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Abstract of the Dissertation 

Graphical and machine learning algorithms for large-scale genomics data 

by 

Han Fang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2017 

One fundamental question in computational genomics is to understand the relationship between genotype and 
phenotype. In this dissertation, I developed graphical and machine learning algorithms for large-scale genomics data, 
allowing accurate genotyping and molecular phenotype quantification. This work has helped to shed new light on the 
genetic contributions to autism spectrum disorders, intellectual disability, and other psychiatric disorders, as well as 
enabled detailed analysis of the molecular biology of several model organisms. 

The first major theme of my research has been in the study of genomic variations, in particular insertion and 
deletion (indel) mutations. As the second most common type of variations in the human genome, indels have been linked 
to many diseases, but indels of more than a few bases are still challenging to discover from short-read sequencing data. 
We present an open-source algorithm, Scalpel, which combines mapping and assembly for sensitive and specific discovery 
of indels. A detailed repeat analysis coupled with a self-tuning k-mer strategy allows Scalpel to outperform other state-of-
the-art approaches for indel discovery, particularly in regions containing near-perfect repeats. We characterized various 
types of sequencing data to investigate the sources of indel errors. We also developed a classification scheme to rank high 
and low quality calls. 

In a second major theme of research, I present new methods for analyzing ribosome profiling (Riboseq) data, a 
powerful technique for monitoring protein translation in vivo. This, combined with detailed genomic variation data 
allows researchers to study how the genome influences transcription, translation, and ultimately the overall phenotype of 
an organism. However, there are prevalent sampling and biological biases in Riboseq data, limiting our ability to 
understand translation control. To tackle these issues, I developed scikit-ribo, the first open-source software for accurate 
genome-wide inference of translation efficiency (TE) and A-site prediction. Scikit-ribo accurately identifies ribosome A-
site locations even with different mRNA digestion protocols and nearly perfectly reproduces the codon elongation rates in 
several datasets (r=0.99). Next we show the commonly used RPKM-derived TE is very sensitive to sampling errors and 
biological biases, skewing the TE estimates in all previous studies. To address this, I developed a codon level generalized 
linear model with ridge penalty to correctly estimate TE while inferring codon elongation rates and mRNA secondary 
structure. We performed a large-scale validation using mass spectrometry data of 1200 genes and showed very high 
correlation. Scikit-ribo is particularly robust to low abundance genes that are most commonly distorted by lesser 
approaches and successfully corrected the TE biases for more than 2000 genes in S. cerevisiae. These improvements allow 
us to discover the Kozak-like consensus sequence in S. cerevisiae and a previously undiscovered biological significance in 
the Dhh1p study. Together, these results show that scikit-ribo substantially improves Riboseq analysis and deepens the 
understanding of translation control.  
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Chapter 1 Background and significance 

 
Motivation 

In the field of computational genomics, one fundamental question is to understand the 
relationship between genotype and phenotype. This requires accurate methods to be developed 
for identifying genetic mutations and quantifying molecular phenotypes. Reductions in the cost 
of whole genome sequencing (WGS) and whole exome sequencing (WES) are opening the door 
for affordable sequencing of patients and the development of precision medicine1. Historically, 
genomic studies have focused on single nucleotide polymorphisms (SNPs) due to their high 
prevalence and relative simplicity to detect2. However, recent advancements in sequencing 
technologies and computational methods have broadened the focus to include the role of 
insertion and deletion (indel) mutations, which were very challenging to detect from short-read 
sequencing data. With respect to molecular phenotypes, there has been a low correlation between 
mRNA abundance and protein abundance, suggesting a role of translation regulation3. Previously, 
scientists used the mass spectrometry assay to quantify the abundance of peptides, but the 
throughput of this technique is low4. Polysome profiling can be used to measure the mRNA 
constituents of different ribosome number fractions, but it does not provide information about 
ribosome position5. Recently, ribosome profiling (Riboseq) emerged as a high throughput 
method for monitoring protein translation, while providing precise ribosome locations on the 
mRNA. In this dissertation, I developed graphical and machine learning algorithms for large-
scale genomics data, in particular new methods for the accurate genotyping of indels, and 
molecular phenotype quantification from the Riboseq data. I also demonstrate how these 
methods can be applied to help understand the genetic contributions to autism spectrum disorders 
and other major human disorders as well as to better measure and understand how genomic 
variants interplay with gene transcription and translation in several model species. 
 
Genome sequencing, insertions and deletions 

Researchers use genome sequencing to determine the order of nucleotides within the 
DNA molecules of a sample, especially so that they can be compared to a reference genome to 
identify any genetic mutations. The most widely used sequencing assays include HiSeq and 
NextSeq series sequencing platforms from Illumina (illumina.com) that can produce many 
billions of short sequencing reads per run. For studies focusing on the coding regions, scientists 
typically choose whole exome sequence (WES) as a cost-effective approach, where molecular 
probes are used to enrich for those molecules spanning exonic sequences. If non-coding regions 
and structural variants (SV) are of interest, one will choose whole genome sequencing (WGS) 
instead which sequences the entire sample without enrichment for any particular regions. Other 
technologies include DNA microarray arrays, which have been a popular choice as they can be 
scaled to a population study, although with limited resolution of the genome. Long-read 
sequencing, including single molecule real time sequencing from Pacific Bioscience (pacb.com) 
and nanopore sequencing from Oxford Nanopore Technologies (nanoporetech.com) have proved 
their power in genome assembly and SV detection. More recently, linked-read technologies from 
10x Genomics (10xgenomics.com) have enabled us to easily phase the genome, as well as 
performing single cell sequencing more efficiently.  
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However, despite this diversity of technologies, one of the most challenging problems 
remaining is to accurately call insertions and deletions (indels) from the genome. Indels are the 
second most common type of variations in the human genome. They are defined by the addition 
or loss of one or more nucleotides of a DNA sequence. In coding regions of the genome, if an 
indel occurs and its length is not a multiple of 3, it is considered as a frameshift mutation, 
because it disrupts the canonical open reading frame (ORF) of the gene. Otherwise, it is 
considered as an in-frame mutation; one or more codons will be inserted/deleted from the gene 
and hence one or more amino acids will be added/removed to the protein but otherwise the 
amino acid sequence will remain the same. Frame-shift mutations are a highly disruptive class of 
indel mutations, which have been strongly implicated in neurodevelopment disorders, 
cardiovascular diseases, cancer, and many other human diseases6-9. Studies have shown 
widespread occurrences of loss-of-function variants, especially indels, in protein-coding genes of 
human, plant and other species10-12.   
 
Common variant calling approaches 
 A common approach for variant calling (SNPs, indels, or other types of variants) is to 
align reads one at a time to a reference genome, and to recognize when the reads disagree from 
the reference13, 14. We refer to these methods as alignment based variant calling. Although this 
approach works well for SNPs, it is less reliable for indel detection. For example, reads 
containing a long insertion will contain few bases matching the reference and will fail to map 
correctly. While reads supporting a deletion consist of bases from the reference, it may be hard to 
unambiguously map both sides of the deletion. In both cases the aligner may ignore parts of the 
reads (“soft-clip”) in order to place them on the reference or fail to map them at all. Earlier 
methods for indel detection relied on paired-end and split-read information as a computational 
signature for the presence of an indel. Some tools such as GATK UnifiedGenotyper13, 
SAMtools15, Dindel14, and 16GT16 use paired-end information to screen for indels where one 
read of a pair aligns well but the other pair does not. After identifying such regions, the 
algorithms use a local realignment of the reads to detect indels, although the sensitivity declines 
quickly for mutations longer than 5bp 17. By using split-read information where the alignment for 
an individual read is split into two segments spanning structural variation breakpoints, methods 
like Pindel18 and Splitread19 are able to detect indels, especially deletions. Theoretically, this 
approach should be effective for deletions of any size, but the sensitivity is reduced due to the 
read length of current sequencing technologies. Recently, there has been much interest in 
developing specialized local assembly and micro-assembly methods for variant calling20, 
including Platypus21,  GRIDSS22, and SvABA23. It was shown that micro-assembly based 
methods were more sensitive in detecting larger indels than alignment based methods17. 
 
De novo assembly with de Bruijn graph  

In computer science graph theory, a de Bruijn graph is a directed graph representing 
overlaps between sequences of symbols24. For a given n-dimensional de Bruijn graph with m 
symbols, there are in total mn vertices, consisting of all possible length-n sequences and the same 
symbol may occur multiple times in a sequence. It has some practical usage and applications in 
grid network, distributed hash table, and bioinformatics. Specifically, it has demonstrated its 
unique power in de novo genome assembly from short reads25. Many have developed short read 
assemblers based on this technique, including Velvet26, MEGAHIT27, Allpath-LG28. Some have 
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further attempted to utilize whole-genome de novo assembly with de Bruijn graphs for variant 
calling and developed Cortex29. But in practice this method is less sensitive than expected and 
accurate indel detection instead requires a fine-grained and localized analysis. That is why many 
in the community started to investigate the practical usage of local de novo assembly for variant 
calling. The basic idea is to localize the reads in a sliding window, using alignment towards a 
given reference genome. This avoids over-exhaustive search of the entire genome. Then the 
reads in the same window are sheared into k-mers and assembled into a de Bruijn graph. Once 
the contig is formed, one can then align it back to the reference genome and retrieve the 
mutations. 
 
Protein translation and ribosome profiling 

Once the genome sequence has been determined, the central dogma of molecular biology 
explains the flow of genetic information within a biological system, which has been described as 
"DNA makes RNA and RNA makes protein”30. Thanks to the high throughput methods for 
mRNA profiling, many studies have analyzed gene regulation at the transcriptional level. 
However, in terms of protein translation, there have been limited numbers of assays that could be 
used at a genome-wide level. Fortunately, Riboseq is a powerful technique for monitoring 
protein translation in vivo. The original protocol was introduced by Ingolia et al in 20093. It 
allows researchers to investigate genome-wide translation regulation in a high throughput 
manner31, and has led to discoveries of new mechanisms involving translational defects in 
different forms of cancer32-35 and other important human diseases36, 37. Reports of novel drug 
targets38, 39 and new biological processes around translation40, 41 have also been made using 
Riboseq. One key measurement from the Riboseq data is the translational efficiency (TE), which 
is defined as the rate of protein production per mRNA42. This measurement tells us the level of 
translational control for each gene, independently of mRNA transcription. 
 
Generalized linear model 

The generalized linear model (GLM) is a generalization of ordinary linear regression, that 
unifies linear regression, logistic regression and Poisson regression by allowing response 
variables that have error distribution models other than a normal distribution43. This is achieved 
by establishing the relationship between the linear predictor and the mean of the distribution 
function using a link function. For example, in Poisson regression, a log link function is usually 
employed, while in a logistic regression, a logit link function is employed instead. The maximum 
likelihood estimation of the GLM’s model parameters is typically done by iteratively reweighted 
least squares (IRLS)44. In a GLM, each outcome Y (dependent variables) is assumed to be 
generated from a distribution in the exponential family. The mean (𝝁) of the distribution depends 
on the independent variables (𝚾), parameters (𝛃), and a link function 𝑔(∙):  
 

 E 𝒀 = 𝝁 = 𝑔−1(𝜲𝜷) Equation 1.1 

 
The linear predictor (𝜼) is related to the expected value of the data through the link 

function, which can be expressed as a linear combination of parameters (𝛃) and independent 
variables (𝚾): 
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 𝜼 = 𝚾𝛃 Equation 1.2 

In the Chapter 5 of this dissertation, I aim to model the count data for Ribosome profiling 
with a Poison regression, the un-penalized log likelihood function for the 
observations xk, yk 1

N is given by 
 

 𝑙(𝜷|𝑿, 𝒀) =  (𝑦0 𝛽0 + 𝜷T𝒙0 −  𝑒70+ :;<=)
>

?=0
 Equation 1.3 

 
Lasso, ridge penalized GLM 

In modern statistics, high-dimensional data (p>n) imposes a huge challenge for the 
traditional GLM because it is more likely to result in multicollinearity and overfitting. When 
overfitting occurs, the fitted model becomes excessively complex, and the model tend to describe 
random errors instead of the underlying relationship45. To overcome these issues, many 
regularization and variable selection methods have been proposed, including ridge (𝑙2) and lasso 
(𝑙1) regularization. Ridge regression was proposed by Hoerl and Kennar46. It finds the 
coefficients minimizing the sum of squared error loss subject to an 𝑙2 norm constraint on the 
coefficients.  
 

 𝜷B?CDE 𝜆 = argmin
7

| 𝒚 − 𝚾𝜷 |22 + 𝜆 |𝜷 |22 Equation 1.4 

Lasso (least absolute shrinkage and selection operator) was introduced by Tibshirani47. It 
penalizes the size of the 𝑙1 norm of the coefficients, and determines the coefficients with the 
following: 

 𝜷HIJJK 𝜆 = argmin
:

| 𝒚 − 𝚾𝜷 |22 + 𝜆 |𝜷 |1 Equation 1.5 

In the context of the generalized linear model, one aims to fit a model with a penalized 
maximum likelihood with ridge (𝑙2 norm), lasso (𝑙1 norm), or elastic-net48 (the mixture of both). 
Given the weights 𝑤?, the elastic-net penalty 𝛼, the overall penalty 𝜆, and the likelihood function 
𝑙(∙), the problem can be formulated as the following: 

 min
70,:

1
𝑁 𝑤? 𝑙(𝑦?, 𝛽0 + 𝜷P𝒙?)

>

?=1
+ 𝜆[ 1 − 𝛼 |𝜷 |22 + 𝛼 |𝜷 |1] Equation 1.6 

In the Chapter 5 of this dissertation, I optimize the 𝑙2 norm penalized log likelihood for 
the Poisson regression model: 

 𝑎𝑟𝑔𝑚𝑖𝑛70,: − 1
𝑁 𝑙 (𝜷|𝑿, 𝒀)  +  𝜆( 𝛽0

2/2) 
V

0=1
 Equation 1.7 

  



 

5 
	

Chapter 2 Indel calling with de Bruijn graph assembly 

 
Summary of Contribution 

This chapter describes the de Bruijn graph assembly based variant caller, Scalpel and its 
computational protocol. The algorithms and benchmarking results of Scalpel were published in 
Nature Methods49. The computation protocol and related new results were published in Nature 
Protocols50. Han Fang developed the computational protocol for performing indel variant 
analysis, the benchmarking against competing algorithms, and contributed to the development of 
Scalpel. Giuseppe Narzisi implemented the local de Bruijn graph assembler inside Scalpel, led 
the analyses in the first paper, and continues to be the lead developer. Michael Schatz 
contributed to the development of Scalpel and wrote the microsatellite detector module. 
Permission for republication of this material has been granted and is available upon request. 
 
Abstract 

As the second most common type of variations in the human genome, insertions and 
deletions (indels) have been linked to many diseases, but indels of more than a few bases are still 
challenging to discover from short-read sequencing data. Scalpel (http://scalpel.sourceforge.net) 
is an open-source software for reliable indel detection based on the micro-assembly technique. 
To date, it has been successfully used to discover mutations in novel candidate genes for autism, 
and is extensively used in other large-scale studies of human diseases. This chapter gives an 
overview of the algorithm and describes how to use Scalpel to perform highly accurate indel 
calling from whole genome and exome sequencing data. I provide detailed instructions for an 
exemplary family-based de novo study and I also characterize the other two supported modes of 
operation for single sample and somatic analysis. Indel normalization, visualization, and 
annotation of the mutations are also illustrated. Using a standard server, indel discovery and 
characterization in the exonic regions of the example sequencing data can be finished in around 5 
hours after read mapping. 
 
Introduction 
Overview of the Scalpel micro-assembly strategy 

Scalpel is a computational tool specifically designed to detect indels in next-generation 
sequencing (NGS) data. Figure 2.1 outlines the main steps for the analysis of a sequencing 
dataset using Scalpel. To highlight the main focus of this protocol, the left panel of Figure 2.1 
depicts the specific scenario of detecting de novo indels in a quartet family composed of two 
parents and two children. I highly recommend reviewing the original Scalpel publication for a 
more extensive description of the method 51. Here I describe the main ideas used in the micro-
assembly strategy employed by Scalpel, the strategies and filters that can be applied for 
optimizing the accuracy with different experimental designs or sequencing conditions, and 
describe the new developments since the original publication of the software (v0.1.1 beta).  

 
Before running Scalpel, the sequencing reads (whole genome, whole exome, or custom 

capture) must be aligned to a reference genome using a short-read mapping algorithm such as 
BWA-MEM, similar to the steps used for SNP calling or other analyses. It is worth noting that 
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computationally expensive procedures like indel realignment and base quality recalibration are 
not necessary with Scalpel. Unlike in those analyses, the alignments are not directly used to find 
indels but instead are used to localize the analysis into computationally tractable regions. After 
alignment, Scalpel examines all the genomic regions provided in the input by the user in BED 
format (right panel, Figure 2.1). For each region, reads that align in the region or whose mates 
align in the region are extracted from the alignment and assembled independently of the 
reference using a de Bruijn assembly paradigm. If the size of a region is larger than the user-
defined window size parameter, a sliding-window approach will be performed over this target 
region based on the window size and step size parameters. In order to reduce the number of 
errors in locally highly repetitive regions, Scalpel automatically performs a local repeat analysis 
coupled with a self-tuning k-mer strategy that iteratively increases the k-mer size until a “repeat-
free” local assembly graph is built. A repeat-free graph is a graph without exact repeats, which 
would introduce cycles in the de Bruijn graph, as well as near-identical repeats (up to 3 
mismatches by default). The advantage of this strategy is that every genomic window will be 
analyzed using an optimal k-mer specifically tuned according to its sequence composition. The 
graph is then exhaustively explored to identify end-to-end paths spanning the selected region. 
These paths, representing de novo assembled sequences of the short reads, are then aligned to the 
reference window to detect candidate mutations using a sensitive gapped sequence aligner based 
on the Smith–Waterman algorithm.  

 
Scalpel supports three modes of operation: single, de novo, and somatic. In the single 

mode, Scalpel detects indels in one single dataset (e.g., one individual exome or genome).  In the 
de novo mode, Scalpel detects de novo indels in a quad family (father, mother, affected child, 
unaffected sibling). In the somatic mode, Scalpel detects somatic indels from the sequencing data 
coming from matched tumor and normal samples. In the first version of Scalpel (v0.1.1), all 
possible paths in the final graph were exhaustively examined using a breadth-first-search 
traversal approach. This strategy worked well for the majority of the human genome with limited 
numbers of mutations leading to the generation of one or two paths. However, this step is 
computationally expensive for a small number of regions with high level of heterozygosity or 
higher sequencing error rate that generate exponentially many alternative paths due variants not 
linked by the same k-mer. Since the release of a new version (0.4.1), Scalpel instead enumerates 
only the minimum number of source-to-sink paths that cover every edge of the graph using a 
network flow approach. This strategy still detects all the mutations in the graph but significantly 
reduces the computational requirements by aligning to the reference a much smaller set of paths. 
Another important addition in the new version of Scalpel is the ability to better handle regions 
characterized by sudden drops in coverage. After removal of low-coverage nodes, the de Bruijn 
graphs associated to these regions can be disconnected into multiple connected components, 
which are now analyzed independently. Finally, the somatic mode of Scalpel is entirely new 
since the previous publications. 
 
Comparison to other methods 

Several hundred software packages are now available for analyzing WGS and WES 
sequence data 52, including dozens of methods each for quality assessment, read alignment, 
variant identification, annotation, and other applications. Most of the variant analysis packages 
are specialized for detecting one or a few types of mutations because each type requires a 
different computational and statistical framework. For example, SNPs are generally found 



 

7 
	

directly from read alignments, copy number variations (CNVs) and structural variations (SVs) 
from read coverage and/or split-read approaches, while the leading methods for detecting indels 
rely on alignment or localized sequence assemblies. A few other indel-finding software packages 
implement a localized sequence assembly strategy similar to the one employed by Scalpel. These 
include GATK HaplotypeCaller 53, SOAPindel 54, Platypus 21, ABRA 55, TIGRA 56, DISCOVAR 
57, Bubbleparse 58, Manta 59, and ScanIndel 60. Although they all employ a local read assembly 
step, these tools differ in how they explore the graphs and in their relative ability to handle repeat 
structures. Scalpel is unique because of on-the-fly repeat analysis that it uses to automatically 
optimize the parameters used for different regions of the genome, and the extensive set of filters 
that can be applied to correct for different sequencing conditions, among several other 
enhancements. The combination of these features enables Scalpel to accurately identify indel 
variants in diverse sequencing conditions and sequence contexts. Small-scale repeats are 
especially challenging for most other indel finding algorithms, although these are detected and 
properly analyzed by Scalpel.  
 

Most indel-finding tools, including Scalpel, have been designed to be general variant 
callers for detecting mutations across every region of the reference genome. However, some 
class of indels, specifically the one located within short tandem repeats (STR), are known to be 
inherently more difficult to detect due to the high level of replication slippage events (e.g., 
homopolymers) of Illumina technology. Very few tools have been designed to specifically deal 
with the complexity of calling within STR regions. Users that specifically require to call variants 
within STRs are highly recommended to employ the following two tools: RepeatSeq (Highnam 
et al., 2013) and lobSTR (Gymrek et al., 2012). More recently more complex classes of indels 
have been also discovered and analyzed where a simultaneous deletion and insertion of DNA 
fragments of different sizes can co-occur at the same genomic location. A new tool has been 
specifically designed to handle these complex indels 61, Pindel-C, and I encourage the user to 
utilize such a tool for detecting complex indels in cancer-associated genes. 
 
Overview of the computational protocol 

In the protocol section, I present a step-by-step guideline for identifying de novo variants 
in a HapMap family from PCR-free Illumina HiSeq2000 data. Here, I provide an overview of 
using Scalpel to discover de novo and inherited indel mutations within a quad family of two 
parents and two children, one affected and one unaffected with a certain phenotype. It should be 
noted that internally within the algorithm the two children are treated identically, which can 
support additional use cases. The input to the algorithm can be data from WGS, WES, or 
targeted sequencing experiments. A two-pass search mode is employed by Scalpel when calling 
de novo or somatic mutations. In the first pass, Scalpel identifies indels in each of the samples 
using parameters designed to balance between sensitivity and specificity. In the second pass, 
Scalpel performs a more sensitive search in the parents for the indels identified in the children to 
reduce false positives de novo calls in regions of low coverage in parents. I also show how to 
extract indel calls that fall into target regions and filter out false-positive calls with respect to 
their sequence composition and variant quality (Figure 2.2). Finally, I present one of the 
available methods for annotating the mutations, especially to prioritize any potential disease-
related mutations. Although I use Scalpel for generating the indel calls, the protocol provides 
general guidelines for standard operations required to analyze and evaluate indel calls. I also 
illustrate several sources of indel calling errors, which could be introduced by library 
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construction, sequencing or alignment. Whenever possible, visualization of data/results is 
performed using IGV alignments, and auxiliary scripts are provided for plotting size, allele 
fraction distribution, etc.  
 
Methods 
Experimental Design 

In this protocol, I use publicly available WGS data to detect and analyze indels within a 
family. However, when designing a new study, researchers are typically faced with the problem 
of choosing suitable sequencing and bioinformatics strategies to answer the relevant scientific 
questions. There are many factors that play a role in study design, including depth of coverage, 
read length, parameter tuning, WGS versus WES protocols, the use of PCR amplification, cost 
per basepair, etc. In this section, my goal is to provide some guidelines on the impact of such 
different experimental design choices on the sensitivity and accuracy of indel detection. 

 
Although WES is a cost-effective approach to identify genetic mutations within the 

coding region, it suffers from several major limitations due to a combination of coverage biases, 
low capture efficiency, and errors introduced by PCR amplification. For example, an indel 
located near the end of a target region may not be well covered by sequencing reads, which 
limits detection ability. Also, the exome capture kits are typically designed to pull down a region 
of about 400bp around an exon, which can limit detection of large indels within coding regions 
or near splice sites. On the other hand, albeit with higher cost, WGS comes with several 
significant benefits, including more uniform coverage, freedom from capture efficiency biases, 
and the inclusion of the non-coding genome. In the context of detecting indels, it has been shown 
that the accuracy of indel detection with WGS data is much greater than WES data even within 
the targeted regions 17. Table 2.1 shows that a much higher validation rate of WGS-specific 
indels, compared to WES-specific indels (84% vs. 57%). Specifically, WGS has a unique 
advantage over WES in identifying many more indels longer than 5 bp (25 vs. 1). When using 
WGS, it was estimated that 60X depth of coverage from the HiSeq platform would be needed to 
recover 95% of the indels detected by Scalpel. In particular, detecting heterozygous indels 
naturally requires deeper sequencing coverage relative to homozygous indels (Figure 2.3). WGS 
at 30X using the HiSeq platform is not sufficient for sensitive indel discovery, resulting in at 
least 25% false negative rates for heterozygous indels. But these requirements can rapidly change 
with the longer reads and lower error rates provided by newer instruments. 

 
PCR is a widely used and useful technique to amplify DNA fragments of interest and for 

attaching various linkers or barcodes for sequencing. However, small amounts of contaminating 
material can also be amplified without discrimination. Also, PCR amplification introduces errors 
during the library construction step, especially in regions near STRs such as homopolymer A or 
T runs. These types of errors are due to replication slippage events and result in high variability 
in the number of repeat elements (Figure 2.4). It becomes then very difficult to distinguish true 
events at these loci from stutter errors. For indel analysis, I recommend using PCR-free 
protocols, which can significantly reduce the number of errors around those loci. Moreover, as 
reported in this protocol, filtering based on the combination of alternative allele coverage and k-
mer χ2 score is an effective strategy to filter out additional false-positives without sacrificing 
much sensitivity.  
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Large-scale sequencing studies, involving hundreds or thousands of samples, are now 
becoming more and more widespread. Here I aim to introduce some of the advantages of having 
access to a collection of sequenced individuals. Even though Scalpel does not directly provide an 
API for joint calling on more than four samples, we provide examples and a recommendation on 
how to take advantage of such information if available. The basic idea is to aggregate all the 
genetic variants detected in the samples into a database framework with associated genotypes 
and genomic annotation. There are existing flexible systems for exploring genetic variation for 
disease and population genetics, such as GEMINI 62. Analyzing the genetic code of a large 
cohort of individuals has the potential to shed light on the underpinning mechanisms of complex 
diseases such as autism and schizophrenia. These studies are generally focused on the detection 
and analysis of rare variant, that can explain the phenotype of the affected individuals.  

