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PREFACE

This material is a revision of my lecture notes on tides originally issued
in 1965 by the Chesapezke Bay Institute. There is only one excuse for pre-
paring yet another screed on tides when there are already so many books on
the subject. In my opinion, none of them present tides at the level neces-
sary to provide the tyro oceanographer with a foundation on which he can
build, in whatever the direction his evolving interests may lead him.

Darwin (1898) is, perhaps, the most profoundly insightful pop-
ular account of the subject. It is in the great tradition of the British
scholars who, now and again, feel impelled to lay aside the paraphernalia
and jargon of science and tell laymen, clearly, what they have found.

Every intelligent person, no matter what his background and interests,
should have read this book at least once.

Defant (1958) is another good popular account but, like Darwin
(1898), too light on the "flute music" to satisfy an oceanographer.

Defant (1961) overwhelms with its coverage of observational
material but, if that's what you want, Defant (1961) is the place to go.

Proudman (1954) is good--and out of print. My Chapter 2 de-
pends heavily on this source.

The monographs in "The Sea, Vol. 1," Darbyshire, Groen and
Groves, Hansen, Lafond and Cox, Munk, and Rossiter, give yvou a fine picture
of the "state of the art" but only if you are already familiar to some ex-
tent with the topics they cover.

Dietrich (1963) gives a reasonable sort of discussion for
oceanographers and Pillsbury (1956) treats tides from the point of view of
engineers who must build structures in tideways.

Dronkers (1964) is the place to go if you need guiéance on
tidal computations but the title is a bit misleading. The tidal computa-
tions are there, based on the author's 20 vears of work in Netherlands'
waters, but he begins with a lengthy and excellent expcsition of the theory

of the tide.
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The bibliography included with these notes is sketchy. There
is no need for it to be otherwise when one has the first three references
listed there. In addition, the Corps of Engineers, U.S. Army has, since
1954, been publishing an annotated "Bibliography on Tidal Hydraulics."
it is called Report No. 2 and every so often another Supplement appears.

Aspirant oceanographers should add to their private collections
the publications of the U.S.C.&G.S.: specifically, Marmer (1951), Schureman
(1941, 1949), and U.S.C.&G.S. (1950, 1950, 1952). Harris is out of print.
You should also own Doodson and Warburg (1941) and Dronkers (1964).

The first chapter of these notes describes the phenomenon,
discusses the astronomical background, and goes intc the data reduction.
Its purpose is to enable you to understand, as opposed to use, the tide
and current tables. It is, in a sense, practical rather than theoretical
although it may be difficult for you to see this at first reading.

The second chapter is thecoretical. It is devoted to the solu-
tion of continuity and motion under various boundary conditions and
simplifying assumptions. One assumption always made in Chapter 2 is that
friction is negligible. Because of the oversimplifications the solutions
derived fit nothing in nature very well. Their value is that they show
clearly the relations that must obtain among the various aspects of the
tide and, thus, contribute to our understanding.

The third chapter recounts some efforts to include friction

and its effects. It is, of necessity, very incomplete and unsatisfying.

Blair Kinsman

August 1978
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cal Enalysis of the Tide.

1.01. .. 3il11 of Fare and a Bit of History.

Schureman (194%) defines the tide as "the periodic rising and falling of

the water that results from the gravitational attraction of the moon and
sun acting upon the rotating earth." This identification of the term "tide"
with the vertical movements of the water is conventional usage in the

United States and England. There are also periodic horizontal movements

of the water, called "tidal currents," caused by the same gravitational
attractions. While it is useful to have separate terms for motion in the
vertical and motion in the horizontal, the two, taken together, form the
phenomenon we want to study.

If you go out and make a time record of water surface elevation
at a point, you will have considerable difficulty seeing the tide. There
are many forces which act to change the water level. Wind makes waves.
Wind stress may, tilt the water surface as a whole. Pressure differences
from place to place distort the water surface. Your composite record may
contain all of these and more in addition to the tide--and they don't come
labeled. One of our problems will be to untangle the astronomical tide

from surface fluctuations due to other causes.

The subject of tides has five aspects:

(1) The tide-generating forces: The tide-~generating forces arise
from the gravitational attraction of the celestial bodies of which only
t+he sun, which is large enocugh, and the moon, which is near enough, are of
practical importance. The net force acting at any moment on a particle of
water is the result of the relative configuration of the eart@, sun, and
moon. The study of the relative motions of these bodies belongs to celes-
tial mechanics and the problem has been solved for practical purposes--
anything you may have heard about the "Three-Body Problem" not withstanding.
Conseguently, for practical purposes the tide generating forces have been

well established.



(2) The tidal dynamics of the sea: The ticzl dynamics of the sea
concerns itself with the way in which the sea responds to the generating
forces. In essence, this is a problem in fluid dynamics. The kinds of
boundary value problems you meet are of the sorts you are used to seeing.
In tides, however, the important driving forces are among those usually
neglected in water tunnel experiments or in studies of flows in lzkes and
reservoirs. Their solutions will depend on the geometry of the ocean
basins and on the viscosity of the water. As you might suspect, a general
theory which would permit the prediction of tides in the oceans would be-
very complicated and no-one has as vet managed it--or even come close. We
do have a handful of limited solutions for such things as rectangular
oceans in case you ever discover one.

(3) Observatiocons and analysis of tide records: Lacking an adeguate
theoretical basis for the tide, we must obviously fzll back on an empirical
approach to keep our ships off the mud. Tide gages are set up at points of
interest and careful records are made over many years. These give the rise
and fall of the water. There are probably more of these measurements than
there are of any other parameter in the field of oceanography. Observa--
tions of tidal currents are generally limited to inshore waters and are
far fewer and less accurate than are the tide gage data. Once records are
available, they are analysed into harmonics. (For "harmonics" read "sines"
and "cosines" if it makes you more comfortable.) These analyses are a
messy business but the procedure is pretty cut and dried.

(4) Prediction of tides: Basically, this is a matter of extrapola-
tion from the observed tide. The extrapolation day by day for a year at a
time is what is contained in the "Tide Tables." Since tide prediction de-
pends on the maintenance of a large network of observing stations, and
since the data reduction, usually done with special purpose computing
machines, cf. Schureman (1941), pp. 126-152, zll the major maritime nations
have set up special organizations to carry out the work. The smaller
countries depend on the larger ones for their tide information.

(5) Miscellanecus: This is a grab-bag of modifications of the tide

and of problems associated with, or similar to, the tide, It includes:



ications of the tide produced by meteorological

COLw ns: In Chesapezke Bay and many other shallow water coastal areas
these z.e so pronounced that they become the problem of primary interest.

(b) Tidal waves: Tidal waves, usually called "tsunamis" by
oceanographers because they are produced by seismic activity and not by
the tide-producing forces, are included because they, like the tide, have
very long wave lengths. Consequently, their mathematics is quite similar
to the mathematics of tides.

(c) Seiches: These are surges in confined bodies of water.
Such bodies have natural resonance periods. Seiches can be set going by
tides, wind stress, or atmospheric pressure differences.

(d) Earth tides: The "so0lid" earth is a plastic, albeit a
stiff one. It too responds to the tide-generating forces but to a much

smaller degree than does the ocean which is highly mobile.

The Mediterranean, around which the ancient civilizations
clustered, is virtually tideless. In a few places the tidal range reaches
a maximum of 3 feet but such extremes are uncommon. The Greeks noticed the
tide, as they noticed practically everything, but it was of no practical
importance to them and we have no evidence that they gave it much thought.
among the first recorded ideas on the tide that have survived are those of
Curtius Rufus, the biographer of Rlexander the Great, and Pythias of Mar-
seillia who make a voyage to England around 300 B.C.. There he encounter-
ed tides of size that made them hard to ignore. He connected them with
the phases of the moon; as did the Romans who came to England a bit later.
The Romans also distinguished between spring and neap tides. By the 13th
century tide tables were being constructed. For example, there is one ex-
tant that relates the height of the water at London Bridge to Fhe age of
the moon. Until surprisingly recently the construction of such tables was
a private enterprise of single families, the methods being jealously guard-
ed and passed from father to son. XKepler and Gallileo first noticed that
the tide could be described as a progressive wave and related its speed to

the depth of the water.



Our mcdern approach to tides began with Newton and his law of
gravitation. He discovered that the perturbations in the moon's motion
are due to the sun and he developed a kinetic theory of tides, the "eguil-
ibrium" theory, the basic idea of which is that there will be a bulge in
the direction of a distant attractive body. This bulge he supposed to
travel around the earth always pointing exactly in the direction of the
attractive body as though the water had no inertia--no mass, hence kinetic
theory. The agreement between tides predicted on this basis and tides as
actually observed is pretty poor but the idea is still a useful one. Most
subsequent work on tides begins with the equilibrium tide as a zero-order
approximation and brings it into closer agreement with the observed tide
by adding corrections. Bernoulli was one who contributed to this.

Laplace attempted to replace the kinetic eguilibrium theory
with a dynamic theory. He also tried to derive the forces which produce
the horizontal motions. He showed that tidal periods fall into three natur-
al groups: sémidiurﬁal, diurnal, and long-period. He also showed that a
large number of small periodic perturbations could be treated separately
and then combined. This is the basic idea of all harmonic (Fourier)
analysis.

During the last century the English mathematicians and physi-
cists followed out these leads. Kelvin did the most to bring the problem
to its present unrewarding state. Other contributers were Airy, George
Darwin (son of the evolution Darwin), Rayleigh, and Lamb.

In the United States Harris wrote a book on tides which was
published over a seven-year period as an appendix to the superintendent's
reports. A meteorologist named Ferrel helped to develop a special-purpose
computer to carry out the analysis.

In the 20th century there has not been much creative work on
tides although Dr. W: H. Munk seems to be reviving the interest of the
problem by applying the methods of spectral analysis to it. The United
States government is doing only routine predictions with little support
for basic research. 1In Eurcpe there is an active group at the Liverpool

Tidal Institute which includes Proudman, Bowden, and Doodson. Liverpool



atural . r research on tides since the average tide range in
the . sey is 20 feet while at springs the range increases to 26 feet.
The ¢ouxs at Liverpool have locks at the ends. The ships enter and leave
at high tide and the lock gates are closed behind them to trap enough

water to float the docked ships zt low tide.

1.02. Terms and a Description of the Phenomenon.

If you observe the changes in sea level with a tide gage fixed to a pier
in a harbor and plot the elevation against time, you have the tidal curve .

for that harbor and that period of time. It might look like Fig. 1.02-1.
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Fig. 1.02-1. Schematic Tidal Curve.
The curve, as sketched, looks rather sinusoidal and shows the particulars
of the tide. The water rises for about 6 hours, a period called rising'

tide, flooding tide, rise, or flood, until it reaches a maximum, called

high tide or high water. The time at which high water occurs is called the

hour of the tide. For a little while the water elevation shows no percept-

ible change, high water slack, after which it begins to fall and continues

to do so for zbout 6 hours, falling tide, ebbing tide, fall, or ebb, until

it reaches a minimum, low tide, or low water. BAgain, for a little while

there is no change in the elevation, low water slack, after which the tide

again floods. The rhythm of this repetition is generally two high waters
(kW) and two low waters (LW) every 24 hours and 50 minutes, the period of

the lunar day. The expression tidal range refers to any of the values



secured by taking the absolute difference of a high (low) water and the
next succeeding low (high) water.

The flood current is the current which sets in after a low

water and which produces the rise of the water level. The ebb current be-
gins after high water and produces the fzll of water level. It is import-
ant to distinguish carefully between the terms "ebb" and "flood" applied
to tidal currents and the same terms applied to tides since the change in
the current direction does not necessarily coincide with the times -of high
or low water but may lag them by as much as 3 hours. Near land the change
in current direction usually does occur at the times of low and high water
but in the open ocean it more commonly occurs at half tide.

Since we have been talking about an oscillation in water height
we are, necessarily, thinking of it as taking place about some fixed level.
There are a number of these reference levels in common use. There is mean
sea level which is, practically, the average height of the water as it

would be determined from a very long record. The half-tide level is the

average of any pair of successive extrema. The mean daily level averages

the heights over a day, the mean monthly level over a month, and the mean’

yearly level over a year. The heights of these levels all differ from

each other but their differences are usually small. Mean daily levels

may differ among themselves by 1.0 to 1.3 feet; mostly because of meteoro-
logical differences. The same is true for mean monthly levels. The mean
vearly levels show a variation of the order of a few inches and are usually
guite close to mean sea level. Marmer (1951) is devoted to the methods

of determining fixed reference levels for tide measurements.

The study of mean yearly levels for a place can be guite
interesting. They often show long-term general variations in the sea level
which can be related to climatological changes. They may also show tecton-
ic movements of the earth's crust, i.e., rising or sinking of the land to
which the gage is attached.

The tidal curve with which we began, Fig. 1.02-1, is not re-
presentative of conditions everywhere. A particular place may have a semi-

diurnal tide with two high waters and two low waters in a bit more than



ve a diurnal tide with only one hich water and one
Yo +n a loose way the harbors of the world can be arranged in
four c .sses:

(1) Harbors with regular semidiurnal tides: These harbors have two
high waters and two low waters each day. The two hichs and the two lows
eare zbout of the same heights and they are evenly spaced. New York, Brest,
indeed, nearly all the harbors along the east coast of the United States
and in Europe belong to this class.

(2) Harbors with diurnal inegualities: These harbors have semi-
diurnal tides but the heights of the two high waters may be markedly un-
egqual. So may the two low waters. Further, the spacing of the highs and
lows may be guite uneven. Many of the harbors of the Indian and Pacific
Oceans, including specifically Saigon, belong to this class. To distinguish

the highs and lows of any one day from each other we use the terms "higher"

and "lower" as shown in Fig. 1.02-2.

W e e——— HIGHER HIGH WATER
MEAN % ——————— LOWER HIGH WATER
SEA AR HIGHER LOW WATER
tEVEL :
——————— LOWER LOW WATER
g |
| 24 MR L

Fig. 1.02-2. Tidal Curve for a Harbor with a
Diurnal Ineguality.

The order of succession of high and low waters is called the seguence of
the tide. It méy have any order but for a particular harbor, whatever it
is, it is always the same. Figure 1.02-3, page 8, shows some -possible
sequences.

(3) Barbors with mixed tides: In harbors with mixed tides one ob-
serves successively in the course of a fortnight two high waters and two
low waters a day and then a period with a single high water and a single

low water in a day. Tides of this class are very freguent in the Asiatic
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Fig. 1.02-3. Possible Seguences of the Tide.
archipelago, in Indochina, near the coasts of Siberia, and in Alaska. They
are also found occasionally in the Atlantic as in Fort de France, Martinique.

(4) Harbors with diurnal tides: Harbors of this class have only one

high and one low water a day and are rather rare. Examples include Tonkin,
Dason in Indochina, Bangkok in Siam, St. Michael, Alaska, and Copenhagen.

This classification is not comprehensive. For instance, in
Tahiti the tide occurs at just about the same time every day and is called
a solar tide. At LeHavre and Southhampton there is a double high water at
each tide while at Portland and the Hook of Holland there is a double low
water.

In any one harbor the tidal range varies systematically increas-

ing, priming, during 7 days to a maximum, spring tide or springs, then de-

creasing, lagging, during the next 7 days until it reaches a minimum, neap

tide or neaps. The spring tides are associated with the conjunction or

opposition of the sun and moon, syvzygy, full and new moon, while the neap
tides correspond to guadrature when the sun and moon are at 90° to each
other, half moon. While the tide is lagging strands of sea weed are left
in rows on the beach by the high tides as each high water fails to reach
as far up the beach as its predecessor. These lines are erased again as
the tide primes. The point reached by the highest high tide is the high
water mark. In harbors with semidiurnal tides springs usually follow

syzygy by one or two days called the age of the semidiurnal tide. Neaps

lag guadrature by the same amount. The strongest spring tides of the year
take place near the eguinoctial syzygies, spring and azutumn, when the sun

and moon are most nearly in line. Thev need not occur exactly at these
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lag by as much as two months.
i harbors with semidiurnal tides it is customary to refer
tidal zainges to the mean equinoctial spring tide range. The variation can

be quite remarkable. For example, at Brest we have:

Range Per Cent of Mean
Eguinoctial Spring
Tide Range

Extraordinary eguinoctial spring tides 120
Mean eguinocital spring tides 100
Mean spring tides 24
Mean tides 70
Mean neap tides 45
Extraordinary neap tides 20

The French iide tables give similar coefficients for Brest for each day of
the year. These can be used all zlong the French coast without noticible
error.

It may be of some interest to see what the extreme tidal ranges

are. The fifteen greatest are listed in order in the following table:

Country Place Mean Spring Range
(£t)
Canada Bassin des Mines (Fundy) 44.6
Canada Frobisher Bay _ 44.6
England Severn River 43.0
France Mont-St. Michael 41.3
Patagonia Magellan Strait (east) 39.0
Siberia - 37.7
mustralia  Collier Bay 361
China Rambler Isle 34.1
Canada Kotsoak River i 1 N
Alaska Sunrise 33.1
Mexico Rio Colorado 31.5
Brazil Maraca Isle 29.9
Corsica Masamplio 29.9
Bustralia  Mangrove Isle 29.9

Indies Banhagar 28.5



These extreme tidal ranges generally occur at the heads of bays or large
estuaries where the tide is amplified by resonance; much a&s a sound wave
is resonated in an organ pipe of suitable dimensions and shape. You will
notice that Africa with its smooth coastline is absent from this list. On
isolated oceanic islands the tide seldom exceeds 1.6 to 2.0 feet. In
closed seazs the tide is hardly felt.

