and Russell (2010) found that elevated CO_2 and temperature enhanced the growth of opportunistic turf-forming algae and that expansion of this algae inhibited the growth of kelp (*Ecklonia radiata*). As climate change processes promote increased pCO₂, this and prior studies suggest that macroalgal communities may shift and favor rapid-growing and opportunistic species such as Ulva, Gracilaria, and turf algae, perhaps to the detriment of calcifying macroalgae and/or kelp.

The more rapid growth of some species of macroalgae will have important implications for other classes of marine autotrophs. The majority of seagrass species are C₃ plants that are not currently substrate-saturated at current CO₂ levels, with some, such as *Zostera marina*, showing

enhanced photosynthesis and growth under elevated CO₂ concentrations (Palacios and Zimmerman, 2007; Koch et al., 2013). Elevated nutrient loading, however, typically favors the dominance of macroalgae over seagrasses, as macroalgae are more competitive for high nutrient levels and can overgrow and shade seagrass (Valiela et al., 1997). Beyond CO₂, climate change-induced warming may further favor macroalgae among submerged aquatic vegetation as many temperate species of seagrass exist at or near their upper level of thermal tolerance (Short, 1993). Finally, although highly excessive nutrient loading in estuaries with extended residence times are thought to ultimately favor the growth of phytoplankton blooms over macroalgae, the ability of both *Ulva* and *Gracilaria* to allelopathically inhibit the growth of phytoplankton (Lu et al., 2011; Tang and Gobler, 2011) may allow macroalgae to remain dominant in high nutrient, high CO₂ estuaries.

Macroalgal blooms can be harmful to marine life. Specifically, the overgrowth of macroalgae can cover critical benthic habitats and promote diel hypoxia/anoxia in estuaries (Valiela et al., 1997; Valiela et al., 2002; Liu et al., 2009) and *Ulva* has been shown to cause mortality in multiple calcifying animals including bivalves, barnacles, and larval crabs (Magre, 1974; Johnson and Welsh, 1985; Nelson et al., 2003). Since these calcifying animals are also sensitive to high levels of CO₂ (Ries et al., 2009; Findlay et al., 2010; Talmage and Gobler, 2010; Long et al., 2013) the stimulation of harmful macroalgae such as *Ulva* under elevated pCO₂ levels may represent a previously unrecognized, compounding environmental threat to some ocean animals. In contrast, other animals might benefit from predicted shifts in macroalgal communities. Some herbivorous fish of the families Blenniidae, Kyphosidae, and Siganidae selectively feed on filamentous and fleshy seaweeds such as *Ulva* (Tolentino-Pablico et al., 2008) and *Ulva lactuca* can be an important nursery for juvenile blue crabs (*Callinectes sapidus*)

(Wilson et al., 1990). Furthermore, excessive nutrient loading generally enhances the nitrogen content and C:N ratio of macroalgal tissues, which could benefit herbivores feeding on such material (Hemmi and Jormalainen, 2002). Hence, while shifts in macroalgal communities caused by climate change and eutrophication may promote the prevalence of non-calcifying macroalgae over seagrasses and calcifying macroalgae and may be harmful to some marine mollusks, these shifts could benefit marine organisms that either graze on macroalgae or utilize it as a nursery.

Tables

Table 1: Values of pH (NBS scale), temperature (°C), salinity (g kg⁻¹), pCO₂ (μ atm), DIC (μ mol kgSW⁻¹), HCO₃⁻ (μ mol kgSW⁻¹), alkalinity (μ mol kgSW⁻¹), DIN (μ M), and DIP (μ M) for *Gracilaria* and *Ulva* for June through November experiments. Values represent means ± SE. Data from individual experiments appear within supplementary tables (S1 Tables).

Gracilaria									
Treatment	рН	Temperature	Salinity	pCO ₂	DIC	HCO ₃ -	Alkalinity	DIN	DIP
Control	8.23±0.02	18.4±0.1	29.5±0.8	327±58	1520±73	1380±73	1790±76	5.42±0.87	0.72±0.11
Nutrients	8.29±0.03	18.5±0.1	29.5±0.7	314±61	1400±68	1310±93	1720±71	55.42±8.86	3.72±0.58
CO ₂	7.37±0.01	18.6±0.1	29.8±0.6	2530±108	1760±60	1660±48	1710±59	5.42±0.87	0.72±0.11
CO ₂ /Nutrients	7.38±0.01	18.6±0.1	29.7±0.7	2380±114	1710±61	1630±49	1670±58	55.42±8.86	3.72±0.53
Ulva									
Treatment	pН	Temperature	Salinity	pCO ₂	DIC	HCO ₃ -	Alkalinity	DIN	DIP
Control	8.27±0.02	18.5±0.1	29.3±0.8	329±55	1540±72	1380±70	1780±76	5.42±0.87	0.72±0.11
Nutrients	8.35±0.03	18.5±0.1	29.6±0.7	328±56	1440±57	1330±63	1750±89	55.42±8.86	3.72±0.58
CO ₂	7.37±0.01	18.6±0.1	29.7±0.6	2510±102	1770±70	1650±56	1720±70	5.42±0.87	0.72±0.11
CO ₂ /Nutrients	7.40±0.01	18.6±0.1	29.8±0.6	2300±163	1740±55	1650±46	1700±58	55.42±8.86	3.72±0.53

Figures

Figure 1: Map of Shinnecock Bay, NY, USA. The star represents the shallow-water region where macroalgal collections occurred and *in situ* experiments were performed.

Figure 2: Growth rates of *Gracilaria* exposed ambient and elevated CO₂ conditions with and without nutrient additions for experiments performed August through November. Columns with an asterisk over them indicate significant results.

Figure 3: δ^{13} C content of *Gracilaria* and *Ulva* exposed to ambient and elevated CO₂ conditions with and without nutrient additions for experiments performed August through November.

Figure 4: δ^{13} C content of A) *Gracilaria* and B) *Ulva* exposed to elevated CO₂ conditions compared with the δ^{13} C signature expected from the exclusive use of CO₂ or the exclusive use of HCO₃⁻. Box plots depict the mean median (line within the boxes), 25th and 75th percentiles (lower and upper edges of the boxes), and 10th and 90th percentiles of the data (lower and upper error bars).

Figure 5: Tissue nitrogen, carbon, and C:N content of *Gracilaria* exposed to ambient and elevated CO₂ conditions with and without nutrient additions for experiments performed August through November.

Figure 6: Growth rates of Ulva exposed to ambient and elevated CO_2 conditions with and without nutrient additions for experiments performed August through November. Columns with an asterisk over them indicate significant results.

Figure 7: Tissue nitrogen, carbon, and C:N content of *Ulva* exposed to ambient and elevated CO₂ conditions with and without nutrient additions for experiments performed August through November.

References

- Anderson, R. J., Monteiro, P. M. S., & Levitt, G. J. 1996. The effect of localized eutrophication on competition between *Ulva lactuca* (Ulvaceae, Chlorophyta) and a commercial resource of *Gracilaria verrucosa* (Gracilariaceae, Rhodophyta). Hydrobiologia 326(1):291-296.
- Badger, M. 2003. The role of carbonic anhydrases in photosynthetic CO₂ concentrating mechanisms. Photosynthesis Research **77**:83-94.
- Björk, M., Haglund, K., Ramazanov, Z., & Pedersén, M. 1993. Inducible Mechanisms for HCO₃⁻ Utilization and Repression of Photorespiration in Protoplasts and Thalli of Three Species of *Ulva* (Chlorophyta). Journal of Phycology 29:166-173.
- Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., & Gong, G.-C. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4:766-770.
- Connell, S. D., & Russell, B. D. 2010. The direct effects of increasing CO₂ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the Royal Society B: Biological Sciences 277(1686):1409-1415.
- Cornwall, C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., McGraw, C. M., Hunter, K. A., & Hurd, C. L. 2012. Carbon-Use Strategies in Macroalgae: Differential Responses to Lowered pH and Implications for Ocean Acidification. Journal of Phycology 48:137-144.
- Dickson, A. G., Sabine, C. L., & Christian, J. R. 2007. Guide to best practices for ocean CO₂ measurements. PICES Special Publication **3**:191 pp.
- Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. 2009. Ocean Acidification: the Other CO₂ Problem. Annual Review of Marine Science 1:169-192.
- Fan, X., Xu, D., Wang, Y., Zhang, X., Cao, S., Mou, S., & Ye, N. 2014. The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by *Ulva prolifera*: implications for the explosion in green tides. Journal of Applied Phycology 26:537-544.
- Findlay, H. S., Burrows, M. T., Kendall, M. A., Spicer, J. I., & Widdicombe, S. 2010. Can ocean acidification affect population dynamics of the barnacle *Semibalanus balanoides* at its southern range edge? Ecology 91(10):2931-2940.
- Fonseca, F., Bowsher, C. G., & Stulen, I. 1997. Impact of elevated atmospheric CO2 on nitratereductase transcription and activity in leaves and roots of *Plantago major*. Physiologia Plantarum 100(4):940-948.
- Gao, K., Aruga, Y., Asada, K., & Kiyoharda, M. 1993. Influence of enhanced CO₂ on growth and photosynthesis of the red algae *Gracilaria* sp. and *G*. chilensis. Journal of Applied Phycology **5**(6):563-571.
- Gao, K., Ji, Y., & Aruga, Y. 1999. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologia **398**:355-359.

- Gao, K., & McKinley, K. R. 1994. Use of macroalgae for marine biomass production and CO₂ remediation: a review. Journal of Applied Phycology **6**:45-60.
- Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J.-P., Middelburg, J. J., & Heip, C. H. R. 2007. Impact of elevated CO₂ on shellfish calcification. Geophysical Research Letters 34:L07603.
- Gordillo, F. J. L., Niella, F. X., & Figueroa, F. L. 2001. Non-photosynthetic enhancement of growth by high CO₂ level in the nitrophilic seaweed *Ulva rigida* C. Agardh (Chlorophyta). Planta **213**:64-70.
- Gurgel, C. F. D., Fredericq, S., & Norris, J. N. 2004. Phylogeography of *Gracilaria tikvahhiae* (Gracilariaceae, Rhodophyta): a study of genetic discontinuity in a continuously distributed species based on molecular evidence. Journal of Phycology **40**(4):748-758.
- Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., & Coyle, T. A. 2012. Effects of Climate Change on Global Seaweed Communities. Journal of Phycology 48:1064-1078.
- Hattenrath-Lehmann, T. K., Smith, J. L., Wallace, R. B., Merlo, L. R., Koch, F., Mittelsdorf, H., Goleski, J. A., Anderson, D. M., & Gobler, C. J. 2015. The effects of elevated CO₂ on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, *Alexandrium fundyense*. Limnology and Oceanography 60:198-214.
- Hemmi, A., & Jormalainen, V. 2002. Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology **83**(4):1052-1064.
- Hepburn, C. D., Pritchard, D. W., Cornwall, C. E., McLeod, R. J., Beardall, J., & Raven, J. A. 2011. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology 17(7):2488-2497.
- Hoefs, J. 2009. Stable Isotope Geochemistry (6th ed.). New York City: Springer Science & Business Media.
- Hofmann, L. C., Bischof, K., Baggini, C., Johnson, A., Koop-Jakobsen, K., & Teichberg, M. 2015. CO₂ and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia **177**(4):1157-1169.
- Hofmann, L. C., Nettleton, J. C., Neefus, C. D., & Mathieson, A. C. 2010. Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): introduced and indigenous distromatic species. European Journal of Phycology 45(3):230-239.
- Hofmann, L. C., Yildiz, G., Hanelt, D., & Bischof, K. 2012. Physiological responses of the calcifying rhodophyte, *Corallina officinalis* (L.), to future CO₂ levels. Marine Biology 159:783-792.
- Israel, A., & Hophy, M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO₂ concentrations. Global Change Biology **8**:831-840.
- Johnson, D. A., & Welsh, B. L. 1985. Detrimental effects of *Ulva lactuca* (L.) exudates and low oxygen on estuarine crab larvae. Journal of Experimental Marine Biology and Ecology 86(1):73-83.

- Kim, J. K., Kraemer, G. P., & Yarish, C. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156.
- Kirkendale, L., Saunders, G. W., & Winberg, P. 2013. A molecular survey of *Ulva* (Chlorophyta) in temperate Australia reveals enhanced levels of cosmopolitanism. Journal of Phycology **49**(1):69-81.
- Koch, E. W. 1993. The effect of water flow on photosynthetic processes of the alga *Ulva lactuca* L. Hydrobiologia **260**(1):457-462.
- Koch, M., Bowes, G., Ross, C., & Zhang, X.-H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology **19**:103-132.
- Liu, D., Keesing, J. K., Xing, Q., & Shi, P. 2009. World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin **58**(6):888-895.
- Long, W. C., Swiney, K. M., & Foy, R. J. 2013. Effects of ocean acidification on the embryos and larvae of red king crab, *Paralithodes camtschaticus*. Marine Pollution Bulletin 69(1):38-47.
- Lu, H., Xie, H., Gong, Y., Wang, Q., & Yang, Y.-F. 2011. Secondary metabolites from the seaweed *Gracilaria lemaneiformis* and their allelopathic effects on *Skeletonema costatum*. Biochemical Systematics and Ecology **39**:397-400.
- Maberly, S. C., Raven, J. A., & Johnston, A. M. 1992. Discrimination between ¹²C and ¹³C by marine plants. Oecologia **91**(4):481-492.
- Magre, E. J. 1974. *Ulva lactuca* L. negatively affects *Balanus balanoides* (L.) (Cirripedia Thoracica) in tidepools. Crustaceana **27**(3):231-234.
- Melzner, F., Jörn, T., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., Hansen, H. P., & Körtzinger, A. 2013. Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology 160:1875-1888.
- Mercado, J. M., Gordillo, F. J. L., Niella, F. X., & Figueroa, F. L. 1998. External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. Journal of Experimental Marine Biology and Ecology 221:209-220.
- Mook, W. G., Bommerson, J. C., & Staverman, W. H. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22:169-176.
- Naldi, M., & Wheeler, P. A. 1999. Changes in nitrogen pools in *Ulva fenestrata* (Chlorophyta) and *Gracilaria pacifica* (Rhodophyta) under nitrate and ammonium enrichment. Journal of Phycology 35(1):70-77.
- Nelson, T. A., Lee, D. J., & Smith, B. C. 2003. Are "Green Tides" Harmful Algal Blooms? Toxic Properties of Water-Soluble Extracts from Two Bloom-Forming Macroalgae, Ulva fenestrate and Ulvaria obscura (Ulvophyceae). Journal of Phycology 39:874-879.
- Olischläger, M., Bartsch, I., Gutow, L., & Wiencke, C. 2013. Effects of ocean acidification on growth and physiology of *Ulva lactuca* (Chlorophyta) in a rockpool-scenario. Phycological Research **61**(3):180-190.

- Palacios, S. L., & Zimmerman, R. C. 2007. Response of eelgrass *Zostera marina* to CO₂ enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series **344**:1-13.
- Parsons, T. R. 2013. A Manual of Chemical & Biological Methods for Seawater Analysis. Philadelphia: Elsevier.
- Pedersen, M. F., & Borum, J. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Marine Ecology Progress Series **161**:155-163.
- Perrot, T., Rossi, N., Ménesguen, A., & Dumas, F. 2014. Modelling green macroalgal blooms on the coasts of Brittany, France to enhance water quality management. Journal of Marine Systems 132:38-53.
- Porzio, L., Buia, M. C., & Hall-Spencer, J. M. 2011. Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400:278-287.
- Rautenberger, R., Fernández, P. A., Strittmatter, M., Heesch, S., Cornwall, C. E., Hurd, C. L., & Roleda, M. Y. 2015. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in *Ulva rigida*. Planta **5**(4):874-888.
- Raven, J. A., Johnston, A. M., Kübler, J. E., Korb, R., McInroy, S. G., Handley, L. L., Scrimgeour, C. M., Walker, D. I., Beardall, J., Vanderklift, M., Fredriksen, S., & Dunton, K. H. 2002. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Functional Plant Biology 29(3):355-378.
- Reiskind, J. B., Seamon, P. T., & Bowes, G. 1988. Alternative Methods of Photosynthetic Carbon Assimilation in Marine Macroalgae. Plant Physiology **87**:686-692.
- Ries, J. B., Cohen, A. L., & McCorkle, D. C. 2009. Marine calcifiers exhibit mixed responses to CO₂-induced ocean acidification. Geology **37**(12):1131-1134.
- Rogers, A., Fischer, B. U., Bryant, J., Frehner, M., Blum, H., Raines, C. A., & Long, S. P. 1998. Acclimation of Photosynthesis to Elevated CO₂ under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Plant Physiology **118**:683-689.
- Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E., Millero, F. J., & Campbell, D. M. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44(2-4):249-267.
- Ryther, J. H., Corwin, N., DeBusk, T. A., & Williams, L. D. 1981. Nitrogen uptake and storage by the red alga *Gracilaria tikvahiae* (McLachlan, 1979). Aquaculture **26**:107-115.
- Schneider, C. W., Suyemoto, M. M., & Yarish, C. 1979. An annotated checklist of Connecticut Seaweeds. Connecticut Geological and Natural History Survey **Bulletin 108**:20 pp.
- Sears, J. R. 2002. NEAS Keys to Benthic Marine Algae of the Northeastern Coast of North America from Long Island Sound to the Strait of Belle Isle. Northeast Algal Society:161 pp.
- Sharp, J. H. 1974. Improved analysis for particulate organic carbon and nitrogen from seawater. Limnology and Oceanography **19**:984-989.

- Short, F. T., & Neckles, H. A. 1999. The effects of global climate change on seagrasses. Aquatic Botany **63**:169-196.
- Smetacek, V.,& Zingone, A. 2013. Green and golden seaweed tides on the rise. Nature **504**:84-88.
- Talmage, S. C., & Gobler, C. J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107(40):17246-17251.
- Tang, Y. Z., & Gobler, C. J. 2011. The green macroalga, *Ulva lactuca*, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae **10**:480-488.
- Tolentino-Pablico, G., Bailly, N., Froese, R., & Elloran, C. 2008. Seaweeds preferred by herbivorous fishes. Journal of Applied Phycology **20**:933-938.
- Valiela, I., & Cole, M. L. 2002. Comparative Evidence that Salt Marshes and Mangroves May Protect Seagrass Meadows from Land-derived Nitrogen Loads. Ecosystems 5(1):92-102.
- Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., & Foreman, K. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42:1105-1118.
- Waldbusser, G. G., & Salisbury, J. E. 2014. Ocean Acidification in the Coastal Zone: Multiple System Parameters, Frequency Domains, and Habitats. Annual Review of Marine Science 6:221-247.
- Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., & Gobler, C. J. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science 148:1-13.
- Wallace, R. B., & Gobler, C. J. 2015. Factors Controlling Blooms of Microalgae and Macroalgae (*Ulva rigida*) in a Eutrophic, Urban Estuary: Jamaica Bay, NY, USA. Estuaries and Coasts 38(2):519-533.
- Webber, A. N., Nie, G.-Y., & Long, S. P. 1994. Acclimation of photosynthetic proteins to rising atmospheric CO₂. Photosynthesis Research **39**:413-425.
- Wheeler, W. N. 1980. Effect of Boundary Layer Transport on the Fixation of Carbon by the Giant Kelp *Macrocystis pyrifera*. Marine Biology **56**(2):103-110.
- Wilson, K. A., Able, K. W., & Heck, K. L., Jr. 1990. Predation rates on juvenile blue crabs in estuarine nursery habitats: evidence for the importance of macroalgae (*Ulva lactuca*). Marine Ecology Progress Series 58:243-251.
- Xu, Z., Zou, D., & Gao, K. 2010. Effects of elevated CO₂ and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga *Gracilaria lemaneiformis* (Rhodophyta). Botanica Marina 53(2):123-129.
- Ye, C., Zhang, M., Zhao, J., Yang, Y., & Zuo, Y. 2013. Photosynthetic response of the macroalga, *Gracilaria lemaneiformis* (Rhodophyta), to various N and P levels at different temperatures. International Review of Hydrology 98:245-252.