 
The population frequency of such rare mutations is usually so low that it is obscured by 

the noise in the sequencing data, making any real biological signal undetectable. In these 
circumstances the population can be used to devise effective filtering strategies. For example, in 
a large-scale autism study where Scalpel was employed 9, the population database was used to 
identify rare variants by filtering highly polymorphic loci with many more mutations than 
expected in the general population as well as common variants using minor allele frequency 
(MAF) cutoffs. Typically, variants for which the minor allele is present in a population above 1% 
are considered common. By removing these locations from the analysis, the biological signal 
started to emerge: an enrichment of frame-shift de novo mutations in the affected child compared 
to the unaffected sibling. The highly polymorphic regions were later found to enrich for 
homopolymers and other STRs, which are known to be more susceptible to sequencing errors. In 
the case of de novo studies, it is extremely unlikely that the same mutation is present as de novo 
in multiple individuals; in this case, the population information can be used again to filter out 
these candidates as artifacts in the sequencing. 

 
Detection of somatic variation in tumor-normal matched samples is complicated by 

different factors such as ploidy, clonality, and purity of the input material. Moreover, the 
sensitivity and specificity of any somatic mutation calling approach varies along the genome due 
to differences in sequencing read depths, error rates, variant allele fractions (VAF) of mutations, 
etc. Accounting for all these variables poses a very complex and challenging problem. However, 
the proper filtering parameters can eliminate the majority of Scalpel’s false-positive calls. For 
example, Figure 2.5 show the effects of different phred-scaled Fisher’s exact score cutoffs used 
for filtering on a pair of highly concordant primary and metastatic samples from Branon et al. 63. 
Figure 2.5 demonstrates that indels with a phred-scaled Fisher’s exact score below 10 tend to 
have low VAF and are much more likely to be sequencing errors. In fact, the allele fraction of 
mutations exclusive to either the primary tumor or the metastasis is significantly lower with 
higher (more stringent) cutoffs. Similarly, the VAF distribution of the indels found only in the 
primary tumor shifts towards the expected distribution for these samples (with a peak at ~20%) 
as more conservative Fisher’s exact test cutoffs are used. Not all errors are eliminated though, 
especially in regions where very low support for a mutation in the normal or the tumor precludes 
the assembly of the reads.  
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The Scalpel pipeline 

Scalpel is designed to perform localized micro-assembly of specific regions of interest in 
a   genome with the goal of detecting insertions and deletions with high accuracy. It is based on 
the de Bruijn graph assembly paradigm where the reads are decomposed into overlapping k-
mers, and directed edges are added between k-mers that are consecutive within any read64. 
Figure 2.1 shows the high-level structure of the pipeline. (1) The pipeline begins with a fast 
alignment of the reads to the reference genome using BWA. Importantly, these alignments are 
not directly used to call variations, but only to localize the analysis by identifying all the reads 
that have similarity to a given locus. Reads are then extracted in the region of interest (e.g., exon) 
including: (i) well-mapped reads, (ii) soft-clipped reads, and (iii) reads that fail to map, but are 
anchored by their mate. The latter two classes correspond to locations where the mapper 
encountered trouble aligning the reads, especially because of the large indels present, so it’s 
necessary to include them in the assembly. (2) Once localized, the algorithm computes an on-the-
fly assembly of the reads in the current region using the de Bruijn graph paradigm, specifically, 
reads are decomposed into overlapping k-mers (starting with a default k=25) and the associated 
graph is constructed. (3) Using the reference sequence, one source node and one sink node are 
then selected according to the procedure described later in the “Graph traversal” section. (4) An 
on-the-fly analysis of the repeats in each region is used to automatically select the k-mer size to 
be used for the assembly, described in section “Repeat analysis”. (5) The graph is then 
exhaustively examined to find end-to-end paths that span the region. (6) After the sequences are 
assembled, they are aligned to the reference to detect candidate mutations using a sensitive 
gapped sequence aligner based on the Smith Waterman algorithm65 targeted at the reference 
window. Finally, the above assembly process is applied using a sliding window approach over 
each target region. By default, a window size of 400bp is used with a sliding factor of 100bp. 
The sliding window strategy is fundamental to handle the highly non-uniform read distribution 
across the target. A window size of 400bp is large enough to assemble the majority of the exons 
into a single contig since ~95% of the human exon-targets are shorter than 400bp, however each 
assembly task is small enough for using in-depth techniques to optimize the assembly. 
 
Graph construction 

Two critical components of the Scalpel algorithm are (i) construction of the de Bruijn 
graph and (ii) detection of sequence paths spanning the targeted region. Reads aligning to the 
region are extracted and decomposed into overlapping k-mers. In order to model the double 
stranded nature of the DNA, a bidirected de Bruijn graph is constructed66. The graph is then 
compressed by merging all non-branching chains of k-mers into a single node. Tips and low 
coverage nodes are removed according to input threshold parameters to remove obvious 
sequencing errors. Note that, differently from traditional de Bruijn graph assemblers, Scalpel 
does not use any threading strategy to resolve collapsed repeats. Threading allows resolution of 
repeats whose lengths are between k and the read length. However, we observed in both real and 
simulated data that, due to the localized graph construction, if a bubble was not covered end-to-
end by the reads, threading would either disconnect the graph or introduce errors. Repeats are 
instead handled differently, as explained in the next section. 
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Repeat Analysis 

Due to the highly non-uniform read depth distribution across the targeted region and the 
presence of near-perfect repeats that can mislead the assembly, we implemented a detailed repeat 
composition analysis coupled with a self-tuning k-mer strategy. Specifically, when assembling a 
window, Scalpel inspects both the base pair composition of the corresponding reference 
sequence as well as the resulting de Bruijn graph for the presence of cycles in the graph or near-
perfect repeats in the assembled sequences. If a repeat structure is detected, the graph is 
discarded and a larger k-mer is selected. This process continues until a maximum k-mer length is 
reached, which is a function of the read length. If no k-mer value can be chosen to avoid the 
presence of repeats, the region is skipped and the next available region from the sliding window 
scheme is analyzed.  This conservative strategy reduces the number of false-positive calls in 
highly repetitive regions, and, according to our experiments, skips less than 2% of possible 
windows in the human exome. Note also that, once k is selected by the self-tuning k-mer 
strategy, the graph is “repeat free”, and there is no need to use threading to resolve small repeats. 
The proposed self-tuning k-mer strategy is similar to the dynamic approach used by SOAPindel 
and TIGRA to reconnect a broken path in low coverage regions. However, SOAPindel searches 
for unused reads with gradually shorter k-mers until a path is formed or the lower bound on k-
mer length has been reached; while TIGRA allows only 2 possible values for the k (15 and 25). 
Scalpel instead starts from a small k-mer value (input parameter) first and then gradually 
increases it, such that the smallest possible k-mer value is used for each region. This strategy has 
the advantage of better handling of repetitive sequences, highly polymorphic regions, and 
sequencing errors: source and sink have higher chance to be selected (see section “Graph 
traversal”) and a smaller k-mer reduces the chance of fragmented assembly in low coverage 
regions. 
 
Graph traversal 

Once a valid de Bruijn graph is constructed, Scalpel examines the graph to find end-to-
end sequence paths that span the target window. Because the coverage from exome capture data 
is highly non-uniform, a special selection algorithm is used to find the edges of each window 
where coverage is present. First, two nodes in the graph are labeled as source and sink according 
to the following procedure: the reference sequence of the target region is scanned left-to-right to 
detect the first sequence of k bases that exactly matches one of the k-mers from the nodes in the 
graph, this node will be marked as the source. In a similar fashion the sink node is detected 
scanning the reference sequence right-to-left. Since every region is first inspected for repeats, 
source and sink can be safely selected at this stage. The automated strategy used by Scalpel to 
select the boundaries of the reference sequence improves over TIGRA’s approach, where the 
reference region is selected based only on input parameters. After the source and sink nodes are 
identified, all possible source-to-sink paths are enumerated up to a max number (default 
100,000) using a depth-first search (DFS) traversal of the graph, similarly to Sutta assembly 
algorithm67. Note that since the regions to assemble are very small, time and space computational 
complexities associated with large-scale whole-genome assembly are not relevant and an exact 
brute-force strategy can be efficiently applied. If there are no repeat structures in the graph, all 
the candidate paths are enumerated and aligned to the portion of the reference sequence 
delimited by source and sink k-mers using the standard Smith-Waterman-Gotoh alignment 
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algorithm with affine gap penalties. The list of candidate mutations is then generated. Under 
typical conditions, the assembler reports a single path for homozygous mutations and two paths 
for heterozygous mutations. For example, if the sample has an insertion in only one of the two 
haplotypes, the assembler would discover the indels and also the unmodified reference sequence. 
Note that a traditional sequence assembler would have selected only one of these two paths 
(usually with higher coverage) and discarded the other one. Scalpel instead examines both paths 
to distinguish, for example, between homozygous and heterozygous mutations. However, in 
practice, various factors in real data complicate the detection process and, sometimes, multiple 
paths are reported in the case of more exotic variations. For example, the Illumina sequencing 
platform is particularly error prone around microsatellites (e.g., homopolymer runs) and, as a 
consequence, multiple candidate alleles are elucidated by the data at these loci. Highly 
polymorphic regions are also prone to generate multiple paths and could be computationally 
demanding: if the distance between multiple nearby mutations is larger than the (automatically) 
selected k-mer value, each of the associated bubbles in the graph will give rise to two different 
paths. 
 
Computation protocol 

This protocol includes 24 steps encompassing the whole procedure from downloading the 
input datasets to identification of frame-shift variants. The protocol bundle, available within the 
Scalpel software package, contains a master script called run_protocol_0.53.sh with the complete 
list of commands (https://github.com/hanfang/scalpel-protocol) required to replicate the results 
presented in this procedure. This script can also be modified to automate the processing of user 
samples. To align the NGS reads to the genome: 

1| Convert the *.2bit genome to *.fa format and index it with bwa (Note you can also 
download the fasta file directly, although this may take much longer): 

2| Align reads to reference for each sample separately with bwa mem: 
3| Sort the bam files by chromosome coordinates with samtools and then delete the unsorted 

versions: 
4| Mark duplicated reads within the alignment with picard tools: 
5| Perform a basic quality control of the alignment files with samtools: 

 
In order to generate reliable indel calls, accurate alignment of the NGS short reads are of 

great importance. If the DNA is derived from blood sample, the mapping rate of Illumina HiSeq 
reads is typically higher than 90%. Lower mapping rates indicate either contaminations of DNA 
from other species (e.g. bacterial DNA from saliva samples) or poor quality of the sequencing 
experiments. In addition, excessive numbers of duplicated reads are usually due to issues with 
library construction and PCR amplification. Table 2.2 lists the number of reads generated for 
each sample and the reads mapped to the human genome hg19. To perform indel variant calling 
and downstream filtering: 

6| Run Scalpel in the “de novo” mode to perform multi-sample calling for a quad family. In 
this example, we use NA12882 as the affected individual. The NA12881 is the unaffected 
individual accordingly: 

7| Export the inherited and denovo mutations from the Scalpel database (in target only): 
8| Identify and mark indels within STR regions using the micro-satellite annotation software 

(msdetector) distributed with the protocol bundle: 
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9| Save indels within and outside STR regions into different variant calling format (vcf) 
files (Note: the number of fields to keep with UNIX cut command depends on the 
number of samples in the vcf file): 

 
In both “denovo” and “somatic” mode, Scalpel is optimized to achieve high sensitivity, but 

may include some false positives. To control for this, I recommend using the --two-pass option 
in Scalpel, which undergoes a second round of indel verification to reduce the likely false calls. 
Low-quality indel calls (potential false-positives) are usually found within low coverage regions, 
or have an unbalanced number of reads supporting the alternative allele. 

10| Filter out false positive calls by adjusting coverage and/or chi-square score thresholds for 
your data: 

11| (Optional) Perform additional filtering of the de novo calls using the python script 
provided in the Scalpel resource bundle. This script supports filtering indels by 
alternative allele coverage, chi-square scores (chi), and parental coverage (pc): 

12|  (Optional) Extract a subset of indels based on other annotations using bedtools. Here we 
show how to extract the variants that overlap any of the mutations in the ClinVar main 
database. 

13| Summarize indel calls with a histogram of mutations by size: 
14| Characterize low quality homopolymer indels calls with a histogram of mutations by 

VAF: 
15| Summarize inherited indels with variant allele fractions (VAF %):  
16| Determine the number of indels remained after each step of the filtering: 
17| Split the multi-sample VCF to an individual file for NA12882: 
18| Filter the single VCF files based on Chi-Square score and allele coverage 
 
There are usually much higher sequencing biases in GC-extreme regions. Indels within STRs, 

especially homopolymer A or T runs, are major source of false positive variant calls. The 
filtering cascade should not reduce the sensitivity of inherited indels by a lot. One should expect 
a relatively balanced number of reads support each inherited indel, indicating high confidence for 
these calls. To annotate and visualize of the indel calls: 

19| Prepare and create the input format required by Annovar:  
20| Annotate and intersect indels with gene regions using Annovar: 
21| Summarize coding region indels by size in R: 
22| Filter the indels based on population allele frequencies: 
23| Annotate novel indels that were not reported by a population database before (1000G, 

ESP6500, ExAC, CG46): 
24| Retrieve frame-shift mutations, which are potentially loss-of-function 

 
Results 
High accuracy of Scalpel 

One of the most sensitive and accurate approaches for indel detection from short read 
data is a micro-assembly algorithm, Scalpel. It was previously demonstrated to have substantially 
improved accuracy over eight algorithms including GATK-HaplotypeCaller 53 (v3.0) and SOAP-
indel 54 (v2.01), while other methods report a large number of false negative calls 51. In fact, 
Scalpel achieves very high accuracy (positive predictive value=90%) of indel detection even on 
30X WGS data (Figure 2.6). In this thesis, I describe the use of Scalpel for indel detection from 
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whole genome and exome capture sequencing experiments. I introduce three different modes of 
indel detection: de novo, somatic, and single-sample for different study designs. First, the de 
novo mode is useful for calling germline de novo variants in nuclear families up to four people. 
Second, the somatic mode is useful for identifying somatic changes within matched samples, 
especially tumor/normal pairs in cancer studies. Finally, the single mode is useful for studies of a 
single proband. 
 
Expected distribution of indels and signatures of low-quality calls 

After filtering for alternative allele coverage, Chi-square scores, and STR regions, the 
size of the high-quality inherited indels should follow a log-normal distribution (Figure 2.7). 
Similar observations of such a size distribution were also reported in the 1000 Genomes Project 
68 and an analysis of 179 human genomes 69. I also observed a much higher abundance of 
homopolymer A or T indels, relative to homopolymer C or G indels in the low-quality call set 
(Figure 2.8). Homopolymer A or T indels usually have low variant allele fraction (VAF), 
because homopolymer A or T molecules are enriched for PCR stutter/slippage artifacts. 
Conversely, the VAF of high quality inherited indels approximately follow a normal distribution 
with a mean of around or slightly less than 50% (Figure 2.9). This indicates that I observed 
equal read evidence of both alleles in the genome.  
 
Expected number of indels during the filtering cascade 

Since calling de novo indels requires a more sensitive analysis of the family members, I 
recommend using the --two-pass search option when discovering de novo events. Many more 
inherited indels will persist through the filtering cascade, relative to the number of de novo 
events. This is because de novo events are extremely rare in comparison to inherited indels. De 
novo mutations are also particularly vulnerable to batch effects and random errors, as a correct 
analysis requires both high sensitivity and specificity in the entire family. In fact, among the in 
target indels, about 51% of the inherited ones are of high quality while only 5% of the de novo 
ones survived the filtering cascade (Figure 2.10). Because frameshift mutations can cause loss of 
function of a gene, these mutations are expected to be less frequent than frame-preserving 
mutations in the coding region. As shown in Figure 2.11, indels whose size is a multiple of three 
are much more abundant than others with similar sizes (+1 or -1).  

 
A list of frame-shift mutations in the family 

Although this family has been investigated in many studies, many frameshift indels were 
not discovered in any public databases, including 1000G, ExAC, and ESP. We observe a total of 
6 novel frameshift mutations. Many of these indels are of a size larger than five base pair. Based 
on Sanger validation of these loci, all 20 genotypes in four family members were successfully 
validated/confirmed. With the improvement of indel calling protocol introduced in this 
manuscript, we are able to identify these previously undiscovered loss-of-function mutations. We 
also inspected the VCF file generated by the Illumina Platinum Genome project (release 8.0.1) 
for the presence of the six discovered frameshift. Although the VCF file was generated using five 
different variant callers (Freebayes, Platypus, GATKv3, Cortex, and Issac2), it only contained 
two out of the six indels. This indeed further demonstrates the power of Scalpel over other 
methods, especially on detecting large indels. 

High-quality de novo indels usually share the following characteristics: 1) the number of 
reads in the region is close to the genome-wide mean coverage, 2) there are balanced number of 
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reads supporting both the reference and alternative allele, 3) these indels are not located within or 
near short tandem repeat regions, 4) in the parents’ genome, there are no reads supporting the 
same indel presented in the child’s genome. For example, I found a one-bp heterozygous 
frameshift deletion located in the exon 4 of the gene HFM1.  This HFM1 de novo deletion was 
also successfully validated in Sanger experiments. The genomic coordinate is chr1: 91859889, 
relative to the reference genome hg19. This variant has not been reported before in any of the 
widely used variant databases, such as 1000G, ESP6500, ExAC and CG46. Figure 2.12 shows 
the screenshot of the IGV alignment of all four genomes. We can see a distinct signature of the 
deletion only presented in the affected child, but not in anyone else in the family. 
 
Limitations of the protocol and software 

Scalpel provides several advantages to standard mapping approaches but, like any 
bioinformatics algorithm, it does not attempt to address all possible types or sizes of mutations at 
once. In these experiments, Scalpel was able to reliably detect deletions up to 400 bp (including 
deletions of Alu mobile elements) and insertions shorter than 200 bp, but the sensitivity is 
reduced for longer indels given the available read lengths (data not shown). Even within this size 
range, Scalpel, and all pipelines, has lower sensitivity for indels in low coverage regions that are 
supported by very few reads. In the worst scenario, a combination of low coverage within a 
complex repeat region may require a k-mer size too large for assembling across the mutation, 
leading to false negatives. Phasing of the discovered mutations is not supported and, given the 
locality of the assembly, it would be possible to phase only mutations within the same window 
(400bp by default). Thanks to the new advances in long-molecule sequencing technologies (e.g., 
PacBio, 10X Genomics), in the near future it will be possible to combine such technologies for 
phasing mutations hundreds of kilobases to megabases apart.  
 

For variant calling purposes, it is ideal to have a high-quality reference genome available. 
This is also true for indel calling with Scalpel because assembly errors might falsely increase the 
number of variants and the read localization will not be effective unless a complete 
representation of the genome is available. Users working with data from a genome without a 
reference should first generate a high-quality assembly using one of the several whole-genome 
assemblers 70, 71. This procedure can be easily adapted to work with a draft assembly, but no 
testing has been performed and the results could be unpredictable. Tumor/normal and multiple 
family members can be analyzed together, but joint calling across a large number of samples is 
not support by Scalpel, although population frequencies can be used to identify systematic 
sequencing errors. This protocol also assumes that sequencing was performed using the Illumina 
sequencing platform, including MiSeq, HiSeq 2000, and HiSeq X sequencers. Other sequencing 
technologies (e.g, Ion Torrent, Sanger, SOLiD) can be also used for studies like the one reported 
here, but the software pipeline used in this thesis does not support them. Finally, no graphical 
user interface is available for the steps performed in this protocol; all the operations are 
performed through the UNIX shell. Some of the tools used here, such as BWA and Picard tools, 
are now available through cloud-based web interface systems such as Galaxy 
(https://usegalaxy.org/). We look forward to seeing Scalpel integrated into such systems in the 
near future. 
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Tables and figure in this chapter 
 
Tables 
 
Table 2.1. Comparisons and validation rates of indel detection with WGS and WES 

 Indels Valid PPV Indels (>5 bp) Valid (>5 bp) PPV (>5 bp) 
WGS-WES 
intersection 160 152 95.0% 18 18 100% 

WGS-specific 145 122 84.1% 33 25 75.8% 
WES-specific 161 91 56.5% 1 1 100% 

Note: The validation rate, positive predictive value (PPV), is computed by the following: 
PPV=#TP/(#TP+#FP), where #TP is the number of true-positive calls and #FP is the number of 
false-positive calls. Both WGS (mean coverage = ~70X) and WES (mean coverage = ~330X) 
were done on Illumina Hiseq 2000 sequencers under 2x100bp mode (described in Fang et al.)17. 
The construction of WGS libraries here involved a procedure of PCR amplification. The exome 
capture kit used for WES was NimbleGen SeqCap EZ Exome v2.0, which was designed to pull 
down 36 Mb of the human genome. 
 
Table 2.2. Expected QC-passed read and mapping statistics 
Sample QC-passed  Duplicated  Duplicated rate Mapped reads Mapping rate 
NA12877 1,629,579,046 39,439,277 2.42% 1,618,796,107 99.34% 
NA12878 1,578,485,183 36,266,744 2.30% 1,568,334,656 99.36% 
NA12881 1,559,137,724 39,169,529 2.51% 1,547,550,351 99.26% 
NA12882 1,617,281,311 38,592,443 2.39% 1,607,709,559 99.41% 
Average 1,596,120,816 38,366,998 2.40% 1,585,597,668 99.34% 
 
Figures 
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Figure 2.1. Main steps in the Scalpel protocol. Starting from raw sequencing data, reads are 
first aligned to the human genome using the BWA 72 software package (step 4 in Procedure). 
Following the standard practices in the field, the alignments are sorted (using Samtools 15, step 5 
in Procedure) and duplicates are marked (using Picard tools -  
http://broadinstitute.github.io/picard/, step 6 in Procedure). Finally, indels can be called with 
Scalpel (steps 8-9 in Procedure) and statistical assessment of the variant calls can provide 
diagnostics of the data (step 10-20 in Procedure). Note that, since Scalpel locally re-assembles 
the reads, this procedure is free of computationally expensive techniques such as indel 
realignment and base quality recalibrations. The BAM files obtained after the earlier steps are 
the input for Scalpel micro-assembly procedure. Scalpel then localizes the reads with a window, 
constructs a de Bruijn graph, resolves repeat structure, and enumerate haplotype paths. Figure is 
adapted from Narzisi et al51.  
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Figure 2.2. Overview of the indel variant filtering cascade. This figure is a conceptual 
representation of the filtering cascade in the materials section. It is used to report high quality de 
novo and inherited indels within the target region; coding regions in this case. (1) Inherited and 
de novo indels are analyzed separately; (2) only variants within the target regions are exported; 
(3) Low quality indels are identified and removed based on sequence composition (e.g., STRs); 
(4) Additional filters based on supporting coverage and allele balance are used to reduce the 
number of false-positives.  
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Figure 2.3. Higher coverage can improve Scalpel’s sensitivity performance of indel 
detection with WGS data. The sensitivity performance is assessed using the high confidence 
call set shared by WGS and WES data (both Illumina HiSeq2000 platform) from eight samples 
using all available coverage (70x mean coverage). We down-sampled the reads to a fraction of 
the original number and performed indel calling again. Compared to the original set at 70X mean 
coverage, we report the percentage of variants that could still be called at a reduced coverage. 
The Y-axis represents the percentage of the high confidence indels revealed at a down-sampled 
dataset. The X-axis represents the mean coverage of the eight down-sampled genomes. Among 
the entire call set, about 61% of the indels are heterozygous and the remaining 39% are 
homozygous. Performance of heterozygous (blue) and homozygous (green) indel detection are 
shown separately. Reduced coverage indeed affected the detection of heterozygous indels more 
than homozygous ones. 
 

 
Figure 2.4. Comparison of standard WGS and PCR-free data based on indel quality. Indel 
quality was defined with respect to alternative allele coverage and chi-square score, which is 
described in details in the materials section and Fang et al. 17.  “Intersection” represents the 
shared indels from both the PCR-free and standard WGS indels. The number reported above a 
call set represent the total number of indels in that subset; the two data shared 2684 variants, 
while 310 and 538 were specific to standard WGS and PCR-free, respectively. Indel calls are 
further categorized (side-bars) based on their sequence composition: poly*-A, poly-C, poly-G, 
poly-T, other-STR, and non-STR. To be noted, although poly-C and poly-G indels existed in the 
call-set, their fractions are too minimal to be visualized in the plot. In fact, ploy-A, poly-T and 
non-homopolymer STRs dominate the STR indels. *Homopolymer – poly. 
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Figure 2.5. Whole genome mutational concordance. (a) Concordance and discordant indel 
mutations as a function of the phred-scaled Fisher’s exact score cutoff between primary 
and metastasis for a pair of highly concordant colorectal cancer samples from Branon et al. 
63. Increasing the Fisher’s exact score cutoff substantially reduces the number of private 
indels, while maintaining a similar amount of shared ones. This demonstrates the Fisher’s 
exact score ability to discriminate true mutations from the false positive ones. (b) 
Distribution of variant allele fraction (VAF) as a function of different phred-scaled Fisher’s 
exact score cutoffs for the somatic indels detected in the primary tumor. Increasing the 
cutoff shifts the distribution to the expected 20% VAF for these samples. 
 