On pages 11 through 14 extracts from "Oceanographic Atlas of
the North Atlantic Ocean. Section I. Tides and Currents." (NAVOCEARO
Pub. No. 700, 1965) are shown. These are characteristic tide curves for
the East and Gulf coasts of the United States and for the Caribbean. Each
curve covers 17 days and is keyed to the phases of the moon. They are
worth considerable study.

The curve for Charleston, #6, is typical for the entire Atlantic
coast and the Bahamas. I find a tendency among students (and others!) to
feel that whatever the tide was where they grew up is the way the tide is
everywhere. These curves should help you get that out of your system.

Key West, #7, alternates between tvpe (1), days 1-5, and type (2}, days
7-14. Pensacola, #8, is type (4). The curve for Reykjavik, #19, was in-.
cluded here beczuse it shows springs and neaps so clearly. You should try
to find examples of the phenomena described by the terms we have introduced

in these curves.

1.03. Gravitation and Gravity.

Newton's law of gravitation says that two masses, my and m, separated by
a distance, r, attract each other with a force, F, which is directly pro-
portional to the product of the masses and inversely proportional to the

square of the distance between them. In other words,
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v 2
{mlmz/r )

Y = 6.67x10"1 g'lcmasec"2

is the universal gravitational constant when my and m, are measured in
grams and r is measured in centimeters.
Iif my is unit mass and we use m, £ m, then the gravitational

force per unit mass is
F = v (m/x?) §

At the earth's surface the gravitational acceleration, = de-

fined as the force exerted by the earth's mass on a particle of unit mass is
- 2y = ~p3 2
9 Y:ZL{mi/Ii ) = y2 g(pi/ri )

where £ is unit length and p is density. With p in g cm™? the unit of & is
cm. The swmation is to be extended throughout the earth's volume. If the

earth were a perfect sphere of mass Me and radius a, we could write
2y = 2
M E. 2 Mg .
g( 1/ i ) e/

This amounts to acting as thouch the entire mass of the earth were concen-—
trated at its center from which our unit mass is separated by a distance a
equal to the earth's radius.

Sadly enough, the earth is not
a sphere. Due to its rotation it bulges
at the eguator and a better approximation

to its shape is an ellipsoid of revolu-

tion with the major axis in the eguatorial

plane. If a is the equatorial radius

(semi-major axis) and b the polar radius
(semi-minor axis), then the ellipticity,
e, of the earth is i Fig. 1.03~-1

e = (a - b)/a .

Naturally, measurements of e made in different places give different values.

The figure of earth really isn't exactly an ellipsoid of revolution.



In practice, e is determined by very carefully measuring the length of an
arc along a meridian and the angles made by the verticals at the ends of
the arc. From these data, on the assumption that the zrc along a meridian
is 2 segment of an ellipse, a and b can be computed and from them the ec-
centricity. As one might expect, measurements in different places give
different estimates of e. Each country tends to use the value that best
fits its own geodesy. The International Spheroid of Revolution uses e =
1/297. The Clark Spheroid (United States) uses e = 1/293. 1In general,
the estimates range from 1/300 to 1/2%90.

For an elliptical section the gravitational "constant,™ 9
isn't constant but a function of latitude. Toward the poles a unit mass
on the earth's surface is closer to the earth's center than it is at the
equator and = is a function of latitude.

If the earth were at rest, this would be the whole story. It

isn't. Since the earth rotates we must further modify 28 to include the

centrifugal force which acts against gravitation. The centrifugal foxce

is given by r
) Fc = w?R \gi\
vhexe w = the rate of angular rotation, T
R = cosgp
ol ¢ = the latitude. Fig. 1.03-2

Fc is greatest at the eguator where R = Rm“x = a and ¢ = 0 so that cos¢ = 1.
It decreases to .zero at the poles where R = 0 and ¢ = 90° which makes coso
= 0 as well.
When the gravitation, the ellipticity, and the centrifugal

effects are combined we get the apparent gravitation which, by definition,
is the gravity, g. Observationally, the components of gravity are insepar-
able. On the eguator g = 978.05 cm sec™?. At the poles g = 988.07 cm sec™2"
WARNING: Gravitation and gravity are not the same thing. I have seen z2l-

together too many students foul up their oral examinations by

failing to make the distinction between them. A word to the
wise ... .
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ravity ction of latitude, a number of empirical eguations
ne. *n set up to describe the vafiation. The most commonly used is
Clairz.v's formula:

g = 978.05(1 + 0.0053sin2¢)

where ¢ is the latitude. Obviously, Clairaut's formula uses the value of
¢ at the eguator and adds a correction term. ZAn alternative formula by
HEelmert does the same sort of thing but uses the value of g at latitude
45° as the base.

In spite of all this, one needs to go only a little distance
away from the surface of the earth before earth behaves substantially like
a point mass. Consider two unit masses,
one on the eguator but not rotating with "
the earth and the other at the pole. I

go I 3
Now move them away from the earth radial- :\\T““Hmhuh_h___‘____‘
1 1
ly. 1If you plot g, as a function of dis- t !
0] R
tance from the earth's center you get / \ s

POLAR RAD. b  EQ.RAD.
something that leoks Iike pig. 1,05-3, & CC-An BADB  EQ.RAD.n

The two curves merge very rapidly after Pig: 1:03-3

which the earth is indistinguishable from

a point mass, i.e., you can't tell from a knowledge of the curve whether
you are moving out on a line with the pole or on a line in the equatorial
plane. We treat the earth as a point mass in connection with the forces
produced by the sun and moon. These are the principal extraterrestrial
forces but we will have to make an argument for this later.

There are other terrestrial forces on a particle on the earth's
surface. The earth is not a true ellipsocid of revolution and mountain
ranges over a few miles high and unusually dense slugs in the earth's
crust, e.g., 103&5 of ore, produce local anomaliés in g. These result in
a permanent deformation of the sea surface. However, since they are per-

zrnent deformations, they need not be taken into account in studying a time

E|

h

ependent process such as the tide.



From here on out we will consider the earth tec be a sphere.
Let's take & look a2t the geometry. Consicder any point P on the surface of

the earth, Fig. 1.03-4.

Fig. 1.03-4

Let E be the mass of the earth concentrated at its center,
C be the mass of any celestial body concentrated at its center,
e be the distance between centers,
r be the radius of the earth,
p be the distance from the center of the celestial body to P,
and % and © the angles indicated in Fig. 1.03-4.
The attracting force of C on E is directed along the line of centers, CE, -
which is of léngth e. The attracting force of C on P is directed zlong the

line CP with lencth p. The attraction of C on a unit mass located at E, Ag

r
is
= 2
AE v{C/e<)
where vy is the universal gravitational constant. Similarly, the attraction

of C on a unit mass located at P, AP' is

A, = v(c/p?)
We may consider that r, e, 8, and ¢ are known from geodesy and celestial
mechanics. Then, using the law of cosines with

2 = e2 4+ r?2 - 2er[cosf] .

P

A (yc)/(e? + r2 -~ 2er[cost])

P

This is directed along the line PC. The component parallel to the line of
centers, CE, is obviously

{(yC) /(e? + r2 - 2er[cosB))}cosd



T

s viewed from a celestial body will subtend a max-

. le, ¢__ . and for any point of earth we have 0 £ |s]| £ ¢
mex ‘max

1.03-5. The moon is our nearest celestial neighbor and so has the largest

r Big.

@ max

Fig. 1.03-5

¢max' ¢max = lo. Consequently, for the moon 1 2 cos$¢ 2 0.99985 and the
component of AP parallel to the line of centers, CE, differs from the full
force along AP by at most 0.02%. For all other celestial bodies the differ-
ence is even smaller. Thus, the discrepancy is always so small that we
frequently don't bother to distinguish between the two. However, in very
precise work you may want to retain the distinction and the component of

AP, as we have expressedit1 has an explicit dependence on both ¢ and 8.
This is not really necessary since ¢ and € are functionally dependent. The
component can be expressed entirely in terms of 6 by solving for ¢ = £(6)
and substituting to get an expression in 6 alone.

It is often useful to measure the length of the line of centers
in units of the earth's radius, e/r. For instance, the center of the moon
is approximately 60 earth radii from the center of the earth. However, in
the course of our analyses we will often find that it is the reciprocal of
this distance, r/e, which appears in our equations. The parameter r/e has
been named the parallax. The parallax is a sort of upside down measure of
distance to a celestial body in units of the earth's radivs. The moon's
parallax is r/e = 1/60. The sun's parallax is r/e = (4x10%)/(92x10%) =
4/92,000 = 1/23,000.

With the forces acting one might expect the two bodies to ap-
proach each other and they would were it not for the counterbalance of the

centrifugal force produced by the motion of the moon about the earth in its



orbit:
R wl= "(C/Rl2

Rctually, the centrifugel force is high-
er on the far side but negligibly so.
Cur main problem is to determine the

differences of the forces acting on

points of the earth's surface. We
have Fig. 1.03-6

A, = B, = (yC)/(e? + r?2 - 2er[cos8]) - (yC)/(e?)

Notice that the first term on the right-hand side is the approximate form

cince the factor cos¢ has been omitted. This may be rewritten as

. o E -
By = By = Ez-[l - 2(x/e)cosb + (x/e)* 1]

e

2(r/e)cost - (r/e)? y
1 - 2(x/e)cos6 + (r/e)*

e
Notice the appearance of the parallax as a parameter.
We want to find the values of the parameters that can give
appreciable differences between AP and AE. For the moon r/e = 1/60 so
that r/e £ 1/60 for any celestial body. The extreme value of 8 gives

cosg = 1. With these values

A, - A = %%Ei/i} = 2yr(c/e?) ;

For any celestial body, 2yr is a constant. Only C and e are different for
different celestial bodies so that C/e3 is the critical factor. It pro-
vides us with a means of comparing the effects to be expected from differ-
ent celestial bodies. Take the obvious four for a check: the moon, the
sun, Venus (the nearest planet), and Jupiter (the largest planet). Use the
moon as a unit of measure. The numbers for comparison are shown in the
table on page 21. While the sun has a mass 27 million times as great as
the moon, the mass enters only linearly while the distance enters in cube
so that the force exerted by the sun is less than half that exerted by the

moon. The nearest fixed stars have masses comparable to that of the sun



iy ‘=88 Minimum Ratio C/93
j_ i Dis::ea)nce " AP - AE
M-on L it 1
Sun 27.1x10° 389 4.6x10"1
Venus 66 108 5x10-5
Jupiter 26x103 1630 6x1076

but the distances, 4.3 light years for the nearest as against 7 light min-
utes for the sun, are so enormously creater that their effect is negligible.
Even the planets, e.g., Venus and Jupiter, while closer, have effects many
orders of magnitude smaller than the moon's. These calculations support
the assertion made earlier that as tide producing bodies only the moon and

the sun need be considered.

1.04. On Astronomy and Time.

1.04.1. The Sun and the Earth.

Rotation: The rotation of a beody is a motion about an inter-
nal exis, e.g., the earth's daily rotation on its axis.

Revolution: The revolution of a bedy is a motion about an ex-
ternal axis, e.g., the earth's yearly motion around the sun.

Bccentricity: The eccentricity of an

ellipse is one-half the focal distance divided by

the semi-major axis,

0
—N
F

€ = c/a = Va? - bz/a

Ellipticity: The ellipticity of an Fig. 1.04.1-1
ellipse is the difference between the semi-major and semi-minor axes divid-

ed by the semi-major axis, e = (a - b)/a.
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The orbits of the planets are nearly elliptical with the sun
211 the orkits lie very nearly in one plane. The

= 1/60.
The dif-

located at one focus.
eccentricity of the earth's orbit is 0.017
The terms perihelion, aphelion, and line of zpsides can best
=

be uncderstoon from Fig. 1.04.1-2 vwhich is greatly exagerated.
ference between the distances of the earth to the sun at perihelion and

aphelion is only about 3.4%.

SUN

‘L.”#EVOF §§ﬁ%i§3
F' APSIDES 11\\:_"/5

\
PERIHELION

APHELION
Fig. 1.04.1-2
A more refined

The earth's mean distance to the sun is, by definition, one-

half the line of apsides, i.e., it is the semi-major axis.
distance measure might be secured by integrating around the orbit but it

wouldn't turn out to be much different.
Viewed from outside the system, the earth rotaztes from west to

east on its axis while revolving from west to east about the sun, the two

motions being like a set of gears, Fig. 1.04.1-3

SUN
E
jz ’ EARTH
W
It moves

Fig. 1.04.1-3

The earth does not travel uniformly on its orbit.
faster when it is nearer the sun and more slowly when it is farther away
in accordance with Kepler's Law which, incidently, is cderivable from Newton's

Keppler's Law says that a planet moves always in such a way that the

Laws.
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‘n sweeps out ecual areas in egual times. In Fig.

NEs AR B A
T Pafige Saky SES B, B,
traver . In ecgual time intervals and

have guit: different lengths. The

shaded areas, however, are all egual.

This conforms to the recuirement that

gravitational attraction be balanced

by centrifugal force: - A

O, vC/R2 . Fig. 1.04.1-4

As R increases, the right member (gravitation) decreases; and in sguare.
The left member (centrifugal force), on the contrary, grows with R; and
linearly. The eguality (balance) would be destroyed if the angular velo-
city w did not decrease sufficiently to restore the eguality.

If a line is drawn through the center of the earth perpendicu-
lar to the ﬁlane of the earth's orbit, the earth's axis makes an angle of
23927' with it. Except for a very slow wobble, this angle is maintained
at all times as is the orientation of the axis.

The description of the motions of the earth and sun has so far
been tacitly heliocentric; a view of things that you may have been taucht
somewhere or other waé true with a capital "T." 1If so, you can forget it.
Truth doesn't reside in a set of coordinates. For tides, life becomes
simpler if we revert to Ptolemaic astronomy. From here on in the earth is
a small sphere situated at the center of the universe. That universe con-
sists of a celestizl sphere on which the fixed stars are hung. The earth
is at the center of the celestial sphere and the axes of the two coincide
so that the North Celestial Pole is directly above the North Terrestrial
Pole. The celestial eguator lies directly above the terrestrial eguator.
the earth is stationary but the celestial sphere rotates evenly on its axis
from east to west completing one rotation in something around 24 hours.
The planets, which include the sun and the moon, share this movement of the
celestial sphere but, unlike the stars, which remzin permanently fixed in
position on the celestial sphere, wander about with motions of their own.

During the course of a year, for example, the sun is seen against different
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parts cf the celestial sphere zt cdififerent seasons. The path which it fol-
lows on the celestial sphere is a great circle called the ecliptic &nd is
marked on the celestial sphere by the signs of the zodiac. The ecliptic
intersects the ecuvator in two points called the eguinoctial points. The
points where it departs most widelv from the ecuator azre called the solstices.
The ancle between the ecliptic and the eguator is 23°27'. The way it looks

is shown in Fig. 1.04.1-5.

NORTH CELESTIAL POLE

AUTUMNAL
EQUINOX

SUMMER
SOLSTICE

ECLIPTIC

CELESTIAL
EQUATOR

WINTER 2327

SOLSTICE

VERNAL EQUINOX
()

Fig. 1.04.1-5

The celestial sphere goes around once a day (more or less)
carrying the sun with it. The sun meanwhile drifts slowly backward along
the ecliptic making one circuit in a year. When the sun crosses the equa-

tor from south to north we have the vernal eguinox. When it reaches its

maximun elevation in the northern sky, the summer solstice. When it re-

crosses the egquator from north to south, the autumnal eguinox. 2And when it

declines to its lowest point in the sky, the winter solstice. It is to

these phenomena that the first day of each of the seasons, as noted on the
calender, refer.
The eguinoxes are used as reference points in one set cf celes-

tizl coordinates, Fig. 1.04.1-6, page 25. This is the coordéinate set



.tion. Consider a star
NORTH POLE
e Let a greest circle through X
and th: orth pole intersect the eguator at A.
This cir: .e throuch X is called an hour cir-

cls. I hLave indicated the vernal ecuinox by

a stylized ram's head which is the old sym-
bol for the constellation Aries, .- In

Ptolemy's time the vernal equinox was locat-

ed at the first point of Aries but not now.
Of this more later. The distance TA is the Fig. 1.04.1-6

right ascension of the star at X and the distance AX is its declination.

These two numbers specify its position relative to the eguinoctial point.
Another system of coordinates passes the great circle through
X perpendicular to the ecliptic instead of through the pole. In this sys-

tem specification of TL, the celestial longitude, and XL, the celestial

latitude, locates X. Since the angle between the celestial eguator and the
ecliptic is a constant 23°27' one of the systems easily converts into the
other. There are other systems in use which are relative to the observer
but we need not discuss them here.

It was previously stated that the earth's axis maintains its
orientation except for a slow wobble. Figure 1.04.1-7 shows the heliocentric

picture while Fig. 1.04.1-8, page 26, shows the geocentric version.

PERPEND
_] PERP ¥yLAR

\I
———"0ORBITAL
PLANE

EARTH'S POLAR AXIS

—

PERIHELION APHELION
LT A . Ve
EARTH

Fig. 2.04.1=7



NORTH CELESTIAL

ECLIPTIC POLE

POLE

PRECESSION

ECLIPTIC

CELESTIAL
EQUATOR

Fig. 1.04.1-8

The effect of this motion is to mzke the egquinoxes drift slowly westward,
i.e., the ecliptic, while maintaining its angle with the equator, moves

relative to it. It is to this phenomenon that the term, precession of the

equinoxes, refers. The period of the precession is very long; about 26,000
years. This corresponds to a shiit in the egquinoctizl point of about 50"
of arc per year. When Ptolemy first worked out his astronomy (c. 100 A.D.)
the vernal eguinox was located at the first point of Aries.