Zhao, J., Jiang, P., Liu, Z., Wei, W., Lin, H., Li, F., Wang, J., & Qin, S. 2013. The Yellow Sea green tides were dominated by one species, *Ulva (Enteromorpha) prolifera,* from 2007 to 2011. Chinese Science Bulletin **58**(19):2298-2302.

Chapter 2

The organizing effects of elevated CO2 on competition among estuarine primary producers

Introduction

By the end of the century, the diffusion of CO₂ from fossil fuel combustion into surface oceans is expected to cause CO_2 and HCO_3^- levels to increase 260% and 20%, respectively (Meehl et al., 2007). Beyond the combustion of fossil fuels, upwelling, and riverine discharge, another prominent CO₂ source in coastal ecosystems is eutrophication-enhanced microbial respiration (Cai et al., 2011; Melzner et al., 2013; Wallace et al., 2014). The degradation of excessive organic matter can lead to the seasonal accumulation of respiratory CO₂ which lowers seawater pH and increases pCO_2 to levels not expected in the open ocean until next century (>1,000 µatm; Wallace et al., 2014). Shifts in the concentrations of various inorganic carbon sources within the total dissolved inorganic carbon (DIC) pool are likely to elicit a variety of responses from marine flora and fauna. Decreased availability of CO₃²⁻ can inhibit the growth of calcifying organisms (Talmage and Gobler, 2010; Gazeau et al., 2013; Kroeker et al., 2013) while the increased availability of CO₂ may benefit some, but not all, photosynthetic organisms (Palacios and Zimmerman, 2007; Koch et al., 2013; Hattenrath-Lehmann et al., 2015; Young and Gobler, 2016). The photosynthetic organisms most likely to benefit from an increase in CO₂ levels are non-calcifying autotrophs whose inorganic carbon uptake is not substrate-saturated at present CO_2 concentrations (Koch et al., 2013).

Numerous non-calcified marine autotrophs have been shown to benefit from anthropogenically-induced changes in carbonate chemistry. Marine photosynthetic organisms acquire carbon through the active transport of CO_2 and HCO_3^- as well as the diffusive uptake of CO_2 (Badger, 2003). Since HCO_3^- is more abundant than CO_2 in seawater, many marine autotrophs rely on carbon concentrating mechanisms (CCM) and intracellular or extracellular carbonic anhydrase (CA) to convert HCO_3^- to CO_2 for use by RuBisCO (Gao and McKinley,

1994; Israel and Hophy, 2002; Badger, 2003; Koch et al., 2013). For marine macroalgae, a variety of chlorophytes, phaeophytes, and rhodophytes are able to utilize HCO₃⁻ and CO₂ for photosynthesis (Gao and McKinley, 1994). When exposed to elevated CO₂, some chlorophytes such as Ulva rigida and U. lactuca experience increased growth (Björk et al., 1993; Olischläger et al., 2013; Young and Gobler, 2016), while others do not (Rautenberger et al., 2015). Noncalcifying rhodophytes such as Gracilaria lemaneiformis, G. tikvahiae, Chondrus crispus (Xu et al., 2010; Hofmann et al., 2012; Young and Gobler, 2016), and phaeophytes such as the giant kelp (Macrocystis pyrifera) (Hepburn et al., 2011) have been shown to benefit from elevated CO_2 concentrations. Elevated CO_2 can also accelerate the growth of individual species of phytoplankton within multiple classes, including dinoflagellates (Karlodinium veneficum, Alexandrium fundyense, Alexandrium ostenfeldii) (Fu et al., 2010; Kremp et al., 2012; Hattenrath-Lehmann et al., 2015), diatoms (Skeletonema costatum, Pseudo-nitzschia fraudulenta, Pseudo-nitzschia multiseries) (Kim et al., 2006; Sun et al., 2011; Tatters et al., 2012), and raphidophytes (*Heterosigma akashiwo*) (Fu et al., 2008). However, not all species within these groups benefit, as is the case of several dinoflagellates (Fu et al., 2008; Kremp et al., 2012; Hattenrath-Lehmann et al., 2015). Additionally, some studies have found that natural phytoplankton community growth and composition will be unaffected by increases in pCO_2 to levels predicted by 2100 (Berge et al., 2010; Nielsen et al., 2012).

The community structure of marine autotrophs is strongly shaped by competition, which can be affected by relative abundance of resources such as nutrients, light, and inorganic carbon. For example, as nutrient loading increases, macroalgae gain a competitive advantage over seagrass (Valiela et al., 1997). A similar trend can be found within macroalgal communities, as increased nitrogen loading can favor fast-growing species, such as *Ulva* spp. over slower-

growing ones (Valiela et al., 1997) due to the former possessing higher rates of maximum nutrient uptake (Pedersen and Borum, 1997). Continued nitrogen loading, however, can shift the competitive advantage in favor of phytoplankton, which often have a higher V_{max} , a lower K_m , and a higher α than macroalgae (Hein et al., 1995), thus allowing for faster nutrient acquisition and dominance under conditions of extreme nutrient loading rates and extended residence times (Valiela et al., 1997). Shifts in the concentration and speciation of inorganic carbon in estuaries may also drive competition among autotrophs. In the presence of high CO₂, some species of macroalgae may down-regulate their CCMs, thus permitting more energy to be available for other processes such as vegetative growth (Koch et al., 2013; Young and Gobler, 2016) or may shift towards diffusive uptake of CO₂ over use of a CCM to relieve carbon limitation (Mercado et al., 1998; Young and Gobler, 2016). Some algal species rely strictly on the diffusive uptake of CO₂ or the active transport of HCO₃⁻, with most species being capable of using both forms of carbon (Gao and McKinley, 1994). Thus, the physiological responses of individual algae to increased CO₂ may alter community structure.

Recently, I have demonstrated that populations of *Ulva rigida* and *Gracilaria tikvahiae* from Northwest Atlantic coastal waters experience accelerated growth and likely CO₂ uptake when exposed to elevated pCO₂ (Young and Gobler, 2016). The objective of this study was to assess how elevated concentrations of CO₂ influences competition among estuarine autotrophs including *Ulva rigida*, *Gracilaria tikvahiae*, diatoms, and dinoflagellates. Each macroalgal population was grown with and without elevated levels of pCO₂ as well as with and without the other alga and with and without ambient plankton populations. The growth responses, δ^{13} C signatures, and elemental composition of algae were evaluated at the start and end of experiments performed through the growing season of these macroalgal populations.

Methods

Macroalgae Collection and Preparation

Macroalgae used for this study were collected from Shinnecock Bay, NY, USA (40.85° N, 72.50°) during low tide. Permission to access the water and collect the water and macroalgae was received from the Southampton Town Trustees, Southampton, NY, USA, who hold jurisdiction over Shinnecock Bay. Large, well-pigmented, robust fronds of Ulva and Gracilaria were collected and transported to the Stony Brook Southampton Marine Science Center in seawater-filled containers within 15 minutes of collection. My prior research has used DNA sequencing and microscopy to determine that Ulva rigida and Gracilaria tikvahiae are the species Ulva and Gracilaria present at my sampling site during summer and fall (Young and The visual and microscopic analyses during this study affirmed that Gobler, 2016). identification. Due to the plastic nature of macroalgal taxonomic nomenclature as well as the high similarity of ITS sequences among Ulva species (Hofmann et al., 2010; Kirkendale et al., 2013), for the purposes of this study and consistency with prior studies (Young and Gobler, 2016), we refer to these algae simply as Ulva and Gracilaria. Individual thalli of Gracilaria approximately 5 cm in length were cut from the main plant and placed in a salad spinner to remove debris and epiphytes. Samples were extensively rinsed with filtered (0.2 µm) seawater and placed back into the salad spinner to further remove debris, epiphytes, and excess seawater. Circular sections of similar length of *Ulva* were cut from large thalli with care taken to avoid the outer, potentially reproductive region of the plant (Wallace and Gobler, 2015). Samples of Ulva were prepared using the same cleaning procedures as *Gracilaria*. All samples were weighed on an A&D EJ300 digital balance $(\pm 0.01 \text{ g})$ to obtain initial wet weight in grams. To prevent desiccation, all samples were kept in 100 mL filtered (0.2 μ m) seawater-filled containers after spinning and weighing but prior to use in experiments.

In situ Growth Experiments

To assess growth rates of *Gracilaria* and *Ulva* within the region of Shinnecock Bay from which they were collected, *in situ* growth experiments were performed monthly from June through October. Quadruplet, 0.25 m² incubation cages constructed from 1 cm² wire mesh were attached to a four-armed (25 cm) umbrella fishing apparatus on a line with surface flotation and a bottom weight to keep the cages suspended at 0.2 m (Wallace and Gobler, 2015; Young and Gobler, 2016). Continuous measurements of light and temperature were made using HOBO pendant temperature and light loggers. Thalli of each species of macroalgae were placed in each quadruplet cage for approximately one week in parallel with laboratory experiments (*described below*) after which thalli were recovered, brought to the lab, and rinsed, spun, re-rinsed, re-spun, and weighed as described above. Samples of *Gracilaria* and *Ulva* were frozen for further tissue analysis. Weight-based growth rates for both species were determined using the relative growth rate formula (growth d⁻¹) = (ln W_{final} – ln W_{initial}) / (Δ t), where W_{final} and W_{initial} are the final and initial weights in grams and Δ t is the number of days of the experiment.

Assessing the Effects of Elevated pCO₂ and Competition

Five laboratory experiments were performed to assess the effects of competition and elevated pCO₂ on the growth of *Gracilaria*, *Ulva*, and natural plankton communities during early July, late July, August, September and October. Polycarbonate bottles (2.5 L) were acid washed (10% HCl) and liberally rinsed with deionized water before use. Experimental bottles were

placed in an environmental control chamber set to the approximate temperature ($\sim 16-21^{\circ}C$) and light intensity (~400 µmol s⁻¹ m⁻²) and duration (14 h: 10 h light : dark cycle) present during *in* situ experiments. Bottles were filled with filtered (0.2µm polysulfone filter capsule, Pall) with the plankton community removed or unfiltered seawater with the full plankton community. For the early and late July, and August experiments, bottles were randomly assigned, in triplicate to one of four treatments: a control with ambient levels of pCO₂ (~400 µatm) in filtered seawater (no plankton), a treatment with ambient pCO₂ in unfiltered seawater (with plankton), a treatment with elevated pCO₂ (\sim 2,500 µatm) in filtered seawater (no plankton), and a treatment with elevated pCO₂ in unfiltered seawater (with plankton). Three sets of these bottles were established: One for Ulva, one for Gracilaria, and one with both Ulva and Gracilaria resulting in a total of 36 experimental bottles. For the September and October experiments, bottles were randomly assigned to the aforementioned treatments, but in quadruplicate. Additionally, eight bottles were filled with seawater only with four bottles being subjected to ambient pCO₂, and the other four being subjected to elevated pCO₂. All bottles for each experiment received nutrient additions (50 μ M nitrate, 3 μ M phosphate) at the beginning of the experiment to ensure nutrient replete growth. The nutrient and pCO₂ concentrations used during experiments were higher than what is present at the collection site, but are within the range of concentrations present in eutrophic US East Coast estuaries (Wallace et al. 2014; Wallace and Gobler 2015) and used during prior experiments with *Ulva* and *Gracilaria* from Shinnecock Bay, NY, USA (Young and Gobler, 2016).

Each bottle was aerated via a 1.5" x 0.5" (~3.8 x 1.3 cm) air diffuser (Pentair) connected to a 1 mL, polystyrene serological pipette inserted to the bottom of each bottle and connected via tygon tubing to an air source. Bottles were subjected to the control (~400 µatm) and elevated

(~2500 µatm) levels of pCO₂ via a gas proportionator system (Cole Parmer® Flowmeter system, multitube frame) that mixed ambient air with 5% CO₂ gas (Talmage and Gobler, 2010). The gas mixtures were delivered at a net flow rate of 2500 ± 5 mL min⁻¹ through an 18- or 14-way gang valve into the serological pipettes that fit through an opening in the closed cap of the bottle. The delivery rate of gases turned over the volume of the experimental bottles >1,00 times daily (Talmage and Gobler, 2010). Bubbling began two days prior to beginning each experiment allowing pCO₂ concentrations and pH levels to reach a state of equilibrium. Experiments persisted for one week. Measurements of pH within bottles were made daily through use of an Orion Star A321 Plus electrode (± 0.001) calibrated prior to use with National Institute of Standards and Technology (NIST) traceable standards. DIC concentrations in bottles were measured using an EGM-4 Environmental Gas Analyzer (PP Systems) system that quantifies DIC levels after separating the gas phase from seawater by acidification using a Liqui-Cel Membrane (Membrana) (Talmage and Gobler 2010). As a quality assurance measure, the levels of DIC and pH with Dr. Andrew Dickson's (University of California, San Diego, Scripps Institution of Oceanography) certified reference material (batches 142, 147, 151) were measured during analyses of every set of samples. The analysis of samples continued only after complete recovery of the certified reference material was attained. Levels of pCO₂ (mean of t=initial and t=final, Table 1) were calculated using measured levels of DIC, pH (NIST), temperature, and salinity, as well as the first and second dissociation constants of carbonic acid in seawater according to Millero et al. (2010) using the program CO2SYS (http://cdiac.ornl.gov/ftp/co2sys/). The targeted levels of pCO₂ resulted in actual pCO₂ and pH values of \sim 400 µatm and \sim 8.0, respectively, for ambient conditions and $\sim 2600 \,\mu atm$ and ~ 7.2 , respectively, for the elevated CO₂

conditions, mimicking the range found seasonally in estuarine environments (Melzner et al., 2013; Wallace et al., 2014; Baumann et al., 2015).

Experiments began with the introduction of macroalgae and nutrients into experimental bottles. HOBO pendant temperature and light data loggers were used to continuously monitor light levels. At the end of experiments, final pH, temperature, and salinity measurements were made and a final DIC was collected and analyzed as described above. After measuring DIC, all macroalgae samples were removed from their respective bottles and rinsed, spun, re-rinsed, re-spun, and weighed as described above. *Gracilaria* and *Ulva* samples were placed into small freezer bags for further analyses. Weight-based growth rates for both species were determined as described above. Significant differences in growth rates were assessed using three-way ANOVA with SigmaPlot 11.0, where the main treatments were pCO₂ treatment (ambient or elevated), the presence of plankton (filtered or unfiltered seawater), and competition (each macroalgal species alone or in the same bottle). Additionally, one-way ANOVA were used to compare the growth rates of the control group and the *in situ* experiments.

The growth and composition of the plankton community was assessed during the September and October experiments by removing 50 mL aliquots of seawater from experimental bottles in unfiltered seawater treatments at the beginning and at the conclusion of each experiment and preserving samples with Lugol's iodine. Aliquots were placed in Sedgewick-Rafter chambers and enumerated using a light microscope, an approach that permitted the quantification of plankton > 10 μ m (Wallace and Gobler, 2015). More than 200 cells were quantified per sample. For the purposes of this study, the most abundant plankton groups were quantified, specifically diatoms and dinoflagellates. Significant differences in abundance were

assessed using three-way ANOVA with SigmaPlot 11 where the main treatments were pCO₂ (ambient or elevated), *Ulva* (with or without *Ulva*), and *Gracilaria* (with or without *Gracilaria*).

Tissue Analyses

For carbon (C), nitrogen (N), and stable carbon isotope (δ^{13} C) analyses, frozen samples of *Gracilaria* and *Ulva* were dried at 55°C for 48 h and then homogenized into a fine powder using a mortar and pestle. The total tissue C, N, and δ^{13} C were analyzed using an elemental analyzer interfaced to a Europa 20-20 isotope ratio mass spectrometer at the UC Davis Stable Isotope Facility. Significant differences in tissue content for each species of algae and class of plankton during experiments were assessed using three-way ANOVA within SigmaPlot 11.0 where the main treatment effects were pCO₂ treatment (ambient or elevated), the presence of plankton (filtered or unfiltered seawater), and competition (each macroalgal species alone or in the same bottle).

Results

<u>Gracilaria</u>

The *in situ* growth of *Gracilaria* in Shinnecock Bay was found to be similar to and not significantly different from growth rates within the control groups of experiments with the exception of the early July and August experiment, when experimental growth rates were slightly lower and higher, respectively, than those *in situ* (One-way ANOVA; p < 0.05; Fig. 2; S6 Tables). The growth rates of *Gracilaria* within the experimental groups were found to be sensitive to changes in CO₂ concentrations (Fig. 2). During experiments in late July, August, and

October, the growth of *Gracilaria* increased significantly when exposed to elevated CO₂ concentrations (Three-way ANOVA; p < 0.05; Fig. 2; S6 Tables). On average, growth rates under elevated CO₂ were 37% higher and 30% higher than growth under ambient conditions in experimental bottles filled with filtered and unfiltered seawater, respectively (Fig. 2). Growth rates of *Gracilaria* were not affected by the presence of *Ulva* and were mostly unaffected by the presence of plankton with the exception of the early July experiment when plankton significantly slowed the growth of *Gracilaria* (Three-way ANOVA; p < 0.05; Fig. 2; S6 Tables). During the August experiment, there was an interaction between CO₂, competition with *Ulva*, and competition with plankton, whereby elevated CO₂ significantly enhanced growth rates within filtered treatments (Three-way ANOVA; p < 0.05; Fig. 2; S6 Tables) but not within unfiltered treatments (Three-way ANOVA; p > 0.05; Fig. 2; S6 Tables) but not within unfiltered treatments (Three-way ANOVA; p > 0.05; Fig. 2; S6 Tables). Additionally, in this same experiment, growth was significantly higher under elevated CO₂ in treatments without *Ulva* (Three-way ANOVA; p < 0.05; Fig. 2; S6 Tables), but not in treatments with competition from *Ulva*, demonstrating that *Ulva* altered the response of *Gracilaria* to CO₂ in this experiment.

