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Abstract of the Dissertation 

Nonlinear Analyses of Functional MRI Time-Series in Brain-Based Disorders  

by 

Sanja Nedic 

Doctor of Philosophy 

in 

Biomedical Engineering 

Stony Brook University 

2017 

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging modality 
used to measure brain activity in vivo, capable of providing three-dimensional coverage of the 
brain at a high spatial resolution. While fMRI has advanced our understanding of the brain, it has 
had limited applications in medical practice due to 1) analytic approaches predominantly focused 
on either contrasting signal amplitudes from clearly defined conditions in simplistic task stimuli 
(to localize “activations”) or on computing time-course cross-correlations between pairs of brain 
regions to infer the strength of functional “connectivity” between them in resting-state fMRI 
studies, and 2) low signal-to-noise ratio/difficulty separating signal due to relevant neuronal 
fluctuations from signal due to noise. Consequently, research findings typically need to be 
averaged over many trials and subjects. On the other hand, clinical diagnostics are necessarily 
based upon a single subject, thus requiring high quality data and methods sensitive to abnormalities 
in network dynamics. 

To address the first issue, work presented here is driven by the hypothesis that the most 
sensitive biomarker of dysregulation may not be the amplitude of activation or strength of 
connections between two regions, but rather the complexity of the signal, reflecting the underlying 
(deviations in) dynamics. We introduce and apply an entropic measure of regulation and feedback 
(the autocorrelation function) to identify focal regions in patients with medication-resistant 
epilepsy.  Precise localization of foci is crucial for successful surgery. To address the second issue, 
we introduce a new quantitative measure to accurately assess the integrity of fMRI time-series – 
signal fluctuation sensitivity (SFS). We show that SFS correlates with time-series integrity and that 
higher SFS is associated with enhanced sensitivity to detection of known local and long-range 
connections in resting-state (task-free) fMRI. We further show that this measure reliably identifies 
task-induced activations in three different tasks employing highly complex naturalistic stimuli, 
which still represent a challenge from the data-analysis perspective. Finally, we incorporate high 
quality fMRI data with machine learning to build models capable of predicting subjects’ dynamic 
state of mind from fMRI signals of relevant brain networks at an individual-subject level.  
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Chapter 1 General Introduction 
 

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging modality 

used to measure brain activity in vivo, capable of providing three-dimensional coverage of the 

brain at a high spatial resolution. It measures brain activity indirectly, by detecting changes 

associated with blood flow. It relies on the fact that cerebral blood flow and neuronal activation 

are coupled – when neurons become active, local blood flow to those regions increases, resulting 

in oxygenated blood replacing deoxygenated blood. Since oxygenated and deoxygenated blood 

have different magnetic properties, this leads to changes in the magnetic resonance signal (blood-

oxygen-level dependent (BOLD) contrast). In its early days, fMRI was proposed for a range of 

medical applications, from presurgical planning to treat epilepsy and tumors to evaluation after 

stroke and diagnosis of mental illness. However, since its inception in the early 1990s, its  promise 

has been underexploited, especially in the area of mental illness where it still does not play a role 

in routine diagnosis, and in medical practice, where it is not widely adopted or routinely requested 

by neurosurgeons (Rosen and Savoy, 2012).  

The underutilization of fMRI in psychiatric diagnosis and clinical practice may be due to 

low signal-to-noise ratios and simplistic analyses associated with standard neuroimaging 

approaches. To date, fMRI data have been examined predominantly in two ways: 1) by contrasting 

signal amplitudes during simple task stimuli with clear on/off conditions to localize “activations” 

and 2) by computing time-course cross-correlations between pairs of brain regions to infer the 

strength of functional “connectivity” between them. Research findings are typically averaged over 

many trials and/or subjects, usually culminating in statistical tests for differences between 

conditions across many subjects, or between groups of subjects, such as patients and healthy 

controls. On the other hand, clinical diagnostics are necessarily based upon a single subject, thus 

requiring methods with high sensitivity to abnormalities in network dynamics and limiting fMRI’s 

potential for contribution in clinical settings. 

Data analysis and interpretation have been complicated by the fact that the degree to which 

fMRI time-series preserve true neuronal signal dynamics (dynamic fidelity) is unclear since 

scanner and physiological noise may mask biologically relevant fluctuations of interest. However, 

an appropriate measure of dynamic fidelity does not exist. Furthermore, while fMRI time-series 

have traditionally been considered too short and with temporal resolution that was too low to 
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accurately capture temporal dynamics and permit application of most dynamical methods, 

introduction of advanced simultaneous multi-slice EPI sequences (allowing faster sampling 

rates/lower repetition time (TR)) in conjunction with ultra-high field MRI (compensating for 

reduced signal at low TR) has increased the (whole-brain) temporal resolution fivefold, from ~2.5s 

to ~500ms.  

Finally, as our understanding of the brain has increased, so has the complexity of our 

questions. The last decade of fMRI research has seen an explosion of studies featuring more 

realistic (naturalistic) task paradigms and increased utilization of techniques aimed at not simply 

answering “where” and “how much,” but also describing the dynamics by which information is 

transmitted between brain regions and, most recently, first mechanistic attempts at explaining how 

these lead to observable behaviors (Rigoux and Daunizeau, 2015). For example, complexity and 

network analyses of fMRI time-series, probing dysregulated negative feedback loops in brain 

circuits, have recently been applied to identify abnormalities in brain networks of patients with 

anxiety and schizophrenia (Cha et al., 2016; Radulescu et al., 2012), where they have been shown 

to be more sensitive to dysregulation than traditional amplitude-based methods. Clinical questions 

still require development of methods that move beyond simple amplitude and correlation-based 

analyses, which consider nodes and their connections in isolation and at a single point in time, to 

analyses which look at those nodes and connections as a dynamic system, evolving over time. 

Research presented in this dissertation covers work aimed at addressing these issues. First, 

in Chapter 2, starting from the hypothesis that the most sensitive biomarker of dysregulation may 

not be the amplitude of activation or strength of connection between two nodes, but rather the 

complexity of the signal, reflecting the underlying (deviations) in dynamics, we introduce a new 

method for fMRI time-series dynamics analyses that can be used to identify dysregulation in brain 

networks. We propose to use the autocorrelation function (ACF) to quantify complexity (degree 

of order versus chaos) of fMRI time-series in the time-domain. The rate of decay of the 

autocorrelation function may be used as a compact measure of randomness of a time-series, and 

deviations towards either too much randomness or too much order may be useful diagnostically. 

We apply this method to identify foci in patients with medication-resistant focal epilepsy. Epilepsy 

is one of the most prevalent neurological disorders, affecting approximately 50 million people 

worldwide (Banerjee et al., 2009). It remains medically intractable for about one-third of patients 
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with focal epilepsy, for whom precise localization of the epileptogenic zone responsible for seizure 

initiation may be critical for successful surgery (Tellez-Zenteno et al., 2005).  

We validate the method in a group of 19 patients with well-characterized foci (left temporal 

lobe epilepsy (LTLE)). We analyzed voxel-wise resting-state fMRI time-series using the 

autocorrelation function (ACF) and performed follow-up seed-to-voxel functional connectivity 

analysis. ACF analysis revealed constrained (less chaotic) functional dynamics in left temporal 

lobe epilepsy patients, primarily localized to ipsilateral temporal pole, proximal to presumed focal 

points. In a follow-up classification analysis, autocorrelation decay rates differentiated, with 100% 

accuracy, between patients and healthy controls on a subject-by-subject basis within a leave-one-

subject out classification framework. Disruptions in connectivity of the region exhibiting abnormal 

dynamics were examined in relation to duration of epilepsy and patients’ cognitive performance 

using a delayed verbal memory recall task. Constrained dynamics were linked with locally 

increased and long-range decreased connectivity that, in turn, correlated significantly with 

impaired memory and epilepsy duration. Graph-theoretical analyses showed that regions identified 

via ACF analysis formed a less efficient network in patients, as compared to controls.   

Our current results suggest that data driven functional MRI methods that target network 

dynamics hold promise in providing clinically valuable tools for identification of epileptic regions. 

Future work is needed to test these at individual-subject level in patients with other forms of 

medically intractable epilepsy and difficult-to-localize foci. However, neurodiagnostics at a single-

subject level impose stricter requirements on data quality and require that we are able to separate 

signal of interest from noise. In Chapter 3, we introduce a new quantitative measure – signal 

fluctuation sensitivity (SFS), to accurately assess the temporal integrity of resting-state fMRI time-

series. SFS is defined specifically to dissociate signal of interest (thought to arise from true BOLD 

fluctuations) from scanner-induced noise. We define dynamic fidelity as the correlation between 

true underlying fluctuations and associated fMRI outputs and we use the dynamic phantom to 

provide the ground truth. We show that SFS correlates with dynamic fidelity in dynamic phantom 

scans as well as with our ability to detect local and long-range connectivity in human resting-state 

fMRI data. 

 In Chapter 4, we show that this measure may also be used to detect neural activity in 

complex unstructured/naturalistic fMRI task designs, which provide a more realistic representation 

of the real world compared to traditionally used simplistic block and event-related designs, but 
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represent a challenge from the data analysis perspective. We demonstrate the utility of SFS in 

identifying brain regions engaged by such tasks in three tasks of varying levels of complexity: a 

short movie consisting of silent scenes from a nature documentary, an episode of an emotionally 

engaging television drama series, and an iterative neuroeconomic game. Areas identified as having 

significantly higher SFS values during each task relative to resting state in same subjects were 

confirmed as corresponding to task-induced activations by comparison to existing literature on 

similar tasks, near-perfect correlation of the bilateral orbitofrontal cortex (OFC) with dynamic 

ratings of emotional arousal/valence, and by comparison to findings derived from inter-subject 

correlations (ISCs) and the independent component analysis (ICA). SFS can therefore be seen as 

a good alternative to existing approaches, such as ISCs and ICA, with the advantage of being 

assumptions-free, both in terms of not requiring a design matrix and not depending on an expected 

shape of hemodynamic response function, being applicable to tasks with a certain level of 

randomness (such as self-paced games) and being a simple measure of activation, easily 

generalizable to group analyses. 

Finally, in Chapter 5, we move towards single-subject predictive modeling by combining 

high fidelity fMRI data with computational modeling and machine learning methods to predict 

subjects’ dynamic state of mind from network dynamics of relevant brain networks (identified in 

a data-driven manner via independent component analyses of fMRI data). In the context of a 

complex dynamic self-paced cybersecurity game where subjects are expected to identify correct 

pattern while faced with ambiguous feedback, we show that brain fMRI time-series derived from 

relevant networks may be used to predict subjects’ state of mind (confident versus confused) 

throughout the game at confidence levels beyond those expected by chance, in out-of-sample 

testing data, and at an individual-subject level. This work may be seen as a first step in 

demonstrating that high fidelity (brain) data may be used to make individual-level (state of mind) 

predictions. Future work may employ methods presented here, paired with more sophisticated 

machine learning algorithms, to isolate features of interest from a larger set of regions and do more 

detailed, circuit-level predictions of dynamics. 
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Chapter 2   Using Network Dynamic fMRI for Detection of Epileptogenic Foci  
 
Modified from Nedic, S., Stufflebeam, S.M., Rondinoni, C., Velasco, T.R., dos Santos, A.C., 
Leite, J.P., Gargaro, A.C., Mujica-Parodi, L.R., Ide, J.S., 2015. Using Network Dynamic fMRI for 
Detection of Epileptogenic Foci. BMC Neurology 15, 262. 
 

Abstract  
 

Epilepsy is one of the most prevalent neurological disorders. It remains medically 

intractable for about one-third of patients with focal epilepsy, for whom precise localization of the 

epileptogenic zone responsible for seizure initiation may be critical for successful surgery. Existing 

fMRI literature points to widespread network disturbances in functional connectivity. Per previous 

scalp and intracranial EEG studies and consistent with excessive local synchronization during 

interictal discharges, we hypothesized that, relative to same regions in healthy controls, 

epileptogenic foci would exhibit less chaotic dynamics, identifiable via entropic analyses of resting 

state fMRI time series.  In order to first validate this hypothesis on a cohort of patients with known 

ground truth, here we test individuals with well-defined epileptogenic foci (left mesial temporal 

lobe epilepsy (LTLE)). We analyzed voxel-wise resting-state fMRI time-series using the 

autocorrelation function (ACF), an entropic measure of regulation and feedback, and performed 

follow-up seed-to-voxel functional connectivity analysis. Disruptions in connectivity of the region 

exhibiting abnormal dynamics were examined in relation to duration of epilepsy and patients’ 

cognitive performance using a delayed verbal memory recall task. ACF analysis revealed 

constrained (less chaotic) functional dynamics in left temporal lobe epilepsy patients, primarily 

localized to ipsilateral temporal pole, proximal to presumed focal points.  Autocorrelation decay 

rates differentiated, with 100% accuracy, between patients and healthy controls on a subject-by-

subject basis within a leave-one-subject out classification framework. Regions identified via ACF 

analysis formed a less efficient network in patients, as compared to controls. Constrained dynamics 

were linked with locally increased and long-range decreased connectivity that, in turn, correlated 

significantly with impaired memory (local left temporal connectivity) and epilepsy duration (left 

temporal – posterior cingulate cortex connectivity). Our current results suggest that data driven 

functional MRI methods that target network dynamics hold promise in providing clinically 

valuable tools for identification of epileptic regions.  
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Introduction 
 

Epilepsy is one of the most prevalent neurological disorders, affecting approximately 50 

million people worldwide (Banerjee et al., 2009). It is characterized by seizures, resulting from 

abnormal transient change in the synchronized firing of neurons (Lehnertz et al., 2009). For one-

third of patients with focal epilepsy, debilitating seizures persist despite antiepileptic drug therapy, 

leaving surgical resection of the suspected epileptogenic focal region as the most effective 

treatment option (Kwan and Brodie, 2000; Tellez-Zenteno et al., 2005). Precise localization of the 

epileptogenic zone responsible for initiation and propagation of seizures, and its delineation from 

eloquent cortex, are crucial for successful surgery. However, current standard non-invasive 

surgical evaluation (looking for congruence of seizure semiology, abnormalities on structural 

magnetic resonance images (MRI) and spikes in scalp electroencephalographic (EEG) recordings) 

fails to identify an epileptic focus in approximately 40% of patients with drug resistant epilepsy 

(Wellmer et al., 2012). The current gold standard for localization of focal regions includes 

identification of an epileptogenic zone on intracranial EEG recordings combined with 

postoperative seizure freedom following its resection; however, invasive pre-surgical workup 

carries additional risks and has been associated with complications in about 23% of patients 

(Wellmer et al., 2012). Thus, the development of noninvasive techniques capable of accurately 

localizing epileptogenic regions on a subject-by-subject basis will be critical for improving 

surgical outcomes.   

Multimodal studies, especially those utilizing simultaneous EEG-functional MRI (fMRI) 

recordings, increasingly have been used to provide complementary information in presurgical 

work-up. EEG-fMRI allows mapping of hemodynamic changes related to seizure-related events, 

such as interictal discharges (IEDs). Spikes are manually detected in EEG data and, in traditional 

“spike-correlated” analysis, they are treated as zero-duration events, convolved with canonical 

hemodynamic response function (HRF), and included as regressors of interest in a General Linear 

Model (GLM) along with simultaneously acquired blood-oxygen-level dependent (BOLD) time 

series as dependent variables. Functional MRI maps related to IEDs often show multiple regions 

or "networks," rather than focal singularities, and thus effective connectivity approaches such as 

Dynamic Causal Modeling (DCM) have been proposed to identify which brain regions drive the 

generation of seizures within the epileptic network (Klamer et al., 2015; Vaudano et al., 2013).  
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The EEG-fMRI approach suffers from a few potential drawbacks.  First, a significant 

portion of subjects do not experience enough detectable IEDs during simultaneous recording.  This 

problem is partially addressed by introduction of topography-related techniques, which, instead of 

requiring simultaneously recorded spikes, use subject-specific voltage maps based on long-term 

video monitoring (Grouiller et al., 2011). Second, epilepsy may alter the shape of the HRF, which 

could result in decreased sensitivity (Bagshaw et al., 2004). Third, in addition to setup time, EEG-

fMRI requires on average 30 minutes of motionless cooperation from subjects, which may be 

problematic for certain patients, especially children.   Fourth, the use of scalp EEG is inherently 

constrained by its limited sensitivity to deep activity. Despite this, sensitivity of topography-related 

EEG-fMRI in refractory focal epilepsy was found to be about 80% (Elshoff et al., 2012; Grouiller 

et al., 2011). However, measured sensitivity appears to be highly study-dependent. For example, 

a recent study proposing concurrent use of four different modalities found that topography-related 

EEG-fMRI method on its own showed clinically meaningful result in five out of twelve studied 

patients ((Grouiller et al., 2015)). Here we propose an alternative data-driven method utilizing only 

resting state fMRI data. 

As a matter of general research strategy, any method with potential to identify seizure onset 

zones first needs to be validated with respect to a “ground truth.” In the case of epilepsy, the most 

reasonable option is to use patients with clinically well-defined focal regions; after validation 

against these cases, one can then apply the method to more challenging cryptogenic cases. Mesial 

Temporal Lobe Epilepsy (MTLE) is the most prevalent and best-characterized subset of drug 

resistant focal epilepsy in adults, and thus is an ideal cohort for validation of novel methods aimed 

at identification and localization of epileptic foci and/or networks. 

Brain regions involved in the onset and propagation of MTLE have been studied 

extensively, with the most commonly associated pathology being hippocampal sclerosis (HS). 

Seizures originating in the medial temporal region are known to rapidly spread to lateral temporal 

regions, the insula, the thalamus, and the contralateral temporal lobe (among other regions) (Hogan 

et al., 2006), suggesting that MTLE may be characterized by a network disturbance. Indeed, recent 

structural and functional MRI studies have revealed widespread abnormalities, with structural 

changes primarily involving atrophy of ipsilateral temporal pole and other temporolimbic 

structures (Assaf et al., 2003; Focke et al., 2008).  Functional MRI (fMRI) studies have found 

changes in functional connectivity of the temporal region with other brain areas, along with 
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impaired resting state networks such as perceptual, attention and default mode networks (Bettus et 

al., 2010; Bettus et al., 2009; Liao et al., 2010; Liao et al., 2011; Maneshi et al., 2014; Pereira et 

al., 2010; Pittau et al., 2012; Tracy and Doucet, 2015; Zhang et al., 2009; Zhang et al., 2010).  

Graph theoretical network analyses of brain networks use sets of nodes connected by edges 

in order to quantify general structural features of brain connectivity between regions.  Numerous 

studies suggest that healthy brain networks show a high degree of small-worldness (for a review 

see (Bullmore and Sporns, 2009)), which provides a balance between local clustering 

(characteristic of highly ordered, regular networks) and long-range connections (characteristic of 

low order, random networks). This balance reflects the result of synaptic optimization over the 

efficiency of information transfer and the need for redundancy in case of injury.  In individuals 

with focal temporal and extratemporal neocortical epilepsy, fMRI, EEG, magnetoencephalography 

(MEG), and intracerebral recordings suggest that this balance appears to be shifted towards 

predominantly local clustering (Bartolomei et al., 2013; Horstmann et al., 2010; Liao et al., 2010), 

which may predispose the network towards synchronized oscillations characteristic of seizures 

(Stam, 2014).  

However, findings are not clear-cut. While many studies report decreases in functional 

connectivity localized near the suspected seizure onset zone (Bettus et al., 2010; Bettus et al., 2009; 

Pereira et al., 2010; Pittau et al., 2012), others show increases (Liao et al., 2010; Maccotta et al., 

2013; Maneshi et al., 2014; Morgan et al., 2011; Stufflebeam et al., 2011), potentially due to 

differences in connectivity metrics used, as well as heterogeneity of patient populations and small 

sample sizes. It is important to note that, in spite of the benefits of considering epileptic networks, 

accurate localization is still clinically desirable as suggested by the relatively high success rate of 

surgical treatment for ‘focal’ epilepsies (about 66%) (Lehnertz et al., 2009). Yet most fMRI studies 

aimed at localization of the epileptogenic zone point to widespread abnormalities that are, at best, 

lateralized to one of the hemispheres.  

Complex systems produce outputs that are balanced between overly chaotic and overly 

predictable dynamics; as such, they have the advantage of requiring a minimum of energy both to 

respond to inputs as well as to return to baseline (as required for allostasis). Complexity of brain 

activity has been observed and modeled on many levels, from neurotransmitter release (Lowen et 

al., 1997), neuronal spiking (Levina et al., 2007; Rubinov et al., 2011) and local field potentials 

(Bedard and Destexhe, 2009) to slow cortical potentials (He and Raichle, 2009), 
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electrocorticography (ECoG) (Lai et al., 2010) and EEG (Freyer et al., 2009), suggesting that scale-

free behavior may be fundamental to efficient neural information processing. Deviations from 

optimal range of functioning in fMRI time series have been used diagnostically in identifying 

brain-based disease (Lai et al., 2010; Maxim et al., 2005; Radulescu et al., 2012).  In the case of a 

disease as heterogeneous as epilepsy, fMRI’s exploratory capability (simultaneously acquiring 

functional information over focal, hemispheric, and whole-brain neural networks) may provide a 

clinically valuable tool in guiding placement of intracranial EEG, as the process of seizure 

generation is not necessarily confined to a focal area and may involve distant or contralateral areas 

of the brain. Here we propose to use autocorrelation function (ACF) as a measure of complexity 

in resting-state fMRI time series, with the aim of localizing deviations from optimal dynamics in 

epilepsy. 

Brain trauma increases risk for seizures.  One possible mechanism suggested by animal 

models of epilepsy is the enhanced synaptic sprouting due to MMP-9 mediated matrix-degradation 

that occurs as a compensatory response to injury (Wilczynski et al., 2008).  Alternatively, 

sensitivity to glucose fluctuations may impact of the brain’s ability to use energy in creating long-

range, but not short-range, connections, upsetting balance between the two.  Thus, we 

hypothesized that the hippocampal sclerosis common to MTLE patients might result in hubs 

surrounded by more dense local connectivity.  This can constrain dynamics within the hub either 

by increased density of inhibitory or excitatory inputs, both of which would result in less chaotic 

resting state fMRI time series.  We expected abnormal dynamics to be identifiable through 

comparison of decay rates of the time series’ ACF in patients and in healthy controls.  This is 

consistent with previous findings from scalp and intracranial EEG studies (Bruzzo et al., 2008; 

Molteni et al., 2008; Monto et al., 2007; Protzner et al., 2010), as well as with excessive local 

synchronization during interictal discharges.  

Less chaotic dynamics in focal region(s) may lead to increased local synchronization and 

transient seizures. Repeated seizures could in turn lead to damage in connections of this region 

with contralateral regions and major hubs in the brain. We therefore hypothesized that these 

disconnections would be detectable via seed-to-voxel functional connectivity analyses of fMRI 

time-series, using the region with abnormal dynamics (identified through ACF analyses) as a seed. 

Finally, we expected that abnormalities in connectivity would relate to duration of epilepsy and 

patients’ cognitive performance on a verbal memory recall task. To determine whether group 
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differences achieving statistical significance continued to hold on the single-subject level (as 

required for individual neurodiagnostics of other types of epilepsy), we applied Gaussian Process 

Classification with leave-one-subject-out cross validation to ACF decay rates in regions with 

altered dynamics.  