I would like to digress a bit here on the zodiac. The zodiac
is a band on the celestial sphere 16° wide and centered on the ecliptic.
It marks the region of the sky in which the sun, moon, and planets are al-
wavs found. Hundreds of years before Christ the Babylonian astronomers
grouped the stars along this band into 12 constellations each occupying 30°
of arc and gave them animal nzmes (more or less)--hence the "zo." Each
sign of the zodiac was divided into thirty points. In other words, the
ecliptic on the celestial sphere was divided into what we now call degrees.
The signs of the zodiac reading from Aries (which marked the spring eguinox
in Ptolemy's time) in the order in which the sun moves through them are
Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Saggitarius,

Capricorn, Aguarius, and Pisces.



J years since Ptolemy, at 50" per year (0.013890),

. O . " i s
PR _iinox has moved about 26~ and is now at the fourth point of
Pisces This fact is well known to astronomers but seems to have escaped
the-astrologers who make horoscopes entirely. They still work from the

th

irs

point of Aries.

ol

Enother slow motion is that of the line of apsides. It ro-

Hh

tates eastward at about 11" per year. The relative motion of precession
and the line of apsides is about 1'0l1" per year so that the period of the
double motion is about 21,000 years.

These slow motions are not very important for tides but they
must be taken into account in any long range "geological scale" study,
e.g., a long range study of the fluctuations in solar radiation received
by the earth. At present, perihelion occurs in December within 9 days of
the winter solstice. This means that the northern hemisphere is now enjoy-
ing optimal. conditions of solar radiation. The extremes of insolation pro-
duced by the height of the sun in the sky are counterbalanced by the dist-
ance to the sun. The worst conditions for the northern hemisphere will

occur when aphelion coincides with the winter solstice.

1.04.2. Time.

One of the most important features of the celestial movements so far as
tides are concerned it that they determine the periods of the compenents
which make up the tide. The tide is a forced wave and the celestial bodies
provide the forcing function. The three most important periods are the
year, assoclated with the earth's revolution about the sun, the lunar month,
associated with the moon's revolution about the earth, and the day, associa-

ted with the earth's rotation on its axis.

To measure anything you need a reference point. Relative to

you, as an cbserver standing on a meridian of the earth, a celestial bodv



is in upper transit when it is direct-

OBSERVER4¥ 1y

ly ebove your meridian. Upper trans-

. " O o
its are particularly important for UPPER ™ ~ LOWER
TRANSIT R TRANSIT

tides. For example, crude tide tables
can be constructed reckoned from the

last upper transit of the moon. When

the celestial body is directly opposed
to uvpper transit it is said to be in Fig. 1.04.2-1

lower transit.

The day: The day comes in three fundamental sizes depending on

the reference point:

Reference Point Definition Name

Vernal eguinox The time at a local meridian sidereal day
from upper transit to upper
transit of the vernal equinox

The sun The time from meridian trans-  solar day
' it to meridian transit of the
sun
The moon The time from meridian trans- lunar day
’ it to meridian transit of the
moon

There is a slight foul up in applying the term "sidereal™ to a day measured

from the vernal eguinox. In its derivation the word "sidereal" means

"constellation," i.e., it refers to the fixed stars. The vernal equinox,

as we have seen, has a slow motion éf its own relative to the fixed stars

so that yvou don't get guite the same value from it as you would using trans-

its of Sirius, for instance. Such a day would be a true sidereal day.

However, it isn't used and differs from-the sidereal day by only about 0.01

sec/day. In terms of civil time, the sidereal day comes out to be 23h 56m

04.1s. Whenever the angular speed of the earth is reguired in Coriolis

acceleration calculations, and such like, it is this value that is intended.
The length of the true solar day is another kettle of fish.

As we have seen, the speed of the earth along its orbit varies with its

distance from the sun. This means that the amount by which the sun lags

the return of the celestial sphere ciffers at different times of the year
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egnd, in conseguence, its time from transit to transit varies. In the
course of a year this variation amounts to as much as 48 sec. The range of
the solar day is 23h 59m 41s to 24h 0OOm 29s. The differences are cumula-
tive so that the average occurance may get out of whack with the mean solar
day by as much as 16 minutes. The relation between mean solar time and

apparent solar time is known as the equation of time. It is frecguently

graphed on terrestrial globes where it appears as an elongated "figure 8"

called the analemma. The mean solar day is the average solar day zand is

the basis of civil time.

N.B.: When hours and days are used without specification civil hours

and mean solar days are intended.

Even if the sun were to move evenly on the ecliptic, the solar day would
still vary since the arc through which it moves is carried by the celestial
sphere. This means that the arc must be projected on the eguator. For

example, the situations near eguinox and near solstice are shown in Fig.
1.04.2-2,

NEAR EQUINOX 1 8<y NEAR SOLSTICE:
~ECLIPTIC ==~ === "o
ot ! *.
....'....--1_“ EQUATOR - rl_...--
¥:ECLIPTIC ARC _ BIPROJECTED_EQUATOR ARC

Fig. 1.04.2-2

A similar situation exists for the lunar day but it is much
more erratic than the solar day. It may vary as much as 15 minutes from
the mean lunar day. The lunar period is of the utmost imporitance for tides.
The average lunar day is 24.84 hours as compared with a mean solar day of
24 hours. We will have more to say about the moon later.

The year: The year also comes in various sizes. The'trogical
year is 365.2422 mean solar days in length. It is the time taken for the
sun to make one round of the ecliptic from vernal eguinox to vernal equinox.
In other words, it represents one complete cycle of the seasons and is some=-
times called the year of the seasons. It is the year the common calender

tries to keep in order.



30

The Julian calender introduced in 46 B.C. by Julius Caesar
uced a year of 365 days divided into menths as we do today. Every fourth
vear was a leap vear. This gives a year that is zbout 11 minutes too long
on the average. By 1582 A.D. the vernal equinox had dérifted 10 days and
Pope Gregory XIII-introduced the Gregorian calender now in general use. He
dropped ten éavs to rectify the vernal ecguinox making Octcber 15 come the
day after October 5 and arranged that of the years divisible by 100 only
those also divisible by 400 should be leap years. The Julian calender was
otherwise unaltered. Great Britain and her colonies did not adopt the
Gregorian calender until 1752.

The number of sidereal days in a tropical year is exactly one
more than the number of solar days, 366.2422 sidereal days, because, in the
course of a year, the sun slips back along the ecliptic one full turn which
must be made up by the celestial sphere.

The year with respect to a fixed star is the sidereal year. It

is 365.2564 days. The difference between the tropical and the sidereal

years matches the 50" per year of precession.

WARNING: Here comes the confusion!
The sidereal year is taken with respect to the fixed stars.

The sidereal day is taken with respect to the vernal eguinox.

The tropical year is taken with respect to the vernal eguinox.

Watch your step!!!

Another year, the anomalistic year, taken with respect to the

line of apsides from perihelion to perihelion is 365.25%6 days in length. .

1.04.3. The Moon.
We've ducked the moon as long as possible but I'm afraid that the lunacy
must now begin. The moon's orbit about the earth is anzlogous to the orbit

of the earth about the sun. It is an ellipse (mainly) with the earth at
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one focus but, because of the gravitational effect of the sun on the moon,
it is much mecre deformed, i.e., it has many more ancmalies. The eccentri-
city of the moon's orbit is 0.055. The earth's is 0.017. The motion of
the moon in its orbit is, like the earth's about the sun, from west to

east, Fig. 1.04.3-1.

PERIGEE /= LINE OF
APSIDES
MOON

WEST _ EAST

APOGEE

Fig. 1.04.3-1

The plane of the moon's orbit is inclined to the plane of the earth's orbit

at a constant 5°. The heliocentric picture is shown in Fig. 1.04.3-2.

YEAR %

WEST

Fig. 1.04.3-2

The geocentric version of the same thing is shown in Fig. 1.04.3-3, pace 32.
The distance from the vernal eguincx to the node is a slowly changing value
with a period of about 19 years. The moon covers its orbit in a month
(more or less) just as the sun covers the ecliptic in a year (more or less).
An attempt at precise definition of the month results in the ssme sort of
mess as the definition of the year. Different lengths result from different
reference points.

Three commonly used reference points for definition of the month
are: (1) conjunction with the sun, (2) conjunction with the vernal eguinox,

and (3) conjunction with a fixed star. Two celestial bodies are said to be
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Fig. 1.04.3-3

in conjunction when they have the same right ascension, i.e., when they are
located on the same hour circle. The first reference point gives you the

synodical month of 29.5306 * 0.5 days, the second the tropical month of

27.3216 * 0.3 days, and the third the sidereal month of 27.3217 days. These

values are averages taken over a year.

Other kinds of months arise from the motion of the nodes and the
line of apsides. The movement of the nodes relative to the ecliptic is
called the regression of the nodes and is analogous to the precession of the
eguinoxes. It causes a westward displacement of the nodes with a cycle of
18.61 years. This amounts to about 3' per day. The motion changes the dec-
lination of the moon but in tidal work we usually take the moon's declina-’
tion as constant during a year and then jump it to the next value. This is
rather hairy since the change comes to 16° per vear. The saving feature is

that the terms in which it enters our calculations are not very important.



The fourth kind of month, then, is the nodical month of 27.2122 days which

represents a complete revolution with respect to the celestial latitude of

the node.

During the 19-year cycle or the regression of the node the
moon's maximum declination varies from 23°27' + 5%s' = 28%36' to 23%27' -
5°09' = 18°18' which has quite an effect on the tides.

Znother long-period mection which produces yet another kind of
month is the eastward motion of the line of apsides with a period of 8.85

yvears. This gives us the anomalistic month of 27.5546 days measured with

respect to the moon's return to perigee.

Every last bleeding one of these months is important for tides.
For example, take the anomalistic month. During this month the moon goes
through one complete cycle of distances from the earth. Since the ellip-
ticity of its orbit is 0.055 this means that the variation experienced is
11% of the mean distance and, since the distance enters the tide producing
forces in cube, a variation in force of the order of 30% is to be expected
with a period of one anomalistic month.

The speed of the moon along its orbit follows Kepler's Law and,
since its eccentricity is greater, so zlso are the variations. In addition,
the orbit itself changes shape beczuse of the gravitational attraction of
the sun. The lunar day varies from_the average by as much as 15 minutes.
The last time I noticed (which was a long time ago), astronomers had piled
up 51 anomalies trying to keep track of the irregularities in the moon's
motion. Because of these irregularities tide tables can not be extraéolat—
ed over long periods without serious error.

The phases of the moon~-new, full, and half--are optical pro-
perties and, as such, of no interest in tides. However, they do mark rel-
ative positions éf the sun and the moon, Fig. 1.04.3-4, page 34, and the
positions are important. The moon is in opposition to the sun’at full mocon
and in conjunction with the sun at new moon. At half moon it is in quad-
rature.

At conjunction and opposition the hichest or spring tides

occur. At guadrature the tidal range is at its lowest and neaps occur.
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Fig. 1.04.3-4

The mocn also rotates on its own axis, the period of the ro-
tation being just egqual to the period of revolution so that the same face
is always turned toward the earth.

This account barely begins to scratch the surface of the mo-

tions of the sun and moon but I think it will be enouch for our uses.

1.05. The Tide-Generating Forces.

We have been talking about the tide-generating forces in a very loose way.
Our next job is to be more precise about them so that we can write their
eguations in terms of the astronomical parameters we have just discussed.
The mathematical eguations for the tide-generating forces due to the sun
and moon express the combined effect of forces arising from:

(1) the rotation of the earth,

(2) the revolution of the moon azbout the earth in an orbit inclined

to the earth's equator, and
(3) the motion of the earth about the sun which is also inclined to

the equator.
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The first step is to account for the "double bulge," Fig. 1.05-1.

EARTH

__...__—u—-nn-mw@-——f\&OON

WATER
Pig. 1.05~1

Ve have noted that it seems reasoneble that there should be a bulge in the
hydrosphere in the direction of a distant attractive force. What seems un-
reasonable at first blush is that thexe should be a second bulge away from
the direction of the attractive force. Unreasonable as it may seem, the
double bulge is there. The "unreason" comes from taking too parochial a
view of the earth-moon system.

We have said that the moon revolves about the earth in its orbit and
that this revolution developes a centrifugal force which balances the grav-
itaticnal attraction so that the earth and moon maintain their distance in-
stead of falling into each other. The statement is not strictly accurate.

The moon does not orbit the earth as a center. Both earth and moon, con-

sidered as a system, rotate about their common center of gravity.

Consider the earth-moon system alone for a start. Since the
mass of the earth is roughly 80 times that of the moon, the center of grav-
ity of the system lies within the earth and the period of rotation about
this center is one lunar month. Simplifying considerzbly, the distance be-
tween centers is 237,000 miles and the position of the center of gravity

can be calculated from the Law of Levers, Fig. 1.05-2.

EARTH 237,000 mi MOON
l % & 237,000 - x l
Gl
[80M] Eil
Fig. 1.05-2

80Mx = M(237,000 - x)
79x = 237,000



Thus, the distance of the common center of cravity f£rom the earth's center
is
x = 3000 mi
The radiuvs of the earth is approximately 3850 miles.
Simplify the situaticn further by stopping the diurnal rotation
of the earth. This means stop zll rotaztion of the earth. The meotion under
consicderation is not that of a rigid rotating dumbbell. Consider Fig.

1.05-3.

orbit of center of earth, O

- ‘orbit of P

earth's surface

Fig. 1.05-3

Let 01 be the common center of gravity and O' and O" be the positions of
the earth's center O at times t' and t" during a rotation of the system.
Let P be a point on the earth's surface and P' and P" its positions at times
t' and t". Then P' and P" lie on a circle with center at Pl which is the
orbit described by P. It will have the same radius as the orbit described
by the center of the earth, 0. Thus, the radius vector of P will be para-
llel to the radius vector of 0.

Conclusion: P_.P' is parallel to 0,0' and P.P" is parallel to

1 1 1

OlO .

Warning: Valid only for no diurnal rotation.
Conseguence: The centrifugal force vectors at P and O will be
equal and their magnitude will be

wzrl/Tz time™! mass~!
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1]

where ¥, = the radius of the orbit of the earth's center O

and T

i

the period of the motion of the syvstem.
Clearly, the total centrifucal force acting on the earth must
be bhalanced by the total attractional force exerted by the moon. However,

they need not be, and are not, everywhere in balance in detail. There are

i)
Q
e
o)
rt

¢ of earth where the attraction is stronger than the mean value of the
attractive force sc that the attractive force is grezter than the centri-
fugal force. At points where the attraction is weaker than the mean
attractive force the reverse holds.

We define the tide-generating force at zny point P of earth as

the difference between the attractive force at P, AP, and that at the center
of the earth, AE' where attractive force and centrifugal force are exactly
in balance. Note that this exact balance is implicit in our calculation
for the system c.g.. If it were not true, it would make no sense to treat
the earth an.moon as point masses located at their centers.

As we know from Sir Isaac, the attractive force between two
mass particles varies directly as the product of their masses and inversely
as the square of the distance between them. The force is exerted along

their line of centers. In Fig. 1.05-4 let O and C be the centers of the

earth and moon.

Fig. 1.05-4

Remark: Use mean positions of the earth and moon. Or simplify in any way

you want to meke the motions circular and uniform.



Let UVU'V' Z the great circle cut by a plane through OC.
a £ the radius of the earth.
c T the distance from the earth to the moon. c = €0.26a.
T = the distance of a point of ezrth P from the moon, PC.
M £ the mass cf the moon.
E I the mass of the earth. E = 81.53M.
9 = the mean gravitational acceleraticn. g, = 980.6

c:m/sec2 at 450 latitude.
There is the usual hassel here over gravity and gravitation but for our
purposes
(1.05:1) y = go(az/E) =~ 6.67x10"8 dynes cm?/grams?
is satisfactory. Thus, the attractive force of the moon acting on a

particle of unit mass located at P is

. _ 2y B 19
(105421} A, = Y(M/r,®) = g (M/E) (a®/x %)
directed along PC and for unit mass located at O is
(1.05:2.2) A = YW/e?) = g (4/E) (a?/c?)

directed along OC.
Remark: This is something of a replay of our discussion in section 1.03.

By definition, the tide-generating force is the difference between vector
PO with magnitude given by (1.05:2.1) and vector OA with magnitude from
(1.05:2.2). Simple vector subtraction gives the tide-generating force.
The subtraction is particularly easy when P is at U or U' where the vectors
are in line. At U,

vP/a = VU/a = 59.26
and at U',

vP/a = VU,/a = 61.26 .
If yvou slug reasonable values into N/E and a/c, the tide-generating force
at U works out to

1.5><10"7(jO grams toward the moon
and at U' to

1.1OX10_7gO grams zwav from the moon.

Remark: Grams force--obviously.
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You can get an approximation for the tide-generating force at
V by multiplying AE by a/c, i.e., effectively, by the cotancent of angle
COVC which assumes that the component of the attractive force at Vv parallel

to A, equals A One gets at V and V' 0.56 10"7g0 grams.

5

For U £ P £V the size of the tide-producing force is inter-
mecdiate to the values at U and V., Similarly for the other zrcs. 2t U and
V the force acts vertically and there is no horizontal component. In be-
tween the force will always have nonzero components in the directions of
the local vertical and horizontal. t is the horizontal component which
produces the lateral motion which makes the tide. The vertical component
is just one more modification of earth's gravitation; at most of the order
of one ten-millionth of 9, (10'790} which is of no practical interest.

The horizontal component of the tide-producing force has been

named the tractive force by Docdson. It is zero at U, U', V, and V'. On

the hemisphere VUV' it lies in the earth's surface and points toward the
moon. The tractive forces at all points on the earth's surface lying in
any plane perpendicular to OC are equal in magnitude thouch not in direc-

tion, Fig. 1.05-5.