The δ^{13} C content of *Gracilaria* was significantly reduced by elevated CO₂ delivery, with the average of the ambient and elevated CO₂ treatments being, on average, -13‰ and -24‰, respectively (Three-way ANOVA; *p*<0.001; Fig. 3; S6-S7 Tables). Overall, there was no significant difference in δ^{13} C between filtered and unfiltered seawater treatments, regardless of CO₂ concentration (Three-way ANOVA; *p*>0.05; S6-S7 Tables). Additionally, there was no significant difference in δ^{13} C caused by exposure to *Ulva*. On average, the tissue C content of *Gracilaria* was largely unaffected by CO₂ concentration, competition with *Ulva*, and competition with plankton (Three-way ANOVA; *p*>0.05; Fig. 4; S6 and S8 Tables). However, elevated CO₂ was found to have significantly increased the tissue C content relative to the ambient

concentration for the late July experiment (Three-way ANOVA; *p*<0.05; S6 Tables).

Competition with *Ulva* significantly reduced tissue N of *Gracilaria* for the August, September, and October experiments, while competition with plankton significantly decreased tissue N for all experiments with the exception of the August experiment (Three-way ANOVA; p < 0.05; S6 and S8 Tables). Elevated CO₂ treatments resulted in decreased tissue N for only the September experiment (S6 and S8 Tables). The tissue C:N ratio of *Gracilaria* was unaffected by elevated CO₂ concentrations (Three-way ANOVA; p > 0.05; S6 and S8 Tables), but was found to be significantly higher during competition with *Ulva* during the August experiment and during competition plankton assemblages during the early and late July experiments (Three-way ANOVA; p<0.05; Fig. 4; S6 and S8 Tables).

<u>Ulva</u>

The growth rates of *Ulva* during *in situ* experiments did not differ statistically from those found within the control treatment of experiments (One-way ANOVA; p > 0.05; Fig. 5; S6 Tables). The response of *Ulva* to the different variables within the experimental bottles was more complex compared to *Gracilaria*. Overall, growth by *Ulva* was found to be significantly higher under elevated pCO₂ concentrations and significantly higher in treatments without *Gracilaria* and competing plankton (Three-way ANOVA; p < 0.05; Fig. 5; S6 Tables). During four of the five experiments (early and late July, August, and September), the growth of *Ulva* increased significantly when exposed to elevated pCO₂ concentration, increasing, on average, 38% and 44% relative to ambient treatments in filtered and unfiltered treatments, respectively (Three-way ANOVA; p < 0.05; Fig. 2; S6 Tables). On average, *Ulva* growth rates were ~ 20% lower when grown in the presence of plankton, and 12% lower when grown in the presence of *Gracilaria*

(Fig. 5). During the early July experiment, the presence of plankton depressed the growth of *Ulva* as did the presence of *Gracilaria* (Three-way ANOVA; p < 0.05; Fig. 5; S6 Tables). *Ulva* growth in the presence of plankton was also significantly reduced during the late July experiment (Three-way ANOVA; p < 0.05; Fig. 5; S6 Tables). As independent variables, plankton and *Gracilaria* did not significantly alter *Ulva* growth rates during the September experiment, but there was a synergistic interaction between elevated pCO₂ and the absence of plankton in slowing *Ulva* growth (Three-way ANOVA; p < 0.05; Fig. 5; S6 Tables). During the October experiment, the growth of *Ulva* was not affected by any treatment.

The δ^{13} C content of *Ulva* was significantly reduced by exposure to elevated CO₂ concentrations, with the average δ^{13} C of the ambient and elevated CO₂ treatments being -12‰ and -33‰, respectively (Three-way ANOVA; *p*<0.001; Fig. 3; S6-S7 Tables). For the entire study, the δ^{13} C of *Ulva* was not significantly altered by the presence of *Gracilaria* or plankton (Three-way ANOVA; *p*>0.05; S6-S7 Tables). The δ^{13} C was, however, found to be significantly lower in treatments with plankton present for the August and September experiments (Three-way ANOVA; *p*<0.05; S6-S7 Tables). Tissue C content of *Ulva* was not significantly affected by elevated CO₂ concentrations, competition with *Gracilaria*, or competition with plankton (Threeway ANOVA; *p*<0.05; Fig. 6; S6 and S8 Tables). In contrast, during each experiment tissue N content was significantly lower when *Ulva* was grown in the presence of plankton, with the exception of the October experiment (Three-way ANOVA; *p*<0.05; Fig. 6; S6 and S8 Tables). The tissue C:N ratio of *Ulva* was significantly higher in the presence of plankton during each experiment except October (Three-way ANOVA; *p*<0.05; Fig. 6; S6 and S8 Tables).

<u>Plankton</u>

Regarding plankton communities, at the onset of the September and October experiments, the dominant plankton >10 μ m were diatoms, whereas at the end of experiments, the abundance of diatoms diminished and dinoflagellates became more prominent. The growth rates of diatoms and dinoflagellates were found to significantly decrease and increase, respectively, during exposure to elevated CO₂ during the September and October experiments (Three-way ANOVA; *p* < 0.05; S6 Tables). Diatoms and dinoflagellate growth rates were also affected by the species of macroalgae present. Diatom growth rates were significantly higher in treatments containing *Ulva* compared to treatments without (Three-way ANOVA; *p* < 0.05; Fig. 7; S6 Tables). Dinoflagellates growth was significantly decreased in the presence of *Gracilaria* (Three-way ANOVA; *p* < 0.05; Fig. 7; S6 Tables).

Discussion

During this study, elevated CO₂ concentrations significantly enhanced the growth rates of *Gracilaria*, *Ulva*, and dinoflagellates, but not diatoms. For *Gracilaria*, growth rates were largely unaffected by the presence of *Ulva* and plankton whereas the growth rates of *Ulva* were significantly depressed when grown with *Gracilaria* or the full plankton community. Among the phytoplankton, diatom growth benefited from the presence of *Ulva*, while the growth rates of dinoflagellates were slowed by *Gracilaria*. For both macroalgae, the δ^{13} C was significantly lowered by elevated pCO₂ while their N content was reduced by competition with the other macroalgae species and/or plankton. Together these findings provide novel insight regarding the outcomes of competition among primary producers under high CO₂ conditions.

Most macroalgae are capable of active transport of HCO₃⁻ or CO₂ into their CCM or the diffusive uptake of CO₂ (Badger, 2003). High CO₂ concentrations may cause macroalgae to down-regulate CCMs that convert HCO₃⁻ to CO₂ (Björk et al., 1993; Gao et al., 1993; Xu et al., 2010; Cornwall et al., 2012) resulting in more energy available for other processes such as vegetative growth (Koch et al., 2013; Young and Gobler, 2016). The amount of energy saved by this process is not fully clear, as the process depends on several external factors, such as PAR, and internal factors, such as type of CCM used by the macroalgae, or the potential leakage of carbon dioxide from the CCM (Raven et al., 2014). The δ^{13} C signatures of macroalgae during this study suggested these species switched from HCO_3^- to CO_2 use and potentially downregulated their CCMs as values prior to the start of the experiments (-12-13‰) were reflective of HCO₃⁻ and CCM use whereas the more negative values of macroalgae at the end of the experiment (-23.6 \pm 5‰ and -33.5 \pm 5‰ for *Gracilaria* and *Ulva*, respectively) were within the range expected of macroalgae relying more diffusion of CO₂ (Maberly et al., 1992; Raven et al., 2011; Hepburn et al., 2011) using isotope mixing models to account for the lighter CO₂ gas used in experiments (Young and Gobler, 2016). It is also possible that higher pCO_2 alleviated inorganic C limitation and enhanced growth rates. Mercado et al. (1998) reported that U. rigida and U. compressa (formerly Enteromorpha) do not receive enough CO₂ through diffusive uptake at current CO₂ levels, a finding consistent with the enhanced growth of *Ulva* during this study and supported by the shift in δ^{13} C during this study for both *Ulva* and *Gracilaria*. Regardless, the enhanced growth rates for these macroalgae under higher CO₂ indicate that inorganic C limitation was alleviated.

Consistent with prior studies of macroalgae, changes in CO₂ levels did not alter tissue C and N content (Gordillo et al. 2001, Young and Gobler 2016) and competition with other

autotrophs did not alter their C content. In contrast, competition with other autotrophs resulted in significantly decreased N content and decreased tissue C:N ratios for *Gracilaria* and *Ulva*. Both macroalgal species are able to rapidly assimilate and store nitrate (Ryther et al., 1981; Fan et al., 2014) and have been shown to experience enhanced tissue N content when exposed to excessive nitrate concentrations (Naldi and Wheeler, 1999; Liu et al., 2009). Compared to Gracilaria, Ulva is capable of undergoing more rapid growth in eutrophic settings (Valiela et al., 1997; Wallace and Gobler, 2015) due to a high maximum rate of uptake of nutrients such as nitrate (Pedersen and Borum, 1997). Phytoplankton are superior competitors for N compared to macroalgae (Hein et al., 1995; Valiela et al., 1997). The significant declines in N content of macroalgae when grown with phytoplankton and elevated C:N ratios of macroalgae at the end of experiments (15 - 40), despite the high levels of N present at the start of experiments $(50\mu M)$, affirms the role of N as a limiting element in this (Mulholland et al., 2002) and other estuaries (Nixon, 1995) and suggests this N was likely depleted over the course of the experiment. This is almost certainly the case in experiments with the full plankton community intact as uptake rates of plankton communities can exceed 25 µM per day in Shinnecock Bay (Mulholland et al., 2002). The precise outcomes of competition among estuarine autotrophs exposed to high CO_2 , therefore, will be partly dependent upon ambient nutrient supplies.

Beyond tissue content of macroalgae, the importance of both N and pCO₂ in shaping algal community composition was also evident in the competitive growth responses of macroalgae. Nutrient loading favors fast-growing macroalgae with rapid uptake rates of nutrients over slower-growing counterparts (Pedersen and Borum, 1997; Valiela et al., 1997). The growth rates of *Ulva* were, on average, three-times faster than *Gracilaria* during experiments and thus, despite a 55-60% lower tissue N content, had a significantly larger N

demand making it more prone to N limitation, especially when placed in competition with other autotrophs. This hypothesis is supported by the C:N ratios of *Ulva* which were significantly higher than those of *Gracilaria* throughout this study (p<0.001; T-test), suggesting Ulva was more N-limited. Similarly, the presence of phytoplankton, which are able to outcompete macroalgae for nutrients, may have further depleted nutrient concentrations during experiments, thus causing the decreased growth of *Ulva* in unfiltered treatments for some of the experiments (Valiela et al., 1997). Again, this hypothesis is supported by the significant increase in the C:N ratio that *Ulva* experienced when grown in the presence of phytoplankton communities. Collectively these findings suggest that while pCO₂ enhances the growth of Ulva and Gracilaria, the slower-growing Gracilaria is better adapted for persisting at more dynamic nutrient concentrations than Ulva (Pedersen and Borum, 1996 & 1997). In a field experiment by Fujita (1985), when N was introduced in pulses every five days, Gracilaria tikvahiae was able to outcompete Ulva lactuca in mixed macroalgal beds, despite the latter possessing a more rapid N uptake rate. Furthermore, the *Gracilaria vermiculophylla*, normally found in the West Pacific, has invaded northern European estuaries as early as 2002, and has become among the most abundant macroalgae in the region, despite competition with Ulva and other ephemeral algae (Thomsen et al., 2007). However, were nutrients continuously added during experiments, it is plausible that the growth of *Ulva* would have been unaffected by other autotrophs. Hence, the outcome of competition among estuarine autotrophs exposed to high CO₂ depend, at least in part, on ambient N levels.

Dinoflagellates experienced more rapid growth when exposed to high CO₂ while diatoms did not. Results from prior studies suggest that the response of phytoplankton communities to elevated CO₂ concentrations are likely to depend on the species present but that dinoflagellates

are more prone to C-limitation than diatoms as dinoflagellates possess form II RubisCO, which has a low affinity for CO₂ (Rost et al., 2006; Reinfelder, 2011). The dinoflagellates Protoceratium reticulatum (Ratti et al. 2007), Karlodinium veneficum (Fu et al., 2010) and Karenia brevis (Errera et al., 2014) all grow more rapidly under high CO₂ as do Alexandrium species from Europe (Alexandrium minutum, Flores-Moya et al. 2012; Alexandrium ostenfeldii, Kremp et al. 2012) and the North America (Alexandrium catenella; Fu et al. 2012; Tatters et al. 2013a; Alexandrium fundyense Hattenrath-Lehmann et al., 2015). While the general response of diatoms to elevated CO₂ also appears to be species-specific, they seem to be generally less sensitive to changes in pCO_2 . Dozens of diatom species realize maximal growth rates under a wide range of pH/ pCO₂ levels (Chen and Durbin 1994; Taraldsvik and Myklestad 2000; Hinga 2002; Berge et al., 2010), although elevated CO₂ enhances the growth rates of some species including Pseudo-nitzschia fraudulenta (Tatters et al., 2012), Pseudo-nitzschia multiseries (Sun et al., 2011), and Chaetoceros debilis (Trimborn et al., 2013). Hence, my findings of CO₂stimulated growth of dinoflagellates but not diatoms are generally consistent with prior studies, but specific responses will depend on, among other factors, nutrient levels, the species of phytoplankton present within a community, as well as competition with other autotrophs. I did not identify phytoplankton to the species level during this study. Regardless, given dinoflagellates are responsible for most harmful algal blooms (HABs; Smayda, 1997) and that HABs are common within eutrophic settings (Heisler et al., 2008), the findings here suggest that high CO₂, eutrophic estuaries may be more likely to host HABs with negative ecosystem consequences (Hattenrath-Lehmann et al., 2015).

Diatom and dinoflagellate growth rates were also affected by macroalgae with dinoflagellates growth being inhibited by *Gracilaria* but *Ulva* promoting the growth of diatoms.

Prior studies have found that dinoflagellates in temperate estuaries are vulnerable to allelopathic inhibition by macroalgae (Tang and Gobler, 2011; Tang et al., 2014) and Gracilaria spp. have been shown to allelopathically depress dinoflagellate growth rates (Wang et al., 2007; Lu et al., 2011). While Ulva has been found to allelopathically inhibit the growth of individual dinoflagellate species in culture (Tang and Gobler, 2011), during this study Ulva was found to have no effect on dinoflagellates but promoted the growth of diatoms. This finding indicates that Ulva may generally promote a succession within phytoplankton communities from dinoflagellates to diatoms, potentially via the remineralization of nutrients (Wang et al., 2012) that promotes the growth of diatoms. The growth promotion of diatoms may be associated with the ability of *Ulva* to release and regenerate nutrients such as ammonium and phosphate (Lyngby et al., 1999; Wang et al., 2012). Another possibility is that vitamin B₁₂-producing epiphytic bacteria on Ulva may have promoted the growth of diatoms. Diatoms are unable to synthesize vitamin B₁₂ and as such, require bacteria for the production of the vitamin (Haines and Guillard, 1974; Croft et al., 2006). Udell et al. (1969) found samples of Ulva lactuca in the same contiguous water body as my study site to be rich in vitamin B₁₂ likely due to epiphytic bacteria. It is possible that the synthesis of vitamin B_{12} by epiphytic bacteria could have promoted the growth of diatoms in treatments containing *Ulva*.

There are numerous ecosystem implications of the overgrowth of macroalgae, such as *Ulva* and *Gracilaria*, due to the ability to outcompete autotrophs due to increased nutrient loading and CO₂ concentrations. The overgrowth of bloom-forming macroalgae has been shown to have negative effects on seagrass meadows (Valiela et al., 1997; Hauxwell et al., 2001), kelp forests (Connell et al., 2013), coral reefs (Anthony et al., 2011; Connell et al., 2013) and even phytoplankton communities (Tang and Gobler, 2011; Lu et al., 2011; Tang et al., 2014).

Although seagrass can experience enhanced growth in the presence of elevated CO₂ concentrations (Palacios and Zimmerman, 2007), increased nutrient loading favors macroalgal growth that can lead to the demise of seagrass (Valiela et al., 1997; McGlathery, 2001). Aside from the direct deleterious effects of ocean acidification on coral reefs and calcifying invertebrates (Doney et al., 2009), continued eutrophication and ocean acidification may allow fast-growing macroalgae to overgrow substrate used by coral (Hughes et al., 2003). The overgrowth of macroalgae also can cause mortality in some invertebrates (Magre, 1974; Johnson and Welsh, 1985; Nelson et al., 2003). While the giant kelp (Macrocystis pyrifera), may benefit from elevated CO₂ concentrations (Hepburn et al., 2011), overgrowth of bloom-forming macroalgae by the same CO₂ concentrations may allow the algae to overtake substrate, thus inhibiting kelp recruitment (Kennelly, 1987; Connell et al., 2010 & 2013). While excessive nutrient loading in estuaries with relatively long residence times favor phytoplankton over macroalgae, the ability of both Ulva and Gracilaria to benefit from high CO₂ and to inhibit the growth of some phytoplankton via allelopathy may allow macroalgae to remain dominant in some high nutrient, high CO₂ estuaries (Tang and Gobler, 2011; Lu et al., 2011; Tang et al., 2014). Finally, macroalgae blooms may overgrow seagrass beds (Valielia et al., 1999; Hauxwell et al. 2001; Connell et al., 2013) to the detriment of invertebrate and fish species that use seagrass for food, cover, and as nurseries (Heck et al., 1995; Perkins-Visser et al., 1996; Francour, 1997; Blanc and Daguzan, 1998; McGlathery, 2001).

Tables

Table 1. Values of pH (NBS scale), temperature (°C), salinity (g kg⁻¹), pCO₂ (μ atm), DIC (μ mol kgSW⁻¹), HCO₃⁻ (μ mol kgSW⁻¹) for *Gracilaria* and *Ulva* for June through October experiments. Values represent means ± standard error. Data from individual experiments appear within supplementary tables (S5 Tables).

Ulva						
Treatment	рН	Salinity	Temperature	pCO ₂	DIC	HCO ₃ -
Ambient/Filtered	8.14±0.04	30.9±0.5	16.6±0.5	270±30	1230±30	1140±30
Ambient/Unfiltered	8.23±0.04	30.7±0.6	16.5±0.6	270±30	1490±60	1360±50
CO ₂ /Filtered	7.17±0.04	30.3±0.3	15.7±0.5	2600±200	1490±60	1370±50
CO ₂ /Unfiltered	7.26±0.04	30.8±0.5	15.9±0.7	2660±240	1630±50	1520±40
Gracilaria						
Treatment	pН	Salinity	Temperature	pCO ₂	DIC	HCO ₃ -
Ambient/Filtered	8.10±0.04	30.9±0.5	16.0±0.7	300±30	1280±30	1190±30
Ambient/Unfiltered	8.19±0.05	30.7±0.6	16.5±0.6	310±40	1630±100	1490±90
CO ₂ /Filtered	7.17±0.04	30.4±0.4	15.0±0.6	2670±260	1450±60	1330±50
CO ₂ /Unfiltered	7.26±0.4	30.7±0.6	15.5±0.5	2550±250	1670±60	1550±50
Gracilaria and Ulva						
Treatment	рН	Salinity	Temperature	pCO ₂	DIC	HCO ₃ -
Ambient/Filtered	8.15±0.04	30.9±0.5	16.4±0.7	270±20	1240±30	1150±30
Ambient/Unfiltered	8.22±0.06	30.6±0.5	16.3±0.5	280±40	1540±40	1410±30
CO ₂ /Filtered	7.16±0.04	30.5±0.4	15.6±0.5	2520±180	1450±50	1320±50
CO ₂ /Unfiltered	7.27±0.04	30.6±0.5	15.8±0.5	2700±230	1660±50	1550±50

Figures

Figure 1: Map of Shinnecock Bay, NY, USA. The asterisk represents the shallow-water region where macroalgal collections occurred and *in situ* experiments were performed.