 
Figure 2.6. High accuracy of indel detection using Scalpel on WGS data. Scalpel was run in 
the single mode on 30X Illumina Hiseq 2000 2x100bp WGS data described in Narzisi et al. 51 
and later analyzed in Fang et al. 17. This figure shows the size distribution of valid (green) and 
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invalid (gray) indels that are randomly selected for validation (using targeted resequencing) in 
the two previous studies. This validation set includes 160 and 145 candidate variants that were 
WGS-WES intersected and WGS-specific, respectively. Among a total of 305 candidates, 90% 
of them (274) were successfully validated. Positive-predictive value (PPV) is computed by 
PPV=#TP/(#TP+#FP), where #TP is the number of true-positive calls and #FP is the number of 
false-positive calls. 
 

 
Figure 2.7. Size distribution of inherited and denovo indels. The Y-axis represents the 
number of indels, while the X-axis represent the size of indels in base pair. We should expect a 
log-normal distribution of indels with majority of them being short, i.e. less than 5bp in the 
human exonic regions51. This figure was generated using the data from step 15. 
 

 
Figure 2.8 Histograms of low quality homopolymer indels by category. The Y-axis represent 
the number of indels, while the X-axis represent the variant allele fraction (VAF). Homopolymer 
A or T indels should be more abundant than C or G indels in the call set, especially indels with 
very low VAF. Due to the limitation of PCR amplification, homopolymer A or T runs are more 
like result in inaccurate molecules 17. This figure was generated using the data from step 16. 
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Figure 2.9 Variant allele fractions (VAF %) of the inherited indels. Low/High quality indels 
here were defined with respect to the coverage and Chi-square scores described in step 11 and 12. 
VAF of high quality inherited indels should approximately follow a normal distribution with a 
mean of about 50%. In practice, due to sequencing and alignment biases, the mean of the normal 
distribution is usually slightly smaller than 50%. Low-quality indels usually have low VAF, 
especially towards lower than 20%. This figure was generated using the data from step 17. 
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Figure 2.10. Filtering cascade of inherited and de novo indel calls. The numbers in each box 
denote the expected numbers of indel calls remained after filtering. The de novo indels were 
undergone a two-pass search to reduce the number of false positives. The numbers in this figure 
was obtained from step 9, 10, 11, 12, and 22. It is important to use a two-pass search in de novo 
indel calling. Because false-positive calls can be reduced with a more sensitive parameter setting 
used on the parents’ data. 
 

 
 
Figure 2.11 Frame-preserving indels are more abundant within coding sequences (CDS). 
This figure was generated using the data from step 23, which was the set of inherited indels from 
the proband, NA12882. Y-axis represents the number of indels, while the X-axis shows the indel 
size. Stacked bar plots of insertions (red) and deletions (green) are shown in this figure. Indels 
with size that is a multiple of three (frame-preserving) are more abundant than the frame-
disrupting ones.  
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Figure 2.12. Screenshot of the alignment of the de novo deletion in IGV browser.  From the 
top to the bottom are: NA12877 (father), NA12878 (mother), NA12881 (sibling), NA12882 
(proband). The black lines in the alignment of NA12882 show the T deletion in the genome. It is 
clear that this deletion is only present in the proband but not in any other family members. 
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Chapter 3 Characterizing the sources of indel errors 

 
Summary of Contribution 

This chapter describes the characterization of the sources of indel calling errors. The 
analysis and results were published in Genome Medicine17. Han Fang designed the experiments, 
performed the simulation, and analyzed the results. Yiyang Wu generated the MiSeq validation 
data in this chapter. Permission for republication of this material has been granted and is 
available upon request. 
 
Abstract 

Indels, especially those disrupting protein-coding regions of the genome, have been 
strongly associated with human diseases. However, there are still many errors with indel variant 
calling, driven by library preparation, sequencing biases, and algorithm artifacts. We 
characterized whole genome sequencing (WGS), whole exome sequencing (WES), and PCR-free 
sequencing data from the same samples to investigate the sources of indel errors. We also 
developed a classification scheme based on the coverage and composition to rank high and low 
quality indel calls. We performed a large-scale validation experiment on 600 loci, and find high-
quality indels to have a substantially lower error rate than low quality indels (7% vs. 51%). 
Simulation and experimental data show that assembly based callers are significantly more 
sensitive and robust for detecting large indel (>5bp) than alignment based callers, consistent with 
published data. The concordance of indel detection between WGS and WES is low (52%), and 
WGS data uniquely identifies 10.8-fold more high-quality indels. The validation rate for WGS-
specific indels is also much higher than that for WES-specific indels (85% vs. 54%), and WES 
misses many large indels. In addition, the concordance for indel detection between standard 
WGS and PCR-free sequencing is 71%, and standard WGS data uniquely identifies 6.3-fold 
more low-quality indels. Furthermore, accurate detection with Scalpel of heterozygous indels 
requires 1.2-fold higher coverage than that for homozygous indels. Lastly, homopolymer A/T 
indels are a major source of low-quality indel calls, and they are highly enriched in the WES data. 
Overall, we show that accuracy of indel detection with WGS is much greater than WES even in 
the targeted region. We calculated that 60X WGS depth of coverage from the HiSeq platform is 
needed to recover 95% of indels detected by Scalpel. While this is higher than current 
sequencing practice, the deeper coverage may save total project costs because of the greater 
accuracy and sensitivity. Finally, we investigate sources of indel errors (e.g. capture deficiency, 
PCR amplification, homopolymers) with various data that will serve as a guideline to effectively 
reduce indel errors in genome sequencing. 
 
Introduction 

With the increasing use of next-generation sequencing (NGS), there is growing interest 
from researchers, physicians, patients and consumers to better understand the underlying genetic 
contributions to various conditions. For rare diseases and cancer studies, there has been 
increasing success with exome/genome sequencing in identifying mutations that have a large 
effect size for particular phenotypes 73-75. Some groups have been trying to implement genomic 
and/or electronic health record approaches to interpret disease status and inform preventive 
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medicine 76-80. However, we are still facing practical challenges for both analytic validity and 
clinical utility of genomic medicine 81-85. In addition, the genetic architecture behind most human 
disease remains unresolved 86-91. Some have argued that we should bring higher standards to 
human-genetics research in order to return results and/or reduce false-positive reports of 
“causality” without rigorous standards 92, 93. Others have reported that analytic validity for WES 
and WGS is still a major issue, pointing out that the accuracy and reliability of sequencing and 
bioinformatics analysis can and should be improved for a clinical setting 82, 83, 94-97. 

 
At the time of this work in 2014, there was debate whether we should primarily use 

whole genome sequencing (WGS) or whole exome sequencing (WES) for personal genomes. 
Some suggested that a first-tier cost-effective WES might be a powerful way to dissect the 
genetic basis of diseases and to facilitate the accurate diagnosis of individuals with Mendelian 
disorders 98, 99. Others showed that targeted sequencing misses many things 100 and that WGS 
could reveal structural variants (SVs), maintain a more uniform coverage, is free of exome 
capture efficiency issues, and actually includes the noncoding genome, which likely has 
substantial importance 101-104. Some groups directly compared WGS with WES, but thorough 
investigation of indel errors was not the focus of these comparisons 82, 95, 96, 105. Substantial 
genetic variation involving indels in the human genome had been previously reported but 
accurate indel calling was still difficult 106-108. There has been a dramatic decrease of sequencing 
cost over the past few years, and this cost has decreased further with the release of the Illumina 
HiSeq X Ten sequencers which have capacity for nearly 18,000 whole human genomes per 
instrument per year. However, it is still unclear whether we can achieve a high-accuracy personal 
genome with a mean coverage of 30X from the Illumina HiSeq X Ten sequencers. In addition, 
there have been questions on the use of PCR amplification in the library preparations for NGS, 
although very few had characterized the PCR errors that might be complicating the detection of 
insertions and deletions. 

 
Concordance rates among indels detected by the GATK Unified Genotyper (v1.5), 

SOAPindel (v1.0) and SAMtools (v0.1.18) are reportedly low, with only 26.8% agreeing across 
all three pipelines 82. Another group also reported low concordance rates for indels between 
different sequencing platforms, further showing the difficulties of accurate indel calling96. Other 
efforts have been made to understand the sources of variant calling errors 84. Common indel 
issues, such as realignment errors, errors near perfect repeat regions, and an incomplete reference 
genome have caused problems for approaches working directly from the alignments of the reads 
to reference 109, 110. De novo assembly using de Brujin graphs has been reported to tackle some of 
these limitations 111. Fortunately, with the optimization of micro-assembly, these errors have 
been reduced with a novel algorithm, Scalpel, with substantially improved accuracy over GATK-
HaplotypeCaller (v3.0), SOAP-indel (v2.01), and six other algorithms 112. Based on validation 
data, the positive prediction rate (PPV) of algorithm specific indels was high for Scalpel (77%), 
but much lower for GATK HaplotypeCaller (v3.0) (45%) and SOAP-indel (v2.01) (50%)112.  

 
Thus, we set out to investigate the complexities of indel detection on Illumina reads using 

this most accurate indel-calling algorithm. Firstly, we used simulation data to understand the 
limits of how coverage affects indel calling with Illumina-like reads using GATK-
UnifiedGenotyper and Scalpel. Secondly, we analyzed a dataset including high coverage WGS 
and WES data from two quad families (mother, father and two children), in addition to extensive 
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high-depth validation data on an in-house sample, K8101-49685s. In order to further understand 
the effects of PCR amplification on indel calling, we also downloaded and analyzed two WGS 
datasets prepared with and without PCR from the well-known HapMap sample NA12878. We 
characterized the data in terms of read depth, coverage uniformity, base-pair composition pattern, 
GC contents and other sequencing features, in order to partition and quantify the indel errors. We 
were able to simultaneously identify both the false-positives and false-negatives of indel calling, 
which will be useful for population-scale experiments. We observed that homopolymer A/T 
indel are a major source of low quality indel and multiple signatures. As more and more groups 
start to use these new micro-assembly based algorithms, practical considerations for 
experimental design should be introduced to the community. Lastly, we explicitly addressed the 
question concerning the necessary depth of coverage for accurate indel calling using Scalpel for 
WGS on HiSeq sequencing platforms. This work provided important insights and guidelines to 
achieve a highly accurate indel call set and to improve the sequencing quality of personal 
genomes. 
 
Methods 
 
Analysis of Simulated Data, WGS and WES data 

We simulated Illumina-like 2*101 paired-end reads with randomly distributed indel, 
which ranged from 1 bp to 100 bp. The simulated reads were mapped to human reference 
genome hg19 using BWA-mem (v0.7-6a) using default parameters 113. The alignment was sorted 
with SAMtools (v0.1.19-44428cd) 15 and the duplicates were marked with Picard using default 
parameters (v1.106), resulting in a mean coverage of 93X. We down-sampled the reads with 
Picard to generate 19 sub-alignments. The minimum mean coverage of the sub-alignments was 
4.7X and increased by 4.7X each time, before it reached the original coverage (93X). Scalpel 
(v0.1.1) was used as a representative of assembly based callers to assemble the reads and call 
indel from each alignment separately, resulting in 20 indel call-sets from these 20 alignments, 
using the following parameter setting: “--single --lowcov 1 --mincov 3 –outratio 0.1 --numprocs 
10 --intarget”. We also used GATK-UnifiedGenotyper (v3.2-2) as a representative of alignment 
based callers to call indel from each set of alignments 114. We followed the best practices on the 
GATK website, including all the pre-processing procedures, such as indel realignment and base 
recalibration. Scalpel (v0.1.1) internally left-normalized all the indel so we only used GATK-
LeftAlignAndTrimVariants on the indel calls from UnifiedGenotyper. We then computed both 
the sensitivity and false discovery rate (FDR) for both indel callers, with respects to all and large 
(>5 bp) indel. The same versions and the same sets of parameter settings for BWA-mem, Picard, 
and Scalpel, were also used in the rest of the study, including the analysis of WGS/WES data, 
standard WGS and PCR-free data. 

 
Blood samples were collected from eight humans of two quartets from the Simons 

Simplex Collection (SSC). Both WGS and WES were performed on the same genomic DNA 
isolated from these eight blood samples. The exome capture kit used was NimbleGen SeqCap EZ 
Exome v2.0, which was designed to pull down 36Mb (approximately 300,000 exons) of the 
human genome hg19. The actual probe regions were much wider than these targeted regions, 
because probes also covered some flanking regions of genes, yielding a total size of 44.1Mb. All 
of the libraries were constructed with PCR amplification. We sequenced both sets of libraries on 
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Illumina HiSeq2000 with average read length of 100 bp at the sequencing center of Cold Spring 
Harbor Laboratory (CSHL). We also generated WGS (mean coverage=30X) and WES (mean 
coverage=110X) data from an in-house sample K8101-49685s (not from SSC), which was 
extensively investigated in the later validation experiment. Exome capture for this sample was 
perfomed using the Agilent 44Mb SureSelect protocol and the resulting library was sequenced 
on Illumina HiSeq2000 with average read length of 100 bp. All of the HiSeq data from K8101-
49685s have been submitted to the Sequence Read Archive (SRA) 
(http://www.ncbi.nlm.nih.gov/sra/) under project accession number SRX265476 (WES data) and 
SRX701020 (WGS data). All of the HiSeq data from eight SSC samples have been submitted to 
the National Database for Autism Research (NDAR) (http://ndar.nih.gov/) under collection 
“Wigler SSC autism exome families” (project number: 1936). 

 
We excluded all of the low quality raw reads, aligned the remaining high quality ones 

with BWA-mem, and mark-duplicated with Picard. We used Scalpel to assemble the reads and 
identify indels under both single mode and quad mode. The single mode outputs all of the 
putative indels per person, and the quad mode outputs only the putative de novo indels in the 
children in a family. We expanded each of the exons by 20 bp upstream and 20 bp downstream 
in order to cover the splicing sites and we called this set of expanded regions the “exonic 
targeted regions”. The exonic targeted regions are fully covered by the exome capture probe 
regions. We excluded indels that were outside the exonic targeted regions in the downstream 
analysis. We left-normalized the indels and compared the two call sets for the same person using 
two criteria: exact-match and position-match. Position-match means two indels have the same 
genomic coordinate, while exact-match additionally requires that two indels also have the same 
base-pair change(s). We called the indels in the intersection based on exact-match as WGS-WES 
intersection indels. Further, we named the indels only called from one dataset as “WGS-specific” 
and “WES-specific” indels, respectively. Regions of the above three categories of indels were 
partitioned and investigated separately. In particular, we focused on regions containing short 
tandem repeats (STR) and homopolymers. We used BedTools (v2.18.1) with the region file from 
lobSTR (v2.04) to identify homopolymeric regions and other STR (dual repeats, triplets and etc.) 
in the human genome 115-117.  

 
We used Qualimap (v0.8.1) to generate summary statistics of the alignment files of 

interest 118. For a certain region, we define the proportion of a region covered with at least X 
reads to be the coverage fraction at X reads. In addition to the coverage histograms, we also 
computed the coefficient of variation (C$) to better understand the coverage uniformity of the 
sequencing reads. An unbiased estimator of C$ can be computed by C$

∗ = 1 + )
*+

∗ (,
-
), where 

s represents the sample standard deviation and x represents the sample mean. In our case, 
C0

∗asymtotically approaches to (,
-
) as the sample size (n) of the data is usually greater than 

10,000. The reference genome used here is hg19. There were four region files that we used for 
this part of the analysis. The first one is the exon region bed file from NimbleGen. We generated 
the other three region files by expanding 25 bp upstream and downstream around loci of WGS-
WES intersection indels, WGS-specific indels, and WES-specific indels, respectively. We 
followed all of the default settings in Qualimap except for requiring the homopolymer size to be 
at least five (-hm 5). Finally, we used Matplotlib to generate the figures with the raw data from 
Qualimap under the Python environment 2.7.2 119.  
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We downloaded PCR-free WGS data of NA12878 (access Code: ERR194147), which is 
publicly available in the Illumina Platinum Genomes project. We also download another WGS 
dataset of NA12878 with PCR amplification during library prepartion, and we called it standard 
WGS data (SRA access Code: SRR533281, SRR533965, SRR539965, SRR539956, SRR539947, 
SRR539374, SRR539357). Both data were generated on the Illumina HiSeq 2000 platform. 
Although the PCR-free data was not supposed to have any PCR duplicates, we observed a 
duplication rate of 2% as reported by Picard, and we excluded these reads, yielding 50X mean 
coverage for both datasets after removing PCR duplicates. We used the same methods for 
alignment, indels calling, and downstream analysis as described above. indels outside the exonic 
targeted regions were not considered in the downstream analysis. 

 
We were interested to know how depth of coverage affects the sensitivity of indel 

detection in WGS data. To accurately measure this sensitivity, one needs a robust call set as a 
truth set. Fortunately, we had exact-match indels concordant between high coverage WGS and 
high coverage WES data. We therefore measured sensitivity based on these WGS-WES 
intersection indels, rather than on the whole set of indels, which might contain more false 
positives. We down-sampled each WGS dataset to mean coverages of 20X, 32X, 45X and 57X. 
We then used Scalpel to call indels from the resulting 4 sub-alignment files for each sample and 
computed the sensitivity at a certain mean coverage (X) for each sample by the equation:  

 Sensitivity at X coverage =  # intersection indels at X coverage
# intersection indels at the full coverage Equation 3.1 

 
This metric measures how many of the WGS-WES intersection indels can be discovered 

as a function of read depth. We also analyzed the WGS-WES intersection indel call set in terms 
of zygosity: WGS-WES intersection heterozygous and homozygous indel, subsequently 
measuring the sensitivity with respect to different zygosities. 
 
Generation of MiSeq validation data  

We randomly selected 200 indels for validation on an in-house sample K8101-49685s 
from each of the following categories: 1) indels called from both WGS and WES data (WGS-
WES intersection), 2) WGS-specific indels, 3) WES-specific indels. Out of these 600 indels, 97 
were covered with more than 1,000 reads in the previous MiSeq data set reported by Narzisi et al. 
Hence, we only performed additional Miseq validation on the remaining 503 loci 112. PCR 
primers were designed using Primer 3 to produce amplicons ranging in size of 200 - 350 bp, with 
indels of interest located approximately in the center. Primers were obtained from Sigma-Aldrich 
in 96-well mixed-plate format, 10 µmol/L dilution in Tris per oligonucleotide. 25 µL PCR 
reactions were set up to amplify each indel of interest using K8101-49685s’ genomic DNA as 
template and LongAmp Taq DNA polymerase (New England Biolabs). PCR products were 
visually inspected for amplification efficiency using 1.5% agarose gel electrophoresis, and then 
pooled for ExoSAP-IT (Affymetrix) cleanup. The cleanup product was purified using QIAquick 
PCR Purification Kit (Qiagen) and quantified by Qubit dsDNA BR Assay Kit (Invitrogen). 
Subsequently, a library construction was performed following the TruSeq Nano DNA Sample 
Preparation Guide for the MiSeq Personal Sequencer platform (Illumina). Before loading onto 
the MiSeq machine, the quality and quantity of the sample was reevaluated using the Agilent 
DNA 1000 Kit on the Agilent Bioanalyzer and with quantitative PCR (Kapa Biosystems).  
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We generated high quality 250 bp paired-end reads with an average coverage of 55,000X 
over the selected indels. We aligned the reads with BWA-MEM (v0.7.5a) to hg19, sorted the 
alignment with SAMtools (v0.1.18) and marked PCR duplicates with Picard (v1.91). The 
alignment quality control showed that 371 out of the 503 loci were covered with at least 1,000 
reads in the data and we only considered these loci in the downstream analysis. Therefore, we 
have validation data on 160, 145 and 161 loci from the WGS-WES intersection, WGS-specific, 
and WES-specific indels, respectively. As reported by Narzisi et al, mapping the reads 
containing a large indel (near or greater than half the size of the read length) is problematic. This 
was particularly difficult when the indel is located toward either end of a read 112. To avoid this, 
we used very sensitive settings with Bowtie2 (--end-to-end --very-sensitive --score-min L,-0.6,-
0.6 --rdg 8,1 --rfg 8,1 --mp 20,20) to align the reads because it can perform end-to-end alignment 
and search for alignments with all of the read characters 120. We generated the true indel call set 
by two steps: 1) used GATK UnifiedGenotyper to call indels from the BWA-MEM alignment, 2) 
performed manual inspection on the large indels from the Bowtie2 alignment (require at least 25% 
of the reads supporting an indel) 114. The alignments were realigned with the GATK (v2.6-4) 
IndelRealigner and base quality scores were recalibrated before variants were called with 
UnifiedGenotyper. Left-normalization was performed to avoid different represenations of a 
variant. An indel was considered valid if a mutation with the same genomic coordinate and the 
same type of variation exists in the validation data. For example, an insertion call would not be 
considered valid if the variant with the same coordinate in the validation data was instead a 
deletion. All of the MiSeq data can be downloaded from the Sequence Read Archive under 
project accession number SRX386284. 
 
Classifications of indels with calling quality  

We previously benchmarked Scalpel with respect to the coverage of the alternative allele 
(Co

Alt) and the k-mer Chi-Square scores (χ2). Scalpel applied the standard formula for the Chi-
Square statistics and applied to the K-mer coverage of both alleles of an indel.  

 χ2 = (Co
Ref − Ce

Ref)2

Ce
Ref + (Co

Alt − Ce
Alt)2

Ce
Alt  Equation 3.2 

where Co
Refand Co

Alt are the observed k-mer coverage for the reference and alternative alleles, 
Ce

Ref and Ce
Alt are the expected k-mer coverage, i.e. Ce

Ref = Ce
Alt = Co

Ref+Co
Alt

2 . 
 
Here we used 466 indels from the validation data to understand the relationship between 

the FDR and these two metrics (Supplemental Figure S4). Our validation data showed that with 
the sameχ2, indels with a lower Co

Alt  tend to have a higher FDR, especially for indels with Co
Alt 

not greater than 10 (Supplemental Figure S4). For indels with relatively the same Co
Alt, a higher 

χ2 also made them less likely to be valid. We noticed that the calling quality could be 
determined by the error rate inferred by these two metrics. To achieve a consistent accuracy for 
indels with different Co

Alt, we classified indel calls and determined the calling quality with the 
below criteria: 

High quality indels: low error-rate (7%) indels meeting any of the three cutoffs: Co
Alt >

10  and χ2 < 10.8, or 5 < Co
Alt < 10 and χ2 < 4.5, or Co

Alt < 5 and χ2 < 2; 
Low quality indels: high error-rate (51%) indels meeting the following cutoff: Co

Alt < 10  
andχ2 > 10.8; 
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Moderate quality: The remaining indels that do not fall into the above two categories. 
 
Results  
 
Characterizing alignment and assembly based callers at different coverage 

We started our study with asking whether depth of sequencing coverage affect different 
kinds of indels calling algorithms. (e.g. assembly based callers  and alignment based callers). 
Thus, we began with simulated reads with known error rates across the genome to answer this 
question. We used GATK-UnifiedGenotyper (v3.2-2) and Scalpel (v0.1.1) as a representative of 
alignment based callers and assembly based callers, repsectively. Figure 3.1A shows that for 
both algorithms, higher coverage improves sensitivity of detecting both general indels (i.e. any 
size starting from 1 bp) and large indels (i.e. size greater than 5 bp). For general indels detection 
with both algorithms, this improvement did not saturate until a mean coverage of 28X. 
Furthermore, detecting large indels was more difficult than general indels because the increase of 
sensitivity did not saturate until reaching a mean coverage of 42X. However, there were 
substantial differences of sensivity performance between these two algorithms for large indel 
detection. We noticed that even at a very high coverage (mean coverage = 90X), GATK-
UnifiedGenotyper could call only about 52% of the large indels while Scalpel could reveal more 
than 90% of them. This is because GATK-UnifiedGenotyper tries to infer genotypes from 
alignment and large indels could complicate or distort the correct mapping. To achieve a 
sensitivity of 90% with Scalpel, a mean coverage of 30X was required for general indel detection 
while 90X was needed to detect large indels at a similar sensitivity. This showed that much 
higher coverage is needed for large indel detection, especially to maintain coverage across the 
indel and to have enough partially mapping or soft-clipped reads to use for the micro-assembly.  

 
The FDRs of Scalpel were robust to the changes in coverage while GATK-

UnifiedGenotyper’s FDRs were affected by coverage. For the detection of large indels with 
Scalpel, the FDRs marginally decreased as the mean coverage increased from 5X to 28X, and 
remained basically the same again from 33X to 93X (Figure 3.1B). This indicates that for large 
indels, insufficient coverage results in more assembly errors, which results in a higher error rate 
for micro-assembly variant calling. Based on the simulation data, a mean coverage of at least 
30X is needed to maintain a reasonable FDR for Scalpel. In contrast, FDRs of GATK-
UnifiedGenotyper are much higher and more unstable at different coverages, especially for large 
indels.  Nonetheless, since these results were based on simulation data, which does not include 
the effects of any sequencing artifacts on indel calling, these values establish the upper bound of 
accuracy and performance compared to genuine sequence data. Previous studies reported that 
local assembly allows to call indels much larger than those that can be identified by the 
alignment 85, 112, 121. Consistent with previous reports, our simulated data suggested that assembly 
based callers can reveal a much larger spectrum of indels than alignment based callers, in terms 
of their size. Furthermore, Narzisi et al. recently reported that Scalpel is more accurate than 
GATK-HaplotypeCaller and SOAPindel, especially within regions containing near-perfect 
repeats 112. Thus, in order to control for artifacts from callers, we chose to use Scalpel as the only 
indel caller in our downstream analysis on the experimental data, which could help to better 
clarify differences between data types. 
 