Fig, 1.085-5

Since the tractive force is zero at U, V, and V' it must have.some inter-
mediate maximum. The same is true for the other hemisphere except that the
tractive force is away from the moon. Figure 1.05-6, page 40, attempts to
suggest the distribution of tractive forces on the sphere rather than in

section as in Fig. 1.05-4.
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Fig. 1.05-6

So far we have not permitted our earth its diurnal rotation.
If now we permit rotation, the tractive forces at any point P will gener-
ally change continuously with time. Let PN be the north pole. Notice

that it doesn't coincide with V. Let Pl, P P. be a parallel of latitude.

255 .
The earth's rotation will move any point through the tractive field along
a parallel of latitude. This gives you the variation in tractive force ex-
perienced by any position. In Fig. 1.05-6 it increases from Pl to maximum

at P, and then decreases to P,. For a point at P_ the moon is setting.

2 3 3
After moonset the force reverses its direction until moonrise.

This whole argument goes through for the earth-sun considered
2s an isolated system. The chief difference is that the common center of
gravity is interior to the sun rather than to the earth.

Having disposed of the "double bulge" we can get along to ex-
pressing the tractive forces in terms of astronomical parameters. We will
want to resolve our forces into local horizontal and vertical components,

Fig. 1.05-7. From section 1.03 we have

(1.05:2.1) A, = (yC)/(e? + r?2 - 2er[cosh])
and
(1.05:2.2) A_ = (yc)/e?
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where AP is in the approximate form secured by deleting the factor cosé,
see page 19. Their vertical and horizontal compenents are:
L. 05:3.1, @)

YCcos[8 + ¢]) vyCein[& + ¢]

AP(V) = &% ¥ £Z - 2erlcost] 2 AP{H) T &2 + £Z - 2erlcost]
(1.05:3.3, 4)
_ YCcos[8] . 1y < YCsin[€]
AE(V) S i AE(B) = = Wi

Their difference is the tide-generzting force and we will use the notation

Fv = AP (v) - AE(V)

for the vertical component and
FH = AP(H) - AE{H)

for the hcorizontal component or tractive force. From eguations (1.05:3.1)

’ e cos[B + ¢] o
Lt B B i 2(r/e)cos (8] + (r/e)Z cos(8)]
and
y - YC sin([6 + ¢] e
(1.03:3) FH - EZ(l - 2(x/e)cos[8] + (r/e) < sanBJ] ;

It will be handy if we eliminate ¢ from eguations (1.05:4) and (1.05:5) and

express Fv and FH as functions of r, e, and 8. By the Law of Sines we have

sin[¢] _ sin[6]
r P
and by the Law of Cosines

p = /e + r2 - 2er[cos8)

so that

sl = - 551n[81 .

eZ + x2 - 2er[cos8]}

and

cos[é] = {1 - sin2¢}*
or in 2

B _ 5 sin <8

cosl¢] = (1 - (x/e) 1 - 2(x/e)cos[8) + (r/E)Z)

or _— 1 - (r/e)cos[8)

=11 - 2(x/elcos(6] + (r/e) <}t :
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Using the angle sum formulae irom trigonometry

Il

cos(® + ¢) cos€cos¢ - sinEsing
sin(f + ¢) = sinScosd + cosfsind

cosg [l = ({r/e)cosg]
{1 - 2(x/e)cosls] + (x/e)?}=

Ll

coes (6 + &)
_ ~ stnB[(xr/e)sing]
{1 - 2(x/e)cos(6] + (xr/e)?}%

cosg - (x/e)
{1 - 2(x/e)cosg] + (r/e)<}*

and
sing
{1 - 2(x/e)cos(8] + (r/e)l}s

Feeding all this back to equations (1.05:4) and (1.05:5) we get

I

sin(8 + ¢)

. o o YO cos@ - (r/e) _
(L9548) v %7({1 - 2(r/e)cos[6] + (x/e)?}3/% costel)

: _ yC sing .
Rlisall By gﬁ({l T S(z/eTcos 6] ¥ (/e 2372 ~ sinlel)

No approximations have been made so far from equations (1.05:2.i). In
(1.05:6) and (1.05:7) things are pretty messy. To get a useful result we
have to begin throwing stuff away. It is the denominator that gives the

trouble. Consider

1/{1 - 2(x/e)cos[6] + (x/e)2}3/2 = 1/(1 - x)%/2 g
This can be expanded in & Maclaurin series which converges in the region
x2 < 1.

(1 - x)73/2 = 1 + (3/2)x + (15/8)x2 + (105/48)x3 + ... .

e have shovn that the maximum value of r/e is 1/60. Thus, the maximum
value of

x 2(x/e)cosl8) - (x/e)?

must be not greater than

2(1/60) (1) + (1/60)2
x2 is certainly less than 1 and the expansion converges. Explicitly, in
terms of the harmonic functions when the higher oréer terms have been

suppressed
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(1.05:8) 1741 -~ 2(x/e)cos[B] + (x/e)2}3/2
= 1 + 3(xr/e)cost + (3/2) (x/e)2(5cos8 - 1)
+ (5/2) (r/e) 3 (7cos38 - 3cose)

The neglected terms introduce an error which is, at worst, less than 2x10-6.
Substituting (1.05:8) in (1.05:6) and (1.05:7) and neclecting
terms containing (r/e)" and higher powers, we have
(1.05:9) B =55 ((x/e) (3cos?6 - 1) + (3/2) (z/e)?(Scos?s ~ 3cos6)
+ (1/2) (x/e) 3(35cos"e - 30cos2p + 3))

and

(1.05:10) FH E% ((r/e)(3sinecose) + (3/2) (x/e)2(sind) (5cos2g - 1)

+ (5/2) (x/e)3(sing) (7cos3s - 3coss)] .

If the term in (r/e)3 were neglected, the maximum error that
could be introduced in Fv would be less than 6x10™% and in FH less than 1073
which differ only by about one order of magnitude. These are small errors
so we will throw out the terms in (r/e)3. Thus, after factoring out an
(r/e), (1.05:9) and (1.05:10) teake the forms
(1.05:11) B ™ %ﬁ;t[(Bcosze - 1) + (3/2) (x/e) (5cos3s - 3cosﬁ)]
and

(1.05:12)  F, = X5 (3sinscose + (3/2) (x/e) (sine) (5cos?e - 1))

Some books on tides toss out the (r/e)2-terms as well. However,
for the moon it is sometimes interesting to retain the (r/e)?2-terms as we
have done in ecuations (1.05:11) and (1.05:12). For the moon

r/e = 1/60 = 1.6x10™2
For the sun
r/e = 4.26x1073
so that we will never retain the (r/e)?-terms in dealing with the sun.

Sc far we have been drawing cur picture in two dimensions. We

must now extend it to three, Fig. 1.05-8, page 44. F_ lies zlong the line

v
EP extencded. FH lies in the intersection of the plane PEC with the plane
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Fig. 1.05-8

tangent to the earth at P. To specify this direction we use the azimuth A
which is the angle between the line of intersection of the meridian plane
and the plane PEC with the plane tangent at P. A is independent of the
height at which C appears in the sky. By convention, A is measured from
the north in a clockwise direction. This conforms to British naval usage.
To louse things up the U.S.C.&G.S. znd the U.S. Navy Oceanographic Office
view the angle from the south.

To resolve FH into an east component, FE' and a north component,
FN all that is regquired is to multiply Fy by a sine or cosine of A. Thus,
eguations (1.05:13) and (1.05:14) replace equation (1.05:12):

y 113 = i

(1.05:13) PE FH51nA

(1.05:14) FN = FHcosA .

For a celestial body which appear due east & =47 and By = e while Py © e

The variables 8 and A are functions of time and of position on
the earth. The distance between centers, e, is a function of time alone
and the radius of earth, r, is a function of positicn. So far as r is
concerned

E P

——"= 0.0034
r

so that the difference between the eguatorial and polar radii is about one-
third of one percent of the mean radius. Consequently, for tidal work we
use r constant ecual to ¥. This is not absclutely necessary. We could

carry a variable r but nobody ever seems to do it.
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For compariscn, we can have

o]

We have considered the motiocns of the sun and moon in a gual-
itztive way ané stated scme guantitative results. The exact formulation
and derivation of the quantitative results belongs to celestial mechanics,
a subject into which we can't go in this course. We will simply assume
that the astronomers know their business, accept their results, and try to
convert them to forms useful for tides.

We must first express 6 and A in both terrestrial and celestial

coordinate frames. We will use the symbols

L = the latitude of a point P on the earth.
D £ the declination of the celestial body.
h = the hour angle of the celestial bedy from P used without

regard to direction. (See Fig. 1.05-9.)

CELESTIAL NORTHPOLE

THE HOUR ANGLE OF C FROM P
HO CIRC F

___—~HOUR LE OF C

20°-D —~ THE POLAR DISTANCE

THIS IS THE SAME 8 AS
BEFORE; LPEC

HOUR CIRCLE OF P
THIS IS THE CO-LATITUDE OF R __ e

THE AZIMUTH

POSITION OF THE ZENITH

ABOVE A POINT ON THE c
EARTH / \ T~ POSITION OF CELESTIAL
L \p BODY ONCELESTIAL
T IS THE LATITUDE — L ) _  SPHERE
OF P - THE DECLINATION OFC

CELESTIAL EQUATOR
Fig. 1.05-9

One has, clearly, a spherical triangle which has 3 of its sides given by
gp°® - L, 90° - D, and ©& and 2 of its angles by h and A. These parts are

related by spherical trigonometry. In general we have

cos x = %(1 + cos[2x])

si = - 2%

2 & =il ~ woslaell {multiple angle formulae}
cin[x]lcos[x] = ksin[2x]

and cos x = % (cos[3x] - 3cos[x])
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We want to get § in terms of L, D, and h, i.e., we want the distarce be-
tween the zenith of a point of observation and a given celestial body, 6§,
in terms of the latitude of the point, L, the declination of the celestial
body, D, and the angle between their hour circles, h. We assume that the
latitude of any point on the earth is known and that the declinations of
the celestial bocdies have been determined by celestial mechanics zrnd pub-
lished in tables.

From spherical trigonometry we have

(1.05:15.1) cosg = (sin[L]sin[D]) + (cos[L]lcos[D])cos([h]
and
(3..05:15.2) sin[D]) = sin[L]cos[g] + cos[L]lsin[glcos([A]

The first of these eguations gives the required relation for g. It will
also be useful to have similar expressions for cos?8 and cos’8. Solving
(1.05:15.2) for sin[B8)cos(al,

_ sin[D] - sin([Llcos[§]

sin[B]cos|[a] cos[L]

and substituting for cos[€] from (1.05:15.1)

sin[D] - sinziL}sin{D} ~ sin[L)cos[L}cos [D]cos [h]

sin[e]Eos[A]

_ simfD] - simiD] + cosgﬁizgfn[nj - sin[L)cos[L])cos[D] cos[hl]
so that wos Ll
(1.05:16) cin[B]cos[2] = cos[L]lsin[D]) - sin[L)cos[D]lcos[h] %
Again, from spherical trigonometry
sinfa) _ sin[h]
£in([90 - D] sin[8)
or, since sin[80 - D] = ces[D] ¥
sin[A] _ sin(h]
Therefore, cos [D] sin[6]
(1.05:17) sin[8lsin[a)] = cos[Dlsin[h]
Sguaring (1.05:15.1) we get
cos?(6] = sin?[L]lsin?[D] + 2sin[L]ces(L]sin(D)cos(D]cos [h]

- cosziL]cosziblcosth]

and using the double angle relation for cos?[h] this can be rearranged as



cos?[6] = sin?[L)sin? (D] + cos?[L]cos? [DI{}(1 + cos[2h]))

+ 2sin[L)cos[L]sin[D]ccs[D]cos [h]

{sin?[L)sin?[D] + ycos?[L)cos2[D]}
+ 2{sin[L)cos [L] }{sin [D]cos [D] }cos[h]
+ %cosziL]cosz[chos[2h]
Therefore,

(1.05:18) cos?[€]

{sin?[L]}sin?[D] + acosz{L]cosziD]}
+ L{sin[2L)sin[2D] }cos[h]
+ 4{cos2[L)cos?[D] }cos[2h]

This is the expression for cos?(g].
To get the expression for cos3[g] begin with eqguation (1.05:15.1)
and cube it.
cos3[g] = (sin[Llsin[D]))3 + 3(sin[L]}sin([D])2(cos[L]lcos[D])cos[h])
+ 3(sin[L]sin[D]) (cos[L)cos [D]) 2cos2[h]
+ (cos[L]cos[D]) 3cos3[h]
For convenience let
(sin[L)sin[D])3 = A ;  (sin[Llsin[D))?(cos[Llcos[D]) = B
(sin[Llsin[p]) (cos(Llcos(D])2=C ; (cos[Llcos[p])3 = E

From trigonometry

cos [h] =-%(1 + cos[2h])
Ape cos [h] = %(3cos[h] + cos[3h])
Therefore,
cos3[g] = A + 3Bcos[h] + (3/2)C(1 + cos[2h])
+ LE(3cos[h] + cos[3h])
= {A + (3/2)C) + {3B + (3/4)E}cos[h] + {(3/2)C}cos[2h]
+{L4E}cos[3h]
Whpxd A+ (3/2)C = 4{2sin3[L]sind®[D] + 3sin[L)sin[D)cos2([L]cos2(D]
3B + (3/4)E = %{12sin?[L)sin?[D]cos[L])cos[D]) + 3cos3[L]lcos3([D]}
(3/2)C = (3/2){sin[L]sin[Dlcos2[L]cos2[D]}
and

%E = %{cos3[L]cos3[D]}

Therefore,
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(1.05:18) cos [6] = %{2sin®[L]sin’[D]) + 3sin(Llein(D)cos?(L)cos?(D)}
+ %{12¢in? (L) sin?[D)cos[L)cos (D) + 3cos’[Llcos’[D) }cos([h]
+ (3/2){sinlL]sin[Dlcos? (L) cos? (D] Ycos [2h)
+ 2{cos®[Llcos3[D] }eos [3h)

Ecguetions (1.05:15), (1.05:18), ané (1.05:19) give us expressions for

powers of the cosines of € in terms of L, D, and h. For any given point of
earth, P, its latitude, L, is constant. The declination of the sun ox
moon is a slowly varying function of time which can be treated as constant
for periods of useful length. The hour angle, h, is "the variable" and
appears in multiples, i.e., cos[8] = fl{h), cos2[g] = fz(h, 2h), and cos3[g)
= f3(h, 2h, 3h). Since h makes a complete cycle in one day, 2h in half a
éday, ..., the probable advantage of this form of expression for cosn[e]
should be readily appreciated.

In eguation (1.05:11) we have an expression for the vertical
tide-generating force, Fv, in terms of the powers of cos[f]). Substituting

(1.05:15), (1.05:18)', &nd (1.05:19) in (1.05:11) gives

(1.05:20)

F. = 3es ({2sin2[L]sin2[D] + cos?[Llcos?[D] - (2/3)}

Y 2e”
+ {sin[2L]sin[2D]) Jcos[h) + {cos?[L)cos?[D]}cos[2h])
3yCr

= ‘E ({5(sinfL)sin[D]) (sin? [L)sin?[D) + (3/2)cos?[L]cos2 (D))

- 3(sin[L]lsin[D])}

+ {15(cos[L)cos[D]) (sin?[L]sin? [D] + %cos?[L)cos?(D])
- 3(cos[L]lcos[D]) }cos[h]

+ {(15/2) (sin[L)sin[D)) (cos? [L]cos? [D)) }cos [2h]

+ {{5/4)(cos[L]cos[D])(cosz[LICQsz{D])}cos[Eh]) 3

A similer expression holds for FH'

A bit of contemplation shows that the seccnd term, lines 3 to
8 above, is small. The quantity enclosed in the larce parentheses is always
rather small and, further, it is multiplied by r/e which is, at most, 1/60.
The entire second term may be neglected in comparison with the first. We

are impelled to this step by the messiness of the expression.
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The easiest place to suppress the powers of r/e that you want
to neglect is in eguations (1.05:11), (1.05:13) and (1.05:14). If you do,
only the first term remains on the right-hand side of eguation (1.05:20).
For.the sun r/e = 4.26x107° and the error introduced is really negligible.
In the case of the moon we had better have a closer lock. ¥What are the
maximum velues that can result in eguation (1.05:11)? For the first term
o (G058 533)

(3cos? (6] - 1)

I
8]

and for the second
(3/2) (z/e) (5cos? (6] - BCOS[G}}extreme =x 0.05
Thus, neglect of the (r/e)-term could amount to
* 0.05/2 = £ 5/200 = * 2.5% of the retained term.
For a 10-foot tide the error introduced is of the order of a quarter of a
foot which is hardly serious for practical work.
.To get an estimate for (1.05:13) and (1.05:14) we have to con-
sider (1.05:12). The first term of (1.05:12) will exhibit extrema for
d(2sin[Blcos(8])/88 = 0O
The maxima occur at 6 = n/4, 3n/4, 5v/4, 7n/4, ... and they have the value

1.5. 1In the same way we compute

a{(3/2) (r/e)sin[8] (5cos [B] - 1)} _ 6
das i

The resulting extrema from this term are * 0.0344 which introduces an error
on neglect of r/e of

+ 0.0334/1.5 = *+ 0,0688/3 = * 0,023 = * 2.3%
Thus, errors introduced in the horizontal force by the neglect of r/e are
of the same order as those introduced in the vertical force and, even in
the cese of the moon, are of no creat size.