Figure 3: δ^{13} C content of *Gracilaria* and *Ulva* exposed to ambient and elevated CO₂ conditions, with and without competition from *Ulva*, and with and without competition from phytoplankton for experiments performed July through October.

Figure 4: Tissue nitrogen, carbon, and C:N content of *Gracilaria* exposed to ambient and elevated CO₂ conditions, with and without competition from *Ulva*, and with and without competition from phytoplankton for experiments performed July through October.

Figure 5: Growth rates of *Ulva* exposed to ambient and elevated CO₂ conditions, with and without competition from *Gracilaria*, and with and without competition from phytoplankton for experiments performed July through October.

Figure 6: Tissue nitrogen, carbon, and C:N content of *Ulva* exposed to ambient and elevated CO₂ conditions, with and without competition from *Gracilaria*, and with and without competition from phytoplankton for experiments performed July through October.

Figure 7: Growth rates of diatoms and dinoflagellates exposed to ambient and elevated CO₂ conditions, with and without competition from *Gracilaria* and/or *Ulva*.

References

- Anthony, K. R. N., Maynard, J. A., Diaz-Pulido, G., Mumby, P. J., Marshall, P. A., Cao, L., & Hoegh-Guldberg, O. 2011. Ocean acidification and warming will lower coral reef resilience. Global Change Biology 17(5):1798-1808.
- Badger, M. 2003. The role of carbonic anhydrases in photosynthetic CO₂ concentrating mechanisms. Photosynthesis Research **77**:83-94.
- Baumann, H., Wallace, R. B., Tagliaferri, T., & Gobler, C. J. 2015. Large Natural pH, CO₂ and O₂ Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales. Estuaries and Coasts 38(1):220-231.
- Berge, T., Daugbjerg, N., Andersen, B. B., & Hansen, P. J. 2010. Effect of lowered pH on marine phytoplankton growth rates. Marine Ecology Progress Series **416**:79-91.
- Björk, M., Haglund, K., Ramazanov, Z., & Pedersén, M. 1993. Inducible Mechanisms for HCO₃⁻ Utilization and Repression of Photorespiration in Protoplasts and Thalli of Three Species of *Ulva* (Chlorophyta). Journal of Phycology 29:166-173.
- Blanc, A., & Daguzan, J. 1998. Artificial surfaces for cuttlefish eggs (*Sepia officinalis* L.) in Morbihan Bay, France. Fisheries Research **38**(3):225-231.
- Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., & Gong, G.-C. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4:766-770.
- Chen, C. Y., & Durbin, E. G. 1994. Effects on pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series **109**:83-94.
- Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., & Russell, B. D. 2013. The other ocean acidification problem: CO₂ as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society **368**(1627):1-9.
- Connell, S. D., & Russell, B. D. 2010. The direct effects of increasing CO₂ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests.
 Proceedings of the Royal Society B: Biological Sciences 277(1686):1409-1415.
- Cornwall, C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., McGraw, C. M., Hunter, K. A., & Hurd, C. L. 2012. Carbon-Use Strategies in Macroalgae: Differential Responses to Lowered pH and Implications for Ocean Acidification. Journal of Phycology 48(1):137-144.
- Croft, M.T., Warren, M.J., Smith, A.G. 2006. Algae Need Their Vitamins. Eukaryotic Cell 5(8): 1175-1183.
- Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. 2009. Ocean Acidification: the Other CO₂ Problem. Annual Review of Marine Science 1:169-192.
- Errera, R. M., Yvon-Lewis, S. A., Kessler, J. D., & Campbell, L. 2014. Responses of the dinoflagellate *Karenia brevis* to climate change: *p*CO₂ and sea surfaces temperatures. Harmful Algae **37**:110-116.

- Fan, X., Xu, D., Wang, Y., Zhang, X., Cao, S., Mou, S., & Ye, N. 2014. The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by *Ulva prolifera*: implications for the explosion in green tides. Journal of Applied Phycology 26:537-544.
- Flores-Moya, A., Rouco, M., García-Sánchez, M. J., García-Balboa, C., González, R., Costas, E., & López-Rodas, V. 2012. Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate *Alexandrium minutum* under selection of increased temperature and acidification. Ecology and Evolution 2(6):1251-1259.
- Francour, P. 1997. Fish Assemblages of *Posidonia oceanica* Beds at Port-Cros (France, NW Mediterranean): Assessment of Composition and Long-Term Fluctuations by Visual Census. Marine Ecology 18(2):157-173.
- Fu, F.-X., Place, A. R., Garcia, N. S., & Hutchins, D. A. 2010. CO₂ and phosphate availability control the toxicity of the harmful bloom dinoflagellate *Karlodinium veneficum*. Aquatic Microbial Ecology **59**(55-65).
- Fu, F.-X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J., & Hutchins, D. A. 2008. A comparison of future increased CO₂ and temperature effects on sympatric *Heterosigma akashiwo* and *Prorocentrium minimum*. Harmful Algae 7:76-90.
- Fujita, R.M. 1985. The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. Journal of Experimental Marine Biology and Ecology 92(2-3): 283-301.
- Gao, K., Aruga, Y., Asada, K., & Kiyoharda, M. 1993. Influence of enhanced CO₂ on growth and photosynthesis of the red algae *Gracilaria* sp. and *G*. chilensis. Journal of Applied Phycology **5**(6):563-571.
- Gao, K., & McKinley, K. R. 1994. Use of macroalgae for marine biomass production and CO₂ remediation: a review. Journal of Applied Phycology **6**:45-60.
- Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J.-P., Middelburg, J. J., & Heip, C. H. R. 2007. Impact of elevated CO₂ on shellfish calcification. Geophysical Research Letters 34:L07603.
- Gordillo, F. J. L., Niella, F. X., & Figueroa, F. L. 2001. Non-photosynthetic enhancement of growth by high CO₂ level in the nitrophilic seaweed *Ulva rigida* C. Agardh (Chlorophyta). Planta **213**:64-70.
- Haines, K.C., Guillard, R.R.L. 1974. Growth of Vitamin B₁₂-Requiring Marine Diatoms in Mixed Laboratory Cultures with Vitamin B₁₂-Producing Marine Bacteria. Journal of Phycology 10(3): 245-252.
- Hattenrath-Lehmann, T. K., Smith, J. L., Wallace, R. B., Merlo, L. R., Koch, F., Mittelsdorf, H., Goleski, J. A., Anderson, D. M., & Gobler, C. J. 2015. The effects of elevated CO₂ on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, *Alexandrium fundyense*. Limnology and Oceanography 60:198-214.
- Hauxwell, J., Cebrian, J., Furlong, C., & Valiela, I. 2001. Macroalgal canopies contribute to eelgrass (*Zostera marina*) decline in temperate estuarine ecosystems. Ecology 82(4):1007-1022.

- Heck, K. L., Jr., Able, K. W., Roman, C. T., & Fahay, M. P. 1995. Composition, Abundance, Biomass, and Production of Macrofauna in a New England Estuary: Comparisons Among Eelgrass Meadows and Other Nursery Habitats. Estuaries 18(2):379-389.
- Hein, M., Pedersen, M. F., & Sand-Jensen, K. 1995. Size-dependent nitrogen uptake in microand macroalgae. Marine Ecology Progress Series **118**:247-253.
- Heisler, J., Gilbert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., & Suddleson, M. 2008.
 Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8(1):3-13.
- Hepburn, C. D., Pritchard, D. W., Cornwall, C. E., McLeod, R. J., Beardall, J., & Raven, J. A. 2011. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology 17(7):2488-2497.
- Hinga, K. R. 2002. Effects of pH on coastal marine phytoplankton. Marine Ecology Progress Series **238**:281-300.
- Hofmann, L. C., Nettleton, J. C., Neefus, C. D., & Mathieson, A. C. 2010. Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): introduced and indigenous distromatic species. European Journal of Phycology 45(3):230-239.
- Hofmann, L. C., Straub, S., & Bischof, K. 2012. Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO₂ levels. Marine Ecology Progress Series 464:89-105.
- Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J. A., Lough, J. M., Marshall, P. A., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., & Roughgarden, J. 2003. Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science 301(5635):929-933.
- Israel, A., & Hophy, M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO₂ concentrations. Global Change Biology **8**:831-840.
- Johnson, D. A., & Welsh, B. L. 1985. Detrimental effects of *Ulva lactuca* (L.) exudates and low oxygen on estuarine crab larvae. Journal of Experimental Marine Biology and Ecology 86(1):73-83.
- Kennelly, S. J. 1987. Physical disturbances in an Australian kelp community. I. Temporal effects. Marine Ecology Progress Series **40**:145-153.
- Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G., & Jang, M.-C. 2006. The effect of seawater CO₂ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography 51(4):1629-1636.

- Kirkendale, L., Saunders, G. W., & Winberg, P. 2013. A molecular survey of *Ulva* (Chlorophyta) in temperate Australia reveals enhanced levels of cosmopolitanism. Journal of Phycology **49**(1):69-81.
- Koch, M., Bowes, G., Ross, C., & Zhang, X.-H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology **19**:103-132.
- Kremp, A., Godhe, A., Egardt, J., Dupont, S., Suikkanen, S., Casabianca, S., & Penna, A. 2012. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecology and Evolution 2:1195-1207.
- Kroeker, K. J., Micheli, F., & Gambi, M. C. 2013. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change **3**:156-159.
- Liu, D., Keesing, J. K., Xing, Q., & Shi, P. 2009. World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin **58**(6):888-895.
- Lu, H., Xie, H., Gong, Y., Wang, Q., & Yang, Y.-F. 2011. Secondary metabolites from the seaweed *Gracilaria lemaneiformis* and their allelopathic effects on *Skeletonema costatum*. Biochemical Systematics and Ecology **39**:397-400.
- Lyngby, J. E., Mortensen, S., & Ahrensberg, N. 1999. Bioassessment Techniques for Monitoring of Eutrophication and Nutrient Limitation in Coastal Ecosystems. Marine Pollution Bulletin **39**(1-12):212-223.
- Maberly, S. C., Raven, J. A., & Johnston, A. M. 1992. Discrimination between ¹²C and ¹³C by marine plants. Oecologia **91**(4):481-492.
- Magre, E. J. 1974. *Ulva lactuca* L. negatively affects *Balanus balanoides* (L.) (Cirripedia Thoracica) in tidepools. Crustaceana **27**(3):231-234.
- McGlathery, K. J. 2001. Macroalgal blooms contribute to the decline of segrass in nutrientenriched coastal waters. Journal of Phycology **37**(4):453-456.
- Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., & Zhao, Z.-C. 2007. Global Climate Projections. Retrieved from Cambridge:
- Melzner, F., Jörn, T., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., Hansen, H. P., & Körtzinger, A. 2013. Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology 160:1875-1888.
- Mercado, J. M., Gordillo, F. J. L., Niella, F. X., & Figueroa, F. L. 1998. External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. Journal of Experimental Marine Biology and Ecology **221**:209-220.
- Millero, F. J. 2010. History of the equation of state of seawater. Oceanography 23(3):18-33.
- Mulholland, M. R., Gobler, C. J., & Lee, C. 2002. Peptide hydrolysis, amino acid oxidation and N uptake in communities seasonally dominated by *Aureococcus anophagefferens*. Limnology and Oceanography 47:1094-1108.
- Naldi, M., & Wheeler, P. A. 1999. Changes in nitrogen pools in *Ulva fenestrata* (Chlorophyta) and *Gracilaria pacifica* (Rhodophyta) under nitrate and ammonium enrichment. Journal of Phycology **35**(1):70-77.

- Nelson, T. A., Lee, D. J., & Smith, B. C. 2003. Are "Green Tides" Harmful Algal Blooms? Toxic Properties of Water-Soluble Extracts from Two Bloom-Forming Macroalgae, *Ulva fenestrate* and *Ulvaria obscura* (Ulvophyceae). Journal of Phycology **39**:874-879.
- Nielsen, L. T., Hallegraeff, G. M., Wright, S. W., & Hansen, P. J. 2012. Effects of experimental seawater acidification on an estuarine plankton community. Aquatic Microbial Ecology 65:271-285.
- Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia **41**(1):199-219.
- Olischläger, M., Bartsch, I., Gutow, L., & Wiencke, C. 2013. Effects of ocean acidification on growth and physiology of *Ulva lactuca* (Chlorophyta) in a rockpool-scenario. Phycological Research **61**(3):180-190.
- Palacios, S. L., & Zimmerman, R. C. 2007. Response of eelgrass *Zostera marina* to CO₂ enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series **344**:1-13.
- Pedersen, M. F., & Borum, J. 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Marine Ecology Progress Series **142**:261-272.
- Pedersen, M. F., & Borum, J. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Marine Ecology Progress Series **161**:155-163.
- Perkins-Visser, E., Wolcott, T. G., & Wolcott, D. L. 1996. Nursery role of seagrass beds: enhanced growth of juvenile blue crabs (*Callinectes sapidus* Rathbun). Journal of Experimental Marine Biology and Ecology **198**(2):155-173.
- Ratti, S., Giordano, M., & Morse, D. 2007. CO₂-concentrating mechanisms of the potentially toxic dinoflagellate *Protoceratium reticulatum* (Dinophyceae, Gonyaulacales). Journal of Phycology 43(4):693-701.
- Rautenberger, R., Fernández, P. A., Strittmatter, M., Heesch, S., Cornwall, C. E., Hurd, C. L., & Roleda, M. Y. 2015. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in *Ulva rigida*. Planta 5(4):874-888.
- Raven, J. A., Beardall, J., Giordano, M. 2014. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research **121**(2): 111-124.
- Raven, J. A., Giordano, M., Beardall, J., & Maberly, S. C. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research 109(1):281-296.
- Reinfelder, J. R. 2011. Carbon concentrating mechanisms in eukaroytic marine phytoplankton. Annual Review of Marine Science **3**:219-315.
- Rost, B., Riebesell, U., & Sültemeyer, D. 2006. Carbon acquisition of marine phytoplankton: Effect of the photoperiodic length. Limnology and Oceanography **51**:12-20.
- Ryther, J. H., Corwin, N., DeBusk, T. A., & Williams, L. D. 1981. Nitrogen uptake and storage by the red alga *Gracilaria tikvahiae* (McLachlan, 1979). Aquaculture **26**:107-115.

- Smayda, T., & Reynolds, C. S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research **49**:95-106.
- Sun, J., Hutchins, D. A., Yuanyuan, F., Seubert, E. L., Caron, D. A., & Fu, F.-X. 2011. Effects of changing pCO₂ and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom *Pseudo-nitzschia multiseries*. Limnology and Oceanography 56(3):829-840.
- Talmage, S. C., & Gobler, C. J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107(40):17246-17251.
- Tang, Y. Z., & Gobler, C. J. 2011. The green macroalga, *Ulva lactuca*, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10(5):480-488.
- Tang, Y. Z., Kang, Y., Berry, D., & Gobler, C. J. 2014. The ability of the red macroalga, *Porphyra purpurea* (Rhodophyceae) to inhibit the proliferation of seven common harmful microalgae. Journal of Applied Phycology 27(1):531-544.
- Taraldsvik, M., & Myklestad, S. M. 2000. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom *Skeletonema costatum*. European Journal of Phycology **35**:189-194.
- Tatters, A. O., Fu, F.-X., & Hutchins, D. A. 2012. High CO₂ and Silicate Limitation Synergistically Increase the Toxicity of *Pseudo-nitzschia fraudulenta*. PLoS ONE 7(2):e32116.
- Thomsen, M. S., Staehr, P. A., Nyberg, C. D., Schwærter, S., Krause-Jensen, D., Silliman, B. R.

2007. *Gracilaria vermiculophylla* (Ohmi) Papenfuss, 1967 (Rhodophyta, Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in the future. Aquatic Invasions 2(2): 83-94.

- Trimborn, S., Brenneis, T., Sweet, E., & Rost, B. 2013. Sensitivity of Antarctic phytoplankton species to ocean acidification: Growth, carbon acquisition, and species interaction. Limnology and Oceanography 58(3):997-1007.
- Udell, H.F., Zarudsky, J., Doheny, T.E., Burkholder, P.R. 1969. Productivity and Nutrient Values of Plants Growing in the Salt Marshes of the Town of Hempstead, Long Island. Bulletin of the Torrey Botanical Club **96**: 42-51.
- Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., & Foreman, K. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42:1105-1118.
- Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., & Gobler, C. J. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science 148:1-13.
- Wallace, R. B., & Gobler, C. J. 2015. Factors Controlling Blooms of Microalgae and Macroalgae (*Ulva rigida*) in a Eutrophic, Urban Estuary: Jamaica Bay, NY, USA. Estuaries and Coasts 38(2):519-533.

- Wang, C., Yu, R.-C., & Zhou, M.-J. 2012. Effects of the decomposing green macroalga *Ulva* (*Enteromorpha*) *prolifera* on the growth of four red-tide species. Harmful Algae 16:12-19.
- Wang, Y., Zhiming, Y., Song, X., Tang, X., & Zhang, S. 2007. Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates. Aquatic Botany 86(2):139-147.
- Xu, Z., Zou, D., & Gao, K. 2010. Effects of elevated CO₂ and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga *Gracilaria lemaneiformis* (Rhodophyta). Botanica Marina **53**(2):123-129.
- Young, C. S., & Gobler, C. J. 2016. Ocean acidification accelerates the growth of two bloomforming, estuarine macroalgae. PLoS ONE **11**(5):e0155152.

Appendix

Supplementary Tables

S1 Tables: Values of pH (NBS scale), temperature (°C), salinity (g kg⁻¹), and pCO₂ (μ atm) for *Gracilaria* and *Ulva* for June through November experiments. Values represent means ± SE.