 

32 
	

WGS vs. WES: Low concordance on indel calling 
We analyzed a dataset including high coverage WGS and WES data from eight samples 

in the SSC. To make a fair comparison, the indel calls were only made from the exonic targeted 
regions as explained in the Methods. The mean concordance between WGS and WES data was 
low, 53% using exact-match and 55% using position-match (Figure 2, Table 3.1). Position-match 
means the two indels have the same genomic coordinate, while exact-match additionally requires 
that the two indels also have the same base-pair change(s) (see Methods). When we excluded 
regions with less than one read in either dataset, the mean concordance rates based on exact 
match and position-match increased to 62% and 66%, respectively (Table 3.1). If we excluded 
regions with base coverage in either dataset with less than 20, 40, 60, or 80 reads, the mean 
concordance rate based on exact-match and position-match both continued to increase until 
reaching a base coverage of 80 reads (Table 3.1). This showed that some indels were missing in 
either dataset because of low sequencing efficiency in those regions. Although WES data had 
higher mean coverage than WGS data, we were surprised to see that in regions requiring at least 
80 reads, there were more indels that were specific to WGS data than WES data (21% vs. 4%). 
Regions with excessive coverage might indicate problems of sequencing or library preparation, 
and this highlights the importance of coverage uniformity in WGS (Figure 3.3AB, Table 3.2). It 
should be noted that mapping artifacts could also be a possible reason. For example, the reads 
may originate in regions which are absent from the reference genome, such as copy number 
variants 122. Based on exact-match, the proportion of the WGS-specific indels was 2.5-fold 
higher than that of WES-specific indels (34% vs. 14%). This difference was even larger based on 
position-match (3-fold). In principle, the reasons for this could be either high sensitivity of indel 
detection with WGS data or high specificity of indel detection with WES data, and we will 
examine these options in more detail. 
 
Coverage distributions of different regions in WGS and WES data 

An ideal sequencing experiment should result in a high number of reads covering a 
region of interest uniformly. Using the eight SSC samples, we investigated the coverage 
behaviours of the WGS and WES data by the following: distribution of the read depth, mean 
coverage, coverage fraction at X reads, coefficient of variation (C0) (See methods). Hence, 
ideally one should expect to see a normal distribution of read depth with a high mean coverage 
and a small C0. Comparisons of the coverage distributions are shown in the following order: 1) 
Exonic targeted regions, i.e. the exons that the exome capture kit was designed to pull down and 
enrich; 2) WGS-WES intersection indel regions, i.e. the regions where WGS and WES revealed 
the identical indels based on exact-match; 3) WGS-specific indel regions, i.e. the regions where 
only WGS revealed indel based on position-match; 4) WES-specific indel regions, i.e. the 
regions where only WES revealed indels based on position-match.  

 
First, in the exonic targeted regions, the mean coverages across eight samples were 71X 

and 337X for WGS and WES data, respectively (Figure 3.3AB, Supplemental Table S1). We 
noticed that there was a recovery issue with WES in some regions, as the coverage fraction at 1X 
was 99.9% in WGS data but only 84% in WES data, meaning that 16% of the exonic targeted 
regions were not recovered, which could be due to capture inefficiency or other issues involving 
DNA handling during the exome library preparation and sequencing protocols (Figure 3.3CD, 
Supplemental Table S2). The coverage was much more uniform in the WGS data than that in the 
WES data because C0 of the WGS data was much lower (39 % vs. 109%, Figure 3.3AB, Table 
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3.2). Second, in the WGS-WES intersection indel regions, the mean coverage across eight 
samples were 58X and 252X for WGS and WES data, respectively (Supplemental Figure S1A & 
B, Supplemental Table S1). We noticed that there was an increase of coverage uniformity for 
WES in the WGS-WES intersection indel regions, relative to the exonic targeted regions, 
because C0 was lower (109% vs. 97%) (Table 3.2, Figure 3.3B, Supplemental Figure S1b). We 
noticed WGS was able to reveal WGS-WES intersection indels at a much lower coverage 
relative to WES, which we attribute to a better uniformity of reads across the genome (C0: 47% 
vs. 97%, Table 3.2). The coverage distributions were skewed in the WES data, with some 
regions poorly covered and other regions over saturated with redudant reads. 

 
Third, in WGS-specific indel regions, the mean coverages across eight samples were 61X 

and 137X for WGS and WES data, respectively (Figure 3.4, Supplemental Table S1). Compared 
to the entire exonic targeted regions, the mean coverage for WES data was significantly reduced 
in these regions (137X vs. 337X), and 44% of the regions were not covered with a single read 
(Figure 3.4). We noticed that compared to the WGS data, the WES data poorly covered these 
regions with 20 reads or more (94% vs. 31%, Figure 3.4CD). In these regions, the coverage 
unifomity of the WES data was much lower than that of the WGS data (C0: 282% vs. 75%, 
Figure 3.4AB, Table 3.2). The reason why WES data missed these indels could be insufficient 
coverage around the indels in these regions. Finally, in WES-specific indels regions, the mean 
coverages across eight samples were 41X and 172X for WGS and WES data, respectively 
(Supplemental Figure S2A & B, Supplemental Table S1). In these regions, both data had a 
relatively high coverage and the WES data covered most these regions with at least one read 
(Supplemental Figure S2C & D). However, we noticed that the WES data still had a much lower 
coverage unifomity (C0: 117% vs. 56%, Table2). In order to better understand these issues, we 
used the WGS-WES intersection indel set as a positive control and proceeded to assess each call 
set with newly developed quality criteria. 
 
MiSeq validation of indels in WGS and WES data on the sample K8101-49685s 

In order to understand error rates and behaviours of the indel call from the WGS and 
WES data, we randomly selected 200 indels for MiSeq validation on the sample K8101-49685s 
from each of the following categories: 1) indels called from both WGS and WES data (WGS-
WES intersection indels), 2) WGS-specific indels, 3) WES specific indels. First, the validation 
rate of WGS-WES intersection indels was in fact very high (95%), indicating indels called from 
both WGS and WES data were mostly true-positives (Table 3.3). Second, the validation rate of 
WGS-specific indels was much higher than that of WES-specific indel (84% vs. 57%). Third, 
among the validation set, large indels (> 5 bp) that were called from both the WGS and WES 
data were 100% valid, while the validation rate of large indels that were specific to the WGS 
data  was only 76%. However, we noticed that there was only one large indel specific to the 
WES data that we selected for validation. Since the sampling was performed randomly, we 
examined the original call set to understand this phenomenon. Only 9% of the WGS-WES 
intersection indels (176) and 21% of the WGS-specific indels (106) were greater than 5 bp 
(Table 3.4). But only 1.5% of the WES-specific INDELs were greater than 5 bp, meaning only 
10 indels were large according to our definition. This showed that the WES data missed most 
large indels, which I speculate might be due to capture deficiency or some other procedure 
related to the process of exome capture and sequencing. In particular, large indels could disrupt 
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the base pairing that occurs during the exome capture procedure, which would then result in 
insufficient coverage in those regions (Figure 3.4).  
 
Assessment of the indels calls sets from WGS and WES 

To understand the error profile of the WGS and WES data with a larger sample size, I 
developed a classification scheme based on the validation data and applied them to the eight 
samples in the Simons Simplex Collection (SSC). Three combinations of thresholds were used to 
define the calling quality of an indel call as either high, moderate or low quality based on the 
following two metrics: the coverage of the alternative allele and the k-mer Chi-Square score of 
an indel (see Methods). Based on those cutoffs, there was 7.3-fold difference between high-
quality and low-quality INDELs in terms of their error rates (7% vs. 51%). This suggests that my 
classification scheme is able to effectively distinguish behaviours of problematic indel calls from 
likely true-positives. Our classification scheme is also useful for eliminating false de novo indel 
calls in family-based studies. Futhermore, WGS-WES intersection and WGS-specific indel seem 
to be reliable calls, and the majority of the indels in these two call sets were of high-quality, 89% 
and 78% respectively. Only a very small fraction of them were of low-quality, 2% and 7% 
respectively. (Figure 3.5, Supplemental Table S3). In contrast, for WES-specific indels, there 
was a striking enrichment of low-quality events (41%), and a 4.1-fold decrease of the high-
quality events (22%). Notably, among these 8 samples. there were 991 WGS-specific indels and 
326 WES-specific indels, and from these, 769 of WGS-specific indels and 71 of the WES-
specific indels were of high quality. This comparison determined that WGS yielded 10.8-fold 
more high quality indels than WES according to our classification scheme. Futhermore, WES 
produced 133 low quality indels per sample, while WGS only produced 71 low quality indels per 
sample. That being said, WES yielded 1.9-fold more low quality indels. This indicates WES 
tends to produce a larger fraction of error-prone indels, while WGS reveals a more sensitive and 
specific set of indels. 

 
In order to understand what was driving the error rates in different data sets, we 

partitioned the indels according to their sequence composition: homopolymer A (poly-A), 
homopolymer C (poly-C), homopolymer G (poly-G), homopolymer T (poly-T), short tandem 
repeats (STR) except homopolymers (other STR), and non-STR. We noticed that for the high 
quality events, the majority of the WGS-WES intersection indels (70%) and WGS-specific indels 
(67%) were within non-STR regions (Figure 3.6, Supplemental Table S4 & S5). On the contrary, 
the majority of the high quality indels specific to WES were within poly-A (24%) and poly-T 
regions (30%). When we compared the low quality indels to the high quality indels, there were 
consistent enrichment of homopolymer A or T (poly-A/T) indels in all three call sets, 2.3-fold for 
WGS-WES intersection events, 2.1-fold for WGS-specific events, and 1.5-fold for WES-specific 
events. The WES-specific call set contained a much higher proportion (83%) of Poly-A/T indels 
from the low-quality indels, relative to the WGS-WES intersection call set (44%), and the WGS-
specific call set (45%). This suggested that poly-A/T is a major contributor to the low quality 
indels, which gives rise to much more indel errors. I explored this further in the comparison of 
PCR-free and standard WGS data below. 
 
Sources of multiple signatures in WGS and WES data 

Another way of understanding indel errors is to look at multiple signatures at the same 
genomic location. Multiple signatures means that for the same genomic location, there are more 
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than one indels called. If we assume only one signature can be the true indel in the genome, any 
additional signatures would represent false-positive calls. So if we have a higher number of 
multiple signatures, it means that these reads contained more indel errors or the algorithm tends 
to make more mistakes in these regions. We combined the call sets from both datasets and 
identified multiple signatures in the union set for each sample. In order to understand the error 
behaviors in the above assessment, we also partitioned the signatures by the same regional 
criteria. We noticed that the poly-A/T indels are the major source of multiple signatures, which 
are enriched in WES data (72% for WES vs. 54% for WGS). In particular, there is a higher 
number of poly-A (35 vs. 25) and poly-T (36 vs. 16) indel errors in the WES data than in the 
WGS data (Figure 3.7). We investigated the source of multiple signatures by the numbers of 
reads containing homopolymer indels inferred by the CIGAR code (Figure 3.8). Figure 3.8 
showed that there is a much higher proportion of poly-A/T indels in the WES-specific regions 
from both WGS (56%) and WES data (64%), relative to other regions. In addition, WES data has 
also 6.3-fold more reads than WGS data in the regions with indels specific to WES data (11251 
vs. 1775, Supplemental Table S7). According to Qualimap, a large number of homopolymer 
indels might indicate a problem in sequencing for that region. Here I particularly identified the 
effects of these problematic sequencing reads on indel calling, which revealed more multiple 
signatures of poly-A/T indels. 
  
Standard WGS vs. PCR-free: assessment of indels calling quality 

The concordance rate within the exonic targeted regions between standard WGS (defined 
as WGS involving PCR during library construction) and PCR-free data on NA12878 using 
exact-match and position-match were 71% and 76%, respectively (Figure 3.9). Note that both 
data used here are WGS data, so it is not surprising that these concordance rates were higher than 
those between WGS and WES, even for regions having at least one read in both datasets. Based 
on exact-match, the proportion of indels specific to standard WGS data was 18%, which is 1.6-
fold higher than the proportion of indels specific to PCR-free data (11%). This ratio was similar 
based on position-match (1.7-fold). Like previous assessments, we classified the three call sets 
with respect to calling quality. We again used the indels called from both standard WGS and 
PCR-free data as a positive control. Figure 3.10 shows that 89% of the standard WGS & PCR-
free intersection indels are considered as high quality, 9% as moderate quality, and only 2% as 
low quality. However, for indels specific to standard WGS data, there is a large proportion of 
low quality events (61%), and a very limited proportion are of high quality (7%). There were on 
average 310 indels specific to PCR-free data and 538 indels specific to standard WGS data. 
Notably, 177 of the PCR-free-specific indels and 40 of the standard-WGS-specific indels were of 
high quality, suggesting that in these specific regions, PCR-free data yielded 4.4-fold more high 
quality indels than standard WGS data. Furthermore, 326 of the standard-WGS-specific indels 
were of low quality, while in the PCR-free-specific call set, 52 indels were of low quality. That 
being said, in regions specific to data types, standard WGS data yielded 6.3-fold more low 
quality indels. Consistent with the comparisons between WGS and WES data, this suggested 
PCR amplification induced a large number of error-prone indels to the library, and we could 
effectively increase indel calling quality by reducing the rate of PCR amplification. 

 
To understand the behaviors of errors in the poly-A/T regions, we partitioned the indel 

call set by the same six regions again. We noticed that for the high quality events, a majority of 
the standard WGS & PCR-free intersection indels (68%) were within non-STR regions (Figure 
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3.11). The proportion of poly-A/T indels was small for the standard WGS & PCR-free 
intersection call set (20%), larger for PCR-free-specific call set (35%), and even larger for 
standard-WGS-specific call set (51%). This was similar to the WGS and WES comparisons 
because there would be more poly-A/T INDELs when a higher rate of PCR amplification was 
performed. A majority of the high quality INDELs specific to standard WGS data were within 
poly-A (24%) and poly-T regions (38%).  When we compared the low quality indels to the high 
quality ones, there was consistent enrichment of poly-A/T indels in all three call sets, 2.3-fold for 
standard WGS & PCR-free intersection events, 2.3-fold for PCR-free-specific events, and 1.3-
fold for standard-WGS-specific events. For indels specific to standard WGS data and PCR-free 
data, poly-A/T indels represented a large proportion of the low quality indels: 80% and 62%, 
respectively. Ross et al. previously reported that for human samples, PCR-free library 
construction could increase the relative coverage for high AT regions from 0.52 to 0.82, resulting 
in a more uniform coverage 94. This again suggested that PCR amplification could be a major 
source of low quality poly-A/T indels, and a PCR-free library construction protocol might be one 
possible solution to improve the accuracy of calls. 
 
What coverage is required for accurate indel calling? 

Ajay et al. 2011 reported that the number of SNVs detected exponentially increased until 
saturation at 40-45X average coverage 123. However, it was not clear what the coverage 
requirement should be for indel detection. To answer this question, we down-sampled the reads, 
called indels again, and measured corresponding sensitivity for each sample using the WGS-
WES intersection calls as our truth set (Methods). Figure 3.12A shows that we are missing 25% 
of the WGS-WES intersection indels at a mean coverage of 30X. Even at 40X coverage 
recommended by Ajay et al. 2011 123, we could only discover 85% of the WGS-WES 
intersection indels. We calculated that WGS at 60X mean coverage (after removing PCR 
duplicates) from the HiSeq 2000 platform is needed to recover 95% of indels with Scalpel, which 
is much higher than current sequencing practice (Figure 3.12A). If economically possible, WGS 
at 60X mean coverage with PCR-free library preparation would generate even more ideal 
sequencing data for indel detection. Some groups previously reported that determining 
heterozygous SNPs requires higher coverage than homozygous ones 124. The sensitivity of 
heterozygous SNP detection was limited by depth of coverage, which requires at least one read 
from each allele at any one site and in practice much more than one read to account for 
sequencing errors 125. However, the read depth requirement of indel detection in terms of 
zygosity has not been well understood. To answer this question, we took the WGS-WES 
intersection indels and partitioned them by zygosities. We first plotted the pair-wise coverage 
relationship between WGS and WES for each WGS-WES intersection indel. Supplemental 
Figure S3 shows that the detection of homozygous indels starts with a lower coverage, which is 
consistent in both WGS and WES datasets, although the rest of the homozygotes and 
heterozygotes were highly overlapping. To further understand this phenomenon, we measured 
the sensitivity again for heterozygous indels and homozygous indels separately. At a mean 
coverage of 20X, the false negative rates of WGS-WES intersection indels was 45% for 
heterozygous indels and 30% for homozygous indels, which is consistent with the fact that 
homozygous indels are more likely to be detected at a lower coverage shown above (Figure 12B). 
This shows that one should be cautious about the issue of false-negative heterozygous indels in 
any sequencing experiement with a low coverage (less than 30X). Figure 12B also shows that 
detection of heterozygous indels indeed requires higher coverage than homozygous ones 
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(sensitivity of 95% at 60X vs. 50X). Notably, the number of heterozygous indels was 1.6-fold 
higher than homozygous ones (1600 vs. 635 per sample). This re-affirms the need for 60X mean 
coverage to achieve a very high accuracy call set.  
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Discussion 
Despite the fact that both WES and WGS have been widely used in biological studies and 

rare disease diagnosis, limitations of these techniques on indel calling are still not well 
characterized. One reason is that accurate indel calling is in general much more difficult than 
SNP calling. Another reason is that many groups tend to use WES, which we have determined is 
not ideal for indel calling for several reasons. We report here our characterization of calling 
errors for indel detection using Scalpel. As expected, higher coverage improves sensitivity of 
indel calling, and large indel detection is uniformly more difficult than detecting smaller indels. 
We also showed that assembly based callers are more capable of revealing a larger spectrum of 
indels, relative to alignment based callers. There are several reasons for the low concordance for 
WGS and WES on indel detection. First, due to the low capture efficiency, WES failed to 
capture 16% of candidate exons, but even at sites that were successfully captured, there were 
more coverage biases in the WES data, relative to the WGS data. Second, PCR amplification 
introduces reads with higher indel error rate, especially in regions near homopolymer A/T’s. 
Lastly, STR regions, especially homopolymer A/T regions were more likely to result in multiple 
candidates at the same locus. We recommend controlling for homopolymer false calls with a 
more stringent filtering criteria. This is essential for population-scale sequencing projects, 
because the expense of experimental validation scales with the sample size. 

 
Our validation data showed that indels called with both WGS and WES data were indeed 

of high quality and with a low error rate. Even though the WGS data has much lower depth 
coverage in general, the accuracy of indel detection with WGS data is much higher than that with 
WES data. We also showed that the WES data is missing many large indels, which we 
speculated might be related to the technical challenges of pulling down the molecules containing 
large indel during the exon capture process. Homopolymer A/T indels are a major source of low 
quality indels and multiple signature events, and these are highly enriched in the WES data. This 
was confirmed by the comparison of PCR-free and standard WGS data. In terms of sensitivity, 
we calculated that WGS at 60X mean coverage from the HiSeq platform is needed to recover 95% 
of indels with Scalpel. As more and more groups are moving to use new micro-assembly based 
algorithms such as Scalpel, practical considerations for experimental design should be introduced 
to the community. Here I presented a novel classification scheme utilizing the validation data, 
and I encouraged researchers to use this guideline for evaluating their call sets. The combination 
of alternative allele coverage and the k-mer Chi-Square score is an effective filter criterion for 
reducing indel calling errors without sacrificing much sensitivity. This classification scheme can 
be easily applied to screen indels calls from all variant callers. For consumer genome sequencing 
purposes, we recommend sequencing human genomes at a higher coverage with a PCR-free 
protocol, which can substantially improve the quality of personal genomes. Although this 
recommendation might initially cost more than the current standard protocol of genome 
sequencing used by some facilities, we argue that the significantly higher accuracy and decreased 
costs for validation would ultimately be cost-effective as the sequencing costs continue to 
decrease, relative to either WES or WGS at a lower coverage. However, it is important to point 
out that with the release of Illumina HiSeq X-Ten and other newer sequencers, the coverage 
requirement to accurately detect indels may decrease because reads with longer read length can 
span repetitive regions more easily. Besides, bioinformatics algorithms are another important 
consideration, and we expect the further enchancements of Scalpel and other algorithms will help 
reduce the coverage requirement while maintaining a high accuracy.  
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Tables and figures in this chapter 
 
Figures 
 

 
Figure 3.1. Performance comparison between the Scalpel and GATK-UnifiedGenotyper in 
terms of sensitivity (A) and false discovery rate (B) at different coverage based on simulation 
data. Each dot represent one down-sampled experiment. Round dots represent performance of 
general INDELs (i.e. INDELs of size starting at 1 bp) and triangles represent performance of 
large INDELs (i.e. INDELs of size greater than 5 bp). The data of Scalpel was shown in blue 
while GATK-UnifiedGenotyper was shown in green. 
 

 
Figure 3.2. Mean concordance of INDELs over eight samples between WGS (blue) and 
WES (green) data. Venn diagram showing the numbers and percentage of shared between data 
types based on (A) Exact-match (B) Position-match. The mean concordance rate increased when 
we required at least a certain number of reads in both data (Table 1).  
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Figure 3.3. Coverage distributions of the exonic targeted regions in (A) the WGS data, (B) 
the WES data. The Y-axis for A) and B) is of log10-scale. The coverage fractions of the exonic 
targeted regions from 1X to 51X in (C) the WGS data, (D) the WES data. 

 
Figure 3.4. Coverage distributions of the WGS-specific INDELs regions in (A) the WGS 
data, (B) the WES data. The Y-axis for A) and B) is of log10-scale. The coverage fractions of 
the WGS-specific INDELs regions from 1X to 51X in (C) the WGS data, (D) the WES data. 
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Figure 3.5. Percentage of high quality, moderate quality and low quality INDELs in three 
call set. (A) the WGS-WES intersection INDELs, (B) the WGS-specific INDELs, (C) the WES-
specific INDELs. The numbers on top of a call set represent the mean number of INDELs in that 
call set over eight samples. 
 

 
Figure 3.6. Percentage of poly-A, poly-C, poly-G, poly-T, other-STR, and non-STR in three 
call set. (A) high quality INDELs, (B) low quality INDELs. In both figures, from left to the right 
are WGS-WES intersection INDELs, WGS-specific INDELs, and WES-specific INDELs. 
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Figure 3.7.  Numbers of genomic locations containing multiple signature INDELs in WGS 
(blue) and WES data (green). The height of the bar represents the mean across eight samples 
and the error bar represent the standard deviation across eight samples. 
 

 
Figure 3.8. Percentage of reads near regions of Non-homopolymer, poly-N, poly-A, poly-C, 
poly-G, poly-T in (A) WGS data, (B) WES data. In both figures, from left to the right are 
exonic targeted regions, WGS-WES intersection INDELs, WGS-specific INDELs, and WES-
specific INDELs. 
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Figure 3.9. Concordance of INDEL detection between PCR-free and standard WGS data on 
NA12878. Venn diagram showing the numbers and percentage of shared between data types 
based on (A) Exact-match (B) Position-match.  
 

 
Figure 3.10. Percentage of high quality, moderate quality and low quality INDELs in two 
datasets. (A) the PCR-free & standard WGS INDELs, (B) the PCR-free-specific INDELs, (C) 
the standard-WGS-specific INDELs. The numbers on top of a call set represent the number of 
INDELs in that call set. 
 



 

44 
	

 
Figure 3.11. Percentage of poly-A, poly-C, poly-G, poly-T, other-STR, and non-STR in (A) 
high quality INDELs, (B) low quality INDELs. In both figures, from left to the right are PCR-
free & standard WGS INDELs, INDELs specific to PCR-free data, and INDELs specific to 
standard WGS data. 

 
Figure 3.12. Sensitivity performance of INDEL detection with eight WGS datasets at 
different mean coverages on Illumina HiSeq2000 platform. The Y-axis represents the 
percentage of the WGS-WES intersection INDELs revealed at a certain lower mean coverage. (A) 
Sensitivity performance of INDEL detection with respects with each sample, (B) Sensitivity 
performance of heterozygous (blue) and homozygous (green) INDEL detection were shown 
seperately. 
 
Tables 
 



 

45 
	

Table 3.1. Mean concordance and discordance rates of INDEL detection between WGS and 
WES data in different regions. The data is shown in the following order: 1) regions without 
filtering, and regions filtered by requiring base coverage to be at least 2) one read, 3) 20 reads, 4) 
40 reads, 5) 60 reads, or 6) 80 reads in both data. The mean discordance rate is calculated based 
on position-match, which is the percentage of INDELs specific to either dataset. The standard 
deviation is shown in parenthesis. 
Concordance 
Rate 

Without 
filtering 

≥ 1 
read 

≥ 20 
reads 

≥ 40 
reads 

≥ 60 
reads 

≥ 80 
reads 

Exact-match 53% 
(0.8%) 

62% 
(1.1%) 

69% 
(1.5%) 

73% 
(2.3%) 

76% 
(1.6%) 

74% 
(1.3%) 

Position-match 55% 
(0.8%) 

66% 
(1.0%) 

73% 
(1.1%) 

77% 
(1.8%) 

79% 
(1.1%) 

76% 
(1.3%) 

Discordance 
Rate 

Without 
filtering 

≥ 1 
read 

≥ 20 
reads 

≥ 40 
reads 

≥ 60 
reads 

≥ 80 
reads 

WGS-Specific 34% 
(1.4%) 

20% 
(1.5%) 

14% 
(1.6%) 

14% 
(2.2%) 

15% 
(2.5%) 

20% 
(3.2%) 

WES-Specific 11% 
(1.2%) 

14% 
(1.4%) 

13% 
(1.3%) 

9% (2.6%) 6% (2.2%) 4% (1.5%) 

 
 
Table 3.2. Mean coefficients of variation of coverage with respects to the following regions: 
WGS-WES intersection INDELs, WGS-specfic INDELs, and WES-specific INDELs. WGS-
WES intersection INDELs means the INDELs called from both WGS and WES data. WGS-
specific INDELs means the INDELs only called from the WGS data. The standard deviation is 
shown in parenthesis. 