Our approximation for the tide-producing force is now:

(1.05:21) F, = i;ﬁf {{2sin?[L)sin? (D] + cos?[L]cos? (D] - (2/3))
+ {sin[2L)sin[2D]}cos[h] + {cos?[L]cos? [D)}cos[2h])
3yCx

(1.05:22} F

j

B 2e ({sin[L]sin[2D]}sin[h] + {cosIL]cosz[DJ}sin[2h]]

L

I%?—[{sin{2L](sin2ED) - %cos?[D])} + {cos[2L]sin{2D] }cos[h]

N Ze |
~ {%sin[2L}cos?[D) }cos [2h])

(1.05:23) F
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As suggested before, the grouping of these Zorces into terms
according to multiples of h is very useful for describing tides. Consider
the changes in L, D, and h. For any particular point of earth the latitude,
1L, is constant. For the sun the declination, D, chances zbout 15.5' per
ieav. TFor the moon the declination, D, exhibits changes ranging from 4212
per day to 2°41' per day. These are relatively slow changes compared with
h, the hour angle, which goes throuch 360° in a day and 2h which goes
through 720° in a day. These changes in h and 2h are not slow. Thus, the
terms not involving h vary slowly and contribute the long period components
to “he force. For the sun, D runs through ore cycle in a year while, for
the moon, D runs through one cycle in a month. The terms involving only

I and D are called long period terms. The cos[h] term runs through one

cycle in a day and is called the diurnal term. A term containing cos[2h]

completes two cycles per day and is called the semidiurnal term. Semidiurn-

a2l terms are prominent in the tides of the Atlantic which show two high
waters per day.

Should any further indication of the unimportance of the (r/e)-
terms which we have neglected be needed, the fact that no place in the
world has thfee high waters per day would offer confirmation. Should such
a triple tide ever be found it would correspond to the cos[3h] term which
has been suppressed by the approximation.

Let us consider now the coefficient common to all three force

components called, naturally enough, the common coefficient:

3yCxr
2e”

Unfortunately, e is a variable and must be retained as such. The use of e
or any other single representative value is inadequate. For the moon, e
cyvcles in a month and, for the sun, in a year.
For practical work we use the common coefficient in ancther,
approximate form. The apparent gravity is given by
g = yB/x?
so that y = grl/E

and we may write
(3yCr)/(2e3) = (3/2) (C/E) (g) (x/e) 3 "
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Consgicder, for example, the vertical tide-generating force as
given by (1.05:21).

Fv/g = (3/2) (C/E) (x/e) *{terms in L, D, and h} )
Eoth g and r are variable. How big is the error introduced by teking g and
r constant? At the equator g = ¢78 gal. At the pole g = ¢83 gal. Working
from a mean velue for g, g = g(l % 0.0026). If we take r constant in a
similar way, x3 = ri(1 & 0.0051) . Further, r and g have countervailing
effects at pole and equator. Thus, the error introduced by using constant
g and r is azbout 0.25%. It would be possible to retazin the variation in g
but this never seems to be done.

Let d £ the mean distance of a celestial body.

e = the true, variable distance of the celestial body.

Then we can write the common coefficient as
{(3/2) (g) (C/E) (x/d) 3} (d/e) 3 .

In this expression only d/e remains variable.

In tidal work it is customary to define a constant factor by
U = (C/E) (x/d)3

which has the numerical values

Sun: U = 2.569x10"8
Moon: UM = 5.582x108 i
US/UM = 0.4602

is the ratio of the solar to the lunar tide-generating forces.

We have, then, as finzl zpproximate forms for Fv, PE’ and FN
equations (1.05:24), (1.05:25), and (1.05:26) shown on page 52.

The only remaining step is to introduce numerical values for
the parameters U, d/e, g, L, D, and h. The ultimate objective is to ex-
press all the variables as simple functions of mean time in such a way that
the rates of change with time will be constant. If this could be done, the
components could be fixed once for zll.

From a theoretical point of view, Laplace was the first to sug-

gest that the tides could be represented as the sum of small perturbations

linearly combined. That is, he pointed out that, if the tide-generating



common geodetic celestial

coefficient coefficient factors
(1.05:24) I-‘v = (3/2)gu ({{3Sin2[L}'— l}}(d/e)a{(2/3) - cosz[D]] ]long—pcriod component
+ {sin[2L]} (d/e)a(sin{ZD])cos{h] idinrnal componenl
+ {cos? 1]} (d/e}3{cosz[D1)cos[2h]) | semidiurnal component
(1.05:25) By (3/2)qu ( {sin(n]} (d/e) 3(sin[2D]) sin[h] ldiurna] component
[ L
i
+ {cos([L]} (d/e)a(cosz[D]}sin[Zh]] |semidiurnal component
(1.05:26) B = (3/2)qU [ {(3/2)sin(2L]} (a/e)3{(2/3) - cos?(D]} |1ong—period component
+ {cos(2L]} (a/e) 3 (sin[2D]) cos [h] |diurnal component

- {4sin[2L]]} (d/e)3(cosz[D})cos[2h]] |semidiurnal component
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s ZAicos[Ei = ki}. Loxd Kelvin was the first to éo the practical work.
The problem of expressing (1.05:24), (1.05:25), and (1.05:26) as sums of
cosine terms is so éifficult, tedious, and unproductive of insight that we

won't go into it in detail. We will only discuss some aspects of the prob-

To begin with, let us take the astronomiczl motions and express
them as functions of time. The method is to introduce mean longitudes for
the motions of sun and moon and then pile anomalies on them as needed.
Perigee and perihelion arxe used as
reference points, Fig. 1.05-10.

The rate of motion on the orbits
is not uniform but for the sun to
a good approximation we can use

dé/dt = a constant = \>\
The moon is more complicated since
its motion is influenced by the
sun as well as by the earth. The Fig. 1:085-10
position of the moon's nodes moves
around the ecliptic once in 18.6 yvears. This position has an important
effect on the tide. 1In practice, in any one year we assign it to its mean
position and then jump it shead for the next year. The movement of the
vernal equinox due to precession is even slower and, a fortiori, can be
taken constant over a vear's time.

In the éevelopment of harmonic terms the British and Americans
pursue different routes. The U.S.C.&G.S. uses an obsolete method due to
Chzrles Darwin which refers the moticn of each celestial body to its own
orbit. The British Admiralty method refers all motions to a reference
point on the ecliptic. The differences in the results secured by the two
methods are negligible even though the methods of attack are radically

different. Schureman (19241) presents the U.S.C.&G.S. method in gory detail.
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We may sketch the mode cf attack as follows:

g
)
ot

X £ the true longitude measured on the ecliptic from the vernal
eguinox, .

the mean longitude.

- |
"

S
[k

a constant.

o
it

the longitude of perigee.

N = the longitude of the node.

Ra = the right ascension.
—_ = the right ascension of the meridian of Greenwich.
Lo = the longitude of z point of earth.

As an example, for the mocn

(L0527 {d/e]M = ik e O.OSSCOS[XM - PM] + O.OlOcos[XM = 2XS + PM]

variational term

i X = X9 ® 0. % & .
+ 0 008005[2{XM xs)] 0 oo3cos[2(xM PM)]

--advecticonal term--

The advectional term covers the effect of the sun on the moon's motion.
For (d/e)s there is no corresponding term. The numerical coefficients .
come from the characteristics of the moon's orbit. To our degree of approx-
imation, all the variables change uniformly with time. (&/e) is a long-
period term.
The moon's true longitude is given by
X, = X, + 0.110sin[X, - P ] + 0.022sin[X, - 2§S % B
+ 0.01151:’:[2(){M - XS}] + 0.0045in[2{XM " PM)] 4
The sine of the moon's declination is a function of its right ascension,
sin[DM] = f(RaM) '
and the moon's hour angle is given by

h - B ) s

M = RaM aG

We have mentioned that for the sun the advectional term drops out. In add-

ition, any expression for the moon which involves the longitude of the node,

N, will have no counterpart in the comparable exprescsion for the sun.
Harmonic expansions of this sort zlways force us into a certain

amount of approximation to keewn them in hand. For example, when (a/e)? is
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computed from (d/e}m, 35 cosine terms result. Wwhen you begin to feed this
eand the other recuired expansions back to get Fv, FE' and PN the expressicons
can run to hundreds of terms without half trying. The number of terms vyou
elect to keep depends strongly on the particular point cf earth for which

yeu want to 2

U

ec¢ict. 1In the Chesapezke Bay you can get by with relatively
few. 1In the Bay of Fundy vou have to retain many more.

In approximating, the smzll angle relztionships,

sin[B] = B8 and cosfe] & L
are freguently used.

For no discernable reason it has become conventional in tidal
work to use conly cosine terms. Whenever a sin(6] appears it is replaced

Nl sinie] = conld = 90] .

Zny time cos“[e] appears it can be reduced to expressions in
multiple angles by means of the trigonometric identities.

‘With the procedure of breaking the forces into harmonics has
emerged the notion of "astres fictifs." The idea is that you junk the
celestial bodies which actually generate the forces and replace them with
a whole swarm of imaginary celestial bodies of the proper mass which move
uniformly around the earth; one for each harmonic component. The idea is
fun in a macabre sort of way but fruitless. It should be a strong warning
to you not to go around naively assigning physical interpretations to the
components of an harmonic analysis.

For long-period components there is (almost) no change in the
hour angle per hour.

For the diurnal constituent the hour angle of the mean sun
changes 15° per hour.

For the semidiurnal constituent, the hour angle of the mean sun
changes 30° per hour.

For the mean longitude, X, the longitude of perigeé (or peri-
helicn), ané the longitude of the node, N, we have the following rates of

change: =
v (EX/
A =

dt)s
(ep/et)

0.041069 °/hr ; X~ (&X/&t), = 0.549017 °/hr

0.000002 /nr ; P, ~ (&P/4t) = 0.004642 °/hr
'J

0.002206 °/hr

-

v xl

S
N v énN/adt =
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Uo to now we have been primarily concerned with the cevelcopment of the tide-
generating forces. The time has come to look at the response of the water
to these feorces. . The simplest epgroach is due to Iszac Newton. t is bas-
ed on a number of cuite unrealistic assumptions that reduce the prchlem

frcm one in dédyvnamics to on in statics. In spite of the unrealistic assump-

tions the approach still gives useful results. The theory is called the

eguilibrium theory of tides or, alternatively, the ecuilibrium tide, the

astronomical ticde, or the gravitational tide.

The two primary assumptions made in the eguilibrium theory are:
(A) The entire earth is covered by water to a uniform depth.
(B) Friction and inertia are negligible.
The first assumption means that any perturbation in phase with a force can
be propagated entirely around the earth without interference from land
masses. In effect, it throws cut the boundary conditions.
Assumption (B) is a little trickier. The neglect of friction
(viscosity) is a common one in many aporoximate solutions to fluid problems.
It feels comfortable. We're used to it and it seems reasonable here. But
what about the neglect of inertia? Inertia is a property of matter, i.e.,
mass, &s 1is the very gravitational attraction we assign as the cause of the
tide. It seems a bit inconsistent to neglect inertia while retaining
gravitational attraction. Careful inspection of the eguilibrium theory
seems to indicate that the function of this assumption is to provide that
there shall be no lag in the respcnse of the water to the tide-generating
forces. At every instant the water is in eguilibrium. We ask no cuestions
zbout how it passes from eguilibrium at cne instant to eguilibrium at another
instant. In effect, the water is to have no memory at all about its past.
Despite the hichly artificial assumptions just made, the egui-

librium theory provides a valuable adjunct to tidal theory. For one thing,
it offers a reference for actual ticdal measurements. For example, &t a

particular place the measured tide micht come to high water one hour after
the computed equilibrium tide. It alsoc gives a visualization cf the forces

of attraction that are at work.
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The force components we have been studving--diurnal, semidi-
urnal, and long-period--zre all present in the eguilibrium tide; as they
are in the actual tide. But the actual tide also includes such things as
the. effects of changing pressure gradient and other large scazle phencmena,

wind siress, which can be fairiw

mn

teady in the Trades, ang Coriolis force.
However, our initial assumptions are so crude that it is not worth cur
while to introduce these refinements into the znalysis. Our ocean will be
homogeneous as well as ubiguitous. Clearly, assumption (B) will rule cut
Coriclis force.
To assumptions (A) and (B) we now add:
(C) The earth is a sphere.
(D) The tide-generating forces are such that the centripetal
acceleration is negligible.
This means that we can write gravity in the simplified form
g = Y(E/x;?)

where

ro = the mean radius of the earth.

We will begin by using potential theory. By its very name the
eguilibrium theory suggests that the sea surface will be everywhere perpen-
dicular to the resultant of the acting forces. Now an equilibrium surface
is also an eguipotential surface. The potential of a force is defined by
the amount of work recuired to move a unit mass from the surface on which
it is located to a position where the force is zero. Further, the amount
of work done in moving the unit mass must be independent of the path along
which it is moved.

So the first guestion before the house is: Where are the posi-
tions where the forces are zero? Consider gravity. £ the earth were a
point mass, then we would have

rE + 0 ; g =+ = $ rE -+ @ z o ol ‘ -

Actually, the earth is not a point mass so that, appealing to Poisson's
ecuation, we have
r.. G ' g-=+0

E
instead of the first relation zbove.



The tide-generating forces zs expressed in ecvetions (1.05:6)

and (1.05:7) were

- Y cos[6] - (x/e) ~
Fo = o T Zh/arcosiBl + (7@1ZI7Z ~ CO810)
Fo=-C sin[8] -
- S [{1 - 2(xr/e)cos([8] + (x/e)<}?/% vln[B])

C is the mass of the celestial body and e is the length of the line of
centers. We will take them as constants. FV and FH go to zero as r
goes to zerc. This is the place to which we must move our unit mass to

cet the potentials.

Let
ﬂg = the potential of gravity
and : 3 ek
2 = the potential of the tide-producing forces
By definition we have
(1.06:1) Q@ = [-gadr
g s
Substituting for g
=] =]
8r 1 _ YE
Qg vef - 2 - " YEg Cor
T x
Therefore,
YE
(1.06:2) Q = -—
g :

From equaticn (1.06:1), clearly,
= - 3Q /or .
g g/
The proper expressicn for Q is somewhat less obvious. & can be
written as a function of r and 8§,
Q= Q(r; e) '

so that, formally,

o0 of)
= — + — d
an o dr =5 e
Whence : 6.
‘Qn -~
o= far+ [ g )
ax o6
0 61

At the center of the earth r = 0, Q@ = 0 and the angle is immaterial. We

can, if we choose, set el = 52 so that
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[ a9 =0
5 96 .
1
The
_-...‘n 4 -
Q={ = ar :
b iy

This says that the effect of moving & unit mass from the surface to the
center of the earth along any path is the same. That is, it is independ-
ent of the angle 8. For simplicity, take a radial path,

& = a constant

The work is done against Fv so that

r
(1.06:5) Q= I B 8r ; 8 constant
v
0
This tells us that
20
(1.06:6) ) B, ™ v

so that we have

r r
_ ¥C 3 yC
Q= E?((3c°52[5] - l)é rdr + Sor (5cos3(6) - 3cos[e])£ r2ar
and, integrating,
2
(1.06:7) Q= §-1§§— ((cos?18] - %ﬁ +-%=£§4(5cos3[61 - 3cos[8]]

gives Q in terms of the geocentric angle 6. For use this expression would
have to be hacked over to right ascension and declination as we did in
section 1.05.

We can now write

. B B
(1.06:8) FH e
The condition that the sea surface be an eguipotential surface
may be written

Qg + @ = a constant

-

To determine the constant consider ecuation (1.06:7). If it can be shown
thet (0 becomes zero at any point, then the constant must be the mean value
of Qc. With this in mind we set ecuation (1.06:7) ecual to zero and solve

-

for 6 either graphically or by inspection. Looking &t Fig. 1.06-1, page 60,



«— (cos28—1/3)
L ACTUALLY THE
3T 1/3 1/6(5 cos>B8—3cos8)¥ AMPLITUCE OF

THIS FUNCTION
m
-/ ! IS MUCH SMALLER:

x,

2

U U & -2 5(500559—30059)52
—l/3—1

AEND r/e < 1/60.

-2/3 A

Fig. 1.06-1

it is cbvious that there is at least one § for which § = 0. For this 8 the
condition becomes Qg = a constant or, since we are at the earth's surface

where r = r_, the constant is YB/rE.

E!’
Remark: You might find it profitable to check this through in the light of

the Gauss mean value theorem.

Now, in general, Qg = yE/r so that Qg'+ Q = a constant becomes

2
(1.06:9) ‘Eg + g-lgg— (cos? [g] - %J + %-(§0{5c053[6] - 3cos[e])] =

ot [os

Remark: This same basic development is to be found in Schureman, U.S.C.&G.S.

Sp. Pub. No. 98.

Define the displacement of the sea surface from mean sea level,
n: by r = ro + n. Our problem now is to express n as a function of § and

the constants. Begin by dividing eguation (1.06:%) through by yE/r to get

’ 3C (% 2 _dy L1 x 3 N =X
(1.06:10) L4g = (e} [(cos (e] 3] s {e) (5 cos? (8] 3cos[6]) =
and, substituting for r,
(1.06:11[
r_ + |3 Y+ r_+n
3C | E 2 _ 1 = 3 - e o -
1+ TE ( = } (cos<[g] 3) + 3[ ~ ](5COS [l 3ces[g)) T .