Gracilaria

June				
Treatment	pН	Temperature	Salinity	
Control	8.31±0.09	18.7±0.1	31.1±0.1	_
Nutrients	8.38±0.09	18.7±0.1	31.1±0.1	
CO_2	7.44 ± 0.01	18.7±0.1	31.1±0.1	
CO ₂ /Nutrients	7.44 ± 0.01	18.7 ± 0.1	31.1±0.1	
July				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.28±0.04	18.8±0.1	30.8±0.8	377±149
Nutrients	8.48 ± 0.09	18.7±0.1	30.6±0.6	287±240
CO_2	7.40 ± 0.02	18.7±0.1	30.8 ± 0.8	3120±97
CO ₂ /Nutrients	7.42 ± 0.03	18.7±0.1	30.8 ± 0.8	3210±0.6
August				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.20±0.04	18.4±0.1	31.0±0.1	296±212
Nutrients	8.31±0.07	18.5±0.1	31.0±0.1	343±163
CO_2	7.39±0.03	18.6 ± 0.1	31.0±0.1	2340±92
CO ₂ /Nutrients	7.40 ± 0.02	18.7 ± 0.1	31.0±0.1	2030±457
Early Septembe	er			
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.20±0.05	18.6±0.1	31.4±0.1	310±201
Nutrients	8.24±0.06	18.6±0.1	31.5±0.1	306±212
CO_2	7.37±0.01	18.7±0.1	31.4±0.1	2570±26
CO ₂ /Nutrients	7.41±0.02	18.6±0.1	31.3±0.1	1640±220
Late September				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.30±0.08	18.6±0.1	32.1±0.1	317±275
Nutrients	8.26±0.07	18.6±0.1	32.1±0.1	316±276
CO_2	7.33±0.01	18.8±0.1	32.1±0.1	2220±70
CO ₂ /Nutrients	7.34±0.02	18.7±0.1	32.1±0.1	2210±64

Early October				
Treatment	reatment pH Temperat		Salinity	pCO ₂
Control	8.20±0.06	18.3±0.6	25.4±3.4	324±224
Nutrients	8.21±0.06	19.0±0.1	25.7±3.7	303±223
CO_2	7.33 ± 0.01	19.1±0.1	27.2±2.4	2770±391
CO ₂ /Nutrients	7.34 ± 0.01	19.1±0.1	26.5±3.5	2610±674
Late October				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	Control 8.11±0.05 17.8±0.2		28.7±0.2	350±215
Nutrients	8.12±0.05	17.8±0.2	28.9 ± 0.8	478±219
CO_2	7.31±0.01	17.9±0.2	28.5 ± 0.1	2330±78
CO ₂ /Nutrients	7.32 ± 0.01	17.9±0.2	29.1±0.5	2380±116
November				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.22±0.06	17.8±0.1	26.1±0.3	334±147
Nutrients	8.28 ± 0.07	17.7±0.1	26.6±0.1	307±151
CO_2	7.37 ± 0.02	18.0 ± 0.1	27.4 ± 0.1	2460 ± 205
CO ₂ /Nutrients	7.35 ± 0.01	18.0 ± 0.1	27.3±0.2	2340±107

Ulva

June				
Treatment	pН	Temperature	Salinity	
Control	8.37±0.08	18.7±0.1	31.1±0.1	-
Nutrients	8.42 ± 0.09	18.7±0.1	31.1±0.1	
CO_2	7.48 ± 0.02	18.7±0.1	31.1±0.1	
CO ₂ /Nutrients	7.46 ± 0.01	18.7 ± 0.1	31.1±0.1	
July				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.23±0.05	18.7±0.1	30.8±0.8	385±142
Nutrients	8.59±0.12	18.8 ± 0.1	30.8 ± 0.8	271±256
CO_2	7.40 ± 0.02	18.7±0.1	30.7±0.7	3080±132
CO ₂ /Nutrients	7.45 ± 0.03	18.7±0.1	30.8±0.8	2910±300

August				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.27±0.03	18.5±0.1	31.0±0.1	283±141
Nutrients	8.35±0.06	18.4±0.1	31.0±0.1	321±119
CO_2	7.39 ± 0.02	18.6±0.1	31.0±0.1	2110±257
CO ₂ /Nutrients	7.41±0.02	18.8±0.1	31.0±0.1	2130±446
Early Septembe	er			
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.29±0.05	18.6±0.1	31.4±0.2	310±187
Nutrients	8.44±0.12	18.6±0.1	31.5±0.1	305±227
CO_2	7.38 ± 0.02	18.7±0.1	31.4±0.1	2570±291
CO ₂ /Nutrients	7.50±0.05	18.6±0.1	31.3±0.3	1635±981
Late September				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.37±0.08	18.6±0.1	32.1±0.1	317±275
Nutrients	8.40±0.09	18.6±0.1	32.1±0.1	316±276
CO_2	7.33±0.02	18.7±0.1	32.1±0.1	2220±69
CO ₂ /Nutrients	7.38±0.03	18.7±0.1	32.1±0.1	2210±64
Early October				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.25±0.06	19.0±0.1	25.4±3.4	324±227
Nutrients	8.22±0.05	18.9±0.1	25.7±3.7	303±181
CO_2	7.32±0.01	19.1±0.1	27.2±1.8	2770±306
CO ₂ /Nutrients	7.32±0.01	19.0±0.1	26.5±2.9	2610±401
Late October				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.17±0.04	17.8±0.2	28.7±0.7	350±207
Nutrients	8.09±0.03	17.9±0.2	28.9±0.2	478±59
CO_2	7.30±0.01	17.9±0.2	28.5±0.5	2330±70
CO ₂ /Nutrients	7.29±0.01	17.9±0.2	29.1±0.7	2380±29
November				
Treatment	pН	Temperature	Salinity	pCO ₂
Control	8.21±0.04	17.7±0.1	26.1±0.3	334±151
Nutrients	8.27±0.06	17.8±0.1	26.6±0.2	307±178
CO_2	7.34±0.02	17.8±0.1	27.4±0.1	2460±2
CO ₂ /Nutrients	7.38 ± 0.02	18.0 ± 0.1	27.3±0.1	2340±122

S2 Tables: Statistical analyses of variance for laboratory and *in situ* experiments (June through November 2014) for *Gracilaria* and *Ulva*.

Tł	hree-way a	analv	sis of	variance	for	Gracilaria	growth fo	r June	through	November	experiments
	mee may e	anarys	515 01	variance	101	01 401141 14	Sionen 10	Julie	unougn		emperimento

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.0385	0.0385	77.274	< 0.001
Nutrients	1	0.000486	0.000486	0.974	0.328
Time	7	0.0921	0.0132	26.367	< 0.001
CO ₂ x Nutrients	1	0.000204	0.000204	0.409	0.525
CO ₂ x Time	7	0.0168	0.0024	4.807	< 0.001
Nutrients x Time	7	0.00388	0.000554	1.111	0.368
CO ₂ x Nutrients x Time	7	0.00142	0.000202	0.406	0.895
Residual	60	0.0299	0.000499		
Total	91	0.184	0.00203		

Three-way analysis of variance for Ulva growth for June through November experiments

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.0469	0.0469	17.413	< 0.001
Nutrients	1	0.00887	0.00887	3.295	0.075
Time	7	0.239	0.0342	12.704	< 0.001
CO ₂ x Nutrients	1	0.00386	0.00386	1.432	0.236
CO ₂ x Time	7	0.109	0.0156	5.805	< 0.001
Nutrients x Time	7	0.077	0.011	4.085	0.001
CO ₂ x Nutrients x Time	7	0.0228	0.00326	1.21	0.312
Residual	57	0.153	0.00269		
Total	88	0.659	0.00748		

Two-way analysis of variance for Gracilaria growth under control and in situ conditions

Source of Variation	DF	SS	MS	F	Р
Location	1	0.00158	0.00158	2.844	0.104
Time	7	0.00507	0.00072	1.303	0.288
Location x Time	7	0.0208	0.00297	5.347	< 0.001
Residual	26	0.0144	0.00056		
Total	41	0.0427	0.00104		

Source of Variation	DF	SS	MS	F	Р
Location	1	0.00068	0.00068	0.35	0.559
Time	7	0.203	0.029	14.847	< 0.001
Location x Time	7	0.252	0.0359	18.398	< 0.001
Residual	31	0.0606	0.00195		
Total	46	0.519	0.0113		

Two-way analysis of variance for *Ulva* growth under control and *in situ* conditions

Three-way analysis of variance of the tissue nitrogen for *Gracilaria* for June through November experiments

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	2.4E-06	2.4E-06	0.199	0.658
Nutrients	1	0.00011	0.00011	9.328	0.004
Time	5	0.00113	0.00023	18.989	< 0.001
CO ₂ x Nutrients	1	2.7E-06	2.7E-06	0.229	0.634
CO ₂ x Time	5	7.5E-05	1.5E-05	1.26	0.297
Nutrients x Time	5	5.8E-05	1.2E-05	0.97	0.446
CO ₂ x Nutrients x Time	5	4.1E-05	8.2E-06	0.694	0.63
Residual	48	0.00057	1.2E-05		
Total	71	0.00198	2.8E-05		

Three-way analysis of variance of the tissue carbon for *Gracilaria* for June through November experiments

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.00056	0.00056	1.103	0.299
Nutrients	1	0.00168	0.00168	3.334	0.074
Time	5	0.0182	0.00363	7.183	< 0.001
CO ₂ x Nutrients	1	0.00183	0.00183	3.621	0.063
CO ₂ x Time	5	0.00296	0.00059	1.171	0.337
Nutrients x Time	5	0.00247	0.0005	0.978	0.441
CO ₂ x Nutrients x Time	5	0.00836	0.00167	3.308	0.012
Residual	48	0.0243	0.00051		
Total	71	0.0603	0.00085		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	1.841	1.841	1.618	0.209
Nutrients	1	45.616	45.616	40.098	< 0.001
Time	5	177.656	35.531	31.233	< 0.001
CO ₂ x Nutrients	1	0.796	0.796	0.7	0.407
CO ₂ x Time	5	3.425	0.685	0.602	0.698
Nutrients x Time	5	32.098	6.42	5.643	< 0.001
CO ₂ x Nutrients x Time	5	2.763	0.553	0.486	0.785
Residual	48	54.606	1.138		
Total	71	318.799	4.49		

Three-way analysis of variance of the tissue C:N for *Gracilaria* for June through November experiments

Three-way analysis of variance of the tissue nitrogen for *Ulva* for June through November experiments

Source of Variation	DF	SS	MS	F	Р
CO_2	1	1.9E-06	1.9E-06	0.22	0.642
Nutrients	1	0.00018	0.00018	20.333	< 0.001
Time	5	0.00097	0.0002	22.413	< 0.001
CO ₂ x Nutrients	1	4.7E-07	4.7E-07	0.054	0.817
CO ₂ x Time	5	1.8E-05	3.6E-06	0.414	0.837
Nutrients x Time	5	0.00053	0.00011	12.147	< 0.001
CO ₂ x Nutrients x Time	5	1.4E-05	2.8E-06	0.317	0.9
Residual	44	0.00038	8.7E-06		
Total	67	0.00214	3.2E-05		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	7.7E-05	7.7E-05	0.173	0.68
Nutrients	1	0.00285	0.00285	6.394	0.015
Time	5	0.0161	0.00321	7.201	< 0.001
CO ₂ x Nutrients	1	3.4E-07	3.4E-07	0.00077	0.978
CO ₂ x Time	5	0.00102	0.0002	0.455	0.807
Nutrients x Time	5	0.0026	0.00052	1.164	0.342
CO ₂ x Nutrients x Time	5	0.00042	8.4E-05	0.188	0.966
Residual	44	0.0196	0.00045		
Total	67	0.0425	0.00063		

Three-way analysis of variance of the tissue carbon for *Ulva* for June through November experiments

S3 Tables: Tissue δ^{13} C content (‰) of dry tissue samples of *Gracilaria* and *Ulva* for August through November experiments. Values represent means ± SE. *Gracilaria*

Treatment	August	Early September	Early October	November
Control	-13.32±1.29	-10.63±0.16	-13.22±0.47	-13.82±0.61
Nutrients	-12.32±0.49	-11.81±0.51	-13.19±0.44	-13.42±0.97
CO_2	-18.21±0.79	-21.09 ± 2.30	-18.08 ± 1.05	-27.35±2.61
CO ₂ /Nutrients	-15.26±2.24	-18.58 ± 2.27	-18.71 ± 1.40	-25.47±1.64

Ulva

Treatment	August	Early September	November
Control	-6.57±1.09	-6.70±1.16	-11.10±0.34
Nutrients	-4.64 ± 0.83	-3.87±0.21	-8.36 ± 0.39
CO_2	-24.15±0.73	-27.67±1.75	-26.02 ± 0.82
CO ₂ /Nutrients	-19.02 ± 1.24	-23.29±1.34	-27.46±1.32

Source of Variation	DF	SS	MS	F	Р
CO_2	1	4.052	4.052	0.303	0.585
Nutrients	1	312.069	312.069	23.321	< 0.001
Time	5	1803.45	360.689	26.954	< 0.001
CO ₂ x Nutrients	1	1.895	1.895	0.142	0.709
CO ₂ x Time	5	11.709	2.342	0.175	0.971
Nutrients x Time	5	931.409	186.282	13.921	< 0.001
CO ₂ x Nutrients x Time	5	25.172	5.034	0.376	0.862
Residual	44	588.79	13.382		
Total	67	3754.06	56.031		

Three-way analysis of variance of the tissue C:N for *Ulva* for June through November experiments

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Gracilaria* for August through November experiments

Source of Variation	DF	SS	MS	F	Р
CO_2	1	755.986	755.986	166.194	< 0.001
Nutrients	1	1.128	1.128	0.248	0.622
Time	3	164.397	54.799	12.047	< 0.001
CO ₂ x Nutrients	1	0.731	0.731	0.161	0.691
CO ₂ x Time	3	123.895	41.298	9.079	< 0.001
Nutrients x Time	3	5.598	1.866	0.41	0.747
CO ₂ x Nutrients x Time	3	2.675	0.892	0.196	0.898
Residual	30	136.465	4.549		
Total	45	1229.61	27.325		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	2828.64	2828.64	878.483	< 0.001
Nutrients	1	60.71	60.71	18.855	< 0.001
Time	2	131.475	65.737	20.416	< 0.001
CO ₂ x Nutrients	1	0.0851	0.0851	0.0264	0.872
CO ₂ x Time	2	28.94	14.47	4.494	0.022
Nutrients x Time	2	16.984	8.492	2.637	0.092
CO ₂ x Nutrients x Time	2	22.594	11.297	3.508	0.046
Residual	24	77.278	3.22		
Total	35	3166.71	90.477		

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Ulva* for the August through November experiments

One-way ANOVA of the δ^{13} C content of *Gracilaria* exposed elevated CO₂ conditions compared with the δ^{13} C signature expected from the exclusive use of CO₂ or the exclusive use of HCO₃⁻ (Fig 4). Tukey tests indicated each group was significantly different from each other.

Source of Variation	DF	SS	MS	F	Р
Between Groups	2	2124.84	1062.42	119.986	< 0.001
Residual	27	239.072	8.855		
Total	29	2363.91			

_

One-way ANOVA of the δ^{13} C content of *Ulva* exposed elevated CO₂ conditions compared with the δ^{13} C signature expected from the exclusive use of CO₂ or the exclusive use of HCO₃⁻ (Fig 4). Tukey tests indicated each group was significantly different from each other.

Source of Variation	DF	SS	MS	F	Р
Between Groups	2	1210.59	605.296	47.185	< 0.001
Residual	33	423.331	12.828		
Total	35	1633.92			

S4 Tables: Tissue nitrogen content (g N per g dry tissue), tissue carbon content (g N per g dry tissue), and tissue C:N of dry tissue samples of *Gracilaria* and *Ulva* for August through November experiments. Values represent means \pm SE.

Gracilaria

Tissue nitrogen content

Traatmont	atmont August	Early	Late	Early	Late	November
Treatment	August	September	September	October	October	November
Control	0.021 ± 0.002	0.027 ± 0.002	0.031 ± 0.004	0.033 ± 0.001	0.035 ± 0.002	0.032 ± 0.001
Nutrients	0.021 ± 0.001	0.033 ± 0.001	0.033 ± 0.002	$0.034{\pm}0.001$	0.036 ± 0.001	0.035 ± 0.001
CO_2	0.021 ± 0.004	0.028 ± 0.001	0.031 ± 0.004	$0.034{\pm}0.001$	0.035 ± 0.002	0.027 ± 0.002
CO ₂ /Nutrients	0.027 ± 0.002	0.031 ± 0.001	$0.034{\pm}0.001$	0.033 ± 0.001	$0.034{\pm}0.001$	0.032 ± 0.002

Tissue carbon content

Trootmont August	Early	Late	Early	Late	November	
Treatment	August	September	September	October	October	November
Control	0.308 ± 0.022	0.315 ± 0.009	0.293 ± 0.019	0.291 ± 0.001	0.311 ± 0.017	0.303±0.006
Nutrients	0.225 ± 0.015	0.321 ± 0.015	0.263 ± 0.008	0.298 ± 0.009	0.317 ± 0.015	0.278 ± 0.008
CO_2	0.280 ± 0.022	0.330 ± 0.001	$0.284{\pm}0.013$	0.322 ± 0.008	0.303 ± 0.003	0.275 ± 0.014
CO ₂ /Nutrients	0.298 ± 0.014	0.316 ± 0.017	0.292 ± 0.009	$0.302{\pm}0.011$	$0.310{\pm}0.005$	0.278±0.016

Tissue C:N

Traatmont	August	Early	Late	Early	Late	November
Treatment	August	September	September	October	October	November
Control	17.2±0.3	13.6±0.6	11.1 ± 0.8	10.2±0.1	10.5 ± 1.0	11.1±0.2
Nutrients	12.3±0.2	11.2 ± 0.5	9.3±0.3	10.3±0.5	10.4 ± 0.5	9.4±0.3
CO_2	15.9±1.6	14.0 ± 0.5	11.1±0.9	11.1±0.6	10.2 ± 0.5	12.1±0.6
CO ₂ /Nutrients	12.8±0.6	12.1±0.5	10.0±0.4	10.5 ± 0.1	10.5 ± 0.1	10.1±0.6

Ulva

Tissue nitrogen content

Treatment August	Early	Late	Early	Late	November	
Treatment	August	September	September	October	October	November
Control	0.012 ± 0.001	0.011 ± 0.001	0.015 ± 0.001	$0.024{\pm}0.003$	0.027 ± 0.001	0.023 ± 0.001
Nutrients	0.026 ± 0.001	0.018 ± 0.003	$0.018 {\pm} 0.001$	0.024 ± 0.003	0.025 ± 0.001	0.023 ± 0.001
CO_2	0.012 ± 0.001	0.012 ± 0.003	0.019 ± 0.001	$0.024{\pm}0.001$	0.025 ± 0.001	0.024 ± 0.002
CO ₂ /Nutrients	0.027 ± 0.002	0.018 ± 0.001	0.019 ± 0.003	0.025 ± 0.001	$0.024{\pm}0.001$	0.022 ± 0.001

Tissue carbon content

Treatment August	Early	Late	Early	Late	November	
Treatment	August	September	September	October	October	November
Control	0.302 ± 0.003	0.335 ± 0.009	0.267 ± 0.003	0.295 ± 0.019	0.301 ± 0.019	0.293±0.011
Nutrients	0.335 ± 0.013	0.322 ± 0.007	0.282 ± 0.018	0.309 ± 0.013	0.320 ± 0.003	0.306 ± 0.010
CO_2	0.295 ± 0.005	0.327 ± 0.009	0.268 ± 0.034	0.306 ± 0.011	$0.286{\pm}0.011$	0.300 ± 0.010
CO ₂ /Nutrients	0.313 ± 0.017	0.321 ± 0.016	$0.282{\pm}0.011$	0.317±0.013	0.322 ± 0.004	0.304 ± 0.007

Tissue C:N

Traatmont	August	Early	Late	Early	Late	November
Traiment	August	September	September	October	October	November
Control	29.3±2.8	36.7±2.0	21.5±1.9	14.5±0.8	12.9±0.3	14.7±0.3
Nutrients	15.3±0.6	21.9±2.9	18.0 ± 0.7	15.3±1.2	15.2±0.4	15.8 ± 0.5
CO_2	29.8±3.2	35.1±6.3	16.5 ± 1.1	14.7±0.5	13.5±0.8	14.8 ± 1.4
CO ₂ /Nutrients	13.8±0.5	21.2±1.7	19.0±3.7	15.1±0.5	15.6±0.1	15.8 ± 0.4

S5 Tables: Values of pH (NBS scale), salinity (g kg⁻¹), temperature (°C), and pCO₂ (μ atm) for *Gracilaria* and *Ulva* for July through October experiments. Values represent means \pm standard deviation.