 

Methods 
 

Participants  
 

Nineteen patients (mean age = 40 years ± 13; 8 males, 11 females) with mesial left temporal 

lobe epilepsy (LTLE) were included in this study based on a clear clinical diagnosis of unilateral 

(left) temporal epileptic activity according to concordant clinical information. The inclusion 

criteria were: 1) seizure semiology consistent with MTLE, which included epigastric, autonomic, 

or psychic auras followed by behavioral arrest, progressive clouding of consciousness, 

oroalimentary and manual automatisms, and autonomic phenomena; 2) anterior and mesial 

temporal interictal spikes; 3) video-EEG monitoring with seizure onsets arising exclusively from 

the temporal lobe; 4) MRI with no other lesion than hippocampal atrophy and a hyperintense signal 

on T2-weighted sequences; and 5) medically refractory MTLE, defined as failure to respond to at 

least two antiepileptic drugs after adequate trials. For patients whose scalp ictal EEG recordings 

were inconclusive, foramen oval electrodes or depth electrodes were used to define lateralization 

of seizure foci. Table 2-1 lists demographic and clinical characteristics of all patients studied here. 

Nineteen healthy controls (mean age = 41 years ± 12; 8 males, 11 females), age and sex-matched 

to patients (2-sample t test p=0.78), were scanned under the same protocol. Because temporal lobe 

epilepsy affects the hippocampus, and is associated with progressive memory deficits 

(Helmstaedter et al., 2003), in order to assess clinical symptoms patients were asked to complete 

the Logical Memory Delayed Recall (LM-DR) subtest of the Wechsler Memory Scale – Revised 

(Wechsler, 1987). This task requires subjects to recall specific details of information presented 

orally in a story format thirty minutes after a single exposure. The research protocol was approved 

by the local Ethical Committee of Clinics Hospital at Ribeirao Preto, São Paulo, Brazil. Written 

informed consent was obtained from the patient for publication of their individual details in this 

manuscript.  All subjects were older than 18 years of age and were capable of providing full and 

informed consent. 
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Data Acquisition 
 

All subjects were scanned using a Philips Achieva 3T scanner with an eight-channel head 

coil. Whole brain functional volumes were acquired under resting state using soft-tone 

sequences (repetition time (TR) = 2000ms, echo time (TE) = 30ms, 200 volumes, voxel 

dimensions: 3 × 3 × 4 mm, 32 slices, 0.5 mm gap, matrix size = 80 × 80, flip angle = 80°). Subjects 

were instructed to keep their eyes open and to refrain from falling asleep. The eyes open condition 

was used rather than eyes closed condition to ensure that subjects remained awake during scanning. 

T1-weighted anatomical images were acquired using a conventional 3D-T1 MPRAGE 

sequence (TR = 7.0, TE = 3.2, matrix size = 240 × 240, flip angle = 8°, 1 mm isotropic voxels).  

 

fMRI Data Preprocessing 
 

Functional MRI data were preprocessed by correcting for motion (rigid realignment, 6 

degrees-of-freedom), slice-time correction, normalization to MNI space (affine registration 

followed by a nonlinear transformation between average fMRI and EPI template, and sync 

interpolation), and smoothing with an 8-mm full width at half maximum Gaussian kernel in 

SPM8 (www.fil.ion.ucl.ac.u/spm). 
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1 F 44/18 30 No Masticatory 
automatisms 

Left temporal 
paroxysms 

Bilateral 
theta 
rhythm, late 
left 
lateralization 

Left HA PHT, 
TPM 

3 

2 M 59/10 4 Yes Complex 
partial  

100% left 
temporal 

Left 
temporal  

Left HA CBZ 1 

3 F 27/13 4 No Complex 
partial  

70% left, 
30% right 
temporal 

Left 
temporal 

Left HA LTG, 
CLB, 
OXC 

1 

4 M 47/24 4 No Lack of 
consciousness 
no aura 

Left temporal 
sharp waves 
(89%, T1, 
T9) 

Left 
temporal 
theta 

Left HA CBZ, 
LTG, 
CLB  

1 

5 F 32/19 0.5 No Complex 
partial 

Rare left 
temporal 

Left 
temporal 

Discrete 
left HA 

CBZ, 
PB, CLB 

1 
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6 F 34/25 4 No Complex 
partial  

53% left, 
47% right 
temporal 

Left 
temporal 

Discrete 
left HA, 
normal 
volume 

TPM, 
OXC, 
CLB 

3 

7 M 26/5 4 No Complex 
partial 

Normal Left 
temporal 
delta rhythm 

Left HA VPA, 
OXC, 
CLB 

1 

8 F 44/9 4 No Complex 
partial  

70% left, 
30% right 
temporal 

Left 
temporal 

Left HA CBZ, 
TPM, 
CLN 

3 

9 F 47/17 4 No Lack of 
consciousness
, automatisms 

Slow theta in 
left temporal 

Bilateral 
theta activity 
followed by 
left temporal 
theta 

Left HA LTG, 
CBZ 

1 

10 M 37/2 2 No Complex 
partial 

95% left, 5% 
right 
temporal 

Left 
temporal 

Left HA OXC, 
LTG 

1 

11 M 46/18 n/a No Complex 
partial 

Slow waves 
in left 
temporal 

Left 
hemisphere 
diffuse 
desynchroni
zation 

Left HA PHT, PB  1 

12 F 52/14 2 Yes Complex 
partial 

100% left 
temporal 

Left 
temporal 

Left HA CBZ, 
TPM 

2 

13 F 22/19 3 Yes Tonic-clonic 
secondarily 
generalized  

Left spikes Left 
temporal 

Left HA OXC, 
VPA, 
CLB 

1 

14 F 22/1 16 Yes Complex 
partial  

Left temporal Left 
temporal 

Left HA TPM, 
OXC 

1 

15 F 49/15 1 No Complex 
partial  

100% left 
temporal 

Left 
temporal 

Left HA CBZ, PB 1 

16 M 59/53 1 No Complex 
partial  

100% left 
temporal 

Left 
temporal 

Left HA PHT  3 

17 M 20/4 30 Yes Epigastric 
aura and lack 
of 
consciousness 

Left temporal 
slow waves 

Left 
temporal 

Left HA CBZ, 
VPA 

1 

18 F 30/10 30 No Complex 
partial 
seizures 
preceded by 
sensitive 
auras 

Left temporal 
theta rhythm 

Complex 
partial 
seizure 

Discrete 
HA + 
double 
cortex 

LTG, 
CLB 

n/a 

19 M 19/8 8 No Complex 
partial  

100% left 
temporal 

Left 
temporal 

Left HA TPM, 
CBZ, 
CLN 

3 

Table 2-1: Demographic and clinical information. Abbreviations: HA=hippocampal atrophy, PHT=Phenytoin, 
TPM = Topiramate, CBZ = Carbamazepine, LTG = Lamotrigine, CLB = Clobazam, OXC = Oxcarbazepine, PB = 
Phenobarbital, VPA = Valproic Acid, CLN = Clobazam. Surgical Outcome: 1 - seizure free, 2 - significant 
improvement, 3 - no improvement. 
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Autocorrelation Function (ACF) Method 
 

An autocorrelation function (ACF) measures similarity (cross-correlation) of a signal with 

itself over different time lags, and can therefore be used to identify shifts towards chaos vs. order 

in the time domain, in a manner that is analogous to power spectral scale invariance (PSSI) analysis 

(Radulescu and Mujica-Parodi, 2014; Radulescu et al., 2012; Tolkunov et al., 2010) in the 

frequency domain. PSSI and ACF are related via the Wiener-Khinchin theorem, which states that 

Fourier transform of the ACF is the power spectral density (! " = 	 %&'())+,-./012)3
,3 ).  

PSSI of fMRI time series has already been used to quantify limbic dysregulation in trait 

anxious adults (Tolkunov et al., 2010) and effectively discriminate between normal and pathogenic 

network dynamics in schizophrenia (Radulescu et al., 2012) and generalized anxiety disorder 

(DeDora et al., under review). PSSI analysis is based on the finding that fMRI BOLD time series 

exhibit power spectral density that follows a power law (He, 2011) ! " ~	1/"7, where β is the 

scaling exponent. The scaling exponent β then measures relative frequency content of the signal 

and is evaluated as the negative slope of a straight line fit to power spectral density as a function 

of frequency on log-log scale. Linear least squares method is employed.  In contrast, the ACF of 

voxel-wise BOLD time series can be modeled as an exponential decay: 

%&' ) = 8	+,91, 

for which t is time lag in units of TR, and a and b are constants such that b > 0. The rate of this 

decay, which is proportional to the constant b, may be used as a compact measure of randomness 

of a time series, with higher b signifying faster decay (more randomness) and lower b signifying 

slower decay (more persistence). ACF b values are then related to the mean lifetime decay of a 

signal, τ (seconds), via the relation τ = 1/b × TR. Conceptually, τ represents the length of time that 

a signal maintains a high degree of association with its past values. A random time series (white 

noise) would have τ = 0. Larger values of τ would imply longer memory in the signal. 

ACF has several advantages as compared to PSSI. First, ACF decay times have 

physiologically intuitive meaning, understood as self-similarity over different lengths of time (in 

seconds). Second, ACF model fits for fMRI time-series are improved compared with PSSI, 

because ACF avoids the need to use linear least squares fitting in log-log space (Clauset et al., 

2009).    
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Prior to whole brain voxel-wise computation of ACF b values, to remove potential effects 

of nuisance variables and improve signal to noise ratio, we performed further preprocessing of 

fMRI time series. The preprocessing procedure included detrending and regression of mean white 

matter and mean cerebrospinal fluid (CSF) signals, as well as regression of six degrees of motion. 

Motion parameters were derived from the realignment procedure, while global regressors were 

obtained from canonical masks for white matter and CSF included in the SPM8. To rule out head 

motion related artifacts on b values, we confirmed that there were no statistically significant 

differences in movement between the two subject groups using root mean square displacement (2 

sample t-test: p = 0.37). Root mean square displacement was calculated as the square root of the 

sum of squares of all six motion parameters (Power et al., 2012).  

The residual time series were band-pass filtered in the 0.01 - 0.1 Hz frequency range using 

10th order Butterworth filter. Fitting was performed within a frequency range of 0.01-0.1 Hz since 

low frequency oscillations in this band show power-law behavior (He, 2011; Lai et al., 2010), 

making PSSI-related inferences valid in this range, and are furthermore of special interest in 

resting-state fMRI connectivity analyses since they have been shown to have neuronal basis 

(Biswal et al., 1995; Biswal et al., 1997; Clauset et al., 2009). 

We estimated voxel-wise time series ACF using the Econometrics Toolbox implemented 

in MATLAB R2010a. We then fit an exponential function of the form : = 8+,9;	to the first 9 (lag 

= 8) points of each voxel's ACF using the nonlinear least-squares fitting method as implemented 

in the Curve Fitting Toolbox, also part of MATLAB R2010a. Lag of 8 (16.8 seconds at TR of 2 

seconds) was determined as most appropriate based on considerations of goodness of fit of the 

exponential function and duration of canonical hemodynamic response (Miezin et al., 2000).   

 Group differences in voxel-wise b values were examined using a two sample t-test in 

SPM8. Clusters greater than 26 voxels with p < 0.005 were isolated and used in further analyses. 

Prior to voxel-wise t-tests, the Lilliefors goodness-of-fit test (as implemented in REST toolbox 

(Song et al., 2011)) was used to confirm that voxel-wise ACF-b values were normally distributed 

within each group of subjects. We found that the hypothesis of normality was supported by the 

vast majority (94%) of brain voxels in each group at the p = 0.05 level.   
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Classification 
 

To verify that the group differences in b values were statistically significant and capable of 

differentiating between patients and healthy controls, even on a subject-by-subject basis, we 

conducted follow-up machine learning analyses on ACF b maps using Pattern Recognition for 

Neuroimaging Toolbox (PRoNTo) (Schrouff et al., 2013). We constrained the analyses to those 

regions that were identified as having different b values between the two groups using the 2-sample 

t-test in SPM8. We employed Binary Gaussian Process Classification with leave one subject out 

cross-validation. Follow-up permutation testing (with 2000 repetitions) was used to test whether 

the obtained overall and class accuracies were significantly above chance, and thus indicate 

whether the pattern of ACF decay times in those brain regions encodes sufficient information to 

diagnose (correctly classify) MTLE.  

 

Functional Connectivity 
 

In order to gain further understanding of the functional network features that might underlie 

abnormalities in fMRI signal dynamics, we used the cluster in the left anterior temporal pole 

identified as having most significantly different ACF b values in patients compared to controls 

(cluster extent = 59 voxels; Figure 2-1A) as a seed in seed-to-voxel functional connectivity 

analysis using CONN Toolbox (http://www.nitrc.org/projects/conn/; v 13.p). We examined the 

differences in seed-to-voxel connectivity between LTLE patients and healthy controls using one-

sided 2 sample t-tests. Time series were extracted from spatially smoothed images. They were 

detrended, despiked (a hyperbolic tangent squashing function was applied to reduce the influence 

of potential outlier scans), and white matter, cerebrospinal fluid, and motion parameters from 

SPM’s realignment step and their first derivatives were regressed out as confounds. Finally, the 

residual time series were band-pass filtered in the [0.01-0.1] Hz range. Correlation maps were 

computed from the seed to all voxels in the brain and transformed to Fisher-z values (to ensure 

normality) prior to performing t-tests to look at differences between the two groups. We identified 

clusters of voxels that were significantly differently connected to the region exhibiting constrained 

dynamics (identified via ACF analysis) in patients relative to controls. We then used correlation 

analysis to test whether connectivity of these clusters to the seed was related to duration of epilepsy 

and verbal memory as measured by the LM-DR task.  
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Graph-Theoretic Analyses 
 

To determine whether complexity and connectivity results reflected global differences in 

network structure, we used the CONN Toolbox to investigate graph-theoretic characteristics of the 

network with nodes at clusters identified as having different ACF b values in patients compared to 

controls. Bivariate correlation of the mean time series was used as a measure of association 

between the nodes.  For this 16-node network, we compared the two subject groups with respect 

to Global Efficiency, Local Efficiency, Betweenness-Centrality, Average Path Length, Clustering 

Coefficient, and Degree under a range of values of cost (0.1 – 0.3) (Achard and Bullmore, 2007; 

Latora and Marchiori, 2001).  

 

Results 
 
 

Left Temporal Lobe Epilepsy Patients Show Constrained Dynamics of Left Temporal Pole  
 

Unbiased (exploratory) analyses identified the superior left temporal pole (peak MNI 

coordinate: (-36 2 -17), p < 0.005 uncorrected, cluster extent = 59 voxels, peak T36 = 7.11; Figure 

2-1) as showing the greatest differences between LTLE patients and healthy controls; patients 

showed significantly decreased ACF b values (i.e., slower ACF decay, more constrained 

dynamics). In addition, 15 other regions, all exceeding 27 voxels, showed lowered ACF b values 

in patients at p < 0.005. Regions involved include portions of the right inferior frontal gyrus, left 

thalamus, right precuneus, right caudate, bilateral heschl gyrus, bilateral inferior parietal and 

postcentral area, and bilateral insula. These results are presented in Table 2-2. No regions showed 

increased ACF b values in patients compared to controls. We repeated the 2-sample t-test 38 times, 

each time leaving one subject out. Each time, a cluster at MNI (-36 2 -17) was found to be 

significantly different between the LTLE patients and healthy controls, confirming reliability 

across subjects, and the absence of outlier-effects. In addition, to probe the potential for single-

subject analyses, we compared voxel-wise whole-brain individual patients’ ACF b maps to the 

average healthy control ACF b map, and found that for 13 out of 19 patients there was a cluster 

(>6 voxels, median size = 32 voxels) at the identical coordinate (-36 2 -17) which had b values 

that were more than two standard deviations lower than those in the same region in the mean 

control map. Remaining patients had such clusters within the left temporal lobe. 
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Classification Analyses Achieve 100% Accuracy in Distinguishing Patients vs. Controls  
 

To verify that the differences in ACF b values were not only statistically significant at the 

group level, but also capable of differentiating between patients and healthy controls even on a 

subject-by-subject basis, we conducted follow-up classification analyses on ACF b maps using 

Gaussian Process Classification with leave one subject out cross-validation. We used the mask 

consisting of 16 clusters identified as different between groups as a 2nd level mask in PRoNTo. 

 

 
Figure 2-1: Autocorrelation decay rates (ACF b) are altered close to presumed focal regions. (A) Left Temporal 
Lobe Epilepsy (LTLE) patients exhibit lower ACF b values (slower decay of autocorrelation) relative to Healthy 
Controls (HC) in the Left Superior Temporal Pole (peak MNI coordinate [-36, 2, -17], cluster extent = 59 voxels, peak 
p = 1.18×10-8, bHC(cluster) = 0.71±0.09, bLTLE(cluster) = 0.57 ±0.05)). (B) Modeled ACF decay for the left superior 
temporal pole cluster for HC and LTLE patients. 
 

Every single subject was classified correctly, achieving 100% accuracy. Graph of prediction values 

and the associated density functions and weights map are shown in Figure 2-2. While it is the 

combination of all weights that defines the model and individual contributions of voxels in the 2nd 

level mask cannot be accessed directly, the weights map confirms that most discriminative voxels 

are the ones in the left temporal pole. Perfect accuracy implies that the b-values in these regions 

encode sufficient information for successful discrimination of the two groups. 

Using only the top cluster, which showed most significant abnormality in patients 

according to the t-test, as a 2nd level mask, the accuracy went down, but remained highly 
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significant. Overall accuracy was 84.2%, with specificity and sensitivity of 84.2% (correctly 

classifying 16 out of 19 subjects in each group). Follow-up permutation testing (with 2000 

repetitions) confirmed that both the overall accuracy (p = 0.005) and the class accuracies (p = 

0.005; p = 0.005) were significantly above chance. Therefore, ACF b values from this part of brain 

alone contain sufficient information for significant discrimination between the two subject groups. 

 
 Left TLE < Healthy Controls 

                             Peak MNI  Location Description (AAL) Cluster 
Extent 

t-test 
(peak-level T (p)) 

1 [-36, 2, -17] L Superior Temporal Pole, Middle 
Temporal Pole, Insula, Amygdala 

59 7.11 (1.18 × 10-8) 

2 [42, 23, 13] R Inferior Frontal Gyrus, Pars Triangularis, 
Inferior Frontal Gyrus, Pars Opercularis  

71 4.59 (2.61 × 10-5)  

3 [-27, -7, 28] L White Matter (Precentral) 43 4.57 (2.79 × 10-5) 
4 [-12, -10, -2] L Thalamus  33 4.56 (2.85 × 10-5) 
5 [-45, -37, 43] L Inferior Parietal Lobule,  

Postcentral Gyrus 
69 4.40 (4.64 × 10-5) 

6 [21, 8, 25] R Caudate  69 4.31 (5.95 × 10-5) 
7 [36, -22, 19] R Insula, R Heschl 27 4.20 (8.37 × 10-5) 
8 [30, -43, 52] R Inferior Parietal Lobule  88 4.10 (1.13 × 10-4) 
9 [15, -46, 7] R Precuneus 34 4.07 (1.22 × 10-4) 
10 [-24, -34, 70] L Postcentral Gyrus,  

Paracentral Gyrus 
60 3.99 (1.53 × 10-4) 

11 [30, 41, 1] R White Matter (Frontal) 42 3.89 (2.01 × 10-4) 
12 [12, -112, -2] L Calcarine 31 3.84 (2.41 × 10-4) 
13 [-30, -43, 25] L White Matter (Parietal) 31 3.68 (3.78 × 10-4) 
14 [30, 2, 58] R Middle Frontal Gyrus,  

Superior Frontal Gyrus 
29 3.62 (4.46 × 10-4) 

15 [-54, -10, 10] L Heschl 29 3.46 (6.95 × 10-4) 
16 [3, -91, 10] L Calcarine 30 3.28 (1.20 × 10-3) 

Table 2-2: List of regions showing significantly different values of ACF b in patients relative to controls. Two-
sample t-test was performed in SPM8 (p < 0.005, k ≥ 27). 
 

As a control, we repeated the classification using the entire grey matter mask as a 2nd level 

mask. Gray matter mask was obtained from SPM8 and thresholded at 0.5. This resulted in reduced 

specificity of 53%, not significantly greater than the one expected by chance. This confirms that 

we discarded most of irrelevant information when constraining the analyses to either of the two 

2nd level masks described above.  
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Figure 2-2: Autocorrelation decay rates classify patients with epilepsy with 100% accuracy. (A) Plot of 
prediction values at each level of the leave-one-subject-out cross-validation (fold) shows 100% accuracy when 
employing Gaussian Process Classification within Pattern Recognition for Neuroimaging Toolbox (PRoNTo) and 
using group differences in ACF b values as a 2nd level mask. (B) Density estimates of predicted function values for 
the two classes have a small overlap area, which is a sign of a good classifier. (C) Weights map shows that the left 
temporal lobe cluster carries most weight in the decision process. 

 

Constrained Dynamics are Linked with Locally Dense/Long-Range Sparse Connectivity 
 

Seed-to-voxel functional connectivity analysis revealed that LTLE patients show increase 

in connectivity of the most dynamically constrained cluster (ACF-identified cluster at MNI (-36 2 

-17)) with neighboring left temporal and frontal regions, as well as decreases in connectivity of 

this cluster with parts of bilateral dorsal posterior cingulate cortex (PCC), contralateral inferior 

temporal gyrus, and contralateral thalamus, when compared to healthy controls (p < 0.005 

uncorrected; cluster extent > 10 voxels), as shown in Figure 2-3. Table 2-3 contains a complete 

list of significant seed-to-voxel connectivity differences.  
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Figure 2-3: Seed-to-voxel connectivity of the ACF-identified left temporal lobe cluster is significantly different 
in patients. Relative to healthy controls, increases in connectivity are observed towards neighboring regions, while 
decreases are observed towards posterior cingulate cortex, thalamus, and the contralateral temporal lobe. 
 

 
Connectivity Abnormalities Correlate with Epilepsy Duration 

 
In linking neural and clinical features, for the latter we focused on duration rather than 

seizure frequency since our patient sample did not provide significant variance in the latter. We 

found a significant positive linear correlation (Pearson's r = 0.61, p = 0.005) between the mean 

connectivity of the cluster in PCC with the ACF-identified seed in left temporal pole and the 

duration of epilepsy. Therefore, while PCC exhibited overall decrease in connectivity with the 

seed in patients relative to controls, patients with longer duration of epilepsy had increased 

connectivity. On the other hand, for the cluster within the contralateral inferior temporal gyrus, 

there was a clear, but non-significant, trend towards negative correlation of this area's connectivity 

with the seed and duration of epilepsy (Pearson's r = -0.44, p = 0.060). For other areas that showed 

abnormal connectivity to the ACF-identified seed, connectivity with the seed did not exhibit linear 

relation to epilepsy duration.  
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 Left TLE > Healthy Controls 
 Peak MNI Location Description  Cluster 

Extent 
t-test 

(peak level T (p)) 
1 [-36, -10, -14] L Temporopolar Area (BA 38), Hippocampus, 

Inferior Prefrontal Gyrus (BA 47), 
Insular Cortex (BA 13)  

115 4.23 (7.70 × 10-5) 

2 [-24, -25, -20] L Perirhinal Cortex (BA 35), 
Parahippocampal Cortex (BA 36) 

40 3.34 (9.88 × 10-4) 

3 [-36, 29, -2] L Inferior Prefrontal Gyrus (BA 47) 27 3.67 (3.93 × 10-4) 
4 [-33, -91, -2] L Secondary Visual Cortex (BA 18) 19 3.35 (9.57 × 10-4) 
5 [-27, -67, 31] L Associative Visual Cortex (BA 19) 18 3.27 (1.20 × 10-3) 

     
 Left TLE < Healthy Controls 

 Peak MNI Location Description  Cluster 
Extent 

t-test 
(peak level T (p)) 

1 [6, -22, 40] Bilateral Dorsal Posterior Cingulate Cortex (BA 
31), L Ventral Anterior Cingulate Cortex (BA 24) 

97 -4.13 (1.04 × 10-4) 

2 [54, -7, -29] R Inferior Temporal Gyrus (BA 20) 12 -3.61 (4.58 × 10-4) 
3 [15, 14, 58] R Premotor Cortex (BA 6) 11 -3.36 (9.27 × 10-4) 
4 [6, -22, 4] R Thalamus 11 -3.11 (1.80 × 10-3) 
Table 2-3: List of regions showing significantly different functional connectivity to the ACF-identified left 
temporal pole cluster. Two-sample t-test was performed in CONN Toolbox (p< 0.005, k ≥ 10 voxels). 
 