This can be rewritten as
(1.06:12)

2 Ele 3

3 4
¥ 3 "
2 C[—EJ (1 & %L)3{c052[8] = %} H g-§{~:l o %L}Q(ECOS:EGI - cos[€]) = £l~.
- E £

=
i
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Consicder the ratio n/r_. r, *® 6.37%10°% m ané n is certainly

n/r., << 1. Expanding the powers of
L

ct 11

much much smaller than this so tha
(1 + n/r_ ) and neclecting all texrms containing n/rE to the second power and

higher we have

(1.06:13)
o Feo, T
_3_.£|_E 4 N 2 -]; EC B n 5 3 "
> Bl e (L + 3 = ) {cos<[8]) - 3) * 3 E'lig- (1 + ¢4 ;—}(3 cos“[€] - cos[8])
5 E
-rE+r|
b
Solving (1.06:13) for n/r_ gives
(1.06:14)
3 ¢l R
= =|= 2 .. SCI =l (2 3 _
n _2Ele (cos<[8] 3} * 3 e {3 cos3 8] cos[8]) |
b 2 - r 3 T n
= - & 2818 2187 < L - |2 178 B costiol -
1 3[ 5 E[el (cos“[e€] 3’:‘ 4|:2 E[EJ (3 cos[8] cos[e])J

In working out the ticde-cenerating forces we used
ro/e = (x /@) (a/e)
and defined a numerical constant
U £ (C/E) (r_/q)°
where d was the mean distance from the earth to the celestial body. For

the moon U=y, = 5.6%107° 3

The denominator can thus be written as

2 d

d/e is of order 1 and r_/d £ 1/60. Consequently, the second and third

r
1-3 % U(§J3{c052[81 N %) - 4 §~U[—§4(Sa“(% cos®[8) - cos[6]) .

terms are negligible in comparison with 1. With this in mind, equation

(1.06:14) is approximately
=3 a)3 2 b o LBIB i |
(1.06:15) n=3 rEU(EJ {cog<[R) - 3) + [e}(3 cos”[8] ~ cos[6]) ¢

Eguation (1,06:15) is used to get the maognitudes for the ecuilibrium ticdes

shown on page 62. The values are rsmarkably smzll. The tide, as ckserved,

is cenerally much greated. However, tides in smell encloszd seas zre close
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to these valuss and no data are availzhle from the cpen ccean where assump-

8]

t

tien (2) is kest reprecsented. The numbers given are for the moon's mean

aistance. Variations up to 24% result from its closer approaches

Lunar tide Sclar tide

(cm) (£¢) (cm) (££)

Ereatest rice 35 1o 17 0.6
Greatest fall 18 0.6 8 0.3

Putting the ecuilibrium tide, (1.06:15), in terms of latitude,
L, declination, D, and hour angle, h, we have, after suppressing the

rE/e term,

common
kR coefficient
_ 3 {a)3 ! i i 2 . o .
n =3 U[e] rB a (3 sin [L])(E- 2sin<[D]) = long'perlod
species
+ (%sin[2L)sin([2D])cos[h] : diurnal species

+ (%cos2[L)cos2[D])cos[2h] semidiurnal

species

Thus, the eguilibrium tide exhibits the same kinds of constituents as the
tide producing forces.

Let me reiterate: The eguilibrium tide is a construct of the
mind. There is no reason to suppcse that an observed tide behaves—--or
should behave--like an equilibrium tide. Its chief uses are two. First,
it ties the astronomical forces in with the tides as they appear. Second,
it is useful as a reference for observed tides. For this second use it is
indeed fortunate that the characteristic variations of the ecuilibrium tice
exhibit the characteristic variations of the observed tide to a greater or
lesser degree.

The variaticns in the eguilibrium tide and the way the various
tidal species enter may be visualized as follows. Uncder the eguilibrium
theory, the moon would tend to éraw the figure of earth into a prolate
spheroid with the long axis directed tcward the moon, Fig. 1.06-2, rage 63.

The picture, grossly exaggerated, is shown with the mcon on the eguator

=

a2né with the moon & a declination of 15°N.
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Fig. 1.06-2

The moon produces one high water immediately beneath it and
another diametrically opposed. Low water extends like a belt entirely
around the earth halfway between. Since we have assumed that the water has
no inertia, the bulge will track the motion of the moon exactly always re-
maining directly beneath it.

When the moon is above the equator, declination 0°, the maximum
tide range occurs on the ecuator and diminishes to zero at the poles. What-
ever the range at any particular point, the highs and lows will be of the
same size. '

For declinations other than 0° a declinational ineguality is
introduced, the two high waters being of unequal size everywhere except at
the eguator. This inequality increases with latitude until, near the poles,

there is only one high water per day. The variations in the lunar ecuilib-

rium tide with declination are illustrated in Fig. 1.06-3 for DM = 15% N

and latitudes of 0%, 30°, and 60°.
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Fig. 1.06-3
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egse consicderaticns a numnber of decducticns can be mzade
he eguilibrium tide:

(1) The eguilibrium tide i "constanit" terms, diurnal
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(2) The éiuvrnal part increazses with declination and vanishes with
(3) The semidiurnal part decreazses with declination.
(4) The tide varies with the lunar distance approximately as the
cube of the parallzx.
Similar conclusions can be reached about the solar egulibrium tide.

One important point to note is that the effects of declination
and parallax tend to appear as common factors to all tides of the same
species, e.g., the diurnal forces and the diurnal eguilibrium tide have
factors depending on parallax and declination which are guite independent
of position on the earth's surface. If declination or parallax reduces
the diurnal tide at one point of earth, it will reduce it everywhere else
in the same ratio. This was shown when we wrote n in ecuation (1.06:16)
as a sum of terms in h, and 2h and separated each coefficient into a
product of factors each of which contained only one parameter. While it
dees neot follow that the actual tide will be governed exactly by this rule,
there is a strong presumption that the rule will be followed approximately.

The cube of the parallax, (rE/e}B, or its eguivalent, (&/e) 3,
in ecuation (1.06:16), is a factor common to 2ll species so that we expect
changes in tides due to changes in the parallax to aifect all species in
the same ratio.

The diurnal constituents have a common factor which depends on
the declination, sin[2D], so we expect all diurnal constituents to be

affected to the same relative degree by changes in D. Similarly for the

cemidiurnal constituents affected by cos?[D]. However, since
2 G # ; ;
3 2sin [D] ~ long-period species i
sin[2D] ~ diurnzl species i and

cos? (D]  semidiurnal species '

h

the Gifferent species are affected in éifferent ways by a change in D.
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=refore, even if you could neclect the long-period species, it would be
zbsclutely necessary to work up each species separatelv and then combine

the fcur essentizl contributions: (1) lunar semidiurnal, (2) solar semi-

divyrnal, (3) lunar diurnal, and (4) solar diurnal.

For the linar semidiurnal ecuilibrium tide hich water occurs
wnen cos[2h] = 1, i.e., when the hour angle is h = 0° or 180°, This cor-
responds to the times of upper and lower lunar transit. 1In nature it does-
n't happen that way. However, Laplace suggested that, if the forces vary
with a known periodicity, the tides must exhibit the same periodicity.

This would justify the notion that high water must lag transit by some

fixed amcunt which may be different at diiferent places. 2 similar statement
can be made for the lunar diurnal constituent but the constant lags appropri-
ate to the two species need not be the same. This whole notion of Laplace's
is basically independent of any theory of tidal motion. However, it can

only be exactly true if the periodicity of the forces is strictly constant.
As you know, they are not.

People working with tides found that these relations were
approximately true for observed tides but they had the devil's own time of
it when they tried to combine the four basic constituents to give the whole
tide. Further, they found that the variations in the separate constituents
due to changes in parallax and declination didn't always follow the simple
relations indicated by the forces. The reason is not too difficult to in-
dicate. Any oscillation, left to itself, will ultimately die out because
some frictional damping is always present. To maintain the oscillation,
force must be applied in phase with the oscillation. If the force is
seriously out of phase, it won't help maintain the motion. If it is nearly
in phase, it will prolong the oscillation. The tidal forces have periods
of roughly 12 and 24 hours. The natural pericd of oscillation of 2 body of
water depends on the depth and the surface dimensions. For a simple rect-
angular basin of depth h and length £ the natural period is 28/Vch. Such a
basin would have to be large and cuite shallow to have a nztural period of
24 hours. There are few oceans that come even close fo matiching this.

But earth's ceometry often comes close to a l2-hour naturzal period.
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Eeceuse earth favors the l2-hour pericd, semidiuvrnsl tides tend to bhe
greater than diurnal ticdes. In generel, loczl conficuration modifies
each srecies. Instead of having the semidiuvrnal real tide alweys related
to the semicdiurnal ecuilibrium tide by a constant facter and a constant

time lag, it is found that both the fzctor and the lag vary with the length

1.07. Harmconic Constituents.

In eguation (1.06:16) we have an expression for the ecuilibrium tide which
organizes it into a sum of terms, each of a different species. Each term
is composed of factors dependent on a single parameter; e, L, D, or h.
These terms are quite complex. Wnat we want to do is to resolve the ex-
pression intg "simple harmonics" in which the angles change uniformly with
time and the amplitudes remain substantially constant cver reasonably long
period of time.

In general, a simple harmonic term can be written in the form

(1.07:1) hcos[ot - w)]
wheEe A = the amplitude (a constant)
t = the time
o = the speed (increment of ancle/unit time, constant)
w = the phase lag (constant)
ot - w = the argument
25/g = the period 5

To avoid continual use of the jawbrezker "the numerical value of the speed
in degress per mean solar hour" we will use the briefer, but less explicit,

term spesd number.




(8]
~J

d harmenic is one in which at least cne of the guanti-
ties A, o, w are variable. It is usuzlly possible to brezk such a ccmpound
harmenic into simcle harmonics. For example, suppose that in (1.07:1) A is
varizble and, specifically, that it is composed of a constant and a simple

harmonic part. Then instead of (1.07:1) we would write

(1. 8723 (AO + Alcos[clt - wll)COS[ct - w)

where

Ao' Al’ O al, we wy are constant.

Expanding,

Aocos[ct -w] + 2 cosIclt - w11cos[ct - w)

1

and using the cosine product relation from trigonometry we have
(1.07:3) Aocoslat - w)] + Ehlcos[(o+ol)t = (m+ml)] + BA1COSE(c-ol)t = (m-mll

each term of which is simple harmonic. Thus, if the amplitude of any com-
pound harmonic term with speed ¢ and phase lag w includes a variable term

which can be writien as a simple harmonic with speed ¢, and phase lag w

1 =

then the expression can be represented by harmcnic terms with speeds g + 04

and ¢ - o, and corresponding phase lags w + ©y and w - Wy~ A similar result

4
holds for sines. Clearly, this will have its uses in eguation (1.06:16).

In the example just offered only the amplitude was allowed a
variation. However, consider the first two terms of (1.07:3). For con-

venience take the phase lags as zero. Then
(1.07:4) Aocos[otl + BAlcos[(o + ol}t] %

For t = 0 both cosines are 1 and, if this represents a tide, then high
water comes to Ao + BAI and occurs at t = 0. If Ay is small in comparison
with A,r near high water the compound wave is behaving like neither cosl[ot)
nor like cos[(g + gllt] but like zn oscillation with some intermediate
speed. Although only the amplitude varied, at high water the épeed is
somewhat greater than ¢ {cl > 0) ané the amplitude is a bit creater than A.

(X < 0, the speed is less than ¢ near €t = 0.)

#1
From eguation (1.06:16) the equilibrium semidiurn
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ing the geodetic factor, varies as
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(1.07:5) (£) 2cos2(p] cos 2h] ,

Suppose the moon in the plane c¢f the ecuator, D = 0°, and moving aiways &t
its mean distance, e = d A (6/e)3 = 1. Then the semidiurnal tide is pro-
pertional to ceel2h] and, if the moon moves uniformly on its orbit, then

Z2h increases uniformly. Under these conditions (1.07:5) is a simple har-
monic oscillation as it stands. Its period is half a lunar day, 12.42 mean
sclar hours. Its speed number is 360/12.42. This mean tide is denoted by
the svmbol M_.

2
M. = the principel lunar semiciurnal constituent

2

speed = 28.984° per mean solar hour.

low, suppose e is not constant but, as in actuvality, varies
with a period of 27.555 days (661.3 hours). The speed number of this varia-
tion is 360/661.3 = 0.544. TLooking at (1.07:5) we see (d/e)3 present as a
varieble amplitude and the previous results can be applied. In additicn to
Mz we get two other.simple harmonic constituents with speed numbers

28.984 + 0.544 29.528

28.984 - 0.544 28.440 -

0

and

I

These constituents would have ecgual amplitudes if only the amplitucde of the
main texrm were modified; see (1.07:3). However, the change in the distance
e also changes the speed on the orbit. Bodies move more slowly at greater
éistances according to Kepler's Law. This means that the hour angle, h,
can no longer be treated as increasing uniformly. Since the moon is revolv-
ing with the earth's rotation,

larger speed v e < d ~ a slower rate for the increese in h " a greater
Cenversely, Fhaa,

slower speed v e > d v a faster rate for the increzse in h v a2 lower
tide.
From this we zssociate the larger of the two speed numbers with a smaller

tide and conversely. Thus, the two additional constituents acting with M

2
are:;
N2 Z the larger lunar elliptic semidiurnal constituent
speeé = 28,440° per mean sclaxr hour.
L2 = the smaller lunar elliptic semidiurnal censtituent

speed = 29,.528° per mean solar hour.
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In this simple minded explanation we have taciily assumed that
e

the variatien in &/e could be expressed by a single simp harmonic term.
A better expression in terms of longitude was presenteé in (1.05:27). It
WaS,

(6/e),, = 1 + 0.055cos[X, - P,] + 0.010cos[X, - 2X_ + P ]

s ¥
+ 0.008cos [2 = + 0.0 X, - P
+ cos | (XM XS)] 0.003cos[2( 5 M}]
where o
XL1 = the moon's mean longitude,
§é = the sun's mean longitude,
and
PhI = the longitude of lunar perigee %
The terms have the following speed numbers:
— _ r\‘ .
XM PM 0.544
X, — 4D, nn0.4
XM XS M 0.471
~ - .
XM xs 0.507

'According to the development of equation (1.07:3), each simple
harmonic term in this eqguation will produce two constituents whose speed
numbers are sums and differences and, by analogy with the argument for N2
and L2, we have the following: (Among others!)
speed 28.513° per mean solar hour
A, : speed 29.455° per mean solar hour
My speed 27.968° per mean solar hcur
S, : speed 30.000° per mean solar hour

2N, : speed 27.895° per mean solar hour .

WARNING: The 52 constituent listed here is not a solar constituent as the

symbol might lead you to suppose.
The relative importance of each of these constituents could be established
by checking through their amplitudes.
We still have the declinational factor to worxy about. In the
semidiurnal tide the declinational factor is cos?[D]. Surpose the moon were
to move exactly on the ecliptic. Of course, it doesn't but the attack is

the standard one: a constituent for a2 restricted case plus more stuff to

Hh

allow for the staggers. Then a full cycle of declinaztions is run through

in one revolution, 27.3216 mean sclar davs oxr 655.7 mean sclar hours.
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Since ccs?[f] = %(1 + cos[2D]), the Geclinational term has a period cf

227.85 rours and, ccnseguently, a speed number of 1.028. This varieble
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associztion with the principal term Mz——and a peair for everv other bloocdy
1

censtituent we've picked up so far as well., Thelr speed numbers will ke

the sum and cifference of the Mé speed number and 1.088, i.e.,

28.984 + 1.098
28.984 - 1.0%8

30.082
27.886 3

[l

We have mentioned that motion at the equinoxes is different
from motion at the solstices. If this were not so, these two terms would
be egual. When the moon is at *©°, D = 0. However, the change in right
ascension is then less than average. Conseguently, h is changing more
rapidly than usual and the speed of the complex harmonic representing the
tide is greater than the average speed. Thus, we find from the second
situation initially discussed that the more important of the two constitu-
ents is the one with the greater speed. Therefore, acdd to the roster of
constituents:

K2 = the lunar declinationzl semidiurnal constituent

speed = 30.082° per mean solar hour .

We will discuss the changes in declination due to the 18.6l-year cvcle a
bit later.

You can see that there are many constituents of the lunar semi-
diurnal tide that we haven't mentioned. Fortunately, they are guite small.
The ones listed are the ones usually used; and often not all of them.

The harmonic constituents of the solar semidiurnal tide come
from an expression of exactly the same form as the corresponding lunar ones,

(d/e) 3cos2 [D) cos[2h] 5
but scolar instead of lunar values are used for the parameters,
The parallax factor has a period of 365.24 days so that the

corresponding harmonic constituent has a speed number of 0.0641. The cycle

of declination has the same period but the declinaticnal factor invelves
cos[2D] so that its speed number is 0.082, twice that of the parallax factor.

Repezting the rock hockey 21l over again, if the sun moved cn the ecuator



uniformly at a constant @istance, the tice would varv as cos{2n] zné =2

steady rate of 30° per mean solar hour would result., This gives

-

52 = the principal solar semidiurnazl constituent
cspeed = 30.000° per mean solar hour,
The parallax factor applied te 52 produces two cocastituents with
speeds 30,041 and 29.959. By an arcument anzloccus o thz:t for L. and N

wa find the smeller the more imperitant and list
T2 = the principal solar elliptic semidiurnal constituent
speed = 29.959° per mean solar hour.