Ulva

Early July

Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.23±0.11	31.0±1.4	16.9±0.9	210±20
Ambient/Unfiltered	8.38±0.10	30.0±0.0	17.1±0.9	190±10
CO ₂ /Filtered	7.19±0.10	31.0±1.4	16.3±0.7	2790±30
CO ₂ /Unfiltered	7.32±0.03	30.5±0.7	16.7±0.9	2580±60

Late July

Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.26±0.11	32.0±0.1	15.7±0.6	220±60
Ambient/Unfiltered	8.23±0.02	32.0±0.0	16.4 ± 0.6	290±30
CO ₂ /Filtered	7.14±0.02	30.0±0.1	15.8±0.4	2760±20
CO ₂ /Unfiltered	7.21±0.02	32.0±0.0	16.5±0.2	3140±350

August				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.10±0.04	29.4±0.1	17.9±2.6	290±50
Ambient/Unfiltered	8.22±0.02	29.4±0.3	17.5±3.3	260±20
CO ₂ /Filtered	7.10±0.01	29.3±0.1	17.1±1.1	2490±260
CO ₂ /Unfiltered	7.21±0.01	29.4±0.1	17.5±1.3	2990±100
September				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.11±0.10	32.0±0.1	17.4±3.5	280±40
Ambient/Unfiltered	8.20±0.11	32.0±0.1	17.3 ± 2.4	240±60
CO ₂ /Filtered	7.11±0.10	31.0±0.1	15.0±0.4	3090±230
CO ₂ /Unfiltered	7.20±0.02	32.0±0.2	14.8 ± 0.1	2840±10
October	**	a 11 1	-	G Q
Treatment	рН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.02 ± 0.02	30.0±0.1	15.0 ± 0.7	350±30
Ambient/Unfiltered	8.10±0.02	29.9±0.0	14.0 ± 0.7	350±1
CO ₂ /Filtered	7.32 ± 0.01	30.1±0.2	14.2 ± 1.7	1890±210
CO ₂ /Unfiltered	7.38±0.03	30.0±0.0	14.0 ± 1.0	1760±180
Gracilaria				
Early July				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.19±0.15	31.5±2.1	16.1±0.6	230±10
Ambient/Unfiltered	8.35±0.10	30.0±0.1	17.8 ± 1.3	210±10
CO ₂ /Filtered	7.18±0.13	31.0±1.4	15.2±0.6	2850±160
CO ₂ /Unfiltered	7.32±0.12	30.0±0.1	15.4±0.6	2370±170
Late July			_	
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.17±0.01	32.0±0.1	15.7±0.6	270±20
Ambient/Unfiltered	8.19±0.04	32.0±0.1	15.8 ± 0.1	300±40
CO ₂ /Filtered	7.17±0.01	30.0±0.2	14.8 ± 0.1	3380±220
CO ₂ /Unfiltered	7.20±0.02	32.0±0.1	15.1±0.1	3150±10

August				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.12±0.07	29.4±0.1	17.8±2.7	280±60
Ambient/Unfiltered	8.19±0.02	29.4±0.5	17.8 ± 2.8	260±10
CO ₂ /Filtered	7.08 ± 0.02	29.3±0.2	17.0±1.3	2470 ± 240
CO ₂ /Unfiltered	7.20±0.01	29.3±0.1	17.3±1.6	3000±20
September				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.04 ± 0.04	31.5±0.2	16.6±3.8	370±20
Ambient/Unfiltered	8.16±0.02	32.0±0.2	16.7±4.1	410 ± 100
CO ₂ /Filtered	7.11±0.11	31.5±0.1	13.3±0.4	2850±10
CO ₂ /Unfiltered	7.18±0.03	32.0±0.0	15.3±0.2	2500±490
October	**	G 11 14	T	<u> </u>
Treatment	рН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.00±0.01	30.2±0.0	13.6±0.8	370±20
Ambient/Unfiltered	8.07±0.02	30.0 ± 0.1	14.5 ± 0.8	390±10
CO ₂ /Filtered	7.31±0.02	30.1±0.1	14.4 ± 0.4	1800 ± 220
CO ₂ /Unfiltered	7.39±0.01	30.0±0.0	14.2±2.5	1750±50
Gracilaria and Ulva				
Graciaria and Civa				
Early July				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.25±0.10	31.0±1.4	16.6±0.6	210±10
Ambient/Unfiltered	8.45±0.11	30.0±0.1	17.0±0.6	160 ± 10
CO ₂ /Filtered	7.18±0.12	31.5±2.1	16.3±0.8	2800 ± 60
CO ₂ /Unfiltered	7.33±0.10	30.0±0.0	16.4±0.6	2740±110
Late July			_	_
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.23±0.09	32.0±0.2	15.7±1.1	230±60
Ambient/Unfiltered	8.22±0.04	32.0±0.1	15.6±0.6	290±40
CO ₂ /Filtered	7.13±0.02	30.0±0.0	15.2±1.3	2610±10

CO₂/Unfiltered 7.22±0.01 32.0±0.1 15.6±0.8

2950±80

August				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.07±0.01	29.4±0.1	17.9±2.6	310±20
Ambient/Unfiltered	8.22±0.02	29.4±0.1	17.7±3.0	270±10
CO ₂ /Filtered	7.09±0.01	29.3±0.1	17.0±1.3	2435±190
CO ₂ /Unfiltered	7.20±0.01	29.4±0.1	17.3±1.6	3000±70
September				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.14±0.01	32.0±0.1	17.8±3.0	250±40
Ambient/Unfiltered	8.13±0.02	31.5±0.0	16.4±3.8	320±50
CO ₂ /Filtered	7.11±0.10	31.5±0.5	15.0±0.8	2890±160
CO ₂ /Unfiltered	7.19±0.03	31.5±0.1	15.5±0.1	3000±190
October				
Treatment	pН	Salinity	Temperature	pCO ₂
Ambient/Filtered	8.05±0.05	30.0±0.1	14.2±0.7	330±20
Ambient/Unfiltered	8.09±0.01	29.9±0.2	15.0±0.9	370±10
CO ₂ /Filtered	7.31±0.02	30.1±0.1	14.4±1.6	1850±290
CO ₂ /Unfiltered	7.39±0.05	29.9±0.2	14.3±2.2	1820±110

S6 Tables: Statistical analyses of variance for laboratory and *in situ* experiments (July through October 2015) for *Gracilaria* and *Ulva*.

Three-way analysis of variance for Gracilaria growth for July through October experiments

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.00731	0.00731	7.001	0.009
Filtered	1	0.000136	0.000136	0.13	0.719
Competition	1	0.000249	0.000249	0.239	0.626
CO ₂ x Filtered	1	0.000117	0.000117	0.112	0.739
CO ₂ x Competition	1	0.000126	0.000126	0.12	0.729
Filtered x Competition	1	0.000368	0.000368	0.352	0.554
CO ₂ x Filtered x Competition	1	0.000181	0.000181	0.173	0.678
Residual	128	0.134	0.00104		
Total	135	0.142	0.00105		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.0832	0.0832	17.696	< 0.001
Filtered	1	0.00881	0.00881	1.876	0.173
Competition	1	0.0413	0.0413	8.793	0.004
CO ₂ x Filtered	1	0.00218	0.00218	0.464	0.497
CO ₂ x Competition	1	0.00619	0.00619	1.316	0.253
Filtered x Competition	1	0.0112	0.0112	2.393	0.124
CO ₂ x Filtered x Competition	1	0.000885	0.000885	0.188	0.665
Residual	124	0.583	0.0047		
Total	131	0.739	0.00564		

Three-way analysis of variance for Ulva growth for July through October experiments

One-way analysis of variance for Gracilaria growth under control and in situ conditions

Source of Variation	DF	SS	MS	F	Р
Between Groups	4	0.000459	0.000115	0.0526	0.995
Residual	79	0.172	0.00218		
Total	83	0.173			

One-way analysis of variance for Ulva growth under control and in situ conditions

Source of Variation	DF	SS	MS	F	Р
Between Groups	4	0.0362	0.00905	1.979	0.106
Residual	78	0.357	0.00457		
Total	82	0.393			

Three-way analysis of variance for *Ulva* growth for the early July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.0106	0.0106	9.157	0.009
Filtered	1	0.0105	0.0105	9.069	0.009
Competition	1	0.0109	0.0109	9.43	0.008
CO ₂ x Filtered	1	0.0000119	0.0000119	0.0103	0.92
CO ₂ x Competition	1	0.00304	0.00304	2.622	0.126
Filtered x Competition	1	0.00868	0.00868	7.494	0.015
CO ₂ x Filtered x Competition	1	0.00134	0.00134	1.16	0.298
Residual	15	0.0174	0.00116		
Total	22	0.065	0.00296		

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.0933	0.0933	11.504	0.004
Filtered	1	0.122	0.122	15.017	0.001
Competition	1	0.00184	0.00184	0.227	0.64
CO ₂ x Filtered	1	0.0172	0.0172	2.12	0.165
CO ₂ x Competition	1	0.00137	0.00137	0.169	0.687
Filtered x Competition	1	0.00985	0.00985	1.215	0.287
CO ₂ x Filtered x Competition	1	0.00781	0.00781	0.963	0.341
Residual	16	0.13	0.00811		
Total	23	0.383	0.0166		

Three-way analysis of variance for *Ulva* growth for the late July experiment

Three-way analysis of variance for Ulva growth for the August experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.0115	0.0115	5.908	0.027
Filtered	1	0.00238	0.00238	1.226	0.285
Competition	1	0.0089	0.0089	4.576	0.048
CO ₂ x Filtered	1	0.000283	0.000283	0.145	0.708
CO ₂ x Competition	1	0.0000132	0.0000132	0.00679	0.935
Filtered x Competition	1	1.21E-06	1.21E-06	0.000625	0.98
CO ₂ x Filtered x Competition	1	0.00357	0.00357	1.834	0.194
Residual	16	0.0311	0.00195		
Total	23	0.0578	0.00251		

Three-way analysis of variance for Ulva growth for the September experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.0582	0.0582	12.559	0.002
Filtered	1	0.00245	0.00245	0.528	0.475
Competition	1	0.0114	0.0114	2.456	0.131
CO ₂ x Filtered	1	0.0256	0.0256	5.518	0.028
CO ₂ x Competition	1	0.00139	0.00139	0.3	0.589
Filtered x Competition	1	0.00411	0.00411	0.886	0.356
CO ₂ x Filtered x Competition	1	0.00834	0.00834	1.8	0.193
Residual	23	0.107	0.00464		
Total	30	0.223	0.00742		

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.00109	0.00109	0.461	0.503
Filtered	1	0.00423	0.00423	1.786	0.194
Competition	1	0.00348	0.00348	1.469	0.237
CO ₂ x Filtered	1	0.000394	0.000394	0.167	0.687
CO ₂ x Competition	1	0.0000488	0.0000488	0.0206	0.887
Filtered x Competition	1	0.000529	0.000529	0.224	0.641
CO ₂ x Filtered x Competition	1	0.000128	0.000128	0.0539	0.818
Residual	24	0.0568	0.00237		
Total	31	0.0667	0.00215		

Three-way analysis of variance for Ulva growth for the October experiment

Three-way analysis of variance for Gracilaria growth for the early July experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.000941	0.000941	1.304	0.27
Filtered	1	0.00555	0.00555	7.697	0.014
Competition	1	0.000154	0.000154	0.213	0.651
CO ₂ x Filtered	1	0.00149	0.00149	2.065	0.17
CO ₂ x Competition	1	0.0000196	0.0000196	0.0272	0.871
Filtered x Competition	1	0.0000531	0.0000531	0.0736	0.79
CO ₂ x Filtered x Competition	1	0.00128	0.00128	1.77	0.202
Residual	16	0.0115	0.000722		
Total	23	0.021	0.000915		

Three-way analysis of variance for Gracilaria growth for the late July experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.00206	0.00206	5.088	0.039
Filtered	1	9.42E-06	9.42E-06	0.0233	0.881
Competition	1	0.000556	0.000556	1.373	0.26
CO ₂ x Filtered	1	0.000666	0.000666	1.643	0.219
CO ₂ x Competition	1	0.000525	0.000525	1.295	0.273
Filtered x Competition	1	0.0000027	0.0000027	0.00667	0.936
CO ₂ x Filtered x Competition	1	0.0000374	0.0000374	0.0924	0.765
Residual	15	0.00608	0.000405		
Total	22	0.00989	0.000449		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.000999	0.000999	5.763	0.031
Filtered	1	0.0000351	0.0000351	0.203	0.659
Competition	1	0.000141	0.000141	0.811	0.383
CO ₂ x Filtered	1	0.000114	0.000114	0.658	0.431
CO ₂ x Competition	1	0.000234	0.000234	1.351	0.265
Filtered x Competition	1	0.00131	0.00131	7.563	0.016
CO ₂ x Filtered x Competition	1	0.0000623	0.0000623	0.359	0.558
Residual	14	0.00243	0.000173		
Total	21	0.00524	0.00025		

Three-way analysis of variance for Gracilaria growth for the August experiment

Three-way analysis of variance for *Gracilaria* growth for the September experiment

DF	SS	MS	F	Р
1	0.00132	0.00132	2.466	0.129
1	0.000429	0.000429	0.798	0.381
1	0.000297	0.000297	0.553	0.464
1	0.0000624	0.0000624	0.116	0.736
1	8.93E-06	8.93E-06	0.0166	0.899
1	0.000307	0.000307	0.571	0.457
1	0.0000483	0.0000483	0.0898	0.767
24	0.0129	0.000537		
31	0.0154	0.000496		
	DF 1 1 1 1 1 1 1 1 24 31	DFSS10.0013210.00042910.00029710.000062418.93E-0610.00030710.0000483240.0129310.0154	DFSSMS10.001320.0013210.0004290.00042910.0002970.00029710.00006240.000062418.93E-068.93E-0610.0003070.00030710.00004830.0000483240.01290.000537310.01540.000496	DFSSMSF10.001320.001322.46610.0004290.0004290.79810.0002970.0002970.55310.00006240.00006240.11618.93E-068.93E-060.016610.0003070.0003070.57110.00004830.00004830.0898240.01290.00053731

Three-way analysis of variance for Gracilaria growth for the October experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	0.00257	0.00257	6.01	0.022
Filtered	1	0.000228	0.000228	0.532	0.473
Competition	1	0.00129	0.00129	3.007	0.096
CO ₂ x Filtered	1	0.000257	0.000257	0.599	0.447
CO ₂ x Competition	1	4.51E-07	4.51E-07	0.00105	0.974
Filtered x Competition	1	1.01E-07	1.01E-07	0.000236	0.988
CO ₂ x Filtered x Competition	1	2.31E-06	2.31E-06	0.0054	0.942
Residual	24	0.0103	0.000428		
Total	31	0.0146	0.000472		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.00127	0.00127	0.139	0.712
Ulva	1	0.047	0.047	5.17	0.032
Gracilaria	1	0.00542	0.00542	0.596	0.448
CO ₂ x Ulva	1	0.00513	0.00513	0.565	0.46
CO ₂ x Gracilaria	1	0.0196	0.0196	2.159	0.155
Ulva x Gracilaria	1	0.000237	0.000237	0.0261	0.873
CO ₂ x Ulva x Gracilaria	1	0.0075	0.0075	0.825	0.373
Residual	24	0.218	0.00909		
Total	31	0.304	0.00982		

Three-way analysis of variance for diatom growth for the September experiment

Three-way analysis of variance for dinoflagellate growth for the September experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.00347	0.00347	2.203	0.151
Ulva	1	0.00354	0.00354	2.246	0.147
Gracilaria	1	0.0403	0.0403	25.611	< 0.001
CO ₂ x Ulva	1	0.00154	0.00154	0.975	0.333
CO ₂ x Gracilaria	1	0.00316	0.00316	2.005	0.17
Ulva x Gracilaria	1	0.00291	0.00291	1.849	0.187
CO ₂ x Ulva x Gracilaria	1	0.0000306	0.0000306	0.0194	0.89
Residual	24	0.0378	0.00158		
Total	31	0.0928	0.00299		

One-way analysis of variance for changes in diatom abundance in elevated CO₂ treatments during the September experiment

Source of Variation	DF	SS	MS	F	Р	
Between Groups	1	20930450	20930450	44.91	< 0.001	
Residual	6	2796350	466058.33			
Total	7	23726800				

One-way analysis of variance for changes in dinoflagellate abundance in elevated CO₂ treatments during the September experiment

Source of Variation	DF	SS	MS	F	Р
Between Groups	1	2420000	2420000	10.204	0.019
Residual	6	1423000	237166.67		
Total	7	3843000			

One-way analysis of variance for changes in diatom abundance in ambient treatments during the September experiment

Source of Variation	DF	SS	MS	F	Р
Between Groups	1	7761800	7761800	12.669	0.012
Residual	6	3675950	612658.33		
Total	7	11437750			

One-way analysis of variance for changes in dinoflagellate abundance in ambient treatments during the September experiment

Source of Variation	DF	SS	MS	F	Р
Between Groups	1	11685344	11685344	17.003	0.009
Residual	5	3436341.7	687268.33		
Total	6	15121686			

One-way analysis of variance for changes in diatom abundance in elevated CO₂ treatments during the October experiment

Source of Variation	DF	SS	MS	F	Р
Between Groups	1	30186450	30186450	20.589	0.004
Residual	6	8796700	1466116.7		
Total	7	38983150			

One-way analysis of variance for changes in dinoflagellate abundance in elevated CO₂ treatments during the October experiment

Source of Variation	DF	SS	MS	F	Р
Between Groups	1	13912813	13912813	73.452	< 0.001
Residual	6	1136475	189412.5		
Total	7	15049288			

One-way analysis of variance for changes in diatom abundance in ambient treatments during the October experiment

Source of Variation	DF	SS	MS	F	Р
Between Groups	1	35490313	35490313	61.082	< 0.001
Residual	6	3486175	581029.17		
Total	7	38976488			

One-way analysis of variance for changes in dinoflagellate abundance in ambient treatments during the October experiment

Source of Variation	DF	SS	MS	F	Р
Between Groups	1	48856613	48856613	38.12	< 0.001
Residual	6	7689875	1281645.8		
Total	7	56546488			

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Ulva* for the early July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	3287.232	3287.232	217.325	< 0.001
Gracilaria	1	70.658	70.658	4.671	0.046
Filtered	1	0.06	0.06	0.00397	0.951
CO ₂ x Gracilaria	1	2.968	2.968	0.196	0.664
CO ₂ x Filtered	1	0.443	0.443	0.0293	0.866
Gracilaria x Filtered	1	121.5	121.5	8.033	0.012
CO ₂ x Gracilaria x Filtered	1	87.937	87.937	5.814	0.028
Residual	16	242.014	15.126		
Total	23	3812.812	165.774		