 
Exonic targeted 
regions 

WGS-WES intersection 
INDEL regions 

WGS-specific 
INDEL regions 

WES-specific 
INDEL regions 

WGS 39.4% (1.9%) 47.2% (3.0%) 75.3% (5.7%) 56.1% (9.6%) 

WES 109.3% (1.5%) 96.8% (3.2%) 281.5% (13.3%) 117.4% 
(22.8%) 

 
Table 3.3. Validation rates of WGS-WES intersection INDELs, WGS-specfic, and WES-
specific INDELs. We also calculated the validation rates of large INDELs (>5 bp) in each 
category. The validation rate, positive predictive value (PPV), is computed by the following: 
PPV=#TP/(#TP+#FP), where #TP is the number of true-positive calls and #FP is the number of 
false-positive calls. 

 INDELs Valid PPV INDELs 
(>5 bp) 

Valid  
(>5 bp) 

PPV  
(>5 bp) 

WGS-WES 
intersection 160 152 95.0% 18 18 100% 

WGS-specific 145 122 84.1% 33 25 75.8% 
WES-specific 161 91 56.5% 1 1 100% 
 
 
Table 3.4. Number and fraction of large INDELs in the following INDEL categories: 1) 
WGS-WES intersection INDELs, 2) WGS-specific, and WES-specific.  
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 All  
INDELs 

Large INDELs 
(>5 bp) 

Fraction of large 
INDELs (>5 bp) 

WGS-WES 
intersection 

2009 176 8.8% 

WGS-specific 494 104 21.1% 
WES-specific 674 10 1.5% 
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Chapter 4 Benchmarking and applications of Scalpel 

 
Summary of Contribution 

This chapter describes the benchmarking results and applications on population data of 
Scalpel. The analysis and results were published in Nature Methods49. Han Fang assisted on the 
benchmarking against competing algorithms. Giuseppe Narzisi performed the benchmarking 
based on simulation data, and conducted the population data analysis. Permission for 
republication of this material has been granted and is available upon request. 
 
Abstract 

We present an open-source algorithm, Scalpel, which combines mapping and assembly 
for sensitive and specific discovery of indels in exome-capture data. A detailed repeat analysis 
coupled with a self-tuning k-mer strategy allows Scalpel to outperform other state-of-the-art 
approaches for indel discovery, particularly in regions containing near-perfect repeats. We 
analyze 593 families from the Simons Simplex Collection and demonstrate Scalpel’s power to 
detect long (≥20bp) transmitted events, and enrichment for de novo likely gene-disrupting indels 
in autistic children.   
 
Introduction 

While the analysis of Single Nucleotide Variations (SNVs) has become a standard 
technique to study human genetics13, insertions and deletions in DNA sequences (indels) cannot 
be detected as reliably126. Indels are the second most common sources of variation in human 
genomes and the most common structural variant106. Within microsatellites (simple sequence 
repeats, SSRs, of 1 to 6bp motifs), indels alter the length of the repeat motif and have been 
linked to more than 40 neurological diseases127. Indels also play an important genetic component 
in autism: de novo indels that are likely to disrupt the encoded protein are nearly twice as 
abundant in affected children than in their unaffected siblings8. 
 

Detecting indels is challenging for several reasons: (1) reads overlapping the indel 
sequence are more difficult to map and may be aligned with multiple mismatches rather than 
with a gap; (2) irregularity in capture efficiency and non-uniform read distribution increase the 
number of false positives; (3) increased error rates makes their detection very difficult within 
microsatellites; and, as shown in this study, (4) localization, near identical repetitive sequences 
can create high rates of false positives. For these reasons, the size of indels detectable by 
available software tools has been relatively small, rarely more than a few dozen base pairs69. 
 

Two major paradigms are currently used for detecting indels. The first and most common 
approach is to map all of the input reads to the reference genome using a read mapper (e.g., 
BWA, Bowtie, Novoalign), although the available algorithms are not as effective for mapping 
across indels of more than a few bases. Advanced approaches exploit paired-end information to 
perform local realignments to detect longer mutations (e.g., GATK UnifiedGenotyper13 and 
Dindel14), although, in practice, their sensitivity is greatly reduced for longer variants (≥20bp). 
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Split-read methods (e.g., Pindel18 and Splitread128) can theoretically find deletions of any size, 
but they have limited power to detect insertions due to the short-read length of current 
sequencing technologies. The second paradigm consists of performing de novo whole-genome 
assembly of the reads, and detecting variations between the assembled contigs and the reference 
genome129. While having the potential to detect larger mutations, in practice this paradigm is less 
sensitive since detecting indels requires a fine-grained and localized analysis to correctly report 
homozygous and heterozygous mutations. Recently, three approaches have been developed that 
use de novo assembly for variation discovery: GATK HaplotypeCaller, SOAPindel54, and 
Cortex29. Another recent approach, TIGRA56, also uses localized assembly, but it has been 
tailored for breakpoints detection, without reporting the indel sequence. 
 
Results 

We present a DNA sequence micro-assembly pipeline, Scalpel, for detecting indels 
within exome-capture data (Figure 4.1). By combining the power of mapping and assembly, 
Scalpel carefully searches the de Bruijn graph for sequence paths (contigs) that span each exon. 
The algorithm includes an on-the-fly repeat composition analysis of each exon, coupled with a 
self-tuning k-mer strategy. We confirm previous findings that nine standard algorithms have 
reduced power to detect large (≥20bp) indels using simulated reads: Scalpel, SOAPindel, GATK-
HaplotypeCaller, GATK-UnifiedGenotyper, SAMtools15, FreeBayes, Platypus 
(www.well.ox.ac.uk/platypus), and lobSTR130. We also performed a large-scale validation 
experiment involving ~1000 indels from one single exome. The individual was sequenced to 
≥20x coverage over 80% of the exome target using the Agilent SureSelect capture protocol and 
Illumina HiSeq2000 paired-end reads, averaging 90bp in length, after trimming. Indels were 
called using the three pipelines that had performed best with our simulated reads: Scalpel v0.1.1 
beta, SOAPindel v2.0.1 and GATK HaplotypeCaller v2.4.3. Interestingly, there is only ~37% 
concordance among calls made by all of the pipelines, and each method reports hundreds of 
indels unique to that pipeline (Figure 4.2a), which is in close agreement with a recent analysis. 
An update to GATK to version 3.0 was released after our initial validation experiments, but we 
also assessed its accuracy with a second blinded re-sequencing experiment (Figure 4.2). 
 

From the concordance rate alone, it is hard to judge the quality of indels unique to each 
pipeline, as these could either represent superior sensitivity or poor specificity. The size 
distribution of indels called by the HaplotypeCaller (v2.4.3) has a bias towards deletions whereas 
SOAPindel has a bias towards insertions (Figure 4.2b). Scalpel and HaplotypeCaller (v3.0) 
instead show a well-balanced distribution, in agreement with other studies of human indel 
mutations. We further investigated the performance of the algorithms by a focused re-sequencing 
of a representative sample of indels using the more recent 250bp Illumina MiSeq sequencing 
protocol.  Based on the data depicted in Figure 4.2a, we selected a total of 1,000 indels 
according to the following categories: (1) 200 random indels from the intersection of all 
pipelines; (2) 200 random indels only found by HaplotypeCaller (v2.3.4); (3) 200 random indels 
only found by SOAPindel; (4) 200 random indels only found by Scalpel; (5) 200 random indels 
of size ≥ 30bp from the union of all three algorithms. Due to possibly ambiguous representation, 
indels positions are “left-normalized”. However, some ambiguity can still remain, especially 
within microsatellites, so we computed validation rates using two different approaches. (1) 
Position-based: an indel is considered valid if a mutation with the same coordinate exists in the 
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validation data (Figure 4.3a). (2) Exact-match: an indel is considered valid if there is a mutation 
with the same coordinate and sequence in the validation data (Figure 4.3b).  

 
As expected, indels detected by all pipelines have a high validation rate and their sizes 

follow a lognormal distribution. However, the validation rate varies dramatically for each tool. 
Respectively, only 22% and 55% of the HaplotypeCaller (2.4.3) and SOAPindel specific indels 
could be validated even when the less strict position-based approach was used, whereas 77% of 
Scalpel’s specific indels are true positive. For the long indels: less than 10% called by 
SOAPindel and HaplotypeCaller passed validation. (Figure 4.3c). The new version of GATK 
(v3.0) has largely removed the bias towards deletions (Figure 4.2b), but find that Scalpel still 
outperforms HaplotypeCaller. Scalpel shows substantially higher validation rate (76%) for 
longer indels (>5bp) compared to HaplotypeCaller v3.0 (27%). 
 

We further divide the results to separately report the validation rate for indels within 
microsatellites. SOAPindel shows an appreciably higher rate of false-positives within 
microsatellites (“SSRs-only” in Figure 4.3a-b). When microsatellites are excluded (“no-SSRs” 
in Figure 4.3a-b), the performance of SOAPindel and HaplotypeCaller decline, while Scalpel’s 
validation rate is only slightly reduced. Figure 4.3a and Figure 4.3b also illustrate the relative 
abundance of indels within microsatellites called by each tool, although HaplotypeCaller seems 
to filter against these. Finally, when switching from position-based to exact-match, indels within 
microsatellites show notable reduction in validation rate. This phenomenon is due to their high 
instability and higher error rates, and in fact it is not unusual to have more than one candidate 
mutation at a microsatellite locus. 

 
We further inspected the sequence composition of all false-positive long indels. 

Specifically, we reanalyzed the 129 SOAPindel invalid long mutations using Scalpel. The 
majority of these mutations (115) overlap repeat structures where the reference contains a perfect 
or near-perfect repeat. In contrast, of the 62 false-positive long indels from HaplotypeCaller, 
only 16 overlap a repeat. The remaining false positive deletions appear to be due to an aggressive 
approach used by the algorithm when processing soft-clipped sequences. The soft-clipped reads 
in false positive indels for HaplotypeCaller are highly variable, and are conjectured to be 
mapping artifacts of reads from different genomic locations. Finally we investigated the 
relationship between the false-discovery rate (FDR) and characteristic features (e.g., chi-square 
score and coverage) for 614 indels detected by Scalpel and validated by re-sequencing. In 
addition to highlighting the common trends, this analysis provides recommendation on how to 
select a chi-square score cutoff to achieve a given FDR. 

 
Using Scalpel we detected a total of 3.3 million indels in exomes from 593 families from 

the Simons Simplex Collection, corresponding to an average of ~1,400 (=3,388,139/(4*593)) 
mutations per individual. Accounting for population frequencies, there were 27,795 distinct 
transmitted indels across the exomes. We find close agreement to the size distributions reported 
by Montgomery et al69 using low coverage whole-genome data from 179 individuals. Direct 
comparison to those detected by the GATK-UnifiedGenotyper based mapping pipeline used by 
Iossifov et al8 shows that Scalpel has superior power to detect longer insertions. To estimate 
Scalpel’s ability to discover transmitted mutations, we performed targeted re-sequencing of 31 
long (≥29bp) transmitted indels. Excluding indels that failed to sequence (4), 21 
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passed validation (out of 27), which gives a 78% true positive rate. Three of the indels that did 
not pass validation were indeterminate with ambiguous alignments because they were either too 
long (≥70bp) or embedded in a repetitive region. 

 
Within the coding sequence (CDS), frame-preserving indels are more abundant than 

frame-shifts. In agreement with MacArthur et al131, we detect a large number of transmitted loss-
of-function (LOF) variants in protein-coding genes. Frame-shift mutations are found at lower 
frequency in the population when located in protein-coding sequences compared to intronic 
regions. Finally, we observe an enrichment of deletions over insertions, with an overall 2:1 ratio 
across all annotation categories. Similar trends were reported in previous studies14. Here we 
reanalyzed the data on autistic children and unaffected siblings with Scalpel with the goals of 
examining de novo likely gene disrupting (LGD) mutations. We confirm an overabundance of 
frame-shift mutations in autistic patients6 predict additional candidates, and extend the analysis 
to a larger number of families. Our re-analysis of a previous study with 200 SSC families132 
reports an enrichment of 11 LGD indels in autistic children compared to 4 in their healthy 
siblings.  In targeted re-sequencing of 102 candidate indels we confirmed 84 as de novo 
mutations, invalidated 11 and failed to sequence 7, giving an 88% de novo positive predictive 
rate. In order to focus the list of candidate genes, we excluded mutations that are common in the 
population, and used stringent coverage filters to select a total of 97 high quality de novo indels. 
Even after extending the population size from 343 to 593, the same 2:1 enrichment for LGD 
mutations is confirmed: 35 frame shifts in autistic children vs. 16 in siblings (p-value 0.01097), 
other smaller studies came to similar conclusions133, 134 This result also holds for a larger 
collection of 1303 SSC families (not presented in this study). All together, in agreement with the 
previously reported results8, we find a significant overlap between the LGD target genes and the 
842 FMRP-associated genes135. Specifically, 8 out of 35 LGDs in autistic children overlap with 
the 842 FMRP-associated genes.  
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Figures and tables in this chapter 
 
Figures 

 
Figure 4.1. Overview of the Scalpel algorithm workflow. Extracted reads include: well-
mapped reads, soft-clipped reads, and reads that fail to map, but are anchored by their 
mate. The assembled sequences are aligned to a reference using the standard Smith-
Waterman-Gotoh alignment algorithm with affine gap penalties. 
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Figure 4.2. Concordance of indels between pipelines. (a) Venn Diagram showing the 
percentage of indels shared between the three pipelines. (b) Size distribution for indels called by 
each pipeline. 1,000 indels from five categories were analyzed by focused resequencing. 
 

 
Figure 4.3. MiSeq validation. Ratio of valid (green) and false (grey) indel calls based on 
position-based matches (a) or exact matches (b) for the indicated tools, for indels of size ≥ 30bp 
from the union of the mutations detected by all three pipelines (“LongIndels”), and for indels in 
the intersection (“Intersection”). Validation for all indels (“All indels”), validation only for indels 
within microsatellites (“SSRs-only”), and validation for indels that are not within microsatellites 
(“No-SSRs”). (c) Stacked histogram of validation rate by indel size for each variant caller.  
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Chapter 5 Accurate inference and robust modelling of translation 

dynamics at codon resolution 

 
Summary of Contribution 

This chapter describes the methods for analyzing Riboseq data. The model and results is 
in submission. Han Fang conceived the project, built the model, developed the software, 
performed the analysis. This chapter has been written in preparation for submission, but is 
unpublished at this time. Permission for republication of this material has been granted and is 
available upon request. 
	
Abstract	

Ribosome profiling (Riboseq) is a powerful technique for measuring protein translation, 
however, sampling errors and biological biases are prevalent and poorly understand. Addressing 
these issues, we present Scikit-ribo (https://github.com/hanfang/scikit-ribo), the first open-source 
software for accurate genome-wide A-site prediction and translation efficiency (TE) estimation 
from Riboseq and RNAseq data. Scikit-ribo accurately identifies A-site locations and reproduces 
codon elongation rates using several digestion protocols (𝑟 = 0.99). Next we show commonly 
used RPKM-derived TE estimation is prone to biases, especially for low-abundance genes. 
Scikit-ribo introduces a codon-level generalized linear model with ridge penalty that correctly 
estimates TE while accommodating variable codon elongation rates and mRNA secondary 
structure. This corrects the TE errors for over 2000 genes in S. cerevisiae, which we validate 
using mass spectrometry of protein abundances (𝑟 = 0.81). From this, we determine the Kozak-
like sequence directly from Riboseq and discover novel roles of the DEAD-box protein Dhh1p, 
deepening our understanding of translation control. 
 
Introduction 

First introduced by Ingolia et al in 20093, ribosome profiling (Riboseq) allows 
researchers to investigate genome-wide in vivo protein synthesis through deep sequencing of 
ribosome-protected mRNA footprints31. Since the original introduction, several improved 
versions have been developed to mitigate biases in the data136-138 and address new biological 
questions139-141. After the protocol became standardized in 2012, there was a rapid increase in 
adoption5, leading to discoveries of new mechanisms involving translational defects in different 
forms of cancer32-35, other important human diseases36, 37, and the identification of novel drug 
targets38, 39. Riboseq has also revealed new insights into many steps in the translation process 
itself40, 41.  

 
Riboseq provides genome-wide insights into the regulation of gene expression at the level 

of translation. A key metric of measuring translational control is translational efficiency (TE), 
defined as the level of protein production per mRNA3, 42. Assuming minimal ribosome fall-off, 
Li showed that TE is the same as translation initiation efficiency (TIE) in the steady state42. Shah 
et al showed that TIE is the rate limiting factor for translation142. In practice, this metric is 
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calculated for a given gene by taking the ratio of the ribosome density from Riboseq to the 
mRNA abundance measured by RNAseq. We refer to this ratio as RPKM-derived TE (ribosome 
density per mRNA, Equation 5.1), because both values have RPKM units, reads per kilobase of 
transcript per million mapped reads (Equation 5.2). Although this metric is commonly used in 
the Riboseq and RNAseq literature, it is not a direct measure of protein output but ribosome 
density, and the two are only correlated assuming the same elongation rate across genes42. 
However, this assumption does not hold in many cases, especially genes with extensive ribosome 
pausing143-147.  

 
Technical shortcomings in the Riboseq workflow can introduce bias and systematic error 

into the analysis, masking the true ribosome density on an mRNA. Ribosome footprints come in 
many sizes depending on the organism, nuclease, and cell lysis conditions, making it difficult to 
identify the ribosome position on the fragment. Sampling only part of the footprint distribution 
can yield misleading results144. Another source of the noise in the data can be attributed to 
ligation bias in cloning ribosome footprints and amplification by PCR148. Finally, early protocols 
used antibiotics such as cycloheximide (CHX) to arrest translation prior to cell lysis; CHX 
treatment distorts ribosome profiles because initiation continues even though elongation is 
blocked138. This artifact leads to high levels of ribosome density at alternative initiation sites and 
the 5’-end of ORFs. CHX also masks the local translational landscape at the single-codon 
level149. Weinberg et al produced excellent quality reference datasets and showed that RNAseq 
libraries are subject to their own problems; isolation of mRNA through interaction with the poly-
A tail leads to error in measuring mRNA abundance136. All of these problems confound the 
accurate determination of TE. Below, we summarize the major experimental and analytical 
challenges and proposed solutions to overcome them. 

 
Analytically, it is first essential to correctly determine the location of the ribosome within 

the Riboseq reads, and particular, the location of the codon bound in the ribosomal A-site. 
Decoding of the A-site codon by incoming aminoacyl-tRNAs is rate limiting during elongation41; 
low levels of specific aminoacyl-tRNA species lead to pausing as indicated by changes in the 
codon-specific elongation rate (ER). Precise determination of the A-site codon of a Riboseq read 
is needed to determine whether a given read belongs to the canonical open reading frame (ORF) 
of a gene, especially when genes are overlapping. RiboDeblur150 models ribosome profiles as 
blurred position signals, but it is not suitable for downstream analysis beyond finding the A-site. 
Most other studies followed the 15-nucleotide (nt) rule from Ingolia et al3, based on the work of 
Wolin and Walter151; the A-site codon starts at 15 nt in 28mer reads produced by RNase I. Reads 
of other lengths are commonly excluded from consideration, significantly reducing the data for 
downstream analysis, and perhaps missing important signals that affect footprint size. Correct 
identification of the ribosome position is particularly problematic in bacteria144, 152 and 
Arabidopsis153 where MNase generates a broad distribution of footprints152. Here, we introduce a 
novel method of finding the A-site codon that substantially improves the resolution of the 
downstream analysis.  

 
Next, in almost every published Riboseq study, the distributions of RPKM-derived 

log 𝑇𝐸 are severely skewed with a long tail on the negative side3, 154, 155 (Supplemental 5.S1A). 
This observation is also reported by Weinberg et al in their analysis of wild-type S. cerevisiae 
data from ten different labs136. One of the main reasons for the skewed distribution is sampling 
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error from low-abundance genes: the range of gene expression level spans 8 to 11 orders of 
magnitude, but a limited amount of sequencing coverage is available. As a result, the sampling of 
low-abundance transcripts is more error-prone (Figure 5.1A), yielding higher dispersion of 
RPKM among low-abundance genes, and subsequently even higher dispersion of RPKM-derived 
TE (Figure 5.1A). To address this same problem in analyses of RNAseq data, fold change 
shrinkage methods (e.g. empirical Bayesian shrinkage) have been widely adapted in differential 
expression (DE) methods such as DEseq2156, edgeR157, and Slueth158. In order to perform 
shrinkage with between-sample normalization, however, these methods rely on at least three 
replicates, which are not typically available in Riboseq studies. Even where multiple replicates 
are available, it is not appropriate to use RNAseq DE methods to compute TE, because those 
methods were developed to estimate changes of gene expression under perturbation, while TE 
reflects the level of translation control under a single condition 159, 160. To overcome this 
limitation, we developed a robust model for estimating TE using a shrinkage method that is 
compatible with a single library of Riboseq data. 

 
Finally, traditional techniques for mRNA quantification and DE testing rely on a strong 

assumption: random fragmentation and uniform sequencing of mRNA molecules. However, this 
assumption does not apply to Riboseq data, given that the abundance of ribosome-protected 
fragments is strongly influenced by local translational elongation rates. In fact, peaks due to 
paused ribosomes (Figure 5.1B) have been observed in the literature143, 161, 162. Two major 
determinants of ribosome pausing are slow codons163 and downstream mRNA secondary 
structure164 (Figure 5.1B), although their importance and relative contributions have been 
controversial in Riboseq studies144, 165-167. The presence of paused ribosomes problematizes the 
use of ribosome density for calculating TE146 (Figure 5.1C). Genes with paused ribosomes have 
more reads than expected, depleting coverage on other genes. Traditional read counting methods 
do not control for these biases (when using RPKM to derive TE). In contrast, our proposed 
method correctly estimates TE while accounting for biological biases simultaneously, enabling 
us to separate out the effects of translation initiation and elongation. 

 
There were earlier attempts to model TE that are relevant for this work, although the 

published methods have significant restrictions and have seen limited application so far. Pop et 
al developed a queuing model for translation, but it failed to recover significant correlation 
between codon dwell time and cognate tRNA availability, and the source code is not publicly 
available168. Weinberg et al proposed a comprehensive model to estimate TE136 in S. cerevisiae 
(budding yeast) using the analytical approximations of initiation probability, but this required 
parameterizations from a whole-cell simulation from Shah et al142, making it difficult to apply to 
other organisms. Duc and Song developed a simulation-based inference algorithm to estimate 
translation initiation and local elongation rates, but it could only be applied to ~900 (13%) genes 
in S. cerevisiae, because it requires filtering genes by length and coverage169. None of these 
methods addressed the prevalent sampling errors and biological biases in Riboseq data described 
above. 

 
Here, we present Scikit-ribo, the first statistical model and open-source software package 

for accurate genome-wide TE inference from Riboseq data (Figure 5.2). The software is written 
in python and is freely available at https://github.com/hanfang/scikit-ribo. Scikit-ribo is very fast; 
it can analyze more than 6000 genes from a high-coverage S. cerevisiae Riboseq data (over 75 
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million reads) in less than one hour with single-codon resolution. It can accurately infer A-site 
codons with a variety of different mRNA digestion methods. We applied it to 10 Riboseq data 
sets and demonstrated its robustness to low-abundance genes while automatically correcting 
biases across different genes. We next show that the commonly used RPKM-derived TE is very 
sensitive to sampling errors and biological biases, creating substantial discrepancies and skewing 
the values of this key metric in previous studies. To address this, we developed a codon-level 
generalized linear model (GLM) with a ridge penalty to shrink the TE estimates. The GLM also 
serves as a mechanistic model for translation elongation and initiation, incorporating codon-
specific elongation rates, local mRNA secondary structure, and gene-specific translational 
initiation efficiencies. We validate the model using in silico analysis as well as large-scale 
experimental mass spectrometry data and show a very high correlation in predicted protein 
abundance (r=0.81). This successfully corrects the biases for ~2000 genes, and resolves the 
negative skew in TE observed in previous studies of Riboseq data. Finally, we show the 
importance of accurate TE estimation for interpreting Riboseq data. Our refined TE analysis 
using Scikit-ribo helped recover the Kozak-like consensus sequence in S. cerevisiae and reveal 
novel roles of the DEAD-box protein Dhh1p145. Together, these results showed that Scikit-ribo 
substantially improves Riboseq analysis and deepen the understanding of translation control.  
 
Results 
 
Accurate A-site codon prediction with different organisms and nuclease digestion  

Using a supervised learning approach, Scikit-ribo trains a model for identifying the A-site 
codon within Riboseq data using reads that contain start codons (Figure 5.2A). Briefly, the 
algorithm uses a random forest model to evaluate eight features of how the Riboseq reads align 
to the genome: the length of the read, the distance from the 5’ or 3’ end of the read to the start 
codon, and the nucleotides flanking the ends of the Riboseq reads (Methods). Unlike other 
methods, Scikit-ribo can easily accommodate different types of Riboseq data because of its 
recursive feature selection technique. For a given dataset, Scikit-ribo uses cross validation (CV) 
to find the optimal features with the lowest prediction error. This is an effective way to remove 
irrelevant features for the given data and avoids overfitting an unnecessarily complex model. 