The declinational factor applied to S as the similar one was to M2'

2"
gives constituents with speed numbers 30.082 and 29.918 of which the great-
er is the more important. Thus,
K2 = the luni-solar declinational semidiurnal censtituent
speed = 30.082° per mean solar hour.
The name "luni-solar" applies because the speed is exactly the same as the

lunar declinational tide, X

20
Of the constituents czlled "luni-solar" the principal ones are
Kl and K2. It means that each constituent is made up of two components,

one from the moon and the other from the sun, each having the same speed
number. They could be symbolized, for example, by

K, =K F K .
2
28 22-‘1

The coefficient of the constituent is very nearly, but not gquite, the sum
of the coefficients of the components. If we plot amplitude against time
for the ceomponents, Fig, 1.07-1, we get curves which are a bit displaced.
The phase difference is mainly cdue to the presence of 2 u in the argument
of the lunar component and not in the solar component. We will ,get into
this a bit later. Consequently, for a compound constituent like K2 we have
the maximum amplitude of the tidal constituent not eguzl to the sum of the

maximum amplitudes of the components.
K2 (s)

—
— ~ PJj/o:-" Kz (M)
e I

“-..___‘ —
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We turn now to the harmcnic constituents of the eguilibrium
diuvrnal tide. The variation for either the sun or the mocn goes as
(8/e) *sin[2D}cos[h] .

If we attacked this as before with the celestial body on the ecuateor we

mn

wculd have D = 0 and nothing woulé result. 1Instead, hit the declination
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iod 655.7 hours and mean speed nu—ber
0.549 for the moon. This is the same as we had in the semidiurnzl case.
Since the speed number of the hour angle factor is 14.492, the result is
a pair of terms with speed numbers
14.492 + 0.549
14.492 - 0.549

1]

15.041
13.943 ¥

These are

Kl = a lunar declinational diurnal constituent

speed = 15.041° per mean solar hour

and . A " g
Ol = a lunar declinational diurnal constituent

speed = 13.943° per mean solar hour.

They have equal amplitudes and neutralize each other to give zero when
D = 0. There are minor refinements on all this that spew up additional
constituents but we won't bother.

Now stir in the changes in parallax. This variation is exact-
ly the same as for the semidiurnal tides. The terms proliferate on the
same arguments as before.. 0f them we retain

Ql = a lunar diuvrnal constituent

speed = 13.39%° per mean sclar hour.

Ml = a lunar diurnal constituent
speed = 14.492° per mean solar hour.
Jl = a lunar diurnal constituent

speed = 15.585° per mean solar hour.

Actually, there should be four constituents on this list but
two of them have speed numbers 14.487 and 14.487 so that, practically, they
are nearly inextricable. TFor them we use the average for Ml'
A serious problem arises when two constituents have very nearly

the szme speed number, say a difference of 0.0l1l°/msh or less. A short
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cizzervation of the ticde can not possibly separate such constituents. They
will, however, gradually get out of phase. For 0.01°/msh they will comp-

lztely separate in 360/0.01 = 4 vears. At least 4 yeers of continuocus ob-

in

>rvation would be necessary to untangle such a pair.

There are & number of rouch ways to handle such a situation.
Very often the amplitude of one of the components has a much greater mag-
nitucde. In this case the smaller can be theught of as a perturbation on
the dominant component. Examples are the Ml and L2 constituents. Two
assumptions are made:

(1) The ratio of the cobserved amplitudes is the same as the ratio
of the eguilibrium coefficients of the components multiplied by
the corresponding node factor (if applicable).

(2) The local epochs of the two constituents, i.e., their phase
shifts, are the same.

These assumptions are reasonably good when the constituents in question
are of the same species and have very nearly the same speed numbers.
Consider two constituents
Alcos[vl + ull and Azcos[V2 i u2] 4
No phase shift has been included in the arguments because of assumption (1).
Let Al >> Az so that the component subscripted with "1" is dominant. We
can write

A cos[Vl + ul] = A.cos[n,t + a, + ull

1 Y 1 1
Azcoslvz + u2] = Azcos[nzt + a, + u2] -
= Azcos[nlt + Ant + 2, + Aa + 1y + Au)

where

al, a, = 0, oL, ELB0O®
and .

An = n2 - nl

ha = a2 - al

Aa = u2 = ul ]

The combination resembles the Al-curve with AZ

perturbation. If we rewrite the argument as 8 + A8, the combined tide

adding a smzll

s

b
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A = Alcos[E] - Azcosfﬁ + 48]
= s | + A S A - A_sin[€lsin[A
Alco_IE] P [Blcos[AB] hz [81sin[AB]
or
— ] Ag g] - L. sin[L8 i
A (Al - Azcos[ l)cos (€] {ﬁz [£8])sin[5]
Define
= + & AE
Rcos [r]) Al 2cos{ ]
Rein[r] E Azsin[Ae]
Then
rR? = (3, + Azcos[ﬁsi)z + (AzsinME])z
—— - - Bise tam
A12 + ZA%Azcos[ﬂBj - A2 cos“[48] + A2 sin [48
= Al + Az + 2A1A2005[ﬁe] F
But
A = Rcos[rlcos[€) - Resin[rlsin[B8] = Rcos[8 + r]
Thereifore,
- 2 2 '
A {Al + Az + 2A1A2Cos[68}) cos[8 + r]
Also, -
sy = d8dalal Rpsinlov]
Rcos [r] Al + Azcos[AB] :
Therefore,
r = tan‘lfnzsin{&e])/ml + A,cos[46])}
— . , 1 [ a,sintae) ]
= + ' -1
A (Al + Az 2A1A2cos[be]) cos (6 + tan Al “ AZCOS[ﬂG]J}

If 48 = 0, i.e., if there were no differences between the two arguments,
this would reduce to

A= (A, + A2}cos[e]

1
as is only to be expected. Therefore

A+ {Al + Az)cosle] as A8 » 0, 180°,

Define
= aw 2 \ e
R, 2 R/A; = {1 + (a,/a)2% + 2(A2/Al)cos[L6]}
Also
R = AlRl
Then A = R.,a_cos[® + x]

p g
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ck up the symbelism,

A =R2 V. + + r
lhlcos[ 1ty r]
wihich can be compared with the dominant component,

Alcos[vl

The same kind of hassel with the sun leaves us with:

+ ull .

Kl = the luni-solar declinaticonal diurnal constituent

speed = 15.041° per mean solar hour.

U
n

1 the solar declinational diurnal constituent

speed = 14.9258° per mean solar hour.

The harmonic constituents of the eguilibrium long-period tide
rary as

(d/eﬁ% w BEREIB1Y) = AZE) Bltheos i)

o=

) .

By this time you should be able to whcemp this up yourself. The results

are:
Mf = the lunar fortnightly constituent
speed = 1.0828° per mean solar hour.
b%ls the lunar monthly constituent
speed = 0.544° per mean solar hour.
Sa = the solar_annnal constituent
speed = 0.041° per mean sclar hour.
B 2 the solar semi-annual constituent

speed = 0.082° per mean solar hour.

As we have pointed out, the line of apsides of the moon goes
through a cvcle in 18.61 vears. This moves the moon's nodes around the
ecliptic and introduces a variation of the same period in the declination
and a2ll terms depending on it. Instead of introcucing more harmonic con-
stituents on the pattern used up to now, we allow for the variation by
arplying a factor, £, and an increment in the phase, u. The I,u-values
are not the same for all lunar constituents. We will only point out here
that all constituents can be written in the form

fHecos [V + u)
where

f = a factor varying with a period of 18.61 years
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n angle changing uniformly at the mean speed of
the constituent
H £ the amplitude of the constituent.

This arplies only .to lunar constituerts.

For solar constituents, £ £ 1 and u £ 0 since the sun has no

We have repeatedly referred to the equilibrium tide as a ref-
erence for the actual tide. Using Laplace's constant lag idea, the actual
tidal constituent corresponding to the eguilibrium tidal constituent will
be given by

fHcos [V + u - «]
where £, V, u, and H are as before and

k = the lag of the phase of the tidal constituent behind the

rhase of the corresponding equilibrium constituent. It
is called the epoch.

H and k are called the harmonic constants of the tidal constit-

uent. For further details about the harmcnic constituents of the tide--
should any veétige of interest or curiosity still remsin with you--consult

(1) The Admiralty Manual, Ch. VII, pp. 50-61
and

(2) Schureman, U,S5.C.&G.S. Sp. Pub. No. 98.

I micht mention, in passing, that the U.S.C.&G.S. uses F = 1/f so that they
have
FHobserved = Fequilibrium -

Tables of the epoch, k¥, are based on the Greenwich meridian.

To get the local epoch this must be corrected to your local meridian and
time.

Even when only (x/d) % and@ (x/d)" are retained in the apcroximate
ecguations some 124 constituent tides result. This includes both solar and
lunar tides. 2ctually, very few have amplitudes that zmount to much. The
createst number usually used in ticde work is about 30. In Chesapeake Bay
vwhere the tide is about 2 feet the lesser constituents with amplitudes of

the order of 0.01 inch aren't worth bothering about. The first 20



constituents include the most important ones.
The symbolism that we have been using for constituents is
composed of a letter and a number. The long-term constituents use a differ-

ent- svstem omitting the subscript number.

The equilibrium tide can be written, as we have seen,
fRGARcos [V + u]

where

n

the node factor

]

£
R the general coefficient
G = the geodetic coefficient

A = the astronomical coefficient.
G depends only on latitude and is different for different species but the
same for any one species. A depends on astronomical parameters and is
different for every constituent, even those of the same species. Tide
Tables give only A which they call "the" coefficient or, sometimes, the
relative coefficient. To compare the sizes of constituents, for example,
the size of the lunar semidiurnal M2 with the size of the solar declination-

al diurnal P_, we begin by checking up on their coefficients--the astron-

1-!'
omical ones--in some place like Schureman, Table 2. They turn out to be:

M, ~ 0.92085

2 (astronomical)
Pl ~ 0.1755 x
The common coefficients from Schureman's Table 1 are:
0.5582x1077 (for the moon)
20 0.2569x1077 (for the sun) g
Their ratio is 0.4602 .

All solar astronomical coefficients have been adjusted by this ratio so
that, as listed, they give direct comparisons in lunar terms. Also, differ-
ences arising from epproximations using the third and fourth powers of the

parallax have been incorporated.

WARNING: You have to watch your step with different tables on this sort of

thing. We compared F, /g from the tide generating forces with n/r

v
in the ecuilibrium tide. They aren't egual. For terms containing

(x/&)? there is a factor of % and for terms containing (r/d)“ a
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factor of 1/3. Some tables use Fv/g as Schureman does; others

use n/r.

Even with all these adjustments mede for you, you still have to worry about

the geodstic and nodal factors. For example, at 45°N in 1958 we have:

M, 0.500 M, "~ 1.033
L Y
Pl 1.000 P1
(Schureman, Table 3) (Schureman, Table 14)

Therefore,

"2 _ 0.9085 x 0.500 x 1.033 _ 1.3872795 _ , .
B, 0.1755 x 1.000 0.3510 : '

Thus, the M_ tide has an amplitude about 2.5 times as great as does the P

2 1

tide.

1.08. A Few Remarks on Shallow-Water Tides.

Before coing on to the practical analysis of tide records a few remarks on
shallow-water tides are in order. If coastazl waters were deep, we wouldn't
have to bother with this but: actually, estuaries and bays are guite
shallow and the shallow-water effects are guite prominent. Mathematically,
not much is known about the distortions of standing waves in shallow water.
Progressive waves are in a bit better chape and, working empirically, we
can do something about them. Viscosity, bottom friction, and interferxence
from reflected waves are the kinds of things which act to distort the wave
profiles.

Suppose we have a simple harmonic wave, curve (a) Fig, 108-1,
page 79, entering shallow water. The time interval frem LW to HW is the
same as that from EW to LW. the wave is nicely regular zad symmetrical.
What happens? In gravity wave theory we use as an appreximation for the

speed of a wave in shallow water, ¢ = VYgh. This won't do for tides. It
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can be shown that different parts of the wave profile travel at different

speeds so that

(1.08:1) c=a+3Dh/n
where
c = speed of a point on the wave profile,

i

gravity,

the mean depth of the water, and

o S < R |
1l

the displacement of the point on the wave profile
from mean water level.

By eguation (1.08:1) points on the profile with different n's
will travel at different speeds so that, as time passes, the wave profile
will distort. Let the wave travel, and distort, during a time 7. Then
freeze the profile and overlay it on the original wave for comparison.
Make the points azt mean level M coincide. This is the dotted curve (b) in

Fig. 1.08-1. We £ind that high water H as pulled ashead to H' while low
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water L has fallen back to L'. In time 1 each point on the profile will
have moved a distance : vwhich is a function of elevaticn throuch ecuaticn
(1.08:1). The point M moves ct = TYgh since n = 0. Relative to M &ll the

other points move

=

rt}h

(1.08:2) (1 +~231%),/g . =

48]
=

Therefore, the distance RR' traveled by the point R relative to M is pro-

porticnal to its elevation ng* Similarly for H so that

RR' 'R

.
Ny

Figure 1.08-1 has been drawn on the assumption that 1 was picked long
enough to let H' get 30° out of phase with the position H would have occui-
ed had there been no distortion.

Now, 1f the differences of (&) and (b) are plotted you get the
wave (c), Fig. 1.08-1. Clearly, the distorted wave can be thought of as
being made up of the undistorted wave, (a), plus the wave, (c). Wave (c)
has two complete oscillations where the original wave (a) has only cne.

We have been looking at the wave profile in space. We could, .
of course, sit at a point and get the same picture as a function of time.
Then, if (a) had a period of, say, 12 hours, (¢) would have a "period"
of 6 hours.

Suppose, for the moment, that (c) were a pure harmonic. Then
what we have just done would mean that the actual tide (b) could be re-
presented by a pure harmonic, (a), plus a pure harmonic, (c), with (c)
having a period half that of (a). The additional tide (c) is called a

shallow-water tide.

Even a glance reveals that (c) is not a pure harmonic so that
we have to analyze this curve further if we want to work only with pure
harmonics. PFick up (¢) and draw Fig. 1.08-2, page 8l. Superimpose on (c)
a simple harmonic wave (&) with an amplitude egual to the average anmpli-
tude of {(c) and with a period that is stirictly half the period of (a).
Then, taking the differences exactly as before we can construct a curve,

(e), which exhibits a "period" (?!2!?!) cne-third of that shown by (a).
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For example, if (a) is semidiurnal, (e) is cne-sixth diurnal. At this
point the actual tide is represented by
(b} = (a) + (d) + (e)

where
(2) is pure harmonic; period 12 hours

(8) is pure harmonic; period 6 hours
(e) is compound; average period 4 hours.

Obviously, this process can be repeated until the actual tide
is represented by a sum of pure harmonic terms of decreasing period plus
a negligible compound harmonic term.

Thus, we expect any tide observed on earth to contzin terres-
trially generated components. If the primary is semidiurnal then the over-
tides will be gquarter-diurnal, sixth-diurnal, ... while if the primary is
diurnal, the overtides will be semidiurnal, third-diurnal, ... .

Checking back to Fig. 1.08-1, one sees that the primary, (a),
and the overtide, (c), are zero together. The overtide, (c), of course,
has some extra zeros. Further, when (a) is at rising hzlf-tide (¢} is
rising. However, when (2) is at falling half-tide (c) is rising. 1In the
former case (a) and (c) reinforce each other to produce the rapid rise
shown by (b). In the latter case they oppose each other to produce the
slow fall shown by (b).

Suppose that

wave (a) v~ ceosnt - k]

Then, if the secondary wave were a rure harmonic it would be
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wave (c) ~v cos[2nt - 2k - ©GC°]

This means, for example, that if the primary is an Mz tide with a rhase
lag k, the shallow-water tide, in this case an M4’ would have a phase lag
of. 2k + 90°. Chkservation shows that for many places this relationship
fits the facts pretty well. However, cdon't jump to cenclusions. It isn't
niversally applicable. Results of this sort gained from theory are chief-
1y useful as & guide to what to lock for.
For standing waves we know just enough about shallow-water dis-

“ortion to indicate that the phase relationships are different. If the
primary tide is cos[nt - k], then the secondary tide will be approximately
either cos{2nt - 2k] or cos[2nt - 2k - 180°]. Hence, if k is the phase

lag of the M2 tide, then the phase lag of the Mé tide due to a standing
oscillation will be either 2k oxr 2k + 180°. This means that when the pri-
mary is at HW the secondary is at either HW or LW. In the first case the
distorted hich water will be more peaked while the low water will be flat-

tened out, Fig. 1.08-3. 1In the second case the reverse will be true.

/—"h.
7 N\, ~COMPOUND

\}
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The amplitude relations of these terrestrizlly generated tides
to the amplitude of the primary is a matter of some importance. Suppose we
take a section of Fig. 1.08-1 and compare it with the same thing for a pri-
mary of half the amplitude, Fig. 1.08-4. Since the distortion is propor-
tional to the elevation it follows that

I = Ly = v = 1
HlHl <HH and RlRl LRR

Pig. 1.08-4

on the other hand, when we cofme to consider the differences between the
distorted and undistorted curves, we find that the ratio Anl/an is about %.
In other words, at any place the amplitude of the guarter-diurnal tide
varies approximately as the square of the amplitude of the semidiurnal tide.
Bccording to this the guarter~diurnal at neaps will be less than those at
springs in the ratio of the sguares of neap and spring ranges. The is
generally approximately true and can be used to estimate the relative im-
portance of the shallow-water tides when the amplitude of the primary is
known. 2 similar relation holds for the sixth-diurnal tide which goes as
the cube, etc..

For Chesapeake Bay only the M, and, possibly, the M. shallow-

4 6
water tides appear to be of any rezl interest. FHowever, in many estuaries
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the distortional effects are so great that the number cf shallow-watex
constituents bhecomes completely unmanagezble. It was criginally thought
that the overtides dropped in importance very ravidly but recent work at
Liverpool suggests that, in many cases, the convergence is much slower

than was hoped. This incicates tha

rt

the higher constituents, neglected
up to now, may be worth locking into.