Three-way analysis of variance of the tissue δ^{13} C for *Ulva* for the late July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	4319.63	4319.63	359.192	< 0.001
Gracilaria	1	1.197	1.197	0.0995	0.756
Filtered	1	11.399	11.399	0.948	0.345
CO ₂ x Gracilaria	1	1.197	1.197	0.0995	0.756
CO ₂ x Filtered	1	52.747	52.747	4.386	0.053
Gracilaria x Filtered	1	1.52	1.52	0.126	0.727
CO ₂ x Gracilaria x Filtered	1	13.321	13.321	1.108	0.308
Residual	16	192.415	12.026		
Total	23	4593.426	199.714		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	2026.395	2026.395	273.867	< 0.001
Gracilaria	1	2.142	2.142	0.289	0.598
Filtered	1	75.935	75.935	10.263	0.006
CO ₂ x Gracilaria	1	1.832	1.832	0.248	0.626
CO ₂ x Filtered	1	1.744	1.744	0.236	0.634
Gracilaria x Filtered	1	4.208	4.208	0.569	0.462
CO ₂ x Gracilaria x Filtered	1	5.273	5.273	0.713	0.411
Residual	16	118.387	7.399		
Total	23	2235.917	97.214		

Three-way analysis of variance of the tissue δ^{13} C for *Ulva* for the August experiment

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Ulva* for the September experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	2195.378	2195.378	667.221	< 0.001
Gracilaria	1	9.573	9.573	2.909	0.102
Filtered	1	27.114	27.114	8.241	0.009
CO ₂ x Gracilaria	1	0.667	0.667	0.203	0.657
CO ₂ x Filtered	1	10.879	10.879	3.306	0.082
Gracilaria x Filtered	1	0.781	0.781	0.237	0.631
CO2 x Gracilaria x Filtered	1	2.813	2.813	0.855	0.365
Residual	23	75.678	3.29		
Total	30	2378.782	79.293		

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Ulva* for the October experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	3886.313	3886.313	265.278	< 0.001
Gracilaria	1	5.977	5.977	0.408	0.529
Filtered	1	1.562	1.562	0.107	0.747
CO ₂ x Gracilaria	1	11.198	11.198	0.764	0.391
CO ₂ x Filtered	1	10.615	10.615	0.725	0.403
Gracilaria x Filtered	1	23.822	23.822	1.626	0.214
CO ₂ x Gracilaria x Filtered	1	30.988	30.988	2.115	0.159
Residual	24	351.599	14.65		
Total	31	4322.075	139.422		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	2005.865	2005.865	456.536	< 0.001
Ulva	1	1.799	1.799	0.409	0.531
Filtered	1	13.039	13.039	2.968	0.104
CO ₂ x Ulva	1	11.551	11.551	2.629	0.124
CO ₂ x Filtered	1	0.746	0.746	0.17	0.686
Ulva x Filtered	1	25.523	25.523	5.809	0.028
CO ₂ x Ulva x Filtered	1	20.963	20.963	4.771	0.044
Residual	16	70.299	4.394		
Total	23	2149.783	93.469		

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Gracilaria* for the early July experiment

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Gracilaria* for the late July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	807.244	807.244	62.43	< 0.001
Ulva	1	16.187	16.187	1.252	0.28
Filtered	1	33.868	33.868	2.619	0.125
CO ₂ x Ulva	1	14.837	14.837	1.147	0.3
CO ₂ x Filtered	1	1.515	1.515	0.117	0.737
Ulva x Filtered	1	5.772	5.772	0.446	0.514
CO ₂ x Ulva x Filtered	1	4.412	4.412	0.341	0.567
Residual	16	206.885	12.93		
Total	23	1090.719	47.423		

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Gracilaria* for the August experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	307.459	307.459	266.635	< 0.001
Ulva	1	2.262	2.262	1.962	0.182
Filtered	1	2.256	2.256	1.957	0.182
CO ₂ x Ulva	1	0.00217	0.00217	0.00188	0.966
CO ₂ x Filtered	1	7.398	7.398	6.416	0.023
Ulva x Filtered	1	0.487	0.487	0.423	0.525
CO ₂ x Ulva x Filtered	1	9.983	9.983	8.657	0.01
Residual	15	17.297	1.153		
Total	22	360.766	16.398		

DF	SS	MS	F	Р
1	260.833	260.833	266.558	< 0.001
1	0.0242	0.0242	0.0247	0.876
1	0.324	0.324	0.331	0.57
1	0.461	0.461	0.471	0.499
1	0.019	0.019	0.0194	0.89
1	0.183	0.183	0.187	0.669
1	0.316	0.316	0.323	0.575
24	23.485	0.979		
31	285.644	9.214		
	DF 1 1 1 1 1 1 1 1 24 31	DFSS1260.83310.024210.32410.46110.01910.18310.3162423.48531285.644	DFSSMS1260.833260.83310.02420.024210.3240.32410.4610.46110.0190.01910.1830.18310.3160.3162423.4850.97931285.6449.214	DFSSMSF1260.833260.833266.55810.02420.02420.024710.3240.3240.33110.4610.4610.47110.0190.0190.019410.1830.1830.18710.3160.3160.3232423.4850.9793131285.6449.214

Three-way analysis of variance of the tissue $\delta^{13}C$ for *Gracilaria* for the September experiment

Three-way analysis of variance of the tissue δ^{13} C for *Gracilaria* for the October experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	885.354	885.354	399.976	< 0.001
Ulva	1	0.329	0.329	0.148	0.704
Filtered	1	2.032	2.032	0.918	0.348
CO ₂ x Ulva	1	2.864	2.864	1.294	0.267
CO ₂ x Filtered	1	0.833	0.833	0.376	0.546
Ulva x Filtered	1	9.388	9.388	4.241	0.051
CO ₂ x Ulva x Filtered	1	6.562	6.562	2.965	0.099
Residual	23	50.911	2.214		
Total	30	973.57	32.452		

Three-way analysis of variance of the tissue carbon for Gracilaria for the early July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	4.78E-05	4.78E-05	0.102	0.753
Ulva	1	9.93E-05	9.93E-05	0.213	0.651
Filtered	1	9.98E-05	9.98E-05	0.214	0.65
CO ₂ x Ulva	1	8.59E-05	8.59E-05	0.184	0.674
CO ₂ x Filtered	1	0.000302	0.000302	0.647	0.433
Ulva x Filtered	1	0.00264	0.00264	5.648	0.03
CO ₂ x Ulva x Filtered	1	0.000032	0.000032	0.0685	0.797
Residual	16	0.00747	0.000467		
Total	23	0.0108	0.000468		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.00144	0.00144	5.247	0.036
Ulva	1	1.33E-05	1.33E-05	0.0486	0.828
Filtered	1	0.0026	0.0026	9.506	0.007
CO ₂ x Ulva	1	0.00129	0.00129	4.722	0.045
CO ₂ x Filtered	1	0.000171	0.000171	0.625	0.441
Ulva x Filtered	1	0.0019	0.0019	6.943	0.018
CO ₂ x Ulva x Filtered	1	1.53E-05	1.53E-05	0.0559	0.816
Residual	16	0.00438	0.000274		
Total	23	0.0118	0.000513		

Three-way analysis of variance of the tissue carbon for Gracilaria for the late July experiment

Three-way analysis of variance of the tissue carbon for Gracilaria for the August experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.00139	0.00139	2.438	0.138
Ulva	1	0.000205	0.000205	0.36	0.557
Filtered	1	0.000139	0.000139	0.244	0.628
CO ₂ x Ulva	1	9.57E-06	9.57E-06	0.0167	0.899
CO ₂ x Filtered	1	0.000235	0.000235	0.41	0.531
Ulva x Filtered	1	0.00102	0.00102	1.788	0.2
CO ₂ x Ulva x Filtered	1	3.93E-08	3.93E-08	6.89E-05	0.993
Residual	16	0.00914	0.000571		
Total	23	0.0121	0.000528		

Three-way analysis of variance of the tissue carbon for Gracilaria for the September experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.00279	0.00279	3.026	0.095
Ulva	1	1.33E-05	1.33E-05	0.0144	0.905
Filtered	1	8.49E-06	8.49E-06	0.00921	0.924
CO ₂ x Ulva	1	0.000177	0.000177	0.193	0.665
CO ₂ x Filtered	1	9.27E-05	9.27E-05	0.101	0.754
Ulva x Filtered	1	1.39E-09	1.39E-09	1.51E-06	0.999
CO ₂ x Ulva x Filtered	1	0.000142	0.000142	0.154	0.698
Residual	24	0.0221	0.000921		
Total	31	0.0253	0.000817		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.000717	0.000717	1.115	0.302
Ulva	1	3.35E-05	3.35E-05	0.0521	0.821
Filtered	1	0.00121	0.00121	1.878	0.184
CO ₂ x Ulva	1	3.29E-06	3.29E-06	0.00511	0.944
CO ₂ x Filtered	1	0.000663	0.000663	1.031	0.32
Ulva x Filtered	1	5.55E-05	5.55E-05	0.0863	0.772
CO ₂ x Ulva x Filtered	1	0.00232	0.00232	3.603	0.07
Residual	23	0.0148	0.000643		
Total	30	0.0198	0.000661		

Three-way analysis of variance of the tissue carbon for Gracilaria for the October experiment

Three-way analysis of variance of the tissue nitrogen for Gracilaria for the early July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	2.22E-05	2.22E-05	1.469	0.243
Ulva	1	6.4E-07	6.4E-07	0.0424	0.839
Filtered	1	0.000215	0.000215	14.231	0.002
CO ₂ x Ulva	1	2.07E-05	2.07E-05	1.372	0.259
CO ₂ x Filtered	1	4.88E-05	4.88E-05	3.236	0.091
Ulva x Filtered	1	0.000136	0.000136	9.014	0.008
CO ₂ x Ulva x Filtered	1	2.57E-05	2.57E-05	1.705	0.21
Residual	16	0.000241	1.51E-05		
Total	23	0.00071	3.09E-05		

Three-way analysis of variance of the tissue nitrogen for Gracilaria for the late July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	1.82E-05	1.82E-05	3.86	0.067
Ulva	1	1.51E-05	1.51E-05	3.197	0.093
Filtered	1	0.000191	0.000191	40.666	< 0.001
CO ₂ x Ulva	1	6.45E-05	6.45E-05	13.706	0.002
CO ₂ x Filtered	1	1.53E-06	1.53E-06	0.324	0.577
Ulva x Filtered	1	2.17E-09	2.17E-09	0.000462	0.983
CO ₂ x Ulva x Filtered	1	9.2E-06	9.2E-06	1.953	0.181
Residual	16	7.53E-05	4.71E-06		
Total	23	0.000375	1.63E-05		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	2.43E-08	2.43E-08	0.00305	0.957
Ulva	1	4.39E-05	0.0000439	5.512	0.032
Filtered	1	2.11E-05	0.0000211	2.648	0.123
CO ₂ x Ulva	1	3.68E-06	3.68E-06	0.461	0.507
CO ₂ x Filtered	1	4.6E-06	0.0000046	0.577	0.459
Ulva x Filtered	1	4.29E-09	4.29E-09	0.000538	0.982
CO ₂ x Ulva x Filtered	1	7.11E-06	7.11E-06	0.892	0.359
Residual	16	0.000128	7.97E-06		
Total	23	0.000208	9.05E-06		

Three-way analysis of variance of the tissue nitrogen for Gracilaria for the August experiment

Three-way analysis of variance of the tissue nitrogen for *Gracilaria* for the September experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.000022	0.000022	6.983	0.014
Ulva	1	3.59E-05	3.59E-05	11.416	0.002
Filtered	1	0.000101	0.000101	31.959	< 0.001
CO ₂ x Ulva	1	8.3E-06	8.3E-06	2.635	0.118
CO ₂ x Filtered	1	0.000018	0.000018	5.714	0.025
Ulva x Filtered	1	1.08E-07	1.08E-07	0.0344	0.854
CO ₂ x Ulva x Filtered	1	7.43E-08	7.43E-08	0.0236	0.879
Residual	24	7.56E-05	3.15E-06		
Total	31	0.000261	8.41E-06		

Three-way analysis of variance of the tissue nitrogen for Gracilaria for the October experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	1.17E-05	0.0000117	1.283	0.269
Ulva	1	0.000131	0.000131	14.353	< 0.001
Filtered	1	0.000091	0.000091	9.985	0.004
CO ₂ x Ulva	1	1.87E-05	0.0000187	2.046	0.166
CO ₂ x Filtered	1	2.13E-06	2.13E-06	0.233	0.634
Ulva x Filtered	1	2.17E-05	0.0000217	2.38	0.137
CO ₂ x Ulva x Filtered	1	7.12E-06	7.12E-06	0.781	0.386
Residual	23	0.00021	9.11E-06		
Total	30	0.000479	0.000016		
Source of Variation	DF	SS	MS	F	Р
-----------------------------------	----	---------	---------	-------	---------
CO_2	1	57.836	57.836	3.625	0.075
Ulva	1	17.293	17.293	1.084	0.313
Filtered	1	533.096	533.096	33.41	< 0.001
CO ₂ x Ulva	1	17.141	17.141	1.074	0.315
CO ₂ x Filtered	1	68.366	68.366	4.285	0.055
Ulva x Filtered	1	97.61	97.61	6.117	0.025
CO ₂ x Ulva x Filtered	1	47.512	47.512	2.978	0.104
Residual	16	255.296	15.956		
Total	23	1094.15	47.572		

Three-way analysis of variance of the tissue C:N for Gracilaria for the early July experiment

Three-way analysis of variance of the tissue C:N for Gracilaria for the late July experiment

Source of Variation	DF	SS	MS	F	Р
CO ₂	1	22.778	22.778	2.254	0.153
Ulva	1	32.128	32.128	3.179	0.094
Filtered	1	441.833	441.833	43.718	< 0.001
CO ₂ x Ulva	1	68.615	68.615	6.789	0.019
CO ₂ x Filtered	1	18.677	18.677	1.848	0.193
Ulva x Filtered	1	0.0995	0.0995	0.00985	0.922
CO ₂ x Ulva x Filtered	1	0.019	0.019	0.00188	0.966
Residual	16	161.705	10.107		
Total	23	745.855	32.428		

Three-way analysis of variance of the tissue C:N for Gracilaria for the August experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	3.495	3.495	0.356	0.559
Ulva	1	52.291	52.291	5.334	0.035
Filtered	1	6.656	6.656	0.679	0.422
CO ₂ x Ulva	1	6.612	6.612	0.674	0.424
CO ₂ x Filtered	1	3.627	3.627	0.37	0.552
Ulva x Filtered	1	1.194	1.194	0.122	0.732
CO ₂ x Ulva x Filtered	1	13.916	13.916	1.42	0.251
Residual	16	156.855	9.803		
Total	23	244.644	10.637		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	66.139	66.139	12.563	0.002
Ulva	1	28.729	28.729	5.457	0.029
Filtered	1	74.106	74.106	14.077	0.001
CO ₂ x Ulva	1	0.578	0.578	0.11	0.743
CO ₂ x Filtered	1	11.299	11.299	2.146	0.156
Ulva x Filtered	1	0.126	0.126	0.0239	0.878
CO ₂ x Ulva x Filtered	1	3.086	3.086	0.586	0.452
Residual	23	121.084	5.265		
Total	30	312.539	10.418		

Three-way analysis of variance of the tissue C:N for Gracilaria for the September experiment

Three-way analysis of variance of the tissue C:N for *Gracilaria* for the October experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	31.069	31.069	5.109	0.034
Ulva	1	104.004	104.004	17.104	< 0.001
Filtered	1	28.785	28.785	4.734	0.04
CO ₂ x Ulva	1	24.465	24.465	4.023	0.057
CO ₂ x Filtered	1	0.0994	0.0994	0.0163	0.899
Ulva x Filtered	1	7.524	7.524	1.237	0.277
CO ₂ x Ulva x Filtered	1	0.677	0.677	0.111	0.742
Residual	23	139.857	6.081		
Total	30	334.766	11.159		

Three-way analysis of variance of the tissue carbon for Ulva for the early July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.000155	0.000155	0.903	0.356
Gracilaria	1	2.99E-05	2.99E-05	0.174	0.682
Filtered	1	0.000084	0.000084	0.49	0.494
CO ₂ x Gracilaria	1	0.000683	0.000683	3.984	0.063
CO ₂ x Filtered	1	0.000011	0.000011	0.0639	0.804
Gracilaria x Filtered	1	0.00131	0.00131	7.617	0.014
CO2 x Gracilaria x Filtered	1	0.00053	0.00053	3.088	0.098
Residual	16	0.00274	0.000172		
Total	23	0.00554	0.000241		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.000687	0.000687	0.584	0.456
				6.97E-	
Gracilaria	1	8.2E-08	8.2E-08	05	0.993
Filtered	1	0.00111	0.00111	0.942	0.346
CO ₂ x Gracilaria	1	0.000543	0.000543	0.462	0.506
CO ₂ x Filtered	1	0.00162	0.00162	1.377	0.258
Gracilaria x Filtered	1	0.0023	0.0023	1.955	0.181
CO ₂ x Gracilaria x Filtered	1	0.000757	0.000757	0.644	0.434
Residual	16	0.0188	0.00118		
Total	23	0.0258	0.00112		

Three-way analysis of variance of the tissue carbon for Ulva for the late July experiment

Three-way analysis of variance of the tissue carbon for Ulva for the August experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.000125	0.000125	0.41	0.531
Gracilaria	1	0.000295	0.000295	0.965	0.341
Filtered	1	0.000138	0.000138	0.451	0.512
CO ₂ x Gracilaria	1	9.52E-05	9.52E-05	0.312	0.584
CO ₂ x Filtered	1	0.000059	0.000059	0.193	0.666
Gracilaria x Filtered	1	5.53E-05	5.53E-05	0.181	0.676
CO ₂ x Gracilaria x Filtered	1	6.23E-08	6.23E-08	0.000204	0.989
Residual	16	0.00488	0.000305		
Total	23	0.00565	0.000246		

Three-way analysis of variance of the tissue carbon for Ulva for the September experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.000678	0.000678	1.555	0.225
Gracilaria	1	0.00049	0.00049	1.124	0.3
Filtered	1	8.16E-05	8.16E-05	0.187	0.669
CO ₂ x Gracilaria	1	0.00114	0.00114	2.614	0.12
CO ₂ x Filtered	1	0.00454	0.00454	10.412	0.004
Gracilaria x Filtered	1	0.000552	0.000552	1.267	0.272
CO ₂ x Gracilaria x Filtered	1	4E-08	4E-08	9.18E-05	0.992
Residual	23	0.01	0.000436		
Total	30	0.0178	0.000594		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	0.00176	0.00176	2.109	0.159
Gracilaria	1	1.65E-05	1.65E-05	0.0198	0.889
Filtered	1	4.8E-07	4.8E-07	0.000575	0.981
CO ₂ x Gracilaria	1	0.000157	0.000157	0.188	0.668
CO ₂ x Filtered	1	0.000204	0.000204	0.244	0.626
Gracilaria x Filtered	1	0.000031	0.000031	0.0372	0.849
CO ₂ x Gracilaria x Filtered	1	0.000433	0.000433	0.518	0.479
Residual	24	0.02	0.000835		
Total	31	0.0226	0.00073		