 
Using this approach on the S. cerevisiae data prepared with RNase I by Weinberg et al, 

the accuracy of the prediction of the A-site codon was extremely high (mean accuracy=0.98, 
SD=0.003, 10-fold CV)136. Unlike the basic 15-nt rule, our model’s predictions are consistent 
across reads with different lengths or A-site locations, as demonstrated using the multi-class 
ROC curves (Supplemental Figure 5.S2A). This means that we can utilize the full complement 
of reads for downstream analysis; this is especially helpful for low-abundance genes. Our model 
also achieved very high accuracies in seven other S. cerevisiae datasets (Supplemental Table 
5.S1). Interestingly, for all eight S. cerevisiae datasets the most important features learned were 
the phase of the 5’-end of a read (whether it falls in the first, second, or third frame) and the read 
length (Supplemental Figure 5.S3A). This is consistent with the previous findings that RNase I 
was not always precise in generating ribosome footprints137. When we look at elongating 
ribosomes within the canonical ORF (not overlapping the start codon), 94.3% of the predicted A-
sites are in the correct frame, confirming Scikit-ribo’s very high accuracy. 
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To test whether Scikit-ribo can maintain high accuracy in different model organisms or 
with different nuclease digestions protocols, we next applied it to the Riboseq data from E. coli. 
Bacterial ribosome profiling protocols use MNase instead of RNase I because as an E. coli 
protein, RNase I is inhibited by bacterial ribosomes. The resulting read distributions are broad 
and have posed challenges in assigning ribosome position162, 170. One promising approach is to 
employ MNase together with the endonuclease RelE, taking advantage of RelE’s ability to 
cleave the A-site codon within the ribosome with high precision. In the resulting ribosome 
footprints, the A-site codon is found at the 3’-end of reads, rather than 12 to 18 nt away from the 
5’-end of a read as in S. cerevisiae. In spite of these differences, the accuracy of Scikit-ribo on 
the E. coli data generated with RelE was still very high (mean accuracy=0.91, SD=0.041, 10-fold 
CV, Supplemental Figure 5.S3B) and showed 99.8% assignment of the A-site codon to 
canonical ORFs for reads not overlapping the start codons. Interestingly, for the RelE data, the 
optimal feature was the phase of 3’-end of a read, while the 5’-end did not have a strong effect 
(Supplemental Figure 5.S3B). This is consistent with the report in Hwang et al that RelE 
preferentially cleaves at the ribosome A-site codon, generating precise 3’-ends152. Using Scikit-
ribo, we also analyzed E. coli Riboseq libraries prepared with MNase alone, but the accuracy 
was much lower (0.70) than observed in libraries prepared with RelE. This indicates that RelE 
improves the precision of the ribosome sub-codon position and thus is a better nuclease for 
analyses requiring codon resolution.  
 
Paused	ribosomes	and	biological	biases	of	TE	

Ribosome pausing (RP) events are prevalent in several different model organisms143. 
Pausing can occur for a number of reasons, including slow recruitment of tRNAs and mRNA 
secondary structure167. These biological effects can introduce biases in ribosome profiles on 
different genes, leading to overestimation of TE in genes with high levels of pausing. In 
Weinberg et al136, the distribution of RPKM-derived log2 𝑇𝐸  is negatively skewed with a mean 
of -0.5 (Supplemental Figure 5.S1B), although this is likely an artifact of RPKM-derived TE. 
We hypothesized that the distribution of RPKM-derived TE was largely skewed due to RP 
events. To illustrate this, we simulated both Riboseq and RNAseq data, with and without paused 
ribosomes in S. cerevisiae (Methods). Upon comparing log2 𝑇𝐸ij (i.e. the log2 𝑇𝐸 in the data 
with RP) with log2 𝑇𝐸kIJEH?lE (i.e. the log2 𝑇𝐸 in the data without RP), we observed that several 
genes had inflated TEs, while the remaining majority had decreased estimates. We also observed 
that the log2 𝑇𝐸ij distribution for paused data became broader and negatively skewed, similar 
to what has been observed in previous reports. These results suggest the possibility that this skew 
arises from the fact that genes with significant pausing will have more Riboseq reads and higher 
RPKM-derived TE, although their protein abundance remains the same. Pausing on these genes 
also reduces the available Riboseq reads available on other non-paused genes, so that their TE 
estimates of those genes are deflated.  

 
Since pauses can be induced by non-optimal codons and downstream mRNA secondary 

structure167, we developed a statistical model to jointly correct for these effects that we refer to as 
biological biases. Since the observed ribosome profiles are affected by changes in elongation 
rates, and not simply initiation rates, Scikit-ribo uses a codon-level generalized linear model 
(GLM) to separate out these two processes, considering three categorical covariates and one 
continuous covariate (Methods, Equation 5.5-6). The general model to explain the data is that at 
a codon position, the ribosome coverage is proportional to mRNA abundance and gene specific 
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TE, reflecting initiation levels, as well as downstream mRNA secondary structure and codon 
specific dwell time, reflecting limiting steps in elongation rates (Figure 5.2B).  
 
Sampling errors for low abundance genes using Riboseq  

Another difficulty in estimating TE is caused by sampling error for low-abundance genes 
due to lack of depth in the sequencing data. Similar trends have been reported in DE analysis of 
RNAseq data, where low abundance genes can have extreme fold changes if not corrected for 
dispersion156. This is a side-effect of modeling high-dispersion count data; measurements are 
inherently noisier when counts are low156. Riboseq data shares the same issue. Since most of the 
Riboseq experiments are done in two or fewer replicates, estimation of between-sample 
variability and subsequent shrinkage of dispersion has not been feasible159. Thus, most published 
Riboseq studies used the RPKM-derived TE:  𝑅𝑃𝐾𝑀i?qK

𝑅𝑃𝐾𝑀ri>s (Equation 5.1)3. 
However, low abundance genes, especially those with a “transcripts per million” (TPM, 
Equation 5.3) value less than one, tend to show much more dispersed TE values, compared with 
other genes (Figure 5.1A). This is true even if the TPM cutoff is increased to 10 (Supplemental 
Figure 5.S1D). Consequently, the standard deviation (SD) of log2 𝑇𝐸 in low abundance genes 
from the Weinberg et al136 data was 3-fold higher than for other genes (Levene test, p-value=3×
10−89), the overall range in TE was 5-fold larger (99 vs 20), and the median absolute deviation 
(MAD) was also larger (1.9 vs 1.0). In fact, the high dispersion of TEs was driven by the high 
variance of the ratio between the numbers of reads per gene (Equation 5.4).  

One ad-hoc solution is to remove low abundance genes from downstream analysis, 
although this is not very effective as the chosen threshold is arbitrary and cannot be determined 
rigorously. Furthermore, this filtering approach reduces the sensitivity of finding genuinely 
extreme TE genes and reduces the power of finding significance. Instead of imposing arbitrary 
thresholds, Scikit-ribo uses a shrinkage method based on ridge penalty to account for the 
sampling uncertainty for low abundance genes (Methods, Equation 5.7-8). This method helps 
address the sampling errors issues even without having replicates. As a result, Scikit-ribo reports 
balanced log2 𝑇𝐸 distributions while the distributions of RPKM-derived log2 𝑇𝐸 are negatively 
skewed (Supplemental Figure 5.S1). 
 
Accurate inference reveals the interplay between cognate tRNA availability and mRNA 
secondary structure 

Having described how Scikit-ribo addressed the errors and biases, we asked whether it 
can reveal new aspects of biology that were not detectable using previous methods. To 
investigate whether the biological covariates from Scikit-ribo were meaningful, we analyzed the 
CHX-free S. cerevisiae Riboseq data from Weinberg et al136. The codon dwell time (DT) 
estimates from the GLM are the inverse of the codon elongation rates (ER). Scikit-ribo almost 
perfectly reproduced the codon DT (Pearson 𝑟 = 0.99) from Weinberg et al136, in which the 
three slowest codons are CGG, CGA, and CCG (Figure 5.3A). The tRNA adaptation index (tAI) 
measures the efficiency of a coding sequence recognized by the intra-cellular tRNA pool, taking 
into account each gene’s codon compositions, mRNA expression levels, and the availability of 
the conjugate tRNA171. Reis et al171 estimates tAI by taking the geometric mean of its codons’ 
relative adaptiveness value (RAV). A codon with lower RAV means that it is sub-optimal for 
translation elongation, i.e. slower codon. We found CGG, CGA, and CCG have very low RAV 
values171 and are among the rarest codons in the S. cerevisiae transcriptome. Following 



 

59 
	

Weinberg et al and others136, 143, 167, 169, we compared the relative codon ERs with RAV and their 
cognate tRNA abundance (measured by microarray136), and reproduced a positive correlation 
against both (Spearman 𝜌xsy = 0.54, 𝜌xi>s = 0.47, Figure 5.3B-C). 

 
Although our findings confirm that ribosomes have lower DT on codons with higher 

cognate tRNA levels, it still cannot solely explain the variation in ER given the imperfect 
correlation. Consequently, we tested whether part of the missing contribution was from 
downstream mRNA secondary structure. We adjusted the within-gene ribosome densities by the 
inferred codon ERs, which controlled for the codon-specific effects on local translational 
elongation. We used RNAfold172 to predict the optimal mRNA secondary structure and test if 
large downstream stem-loops would increase ribosome density (Methods). We found that the 
ribosomes move slower with the presence of a downstream mRNA stem-loops (t-test, p-value= 
5×10−3). We computed the average adjusted ribosome density in a five-codon sliding window 
and notice a peak right at the junction (Figure 5.3D). This finding is consistent with previous 
reports that downstream stem-loops decrease the ribosome ER, i.e. increase the DT as ribosomes 
wait for the downstream stem-loops to be unfolded165, 173, 174. Taken together, our analyses show 
that ribosome elongation rates are affected by a complex interplay of cognate tRNA availability 
and downstream mRNA secondary structure. These results also confirm that Scikit-ribo 
accurately estimates codon-specific DT and the effect of mRNA secondary structure, after it 
correctly predicted the A-site codon and fit the GLM. 
 
Simultaneously correcting sampling errors and biological biases for TEs  

To understand how Scikit-ribo corrects the biases in the Riboseq analysis, we compared 
the Scikit-ribo log2 𝑇𝐸 with the RPKM-derived log2 𝑇𝐸 from the Weinberg et al data (Figure 
5.4A). The correlation between the estimates was high (r=0.82), but the RPKM-derived TE 
estimates showed clear trends of systematic biases (negative skew) that were successfully 
corrected by Scikit-ribo (Figure 5.4B). We calculated the differences between the two estimates, 
∆ log2 𝑇𝐸 = log2 𝑇𝐸J|?0?x−B?qK − log2 𝑇𝐸ijV} , and colored them with respect to the values: 1) 
∆ log2 𝑇𝐸 > 0.5, previously underestimated (green), 2) ∆ log2 𝑇𝐸 < −0.5, previously 
overestimated (orange), and 3) other genes in between (gray) (Supplemental Table 5.S2). The 
green points in the left half of the plot shifted upward from the diagonal line, while the points in 
the right half were more consistent (Figure 5.4A). There were 1957 genes with large differences 
(|∆ log2 𝑇𝐸 | > 0.5); 897 being under-estimated and 1060 being over-estimated. Compared with 
RPKM-derived TE, we found the log2 𝑇𝐸 of some genes were previously underestimated by as 
much as 11 (2048 fold), while other genes were overestimated by almost 3 (8 fold) 
(Supplemental Figure 5.S4B).  

 
We further defined six regions based on ∆ log2 𝑇𝐸 and the sign of Scikit-ribo log2 𝑇𝐸. 

For example, region 1 corresponds to genes with ∆ log2 𝑇𝐸 greater than 0.5 with negative 
Scikit-ribo log2 𝑇𝐸 (n=629); most of these genes were of low abundance with a TPM less than 
10 (Figure 5.4C, Supplemental Figure 5.S4). This means given 75 million reads, these genes 
had fewer than 750 reads on average, i.e. ~2 reads per codon. The sampling of such genes is 
highly unstable, causing the ratio of the read counts to have even higher variance. As a result, the 
RPKM-derived TE reports a very high dispersion and incorrect TE estimates in region 1, while 
Scikit-ribo successfully corrected the sampling errors by leveraging the power of shrinkage 
estimates.  
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While improvements in TE estimates in region 1 arise from a better treatment of 
sampling error on low abundance genes, how can we address differences in regions with more 
highly expressed genes? For this part of the analysis, we excluded low abundance genes with 
TPM less than 10 to focus on the effects on biological covariates, codon specific ER and mRNA 
structure. There were 268 and 981 genes in the highly-translated regions 4 and region 6, 
respectively. If downstream mRNA secondary structure had an effect, one would expect the 
RPKM-derived log2 𝑇𝐸 of genes with high levels of structure would be inflated as additional 
ribosomes are paused at the loop; the ∆ log2 TE becomes smaller with a higher stem loop 
density (normalized by ORF length). We found this was indeed the case: there is a negative 
correlation between ∆ log2 TE and stem loop density (Figure 5.4D, Spearman 𝜌 = −0.33). This 
bias was automatically adjusted by the mRNA secondary structure covariate of the Scikit-ribo 
GLM as we found enrichment of 15% more ribosome density when there was a downstream 
secondary structure.  

 
Second, we investigated the influences of variation in codon-specific ER values. The 

gene level tRNA-adaptation index (tAI) indicates whether a gene is enriched for optimal or non-
optimal codons: higher tAI means the gene is enriched for faster codons, while a lower tAI 
means the gene is enriched for slower codons. The middle regions (gray), 2 and 5, served as 
baseline for genes with negative and positive log2 𝑇𝐸, respectively (Figure 5.4E). For negative 
log2 𝑇𝐸 genes, there were no significant difference of tAI between genes in the region 1 and 2, 
but the region 3 genes had significantly lower tAI than those in region 2 (Supplemental Table 
5.S2, t-test, p-value=2×10−6). We conclude that the differences in TE for region 1 between 
RPKM-derived TE and our TE estimates is not due to tAI but is instead due to the shrinkage 
estimates via the ridge penalty of the Scikit-ribo model. In contrast, the TE values of region 3 
genes were previously overestimated because they contained more non-optimal/slow codons. 
When log2 𝑇𝐸 is positive, tAI values have a stronger effect: region 4 genes had much higher tAI 
values than region 5 genes (t-test, p-value=1×10−17) while genes in region 6 had lower tAI (t-
test, p-value=5×10−55). This means the genes in the region 4 and 6 were previously 
underestimated and overestimated, respectively, because their genes tend to enrich for fast and 
slow codons.  

 
We further found the region 4 genes are enriched for the biological process of 

cytoplasmic translation [GO:0002181] (Supplemental Table 5.S3, p-value=3×10−25). Genes 
encoding ribosomal proteins are enriched for optimal codons and genes with more optimal 
codons are preferentially translated175. Since ribosomes move faster on mRNAs encoding 
ribosome proteins, RPKM-derived TE values are underestimated for these genes and corrected 
by Scikit-ribo. These observations do not depend on the use of the tAI metric that is based on 
gene expression data (including ribosome proteins: the same conclusion holds true using the 
species-specific tAI (stAI)176 metric developed to provide a similar measurement of codon 
efficiency without using gene expression data (Supplemental Figure 5.S5).  
 
Scikit-ribo discovers Kozak-like consensus in S. cerevisiae 

The Kozak consensus sequence, GCCRCCATGG, promotes translation initiation in 
vertebrates177. In S. cerevisiae, the Kozak-like sequence was shown to be AAAAAAATGTCT178, 
and it has been widely used as a positive control to train translation initiation start (TIS) site 
prediction methods140, 179, 180. The Kozak sequence has been re-discovered in Riboseq studies in 



 

61 
	

humans (homo sapiens), mice (Mus musculus) and maize (Zea mays) 181-183. However, no clear 
signal of Kozak-like sequences in S. cerevisiae has been found using Riboseq data, only a very 
weak resemblance of the Kozak-like sequence (4 out of 12 bases) was reported by Pop et al168. 
Thus, we were interested in whether the improved TE estimates from Scikit-ribo can help re-
discover this mRNA element associated with high TE.  

 
We collected the 5’UTR sequences from genes with log2 𝑇𝐸  > 2, and scanned for 

enriched sequences using HOMER184. Based on HOMER’s suggested p-value threshold, there 
were two statistically significant sequences. Strikingly, the top hit exactly matched the Kozak-
like sequence from Hamilton et al178, AAAATGTCT (p-value=1×10−21, Figure 5.4F). This is 
the first report of the identical Kozak-like sequence in the S. cerevisiae Riboseq analyses. The 
other enriched sequence was AAATAAGCTCCC, which has never been reported in vivo (p-
value=1×10−11, Supplemental Figure 5.S6). Interestingly, this sequence contains the motif 
ATAAG, one of the top five sequences that leads to higher TE in a large-scale HIS3 reporter 
assay from Cuperus et al185. In contrast, using the same threshold, RPKM-derived TE failed to 
discover either of these Kozak-like sequences. Instead, it only found a weak signal of 
CAACATGGCT with a much less significant p-value (1×10−11) and weak resemblance to the 
Kozak-like sequence (Supplemental Figure 5.S6). This failure of RPKM-derived TE to yield 
the Kozak-like motif was likely because that approach provided skewed estimates where some 
lower TE genes had artificially high RPKM-derived TE. This therefore contaminated the gene 
set for enrichment analysis, and reduced the ability to find motifs with high statistical 
significance. 
 
Large-scale validation showed Scikit-ribo’s accurate TE estimation, especially for low-
abundance genes 

To further understand the discrepancies between Scikit-ribo and RPKM-derived TE, we 
performed a large-scale validation using the selected reaction monitoring (SRM) mass 
spectrometry data from a recent reference proteome dataset containing high quality 
measurements of about 1,800 gene in S. cerevisiae186. Based on the master equations relating 
mRNA transcription and protein translation (Equation 5.9)42, the relative protein abundance (PA) 
is proportional to the product of mRNA abundance and TE, assuming a consistent protein 
degradation rate across genes (Equation 5.10). There were 1,180 genes in the validation set, 
with a mean of 55,012 copies per cell, ranging from 6 to 4,366,751. The correlation between the 
protein abundance derived by Scikit-ribo and derived by mass spectrometry was indeed very 
high (Pearson 𝑟 = 0.81, Figure 5.5A) and the fitted line was close to the diagonal (linear 
regression, 𝛽 = 0.83). When we further considered protein degradation rates from Christiano et 
al187, the correlation became even higher (Pearson 𝑟 = 0.83, Supplemental Figure 5.S8). In 
comparison, RPKM-derived log 𝑃𝐴 reported a lower correlation (Pearson 𝑟 = 0.77) and the 
fitted line is more distant from the diagonal (𝛽 = 0.75, Figure 5.5C). In addition, many of the 
outliers in the RPKM-derived PA were low abundance genes, suggesting a systematic bias 
(Figure 5.5C). Focusing on a set of 933 low abundance genes with a TPM less than 100, the 
Scikit-ribo derived log 𝑃𝐴 maintained a high correlation with mass spectrometry derived log 𝑃𝐴 
(Pearson 𝑟 = 0.6, 𝛽 = 0.48, Figure 5.5B). In contrast, RPKM-derived PA became more 
inaccurate with a much lower correlation (Pearson 𝑟 = 0.35, 𝛽 = 0.29, Figure 5.5D). This 
analysis demonstrates that Scikit-ribo more accurately estimates genome-wide TE regardless of 
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mRNA abundance, while the RPKM-derived TE performed poorly among low abundance 
mRNAs. 
 
Refined TE analysis revealed Dhh1p’s role in translation repression 

The DEAD-box protein Dhh1p is a sensor for codon optimality and ribosome speed, 
targeting an mRNA for repression and subsequent decay145. Radhakrishnan et al performed 
ribosome profiling in three S. cerevisiae strains: wild-type (WT), dhh1Δ (KO), and 
overexpressed (OE) Dhh1p145 with substantial differences in TE between the strains 
(Supplemental Figure 5.S9). Here, we re-analyze their data to make use of Scikit-ribo’s more 
refined analysis to reproduce major findings and to yield new biological insights into Dhh1p’s 
activity.  

 
First, regarding reproducibility, the mean correlation of log 𝑇𝐸 and the codon DT were 

all very high between the biological replicates for a given strain (𝑟xE = 0.95, 𝑟Cx = 0.99, 
Supplemental Figure 5.S10-S11), indicating that the data are of high quality and that the 
inference procedures in Scikit-ribo are stable. When comparing codon DTs between different 
strains, we observe OE and KO have the largest and smallest standard deviation, respectively 
(Supplemental Figure 5.S11, 5.S12A-C). This is consistent with Radhakrishnan et al145. They 
also showed a pattern of increased ribosome density per mRNA on non-optimal genes in the OE 
strain145, which was successfully reproduced by Scikit-ribo as well (Supplemental Figure 
5.S13). Compared with WT, codon-optimal genes (higher tAI) had enhanced TE in KO, while 
non-optimal genes had much lower TE (Supplemental Figure 5.S13A). Overall, whenever 
Dhh1p was overexpressed, codon-optimal genes exhibited reduced TE (Supplemental Figure 
5.S13B), which became even more distinct when comparing OE with KO (Supplemental Figure 
5.S13C).  

 
We next refined the estimation of the codon DT differences between strain using the log 

ratios of DTs in OE and KO relative to those in WT. A lower log ratio indicates the codon 
becomes faster, and a higher ratio indicates the codon becomes slower. In Radhakrishnan et al145, 
the AGG codon was an outlier and had large differences, although it is an optimal codon. In our 
analysis, it only had minimal differences (log ratio=-0.03, Supplemental Figure 5.S12B, Table 
5.S4). The two slowest codons in WT (CCC, CCG) had the most changes in DT, which became 
much faster in OE (log ratio=-0.68, -0.50, Supplemental Table 5.S4, Figure 5.6F). 
Radhakrishnan et al145 showed that Dhh1p stimulated the degradation of low codon optimality 
mRNAs and increased of their ribosome densities per mRNA, meaning the number of non-
optimal codons decreased in OE while the amount of tRNA availability stayed unchanged. Thus, 
the pairing of non-optimal codons became more efficient and these codons elongated faster. We 
also sorted the 61-sense codons by their DT in WT, and discovered a strong negative correlation 
against the log ratios (𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝜌 = −0.63, Supplemental Figure 5.S12D). This means 
slower codons in WT reported larger changes of DT in OE. The findings of codon DT 
differences are particularly interesting for Scikit-ribo because its GLM infers codon DTs directly 
from the data, without the need of pre-defined parameters.  

 
Finally, genes with large changes in TEs (Δ log2 𝑇𝐸), might provide insights about 

Dhh1p’s role in translation regulation. We examined this with a conservative approach, focused 
on the two extreme tails, and compare results from Scikit-ribo with RPKM-derived TE 
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(Methods). Using both methods, we found genes with reduced TE in OE enriched for optimal 
codons (t-test, p-value=1×10−51, Figure 5.6B). This set of genes is significantly enriched for the 
GO categories “cytosolic ribosome” (GO:0022626, p-value=3×10−16) and “cytosolic small 
ribosomal subunit” (GO:0022627, p-value=6×10−11) (Supplemental Table 5.S5). Dhh1p is a 
known mRNA translation repressor188-190 and associates with the eukaryotic ribosome145. Here, 
we further speculate that Dhh1p might reduce translation of the 40S ribosomal subunit mRNA, 
in addition to inhibiting the production of a stable 48S preinitiation complex to form on 
mRNA191. In contrast, genes with increased TE in KO tend to be codon sub-optimal (t-test, p-
value=3×10−52, Figure 5.6A). Found with Scikit-ribo but not with RPKM-derived TE, these 
genes are enriched for “inner mitochondrial membrane protein complex” (GO:0098800, p-
value=3×10−4, Supplemental Table 5.S6). To investigate the GO enrichments that are specific 
to Scikit-ribo, we selected the tail genes that correspond to the significant GO categories 
(Methods). Among these genes, we only kept the ones specific to Scikit-ribo (not found with 
RPKM-derived TE), and we again observed the same patterns with respect to codon optimality 
and Dhh1p expression (Figure 5.6C-E). This means the Scikit-ribo-specific genes are consistent 
with the global patterns, thus strengthening our understanding of Dhh1p’s role in translation. 
 
Discussion 

For nearly 60 years, the central dogma of molecular biology has been the guiding model 
for explaining how genetic information flows from DNA to RNA and then to proteins. Through 
widespread genome and transcriptome sequencing, the first half of this process has been 
extensively explored, revealing many important relationships between genomic sequences, gene 
expression, and gene regulation in evolution, development, and disease. In contrast, relatively 
little is known about the final phases of this process, largely because of the difficulties in 
acquiring high throughput and high quality data about translation and translational control. 
Riboseq is a powerful approach poised to fill this void. Several methods have been developed for 
selected aspects of Riboseq analysis, including differential TE testing192-195, identifying ORFs 
and alternative translation initiation sites196, 197, and predicting the shape of ribosome profiles198. 
But few practical statistical methods have been developed for robust TE estimation and most 
previous analyses were not performed in a systematic fashion. This had led to conflicted findings 
about the roles of codons and mRNA secondary structure on translation, and has prevented 
biological discoveries from being made in some cases. Here, through a systematical 
characterization and validation using mass spectrometry data, we exposed some of the more 
troubling issues of RPKM-derived TEs, including sampling errors and biological biases, 
especially for the low abundance genes.  