 

Connectivity Abnormalities Correlate with Verbal Memory Task Performance  
 

We found that disrupted local connectivity of the left temporal lobe ACF cluster correlated 

negatively with performance on the LM-DR task (Pearson’s r = -0.50, p = 0.03, Figure 2-4); that 

is, patients who performed poorly on the verbal memory task exhibited higher local connectivity 

relative to those who did well. Greater severity of clinical symptoms was thus associated with 

higher local connectivity.   
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Figure 2-4: Abnormalities in functional connectivity correlate with patients’ scores on the Logical Memory 
Delayed Recall task. (A) Connectivity of the dysregulated left temporal pole cluster (red) is increased with the 
neighboring temporopolar/insular/hippocampal region (blue) in patients compared to controls (Table 2-3, Cluster 1). 
(B) The strength of this local connection correlates negatively with patients’ performance on the verbal memory task 
(r = -0.50, p = 0.030, N = 19).  
 
 

Clusters with Constrained Dynamics Form a Less Efficient Network in Patients 
 

Global efficiency of the 16-node network was significantly decreased in patients compared 

to controls, with one-sided 2-sample t-test p < 0.05 when varying over costs of 0.20, 0.25, and 0.3 

(corresponding to 20, 25, and 30% of strongest connections kept; p = 0.011, p = 0.043, and p = 

0.020, respectively). By thresholding at a certain cost we are in effect fixing the average degree of 

the network, so that the differences in graph measures presumably reflect changes in network 

topology. Nevertheless, it is important to note that there is no reliable and fully unbiased way of 

comparing networks, and that thresholding in this manner may convert non-significant values into 

edges for networks with low overall connectivity, and discard a number of significant connections 

for networks with high overall connectivity (van Wijk et al., 2010). We did not find significant 

between-group differences in other graph metrics tested.  

 

Discussion 
 
 

We found that patients with left TLE show slower time-series autocorrelation decay times 

in the left anterior temporal pole (proximal to the presumed epileptogenic zone) relative to decay 

times from the same region in healthy controls, indicating loss of complexity and more constrained 

functional dynamics. Decay time of the ACF discriminated successfully between patients and 



 

 23 

healthy controls on a subject-by-subject basis in a purely data-driven manner, achieving accuracy 

of 100% in our sample of N = 19, and therefore showing potential for future validation as a 

neurodiagnostic tool for localization of epileptic foci.   

Changes in BOLD time series complexity were accompanied by changes in local and 

global connectivity, with increased connectivity with neighboring temporo-frontal areas, and 

decreased connectivity with regions of the default mode network (DMN) and the contralateral 

temporal lobe. This result agrees with recent findings that complexity covaries with local 

connectivity (Anderson et al., 2014) as well as with recent independent component analysis-based 

findings that MTLE specific networks (which include temporal poles) show increased connectivity 

in patients, whereas the control-specific network (including thalamus and anterior cingulate 

cortex) shows decreased connectivity in patients (Maneshi et al., 2014). 

Complexity of low frequency BOLD fluctuations has been shown to correlate significantly 

with local connectivity as measured by regional homogeneity (ReHo) (Anderson et al., 2014), 

implying that increased power spectrum scale invariance β (or, analogously, decreased 

autocorrelation function b values) may be a reflection of enhanced local synchronization. In 

addition, recent findings suggest that, relative to controls, unilateral MTLE patients show 

significantly increased regional homogeneity in the ipsilateral parahippocampal gyrus, but also 

in the midbrain, insula, corpus callosum, bilateral sensorimotor cortex, and frontoparietal 

subcortical structures (Zeng et al., 2013). This is in agreement with our findings of decreased ACF 

b values in a cluster within the left temporal pole and increased seed-to-voxel connectivity of this 

cluster towards neighboring areas, as well as with abnormal complexity found in the inferior 

frontal gyrus, bilateral inferior parietal and postcentral area, and bilateral insula.  

The literature often reports structural changes in MTLE, which is most often accompanied 

by hippocampal sclerosis (HS), but also by (predominantly) ipsilateral atrophy of temporal pole 

and other temporolimbic structures (Coste et al., 2002). It is clinically well established that mesial 

temporal sclerosis may extend throughout the temporal lobe, and involve the cortex and the white 

matter, thus leading to extensive temporal lobe atrophy. Increased diffusion rate and decreased 

anisotropy have been observed in the epileptic focus, of TLE patients with unilateral HS (Assaf et 

al., 2003; Focke et al., 2008). Increased diffusion rate may be attributed to neuronal necrosis, 

gliosis, and expanded extracellular space, while the reduction in anisotropy may come from a loss 

of ordered structure, myelin degradation, and lowered cell density. Structural changes are often 
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non-localizing, and even non-lateralizing, including altered diffusion properties in the 

contralateral temporal and inferior frontal lobes (Focke et al., 2008) and widespread significant 

neocortical thinning in the sensorimotor cortex (Labate et al., 2011). Recurrent seizures and 

structural degeneration may lead to changes in functional connectivity as well: repair mechanisms 

(such as MMP-9) that degrade the matrix may facilitate local connections, while preventing long-

range connections.     

Out recent simulation studies show that power spectrum scale invariance varies as a 

function of both input type (excitatory versus inhibitory) and input density, with greater density of 

inhibitory or lower density of excitatory inputs producing constrained (less complex, more 

persistent) dynamics (Radulescu and Mujica-Parodi, 2014). Although epilepsy is often thought of 

as a hyper-excitatory disorder, this may not necessarily hold true during interictal periods (for 

example, it has been postulated that ictal epileptic neurphysiological activity can trigger local area 

neuronal network inhibition in attempt to stabilize the local neuronal network function (Tebartz 

van Elst et al., 2011)); constrained dynamics are, in fact, consistent with hubs with more inhibitory 

connections (Radulescu and Mujica-Parodi, 2014). Furthermore, it has been postulated that 

epileptogenesis may involve not just the creation of a hyperexcitable state, but also the existence 

of high connectivity state and non-Markovian recurrent loops (Hsu et al., 2007), in agreement with 

our finding that epileptogenic regions show higher local connectivity and exhibit longer time series 

memory (slower autocorrelation decay).  

The posterior cingulate cortex (PCC) is a pivotal hub for integration and mediation of 

information in the brain (van den Heuvel and Sporns, 2011). It has been implicated in a range of 

functions, and shown to be a part of the Default Mode Network (DMN) and Dorsal Attention 

Network. It has strong reciprocal connections to mesial temporal lobe memory-related structures 

(Maddock et al., 2001). Our ACF-identified cluster showed decreases in connectivity with PCC, 

in agreement with a couple of recent studies showing diminished connectivity between PCC and 

bilateral mesial temporal structures in left MTLE patients (James et al., 2013; Liao et al., 2011). 

In addition, our findings suggest that there is a linear relationship between left temporal pole 

connectivity with PCC and epilepsy duration, over which the connection is restored over time. 

However, this restoration seems to be accompanied by aggravated decrease in connectivity with 

the opposite temporal lobe. 
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The Wechsler Memory Scale is one of the most commonly used memory tests in patients 

with epilepsy, and is often a part of standard pre-surgical evaluation. Patients with temporal lobe 

epilepsy have been found to have lower scores when compared to healthy controls, but the tests 

on their own have been unable to lateralize temporal epilepsy successfully (Helmstaedter et al., 

2009; Soble et al., 2014). We found that local increase in connectivity of the dynamically 

constrained cluster in patients correlated negatively with scores on the Logical Memory Delayed 

Recall task suggesting, as expected, that more severe symptoms were associated with higher local 

connectivity.  Therefore, local connectivity of the left temporal lobe ACF-identified region was 

not only increased in patients compared to controls, but was also associated with severity of verbal 

memory impairment within the patient population. This is not surprising considering that the 

disconnected cluster included parts of affected hippocampus, structure known to be heavily 

involved in memory processing.   

 

Limitations and Future Directions 
 

The current gold standard for localization of focal regions includes identification of an 

epileptogenic zone on intracranial EEG recordings combined with postoperative seizure freedom 

following its resection. Due to invasive nature of intracranial recordings and the extensive 

temporal duration required to establish seizure freedom with confidence, data of such nature are 

more restricted. In this study, we utilized data from nineteen patients with concordant clinical 

findings, including results of long-term video EEG monitoring and structural MRI abnormalities 

confirmed by an experienced neurologist. While this group serves as a benchmark for the 

application of the technique developed here, and comparisons of individual ACF b maps to the 

mean control map point to clinically relevant region in 100% of subjects, future work will address 

its applicability in subjects with other forms of epilepsy, ideally with the epileptogenic zone 

confirmed via invasive recordings. The method presented here is an alternative to multimodal 

methods such as EEG-fMRI, which has the advantage of not requiring electrophysiological setups 

incompatible with some head-coils, avoids extensive set-up times, is completely fMRI data-driven 

(avoiding assumptions with respect to the shape of the hemodynamic response function and 

modeling of epileptic events), and utilizes only ~seven minutes of resting state data without active 

patient participation. Our aim is to provide a first step towards a non-invasive method that reliably 

detects focal regions in patients with drug resistant focal epilepsy.  
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Conclusions 
 

We developed techniques for the interictal identification of epileptic foci through 

complexity and network analyses of fMRI time-series. In a completely non-invasive and data-

driven manner, based on complexity values calculated from resting-state fMRI images alone, we 

were able to achieve 100% accuracy in distinguishing between 19 healthy controls and 19 epileptic 

patients with well-defined left temporal epileptic foci. Our method has shown high sensitivity and 

specificity in localizing focal points, while providing additional information about the underlying 

dynamics of epileptic brains. Since the method does not explicitly depend on existence of MRI-

detectable structural abnormalities, it could eventually be applied to patients with epileptic foci 

that are inadequately defined or poorly localized based on current state of the art neuroimaging 

techniques. Functional MRI analytical methods that target network dynamics therefore hold 

promise in providing novel and clinically valuable tools for the identification and resection of 

epileptogenic foci.
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Chapter 3  Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of 
Resting-State fMRI Networks 
 
Modified from DeDora, D. J.*, Nedic, S.*, Katti, P., Arnab, S., Wald, L.L., Takahashi, A., Van 

Dijk, K.R., Strey, H.H., Mujica-Parodi, L.R., 2016. Signal Fluctuation Sensitivity: An Improved 

Metric for Optimizing Detection of Resting-State fMRI Networks. Frontiers in Neuroscience 10, 

180;  

*DeDora, D. J. and Nedic, S. contributed equally to this work 

 

Abstract 
 
Task-free connectivity analyses have emerged as a powerful tool in functional neuroimaging. 

Because the cross-correlations that underlie connectivity measures are sensitive to distortion of 

time-series, here we used a novel dynamic phantom to provide a ground truth for dynamic fidelity 

between blood oxygen level dependent (BOLD)-like inputs and fMRI outputs. We found that the 

de facto quality-metric for task-free fMRI, temporal signal to noise ratio (tSNR), correlated 

inversely with dynamic fidelity; thus, studies optimized for tSNR actually produced time-series 

that showed the greatest distortion of signal dynamics.  Instead, the phantom showed that dynamic 

fidelity is reasonably approximated by a measure that, unlike tSNR, dissociates signal dynamics 

from scanner artifact.  We then tested this measure, signal fluctuation sensitivity (SFS), against 

human resting-state data.  As predicted by the phantom, SFS—and not tSNR—is associated with 

enhanced sensitivity to both local and long-range connectivity within the brain’s default mode 

network.  
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Introduction 
 

Unprecedented investment in functional neuroimaging has ushered in a new era of brain 

research, in which fMRI’s original role in mapping the areas of the brain most “active” under a 

task, now includes task-free characterization of brain connections and circuits. This evolution 

implies a fundamental—and yet largely unacknowledged—shift in how we understand signal 

versus noise.  

During fMRI’s first decade, researchers almost exclusively used stimulus presentation to 

evoke blood oxygen level dependent (BOLD) activity in subjects. To identify the relationship 

between different brain regions and their functional roles, tasks included one or more experimental 

conditions (tasks), as well as a baseline measure absent of stimuli (rest). FMRI time-series were 

then fitted to the expected hemodynamic shape for each condition (canonical hemodynamic 

response function, or HRF). Once fitted, trials for each condition were averaged and used to 

statistically compare hemodynamic amplitudes for each condition (contrasts) across subjects. 

Contrasts that met statistical thresholds were then represented as activity, producing activation 

maps. Importantly, the fitting, averaging, and subtraction approach used to analyze task-based data 

was designed to distinguish between time-series fluctuations originating from two sources.  On the 

one hand, it amplified fluctuations of interest corresponding to task-based activation and that 

therefore were correlated with the experiment’s design matrix. On the other hand, it suppressed 

fluctuations of nuisance that corresponding to (scanner, physiological) artifact and that therefore 

were independent of the experiment’s design matrix.  

In the late 1990’s several influential papers (Biswal et al., 1997; Greicius et al., 2003; 

Raichle et al., 2001; Salvador et al., 2005) showed for the first time that the brain showed strong 

and reliable correlations between fMRI time-series even in the absence of a well-defined task 

(resting-state connectivity); more recently, the relationship between correlation-derived networks, 

and the neuronal events that underlie them, has been identified using fMRI acquired 

simultaneously with electrophysiological recordings of local field potentials (Logothetis et al., 

2012). The fMRI community quickly responded, and today task-free connectivity studies—which 

map connections between brain nodes as defined by correlations between their time-series—

comprise over 20% of human neuroimaging studies published every year (Bandettini, 2014).  

Connectivity analyses include not only those obtained by correlations with a pre-defined region 

(seed-based) but also those that describe graph-theoretic features of the functional connectome 
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(complex network analyses) (Bullmore and Sporns, 2009). Together, connectivity studies have 

contributed a wealth of new human brain data on aging (Damoiseaux et al., 2008), psychiatric 

(Greicius et al., 2007) and neurological (Bettus et al., 2009) disorders, and injury (Mayer et al., 

2011). Resting-state fMRI protocols are easily standardized, require minimal patient compliance, 

and permit exploratory analyses; as such, they would appear to be well positioned for both clinical 

neurodiagnostics as well as large-scale international bio-repositories established for 

epidemiological research. 

However, the transition from activation maps to connections between nodes not only 

produced a conceptual shift with respect to the role of functional neuroimaging, but also increased 

dependence upon time-series power spectra. The standard measure for establishing the quality of 

task-based data has been the contrast-to-noise ratio (CNR), defined as the contrast (mean 

activation level acquired during task minus the mean activation level acquired during rest) divided 

by the standard deviation of the residual time-series (Bandettini and Cox, 2000). For task-free 

designs however, CNR cannot be computed, and thus normally is replaced by the temporal signal-

to-noise ratio (tSNR), defined as the mean of the time-series divided by its standard deviation 

(Kruger et al., 2001). Intuitively, both CNR and tSNR compare the amplitude of a signal against a 

background of undesired physiological, thermal, and scanner noise present in all fMRI studies. 

This manner of conceptualizing what is “signal” versus what is “noise” makes perfect sense within 

the context of activation maps, in which a task activates the brain reliably more under one condition 

(signal) than another (noise) (Murphy et al., 2007). However, for task-free analyses, the “baseline” 

fluctuations themselves also include the “signal.” Thus, for most task-free analyses, tSNR would 

appear to do exactly the opposite of what one would wish, as it penalizes sensitivity to the 

fluctuations (i.e., the standard deviation of the time-series) upon which experimental results are 

also based. Indeed, several recent studies have reported little correspondence between resting-state 

tSNR and the detection of stable functional networks (Gonzalez-Castillo et al., 2014; Molloy et 

al., 2014; Smith et al., 2013; Welvaert and Rosseel, 2013).  

For task-free analyses, rather than relegate time-series fluctuations to the category of noise 

as per tSNR, we want to—as with task-based analyses—functionally distinguish between 

fluctuations of interest that are neurobiologically significant (e.g., emanating from BOLD signal 

consequent to neuronal response) from fluctuations of nuisance that are neurobiologically 

insignificant (e.g., physiological, scanner, and motion artifact). The dissociation between the two 
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can be characterized by signal fluctuation sensitivity (SFS), which we define at a single-voxel level 

as: 

 
<'<=>;?@ =

ABCDEF	
GAHFCIJFK

	×	 MBCDEF
GMNOPQJNREK

                                           (Equation 1) 

 
In the first term, the numerator consists of the mean signal (µ) of a time-series acquired from a 

voxel in the region of interest (ROI).  For the denominator, we average over all voxel-specific 

signal for the entire brain (global). The first term ensures that SFS decreases for regions with signal 

drop out, while remaining unit-less (as with tSNR). In the second factor, the numerator consists of 

the standard deviation (s) of the time-series acquired from the voxel of interest. For the 

denominator, we average over all voxel-specific s from a region in which BOLD signals are not 

expected, but in which physiological, scanner, and motion artifacts are still present (nuisance).  

Prior work suggests that time-series obtained from cerebrospinal fluid (CSF) meet criteria for the 

nuisance denominator (Wald, 2012). SFS for a region of interest is then computed by averaging 

voxel-specific SFS values over all voxels in the region (SFSROI = < SFSvoxel>ROI). In order to more 

easily compare SFS with tSNR, we scale them comparably by multiplying SFS values by 100. 

We define dynamic fidelity as the degree to which fMRI accurately captures true BOLD 

fluctuations. In order to test our hypothesis that SFS should reflect dynamic fidelity of time-series 

more accurately that tSNR, we first needed to know the “ground truth” for those fluctuations. To 

access that ground truth, we designed and constructed a dynamic phantom, which provides user-

controlled—and thus known—dynamic BOLD-like inputs to which fMRI-derived outputs can be 

compared. We then tested the impact of dynamic fidelity, as defined by our phantom, in predicting 

detection sensitivity to functional connectivity in human data across three different sets of 

acquisition parameters, chosen to represent a breadth of realistic optimization strategies utilized 

within the neuroimaging field for human connectivity studies. 

 

Methods 
 
 

For detailed description of design and prototyping of the dynamic phantom, please refer to 

(DeDora et al., 2016) – this part is omitted here. To understand the work presented here it suffices 

to say that the dynamic phantom is a fully automated, MRI-compatible device, capable of 
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producing BOLD-like signal. The device consists of two concentric cylinders: the inner (rotating) 

cylinder containing four compartments, divided longitudinally, filled with two different 

concentrations of agarose gel (2.21 and 2.27%), and a stationary outer cylinder filled uniformly 

with 2.27% agarose gel. The basis for the signal is the fact that the magnetic susceptibility of 

agarose gels is concentration dependent (Olsrud et al., 2008), in which higher concentrations 

produce lower fMRI signal. By varying the concentration of agarose gel present within a voxel 

over time, the dynamic phantom produces changes in T2* that can be tuned to amplitudes typically 

seen with BOLD in humans; the phantom can be programmed to simulate both task-based and 

resting-state BOLD-like signals. With known inputs, the relationship between the signal produced 

(by the dynamic phantom) and the signal detected (by the fMRI scanner) can be rigorously 

quantified as a measure of dynamic fidelity. 

 

Using the Dynamic Phantom to Test SFS and tSNR 
 

Acquisition parameters: We scanned the dynamic phantom in three separate MRI scanners. 

Detailed scan parameters are listed in Table 3-1. The three scanners utilized in this phantom study 

represent the following: (i) a 3T Siemens MRI with 32-channel head-coil (McGovern Institute for 

Brain Research, Massachusetts Institute of Technology), (ii) a 3T Siemens MRI with 64-channel 

head-coil (Human Connectome Scanner—Martinos Center for Biomedical Engineering, 

Massachusetts General Hospital), and (iii) a 7T Siemens MRI with 32-channel head-coil (Martinos 

Center for Biomedical Engineering, Massachusetts General Hospital). For each scanner, we tested 

three sampling rates, representing typical time-resolution for fMRI studies (TR = 2000-2010ms), 

increased time-resolution acquired for the Human Connectome Project (TR = 1010-1080ms), and 

ultra-fast imaging paradigms (TR = 802-824ms). Thus, we performed a factorial study (three 

scanners and three sampling rates each) with the dynamic phantom, for a total of nine scans (Table 

3-1), each 10 minutes long. For both 3T scanners, we performed standard shimming; due to 

dramatically increased susceptibility artifacts at 7T, we utilized a partial shim centered on the inner 

cylinder of the phantom. Visual inspection of the resulting images, as well as correlations between 

the dynamic phantom inputs and fMRI outputs, confirmed data quality.  
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Scan Main 
Field 

Head 
Coil 

TR 
(ms) 

TE 
(ms) 

SMS iPAT Flip 
Angle 

Bandwidth 
(Hz/Px) 

Resolution 
(mm) 

Slice 
Gap 

(mm) 

Slices 

 1 3T 32 Ch 2000 30 3 2 75° 1860 2x2x2 0.2 69 
2 3T 32 Ch 1080 30 4 2 60° 1860 2x2x2 0.2 60 
3 3T  32 Ch 802 30 5 2 33° 1860 2x2x2 0.2 55 
4 3T 64 Ch 2000 30 2 2 85° 2840 2x2x2 0 62 
5 3T 64 Ch 1080 30 4 2 60° 2840 2x2x2 0 68 
6 3T 64 Ch 824 30 5 2 55° 2840 2x2x2 0 65 
7 7T 32 Ch 2010 20 2 2 33° 2264 2x2x1.5 0 86 
8 7T 32 Ch 1010 20 4 2 55° 2264 2x2x1.5 0 84 
9 7T 32 Ch 802 20 5 2 33° 2368 2x2x1.5 0 85 

Table 3-1: Acquisition parameters for the nine dynamic phantom scans. We tested three scanners at three TRs 
with the dynamic phantom. Highlighted rows indicate scans for which we collected corresponding human data, in 
which Scan 1 corresponds to Acquisition A, Scan 5 corresponds to Acquisition B, and Scan 9 corresponds to 
Acquisition C. All sequences utilized interleaved acquisition. 
 