Three-way analysis of variance of the tissue carbon for Ulva for the October experiment

Three-way analysis of variance of the tissue nitrogen for *Ulva* for the early July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	3.17E-06	3.17E-06	1.414	0.252
Gracilaria	1	5.26E-06	5.26E-06	2.343	0.145
Filtered	1	0.000191	0.000191	85.053	< 0.001
CO ₂ x Gracilaria	1	1.69E-06	1.69E-06	0.751	0.399
CO ₂ x Filtered	1	6.17E-08	6.17E-08	0.0275	0.87
Gracilaria x Filtered	1	1.18E-05	1.18E-05	5.254	0.036
CO2 x Gracilaria x Filtered	1	7.32E-07	7.32E-07	0.326	0.576
Residual	16	3.59E-05	2.25E-06		
Total	23	0.00025	1.09E-05		

Three-way analysis of variance of the tissue nitrogen for Ulva for the late July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	2.38E-06	2.38E-06	0.216	0.648
Gracilaria	1	8.07E-07	8.07E-07	0.0733	0.79
Filtered	1	6.64E-05	0.0000664	6.021	0.026
CO ₂ x Gracilaria	1	1.64E-06	1.64E-06	0.148	0.705
CO ₂ x Filtered	1	3.5E-07	3.5E-07	0.0318	0.861
Gracilaria x Filtered	1	4.31E-06	4.31E-06	0.391	0.54
CO ₂ x Gracilaria x Filtered	1	2.33E-06	2.33E-06	0.211	0.652
Residual	16	0.000176	0.000011		
Total	23	0.000254	0.0000111		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	5.27E-06	5.27E-06	0.658	0.429
Gracilaria	1	1.67E-05	0.0000167	2.091	0.167
Filtered	1	8.51E-05	0.0000851	10.634	0.005
CO ₂ x Gracilaria	1	2.8E-06	0.0000028	0.349	0.563
CO ₂ x Filtered	1	2.79E-06	2.79E-06	0.349	0.563
Gracilaria x Filtered	1	5.27E-05	0.0000527	6.585	0.021
CO2 x Gracilaria x Filtered	1	3.42E-06	3.42E-06	0.427	0.523
Residual	16	0.000128	8.01E-06		
Total	23	0.000297	0.0000129		

Three-way analysis of variance of the tissue nitrogen for Ulva for the August experiment

Three-way analysis of variance of the tissue nitrogen for Ulva for the September experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	2.9E-06	0.0000029	1.488	0.235
Gracilaria	1	1.88E-06	1.88E-06	0.963	0.337
Filtered	1	2.13E-05	0.0000213	10.912	0.003
CO ₂ x Gracilaria	1	1.93E-06	1.93E-06	0.991	0.33
CO ₂ x Filtered	1	5.78E-09	5.78E-09	0.00296	0.957
Gracilaria x Filtered	1	1.18E-05	0.0000118	6.049	0.022
CO ₂ x Gracilaria x Filtered	1	2.61E-06	2.61E-06	1.341	0.259
Residual	23	4.48E-05	1.95E-06		
Total	30	0.000089	2.97E-06		

Three-way analysis of variance of the tissue nitrogen for Ulva for the October experiment

Source of Variation		SS	MS	F	Р
CO_2	1	3.18E-09	3.18E-09	0.001	0.975
Gracilaria	1	5.93E-06	5.93E-06	1.867	0.184
Filtered	1	3.06E-06	3.06E-06	0.964	0.336
CO ₂ x Gracilaria	1	7.32E-07	7.32E-07	0.231	0.635
CO ₂ x Filtered	1	8.15E-08	8.15E-08	0.0257	0.874
Gracilaria x Filtered	1	0.0000015	0.0000015	0.474	0.498
CO ₂ x Gracilaria x Filtered	1	2.06E-07	2.06E-07	0.065	0.801
Residual	24	0.0000762	3.17E-06		
Total	31	0.0000877	2.83E-06		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	60.304	60.304	3.115	0.097
Gracilaria	1	5.327	5.327	0.275	0.607
Filtered	1	2024.355	2024.355	104.559	< 0.001
CO ₂ x Gracilaria	1	3.167	3.167	0.164	0.691
CO ₂ x Filtered	1	22.906	22.906	1.183	0.293
Gracilaria x Filtered	1	28.628	28.628	1.479	0.242
CO2 x Gracilaria x Filtered	1	6.405	6.405	0.331	0.573
Residual	16	309.776	19.361		
Total	23	2460.867	106.994		

Three-way analysis of variance of the tissue C:N for Ulva for the early July experiment

Three-way analysis of variance of the tissue C:N for *Ulva* for the late July experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	6.605	6.605	0.192	0.667
Gracilaria	1	14.493	14.493	0.422	0.525
Filtered	1	661.367	661.367	19.261	< 0.001
CO ₂ x Gracilaria	1	27.963	27.963	0.814	0.38
CO ₂ x Filtered	1	11.549	11.549	0.336	0.57
Gracilaria x Filtered	1	0.00146	0.00146	4.24E-05	0.995
CO2 x Gracilaria x Filtered	1	6.484	6.484	0.189	0.67
Residual	16	549.389	34.337		
Total	23	1277.85	55.559		

Three-way analysis of variance of the tissue C:N for Ulva for the August experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	21.361	21.361	1.211	0.287
Gracilaria	1	8.219	8.219	0.466	0.505
Filtered	1	305.054	305.054	17.289	< 0.001
CO ₂ x Gracilaria	1	18.795	18.795	1.065	0.317
CO ₂ x Filtered	1	15.42	15.42	0.874	0.364
Gracilaria x Filtered	1	146.02	146.02	8.276	0.011
CO ₂ x Gracilaria x Filtered	1	23.864	23.864	1.352	0.262
Residual	16	282.314	17.645		
Total	23	821.046	35.698		

Source of Variation	DF	SS	MS	F	Р
CO_2	1	55.191	55.191	3.585	0.071
Gracilaria	1	0.675	0.675	0.0439	0.836
Filtered	1	272.751	272.751	17.717	< 0.001
CO ₂ x Gracilaria	1	1.711	1.711	0.111	0.742
CO ₂ x Filtered	1	27.663	27.663	1.797	0.193
Gracilaria x Filtered	1	61.005	61.005	3.963	0.059
CO ₂ x Gracilaria x Filtered	1	17.035	17.035	1.107	0.304
Residual	23	354.08	15.395		
Total	30	808.275	26.943		

Three-way analysis of variance of the tissue C:N for Ulva for the September experiment

Three-way analysis of variance of the tissue C:N for Ulva for the October experiment

Source of Variation	DF	SS	MS	F	Р
CO_2	1	26.543	26.543	1.646	0.212
Gracilaria	1	73.064	73.064	4.531	0.044
Filtered	1	34.41	34.41	2.134	0.157
CO ₂ x Gracilaria	1	22.149	22.149	1.373	0.253
CO ₂ x Filtered	1	0.101	0.101	0.00626	0.938
Gracilaria x Filtered	1	13.702	13.702	0.85	0.366
CO2 x Gracilaria x Filtered	1	0.45	0.45	0.0279	0.869
Residual	24	387.028	16.126		
Total	31	557.447	17.982		

S7 Tables: Tissue δ^{13} C content (‰) of dry tissue samples of *Gracilaria* and *Ulva* for July through October experiments. Values represent means ± standard deviation.

Grac	cilaria					
	Treatment	Early July	Late July	August	September	October
77	Control	-12.76±1.67	-12.46±0.77	-12.51±0.90	-12.90±0.48	-12.05±0.30
erec	Ulva	-13.41±0.22	-12.65±0.81	-15.19±2.14	-13.15±1.47	-12.63±1.21
Filt	CO_2	-34.66±2.99	-21.12±1.70	-19.34 ± 1.28	-18.60 ± 0.24	-22.80 ± 0.92
	CO ₂ /Ulva	-28.79±0.85	-26.18±2.02	-18.33±1.15	-18.77±1.29	-24.01±0.92
pa	Control	-14.40±1.41	-14.45±1.13	-12.28 ± 0.42	-13.00 ± 1.38	-13.07±1.78
ltere	Ulva	-15.43±0.63	-14.40 ± 2.24	-11.90 ± 0.62	-13.35±0.95	-13.30±0.56
Infi	CO_2	-31.85±3.77	-25.84±2.99	-19.49±1.31	-19.20±0.79	-25.02±1.77
\Box	CO ₂ /Ulva	-33.84±2.47	-27.22±8.94	-21.73±1.63	-18.67±0.55	-22.17±2.72

Ulva

	Treatment	Early July	Late July	August	September	October
	Control	-11.88±2.35	-8.58 ± 2.46	-8.10±0.64	-12.61±3.30	-12.90±4.50
erec	Gracilaria	-8.48±1.12	-9.57±2.43	-9.92 ± 4.35	-12.51±0.90	-15.19±2.14
Filt	CO_2	-40.09 ± 0.73	-39.42 ± 2.82	-26.32±1.73	-29.81±0.95	-36.94±1.44
	CO ₂ /Gracilaria	-27.63±5.59	-38.32 ± 4.60	-27.37±3.95	-31.51±0.86	-32.92±5.28
pa	Control	-11.38±1.31	-13.91±2.73	-12.89±1.77	-14.76±2.70	-12.43±5.41
ltere	Gracilaria	-9.33±2.71	-12.92 ± 1.25	-11.16±2.45	-16.50±0.91	-14.23±3.87
[IJĥ]	CO_2	-31.39±7.33	-35.84±4.75	-30.32 ± 2.49	-30.79 ± 0.88	-34.84 ± 4.08
D	CO ₂ /Gracilaria	-35.59±4.44	-38.73±4.85	-31.57±2.43	-31.91±1.81	-38.21±1.26

S8 Tables: Tissue nitrogen content (g N per g dry tissue), tissue carbon content (g N per g dry tissue), and tissue C:N of dry tissue samples of *Gracilaria* and *Ulva* for July through October experiments. Values represent means \pm standard deviation.

Gracilaria

Tissue C content

	Treatment	Early July	Late July	August	September	October
	Control	0.292 ± 0.030	0.294 ± 0.026	0.278 ± 0.016	0.295 ± 0.026	0.309 ± 0.015
ered	Ulva	0.274 ± 0.017	0.329 ± 0.030	0.298 ± 0.012	0.287 ± 0.032	0.330 ± 0.008
Filte	CO_2	0.309 ± 0.018	0.289 ± 0.012	0.300 ± 0.026	0.308 ± 0.028	0.326 ± 0.012
	CO ₂ /Ulva	0.277 ± 0.021	$0.292{\pm}0.011$	0.318 ± 0.041	0.318 ± 0.036	0.314 ± 0.008
þ	Control	0.277 ± 0.015	0.328 ± 0.010	0.292 ± 0.032	0.295 ± 0.029	0.307 ± 0.004
nfiltere	Ulva	0.295 ± 0.022	0.325 ± 0.010	0.286 ± 0.018	0.296 ± 0.025	0.288 ± 0.065
	CO_2	0.274 ± 0.024	0.331 ± 0.011	0.302 ± 0.016	$0.310{\pm}0.042$	0.308 ± 0.008
U	CO ₂ /Ulva	0.289 ± 0.021	0.302 ± 0.001	$0.294{\pm}0.013$	0.312 ± 0.021	0.325 ± 0.013

Tissue N content

	Treatment	Early July	Late July	August	September	October
	Control	0.021 ± 0.004	0.019 ± 0.001	0.022 ± 0.004	$0.024{\pm}0.001$	0.025 ± 0.004
ered	Ulva	0.016 ± 0.004	0.022 ± 0.002	0.017 ± 0.004	0.021 ± 0.001	0.022 ± 0.002
Filte	CO_2	0.022 ± 0.005	0.023 ± 0.002	0.021 ± 0.005	0.023 ± 0.002	0.026 ± 0.005
	CO ₂ /Ulva	0.018 ± 0.002	0.017 ± 0.002	$0.020{\pm}0.001$	$0.022{\pm}0.001$	0.017 ± 0.002
bd	Control	0.011 ± 0.001	0.015 ± 0.002	0.019 ± 0.003	0.022 ± 0.002	0.020 ± 0.002
nfiltere	Ulva	0.020 ± 0.008	0.016 ± 0.001	0.017 ± 0.001	0.019 ± 0.003	0.018 ± 0.004
	CO_2	0.010 ± 0.001	0.015 ± 0.004	0.019 ± 0.001	0.018 ± 0.002	0.020 ± 0.001
U	CO ₂ /Ulva	0.011 ± 0.002	0.012 ± 0.001	0.016 ± 0.002	0.017 ± 0.001	0.017 ± 0.003

Tissue C:N

		Early July	Late July	August	September	October
Filtered	Control	16.4±2.1	18.1±3.1	15.3±2.4	14.3±1.3	14.7±2.2
	Ulva	19.9±2.9	17.2±0.4	21.3±5.7	16.0±1.4	17.9±1.6
	CO_2	17.3±4.6	15.0±1.4	17.9±5.8	15.6±1.1	15.1±2.5
	CO ₂ /Ulva	18.5±0.5	20.7±2.0	18.7±1.5	17.1±2.0	21.3±2.5
Unfiltered	Control	29.3±3.3	25.1±3.2	17.6±0.9	15.6±1.6	17.8±1.9
	Ulva	19.1±7.7	23.9±0.8	19.6±0.1	18.4±1.7	18.4±3.2
	CO_2	31.3±1.8	25.4 ± 0.4	18.6±1.4	20.7±4.9	17.8 ± 0.9
	CO ₂ /Ulva	30.1±4.6	31.0±7.4	21.6±1.3	21.6±2.4	22.6±3.8

Ulva

Tissue C content

	Treatment	Early July	Late July	August	September	October
Filtered	Control	0.302 ± 0.004	0.259 ± 0.073	0.296 ± 0.008	$0.280{\pm}0.015$	0.315 ± 0.036
	Gracilaria	0.315 ± 0.008	0.300 ± 0.044	0.288 ± 0.022	0.251 ± 0.023	0.307 ± 0.019
	CO_2	0.307 ± 0.008	0.307 ± 0.003	0.285 ± 0.014	0.301 ± 0.014	$0.294{\pm}0.018$
	CO ₂ /Gracilaria	0.318 ± 0.019	0.306 ± 0.014	0.285 ± 0.028	$0.297{\pm}0.018$	0.309 ± 0.023
Unfiltered	Control	0.302 ± 0.015	0.320 ± 0.033	0.292 ± 0.005	0.299 ± 0.033	0.315 ± 0.046
	Gracilaria	0.305 ± 0.009	0.299 ± 0.008	0.278 ± 0.016	0.287 ± 0.017	0.318 ± 0.022
	CO_2	0.328 ± 0.006	0.313 ± 0.027	0.286 ± 0.014	0.272 ± 0.019	0.298 ± 0.037
	CO ₂ /Gracilaria	0.291 ± 0.024	0.295 ± 0.013	0.280 ± 0.022	0.285 ± 0.020	0.295 ± 0.014

Tissue N content

	Treatment	Early July	Late July	August	September	October
Filtered	Control	0.013 ± 0.001	0.013 ± 0.006	0.017 ± 0.004	0.012 ± 0.003	0.011 ± 0.003
	Gracilaria	0.015 ± 0.003	0.014 ± 0.005	0.012 ± 0.001	0.009 ± 0.001	0.010 ± 0.002
	CO_2	0.012 ± 0.001	0.012 ± 0.001	0.017 ± 0.006	0.010 ± 0.001	0.011 ± 0.001
	CO ₂ /Gracilaria	0.014 ± 0.001	0.013 ± 0.001	0.012 ± 0.001	0.010 ± 0.001	0.010 ± 0.001
Unfiltered	Control	$0.008 {\pm} 0.001$	0.011 ± 0.004	0.010 ± 0.001	0.009 ± 0.001	0.010 ± 0.003
	Gracilaria	0.009 ± 0.002	0.009 ± 0.001	0.013 ± 0.003	0.009 ± 0.001	0.009 ± 0.001
	CO_2	$0.008 {\pm} 0.001$	0.009 ± 0.001	0.010 ± 0.001	$0.008 {\pm} 0.001$	0.011 ± 0.002
	CO ₂ /Gracilaria	0.007 ± 0.001	0.010 ± 0.001	0.010 ± 0.001	0.009 ± 0.001	0.009 ± 0.001

Tissue C:N

		Early July	Late July	August	September	October
Filtered	Control	27.7±0.6	26.7±8.8	21.0±4.8	28.3±6.8	35.6±5.1
	Gracilaria	24.9±4.9	26.3±5.2	27.3±1.3	31.8±4.9	35.5±4.7
	CO_2	29.2±1.7	30.3±2.9	21.5±7.2	33.8±2.8	32.0±4.1
	CO ₂ /Gracilaria	25.8±1.3	27.6±3.2	27.4±0.9	35.4±1.2	35.6±4.7
Unfiltered	Control	42.9±3.5	37.6±9.3	33.5±3.2	40.4±2.2	36.3±3.7
	Gracilaria	42.4±9.5	$39.2{\pm}4.0$	25.9±6.9	35.3±2.2	39.2±2.1
	CO_2	46.3±1.0	40.4±5.1	33.2±0.7	39.2±3.7	32.9±4.5
	CO ₂ /Gracilaria	49.3±4.7	35.7±4.6	33.2±2.4	38.1±4.0	38.7±1.9

S1 Figure: Samples of *Ulva rigida* from the June experiment of the CO₂/Nutrient experiments, which represents enhanced growth by *Ulva* due to elevated CO₂ concentrations. A) Initial samples; B) Samples grown under ambient CO₂ concentrations, with samples 1-3 and 4-6 representing treatments without and with nutrient additions, respectively; C) Samples grown under elevated CO₂ concentrations, with samples 7-9 and 10-12 representing treatments without and with nutrient additions, respectively.

S2 Figure: Samples of *Ulva rigida* from the early September experiment of the CO_2 /Nutrient experiments, which represents enhanced growth by *Ulva* under elevated nutrient concentrations. A) Initial samples; B) Samples grown under ambient CO₂ concentrations, with samples 1-3 and 4-5 representing treatments without and with nutrient additions, respectively; C) Sample 6 was grown under ambient CO₂ and with nutrient enrichment, while samples 7-9 were grown under elevated CO₂ concentrations, without nutrient additions; D) Samples grown under elevated CO₂ and nutrient additions.

S3 Figure: Samples of *Ulva rigida* from the November experiment of the CO₂/Nutrient experiments, which represents a synergistic relationship between elevated CO₂ and nutrient concentrations. A) Initial samples; B) Samples grown under ambient CO₂ concentrations, with samples 1-3 and 4-6 representing treatments without and with nutrient additions, respectively; C) Samples grown under elevated CO₂ concentrations, with samples 7-9 and 10-12 representing treatments without and with nutrient additions, respectively.