 
We argue that Scikit-ribo is the first statistically robust model and open-source software 

package for accurate genome-wide TE inference from Riboseq data. The core of Scikit-ribo is a 
codon-level generalized linear model that unifies our study of translation elongation and 
initiation including the effects of codon specific elongation rates, mRNA secondary structure, 
and gene specific translation initiation efficiency. When paired with a powerful ridge regression 
regularization method, Scikit-ribo corrects the negative skew in TE observed in most previous 
papers, especially for low expressed genes. Using three case studies involving ten different 
datasets, we showed how these statistical advancements allow universal improvement to Riboseq 
data analysis. This particularly improves the estimation of genome-wide TE, allowing us to 
discover the Kozak-like consensus sequence in S. cerevisiae, and yield novel insights into 
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Dhh1p’s role on translation repression. Our findings showcase the interplay between biology and 
statistics; biological knowledge informs statistical methods development, and statistical 
improvement yields novel biological insights. Together, we demonstrate that Scikit-ribo 
substantially improves Riboseq analysis and our understandings of translation control. In the 
future, we foresee more researchers applying Riboseq to address their biological questions 
related to protein translation and Scikit-ribo can unlock the full potential of this technique. 
 
Methods 
	
Overview of Scikit-ribo 

Scikit-ribo has two major modules (Figure 5.2): (1) Ribosome A-site codon location 
prediction, and (2) TE inference using a codon-level generalized linear model (GLM) with ridge 
penalty. A complete analysis with Scikit-ribo involves two steps: 1) data pre-processing to 
prepare the ORFs and codons for a genome of interest, 2) the actual model training and fitting. 
The few inputs to Scikit-ribo includes the alignments of Riboseq reads (i.e. BAM file), gene-
level quantification of RNAseq reads (i.e. from Salmon199 and Kallisto200), a gene annotation file 
(i.e. gtf file) and a reference genome (i.e. fasta file) for the model organism of interest. The main 
outputs include log2 𝑇𝐸 estimates for the genes, and the translation elongation rates for the 61-
sense codons. Scikit-ribo also has modules to automatically produce diagnostic plots of the 
random forest model and the GLM. The ribosome profile plots for each gene can also be plotted 
using Scikit-ribo. For details of preparing the inputs, see data processing steps in Methods. For a 
complete workflow from raw sequencing reads to results, see Supplemental Figure 5.S15. 
Scikit-ribo can be easily installed with a single command: “pip install scikit-ribo”. The 
documentation of Scikit-ribo is available at http://scikit-ribo.readthedocs.io/. 
 
Ribosome A-site codon prediction 

Scikit-ribo uses a random forest201 classifier from Scikit-learn202 to predict the ribosome 
A-site locations over the 61-sense codons in the ORFs after excluding the start and stop codons.  
(Figure 5.2A). Low mapping quality (MAPQ<20) and clipped alignments are removed from 
downstream analysis. After filtering out overlapping genes, it collects all reads that intersect the 
start codons as training data. In the Weinberg et al data, the sample size of the training data is 
~700,000, with ~85,00 in each class. The feature set of the classifier include 1) read length, 2) 
reading frame phase of the 5’-end and 3’-end nucleotides (1st, 2nd, or 3rd), 3) the edge and the 
flanking nucleotides of the Riboseq reads. In the RNase I data, the label of the training data is the 
distance between the 3’-end of the start codon and the 5’-end of the read. In the RelE data, the 
label of the training data is the distance between the 3’-end of the start codon and the 3’-end of 
the read, which is enabled by the flag –r of the Scikit-ribo program.  

 
The training of the random forest classifier involved two steps: recursive feature selection 

with CV, and training the classifier with reduced feature set. The first step of the training uses 
CV to find the optimal features that gives the lowest prediction error. During each step of the CV, 
the features are re-ranked and the lowest ranked feature is dropped. This is similar to finding the 
“elbow” point in the feature importance plot (Supplemental Figure 5.S3), which indicates the 
last sharp decrease of feature importance. Once the optimal feature set is selected, Scikit-ribo 
performs another ten-fold CV to measure the accuracy (1 - error rate) of the model and learns the 
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weights for each feature. After this, the learned classifier is applied to all the reads in the ORF 
and the A-site location on each read is predicted. Finally, Scikit-ribo compares the A-site 
locations to the canonical ORF, and reads that do not match it will be dropped from downstream 
analysis.  
 
Calculating RPKM-derived TE 

We refer to ribosome density per mRNA as RPKM-derived TE. It is a commonly used 
proxy for TE, which can be calculated by the ratio of RPKM for a given gene 𝑖3, 42: 

 Ribosome density per mRNA?  =  RPKM?
Ribo

RPKM?
mRNA Equation 5.1 

 
where RPKM?

Ribo and RPKM?
mRNA are the relative abundance of gene 𝑖 in the Riboseq data and 

RNAseq data, respectively. 
 
RPKM and TPM are defined by: 

 
RPKM? = 𝑅?

𝑙?
103

𝑅??
106

= 𝑅?
𝑙? ⋅ 𝑅??

⋅ 109 
Equation 5.2 

 

 TPM? = ( RPKM?
RPKM??

)  ⋅ 106 Equation 5.3 

 
where 𝑅?, 𝑙? are the sequencing coverage and coding sequence length of a gene, respectively.  
 

In Riboseq studies, rather than using fragments per kilobase of gene per million reads 
mapped (FPKM), RPKM is employed (Equation 5.1). This is because the Riboseq reads are 
single stranded, and the companion RNAseq libraries were also made using a single stranded 
protocol to mimic the Riboseq data. Since 𝑙? is a shared term between the two data, RPKM-
derived TE can be further derived as: 

 RPKM − derived TE? =

𝑅?
i?qK

𝑅?
i?qK

?
𝑅?

ri>s

𝑅?
ri>s

?

=

𝑅?
i?qK

𝑅?
ri>s

𝑅?
i?qK

?
𝑅?

ri>s
?

 Equation 5.4 

 
The total number of reads 𝑅?

i?qK
?  and 𝑅?

ri>s
?  are fixed normalization factors shared 

between genes. Thus, the variance of the nominator, the ratio of the number of reads, determines 
the dispersion of RPKM-derived TE. That is why low abundance genes, either in the Riboseq or 
RNAseq data, report highly dispersed TE derived with RPKM.  
 
 
Correcting for biological biases with the Scikit-ribo GLM 

The joint inference of TE and codon DT is achieved via a codon-level GLM with a 
penalized likelihood function203 (Equation 5.5). The model can be fit using a python 
implementation of glmnet (https://github.com/hanfang/glmnet_python204). In Scikit-ribo, the 
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design matrix is loaded as a scipy205 compressed sparse column matrix. This can effectively 
reduce memory usage, as the size of the design matrix grows exponentially with respect to the 
number of categorical variables. As a quality control, low MAPQ regions and genes with TPM 
less than one are excluded from the analysis. If a gene has fewer than 10 effective codons 
remaining, it is also excluded. The model assumes that the number of ribosomes 𝑌?� for each 
codon at position 𝑗 of gene 𝑖 follows a Poisson distribution with the mean equal to 𝜇?� 
(Equation 5.5). A log link function is employed. 

 

 
𝑌?� ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑚𝑒𝑎𝑛 =  𝜇?�  for position 𝑗 of gene 𝑖 

𝑙𝑜𝑔 𝜇?� = 𝛽0 + 𝛽P𝑥?� 
where 𝑖 ∈ 0, 𝐼 , 𝑗 ∈ 0, 𝐽  

Equation 5.5 

 
To correct for the biological biases, Scikit-ribo considers the below three categorical 

covariates and a continuous covariate (Figure 5.2B, Equation 5.6). The first continuous 
covariate 𝑋?

r represents mRNA abundance in TPM and its coefficient is fixed to be one, 
indicating the ribosomes are proportional to mRNA abundance. Before putting into the model, 
the log TPM? values are normalized by their mean and SD. The coefficients 𝛽?

x (in logE scale) of 
the first categorical covariate 𝑋?

x represent TE/TIE for each gene. The log2 𝑇𝐸? can further be 
computed by using median normalization: log2 𝑇𝐸? = (𝛽?

x − 𝑚𝑒𝑑𝑖𝑎𝑛(𝜷�))/ logE 2. The second 
categorical covariate 𝑋?�

|  represent the 61-sense codons. Their coefficients, 𝛽| (in 𝑙𝑜𝑔E scale) are 
proportional to the relative codon DT, which are the inverse of codon ERs. The start and stop 
codons in each ORF are excluded, because of their relevance to translation initiation and 
termination, rather than elongation. Finally, the third categorical covariate 𝑋?�

J  indicates whether 
a likely double-stranded stem loop exists within 18 nt downstream of the current ribosome, as 
predicted from the optimal minimum free energy structure from RNAfold172. The current 
ribosome is likely to reside at a single strand part of the mRNA molecule.  
 
 

 
𝑔 𝜇?�  =  𝛽0 +   𝑥?  

r

ri>s
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Equation 5.6 

 
where g .  is a log link function, µij = E[𝑌?�], 
           xi

m is the mRNA abundance for gene i with its coefficient fixed to 1, 
         βi

t is the translational efficiency coefficient for gene i, 
         β| is the codon dwell time inverse of elongation rate  for codon c, 
         xij

s  denotes whether secondary structure exists downstream of position j in gene i, 
         β0 is the intercept. 
 
Correcting for sampling errors with ridge penalty 

To correct for the sampling errors, i.e. the high dispersion of TE among low-abundance 
genes, Scikit-ribo employs a GLM with a ridge penalty203 (𝑙2 𝑛𝑜𝑟𝑚) to provide shrinkage 
estimates of TEs (Equation 5.7 and 5.8). This is computed by setting the 𝛼 parameter in glmnet 
to zero. The lasso penalty is not considered here because we wish to infer all the coefficients (e.g. 
TEs of all genes), rather than performing variable selection. To optimize the log-likelihood, 
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Scikit-ribo calls glmnet203, which uses a Newton quadratic approximation (outer loop) and then 
coordinate descent on the resulting penalized weighted least-squares problem (inner loop). A ten-
fold CV is performed to find the optimal 𝜆, which controls the strength of 𝑙2 𝑛𝑜𝑟𝑚 
regularization. If one wishes to utilize or inspect the coefficients from an un-penalized GLM, this 
could be done by setting 𝜆 = 0 when printing the coefficients. 
 
The log likelihood for the observations x?�, y?�  is given by 

 𝑙(𝛽|𝑋, 𝑌) =  (𝑦?� 𝛽0 + 𝛽T𝑥?� −  𝑒70+ 7;�� )
¡

�=0

y

?=0
 Equation 5.7 

 
We optimize the 𝑙2 norm penalized log likelihood w. r. t. a total of N observations  
and K parameters: 

 𝑎𝑟𝑔𝑚𝑖𝑛70,7 − 1
𝑁 𝑙 (𝛽|𝑋, 𝑌)   +  𝜆( 𝛽0

2/2) 
V

0=1
 Equation 5.8 

 
where the optimal λ with the smallest Poisson deviance is decided via CV. 
 
Deriving relative protein abundance 

As per the master equations for mRNA transcription and protein translation from Li42, for 
a gene 𝑖,  
 𝑑

𝑑𝑡 𝑃? = 𝑘?
2𝑀? −  𝜆?

2𝑃? Equation 5.9 

 
where 𝑀¥ and 𝑃¥ are the concentration of mRNA and protein, respectively. 𝑘?

1 
and 𝑘?

2 are the transcription and translation efficiency, while 𝜆?
1 and 𝜆?

2 are the degradation rates 
of mRNA and protein. Under steady state, C

Cx 𝑃? = 0, thus, the relative protein abundance (PA) 
can be derived from Riboseq and RNAseq data using: 

 𝑃? = 𝑘?
2 

𝜆?
2 𝑀? = 𝑇𝐸?

𝐷𝑅?
 𝑀? ∝ 𝑇𝐸? 𝑀? Equation 5.10 

where 𝑇𝐸? is the translation efficiency, 𝑀? is the relative mRNA abundance in TPM, and 𝐷𝑅? is 
the relative protein degradation rates, which can be assumed identical across genes. For the 
Riboseq data alone, 𝑃? approximates to the relative ribosome density/abundance in TPM. 
 
Sequencing reads processing 

The complete sequencing reads processing workflow is shown in Supplemental Figure 
5.S15. Each time a new fastq file is generated, it is recommended to run fastqc to ensure the 
expected outcome and replace runs with excessive quality errors. For both Riboseq and RNA-seq 
data, the first step is to identify and trim the 3’-end adapters from each read using cutadapt206 
(v1.13). The first base of the reads’ 5’-end is also clipped to avoid contamination on the 5’-end. 
To filter out ribosomal RNA (rRNA) sequences, the resulting reads are aligned to the known 
rRNA using Bowtie207 (v1.2.0). As a quality control, the reads that are too short or too long are 
removed using Prinseq208, keeping reads in a range from 15nt to 35nt (v0.20.4). In E. coli, the 
size range of the Riboseq reads is larger, so this filtering step on read size should be adjusted 
accordingly. The remaining reads are then aligned with STAR209 (v2.4.0j) in a single pass mode 
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with parameters tuned for short reads (--sjdbOverhang 35). The quality control report file of the 
resulting bam is generated using Qualimap210 (v2.0.2). From there, the RNAseq data is used to 
quantify the gene-level mRNA abundance in TPM using a quantifier. Salmon199 and Kallisto200 
are recommended here because they are extremely fast and their file formats are automatically 
supported by Scikit-ribo.  
 
Scikit-ribo input processing 

Scikit-ribo uses the pandas211 data frame as the main data structure: a codon-level data 
frame for the GLM, and a read-level data frame for A-site prediction. The codon-level data 
frame consists of the following variables: chromosome, start, end, codon, secondary structure 
pairing probability, mRNA abundance in TPM, number of ribosomes at this codon. Scikit-ribo 
filters and converts the provided Riboseq bam file into a bed file using pysam(v0.10.0)15 and 
pybedtools(v0.7.9)212, 213, which is subsequently converted into a read-level data frame. To 
prepare the codon-level data frame, it retrieves the cDNA sequence (includes ORF, 5’/3’-UTR) 
given a reference genome and a gene annotation file. The 24 nucleotides in both the 5’UTR and 
3’-UTR are included for calculating mRNA secondary structure. The cDNA sequence is then 
used to predict the optimal secondary structure under minimal free energy using 
RNAfold(v2.3.4)172. By parsing the postscript files, Scikit-ribo finds the lbox entries, which 
represent the pairing of nucleotides in the optimal structure. With that, it identifies the positions 
on the ORF with a likely stem loop downstream (i.e. nine nucleotides downstream of the A-site), 
while the ribosome is residing at a likely single-strand region (i.e. from six nucleotides upstream 
to nine nucleotides downstream). Due to the uncertainty of RNAfold prediction, a likely stem 
loop requires at least 17 out of the 18 nucleotides to be paired, while a single-strand region 
requires no more than three nucleotides paired. Given the canonical ORF of a gene, Scikit-ribo 
splits the sequences into tri-nucleotides as codons.  
 
Data and statistical analysis in this paper 

For the wild-type S. cerevisiae analysis, the Riboseq (flash-freeze protocol) and RNA-seq 
(Ribo-zero protocol) data were from Weinberg et al136. The accession numbers are GSM1289257, 
GSM1289256. For the analysis involving Dhh1p, the Riboseq and RNA-seq data were from 
Radhakrishnan et al 145 under the accession number GEO: GSE81269. The reference genome of 
S. cerevisiae used is S288C R64-2-1. The gene annotation file was the SGD annotation 
downloaded from UCSC. For the E. coli analysis, the Riboseq (RelE protocol) and RNA-seq 
data were from Hwang et al152. The accession number is GSE85540. The reference genome of E. 
coli used is the MG1655 genome. For more details of how these data were generated, please 
refer to the original papers. All the figures in the paper were plotted using matplotlib214 (v2.0.0) 
and seaborn215 (v0.7.1). The Pearson correlation and Spearman correlation are denoted as 𝑟 and 𝜌, 
respectively.  

To ensure reproducibility, all source codes for data processing, statistical analyses and 
figure plotting are available in the iPython notebooks under the GitHub repository: 
https://github.com/hanfang/scikit-ribo_manuscript 
 
Simulation, sequence enrichment, and gene enrichment analysis  

The simulation of the S. cerevisiae Riboseq and RNAseq data were done with 
polyester216 and the log 𝑇𝐸qIJEH?lE, followed a balanced normal distribution. To mimic paused 
ribosomes, we randomly sampled 2500 sites (occurring within ~20% of the genes) and added 
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1000 additional reads into these locations of the Riboseq data. We then sampled back to the same 
number of reads as the original data and computed the new RPKM-derived log 𝑇𝐸ij. For the 
sequence enrichment analysis, we collected 5’UTR sequences from genes with log2 𝑇𝐸 greater 
than two. The 5’UTR region is from 50 nt upstream to 6nt downstream of the translation start 
site. Then we used HOMER (v4.9) to scan for enriched sequences from the 56nt windows184, 
using the HOMER recommended p-value cutoff of 1×10−10.  

 
Gene set enrichment analysis required three steps. First, we excluded low abundance 

gene (TPM < 10) to focus on effects of the biological covariates (e.g. codon ER). Second, we 
selected 50 genes from the left and right tails, i.e. genes with the most changes of TE. This cutoff 
gave bounds of Δ log2 𝑇𝐸 about -0.9 and +1.7 in the three comparisons. Finally, we uploaded 
the gene sets to http://www.yeastgenome.org/ and performed enrichment analysis217. 
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Figure 5.1. Sources of biases using ribosomes densities per mRNA (RPKM-derived TE) as 
a proxy for TE. (A) Sampling biases towards low abundance genes (left), and biological biases 
due to paused ribosomes (right). (B) Idealized ribosome footprints distribution without biases 
(left), or with downstream mRNA secondary structure and low conjugate tRNA availability for 
the A-site codon (right). (C) Confounding effects of translation initiation and elongation on 
Riboseq profiles, figure adapted from Quax et al 2013. Initiation rate should be proportional to 
actual protein yield.  
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Figure 5.2. Overview of the analysis workflow in Scikit-ribo. The complete workflow consists 
of Ribosome A-site classifier training, A-site codon prediction and mapping, and translation 
efficiency inference. (A) Ribosome A-site training and prediction, gray text boxes denote the 
major steps. (B) Illustration of the covariates in the codon level generalized linear model. In the 
model, the mRNA abundance (in TPM) are considered as offset with fixed coefficient equal to 
one. Codon dwell time and mRNA secondary structure are shared covariates across genes. 
Translation efficiencies are gene specific covariates.  
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Figure 5.3. Accurate inference of codon elongation rates and mRNA secondary structure. 
(A) Almost perfectly reproduced codon dwell time (DT), inverse of elongation rate) from 
Weinberg et al (𝑟=0.99). (B) Correlation with the codon’s adaptiveness value (RAV, 𝑟=0.5), (C) 
Correlation with tRNA abundance (𝑟=0.47). In A-C, the gray dashed line denotes the diagonal 
line; y=x. The RAV scales from 0 to 1. A codon with lower RAV means that it is less optimal for 
translation elongation, i.e. slower codons. (D) Meta gene analysis of the log ratio of adjusted DT 
(ADT), divided by the mean adjusted DT. The solid line denotes the average ADT in a five-
codon sliding window. A log ratio greater than zero means ribosomes at this position are faster 
than average. The log ratios on the left were significantly higher than the ones on the right (T-test, 
p-value= 5×10−3). The unit of the distance is codon.  
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Figure 5.4. Pair-wise comparisons of estimates between Scikit-ribo and RPKM-derived TE. 
(A) Scatter plot of Scikit-ribo and RPKM derived 𝑙𝑜𝑔2 𝑇𝐸 . Difference in 
𝑙𝑜𝑔2 𝑇𝐸 : ∆ 𝑙𝑜𝑔2 𝑇𝐸 .  ∆ 𝑙𝑜𝑔2 𝑇𝐸 > 0.5, previously underestimated (green), ∆ 𝑙𝑜𝑔2 𝑇𝐸 <
−0.5, previously overestimated (orange), and other genes in between (gray). The genes with 
∆ 𝑙𝑜𝑔2 𝑇𝐸  less than -8 are indicated by triangles. (B) Histograms of scikit-ribo and RPKM-
derived 𝑙𝑜𝑔2 𝑇𝐸 , 𝑙𝑜𝑔2 𝑇𝐸  values less than -10 are adjusted to -10 (C) Histograms of ribosome 
TPM in all genes (blue), and region 1 (green). (D) Violin plots of ∆ 𝑙𝑜𝑔2 𝑇𝐸  by the number 
stem loops. (E) Violin plots of tAI for genes in the six regions, left: 𝑙𝑜𝑔2 𝑇𝐸 < 0, right: 
 𝑙𝑜𝑔2 𝑇𝐸 > 0. (F) The Kozak consensus sequence, AAAATGTCT, found with the TE 
estimates from Scikit-ribo (p-value=1×10−21). The lower panel is adapted from the original 
paper, Hamilton et al (1987).   
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 Figure 5.5. Large-scale validation with mass spectrometry data confirmed Scikit-ribo’s 
accurate TE estimates, especially for low-abundance genes. (A) Scikit-ribo derived protein 
abundance (PA) for all genes in the validation set (𝑟 = 0.81, 𝛽 = 0.83). (B) Scikit-ribo derived 
PA for genes with TPM less than 100 (𝑟 = 0.6, 𝛽 = 0.48). (C) RPKM-derived PA for all genes 
in the validation set (𝑟 = 0.77, 𝛽 = 0.75). (D) RPKM-derived PA for genes with TPM less than 
100 (𝑟 = 0.35, 𝛽 = 0.29). The black dashed line denotes the identity line; y=x.  
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Figure 5.6. Analysis of the Dhh1p data using Scikit-ribo. Violin plots of tAI for genes with 
decreased/increased TE in (A) Knock Out (KO), (B) Over Expressed (OE), relative to Wild Type 
(WT). Violin plots of tAI for tail genes unique to Scikit-ribo in (C) KO, (D) OE. (E) Violin plot 
of tAI for genes, left: reduced TE in OE, and right: increased TE in OE. (F) Scatter plot of DT 
comparing OE and WT. WT: wild type, KO: knock out Dhh1p, OE: Overexpression of Dhh1p. 
The black dashed line denotes the identity line; y=x. 
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Supplemental figures 
 
 

 
Supplemental figure 5.S1. RPKM-derived log2(TE) and scikit-ribo log2(TE). (A) Scikit-ribo 
reported a balanced log2(TE) distribution (mean=0.1). The red solid line denotes the mean. (B) 
The RPKM-derived log2(TE) reported high dispersion among low abundance genes (TPM<1), 
while the genes with TPM > 1 still reported a long tail on the negative side. (C) The RPKM-
derived log2(TE) reported a skewed distribution (mean=-0.5). (D) Even increasing the TPM 
cutoff to 10, the RPKM-derived log2(TE) still reported a long tail on the negative side. 
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Supplemental figure 5.S2. Multi-class ROC curves for A-site prediction. (A) S. cerevisiae 
RNase I data. (B) E. coli RelE data. Each curve represents the data with different A-site locations 
(12 to 18 in RNase I, 1 to 8 in RelE). The dash line represents the micro-average across classes.  
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Supplemental figure 5.S3. Feature importance from the random forest model. (A) S. 
cerevisiae RNase I data. (B) E. coli RelE data. 5/3_offet represents whether the 5’/3’ end of the 
read is in the first/second/third reading frame. Nt_-1/0/n-1/n represents the nucleotide at that 
position.  
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Supplemental figure 5.S4. Analysis of mRNA abundance in TPM by region.  Related to 
Figure 5.4; (A) Histograms of mRNA TPM in all genes (blue), and region 1 (green). (B) Violin 
plots of TE difference in the three regions, similar to Figure 4. 
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Supplemental figure 5.S5. Violin plots of stAI for genes in the six regions. Related to Figure 
5.4; left: 𝑙𝑜𝑔2 𝑇𝐸 < 0, right:  𝑙𝑜𝑔2 𝑇𝐸 > 0. 
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Supplemental figure 5.S6. Statistically enriched sequences based on Scikit-ribo’s TIE 
estimates using HOMER. Related to Figure 5.4; The Homer’s suggested p-value threshold is 
1×10−10  to 1×10−12. 
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Supplemental figure 5.S7. Statistically enriched sequences based on RPKM-derived TE 
estimates using HOMER. Related to Figure 5.4; The Homer’s suggested p-value threshold is 
1×10−10  to 1×10−12. 
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Supplemental figure 5.S8. Higher correlation between scikit-ribo derived PA and SRM 
measurement, after considering protein degradation rate. Related to Figure 5.5; The protein 
degradation rate was obtained from Christiano et al (𝑟 = 0.83). 
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Supplemental figure 5.S9. Substantial differences of TE between strains. Related to Figure 
5.6; (A-C) based on TE estimates from scikit-ribo, (D-F) based on RPKM-derived TE. WT: wild 
type, KO: knock out Dhh1p, OE: Overexpression of Dhh1p. 
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Supplemental figure 5.S10. Highly reproducible TE estimates between replicates. Related to 
Figure 5.6; (A) WT: wild type, 55 million and 16.7 million in replicate 1 and 2 (r=0.87). (B) WT 
with TPM greater than (r=0.94). (C) KO: knock out Dhh1p (r=0.99), 74 million and 56 million in 
replicate 1 and 2. (D) OE: Overexpression of Dhh1p, 80 million and 39 million in replicate 1 and 
2 (r=0.96). The correlation was a function of the number of reads in each replicate. 
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Supplemental figure 5.S11. High correlation of codon dwell time (DT) between biological 
replicates. Related to Figure 5.6; (A) wild-type, range of DT: 2.01, SD: 0.36, (B) KO, range: 
3.05, SD: 0.45, (C) OE, range: 1.35, SD: 0.27. WT: wild type, KO: knock out Dhh1p, OE: 
Overexpression of Dhh1p. 
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Supplemental figure 5.S12. Codon dwell time (DT) comparisons between strains. Related to 
Figure 5.6; (A) KO versus WT, (B) OE versus WT, (C) OE versus KO. (D) Compare the log 
ratio of DT with the original rank of DT in WT. WT: wild type, KO: knock out Dhh1p, OE: 
Overexpression of Dhh1p. 
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Supplemental figure 5.S13. Reproducing Radhakrishnan et al’s findings on TE changes 
and codon optimality. Related to Figure 6; (A-C) are based on tAI, (C-E) are based on stAI. 
The category down: Δ𝑙𝑜𝑔2 𝑇𝐸 < 1, the category up: Δ𝑙𝑜𝑔2 𝑇𝐸 < 1, the category mid: genes 
in between. WT: wild type, KO: knock out Dhh1p, OE: Overexpression of Dhh1p. 
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Supplemental figure 5.S14. Genes with extreme TE changes that were unique to scikit-ribo. 
Related to Figure 5.6; (A-C) are based on tAI, (C-E) are based on stAI. The category down: 
Δ𝑙𝑜𝑔2 𝑇𝐸 < 1, the category up: Δ𝑙𝑜𝑔2 𝑇𝐸 < 1. WT: wild type, KO: knock out Dhh1p, OE: 
Overexpression of Dhh1p. 
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Supplemental figure 5.S15. The complete workflow of scikit-ribo analysis.   