 

Statistical analyses: While most human fMRI data undergoes significant preprocessing, 

for the dynamic phantom we used raw data after implementing only voxel-wise trend removal 

(linear and quadratic) to remove scanner drift, and no further temporal preprocessing, in order to 

characterize dynamic fidelity as transparently as possible. For the region of interest (ROI) 

fluctuations, we extracted the average time-series from the four quadrants of the inner cylinder 

(corresponding to the four chambers, with respect to the initial position of the phantom) with an 

automated masking procedure using MATLAB software developed in-house.  We repeated this 

for six slices positioned in the center of the phantom (n = 24 time-series per scan). For the nuisance 

fluctuations, we extracted the time-series from the outer cylinder of the phantom, which does not 

activate. We then computed quadrant-wise SFS based on the definition: 

<'<STUVW/X	YZVU1>W	[\VS]VU1 = 	
< _/UU?]	XT@/US?] >[\VS]VU1

< _a@>9V@ >
	×	

< b/UU?]	XT@/US?] >[\VS]VU1

< b>\1?]	XT@/US?] >
 

 
In the first term, the numerator consists of the mean signal (µ) of an averaged time-series over 

each of the four dynamic phantom quadrants (quadrant).  For the denominator, we average over 

signal for the entire phantom (global).  The first term ensures that SFS decreases for regions with 

signal drop out, while remaining unit-less (as with tSNR). In the second term, the numerator 

consists of the mean standard deviation (s) of an averaged time-series over each of the four 

dynamic phantom quadrants. For the denominator, we average over s from a region in which 

signals are not expected, but in which scanner artifacts are still present. In this case, we use the 
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outer cylinder, which is static. In order to avoid biasing values for standard deviation due to 

differences in the number of voxels between inner quadrants and outer cylinder, we averaged time-

series in the outer compartment over the same number of voxels used to average time-series in 

each of the inner quadrants. We computed standard deviations for each of these inner quadrant-

sized (39 voxel) averaged time-series, and then averaged across those standard deviations to 

produce the standard deviation for the entire outer cylinder (i.e., the denominator of the second 

factor).  In order to more easily compare SFS with tSNR, we scale them comparably by multiplying 

SFS values by 100. TSNR was computed as the mean for the averaged time-series over each of 

the four dynamic phantom quadrants, divided by its standard deviation (after detrending). Dynamic 

fidelity was computed as the correlation between inputs (dynamic phantom user-defined function) 

and outputs (fMRI time-series). We then computed the correlation between fidelity and both SFS 

and tSNR for each of the 24 time-series per scan.  

 

Human Scanning 
 

Acquisition: In an effort to represent a wide variety of task-free scanning paradigms, we 

analyzed three sets of human data (N = 12 subjects each) collected with the same acquisition 

parameters utilized for the phantom studies, but using only the time-resolutions previously 

optimized for each study (Table 3-1). Thus, Acquisition A refers to the 3T MRI with 32-channel 

head-coil and a TR = 2000ms; Acquisition B refers to the 3T MRI with a 64-channel head-coil and 

a TR = 1080ms, and Acquisition C represents the 7T MRI with a 32-channel head-coil with a TR 

= 802ms. Acquisition A lasted 5 minutes, while Acquisition B (originally 6.2 minutes) and 

Acquisition C (originally 10 minutes) data were truncated to match this duration. Anterior to 

posterior phase encoding and interleaved acquisition were used in all scans. For Acquisition A, we 

acquired whole-brain T1-weighted structural volumes using a conventional MPRAGE sequence 

with the following parameters: TR = 2530ms, TE = 3.39ms, TI = 1100ms, flip angle = 7°, voxel 

size = 1 x 1 x 1.3mm. Conventional B0 field maps derived from phase differences between gradient 

echo images acquired at TR = 4.22 and 6.68ms were also acquired (TR = 584ms, flip angle = 55°, 

voxel size = 2 x 2 x 2 mm, slice gap = 0.2mm, 69 slices). For Acquisition B, we also acquired 

whole-brain T1-weighted structural volumes using a conventional MPRAGE sequence with TR = 

2530ms, TE = 1.15ms, TI = 1100ms, flip angle = 7°, 1mm isotropic voxel size. For Acquisition C, 

we acquired whole-brain T1-weighted structural volumes using a multi-echo MPRAGE 
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(MEMPRAGE) sequence with four echoes and the following protocol parameters:  TR = 2530ms, 

TE1 = 1.61ms, TE2 = 3.47ms, TE3 = 5.33ms, TE4 = 7.19ms, TI = 1100ms, flip angle = 7°, 1mm 

isotropic voxel size. Conventional B0 field maps derived from phase differences between gradient 

echo images acquired at TE = 4.60 and 5.62ms were also acquired (TR = 723ms, flip angle = 36°, 

voxel size = 1.7 x 1.7 x 1.5 mm, 89 slices).  

All human subject studies were approved by the Institutional Review Boards of institutions 

at which subjects were tested (Massachusetts Institute of Technology for Acquisition A, 

Massachusetts General Hospital for Acquisitions B and C). All subjects were healthy adults, had 

full capacity, and provided informed consent.  

All subjects were age matched (µA = 25.6 ± 3.7; µB = 23.3 ± 4.2; µC = 25.6 ± 3.4, p = 0.35, 

Kruskall-Wallis test). There were no significant differences in motion across the three groups 

(maximum absolute translation p = 0.60, maximum absolute rotation p = 0.96, mean root mean 

square (RMS) motion p = 0.10, maximum RMS motion p = 0.27, Kruskall-Wallis test). All 

participants were instructed to lie quietly with eyes open in the scanner, orienting to a fixation 

cross, without moving for the duration of the scan. We removed the first ten seconds of data for 

all datasets. 

Preprocessing: We followed the standard SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) 

pipeline for realignment, co-registration to a structural image, and normalization to Montreal 

Neurological Institute (MNI) space. Co-registered structural images were segmented into 

probabilistic maps of gray matter, white matter, and CSF using SPM’s New Segment tool. Where 

noted, we utilized a 4-mm (2 voxel) FWHM Gaussian smoothing kernel. As per standard practice 

for fMRI analyses, we performed slice time correction only on Acquisition A data, since the 

2000ms sampling rate was considerably slower than those of the other two scanners. We performed 

field map correction on Acquisitions A and C (distortion correction scheme was performed on 

Acquisition B immediately following image acquisition). Scrubbing was performed to remove the 

influence of motion, with scan-to-scan global signal deviation from the mean > 3 and scan-to-scan 

composite motion > 0.5 mm as thresholds for removal (Power et al., 2012). The mean percentage 

of data points removed between all three groups was 1.97%, with no subjects having more than 

9% of data scrubbed. To assess the impact of spatial smoothing, we computed all of our measures 

on both unsmoothed and smoothed data, both of which underwent each of the other preprocessing 

steps listed here.  
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Computation of SFS, tSNR, ALFF, ReHo and Long-Range (mPFC-PCC) Connectivity 
 

We used MATLAB to compute voxel-wise SFS according to: 

<'<=>;?@ =
_S?0V\@1	W>S?	U?1c>]d	efg	

< _a@>9V@ >
	×	

bS?0V\@1	W>S?	U?1c>]d	efg
< bX?]?9]>hY/UV@	0@\/S >

 

 

In the first term, the numerator consists of the mean signal (µ) of a time-series acquired from a 

voxel in the region of interest (ROI) in the default mode network, as defined below. For the 

denominator, we average over all voxel-specific signal for the entire brain (global). The first term 

ensures that SFS decreases for regions with signal drop out, while remaining unit-less (as with 

tSNR). In the second term, the numerator consists of the standard deviation (s) of a time-series 

acquired from the voxel of interest in the default mode network, as defined below. For the 

denominator, we average over all voxel-specific s from a region in which BOLD signals are not 

expected, but in which physiological, scanner, and motion artifacts are still present (nuisance).  

Prior work suggests that time-series obtained from cerebrospinal fluid (CSF) meet criteria for the 

nuisance denominator (Wald, 2012). SFS for a region of interest is then computed by averaging 

voxel-specific SFS values over all voxels in the region. We additionally computed voxel-wise 

tSNR as the mean for each voxel’s time-series divided by its standard deviation. In order to more 

easily compare SFS with tSNR, we scale them comparably by multiplying SFS values by 100.   

For SFS, standard deviations of the cerebrospinal fluid voxels (nuisance fluctuations) were 

computed using an eroded probabilistic map of CSF (SPM8 segmented map of CSF thresholded 

at 70%), to ensure minimal contributions from neural sources. To avoid distorting time-series 

dynamics by averaging them, standard deviations were computed for each voxel in the nuisance 

ROI, with voxel-based values averaged for the ROI. Mean global signal included the entire brain 

(conjunction of gray matter, white matter, and cerebrospinal fluid, thresholded at 70%). Mean 

values and standard deviations for each voxel were acquired before confound correction, but after 

SPM8 preprocessing and scrubbing.  

Prior to functional connectivity analyses, we performed further regression of nuisance 

variables (confound-correction). This included detrending, regression of mean CSF and white 

matter signals (white matter map thresholded at 70%), and regression of six motion parameters 

from the realignment step. Finally, we performed temporal band-pass filtering in the 0.01-0.1 Hz 

range using 5th order Butterworth filter. 
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Both amplitude of low frequency fluctuations (ALFF) and local synchronization of 

neighboring voxels (regional homogeneity or ReHo: 27-voxel KCC-ReHo) were computed from 

confound-corrected data, using the REST toolbox (Song et al., 2011). Resulting subject-specific 

voxel-wise ReHo and ALFF maps were standardized by dividing each voxel’s value by the mean 

value of the whole brain. To test whether SFS or tSNR were predictive of these established resting-

state measures, we computed within-subject correlations between (i) SFS and ALFF, (ii) SFS and 

ReHo, (iii) tSNR and ALFF, and (iv) tSNR and ReHo for voxels belonging to the well-established 

default mode network (DMN) regions: medial prefrontal cortex (mPFC), posterior cingulate 

cortex (PCC), and left and right lateral parietal cortices (LLP and RLP). These regions were 

defined as 10-mm radius spheres centered on previously established coordinates (Fox et al., 2005), 

intersected with an SPM8 brain mask to ensure only brain voxels were included. For the extraction 

of ROI-based SFS and tSNR values, we used the four aforementioned DMN masks, as well as a 

probabilistic gray matter mask from SPM8 (P > 50%). We obtained subcortical ROI masks from 

bilateral regions included in FSL Harvard-Oxford subcortical atlas (thresholded at 50%). 

As a measure of long-range mPFC-PCC connectivity strength we used Fisher-z 

transformed correlations coefficients between mean time series extracted for mPFC and PCC. To 

test whether SFS or tSNR were predictive of the mPFC-PCC connection strength, we computed 

between-subject correlations (N = 36) between the minimum SFS or tSNR for each mPFC-PCC 

pair and connectivity strength. The decision to use the SFS or tSNR value for the system as a whole 

based upon the minimum value is intuitively based upon the intuition that for networks that include 

two or more nodes, signal for the network as a whole can only be as strong as that of its weakest 

node. However, this intuition is not completely accurate; it is only a better solution than the next 

easiest option, which is to take the mean.  

 

Results 
 
 

Dynamic Phantom Assessment of SFS vs tSNR in Predicting Dynamic Integrity 
 

The dynamic phantom was programmed to mimic resting-state oscillations observed in 

human fMRI (van den Heuvel et al., 2008) (Figure 3-1A), and scanned under three different sets 

of acquisition parameters. Acquisition A represents what would normally be considered the 

standard for typical resting-state studies, using a 3T scanner with 32-channel head coil and 2000ms 
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temporal-resolution (TR). Acquisition B uses a set of parameters that were specifically designed 

for resting-state connectivity analyses as part of the Human Connectome Project.  These include a 

3T scanner that increases the temporal-resolution to 1080ms to achieve greater sensitivity to 

fluctuation dynamics; to compensate for signal loss associated with accelerated scanning, 

Acquisition B uses a custom-built 64-channel head coil. Acquisition C pushes even further than 

Acquisition B in optimizing over temporal resolution (802ms). Acquisition C retains the 32-channel 

head coil, but compensates for signal loss associated with accelerated scanning by increasing the 

field strength to 7T. Scanners and scan parameters used for each session are described in Table 3-

1. For human data, we also acquired T1-weighted structural images and B0 field maps for 

correction of EPI data.    

We then computed dynamic fidelity, SFS, and tSNR on raw data acquired from the 

dynamic phantom. Standard deviations were computed after voxel-wise removal of linear and 

quadratic trends. The dynamic phantom is longitudinally divided into four chambers, and rotates 

about the long axis orthogonally to the main field. For our region of interest, we extracted the 

average time-series from each the four quadrants of the inner cylinder with an automated masking 

procedure, and repeated this for six slices positioned in the center of the dynamic phantom (N = 

24 time-series per scan).  Dynamic fidelity was defined as the correlation between user-defined 

dynamic inputs, provided by the phantom rotation, and dynamic outputs acquired from the scanner 

in the region of interest. To compute the nuisance term within SFS (analogous to CSF in humans), 

we extracted fluctuations acquired from the outer cylinder in these six slices, which includes only 

inactive voxels.    

Dynamic fidelity directly correlated with SFS for each of the nine scans (Figure 3-1B; 

Table 3-2; median r = 0.67) and inversely correlated with tSNR for each of the nine scans (Figure 

3-1B; Table 3-2; median r = -0.63). Thus, when the scanner was most sensitive in capturing 

dynamic inputs, SFS was maximized while tSNR was minimized, and vice-versa. Researchers 

typically optimize acquisition parameters for fMRI connectivity studies by trying to maximize 

tSNR. Yet doing so would appear to produce the greatest amount of distortion for the BOLD 

fluctuations upon which connectivity results are based. Thus, we tested the implications of our 

dynamic phantom results for human connectivity studies.    
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 TR (ms) 3T, 32 Ch 3T, 64 Ch 7T, 32 Ch 

  Correlation with Dynamic Fidelity 

 ~2000 0.51 (p = 0.010) 0.69 (p = 2.1 × 10-4) 0.54 (p = 6.6 × 10-3) 

SFS ~1080 0.71 (p = 1.1 × 10-4) 0.76 (p = 1.8 × 10-5) 0.69 (p = 1.9 × 10-4) 

 ~802 0.67 (p = 3.7 × 10-4) 0.49 (p = 0.014) 0.63 (p = 9.0 × 10-4) 
     

 ~2000 -0.67 (p = 3.2 × 10-4) -0.64 (p = 7.0×10-4) -0.44 (p = 0.030) 

tSNR ~1080 -0.87 (p = 4.6 × 10-8) -0.72 (p = 8.3×10-5) -0.58 (p = 3.0 × 10-3) 

 ~802 -0.63 (p = 1.1 × 10-3) -0.27* (p = 0.20) -0.54 (p = 6.2 × 10-3) 

Table 3-2: Dynamic fidelity for dynamic phantom scans. Dynamic fidelity in all nine scans was positively 
correlated with SFS and negatively correlated with tSNR. *n.s. 
 
 

Human Subjects Assessment of SFS vs. tSNR in Detecting Resting-State Connectivity 
 

We calculated SFS and tSNR in human neuroimaging data acquired using Acquisitions A, 

B, and C (restricting our analyses to the TR originally, and independently, optimized for each 

scanner), and assessed the utility of each in predicting detection sensitivity to resting-state network 

features. Human data were preprocessed according to standard methods, including the SPM8 

preprocessing pipeline; to gauge the impact of spatial smoothing, we calculated all values both 

with and without this step. After preprocessing, we used MATLAB to compute SFS and tSNR as 

per Equation (1). For resting-state connectivity, we computed three commonly used measures.  

The first was the between-voxel measure of local connectivity, regional homogeneity (ReHo) 

(Zang et al., 2004). The second was the within-voxel amplitude of low-frequency fluctuations 

(ALFF) (Zang et al., 2007), which is thought to underlie resting-state connectivity (Biswal et al., 

1995). The third was long-range connectivity between two nodes of the default model network 

(Raichle, 2015): the medial prefrontal cortex and the posterior cingulate cortex (mPFC-PCC). 

DMN regions were defined as 10mm radius spheres centered upon previously established 

coordinates (Fox et al., 2005). Long-range connectivity forms the basis for graph 

theoretic/complex network analyses (Bullmore and Sporns, 2009) used within the fMRI field . 

To test the degree to which SFS and tSNR were sensitive to well-established resting-state 

features, we computed correlations between SFS and ReHo, ALFF, and long-range connectivity; 

as well as tSNR and ReHo, ALFF, and long-range connectivity. ReHo and ALFF were computed 

for voxels within the well-established default mode network, comprised of the medial prefrontal 

cortex, posterior cingulate cortex, and bilateral parietal cortices (Figure 3-2A).  
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Figure 3-1: Dynamic phantom results show that dynamic fidelity positively correlates with signal fluctuation 
sensitivity (SFS) and negatively correlates with classical temporal signal to noise ratio (tSNR). (A) To accurately 
mimic human resting-state fluctuations in the dynamic phantom, we utilized a complex pink-noise waveform as shown 
by the dotted line. The 10-minute input function originated from our previous neuroimaging data and was subsequently 
programmed into the phantom. The dynamic phantom inputs are derived from position tracking during rotation. A 
representative output fMRI signal is superimposed (fMRI Output axis), as acquired under Acquisition B:  3T magnet, 
64 Channel head-coil, at TR = 1080ms (see Table 3-1). This waveform input was used for all nine phantom fMRI 
scans. (B) Input-output fidelity was positively correlated with SFS (median r = 0.67, see Table 3-2) and negatively 
correlated with tSNR (median r = -0.63, see Table 3-2). Groups presented here match the scanning parameters 
presented in the subsequent human data:  Acquisition A is a 3 Tesla magnet with a 32-channel headcoil (TR = 2000ms), 
Acquisition B is a 3 Tesla magnet with a 64-channel headcoil (TR = 1080ms), and Acquisition C is a 7 Tesla magnet 
with a 32-channel head coil (TR = 802ms). Table 3-1 provides detailed acquisition parameters for each scan, while 
Table 3-2 provides detailed results from all nine dynamic phantom scans. 
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Long-range connectivity focused upon the two-node MPFC-PCC connection, which we found to 

be reliable across subjects within our dataset (33 out of 36 subjects showed significant positive 

correlation between mean time series from these two regions). For networks that include two or 

more nodes, we used the minimum SFS or tSNR for each mPFC-PCC pair. 

We first tested whether SFS and tSNR would predict local connectivity (ReHo) at a single-

subject level. Without smoothing, region-specific correlations within the default mode network 

showed robust positive relationships between SFS and ReHo (median r = 0.53: 96% p < 0.05, 95% 

p < 0.01, 94% p< 0.001; by acquisition set: rA = 0.54, rB = 0.51, rC = 0.54; see Figure 3-2B for 

median across subjects and default mode network regions). In contrast, the correlation between 

tSNR and ReHo was either non-significant or significant but negative within most subjects’ default 

mode network regions (median r = -0.24: 80% p < 0.05, 76% p < 0.01, 68% p < 0.001—even 

using the most liberal threshold of p < 0.05, only 11% of all correlations were positive between 

tSNR and ReHo; by acquisition set: rA = -0.42, rB = -0.20, rC = -0.06; see Figure 3-2C for median 

across subjects and default mode network regions). Smoothing only magnified this effect. After 

smoothing, SFS positively correlated with ReHo (median r = 0.68: 98% p < 0.05, 98% p < 0.01, 

98% p < 0.001; by acquisition set: rA = 0.69, rB = 0.72, rC = 0.55) and tSNR negatively correlated 

with ReHo (median r = -0.62: 97% p < 0.05, 97% p < 0.01, 97% p < 0.001; by acquisition set: rA 

= -0.72, rB = -0.60, rC = -0.57). The same relationship was preserved when looking at the entire 

group (N = 36). The correlation between SFS and ReHo was r = 0.39, p = 0.02 (removing two 

outliers two SD ± the mean: r = 0.52, p = 0.002), while the correlation between tSNR and ReHo 

was r = −0.04, p = 0.83 (removing the same two outliers: r = −0.03, p = 0.88).  

While ReHo is a measure of between-voxel local connectivity, ALFF is a single-voxel 

measure that estimates the total power of the low frequency component of an fMRI signal. Thus, 

we expected the relationship between ALFF and SFS (both single voxel measures) to be even more 

robust than the relationship between SFS and ReHo. Indeed, SFS strongly correlated with ALFF 

(median r = 0.82, all p’s < 0.001; by acquisition set: rA = 0.90, rB = 0.71, rC = 0.77), whereas tSNR 

was negatively correlated with ALFF (median r = -0.70, all p’s < 0.001; by acquisition set: rA = 

-0.82, rB = -0.65, rC = -0.58). Again, smoothing magnified this effect for both SFS (median r = 

0.93, all p’s << 0.001; by acquisition set: rA = 0.94, rB = 0.92, rC = 0.93), and tSNR (median r = 
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-0.84, all p’s << 0.001; by acquisition set: rA = -0.86, rB = -0.83, rC = -0.84). Again, the same 

relationship was preserved when looking at the entire group (N = 36). The correlation between 

SFS and ALFF was r = 0.74, p = 0.03 × 10−7, while the correlation between tSNR and ALFF was 

r = −0.19, p = 0.26.  

As a measure of long-range connectivity, we tested SFS and tSNR against the default mode 

network’s MPFC-PCC connection (Fisher-z normalized) across our three datasets (N = 36). 

Consistent with the other connectivity measures, SFS positively correlated with MPFC-PCC 

connectivity (rA,B,C = 0.61, p = 8.65 × 10-5 ) and tSNR negatively correlated with MPFC-PCC 

connectivity (rA,B,C = -0.73, p = 4.46 × 10-7).  As with previous measures, smoothing did not 

qualitatively change the results for either SFS (rA,B,C  = 0.40, p = 0.015) or tSNR (rA,B,C = -0.70, p 

= 1.67 × 10-6). 

 

SFS and tSNR Values Between Acquisition Sets 
 

The purpose of sensitivity metrics, for any measurement, is to provide accurate feedback 

by which parameters can be tuned to optimize performance, as well as to aid in the interpretation 

and artifact-correction of results. Our three representative acquisition strategies illustrate clearly 

the practical importance of using SFS rather than tSNR when optimizing fMRI studies for task-

free analyses, and therefore dynamic fidelity. We compared SFS and tSNR values between 

acquisition paradigms for the default mode network, subcortical regions critical to the emotion and 

reward circuits, and global gray matter. Because human studies normally utilize smoothing, and 

because our previous analyses (above) showed comparable results for smoothed and unsmoothed 

results, Figure 3-3 results include only 4-mm smoothed data. To directly compare SFS and tSNR 

values between acquisition sets, we extracted average values from the four regions of the default 

mode network and three subcortical regions (amygdala, caudate, hippocampus), as well as average 

subcortical and average gray matter. Each subcortical region was defined from FSL Harvard-

Oxford Subcortical Atlas and average subcortical includes bilateral accumbens, amygdala, 

caudate, hippocampus, pallidum, putamen, and thalamus. The gray matter mask was defined as 

SPM’s probabilistic gray matter map thresholded at P > 0.5.  

As shown in Figure 3-3A-D, SFS identifies advantages for dynamic fidelity in increasing 

temporal resolution, as well as the costs and benefits associated with increasing the number of 

head-coil channels vs. field strength to recover signal loss from accelerated acquisition. In general, 
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the ultra-dense head-coil strategy employed by Acquisition B optimizes dynamic fidelity in cortical 

regions, whereas the ultra-high-field strategy employed by Acquisition C optimizes dynamic 

fidelity in subcortical regions. TSNR provides a very different story: showing the greatest stability 

in Acquisition A, diminished performance in Acquisition B, and the worst performance in 

Acquisition C. Which strategy is ideal, for any particular study, therefore depends critically upon 

the scientific questions to be asked: not only with respect to the regions of interest implicated, but 

also the types of analyses to be performed.  

 
Figure 3-2: Local and long-range functional connectivity across the default mode network positively correlates 
with SFS and negatively correlates with tSNR. (A) We calculated SFS regional homogeneity (ReHo, a commonly 
used measure of neural synchrony in fMRI) for each individual subject across the medial prefrontal cortex (mPFC), 
posterior cingulate cortex (PCC), and right and left lateral parietal lobes (RLP and LLP). (B,C) Within-subject 
detection sensitivity for ReHo positively correlates with SFS and negatively correlates with tSNR (scatter plots shown 
for a single representative subject; group r for N = 36). (D) We see that the same pattern occurs for long-range 
connectivity between default mode network regions medial prefrontal cortex (mPFC) and posterior cingulate cortex 
(PCC) between subjects. As spatial smoothing artificially increases ReHo by producing correlations between 
contiguous voxels, shown data are unsmoothed. 
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Figure 3-3: SFS distributions across the brain illustrate qualitative differences in sensitivity between acquisition 
strategies. As before, Acquisition A is a 3 Tesla magnet with a 32-channel head coil (TR = 2000ms), Acquisition B is 
a 3 Tesla magnet with a 64-channel head coil (TR = 1080ms), and Acquisition C is a 7 Tesla magnet with a 32-channel 
head coil (TR = 802ms). (A) Full brain SFS maps for each acquisition demonstrate that cortical (especially prefrontal 
and parietal/visual) SFSs are robust across all acquisitions. Acquisition B shows more uniform cortical SFS than A or 
C, while Acquisition C shows greater subcortical SFS than A or C. (B) SFS values across acquisition strategies 
averaged within several regions, including the default mode network, subcortical regions, and gray matter. In general, 
SFS was maximized in cortical regions for acquisition B and subcortical regions for acquisition C. (C) Acquisition A 
demonstrated the highest tSNR for all regions, followed by acquisition C and acquisition B. Values were derived from 
preprocessed and smoothed resting-state data (N = 12 per group, 5 min of data). *p < 0.05, **p  < 0.01, ***p < 0.001 
(Wilcoxson rank sum test). 
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Discussion 

 
 

Functional neuroimaging has ushered in a new era of brain research, in which task-free 

fluctuations play an increasingly large role. As such, we need to reconsider whether fMRI 

optimization paradigms that rely solely on maximizing stability might actually be leading us 

astray, by failing to functionally dissociate fluctuations underlying signal versus those underlying 

noise. Here we propose a new measure—Signal Fluctuation Sensitivity (SFS)—that distinguishes 

between neurobiologically-relevant fluctuations of interest, and nuisance fluctuations due to 

physiological or scanner artifact. We demonstrate that SFS positively—and tSNR negatively—

correlates with dynamic fidelity in a dynamic phantom, as well as with the detection power of local 

and long-range functional networks in humans, across three sets of representative acquisition 

parameters independently optimized for human fMRI studies.  Future validation of SFS would 

benefit from a biological ground truth for measurement of dynamic fidelity, using simultaneous 

inputs recorded from local field potentials and their associated hemodynamic responses, combined 

with outputs obtained from fMRI time-series.  

For dynamic analyses, the structure of the SFS equation reflects the equally important need 

to optimize over signal amplitude (provided by the mean) and signal change (provided by the 

standard deviation). In our datasets, we found that the relationship between SFS versus tSNR and 

long-range connectivity was driven primarily by the standard deviation component of each 

equation (including only the standard deviation ratio component of the SFS equation, correlations 

were rA,B,C = 0.68, p = 4.34 × 10-6  for N=36; unsmoothed), while the mean signal component 

(including only the mean amplitude of signal or the ratio of the mean amplitude to global 

amplitude) showed no statistical relationship to long-range connectivity strength (rA,B,C = –0.18, p 

= 0.31; rA,B,C = 0.02, p = 0.90). However, our fMRI data had minimal signal drop out in regions of 

interest, which is not always the case. While the mean amplitude of the signal did not play a role 

in evaluating our data set, nevertheless this term of the SFS equation should be retained to avoid 

assigning high SFS to areas of the brain that show signal loss.  

In developing SFS for humans, one important decision is the optimal location for the 

acquisition of nuisance fluctuations. We chose cerebrospinal fluid, rather than surrounding air, 

white matter, or whole brain, because time-series from the cerebrospinal fluid contain the greatest 
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proportion of nuisance variance of the three brain compartments (Wald, 2012), including motion, 

scanner variance, and some physiological effects. Moreover, unlike white matter (Gawryluk et al., 

2014) and the global signal, the eroded CSF masks used here are unlikely to contain 

neurobiologically-relevant fluctuations of interest.   

In extending our phantom results to the brain, we faced the problem of what to look for as 

a measure of validation, since we lacked the phantom’s advantage of known inputs. Thus, we used 

highly conservative and well-replicated connections in order to evaluate detection sensitivity for 

resting-state data: a measure of local-connectivity (regional homogeneity – ReHo (Zang et al., 

2004)), a single voxel measure of resting-state signals (amplitude of low frequency fluctuations – 

ALFF (Zang et al., 2007)), and the long-range connection between two nodes within the default 

mode network (medial prefrontal cortex and posterior cingulate cortex (Raichle, 2015)). Both 

ALFF and ReHo have been widely used to study resting-state brain activity, with clinical 

applications to Parkinson’s disease (Wu et al., 2009), Alzheimer’s disease (Liu et al., 2008), and 

psychiatric illnesses (Han et al., 2011). Likewise, identification of the default mode network via 

long-range connectivity represents a fundamental finding in neuroscience (Raichle, 2015), with 

direct implications for neurodevelopment and aging. Although the correlations for SFS and tSNR 

were both significant but of opposite sign, it is critical to note that they are not trivially inverses of 

one another. From a theoretical perspective, SFS and tSNR differ fundamentally in their 

dissociation of fluctuations of interest versus those of nuisance. From a practical perspective, 

Figure 3-3 demonstrates that the two measures provide qualitatively different mapping of 

optimization over the brain. Thus, we demonstrate that, by optimizing for dynamic fidelity rather 

than the current standard of dynamic stability, SFS can have direct practical applications for 

markedly increasing detection sensitivity of clinical neuroimaging results.  

Although we have emphasized the application of SFS to correlational analyses due to their 

increasing prevalence within the field, it is important to note that other types of task-free analyses 

will also be much better served by optimization to SFS than tSNR.  This category of analyses 

includes those based upon power spectra and complexity (e.g., ALFF, power spectrum scale 

invariance, entropic analyses, spectral dynamic causal modeling), which also are more highly 

sensitive to subtle dynamic features of the time-series than are traditional contrast-based analyses. 

Consistent with these approaches, one additional area for future exploration is whether the 

principles underlying SFS can be applied not only for optimization, but also to identify neural 
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activity for task-free paradigms. The ability to dissociate signal fluctuations from noise 

fluctuations may be fruitful when the aim is to map the strength and location of task-free brain 

responses, rather than their connectivity.  

Finally, while we have focused here on presenting limitations of CNR and tSNR, we wish 

to emphasize that both may still be useful and accurate measures in answering particular 

questions. Temporal SNR is a measure of signal stability that is proportional to field strength, 

voxel size, and sampling rate (Kruger et al., 2001; Triantafyllou et al., 2005); thus, in static 

phantoms, tSNR can be used to quantify and minimize scanner-related noise. If the primary aim 

of a study is to show contrast between two conditions then CNR, and not SFS, is correct. For task-

free analyses, however, CNR is not directly measurable; thus, classical tSNR is normally cited as 

a surrogate (Smith et al., 2013; Van Dijk et al., 2012). It is in this case that using tSNR as guide 

will minimize, rather than maximize, detection sensitivity.  As with so many zero-sum decisions 

in fMRI acquisition, it is important to realize that we optimize over one parameter at the expense 

of the other. Therefore, just as tuning of acquisition parameters benefits enormously from knowing 

a priori the region of interest to be targeted, knowing a priori the type of analysis to be performed 

will permit researchers decide whether to optimize for stability (tSNR) or for dynamics (SFS).
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Chapter 4   Signal Fluctuation Sensitivity Identifies Brain Activity in Naturalistic-Task 
fMRI 
 
Modified from Nedic, S. and Mujica-Parodi, L.R., 2017. Signal Fluctuation Sensitivity Identifies 

Brain Activity in Naturalistic-Task fMRI (under review) 

 

Abstract 
 

Neuroimaging during naturalistic tasks, such as watching a movie or navigation through 

virtual reality, allows more realistic simulation of real-world environments than do block or event-

related designs. However, unstructured tasks represent a challenge from the data-analysis 

perspective, as they fail to provide knowledge of the design matrix (as required by general linear 

model-based methods) or consistent task trajectories across subjects (as required by inter-subject 

correlation-based methods). In the context of task-free designs, one method used to explore brain 

activity is the amplitude of low-frequency fluctuations (ALFF). Here we extend ALFF to 

naturalistic tasks using signal fluctuation sensitivity (SFS), a measure that 

dissociates functionally relevant signal dynamics from scanner-induced nuisance fluctuations.  We 

show that it may be used as a data-driven technique to identify neural activity in naturalistic task 

paradigms by direct comparison with resting-state fMRI in same subjects. We find that, in three 

independent fMRI datasets employing three different highly complex naturalistic stimuli (scenes 

from a nature documentary, a television drama, and an iterative neuroeconomic game), SFS 

reliably identifies task-induced brain activity. Areas identified as having significantly higher SFS 

values during task relative to rest were confirmed as corresponding to task-induced activations by 

comparison to existing literature on similar tasks (similar content but with contrast-based designs), 

near-perfect correlation of the bilateral orbitofrontal cortex with dynamic ratings of emotional 

arousal/valence (r = 0.93), and by comparison to inter-subject correlations and the independent 

component analysis. Our results suggest that SFS functions as a natural extension to ALFF, and 

can therefore serve as a method capable of identifying brain areas activated in response to 

naturalistic tasks. 
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Introduction 
 
 

Functional MRI experiments have historically used contrast-based designs. Experimental 

and control (baseline) conditions either alternate during longer-duration (~16-20s) “blocks,” or 

present a baseline condition sporadically interspersed by experimental shorter-duration (~0.025-

1s) “events.” To localize task-activated brain responses, the most commonly-employed statistical 

method has been the General Linear Model (GLM) (Friston et al., 1995). In the GLM framework, 

voxel-wise fMRI time-series are modeled by fitting the experimental design matrix or regressor(s) 

of interest. The matrix defines the timing of each condition, which is then modeled via convolution 

of delta functions representing each onset with their expected hemodynamic responses. 

Hemodynamic amplitudes for each condition are then averaged across multiple trials and 

statistically compared across conditions (1st level analysis) and subjects (2nd level analysis). Thus, 

for any GLM analysis, the accuracy of obtained neurobiological results depends critically on the 

accuracy of the design matrix.  

But what if the design matrix/regressor(s) are unknown or ill defined? While conventional 

block and event-related designs can achieve high experimental precision, and task-free “resting-

state” studies have greatly expanded our knowledge of baseline brain functionality, their 

significant limitation is dependence upon experimental environments that lack the complex 

interactive dynamics encountered in the world outside the scanner. To counter this issue, there has 

been an increase in the use of naturalistic stimuli, such as movies (Bartels and Zeki, 2005; Carlson 

et al., 2016; Hasson et al., 2009; Hasson et al., 2004; Iidaka, 2016; Nummenmaa et al., 2012; Oren 

et al., 2016; Wang et al., 2017) and subject-initiated navigation within virtual reality environments 

(Calhoun et al., 2002; Guderian et al., 2015; Kaplan et al., 2014; Spiers and Maguire, 2006). In 

addition, while pharmacological studies of novel compounds provide a known time of bolus-

injection, the subject-specific neurobiological pharmacokinetics that would normally be used to 

define regressors of interest are a priori unknown. Under these circumstances, analyses of 

neuroimaging data require a sliding-window measure of activation whose dynamics themselves 

define—rather than depend upon—the time-course of subject-specific “stimuli.”  

 With burgeoning interest in resting-state, new analytic approaches were designed to be 

“stimulus blind” (Spiers and Maguire, 2007). The most common one uses within-brain cross-

correlations, across region or voxel time-series, as a measure of functional “connectivity.” A 
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second approach uses across-brain cross-correlations, to define areas most uniformly activated 

across subjects (“inter-subject correlation,” ISC). The third approach, independent components 

analysis (ICA), minimizes mutual information to define areas of disparate activation. A fourth 

approach defines activation by the amplitude of spontaneous fluctuations, filtering for the low 

frequencies associated with resting-state networks (ALFF; the f/ALFF variant aims to correct for 

physiological noise by taking the ratio of amplitude over low frequencies over the amplitude of all 

frequencies (Yang et al., 2007; Zou et al., 2008)). Finally, a fifth approach uses scale-free behavior 

observed in brain signals to define activation as a function of shifts in relative time-series 

frequencies across the brain (“power spectrum scale invariance,” PSSI (Radulescu et al., 2012; 

Tolkunov et al., 2010)). While each of these has strengths, collectively they also have important 

limitations to consider in the analyses of naturalistic, as opposed to resting-state, designs.   

 In a study using a free viewing of a long uninterrupted movie segment, ISCs were 

introduced to show that individual brains “tick together” when viewing the same complex dynamic 

scenes, revealing synchronization extending beyond the primary visual and auditory cortices and 

far exceeding the synchronization found during darkness (eyes-closed rest) (Hasson et al., 2004). 

The same group later found that these complex visual stimuli evoke highly reliable (within and 

between-subject) and functionally selective responses in many brain areas (Hasson et al., 2010). 

Multiple recent studies employing continuous stimuli have pointed to functional significance of 

ISC patterns by demonstrating their association with various subjective and objective measures of 

presented contents. For example, ISCs have been shown to correlate with subjects’ ratings of 

pleasantness and arousal during viewing of movies depicting unpleasant, neutral and pleasant 

emotions (Nummenmaa et al., 2012), humor during comedy-watching (Iidaka, 2016), pleasantness 

and arousal elicited by music as well as the energy-related features in the music during attentive 

listening to classical music (Trost et al., 2015), stereoscopic depth and strength of the viewing 

experience when watching same movies in 3D versus 2D (Gaebler et al., 2014), and the degree of 

attentional load during a task that employed movies as the encoded stimuli and manipulated 

attentional load via a secondary task that was performed simultaneously with encoding (Oren et 

al., 2016). Individuals with clinical conditions, such as Down’s Syndrome (Anderson et al., 2013), 

autism (Hasson et al., 2009; Salmi et al., 2013), and melancholic depression (Guo et al., 2015), 

show diagnostic population-consistent responses during natural movie viewing that are different 

from responses commonly observed within typical controls. Finally, one recent study found age-
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related decreased synchrony during movie watching, associated with cognitive measures sensitive 

to attentional control (Campbell et al., 2015). Despite the above described functional, and 

potentially clinical, relevance of ISCs when applied to tasks that are time-locked across sessions 

and subjects, this method cannot be applied when there are subject or session-specific differences 

in the way the task is performed, such as when a subject is interacting with an environment at his 

or her own pace. In addition, while the ISCs may suggest potential processes underlying activation 

changes, higher ISCs need not mean higher activation: regions that are highly synchronized across 

individuals may be simultaneously deactivated.   

Another commonly employed data-driven method is the Independent Component Analysis 

(ICA), which allows identification of signals of interest as well as signals of no interest by treating 

the fMRI signal as a linear mixture of unknown source signals (Calhoun et al., 2001). While both 

temporal and spatial ICA of fMRI data are possible, spatial ICA is usually preferred due to the 

higher plausibility of the underlying neurophysiological model and lower computational 

requirements (Cong et al., 2014). ICA identifies maximally spatially independent components 

(brain networks) without requiring any prior information about the task, making it, in theory, 

suitable for extracting components engaged by both task-free and naturalistic task paradigms. 

However, thus far, ICA has been applied primarily to resting state and block and event-related 

designs and rarely in naturalistic tasks (Cong et al., 2014). In resting state, it has been used to 

uncover robust temporally coherent fluctuations:  resting state networks, such as the primary 

sensorimotor network, the visual network, a network consisting of bilateral temporal/insular and 

anterior cingulate cortex regions, left and right fronto-parietal networks and the Default Mode 

Network (van den Heuvel and Hulshoff Pol, 2010). However, these same networks (sometimes 

called intrinsic networks) have been found to be engaged during various cognitive tasks, and while 

they may be (spatially or temporally) modulated by the task, there is a considerable similarity in 

the networks identified during rest and during a task (Calhoun et al., 2008; Calhoun and Pearlson, 

2012). Furthermore, when applied to naturalistic tasks (Cong et al., 2014; Malinen et al., 2007; 

Ylipaavalniemi et al., 2009), time-courses of the stimuli features are usually correlated to time-

courses of identified spatial components, hence assuming significant prior knowledge of the task 

structure.  

Finally, while the two frequency-based analyses: ALFF and PSSI, operationally depend 

upon neither known design matrix/regressors nor coherence between individuals, in fact they are 
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both strongly affected by the frequency characteristics of stimuli. In the case of ALFF, the reliance 

on a specific frequency band is optimized for resting-state networks, without a way to define other, 

more appropriate, frequency bands for naturalistic tasks. The advantage of PSSI is that it does not 

require defining a preferred frequency band. Yet, the complex frequency characteristics of 

naturalistic stimuli run the risk of affecting PSSI in ways that complicate interpretation of results. 

For this reason, PSSI often does better with block than event-related designs, as the former includes 

a simple preferred frequency, which can then be filtered out. 

Our group recently introduced a new measure, signal fluctuation sensitivity 

(SFS), designed to dissociate functionally relevant signal dynamics from scanner-induced 

nuisance fluctuations (DeDora et al., 2016). Originally conceived to provide objective metrics by 

which to optimize fMRI acquisition parameters, we showed that SFS correlated with dynamic 

fidelity to known time-series produced with a dynamic phantom, and also with enhanced 

sensitivity to both local and long-range functional connectivity within the brain’s Default Mode 

Network (DMN) in human resting-state scans, as well as with increased accuracy of PSSI values 

(DeDora et al., 2016).  Although not its intended purpose, we realized early on that the method 

might also be applied to identify neural activity in task-free/naturalistic paradigms, since the ability 

to dissociate signal fluctuations from noise fluctuations may be fruitful when the aim is to map the 

strength and location of task-free brain responses, as well as their connectivity.  

To test this hypothesis, we employed the following strategy. We compared voxel-wise SFS 

values from fMRI time-series obtained during a naturalistic task to those from pure resting state in 

same subjects without requiring a priori information regarding the task structure. For proof of 

concept, we did so in three separate datasets employing unstructured task designs of different 

levels of complexity, with known/expected functional neuroanatomical results from task-based 

experiments with similar context that could justify hypothesized activation. The first two tasks 

were movies, in which all subjects would experience the same stimuli; the last task was an 

interactive neuroeconomic game that was self-driven, and therefore varied for each subject in 

terms of timing.  Of the two movies, the first was visual-only and non-emotional (nature scenes 

from a documentary); we therefore expected activation of visual networks. The second was both 

visual and auditory and had a dynamic arc of emotional engagement (a television drama), which 

we later had the same subjects rate for arousal and valence; we therefore expected that activation 

of visual, auditory, and emotion networks would track self-reported emotional arousal/valence. 
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The third task, in which subjects engage in serial economic exchanges, we expected to activate the 

learning and reward networks. For the two movies, presented stimuli were temporally consistent 

across subjects, which permitted additional validation of SFS using the ISC method. For all three 

tasks, we also performed ICA, to compare how that method’s results related to findings with SFS 

results. 

Methods  
 

Overview 
 
We compared voxel-wise SFS values from fMRI time-series obtained during a naturalistic task to 

those from pure resting state in three tasks of different levels of complexity: two movie-like tasks 

and an interactive neuroeconomic game. Each of the three datasets consisted of a resting-state 

session (eyes open with a white fixation cross displayed on a black background) as well as an 

additional task session (within-subject design). The tasks analyzed here included presentation of a 

short silent nature documentary movie showing wild animals in their natural habitat (MOVIE, 

Study 1), presentation of an emotionally-engaging pilot episode of the television drama series Lost 

(LOST, Study 2), and an iterative version of the Trust Game (TRUST, Study 3). MOVIE and 

LOST tasks were intended to provide complex/realistic design-free stimuli that standardize content 

across subjects (unlike the pure resting state) while being visually and emotionally engaging.  For 

these two tasks, we compared the areas with increases in SFS values (relative to resting state) to 

areas displaying high levels of synchronization across subjects identified using inter-subject 

correlations. For the LOST task, a sliding-window approach was implemented and increases in 

SFS across windows were correlated with subjects’ ratings of emotional content. We then extended 

the analysis to a third task where stimuli were not time-locked across participants and where ISCs 

could not be applied: an interactive neuroeconomic game. For each of the three tasks, we 

additionally performed ICA to identify components significantly modulated by task.  

Data sets analyzed here were collected on two different MRI scanners: a Siemens 

Magnetom 7 Tesla scanner (Martinos Center for Biomedical Imaging at Massachusetts General 

Hospital (MGH)) and a Siemens Magnetom Trio 3 Tesla scanner (Social, Cognitive, and Affective 

Neuroscience (SCAN) Center at Stony Brook University), and utilized three independent groups 

of subjects.  
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Participants and Task Descriptions 
 

Study 1 (MOVIE). Seventeen healthy adult subjects (N = 17, 6M/11F) participated in the 

study (mean age = 30.81 ± 13.6). All subjects underwent six minutes of eyes-open resting-state 

fMRI, immediately followed by six minutes of movie watching during which they were shown a 

continuous compilation of scenes from BBC’s nature documentary TV-series “Planet Earth” 

showing wild animals in their natural habitat. The movie was stripped of all sound effects.  

Study 2 (LOST). Eighty-two adult female subjects (N = 82) participated in this study (mean 

age = 22.94 ± 6.51). Participants included patients with generalized anxiety disorder (GAD, N = 

22), major depressive disorder (MDD, N = 18), those comorbid for anxiety and depression (CO, 

N = 22) and healthy controls (HC, N = 20). Diagnoses of GAD, MDD, or comorbidity were 

confirmed via the Structured Clinical Interview for DSM-IV (Axis I Disorders—Patient Edition, 

Version 2) by trained clinical psychologists at Stony Brook University. All participants were free 

from psychotropic medications for at least six months prior to the time of the scan. The healthy 

control group had no diagnosable lifetime Axis I disorder and no history of neurological illness. 

Subjects underwent five minutes of eyes-open resting-state fMRI, immediately followed by an 

uninterrupted scanning session lasting 42 minutes during which they watched the entire pilot 

episode of ABC’s drama TV-series Lost. Subjects whose data have been analyzed here represent 

a subset of individuals with minimal motion (< 3mm/deg. absolute translation/rotation) from a 

larger sample of subjects (N = 94). To minimize potential confounding effects of subject motion 

and allow inclusion of as many subjects’ data as possible, here we only analyzed the first 20 

minutes of Lost-viewing data. Immediately after watching the episode in the scanner, participants 

re-watched it outside of the scanner and rated its content on a nine-point scale in terms of valence 

("How pleasant do you feel?", from 1 = negative to 9 = positive) and arousal ("How excited do 

you feel?", from 1 = low arousal to 9 high arousal). The episode was split into two hundred 10-15 

second clips and ratings were obtained for each clip. For more details, see (Carlson et al., 2016). 

Study 3 (TRUST). Sixteen healthy adult male subjects (N = 16, mean age 25 ± 3.61) 

participated in a study aimed at examining effects of the neuropeptide oxytocin on iterative social 

learning and trust. Each subject was scanned under placebo (PL) and oxytocin (OT) on two 

separate days (to allow for drug wash-off). During each of the two scanning sessions, subjects first 

participated in a neuroeconomic task (“Iterative Trust Game”) lasting ten minutes, followed by a 
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ten-minute eyes-open resting-state scan. The task was an iterative version of the classic Trust 

Game (Berg et al., 1995), adapted from the two-player version used by (King-Casas et al., 2005). 