Align reads 
(eg. w/ STAR)

Filter rRNA sequences
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Supplemental Tables 
 
 
Study SRR # Mean accuracy SD # Optimal features 

S. cerevisiae RNase I     

Weinberg et al (2016) SRR1049521 0.987 0.004 3 

Radhakrishnan et al (2016) SRR3493886 0.981 0.008 2 

Radhakrishnan et al (2016) SRR3493887 0.929 0.036 2 

Radhakrishnan et al (2016) SRR3493890 0.982 0.008 4 

Radhakrishnan et al (2016) SRR3493891 0.963 0.022 2 

Radhakrishnan et al (2016) SRR3493894 0.941 0.019 7 

Radhakrishnan et al (2016) SRR3493895 0.936 0.025 2 

Radhakrishnan et al (2016) SRR3493898 0.938 0.03 2 

E. coli RelE     

Hwang et al (2016) SRR4023280 0.910 0.041 1 

Hwang et al (2016) SRR4023281 0.810 0.043 1 
  
Supplemental Table 5.S1. Prediction accuracy of A-site locations. Mean and SD were 
computed via 10-fold cross validation. SD: standard deviation.  
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Region Comparison Sign of log2(TE) # genes Color 
1 Under-estimated by RPKM Negative 629 Green 
2 Similar Negative 1846 Gray 
3 Over-estimated by RPKM Negative 79 Orange 
4 Under-estimated by RPKM Positive 268 Green 
5 Similar Positive 1305 Gray 
6 Over-estimated by RPKM Positive 981 Orange 
 
Supplemental table 5.S2. Interpretation of the pair-wise comparison in Figure 4A. Related 
to Figure 5.4; The sign of log(TE) are based on TE of Scikit-ribo. ∆ 𝑙𝑜𝑔2 𝑇𝐸 =
𝑙𝑜𝑔2 𝑇𝐸J|?0?x−B?qK − 𝑙𝑜𝑔2 𝑇𝐸ijV} . For gene with ∆ 𝑙𝑜𝑔2 𝑇𝐸 < −0.5, they were previously 
underestimated by RPKM-derived TE, and genes with ∆ 𝑙𝑜𝑔2 𝑇𝐸 < −0.5 were previously 
overestimated, and other genes have similar TE. 
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GO Term Accession # p-value # genes 
cytoplasmic translation GO:0002181 3×10-25 49 
translational elongation GO:0006414 1×10-8 59 
ribosome assembly GO:0042255 2×10-6 19 
translation GO:0006412 3×10-6 63 
peptide biosynthetic process GO:0043043 4×10-6 63 
 
Supplemental Table 5.S3. Gene set enrichment in region 4 genes. Related to Figure 5.4; 
There were 268 genes in region 4: 1) positive Scikit-ribo log2(TE), 2) previously under-
estimated by RPKM derived TE. The p-values shown were adjusted with Bonferroni correction. 
 
  



 

94 
	

 
codon DT_W

T 
DT_K
O 

DT_O
E 

RA
V 

DT_WT
_rank 

log2_ratio_OE
_VS_WT 

log2_ratio_KO
_VS_WT 

log2_ratio_OE
_VS_KO 

CAT 0.60 0.64 0.79 0.19 1.00 0.38 0.08 0.30 

CAA 0.64 0.70 0.72 0.55 2.00 0.18 0.12 0.05 

ACC 0.68 0.71 0.75 0.49 3.00 0.12 0.06 0.07 

AAC 0.69 0.82 0.81 0.62 4.00 0.23 0.25 -0.02 

TTA 0.70 0.76 0.90 0.43 5.00 0.37 0.12 0.25 

ATC 0.70 0.86 0.79 0.58 6.00 0.18 0.31 -0.13 

AAT 0.73 0.79 0.86 0.27 7.00 0.24 0.11 0.13 

ACT 0.75 0.68 0.77 0.68 8.00 0.04 -0.14 0.17 

ATT 0.76 0.84 0.83 0.80 9.00 0.13 0.14 -0.01 

CAC 0.80 0.73 0.88 0.43 10.00 0.14 -0.12 0.26 

TGT 0.80 0.73 1.00 0.11 11.00 0.31 -0.14 0.45 

TTT 0.81 0.79 0.90 0.27 12.00 0.16 -0.04 0.20 

TTG 0.83 0.79 0.94 0.75 13.00 0.18 -0.06 0.24 

TCA 0.84 1.00 0.97 0.19 14.00 0.20 0.25 -0.05 

GTT 0.85 0.84 0.79 0.86 15.00 -0.09 0.00 -0.09 

TCT 0.85 0.79 0.83 0.68 16.00 -0.03 -0.10 0.07 

AAG 0.88 0.93 0.81 1.00 17.00 -0.12 0.09 -0.20 

GTC 0.90 0.94 0.82 0.62 18.00 -0.13 0.07 -0.19 

AAA 0.90 0.97 0.91 0.43 19.00 0.02 0.10 -0.08 

AGT 0.91 0.93 1.08 0.05 20.00 0.24 0.02 0.22 

ATG 0.92 0.91 0.90 0.62 21.00 -0.03 -0.01 -0.02 

TCC 0.93 0.90 0.91 0.49 22.00 -0.03 -0.05 0.02 

TAT 0.94 1.16 0.95 0.22 23.00 0.01 0.31 -0.30 

AGC 0.94 1.04 1.12 0.12 24.00 0.25 0.15 0.11 

GAT 0.95 0.86 0.90 0.43 25.00 -0.08 -0.14 0.06 

GCC 0.96 0.94 0.80 0.49 26.00 -0.26 -0.03 -0.24 

ACA 0.97 0.97 1.08 0.25 27.00 0.15 0.00 0.15 

TTC 0.98 0.92 0.83 0.62 28.00 -0.24 -0.08 -0.15 

CTT 0.99 0.95 1.23 0.03 29.00 0.32 -0.05 0.36 

CGT 1.00 0.99 0.97 0.37 30.00 -0.03 -0.01 -0.02 

GCT 1.00 0.89 0.77 0.68 31.00 -0.38 -0.16 -0.22 

GAC 1.00 0.98 0.95 0.99 32.00 -0.08 -0.04 -0.04 

ATA 1.02 1.33 1.11 0.12 33.00 0.13 0.38 -0.26 

GTA 1.02 1.02 1.04 0.12 34.00 0.03 -0.01 0.04 

AGA 1.07 1.18 1.04 0.68 35.00 -0.05 0.13 -0.18 

CTA 1.07 0.99 1.13 0.19 36.00 0.07 -0.12 0.19 
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CAG 1.08 1.16 1.08 0.24 37.00 0.00 0.10 -0.10 

GGT 1.08 1.04 0.97 0.43 38.00 -0.16 -0.06 -0.10 

GAA 1.13 1.10 0.93 0.86 39.00 -0.29 -0.03 -0.25 

TGC 1.13 0.99 1.35 0.25 40.00 0.25 -0.20 0.45 

ACG 1.20 1.09 1.17 0.14 41.00 -0.03 -0.14 0.10 

CTC 1.20 1.26 1.49 0.06 42.00 0.31 0.07 0.24 

TAC 1.23 1.41 1.01 0.49 43.00 -0.28 0.19 -0.48 

GCA 1.24 1.29 1.02 0.31 44.00 -0.27 0.06 -0.34 

GAG 1.24 1.21 1.02 0.40 45.00 -0.28 -0.03 -0.25 

GTG 1.29 1.06 1.10 0.16 46.00 -0.23 -0.28 0.04 

TCG 1.32 1.25 1.25 0.12 47.00 -0.08 -0.08 0.01 

GCG 1.36 1.28 1.12 0.10 48.00 -0.28 -0.08 -0.20 

CCT 1.37 1.38 1.05 0.12 49.00 -0.39 0.01 -0.41 

CCA 1.38 1.44 1.01 0.62 50.00 -0.45 0.07 -0.51 

GGC 1.40 1.39 1.15 0.99 51.00 -0.29 -0.02 -0.27 

AGG 1.41 1.59 1.37 0.28 52.00 -0.04 0.18 -0.22 

TGG 1.41 1.25 1.34 0.37 53.00 -0.08 -0.17 0.10 

CGC 1.50 1.56 1.38 0.27 54.00 -0.12 0.07 -0.18 

GGG 1.51 1.61 1.25 0.18 55.00 -0.28 0.09 -0.37 

CTG 1.57 1.34 1.71 0.06 56.00 0.12 -0.22 0.35 

GGA 1.68 1.58 1.42 0.19 57.00 -0.24 -0.09 -0.15 

CGG 1.77 1.43 1.61 0.06 58.00 -0.14 -0.31 0.18 

CGA 1.88 2.36 2.07 0.00 59.00 0.14 0.33 -0.19 

CCC 1.96 1.72 1.22 0.09 60.00 -0.68 -0.18 -0.50 

CCG 2.62 3.69 1.86 0.20 61.00 -0.50 0.50 -0.99 

 
Supplemental Table 5.S4. Relative codon elongation rate (ER) and dwell time (DT) in the 
Dhh1p study. Related to Figure 5.6; RAV: relative adaptation value.  
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GO Term Accession # p-value # genes 
cytosolic ribosome [GO:0022626] 3×10-16 20 
cytosolic part [GO:0044445] 1×10-14 21 
ribosome [GO:0005840] 2×10-12 20 
ribosomal subunit [GO:0044391] 5×10-12 19 
cytosolic small ribosomal subunit [GO:0022627] 6×10-11 12 
small ribosomal subunit [GO:0015935] 9×10-9 12 
Pathway  p-value # genes 
glucose fermentation  4×10-3 5 
 
Supplemental Table 5.S5. The GO enrichment of gene with reduced TE in OE, relative to 
WT in the Dhh1p analysis. Related to Figure 5.6; 50 genes the most changes in TE were used 
as inputs for the GO enrichment analysis. The p-values shown were adjusted with Bonferroni 
correction. 
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GO Term Accession # p-value # genes 
inner mitochondrial membrane protein complex [GO:0098800] 3×10-4 8 
cytochrome complex [GO:0070069] 1×10-3 5 
mitochondrial protein complex [GO:0098798] 2×10-3 8 
mitochondrial part [GO:0044429] 3×10-3 17 
mitochondrial respiratory chain [GO:0005746] 4×10-3 5 
respiratory chain complex [GO:0098803] 5×10-3 5 
ATP metabolic process [GO:0046034] 5×10-3 8 
purine ribonucleoside triphosphate metabolic 
process [GO:0009205] 7×10-3 8 

hydrogen ion transmembrane transport [GO:1902600] 7×10-3 7 
purine nucleoside triphosphate metabolic process [GO:0009144] 8×10-3 8 
Pathway  p-value # genes 
aerobic respiration, electron transport chain  1×10-2 5 
 
Supplemental Table 5.S6. The GO enrichment of gene with increased TE in KO, relative to 
WT in the Dhh1p analysis. Related to Figure 5.6; 50 genes the most changes in TE were used 
as inputs for the GO enrichment analysis. The p-values shown were adjusted with Bonferroni 
correction. 
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Chapter 6 Applications on genome informatics 

 
Summary of contribution 

This chapter describes the applications on genome informatics. The first application and 
analyses were published in BMC Medical Genomics218. Han Fang developed the computational 
pipeline for analyzing the whole genome sequencing data. The second application and methods 
were published in Bioinformatics219. Michael Schatz led the development of the mixture model 
to estimate the mutation rate, duplication rate, and genome size. Han Fang further refined the 
prior probabilities and the mixture model. Permission for republication of this material has been 
granted and is available upon request. 
 
Applications 
 
Application 1 - Whole genome sequencing of one complex pedigree illustrates challenges with 
genomic medicine 

Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by 
providing a standardized vocabulary of phenotypic abnormalities to describe presentations of 
human pathologies; however, there have been relatively few reports combining whole genome 
sequencing (WGS) and HPO, especially in the context of structural variants. We illustrate an 
integrative analysis of WGS and HPO using an extended pedigree, which involves Prader-Willi 
Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A 
comprehensive WGS pipeline was used to ensure reliable detection of genomic variants. Beyond 
variant filtering, we pursued phenotypic prioritization of candidate genes using Phenolyzer. 
Regarding PWS, WGS confirmed a 5.5Mb de novo deletion of the parental allele at 15q11.2 to 
15q13.1 (Figure 6.1). Phenolyzer successfully returned the diagnosis of PWS, and pinpointed 
clinically relevant genes in the deletion. Further, Phenolyzer revealed how each of the genes is 
linked with the phenotypes represented by HPO terms. For HH, WGS identified a known disease 
variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a 
correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship 
using a disease-centric approach. Finally, Phenolyzer also revealed the complexity behind 
dysautonomia-like symptoms, and seven variants that might be associated with the phenotypes 
were identified by manual filtering based on a dominant inheritance model. The integration of 
WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate false 
positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and 
insufficient knowledge of human diseases, it is also important that phenotypic and genomic data 
are standardized and shared simultaneously. 

 
ERDS and CNVnator both detected three de novo heterozygous deletions with a total size 

of about 5.5 Mb, in the chromosome regions from 15q11.2 to 15q13.1 of the proband with PWS 
(K10031-10232). The hg19 genomic coordinates of the breakpoints are chr15:22,749,401-
23,198,800 (~449 Kb), chr15:23,608,601-28,566,000 (~4.96 Mb), and chr15:28,897,601-
28,992,600 (~95 Kb). Notably, these deletions are relatively close to one another; the distances 
between each deletion are ~410 Kb and ~332 Kb, respectively. Within the regions containing the 
de novo deletions, the depth of coverage in the proband’s genome is 20X, about half of the 
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genome-wide mean coverage (40X). Due to the lack of the proband’s mother’s sequencing data 
(as she refused to participate), analysis was performed to determine which allele (paternal or 
maternal) is deleted. This can be inferred through SNVs where the mendelian inheritance law is 
violated; meaning those instances in which the proband (K10031-10232) does not carry certain 
paternal or maternal SNVs that his brother (K10031-10233) does carry. In total, there are 2,987 
SNVs where the proband’s father (K10031-10231) is a homozygote and the proband’s brother is 
a heterozygote. Out of the 2112 SNVs where the father is homozygous to the reference allele, the 
proband is homozygous to the alternative allele at 1944 loci (92%, Figure 6.1). Among 875 
SNVs where the father does not carry any reference allele, the proband carries only the reference 
allele at 861 SNVs (94%, Figure 6.1). This indicates that the proband only carries the maternal 
alleles in those regions. These deletions were not detected in either the proband’s father or his 
brother using the WGS data. The Illumina microarray data further confirmed this discovery; the 
proband carries these deletions while his father and his brothers (K10031-10233 and K10031-
10234) do not carry any of these deletions in their genome. Probe distributions of Log-R ratios 
and B allele frequencies are not uniform in the microarray because the density of SNV varies 
between genomic regions. This highlights the higher resolution and completeness of WGS over 
microarray for precise molecular diagnosis of such diseases. Thus, we confirm that the proband 
carries the de novo PWS Type I deletion (spanning breakpoints BP1 and BP3) defined by 
previous publications 220, 221.  
 
Application 2 - GenomeScope: fast reference-free genome profiling from short reads 

GenomeScope is an open-source web tool to rapidly estimate the overall characteristics 
of a genome, including genome size, heterozygosity rate and repeat content from unprocessed 
short reads. These features are essential for studying genome evolution, and help to choose 
parameters for downstream analysis. We demonstrate its accuracy on 324 simulated and 16 real 
datasets with a wide range in genome sizes, heterozygosity levels and error rates. Availability 
and Implementation: http://genomescope.org, https://github.com/schatzlab/genomescope.git. 

 
The full GenomeScope model builds on this analysis to consider the interplay between 

heterozygosity, repeats, sequencing depth, and sequencing biases. Central to our method is the 
mixture model to describe the impact of heterozygosity and repeats on the k-mer distribution: 

 

 
𝑓 𝑋; 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 𝜌, 𝐺 = 

𝐺 ∙ 𝛼 𝑁𝐵 𝑋; 𝜆, 𝜆
𝜌 +  𝛽 𝑁𝐵 𝑋; 2𝜆, 2𝜆

𝜌 + 𝛾𝑁𝐵 𝑋; 3𝜆, 3𝜆
𝜌 + 𝛿𝑁𝐵 𝑋; 4𝜆, 4𝜆

𝜌  

𝑤ℎ𝑒𝑟𝑒 
𝐺 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑤. 𝑟. 𝑡 𝑡ℎ𝑒 𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒, 
𝛼, 𝛽, 𝛾, 𝛿 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 
𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑜𝑛𝑜𝑚𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 
𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑜𝑛𝑜𝑚𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Equation6.1 

 
We further determined the coefficients α, β, γ, δ were related to the underlying genomic 

properties through the following system of equations (Equation 6.2-6.6, See also Figure 6.2). 
The parameter 𝑟 is the mutation date, and 𝑘 is the duplication rate. The sum of 𝛼, 𝛽, 𝛾, 𝛿 will be 
greater than 1 if there is a non-zero rate of heterozygosity. This is because introducing 
heterozygosity will create new k-mers relative to the haploid genome length G similar to what is 
described above for repeat-free genomes. The maximum value of the sum may be as large as 
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3*G at extreme rates of duplication and heterozygosity, consisting of G k-mers from the 
(duplicated) maternal haplotype, and 2*G heterozygous k-mers from the paternal haplotype. The 
four coefficients can be scaled by 1

(¸+:+ ¹+º) so that they will sum to 1 and form a proper 
probability distribution for the mixture model. Equivalently, GenomeScope infers a value for G 
which has been scaled by 1

(¸+:+ ¹+º). 
 

 α = 2 1 − d 1 − 1 − r k + 2d[1 − (1 − r)k]2 + 2d 1 − r k [1 − 1 − r k] Equation6.2 

 β = 1 − d 1 − r k + d[1 − (1 − r)k]2 Equation6.3 

 γ = 2d 1 − r k [1 − 1 − r k] Equation6.4 

 δ = d 1 − r 2k  Equation6.5 
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Figures and tables in this chapter 
 
Figures 

 
Figure 6.1 Screenshot of three heterozygous de novo deletions between the region 15q11.2 to 
15q13 in proband K10031-10232. The deleted regions are denoted by the red boxes. The yellow 
tagging SNVs represent the SNVs that violate the Mendelian inheritance law. The non-deleted 
regions are denoted by the green tagging SNVs. Genome-wide average coverage (40X) is 
denoted by the grey dashed line. The breakpoints of these deletions (PWS Type I deletion) are 
chr15:22,749,401-23,198,800 (~449 Kb), chr15:23,608,601-28,566,000 (~4.96 Mb), and 
chr15:28,897,601-28,992,600 (95 Kb) (hg19). These deletions are not detected either in the 
proband’s father or the unaffected brother. 
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Figure 6.2. GenomeScope Heterozygosity Categories. The figure shows how duplications and 
heterozygosity impacts the k-mer profile by contributing k-mers to the four possible peaks. 
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Chapter 7 Conclusions and Perspectives 

 As described in the central dogma of molecular biology, biological information flows 
from DNA to RNA, and from RNA to protein. To understand the relationship between genotype 
and phenotype, it is essential to develop methods for decrypting the information hidden in the 
sequences at each step. Thanks to the advancement in the sequencing technologies, high 
throughput readout of the nucleic acid sequence information has become routine in research 
laboratories and soon for clinical laboratories. In particular, DNA sequencing has revolutionized 
the way to study a person’s genome. More and more research groups are now able to investigate 
not only SNPs, but also small indels and large structural variants. Although many groups had 
demonstrated successful approaches for SNP calling, indel calling remained challenging until 
recently, because the error model of indels is quite different and requires new analysis methods. 
From Chapter 2 to Chapter 4, I presented a set of methods to investigate its error model and 
improve indel calling. 
  

Knowing the genotype is only one part of the process to decrypt the genome. We also 
need to quantify the effects of gene regulation in order to understand the sequence function. The 
development of RNAseq enables researchers to study gene expression levels genome-wide. This 
led to many novel discoveries on biological processes of transcription regulation. However, 
another significant part of the central dogma, translation, has received substantially less attention 
and has ample opportunities for development and study. Riboseq data provide new opportunities 
for studying translation regulation genome-wide, but there are prevalent sampling errors and 
biological biases that are unknown. Compared with RNAseq, there is a limited number of 
statistical methods developed for Riboseq. In Chapter 5, I develop a software package for 
Riboseq analysis, as well as providing detailed characterizations of the common errors in 
Riboseq data.     
 
Conclusions and contributions of this thesis 

In Chapter 2, the development of the Scalpel algorithm improves our ability to identify 
indels from short-read sequencing data. This chapter describes the algorithm involving the de 
Bruijn graph assembly. The protocol in this chapter provides a standardized workflow for 
analyzing indel variants, making the analysis more reproducible. In Chapter 3, I investigated the 
sources of indel errors from whole genome sequencing and exome sequencing data. It illustrates 
the existing challenges that are intrinsic to different properties of data. This chapter highlights 
the key factors of indel calling, such as algorithmic artifacts, coverage requirement, library 
preparation, and etc. For the first time, a detailed comparison and validation on “whole genome 
sequencing vs exome capture sequencing” on indel calling is described. An important finding 
about how PCR amplification and homopolymer runs create many false positives is also 
discussed in this chapter. 

 
In Chapter 4, I demonstrated the accuracy of Scalpel via a three-way benchmarking 

against other start-of-the-art methods. Further, this comparison also exposes limitations of those 
competing algorithms, prompting their developers to address the issues in later development. In 
terms of applications, we analyze 593 families from the Simons Simplex Collection and 
demonstrate Scalpel’s power to detect long transmitted events, and enrichment for de novo likely 
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gene-disrupting indels in autistic children. The accuracy of indel calling is essential for finding 
the statistical significance in large-cohort and population-scale studies, which can be warranted 
by Scalpel. 

In Chapter 6, I develop Scikit-ribo, the first statistically robust model and open-source 
software package for accurate genome-wide TE inference from Riboseq data. The core of Scikit-
ribo is a codon-level generalized linear model that unifies our study of translation elongation and 
initiation including the effects of codon specific elongation rates, mRNA secondary structure, 
and gene specific translation initiation efficiency. When paired with a powerful ridge regression 
regularization method, Scikit-ribo corrects the negative skew in TE observed in most previous 
papers, especially for low expressed genes. Using three case studies involving ten different 
datasets, we showed how these statistical advancements allow universal improvement to Riboseq 
data analysis. This particularly improves the estimation of genome-wide TE, allowing us to 
discover the Kozak-like consensus sequence in S. cerevisiae, and yield novel insights into 
Dhh1p’s role on translation repression. 
 
Applications of this research  

From an algorithm point of view, Scalpel is a successful attempt and advancement on 
applying localized de Bruijn graph assembly for indel calling. I describe many scenarios where 
the algorithm might be in error if one is not careful with the distinct error models, which are 
natures of the high-throughput genomics data. In addition to the Simons Simplex Collection, 
Scalpel has been successfully used to discover mutations in novel candidate genes for large 
cohort studies of cancers, autism, and other important human diseases. This shed light on the 
complex mechanisms and biological pathways for these devastating diseases, which might help 
identify new drug targets and treatment methods for patients. 

 
Our findings based on Scikit-ribo showcase the interplay between biology and statistics; 

biological knowledge informs statistical methods development, and statistical improvement 
yields novel biological insights. Together, we demonstrate that Scikit-ribo substantially improves 
Riboseq analysis and our understandings of translation control. In the future, we foresee more 
researchers applying Riboseq to address their biological questions related to protein translation 
and Scikit-ribo can unlock the full potential of this technique. 
 
Further directions 
 In terms of genotyping, a major challenge remains for somatic variant calling. Cancer 
cells even from the same tissue usually have multiple clones, in addition to multi-ploidy. This 
leads to the low allele frequencies of somatic variants, making it very difficult to distinguish 
between true signals and noises in cancer genomes. From a computational perspective, the low 
allele frequencies also pose new issues for constructing and enumerating de Bruijn variant 
graphs, as the previous assumption on diploid genomes no longer holds. Thus, the next big 
question is to develop an accurate and efficient algorithm based on localized graph assembly for 
somatic variant calling. Several groups have been working along these lines, including a new 
method called Lancet. 
  

Regarding ribosome profiling, another potential improvement is to address the issues of 
isoform-specific expression. Because in mammalian model organisms, alternative splicing is 
prevalent and various isoforms might be present for the same gene. Within a gene, Riboseq 
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coverage might be higher for regions with higher exon usage; this will confound the analysis of 
local translation elongation rates. Therefore, a more comprehensive model should incorporate the 
mRNA expression levels of different transcripts and subsequently determine the relative 
expression level of different exons. This improvement will be highly valuable for the community 
and further deepens our understanding of translation regulation in higher order model organisms.  
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