During each scan, the subject (“Investor”) played 20 rounds with the same (fictional) opponent 

(“Trustee”). At the start of each round, the subject is given 20 monetary units (MU) and told to 

invest any amount between 0 and 20 into the Trustee. This invested amount is then tripled. The 

Trustee then repays some portion of the total (0 - 60 MU) back to the Investor. While the ‘Trustee’ 

is a computer-generated algorithm, subjects were told they were playing against a human and the 

deception was revealed only following completion of the study. To increase engagement, subjects 

were compensated for their participation in the amount proportional to the MUs they earned during 

the two games.  

During resting state (all three studies) subjects were instructed to remain still, to keep their 

eyes open focusing on a fixation cross on the screen, and to let their minds wander without allowing 

themselves to rest upon any particular topic. The Institutional Review Boards of the institutions 

where subjects were scanned (Stony Brook University, Massachusetts General Hospital) approved 

all studies. All subjects provided written informed consent.  

 

fMRI Acquisition Parameters and Data Preprocessing  
 

Study 1 (MOVIE) and Study 3 (TRUST). Acquisition parameters (and data preprocessing) 

used for these two studies were identical and previously described (DeDora et al., 2016) as those 

optimized to preserve fMRI time-series dynamic fidelity. A Siemens Magnetom 7 Tesla scanner 

with a 32-channel head-coil (Martinos Center for Biomedical Imaging, MGH) was used to acquire 

748 T2*-weighted EPI volumes per session with the following parameters: SMS acceleration 

factor = 5, GRAPPA acceleration = 2, TR = 802 ms, TE = 20 ms, flip angle = 33°, 2 x 2 x 1.5 mm 

voxel size, 85 slices, and interleaved slice acquisition. For Study 1, one resting-state and one movie 

session were acquired per subject. For Study 3, two resting state sessions and two Trust game 

sessions were acquired (on two different days) for each subject. Conventional B0 field map images 

derived from phase differences between gradient echo images at TE = 4.60 and 5.62ms were also 

acquired (TR = 723 ms, flip angle = 36°, voxel size = 1.7 x 1.7 x 1.5 mm, 89 slices) and used 

during preprocessing to correct for distortions in EPI images caused by magnetic field 

inhomogeneity. Whole-brain T1-weighted structural volumes were acquired using a conventional 

multi-echo MPRAGE (MEMPRAGE) sequence with 1 mm isotropic voxel size and four echoes 



 
 

 
 

55 

with the following parameters: TE1/TE2/TE3/TE4 = 1.61/3.47/5.33/7.19 ms, TR = 2530 ms, flip 

angle = 7°, slice gap = 0.5 mm, GRAPPA acceleration = 2.  

Standard preprocessing procedures including realignment, coregistration and 

normalization of the structural image, normalization to 2 × 2 × 2 mm MNI space, and smoothing 

with a 6-mm full width at half-maximum Gaussian kernel were performed in SPM12 ( 

http://www.fil.ion.ucl.ac.uk/spm/ ). Fieldmap correction was performed using epidewarp.fsl ( 

https://surfer.nmr.mgh.harvard.edu/fswiki/epidewarp.fsl ), following the realignment procedure in 

SPM. Coregistered structural images were segmented into probabilistic maps of gray matter, white 

matter, and CSF. Initial ten volumes of each functional scan were discarded prior to any further 

analyses. 

Study 2 (LOST). A Siemens Magnetom Trio Tim 3 Tesla scanner equipped with a 12-

channel head-coil (SCAN Center, Stony Brook University) was used to acquire 1333 T2*-

weighted EPI volumes with the following parameters: TR = 2100 ms, TE = 23 ms, flip angle = 

83°, 2.33 × 2.33 × 3.50 mm voxel size, 37 slices, and interleaved slice acquisition. Initial 143 

volumes were acquired during pure resting-state. Standard whole-brain T1-weighted structural 

images were acquired using a conventional MPRAGE sequence with the following parameters: 

TR = 1900 ms, TE = 2.53 ms, flip angle = 9°, and voxel size = 1 × 0.98 × 0.98 mm.  

Standard preprocessing procedures including slice-time correction, realignment, 

coregistration to a structural image, normalization to 2 × 2 × 2 mm MNI space, and smoothing 

with a 6-mm full width at half-maximum Gaussian kernel were performed in SPM8. Coregistered 

structural images were segmented into probabilistic maps of gray matter, white matter, and the 

cerebrospinal fluid (CSF). Initial five time points of resting-state scans were removed from all 

analyses to allow for steady-state imaging to be reached. In addition, the first nine volumes 

immediately following resting-state were removed since only the word “LOST” was shown on the 

screen during that time. Arousal and valence ratings data were resampled to TRs to match the 

length of the show, and a 3 second lag was added to account for the delay in the hemodynamic 

response. As previously reported (Carlson et al., 2016), ratings were averaged across subjects to 

eliminate noise from single subject ratings and provide a more robust measure of emotional 

content.  
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Computation of SFS, Sliding-Window SFS, and Statistical Analyses on SFS Maps 
 
We used MATLAB 2016a to compute voxel-wise SFS from SPM-preprocessed fMRI time-series 

according to the following equation: 

<'<=>; = 	
_=>;
_a@>9V@

	×	
b=>;
bijk

 

As previously described (DeDora et al., 2016), in the first term the mean signal of the voxel of 

interest ( _=>; ) is scaled by the mean signal of the entire brain (_a@>9V@) and in the second term 

the standard deviation of the time-series obtained from the voxel of interest (b=>;) is scaled by the 

average standard deviation of all time-series of voxels in the cerebrospinal fluid (bijk). Mean 

global signal was computed from all voxels included in the conjunction of gray matter, white 

matter, and cerebrospinal fluid maps. Voxel-wise time-series were detrended prior to computation 

of standard deviations. Standard deviations of the CSF voxels (nuisance fluctuations) were 

computed using an eroded probabilistic map of CSF (subject-specific segmented map of CSF 

thresholded at 70%) to ensure minimal contributions from other tissues which may contain relevant 

signal fluctuations. To avoid distorting time-series dynamics by averaging them, standard 

deviations were computed voxel-wise for each voxel in the CSF and then averaged across all 

voxels in the region.  

Study 1 (MOVIE). We computed whole-brain voxel-wise SFS maps for each 10-minute 

fMRI session, resulting in two SFS maps per subject. SFS values for the two tasks (SFSMOVIE vs. 

SFSREST) were statistically compared using a paired-t test in SPM12. Mean absolute translation 

and mean absolute rotation were used as covariates of no interest, to account for possible 

differences in motion between the two sessions.  

Study 2 (LOST). Due to much longer time-series acquired during LOST compared to 

resting state, we used a sliding-window approach: time-series were split into thirty-two 

overlapping windows (moving forward by 14 time-points » half a minute) of equal length, each 

window thus exactly matching the duration of the resting-state time-series (138 time-points » 5 

minutes). We then computed thirty-two SFS maps for LOST to be compared with the SFS map for 

REST for each subject. For each window, a mixed-effects ANOVA was implemented in SPM12 

with “group” (GAD, MDD, CO, and HC) as a between-subject factor and “task” (LOST or REST) 

as a within-subject factor. Motion parameters (mean absolute translation and mean absolute 

rotation during each task) were entered as confounding covariates to control for possible 
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differences in motion between the two tasks. Statistical contrasts were set up to look at main effects 

of task (SFSLOST vs. SFSREST) as well as to test for differences between groups and a possible 

interaction between task and group. Average arousal and valence ratings were down-sampled to 

the same time resolution by computing the average arousal and valence of each time-window. At 

this temporal resolution, average arousal ratings were essentially the inverse of average valence 

ratings (Pearson’s r = -0.99). 

Study 3 (TRUST). Due to the within-subject/crossover design of the study, four SFS maps 

were obtained per subject (SFSPL
TRUST, SFSPL

REST, SFSOT
TRUST, SFSOT

REST), corresponding to each 

10-minute fMRI session. Repeated measures ANOVA was implemented in SPM12 with “drug” 

(PL or OT) and “task” (TRUST or REST) as factors and mean absolute translation and rotation as 

covariates of no interest. While we were primarily interested in main effects of task, we also 

performed statistical tests for the effects of drug and drug-task interactions.  

 

Inter-Subject Correlations  
 

As an alternate measure of activation to (MOVIE and LOST) tasks, we computed inter-

subject correlations (ISC) (Hasson et al., 2004). Inter-subject correlations identify regions showing 

synchronized activity across subjects throughout the task. We obtained voxel-wise ISC maps by 

computing pairwise correlations between subjects’ time-series for each voxel. Prior to 

computations of all (between-subjects) pairwise correlations, we performed voxel-wise time-series 

detrending, regression of six motion parameters from SPM’s realignment step, regression of mean 

white matter and CSF signals, and high-pass filtering (at 0.01 Hz). Correlations were Fisher z-

transformed and averaged across subjects to obtain task-specific ISC maps.  

 

Independent Component Analysis 
 

To identify functionally connected networks in a data-driven manner, we also performed 

group spatial ICA (Calhoun et al., 2001) using Group ICA/IVA of fMRI Toolbox (GIFT v 4.0a, 

http://mialab.mrn.org/software/gift/). For each dataset, the number of independent components 

(ICs) was estimated from the data using all of the subjects’ data and the minimum description 

length (MDL) criteria (Li et al., 2007). We used ICASSO to analyze ten runs of the ICA to ensure 

component stability (Himberg et al., 2004). After canonical principal component analysis (PCA) 
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preprocessing (variance normalization), subject-specific PCA was first performed, followed by 

temporal concatenation and group-level PCA and noise-free ICA. Finally, subject-specific spatial 

maps and associated time courses were estimated using back-reconstruction (GICA) (Erhardt et 

al., 2011). We used the Infomax algorithm for ICA. Spatial maps were converted to Z values.  

For all three studies, we first performed ICA on each task and rest session separately to see 

if there were any task-specific components that did not appear in resting state. This was achieved 

by computing spatial cross correlations/spatially sorting average resting-state components based 

on average task components (Calhoun et al., 2008). Finally, we performed ICA on task and resting-

state sessions, of equal duration, within the same study, together. Artefactual components were 

manually determined and discarded. For each non-artefactual component, the resulting session-

specific spatial maps were compared using paired t-tests (Study 1) or repeated measures ANOVAs 

(Study 2 and 3) in SPM12, after masking for voxels surviving one-sample t-test on ICA Z-scores.  

For Study 2, ICA was first performed using 20 minutes of LOST data, artefactual components 

were manually identified and discarded, and the remaining components were temporally sorted 

using average arousal ratings as a reference function, to identify task-relevant components. In 

addition, to compare the two tasks directly, we performed ICA on five minutes of LOST data (here 

we picked the time-window (#5) corresponding to the peak in arousal ratings and hence 

hypothesized to correspond to greatest deviation from resting state) and five minutes of REST 

data. 

 

Results  
 
 

SFS Identifies Task-Related Activations 
 

In each of the complex task contexts described above, SFS identified significant activation 

consistent with the expected neurobiology.  

 Study 1 (MOVIE). For the MOVIE task, SFS identified activations in brain areas commonly 

associated with processing of visual stimuli. Paired-t test on SFS maps revealed significant 

activations during MOVIE primarily in the visual cortex: bilateral calcarine/cuneus, the lingual 

gyrus, inferior/middle occipital and middle temporal regions. During REST, we identified 

increases in SFS in the bilateral precuneus and in the right postcentral gyrus (Figure 4-1A). For 

a detailed list of activated regions, see Table 4-1A.  
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Study 2 (LOST). For the LOST task, in addition to visual regions identified for MOVIE, 

SFS analysis pointed to activations in the auditory network and in frontal regions associated with 

cognitive processing of decision-making as related to emotional stimuli. Mixed-effects ANOVA 

revealed significantly higher SFS values during LOST relative to REST primarily in visual and 

auditory networks - calcarine/lingual gyrus/cuneus and superior and medial temporal and 

occipital regions, an effect that was highly consistent across the thirty-two windows. On the other 

hand, SFS values were consistently significantly lower during LOST compared to REST in the 

main Default Mode Network (DMN) hub – precuneus/posterior cingulate cortex (PCC), and 

somewhat less consistently in other DMN regions – medial prefrontal cortex and left and right 

parietal cortices, as well as in the supplementary motor area (Figure 4-2A). For a detailed list of 

regions showing significant differences in SFS during one of the time-windows (window #5 - 

corresponding to the peak in arousal rating), see Table 4-1B.  

When comparing the entire 20 minutes of LOST to (5 minutes) REST, in addition to these 

differences, we found a significant difference in the bilateral superior frontal/orbitofrontal cortex 

(OFC) (SFSLOST > SFSREST, peak at MNI (18, 62, -4)). In fact, examining each 5-minute window 

individually (Figure 4-2B) bilateral OFC activation identified by SFS correlated extraordinarily 

tightly with arousal ratings:  with Pearson’s r = 0.93, p = 4.9 ´ 10-15 (Figure 4-2C). For other 

regions identified via the whole time-series analyses (and also consistently showing increased SFS 

across the five-minute windows), we found significant negative correlations of increases in SFS 

to arousal (positive correlations to valence) in right inferior/middle occipital/temporal gyrus (MNI 

(50, -70, 8), r = -0.35, p = 0.05), left inferior/middle occipital/temporal gyrus (MNI (-46, -72, 2), 

r = -0.74, p = 1.3 ´ 10-6), right superior/middle temporal gyrus (MNI (58, -22, -2), r = -0.50, p = 

0.003), left superior/middle temporal gyrus (MNI (-58, -42, 6), r = -0.51, p = 0.003)), and in the 

right fusiform (MNI (42, -50, -22), r = -0.74, p = 1.2 ´ 10-6). We did not find any significant 

differences between the four subject groups or any interactions between task and group for any of 

the time-windows.   
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Figure 4-1: SFS identifies regions active during MOVIE and TRUST. (A) Visual regions including cuneus and 
inferior occipital regions have higher SFS values during MOVIE compared to REST (left). On the other hand, 
precuneus is less active during MOVIE compared to REST (right). (B) TRUST vs. REST comparison revealed areas 
associated with memory (hippocampus) and reward processing/reinforcement learning (caudate and putamen) as 
having significantly higher SFS values during TRUST (left). Default Mode Network regions (posterior cingulate, 
medial prefrontal cortex, and bilateral parietal cortices) showed higher SFS values during REST (right). 
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A) MOVIE > REST  

 Peak MNI Location Description 
(AAL Atlas (Brodmann Area)) 

Cluster 
Extent 

Cluster-level  
pFWE-corr  

Peak-level 
T-value 

1 [-6, -96, 8] Bilateral Calcarine/Cuneus (BA 17/18) 1168 0 6.84 
2 [-22, -70, -2] L Lingual Gyrus (BA 19) 102 0.002 6.64 
3 [-36, -82, 14] L Mid. Occipital (BA 19) 194 6.4 ´ 10-6 6.03 
4 [42, -62, 12] R Mid. Temporal (BA 37) 127 3.5 ´ 10-4 5.26 

  REST > MOVIE  

1 [-6, -56, 12] Bilateral Precuneus (BA 23) 194 0.009 4.84 
2 [50, -20, 54] R Postcentral Gyrus (BA 3) 246 0.002  4.49 
B) LOST* > REST   

1 [-62, -20, 2] L Middle/Superior Temporal Gyrus (BA 22/21) 3414 0 10.12 
2 [50, -70, 10] R Occipital/Mid. Temporal (BA 37/19/39) 1278 3.53 ´ 10-14 9.33 
3 [60, -22, 0] R Middle/Superior Temporal Gyrus (BA 22/21) 1964 0 9.11 
4 [-6, -84, -4] Calcarine/Lingual Gyrus (BA 17) 418 2.79 ´ 10-6 5.73 
5 [42, -48, -22] R Fusiform (BA 37) 190 2.30 ´ 10-3 5.65 
6 [16, 58, -14] R Frontal Med. Orbital (BA 11/10) 381 7.47 ´ 10-6 5.19 
7 [-22, -8, 62] L Superior Frontal Gyrus (BA 6) 98 0.071 4.86 
8 [-30, -58, -8] L Fusiform (BA 37) 143 0.012 4.70 

9 [-14, 60, -6] L Frontal Med. Orbital (BA 11) 138 0.015 4.57 
10 [32, -48, 62] R Superior Parietal (BA 2) 225 7.23 ´ 10-4 4.47 
11 [-12, -56, 74] L Precuneus (BA 5) 165 5.50 ´ 10-3 4.29 

 REST > LOST*  

1 [6, -54, 24] Bilateral Precuneus/PCC/Cuneus (BA 23/17/18) 5823 0 9.33 
2 [-38, -74, 42] L Angular Gyrus (BA 7/39) 1059 2.08 ´ 10-12 6.76 
3 [42, -60, 42] R Angular Gyrus/Inferior Parietal  (BA 39/40) 1835 0 5.62 
4 [60, -50, -10] R Middle/Inferior Temporal Gyrus 175 3.90 ´ 10-3 5.56 

5 [0, 50, -4] 
Frontal Med. Orbital/Frontal Sup. Medial/ACC 
(BA 10/32) 863 1.02 ´ 10-10 5.48 

6 [-30, 18, 56] L Mid. Frontal (BA 8) 451 1.19 ´ 10-6 5.45 
7 [0, 0, 64] Supplementary Motor Area (BA 6) 1053 2.34 ´ 10-12 5.40 
8 [46, 16, 38] R Inferior Frontal Operculum (BA 44) 568 6.70 ´ 10-8 4.87 
9 [54, 14, -6] R Rolandic Operculum (BA 48) 201 1.60 ´ 10-3 4.75 
Table 4-1: List of regions showing significantly different SFS values during task relative to rest for MOVIE 
and LOST tasks. Location descriptions are based on the AAL atlas. *For LOST, shown are significant activations 
for a single five-minute window (#5).; p < 0.05, 3dClustSim-corrected (alpha = 0.05). 
 
 

Study 3 (TRUST). For the TRUST task, SFS identified activations is regions commonly 

associated with memory and reward processing and in the primary motor network. We found 

significant effects of the TRUST task in the bilateral hippocampus, caudate and putamen, as well 



 
 

 
 

62 

as in the left precentral gyrus, right middle frontal gyrus, and the right thalamus. Regions 

identified as more active during REST compared to TRUST included bilateral precuneus, middle 

occipital/angular gyrus (parietal cortices), medial prefrontal cortex, superior frontal gyrus, and 

middle temporal regions (Table 4-2 and Figure 4-1B). We found no significant differences 

between the placebo and oxytocin conditions and no interaction between drug and task (all 

neuroimaging statics are reported at p < 0.05, 3DClustSim-corrected). 

 

 TRUST > REST   

 
Peak MNI Location Description 

(AAL Atlas (Brodmann Area)) 
Cluster 
Extent 

Cluster-level  
pFWE-corr  

Peak-level 
T-value 

1 [28, -32, -2] R Hippocampus (BA 37/27) 571 1.09  ´ 10-9 6.32 
2 [-34, -24, 52]  L Precentral/Postcentral (BA 4/3) 294 1.85  ´ 10-5 5.38 
3 [36, 10, 28] R Inferior Frontal Operculum (BA 44/48) 189 3.67  ´ 10-4 5.23 
4 [48, -38, 18] R Superior Temporal Gyrus (BA 41/48) 281 1.07  ´ 10-5 5.11 
5 [32, 30, 10]  R Insula (BA 48) 62 0.154 5.05 
6 [-24, 16, 2]                         L Putamen                                              83 0.049 5.01 
7 [-8, 8, 12] L Caudate 93 0.029 4.91 
8 [32, 4, -2] R Putamen (BA 48) 97 0.024 4.73 
9 [10, -12, 4] R Thalamus 99 0.022 4.56 
10 [-36, -12, -14] L Hippocampus (BA 20) 63 0.146 4.49 
11 [20, 18, 2] R Caudate  92 0.031 4.27 

 REST > TRUST  
1 [4, -60, 36] Bilateral Precuneus  2724 0 7.66 
2 [48, -72, 32] R Angular Gyrus/Supramarginal (BA 39/BA 40)  1158 4.44´ 10-16 6.70 
3 [2, 56, 2] Frontal Med. Orbital/Frontal Sup. Medial (BA 10) 1004 1.58 ´ 10-14 6.45 
4 [-36, -82, 30] L Med. Occipital/L Angular Gyrus (BA 19/39) 336 1.56 ´ 10-6 5.89 
5 [-60, -26, 38] L Supramarginal Gyrus (BA 40/2) 188 3.82 ´ 10-4 5.07 
6 [22, 60, 10] R Superior Frontal Gyrus (BA 10) 84 0.047 4.68 
7 [-54, -66, 10] L Mid. Temporal Gyrus (BA 37) 117 0.009 4.60 

8 [58, -62, 6] R Mid. Temporal Gyrus (BA 37) 91 0.033 4.57 
9 [-22, 50, 18] L Mid. Frontal (BA 46) 71 0.094 4.26 
Table 4-2: List of regions showing significantly different SFS values during task relative to rest for the TRUST 
task. Location descriptions are based on the AAL atlas. p < 0.05, 3dClustSim-corrected (alpha = 0.05).    
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Figure 4-2: SFS identifies regions active during LOST. (A) Regions identified using SFS are consistent across 
different five-minute time-windows. Calcarine/lingual gyrus/cuneus and superior and medial temporal and occipital 
regions are active during LOST. On the other hand, posterior cingulate gyrus/precuneus, and somewhat less 
consistently supplementary motor area, medial prefrontal cortex, and bilateral parietal cortices are deactivated during 
LOST. (B) Bilateral orbitofrontal cortex (OFC) is active during some windows (peak activation during window #5, 
highlighted in purple), but not during others. (C) LOST – REST difference in SFS values in the OFC (red) is highly 
positively correlated with average arousal ratings (blue, Pearson’s r = 0.93). At this temporal resolution, average 
valence ratings are almost perfectly negatively correlated with average arousal ratings (dashed blue, Pearson’s r = - 
0.99). 
 

Brain Areas Identified via ISC Analyses Match Those Found via SFS Analyses 
 

To further validate the SFS-identified activations, we computed ISC maps for the two tasks 

utilizing temporally locked stimuli across subjects (MOVIE and LOST), and thresholded them to 

show regions co-activated across subjects at correlation levels beyond those expected by chance 

(p < 0.05, Bonferroni-corrected). For the MOVIE task, this resulted in identification of visual 

areas: calcarine/lingual gyrus/cuneus (Brodmann areas (BA) 17/18, peak at MNI (12, -89, 29)). 

For LOST, in addition to these primary visual regions (peak at MNI (10, -80, -4)), bilateral medial 
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temporal/occipital regions (BA 37, L/R peaks at MNI (-48, -75, 5) and (49, -69, 6) and bilateral 

superior temporal regions (BA 21/22, L/R peaks at MNI (-62, -19, 4) and (64, -11, -1)) showed 

high degree of synchronization across subjects (Figure 4-3), consistent with regions identified via 

the SFS analyses (Figure 4-1A and Figure 4-2).   

 
Figure 4-3: Intersubject correlations (ISCs) identify regions co-activated across subjects during MOVIE and 
LOST. While during the MOVIE task (A) (silent scenes from “Planet Earth” nature documentary) only the primary 
visual cortex shows highly synchronized activity across subjects (N = 17, 7T fMRI), a more engaging LOST task (B) 
(first half of the pilot episode of TV drama series Lost) with more complex visual and auditory stimuli additionally 
induces synchronized activity (N = 82, 3T fMRI) in bilateral medial and superior temporal regions - areas involved in 
complex visual functions and language and sound processing (Brodmann areas 37 and 21/22). These results are 
consistent with SFS findings (Figure 4-1A and Figure 4-2). 
 
 
 

ICA Points to Increased Engagement of Visual Networks During Movie-Watching, but no 
Individual IC Time-Courses Track the Emotional Contents of LOST  

 
Study 1 (MOVIE): ICA identified 40 spatially independent components, ten of which were 

manually labeled as noise because they were primarily containing edges and/or ventricles (after 

confirming, based on separate ICAs, that there were no entirely new components recruited during 

MOVIE vs. REST; spatial correlation r ranging from 0.21 to 0.89, median r = 0.60). The remaining 

components’ spatial maps for the two sessions were compared using paired t-tests in SPM12. We 
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found increased recruitment of visual networks during MOVIE, while there were no statistically 

significant differences in the auditory network (Figure 4-4A), consistent with the SFS findings.  

Study 2 (LOST): Independent component analysis in GIFT identified 31 independent 

components (ICs) for LOST task (20 minutes), eight of which were manually labeled as containing 

obvious artifacts (e.g., containing primarily edges or ventricles). ICA identified multiple 

components corresponding to commonly found resting-state networks (for example those 

described in (Roseman et al., 2014; Smith et al., 2009)), such as visual network (separate 

components containing medial, lateral, and occipital portions), auditory network, frontal executive 

control network, left and right fronto-parietal networks, default mode network, and sensorimotor 

network. To identify most task-relevant components, we sorted the mean group components 

temporally using correlation criteria with average arousal rating as a reference time-course. 

Component time-courses showed only weak correlations with arousal ratings, with a component 

containing medial visual regions identified as the most task-relevant (r = 0.19), followed by 

components encompassing bilateral postcentral (r = -0.19) and bilateral superior frontal regions 

(r = 0.19). 

To compare the two tasks, we also performed ICA on time-window #5 of LOST task on its 

own. We picked the time-window corresponding to the peak in arousal ratings, where we expected 

to see the strongest differences relative to resting state. We identified 22 ICs, and for each non-

artefactual component (17 of them) found the most spatially correlated component from REST 

(where 21 ICs were identified, six of which were artifact-driven). It was possible to establish 

correspondence (significant spatial correlation; r ranging from 0.20 to 0.78, median r = 0.55) 

between spatial maps of ICs from REST and LOST, suggesting that LOST task did not necessarily 

recruit an entirely distinct network of regions, but rather (potentially) modified the existing resting-

state networks. To directly compare the tasks, we performed a single ICA with REST and LOST 

time-window #5 entered as two sessions for each subject. This resulted in identification of 21 

components, five of which were manually identified as containing non-neural noise. A t-test for 

main effects of task, within a mixed-effects ANOVA design in SPM 12, on spatial maps of each 

of the remaining 16 components, identified significant differences in visual and auditory networks 

(p < 0.05 3dClustSim-corrected), pointing to greater recruitment of these regions during LOST 

(Figure 4-4B). There was a significant spatial correspondence between visual and auditory 
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networks identified for the two datasets shown in Figure 4-4 (r = 0.42 for Visual #1, r = 0.66 for 

Visual #2, and r = 0.54 for the auditory network). 

Study 3 (TRUST): ICA on all 64 sessions (N = 16, 2 tasks ´ 2 drugs) identified 39 spatially 

independent components (after separate ICAs on TRUST and REST showed spatial 

correspondence between the identified components; spatial correlation r ranging from 0.22 to 0.89, 

median r = 0.69). Twelve of these components were manually labeled as containing non-neural 

noise (edges, ventricles, etc.). For each of the remaining 27 components, we performed a repeated-

measures ANOVA on spatial maps, with three factors: “subject,” “drug” (PL, OT) and “task” 

(TRUST, REST). Only one component showed significantly increased engagement during task - 

a component containing bilateral precentral areas (BA 4/ BA 3/ primary motor cortex), while the 

precuneus/PCC network and right lingual gyrus/fusiform areas showed increased engagement 

during REST. No interaction between drug and task was found for any of the components.  

 

 

Discussion 
 

We found that signal fluctuation sensitivity reliably identifies task-relevant activations in 

complex task designs which closely mimic realistic environments: for the MOVIE task this 

involved identification of primary and secondary visual areas, for the LOST task, in addition to 

those, we also found significant activations in the auditory cortex and the frontal/orbitofrontal 

regions (with near-perfect tracking of the dynamic emotional content of the stimuli), while the 

TRUST game engaged brain’s reward and learning circuits. In all three tasks, the Default Mode 

Network regions showed increased SFS values under resting state.  

For the MOVIE task (Figure 4-1A), identification of the primary and secondary visual 

cortex (BA 17/18), but not auditory and frontal areas, is consistent with the task being stripped of 

sound effects and being less structured and less emotionally engaging relative to the episode of 

TV drama Lost - while the LOST task depicts an exciting emotional story of a plane crash and its 

survivors, the MOVIE task simply consists of short non-emotional silent clips showing different 

wild animals in nature. The less pronounced differences in DMN (statistically significant only in 

its most prominent hub – the PCC) for the rest vs. task contrast could also be potentially explained 

by the lack of clear structure in this task.  
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Figure 4-4: ICA and follow-up statistical tests on spatial maps of identified components show significant 
modification of resting-state networks by task. (A) There is a significantly increased recruitment of visual and 
auditory networks during LOST and (B) a significantly increased recruitment of visual, but not auditory networks 
during MOVIE. 
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For the LOST task (Figure 4-2), comparisons to resting  state across thirty-two 

windows consistently revealed robust increases in SFS values in the primary visual cortex 

(Brodmann area (BA) 17), associative visual cortex/bilateral inferior occipital gyrus (BA 19 and 

37), and the areas involved in processing of complex sounds - middle temporal gyrus (BA 21) and 

superior temporal gyrus (BA 22). On the other hand, Default Mode Network (DMN) regions 

(posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), and left and right parietal 

cortices) showed higher SFS during resting state. These findings agree with the nature of the 

task(s). For instance, Brodmann area 37 (bilateral inferior occipital gyrus) is involved in complex 

visual functions, such as face recognition (Blonder et al., 2004), structural judgment of familiar 

objects (Kellenbach et al., 2005), visual motion processing (Beer et al., 2002) and some memory 

circuitries when visual information is involved (Slotnick and Schacter, 2004), while Brodmann 

areas 21 and 22 (middle and superior temporal regions) are involved in complex language 

processing, processing of complex sounds (Mirz et al., 1999), as well as perception of emotions in 

facial stimuli (Dricu and Fruhholz, 2016). DMN is known to be engaged in initiating processes 

that support emotional processing (ventral MPFC), self-referential judgments (dorsal MPFC), and 

the recollection of prior experiences (posterior parts of DMN), and is thought to represent a highly 

active (resting-state) functional baseline that gets modified by certain tasks (Raichle, 2015).   

Furthermore, the increase in SFS values during LOST was associated with changes in the 

emotional content of the episode, as reflected in the arousal (and valence) ratings, confirming that 

SFS is identifying regions active in response to the task. Specifically, activation in the bilateral 

superior frontal/orbitofrontal cortex (OFC, BA 10/11) was strongly associated with arousal ratings 

(Figure 4-2C). The orbitofrontal cortex has been implicated in sensory integration and in learning, 

prediction and decision-making especially as related to reward and emotional stimuli (Bechara et 

al., 2000; Kringelbach, 2005). 

ISC maps may be used as an alternative to GLM to find brain regions active during a 

naturalistic task design. They are appropriate when brain responses due to the task can be assumed 

to be time-locked across sessions and subjects (the sequence of events in the task is the same every 

time it is performed), as is the case when watching a movie. ISC analyses for MOVIE and LOST 

tasks confirmed SFS findings – with visual (both tasks) and auditory areas (LOST task only) 

showing highest degree of synchronization across subjects (Figure 4-3). ISCs rely on capturing 
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the same temporal dynamics across many subjects and are therefore not applicable in cases when 

there is randomization, for example in a realistic game-task (such as TRUST) or during resting 

state. On the other hand, SFS, which relies on difference in dynamics between the task and resting 

state session of an individual subject, can be applied even when there is randomization, with group 

results depending on how similar the overall response to the task is across subjects. We therefore 

used the ISCs on movie-like tasks to validate the findings from SFS analyses, and then extended 

the SFS analyses to an interactive task for which ISCs are not applicable.   

In this task (TRUST) (Figure 4-1B), SFS identified significant activations due to the 

interactive game in the bilateral hippocampus, caudate, putamen, left precentral gyrus, right 

middle frontal gyrus, and the right thalamus. Hippocampus has a well-established role in memory 

processing and learning, of immediate relevance in an iterative game where trust must be learned 

by encoding memories of recent interactions. Thalamus is a critical hub for relay of sensory 

information and the peaks of thalamic activation identified here belong to the sub-regions of 

thalamus having high probability of anatomical connections to the prefrontal cortex (Thalamic 

Connectivity Atlas), which is where activation peaks for the executive and memory tasks 

commonly fall (Johansen-Berg et al., 2005). A recent meta-analysis of multi-round investment 

games, aimed at identifying neural signatures of trust in reciprocity (Bellucci et al., 2017), found 

that trust decisions consistently activated ventral striatum (likely associated with reward 

processing during trust decisions) and dorsal striatum (likely related to social reinforcement 

learning). Regions identified as more active during resting state were again consistent with the 

Default Mode Network. 

In agreement with the existing literature (Calhoun et al., 2008), our tasks did not engage 

entirely new task-relevant components, as seen from significant spatial correlations between 

resting-state and task networks. Follow-up statistical tests on spatial maps of identified ICs showed 

that MOVIE and LOST tasks required greater recruitment of visual and auditory networks (LOST 

only) (Figure 4-4), consistent with both SFS and ISC findings. However, no components’ time-

courses reflected the emotional content of LOST well (low time-course correlations with the 

average arousal ratings) and the only statistically significant spatial modification of identified brain 

networks due to TRUST task was in the left precentral gyrus (primary motor network, also 

identified via the SFS analysis). On the other hand, as presented above, differences in SFS in the 

bilateral orbitofrontal cortex (relative to resting-state) tightly tracked the evolving emotional 
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content of the episode, and increases due to TRUST were consistent with the existing literature on 

similar tasks, involving memory and reward-processing regions.  

Despite being a powerful advanced data-driven method requiring little prior knowledge 

about the task, ICA does not generalize naturally to group analyses (resulting in many different 

approaches (Erhardt et al., 2011)) and its success may eventually depend on the researcher’s ability 

to correctly classify the resulting components into signals of interest and signals of no interest, and 

into meaningful functional networks (such as visual, auditory, etc.), or on the ability to decompose 

the task into specific events whose features can then be correlated with the extracted components’ 

time-courses. In fact, while the interpretation of independent components is not straightforward, 

ICA can be thought of as being a natural measure of functional connectivity (rather than activity) 

since component regions have similar temporal response. We were primarily interested in 

localizing functional activity due to task, and hence assessing how the components are modulated 

by the task spatially. Further analyses exploring the strengths of connections between different ICs 

under different conditions could reveal differences due to task (or drug) beyond simple spatial 

modifications of those networks.  

We have demonstrated that SFS may be used as a quick data-driven approach to identify 

brain areas activated in response to continuous series of complex dynamic naturalistic stimuli. 

When it comes to complex naturalistic experiences, SFS may be a good alternative to existing 

methods, with the advantage of being assumptions-free (both in terms of the shape of the 

hemodynamic response function and the structure of the design matrix) compared to GLM, being 

applicable to tasks with a certain level of randomness compared to ISCs, and being a simpler 

measure of activation (rather than connectivity) that is easily generalizable to group analyses 

compared to ICA. Finally, while SFS looks at overall activity due to a complicated realistic task, 

other analyses methods, such as reverse correlation and multi-voxel pattern analysis (MVPA) may 

be appropriate when one is interested in decomposing neural activity due to specific events from 

the complex environment of which they may be a part (Spiers and Maguire, 2007).
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Chapter 5 Modeling Dynamic State of Mind: Cybersecurity Study  
 
 

Introduction 
 

Nonlinear complexity analyses describe system-wide dynamics and perform well as a 

diagnostic tool since they provide information about the location of dysregulation. However, they 

do not explain the system structure, and are unable to provide models that predict future trajectories 

of the system. Development of tools that would do so would finally open doors to a new category 

of questions about the brain (beyond “where” and “how much”), while bridging the gap to single-

subject clinical applications. The first step towards addressing this problem will be integration of 

high quality fMRI data with computational modeling, to provide a bridge between the dynamics 

of functional brain networks and the dynamics of human behavior.  

Here, we make first steps towards creating single-subject models capable of predicting 

subjects’ evolving behavior/state of mind from fMRI data. We combine machine learning methods 

with high fidelity fMRI data to show that subjects’ dynamically changing state of mind may be 

inferred from time-courses of relevant functional brain networks in a very complex task design. 

We analyze fMRI data and associated behavioral outcomes from N = 26 healthy adult subjects 

who played four sessions of an engaging pattern detection game, the cybersecurity enterprises 

(CSE) task, while being scanned in a 7T MRI. In the context of a dynamic self-paced game where 

subjects are expected to identify correct pattern while being faced with ambiguous feedback, we 

employ three qualitatively distinct models to predict subjects’ state of mind (confident = knowing 

the pattern versus confused = guessing/learning). The first model is the gold standard which uses 

probabilities assigned by an optimal Bayesian solver to predict subject’s state of mind (behavior 

only). The second model uses only the brain data (fMRI time-series of networks identified via 

independent component analysis), while the third combines both behavioral and brain data. These 

models are compared against two baseline/control models where only class proportions of the 

training data are considered and random guesses are made on the testing data according to those 

class proportions. We find that brain fMRI time-series derived from only three relevant networks 

may be used to predict subjects’ state of mind (confident versus confused) throughout the game, 
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and that they do so at levels beyond those expected by chance, in out-of-sample testing data, and 

at an individual-subject level.  

 
 
 

Methods 
 

Task Description 
 

When studied in a controlled environment, decision-making often involves manipulated, 

deterministic variables. However, in the real world (including intelligence analysis), most 

decisions are made in conditions of uncertainty, where feedback may be ambiguous and unreliable. 

The Cybersecurity Enterprises (CSE) game task was designed to simulate a real cybersecurity 

monitoring system, where analysists are asked to identify patterns (indicating threat) in low signal-

to-noise environments containing both relevant and irrelevant information. The task requires 

participants to select correct suspicious target (row) from a list of three communications, based on 

patterns with respect to their properties (Figure 5-1). The suspicious target must contain a unique 

feature (i.e., a feature that is not contained in any other row). To probe decision-making in 

conditions of uncertainty, after each selection (trial), subjects are given ambiguous feedback 

(score) between 0 and 100 indicating the probability of having selected the correct choice. 

Probabilistic feedback is sampled from two distributions depending on whether the answer is 

correct. We assume five ambiguity levels (from 1 to 5), and for each one of them we associate a 

triangular probability distribution with different level of overlap between the two distributions. 

The overlaps are 0, 0.11, 0.17, 0.22, and 0.27 for ambiguity levels 1-5, respectively. After several 

consecutive correct responses are made (3-5, pseudo-randomized, to avoid predictability), it is 

assumed the subject has identified the signature of the attack (pattern) and the pattern changes 

without warning. A complete round is defined as the entire sequence of trials before the change in 

pattern. The objective is to find as many patterns as possible within a set amount of time (10 

minutes). To avoid performance outliers, a “hint” system is implemented, and is activated 

whenever the participant takes more than 60 seconds to identify the correct signature, with a box 

and an arrow appearing to indicate the property with the correct answer (a column to focus on).  
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Figure 5-1: Cybersecurity Enterprises Task (A). Display with three choices is shown to the subject. Each 
communication (row) has four properties: Time, Location, File Size, and Intrusion Type (3 possible values per 
property). The pattern signature must be a unique feature (i.e., a feature not contained by any other row). After 
selection, and a random delay of 0.5 to 2 seconds, feedback between 0 and 100 appears indicating the probability of 
threat level. This feedback is presented for 2 seconds, followed by a crosshair that lasts for 0.5 to 2 seconds, before 
moving to the next trial.  (B). Probability distributions associated with the feedback generated for ambiguity level 5 
(five different distributions were used, level 5 represents the highest ambiguity). For instance, if the selected answer 
is correct, there is a probability of 0.18 of receiving a feedback of 100. The overlap between these two distributions is 
0.27, representing the percentage of false positives and false negatives. 
 
 

Participants  
 

 Twenty-six healthy adult subjects (13M/13F, mean age = 26.7 ± 5.5) underwent 7T 

functional MRI while playing four 10-minute sessions of the CSE game. For standardization and 

to focus primarily on the pattern detection process, rather than the learning component, only 

participants with strong pattern detection skills were recruited to participate. This was achieved by 

screening subjects using an online version of the CSE task, followed by on-site training on the 

actual task. Subjects were screened using a deterministic online version of the task with accurate 

(unambiguous) feedback provided after each trial and required to achieve an average accuracy 

higher than 65% and average pattern identification time lower than 40 seconds to participate in the 

actual probabilistic version of the task in the MRI scanner. Recruited subjects were then 

extensively trained on the probabilistic version of the game. A research team member thoroughly 

explained the ambiguous feedback found in the game that the subject would be playing in the 

scanner. A short 3-minute version of the game was played by the study team member in front of 

the subject to demonstrate the probabilistic feedback mechanism. The subject was then 

familiarized and trained on his/her own 3-minute session. The subject replayed this session until 

he/she was confident with playing. Lastly, a 1-minute variant was played within the MRI scanner 

to ensure that the subject was trained with the MRI button box game controller. Finally, during the 

fMRI scan, subjects played four 10-minute sessions of the game, with short breaks between the 
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sessions, during which a research study member would make sure they were doing OK and remind 

them to stay still.  

 

MRI Data Acquisition Parameters and Preprocessing 
 

Scanning was performed using a 7T Siemens Magnetom MRI scanner with a 32-channel 

head-coil (Martinos Center for Biomedical Imaging, Massachusetts General Hospital). Each fMRI 

scan included four 10-minute task sessions (748 volumes). In addition to BOLD fMRI data, we 

acquired Field Map images (used to correct distortions in EPI BOLD data) and T1-weighted 

structural (MEMPRAGE) images (coregistered with functional images and used in segmentation 

and normalization procedures). Whole brain EPI BOLD data were acquired using parameters 

described in Chapter 3 as those optimized for dynamic fidelity (Acquisition C, row 9, Table 3-1). 

Field Map images were acquired using the following parameters: TR = 723ms, TE 1 = 4.60ms, TE 

2 = 5.62ms, flip angle = 36°, voxel size = 1.7 ´ 1.7 ´ 1.5 mm, 89 slices. The whole-brain T1-

weighted structural volumes were acquired using a conventional multi-echo MPRAGE 

(MEMPRAGE) sequence with 1 mm isotropic voxel size and four echoes with the following 

protocol parameters: TE1 = 1.61ms, TE2 = 3.47ms, TE3 = 5.33ms, TE4 = 7.19ms, TR = 2530ms, 

flip angle = 7°, with R = 2 acceleration in the primary phase encoding direction (32 reference lines) 

and online GRAPPA image reconstruction. Standard SPM12 preprocessing included realignment, 

coregistration and normalization of the structural image, normalization to 2 × 2 × 2 mm MNI 

space, and smoothing with a 6-mm full width at half-maximum Gaussian kernel. Fieldmap 

correction was performed using epidewarp.fsl, following the realignment procedure in SPM. 

Coregistered structural images were segmented into probabilistic maps of gray matter, white 

matter, and CSF. Initial ten volumes of each functional scan (session) were discarded prior to any 

further analyses. 

 

Independent Component Analysis  
 

We performed spatial independent component analysis (ICA) using Group ICA/IVA of 

fMRI Toolbox (GIFT v 4.0a) (N = 26, four sessions per subject) to identify functionally connected 

networks in an entirely data-driven manner. We used ICASSO to analyze ten runs of the ICA to 

confirm component stability. After canonical PCA preprocessing (variance normalization), 

subject-specific PCA was first performed, followed by temporal concatenation and group-level 
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PCA and noise-free ICA. Finally, subject-specific spatial maps and associated time courses were 

estimated using back-reconstruction (GICA). We used the Infomax algorithm for ICA. Number of 

independent components was estimated using all the subjects’ data (N = 26, four 10-minute 

sessions per subject) and the minimum description length (MDL) criteria. ICA identified 35 

components, 8 of which were manually selected as containing non-neural noise (CSF or motion-

related artifacts/edges of the brain). For detailed descriptions of the remaining 27 components see 

Table 5-1 below.  
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IC Description 
 

1 
Bilateral Frontal Sup Medial (BA 8), R IFG/Frontal Mid./Precentral (BA 9/44), Superior Temporal Pole 
(BA 38) 

2  R Calcarine/R Cuneus (BA 17/18) – Visual Occipital Network 
3 Bilateral Paracentral/Postcentral Lobule (BA 4) – Primary Motor Cortex  

4 Bilateral Calcarine/ L Cuneus (BA 17/18) – Visual Network (L > R) 

5  R Postcentral (BA 3/2/4) – Primary Somatosensory Cortex (Touch)  
6 Bilateral Lingual Gyrus/Calcarine (BA 17) – Visual Medial Network 
7 L Postcentral (BA 3/2/4), Supplementary Motor Area (BA 6) – Primary Somatosensory Network (Touch)  

8 Bilateral Postcentral (BA 4/3, 43, 48) – Motor/Gustatory Cortex  

9 Bilateral Occipital Mid/Lingual Gyrus (BA 18/19) – Visual Lateral Network 

10 
L Parietal Inf./Angular Gyrus (BA 39/40), L Precentral (BA 9), L IFG (BA 46), R Parietal Inf. – L 
Frontoparietal Network  

11 
Bilateral Precuneus (BA 7), Occipital Med/Superior, R Mid Frontal (BA 6) – Visuospatial Attention 
Network (R > L) 

12 
Bilateral Frontal Sup Medial/ACC (BA 10/32), PCC/MCC (BA 23), L Angular Gyrus (BA 39) – closest 
match to DMN 

13 Bilateral Precuneus, PCC, MCC (BA 23/7) 

14 Bilateral Parietal Inf. (BA 2/40), IFG (48/45/44) 

15 Bilateral Precuneus (BA 7) 
16 Occipital Sup/Mid (BA 19) – Visual Network 

17 
L Precuneus/Parietal Inf./Occipital Mid (BA 7/40/19), L Precentral/IFG (BA 6/44/48) – Visuospatial 
Attention Network (L > R) 

18 Bilateral Occipital Mid/Angular Gyrus (BA 39/19/7), Precuneus (BA 7/23) 

19 
R Parietal Inf. (BA 39/40/7), R Frontal Mid/Sup (BA 10), R Frontal Mid (BA 8) – R Frontoparietal 
Network ~ mirror image of IC 10 

20 Bilateral Insula (BA 47/48), ACC/Sup Frontal (BA 34/32) –  Anterior Salience Network 

21 Bilateral Frontal Mid./Sup., Supplementary Motor, Precuneus (BA 9/10/46; 7, 24)  

22 R Insula/Temporal (BA 42, 22, 48) 
23 Bilateral Rolandic Operculum/Insula (R > L, BA 48), Supplementary Motor Area (BA 6) 
24 Bilateral Temporal Mid./Supramarginal (BA 22), Precuneus  
25 Bilateral Temporal Pole 
26 Supplementary Motor Area, Bilateral Precentral (BA 6) – Motor Network 
27 L Supplementary Motor Area (BA 6), L IFG (BA 45. 48. 44), L Temporal Mid. (BA 22)  

Table 5-1: Description of components identified via ICA of CSE task. Regions were labeled via references to AAL 
and Brodmann atlases, after thresholding of mean component maps (averaged over all subjects and sessions) at Z = 3. 
Abbreviations: R = right, L = left, BA = Brodmann Area, IFG = Inferior Frontal Gyrus, ACC = Anterior Cingulate 
Cortex, PCC = Posterior Cingulate Cortex, MCC = Medial Cingulate Cortex, DMN = Default Mode Network. Bold 
font components (9, 11, and 17) are the ones identified as most relevant to prediction of state of mind via univariate 
feature selection.  
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Bayesian Solver – Optimal Strategy using Bayes’ Rule 

 
 

The optimal strategy of playing the game when ambiguity is present in the feedback is the 

one that follows a Bayesian approach: 

1. At the start of a round, the player determines the set of unique items on screen and assigns a 

uniform prior to the probability of each of unique items being the signature of attack; 

2. Player selects the communication that is the most likely to contain the signature element (at 

first trial, player picks the communication with highest number of unique items present since 

the prior is uniform; after that the choice depends on the exact probability that an item is the 

signature);  

3. An ambiguous feedback between 0 and 100 is provided to player as described above; 

4. Based on i) the feedback provided, ii) knowledge of the full probability density function of 

feedback conditioned on the ambiguity level of the round and the correctness of player’s 

selection (P (feedback | ambiguity, correctness)) and iii) the prior previously 

calculated/assumed, the player makes a calculation of the posterior probability of the selection 

made being correct. Here we employ an application of the Bayes’ theorem to incorporate the 

newly acquired knowledge of the feedback into the solver’s estimate:  

 

!Y>h1. mnoo+m) "++2. = 

=
! "++2. mnoo+m) ∗ !Y]/>](mnoo+m))

! "++2. mnoo+m) ∗ !Y]/>] mnoo+m) + ! "++2. rsmnoo+m) ∗ (1 − !Y]/>](mnoo+m)))
 

 

5. Based on the posterior probability of accuracy of selection made, solver then updates his belief 

about each of the unique items being the signature by multiplicative rescaling of the previous 

estimate, using maximum a posteriori criteria; 

6. Player prunes the set of unique items he/she keeps track of based on the set of unique items in 

newly displayed communications and rescales the probabilities of each of them being the 

signature; 

7. Player repeats steps 2 - 6 until the number of successive attacks identified correctly reaches a 

pre-specified integer (number of correct selections needed to identify the signature). 
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This implementation of game-theoretically "optimal" Bayesian solver works on the exact 

"screen"/visual that human subjects were given and attempts to solve the game in parallel to 

humans as if looking over the shoulder. This "on-line" solving of the exact game that humans are 

playing is intended to reveal what stage the subject's solving might be at. In attempting to solve 

the game, the solver produces and keeps track of probabilities of each choice containing the sought-

after signature. We can then extract a quantity we refer to as Bayesian Conviction defined as the 

maximum of posterior probabilities that each of the three communications contains the signature: 

 

u8:+vr8s	&nswrm)rns = max	(!Y>h1. vr{s8)|o+	rs	on}	r : r	 ∈ {1, 2, 3}) 

 

This is the probability based on which the solver makes selection and indicates its level of 

conviction about what the exact signature of the current round is. We make use of this solver-

produced level of "conviction" to predict the state of mind (confident vs. confused) that human 

subjects are in (described in detail below).  

 
 

Predictive Modeling of Subjects’ Behavior 
 

From the subject’s (state of mind) perspective, the game can be split into two qualitatively 

distinct parts: trials during which the subject is confident about the signature of the attack (and is 

selecting correct rows consecutively in a streak) and the trials during which he/she is either picking 

an incorrect row or switching between the correct and incorrect decisions repeatedly. From here 

onward, we referrer to these states of mind as the subject being confident or the subject being 

confused, respectively. All consecutive trials that are a part of the streak leading to a change in 

pattern are therefore considered as examples of the confident state, and all other trials as examples 

of the confused state (could be due to subject’s guessing or learning the pattern by process of 

elimination). Our goal is to be able to predict whether the subject is in a confident or a confused 

state of mind from the relevant brain data at each trial (or time point), rather than to predict simply 

whether they picked the correct row (accuracy) since in that case positive examples would 

invariably be contaminated by random guesses and would not necessarily reflect that the subject 

has detected the pattern. Figure 5-2 below demonstrates how state of mind, as defined here, may 
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differ from subject’s accuracy at each trial, for two representative subjects. 

 
Figure 5-2: Accuracy at each trial for representative subjects with good and suboptimal performance, color-
coded by their state of mind.  Vertical green lines represent ends of each of the four (10-minute) sessions. Subject 
37 (top) had average accuracy of 0.72 while subject 08 (bottom) had average accuracy of 0.63, across trials in all four 
sessions. All trials in which the subject made an incorrect choice are labeled as confused trials, while as some of the 
correct choice trials may be labeled as confused as well, due to them not being a part of the streak leading to a change 
in pattern.  
 

Figure 5-3 below shows how Bayesian Conviction varies over time for a representative good 

performer and representative suboptimal performer (based on the average accuracy during the four 

sessions relative to the rest of the subjects), as a function of their state of mind.  

 
Figure 5-3: Bayesian Conviction for representative subjects with good and suboptimal performance, color-
coded by their state of mind. Vertical green lines represent ends of each of the four (10-minute) sessions. Subject 37 
(top) had average accuracy of 0.72 while subject 08 (bottom) had average accuracy of 0.63, across trials in all four 
sessions.   
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We expect that subjects who are good at detecting the pattern play in a close to Bayesian manner, 

and that Bayesian Conviction at each trial should be a good (in fact, as good as theoretically 

possible) predictor of the subjects’ state-of-mind. In fact, as shown in Figure 5-4 below, subjects 

with higher average accuracy made choices closer to those of the  Bayesian solver (mean distance 

of the subject’s pick from the Bayesian solver’s pick in terms of the probability assigned by the 

Bayesian solver and the average accuracy of the subject’s pick across 26 ´ 4 sessions were 

correlated highly positively with Pearson’s r = 0.73,  p < 10-17; additionally, the standard deviation 

of the distance from the Bayesian Conviction and the average accuracy of the subject’s pick across 

26 ´ 4 sessions were correlated negatively with Pearson’s r = -0.67, p < 10-14). That is, sessions 

in which choices made by the subject were consistently closer to those made by the Bayesian 

solver, were the sessions where subjects achieved higher average accuracy. Furthermore, there 

were no cases where a subject played far from Bayesian solver while still achieving high accuracy. 

 We employ the following strategy to show that fMRI data may be used to predict subject’s 

state of mind at an individual level at a higher than by chance accuracy. We start with a simple 

machine learning algorithm – logistic regression – and compare the following models: 

1. Model 1 (behavior only): a single feature – Bayesian Conviction (BC) –  is used to classify 

subject’s state of mind as confident vs. confused – this is what we believe to be the gold 

standard (regardless of the machine learning algorithm used). 

2. Model 2 (brain only): mean time-series extracted from relevant brain regions/networks are 

used as features to predict confident versus confused (e.g., time-courses (TCs) from the 27 

Independent Components’ listed in Table 5-1) – if fMRI data are informative of subject’s 

state of mind, we expect this model to perform better than control/baseline models (4 and 

5, below), but not as well as the gold standard (model 1). 
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Figure 5-4: Subjects who make choices closer to those of the Bayesian solver perform better. Distance from 
Bayesian Conviction is defined as the difference between the probability assigned by the Bayesian solver to the row 
that was chosen by the subject and the Bayesian Conviction (i.e., the maximum posterior probability of the three rows 
at that trial). Each point represents an average across a session. Mean accuracy is defined as the number of correct 
choices divided by the total number of trials in a session. Left: Pearson’s r = 0.73, p < 10-17, Right: Pearson’s r = 
-0.67, p < 10-14. 
 
 

3. Model 3 (brain + behavior): Bayesian Conviction and brain fMRI time-series are used to 

predict confident versus confused. 

4. Model 4 (control 1): a simple classifier that always predicts either confident (1) or confused 

(0) based on the class that has more examples in the training data; i.e., if a subject was 

confident 70% of the time in training sessions, it will (naively) predict the subject to be 

confident at all trials in the testing set. 

5. Model 5 (control 2): a slightly more sophisticated classifier that randomly assigns either 1 

or 0 outcome to testing data proportional to the ratio of positive and negative examples it 

encounters in the training data – in the same situation from above, it would predict 70% of 

testing data outcomes to be 1 and 30% to be 0, with 1’s and 0’s randomly placed in time. 

The two control models were motivated by imbalanced classes since for most subjects and sessions 

there were more examples of confident than confused state.  

 Since the fMRI data are sampled at a relatively fast rate of one data-point at each TR (0.802 

seconds), but the time elapsed between successive answers (trials) varies based on the subject’s 

decision time, which took a minimum of four TRs (mean = 8.59 ± 1.99 TRs), to convert  behavioral 

data  and outcome (Bayesian Conviction and state of mind) to the fMRI scale we make a simplistic 

assumption that the state of mind remains unchanged between subjects’ successive picks/answers 
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within a session (and in-effect use all fMRI measurements between two trials to predict each trial’s 

outcome). Alternatively, only a certain number (lag) of fMRI measurements may be averaged (by 

simple or weighted averaging) into one measurement that can then be used to predict each trial’s 

behavioral outcome; i.e., instead of converting behavioral data to the fMRI time-scale by nearest 

neighbor interpolation, fMRI data may be down-sampled to the behavioral time-scale. Here, we 

present results from the fMRI time-scale, but we have found consistent results when down 

sampling fMRI data to behavioral scale by either averaging all the points between successive 

answers into one value or when averaging four points right before each answer. To account for the 

lag in the hemodynamic response function (HRF), we convolve all behavioral data/outcomes with 

canonical HRF and threshold the state of mind at 0.5 for classification purposes.  

 We split all available data into training and testing sets in two ways to build two types of 

predictive models: 

1. Individual model for each subject (26 models): we use three sessions of each subject’s data 

(N = 1) to train the logistic regression classifier, and the remaining session of that subject’s 

data to make out-of-sample predictions (test); we repeat the process four times, with a 

different session left out for testing each time and average the performance metrics across 

the four runs. 

 

2. One model for all subjects: we use three sessions of all subjects’ data (N = 26) to train the 

logistic regression classifier, and the remaining session of each subject’s data to make out-

of-sample predictions (test); we repeat the process four times, with a different session left 

out for testing each time and average the performance metrics across the four runs. 

 

It is important to note that a separate session of the game, rather than a random portion of data, is 

always used for testing due to intrinsic temporal dependence of data – a random split would risk 

leaking training data (or very close points) into the testing set. Procedure is repeated four times to 

avoid potential learning effects/differences between sessions biasing results – while we found no 

significant differences in average accuracy between the four sessions, there were significant 

differences in the total number of trials per session (with last session having significantly more 

trials compared to other sessions; paired-t test p < 0.001 – a difference that was a result of faster 

responses, rather than an overall improved accuracy).  
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Logistic Regression 
 
 Logistic regression is a simple classification method which may be used to produce binary 

predictions by using a sigmoid (logistic) function hypothesis representation ℎÜ á = 	 à

àâ	?äãåD
, 

where çé; is a matrix notation for çè +	çàáà +	ç-á- +	çêáê + ⋯+	çUáU. Logistic regression 

is solved by minimizing the following cost function: 

í ç = 	
−1
ì
	 [:/
W

/ïà

log ℎÜ á/ + 1 − :/ log	(1 − ℎÜ á/ )] 

where á/ denotes the ith training input (feature), :/ denotes the corresponding output (class – 0 or 

1), and m denotes the total number of training examples. We use Scikit-learn machine learning 

library in Python to implement regularized logistic regression, with default L2 regularization. L2 

regularization adds the L2 norm penalty ( ö
-W

çõ
-U

õïà , where n denotes the number of features) to 

the cost function above in order to help avoid overfitting. This technique keeps all the features, but 

reduces the magnitudes of their coefficients. It works well when there are a lot of (potentially only) 

slightly useful features. An alternative would be to add the L1 norm penalty to the cost function 

( ö
-W

|çõ|U
õïà ); however, L1 regularized regression can be unstable, lead to very sparse solutions 

when the regularization parameter (ù) is increased, and the coefficients can vary significantly even 

on small data changes when there are correlated features in the data. On the other hand, L2 

regularized models are more stable, less sparse, and ensure that that predictive features get non-

zero coefficients and correlated features get similar coefficients. Increase in a coefficient of one 

feature/predictor, while keeping other features constant, may be interpreted as increase in the log-

odds of class 1 relative to class 0. We perform an exhaustive grid search with cross validation 

within the training data to fine-tune the amount of regularization (using a wide range of C values: 

[0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15, 100, 500, 1000, 5000, 10000], where C is the inverse 

of regularization strength).  Finally, to ensure that imbalance in class sizes is not affecting model 

performance, we repeat both versions of analyses (individual and common model) after restricting 

the classification problem to classes of equal sizes in both training and testing data (each time 

picking all the examples from the minority class and restricting the majority class to a random 

subsample of matching size).  
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 To evaluate the models, we use the following performance metrics (all calculated on testing 

data): 

1. Accuracy – proportion of all test examples that are classified correctly 

2. Precision – the number of true positives divided by the number of true positives plus the 

number of false positives (TP/ (TP + FP)) 

3. Recall – the number of true positives divided by the number of true positives plus the 

number of false negatives (TP/ (TP + FN)) 

4. F1 Score – harmonic mean of precision and recall (2 ´ (Precision ´ Recall) / (Precision + 

Recall))  

Intuitively, precision measures the ability of the classifier not to label as positive a sample that is 

negative, while recall measures the ability of the classifier to find all positive samples.  

 

Feature Selection 
 

To elucidate the networks primarily responsible for predicting subjects’ state of mind in 

this task, we perform feature selection to find the most important features. A simple way of doing 

this is by univariate feature selection – sequentially computing correlations between each of the 

input features (brain time-series) and the output on the training data and retaining only the features 

that have significant correlations with the output (after correction for multiple tests). We perform 

a very conservative pruning of features by requiring significant Pearson correlation (p < 0.05) 

between inputs and outputs on training data of each subject (for each of the four sessions used as 

a testing session, fully Bonferroni corrected for 27 comparisons). 

 
 

Results and Discussion 
 
 

Brain Data are Predictive of Subjects’ State of Mind  
 

Performance metrics show that the brain data are significantly more predictive of subjects’ 

state of mind than what would be expected by chance (control models), and that this holds true 

both for the individual-subject models (Figure 5-5) and for the common model (Figure 5-6). 

Summary statistics for performance metrics are listed in Table 5-2 below (averaged over 26 

subjects). For individual-subject models, accuracy for model 1 (BC) was significantly greater than 
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for either of the control models (paired t-test p = 1.02 ´ 10-13 / p = 8.62 ´ 10-20), as was the case 

for model 2 (brain; paired t-test p = 1.09 ´ 10-12 / p = 1.04 ´ 10-20), and for model 3 (BC + brain; 

paired t-test p = 1.35 ´ 10-15 / p = 1.92 ´ 10-24).  There were no significant differences in accuracy 

between models 1 and 2, and between models 1 and 3 (p = 0.25 and p = 0.05), while model 3 was 

significantly better than model 2 (p = 7.65 ´ 10-7). Similar ordering in terms of performance was 

observed for the common model, with very significant differences between model 2 (brain) and 

control models, but no significant differences between models 1 and 2. Training and testing on 

even classes (Figure 5-5B and Figure 5-6B) made the difference from the control model more 

apparent. 

 

 Model Accuracy Precision Recall F1 Score 

 
 
 
Individual-
subject models 

Bayesian Conviction  0.69 ± 0.03 0.71 ± 0.06 0.74 ± 0.03 0.72 ± 0.03 

Brain (27 IC TCs) 0.68 ± 0.03 0.73 ± 0.05 0.64 ± 0.04 0.68 ± 0.04 

Brain + Bayesian Conviction 0.70 ± 0.03 0.74 ± 0.05 0.70 ± 0.03 0.71 ± 0.03  

Control 1 0.52 ± 0.06 0.77 ± 0.32 0.41 ± 0.19 0.54 ± 0.24 

Control 2 0.50 ± 0.01 0.53 ± 0.04 0.54 ± 0.04 0.53 ± 0.04 

 
 
Common 
Model 

Bayesian Conviction  0.69 ± 0.03 0.71 ± 0.06 0.74 ± 0.04 0.72 ± 0.03 

Brain (27 IC TCs) 0.67 ± 0.03 0.72 ± 0.05 0.64 ± 0.03 0.68 ± 0.03 

Brain + Bayesian Conviction 0.70 ± 0.02 0.74 ± 0.05 0.72 ± 0.03 0.72 ± 0.02 

Control 1 0.54 ± 0.04 1  0.54 ± 0.04 0.70 ± 0.03 

Control 2 0.50 ± 0.01 0.54 ± 0.01 0.54 ± 0.04 0.53 ± 0.02 

Table 5-2: Summary of performance metrics for individual-subject and common classifiers. Overall, brain-only 
model achieves significantly higher accuracy compared to control models, and not significantly different accuracy 
relative to the model including Bayesian Conviction only. Control 1 achieves precision of 1 (on the positive label) for 
the common model since, no matter which session is used as the testing session, when all subjects’ three sessions-
worth of data are concatenated, positive examples dominate, so this naïve classifier always predicts positive class. 
This is not the case for individual-subject models since for some subjects, depending on the testing session, there may 
be more negative examples. All values are averaged over four runs and N = 26 subjects, but models showed consistent 
results across individual subjects - for subject-level plots of performance metrics, refer to Figure 5-5A and Figure 5-
6A. Number of training examples for individual models is 2214 (average number of examples of positive class is 
1189), number of testing examples is 738 (average size of positive class is 396). Average number of training examples 
for the common model is 57564 (average number of examples of positive class is 30898), number of testing examples 
is 738 (average size of positive class is 396). *Precision and recall are shown for the positive label.  
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Figure 5-5: Individual-subject models predict state of mind from behavioral and brain data. Each classifier was 
trained on three sessions from one subject and tested on the fourth session of that subject. (A) Training and testing 
was performed on all examples. (B) Training and testing was performed on evenly-sized classes (a subset of majority 
class examples was chosen randomly to match in size the minority class. Error bars represent standard deviations 
across four runs (different session used for testing each time). *Precision and recall plots for the positive label are 
shown.  
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Figure 5-6: Common model predicts state of mind from behavioral and brain data.One classifier was trained on 
three sessions of all subjects and tested on the fourth session of each subject. (A) Training and testing was performed 
on all examples. (B) Training and testing was performed on evenly-sized classes. Error bars are standard deviations 
across four runs. *Precision and recall plots for the positive label are shown. 
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Feature Selection Identifies Most Informative Networks  
 

We focus on individual models here (but equivalent analyses on the common model lead 

to similar results). We performed a very conservative pruning of features by requiring significant 

Pearson correlation (p < 0.05) between the inputs and outputs on training data of each subject (for 

each of the four sessions used as a testing session, fully Bonferroni corrected for 27 comparisons). 

This resulted in three independent components - 9, 11, and 17 remaining (the next in importance 

were components 21 and 12). See Figure 5-7A below for corresponding average F-values (from 

univariate linear regression) for all features (including Bayesian Conviction as feature #28, for 

reference). Spatial maps of components 9, 11, and 17 are shown in Figure 5-7B. IC 9 is a part of 

the primary visual network, while IC 11 and IC 17 most closely resemble the visuospatial attention 

network (lateralized to the right and to the left side, respectively), in agreement with the nature of 

the task.  

 
Figure 5-7:Univariate feature selection points to relative importance of features. (A) In addition to Bayesian 
Conviction (feature # 28) independent components 9, 11, and 17 show most significant correlations with the output.  
Error bars represent standard deviations across N = 26 subjects. (B) Spatial maps of “high-information” features.  
 
 Retraining the brain-only model with just these three features (“high-information 

features”), we achieve average performance close to performance achieved when utilizing all 27 

features, and performance which is still significantly higher than the performance of the control 

model (Figure 5-8 below, shown for both the individual models and the common model, even 

classes – for clarity). For further control, we also retrained the models using three features with 
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relatively low scores (ICs 5, 6, 7), referred to as “low-information features.” As shown in Figure 

5-8, these features resulted in a significantly lower accuracy compared to the “high-information 

features,” but still higher accuracy compared to the control model. In all of the models, brain data 

alone were as predictive of subjects’ state of mind as the Bayesian Conviction, and both brain 

alone and Bayesian Conviction alone were significantly more accurate than the control model(s). 

 

Future Directions 
 

The simple method presented here is a first step towards single-subject prediction of 

dynamic state of mind from fMRI time-series. The basic aim of showing that fMRI data are 

informative enough to predict human behavior/state of mind in a very complex task design has 

been achieved. We employed logistic regression due to its easy interpretability and could 

significantly reduce the number of features (brain regions under consideration) while retaining the 

overall accuracy by employing simple univariate feature selection. If, however, a higher accuracy 

is desired, more advanced machine learning techniques may be used, such as support vector 

machines and neural networks. 

 Another way to proceed would be to start with a larger set of smaller brain regions, use 

the methods described here to see which of them contribute to accurate predictions of state of 

mind, and then create more detailed circuit-level models to predict both dynamic behavioral 

outputs and fMRI time-series data by treating the problem as a time-series prediction problem 

rather than a classification problem. For example, one could use Simulink, a modeling platform 

built on MATLAB environment, to design, simulate, and predict dynamics of specific brain 

circuits and resulting behavior. Simulink can be used to model any system given the coefficients 

of its transfer function.  Given time-varying experimental (task) inputs, BOLD signal from task-

relevant nodes (e.g., those regions determined as informative using simpler techniques), and 

associated time-varying behavioral/state of mind outcomes, we could use transfer functions and a 

similar training – testing setup to build models that best describe interactions between the regions. 

We should, in theory, be able to predict each region’s BOLD signal from experimental inputs and 

other regions’ BOLD signal using transfer functions. All regions’ predicted BOLD can then be 

used, in addition to experimental inputs (and, potentially, past behavior) to predict future behavior. 

Once an appropriate model is constructed based on real data, certain nodes and connections could 
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be artificially removed to simulate lesions and the consequences of such events could be 

quantified. In fact, by systematically removing links and nodes, we could determine which parts 

of the system are crucial for the observed dynamics of BOLD and behavior. Finally, input time-

series can be modified to simulate disease, by, for example, altering their autocorrelation function 

signatures to make them more regular (as in epilepsy (Nedic et al., 2015)) or more random (as in 

generalized anxiety disorder (Cha et al., 2016)). 
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Figure 5-8: Top three independent components predict state of mind at accuracy comparable to that achieved 
when using all components. (A) Individual subject-level models result agrees with (B) common model result.  Three 
high-information components lead to much better model performance compared to three low-information components, 
which in turn still do better than the control model. Error bars are standard deviations across four runs. *Precision and 
recall plots for the positive label are shown. 
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