The attack we have outlined is based on a pure harmonic primary
wave. Such a wave is seldom—-—-if ever--met with in an estuvary. The wave
which enters the estuary micght, cocnceivabkly, be pure harmonic but, in the
estuary, it is damped by friction, refracted by variable derth, bounced
back off barriers to form standing waves, and, in general, treated like
the ball in a pinbzll machine. No one has made much procress with the
problem. However, the explanation we have offered is actually pretty fair.
One warning though is in order. 2Amplitudes and phese lags must, repeat
MUST, be gotten from observation; not from theory.

Just to suggest to you that there are miseries as yet un-
mentioned, in addition to the overtides there are things known as com-
pound tides which have speeds which are combinations of the primaries.

For example, there is an MS, tide whose argument is arg{Mz} + arg{sz} and
a long term tide whose argument is arg{s2} - arg{Mz}.

The whole subject of shallow-water tides is gquite analogous
to the results Helmholtz got in studying sound. He found both overtones
and compound tones in music. If you plan to do anything serious about

tides, I suggest that you begin by becoming very familiar with sound.



The time has come to go into the methods of analysis used by the U.S.C.&G.S.
Suppose you have a continucus record of sea surface elevation made by a

tide cage at some. point. The problem is to determine from the cbserved rec-
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udes znd epochs of the constituent tides at the point of ob-
servation. The theory of how to proceed is simple enouch. Carrying out
the necessary manipulations is extremely cumbersome. 2As I have mentioned
before, the Admiralty and the U.S.C.&G.S. follow different procedures.
My remarks will cover the U.S.C.&G.S. method. The Acdmiralty methed is de-
scribed in the Admiralty Manual.

' Consider a tide having only two constituents and, for simplicity,

no phase difference. Then the record will be described by
(1.09:1) n(t) = Acos[at] + Bcos[bt] 3 a#hb s

Assuming we know the species of constituent that enter, the fundamentzal
periods are known so that at and bt are known. Since we have n from the
record as a function of time, t, it would seem that any two values of n )
at two differént times, n{tl) and n(tz), would be enouch to set up a pair
of simultaneous eguations in A and B as unknowns. If so, they could be
solved for A and E. For three constituents the system would need three
equations, etc. for as many constituents as you wanted to use. This sounds
simple, and it is, but it doesn't work in practice for a number of reasons:
First: The actual tide usually contains so many constituents that
the system of simultaneous eguations is very large. With hand-

computing this is a real objection. With the advent of high-

speed computers it really doesn't have too much force.

Bop Second: The trigoncmetric arguments must contain phase lags of assort-
ed sizes. The constituents are certainly not 2ll in phase and
this doubles the number of unknowns. We have instead of (1.02:1)
(1.09:2) n(t) = Acosl[at + @] + Bcos[bt + g] ; a#b ;

The variables are 2, B, ¢, and B. Much worse than the doubling

of the number of unknowns is the fact that some of them are



cuteside the trigonometric functions and some inside. This
means that vcu no longer have a simple system of linezr egua-
tions and that the methods for such equation systems no longer

apply.

Thnird: The wvalues of n read from the record ere subject to
errors of various soris. There are the inevitzble instrument
errors. Wind-wave motion, although usually pretty well damped
out by the tide gage, may not be entirely removed. Meteoro-
logical conditions may zlter the sea level for édays at at time.

End on, and on. All these things will introduce spurious os-~

cillations of various frequencies in the recorded ticde. They

force us to use averages in order to stabilize the measured

values of n(t).

The principle of the method of averaging is to isolate the
effect of a single component. For example, in equation (1.09:2) suppose
we want to take the average in such a way that
(1.09:3) <Bcos[bt + 8]> =0 3

SRR n(t) = Acos[at + o] + Bcos[bt + B]

]

<n¢t)>T <acos[at + a] + Becos[bt + 8]>T

<1'|(1:)=~.r <Acos[at + G.]>T + <Bcos [bt + E3]>_r
If we can choose T adroitly enocugh, we can satisfy eguation (1.09:3) so
that, for that period of averaging, T,
+)> = < + + > P
<n{t) » Acos[at + a) 2
The ideal length of tidal record to pick for T is some multiple

cf the synodic periocd of the constituents involved. The svnodic period of

two or more constituents is the time between successive conjunctions of
like phases, Fig. 1.0°2-1, page 87. .
The method of averaging to knock out a constituent is based on
the fact that for a simple harmonic, say
n{t) = Bcos(8] ,

averacing over a period, or any multiple of a period, cives zero.



(w0}
=~

% \/ \/ "\

Ta Tb
N SYNODIC
\/Ta Tb1 \/& PERIOD

Fig. 1.09-1

B=ky +2km 8=Kl+2kw
1 1
e weees | Bcos[€]ée = 0 .
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This is also true if the record is read at a discrete set of points evenly
spaced over an interval egual to a period or to some multiple of a period.
In other words, if one complete cycle is divided into egual increments, m,
ke m-1 ml o

.z n; = A-E cos[?; i] =0

= i=0
One can start anywhere in the record and this is still true.

Suppose we have recorded our two-constituent tide, eguation

(1.09:2), over many cycles and we want to determine the value of A. We
know that constituent Acos[at + o] has a period e = 360°/a. Just to make
the discussion definite, suppose fiy 24 hours. Our record is then many
dayvs long. We read off the values of n at hourly intervals on the record

starting anywhere and tabulate by hours, Fig. 1.09-2, page S8.
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Now, because we are using the period of Acos[at + o], the con-
tribution of this term to n at any particular hour is always the same, but
because its period is different, the term Bcos{bt + B] contributes differ-
ent amounts to n at any one hour on different days. We can hope that for
a long record, n large, the contributions from the second component will,

on the whole, tend to cancel each other so that when we average we get

17 17 1 ¢
s -Z L iy 'Z Acos[atOri + 9] = = 'z Bcos to,i + Bl
i=1 i=1 i=1
0
; R ; B n
;-'E %™ z Acos[atl' @l = ’Z Bcos tl,l + R]
i=1 i=1 =1
0
n n n
1 1 1
"y ‘Z n23'i - I Acos[atzB'i + al] + = Z Be {bt23,i + B]
gi=1 i=1l i=1 y
0
or
tjy> = <Acoslaty + c]>
<nl> = <Acos[at1 + al>

g e

> <pcos[at + al>

W3 23
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Thus, you have 24 estimates of the first constituent spaced egually ocver
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period. C©f course, they won't be pure but, if n is large, the éisturb-

esidues will tend to be small. The points can be plotted and a curve
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enting Acos[at + @) faired through them. From the plot the value of
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ituée A can be estimated. The value of the phase lzg, ¢, can be
secured by nroting the time of cccurance of the maximum and subtracting from
it the hour of the equilibrium tide for the constituent.

This process can be repeated for each constituent in turn.
uppose the Bees([bt + B] constituent had a period of 25 hours. You could
divide the 25 hours into 24 equal parts each lgz hours long, re-read the
curve at these points, and again get 24 estimates. The only essential
thing is that they be egually spaced over the period. So--in this case
ton

you could use the values already read but run from n and get 25

0 24

estimates. That could save a lot of work.

The operationoutlined above is simple minded enough but the
mechanics can get fairly involved. Try to picture to yourself the amount
of bonehead labor reguired to resclve a record from a major station which
could well have ten to twenty constituents and be a year or more long.
Again we siné the old refrain: It's a nice idea but it breaks dewn in
practice.

Quite aside from that, there is another reservation that must

be made about the method. Suppose you had 3 constituents with periods

B, * 10 hours, T, = 5 hours, and e, ™ 4 hours. The separation method de-

b
pends on the contributions from cne component being the same for a given
time while those for the other components are randomly distributed if the
record is long enough; the record being analysed over one of the given
periods at ecual time intervals. It is easy to see that the constituents
with periods T = 5 and T 4 fit the recuirement. But what about T, - 10
and 1T, = 5? From Fig. 1.09-3, page 20, it can be seen that the wave pro-
éuced by two pure harmonics, one with a period double the other, is an
oscillation that is anything but pure harmonic--which is no surprise. More
to the point is the fact that, if you take the 10-hour period, setting zero

anvwhere, and even if there is a phase difference, the two waves are in
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exactly the same relation to each other at hour 10 as they were at hour 0.
The heavy line simply repeats itself over and over. 1In other words, the
sum of the contributions of the two constituents is always constant at a
particular time. The method will not separate them.

In general, the method will not separate constituents whose
periods are integral submultiples of a primary period. For example, suppose
the primary tide had a period of 24 hours. The the method would fail to
separate constituents with periods of 24, 12, 8, 6, 4, 3, 2, 1, %, ...,

hours. This is the Fourier series situation where you have

cos[Bt] + a.cos[26t] + a.cos([358t] + ... r

(1.09:4) f(t) = a .+ a 5 3

0 1
ARdvice: If you are not familiar with Fourier series perhaps you should poke
about in the texts a bit. R. V. Churchill, "Fourier Series and Bound-

ary Problems" is simple anéd I have found it useful.

The difficulty raised here is important in tidal work because
some of the major constituents have such relationships. For example,
M, v 14.492°/msh while M '
the same property.

g ¥ 28.984°/msh. The shallow-water tides can show
What the averaging method will do is to pull a record apart into
constituents which zre either pure cosines (if there are no impbrtant sub-
multiples corresponding to them in the record) or deformed oscillations
like the heavy line in Fig. 1.0%8-3.
To meet the difficuliy weczll upon some results frem Fourier

analysis. We begin by considering that a deformed “constituent" of the
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of the kind unéder discussion can e written as

(1.09:5) f = fT(t) + £ (B) ¥ v HE_FE) .
' M M Y
1 2 k

Just to be specific, suppose I am talking here zbout the distorted curve
vou would get by &veracging for the Hl constituent when the submultirples
... were present and important.

Now Fourier analysis can always duplicate a curve exactly kv
taking an infinite number of such terms. The routine of Fourier analysis
just goes ahead and generates the whole infinity of terms. The Fourier
mechanism won't tell you ahead of time which components are present and
important in your record. You have to make up your mind before you begin
how many and which ones you think are there. Having made your decision,
you carry out your computation and then check back to see how much residual
wobble is unaccounted for.

Since each of the f-terms in equation (1.09:5) is actually a

pure harmonic of the:form f = Acos[at - e¢], a vital relation for us is

(1.09:6) acos[at - «]

Ccos[at] + Ssinlat]

where it is not necessary that C ecual S and

(1.09:7) A= (C2 + 82)"
while
(1.09:8) a = tan™![S/C) .

Thus, the analysis for (1.09:5) can be put in the form

(1.09:9) n= Wy & Clcos[at] + Czcos[2at] + ...+ Ckcos[kat]
+ Slsin[at] B stin[2at} + ...+ Sksin[kat]
. e e T o e [ — [ T i i s
M M Mk
constituent constituent constituent

-

The constant, H., relates mean sea level to the height of the tide gage.

0!
If the relation between mean sea level and the heicht of the tide gage,
which usually has an arbitrary zerc level, is known, then we can remove

this constant displacement from the record by forming n - E_ but it hardly

0

matters since Hy is guite easy to determine from the record. Suppose the



tide has a period of 24 hours znd that the record is divided into hourly

1
interveals. Then
X
1.08:=100 = —
( ) 221,
i=0
i.e., HO is <n> over a complete cycle or over an integral multiple cf a
complete cle of the primary wave.

It is well known from statistics that in szmpling an cscillation
veu must sample at at least twice the frequency of the most rapid oscilla-
tion present. If you sample less often, a2 high freguency coscillation will

lock to you like a slower one. This is illustrated in Fig. 1.09-4. Suppose

A LT
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Fig. 1.09-4
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vou have a wave that oscillates 4 times in 10 hours and you want to explore
it by sampling it at a finite number of points spaced equally over the 10
hours. Suppose you decide that anything smaller than 2-hour intervals
would make too much work. So you read off the solid curve at 2-hour inter-

vals. What you know about the curve is a set of values

(no, to), (nl, t0+At), (nz, t0+2At), 5 @ (ns. t0+5ét)
If only this information is availeble to you, it looks like Fig. 1.09-5.
¥ 7. F T
{o e i s
©) ) I O
- | 1 i
T T T
1o At : At } At At AY T H4r
© ©

7\ 72

Fig. 1.09-5

I am willing to bet that, if any one of you were handed Fig. 1.0¢-5 and
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asked teo fair a curve through the peints, vyou would érew the dazshed curve

in Fig. 1.092-4 and not the solid curve that produced the civen values of
T h

s |

&
curve. To pick up the solid curve in Fig. 1.09-4 you nust sample at least

he sampling rate is too slow to even suggest the hich freguency

every 1.25 hours.. Thus, the number of intervals intc which vou divide

your primary must be at least double the freguency of the highest constitu-
ent present, say k. Then, if m is the number of subdivisions of the period
of the primary cycle, we recuire

(1.09:11) m 2 2k .

For any k, Fourier analysis gives us

g Mo 2 i
(1.09:12) C, == ] n.cos %27 )
k m . i m
i=0
and
g gt 2
(1.09:13) S, == ) n,sin|k=5
k m, & m
i=0
where

k n the harmonic
A m n the total number of increments used in the
primary cycle.
From (1.09:125 and (1.09:13) you can compute Ak and &y £rom eguations
(1.09:7) and (1.09:8).
Let me recapitulate the "ideal" method outlined so far:
Suppose we wish to analyse a tide in which we know or hope that the
constituents Ml' Mz, sy Mv are important. The M is used in the generic
sense to represent any constituent here. For these tides we know the
corresponding periods T.,, T

A

4 r -»-7s T . What we want to calculate are the
& 2 v
Rv and the epochs ¢

o o .

1’ S SR l: oF R ) v
tep 1l: Determine the length of record to be used by computing the

amplitudes A

synodical period Ts and using a record length R = uTs wnere p is any con-
venient integer.

Step 2: Divide the period T. into a sufficient number of ecgual inter-

i
vals so that a good plot can be made. Carry out an averace for each point

within Tl’ plot the averages, and fair & curve through them. Repeat Step 2

for each period Ti: L AR (e TR
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From Step 2 two kinds of cuvrves will result: pure harmcnic
ané compound.

For the pure harmonic curves:

Step 3: From the graphs read off Ai and from the pecsition of Ai on
@ time axis relative to the time of the corresponding eguilibrium ccn-
t determine @, for each of the pure harmonics.

n
For the compound curves:

Since the compound curves are composed of pure harmonics whose frecuencies
are multiples of the fregquency of some primary constituent further steps
are necessary. For any such compound curve resulting from an analysis for
a constituent with period T,, the freguency of the primary is 1/7, .

Step 4: Determine, as well as vou can, the numbers and freguencies
of the constituents present in the compound curve. Suppose Tk to be the
period of the shortest constituent present.

Step 5: Divide Tl into at least 2k equal intervals m and read the

corresponding 7, .

i
Step 6: Compute HD = <ni>.
Step 7: . wi L, - = M, =~ <N,>,
P Replace ny with ny HO ns n;

Step 8: With the new n, compute Ck and Sk according to equations
(1.09:12) and (1.09:13).
Step ©: Compute A, according to equation (1.0%9:7) and «

(1.09:8).

by eguation

k k

Step 10: Test how closely the values secured in Step 9 agree with
the initial compound curve. If the agreement is good, the job is done.
If not, repeat Steps 4-10 using more harmonics and keep it up until the

agreement is satisfactory.

The values found in Steps 3 and ¢ are the values of Al, A P Av and

2!’

o o, reguired. :

1] 2, L L
It takes very little thought to see why this is still an "ideal"
program rather than a practical one. Suppose that you must take into ac-
count a modest 20 constituents. Even one synodical period could easily
recuire a 50-year record (Step 1). For each of the 20 periods the record

would have to be redivided into egual increments (Step 2). If you thin}



back to the speed numbers you have seen, you will apprecizte how mecsy

this cculd be. For instance, Ml has a period of 24.84 hours reguiring

for a 24-point division an interval of 1.03 hours. N2 has a2 period of

12.66 hours reguiring an interval of 0.55 hours, etc.. 2fter each re-

ivision the values of n must be rezd off the curve all over again

W

The U.5.C.&G.S. avoids the problem by using what is known as
the "Standard System." 1Instead of adjusting the division for the period
of each constituent, the values of n are read only at integral values of
the mean sclar hour. This gives you 24 values of n per mean solar day.
These values are then used for every constituent regardless of period.
Naturally, the values of n will be a bit wrong for every constituent that

has a period not made up of an integral number of mean solar hours.

Remark: With a sampling rate of one per hour, according to what I have
said earlier, we can work down to the 6th harmonic of a semidiurnal
tide. The U.S.C.&G.S. seems to think that they can get down to the
12th but I don't see how they figure.

The practice with constituents which do not fit this Procustian bed is to,
assign the vﬁlue of n read at an integral mean solar hour to the nearer
constituent hour. What is going on is shown in Fig. 1.09-6, page 96. If
the constituent day is longer than the mean solar day you will now and then
pick up a double assignment of n's as at the 15th constituent hour in Fig.
1.09-6. If the constituent day is shorter than the mean solar day, then
some constituent hcurs will have no n assigned to them. 1In the long run
this evens out. Since you are taking averages it just means that there
may be one number more or less in the average for some of the n's.

The assignment of n's is carried out at the U.S.C.&G.S. physic-
ally by means of stencils. The values of n are tazbulated in a standard
form, Fig. 1.09-7, page 97. Each constituent has an overlay with holes
cut out in the appropriate places. The averaces are formed from the numbers
which appear when the overlay is in place. I won't bother to describe the
stencil. You can find the story in sordid detail in Schureman (1%41), »p.
104 et seg.. A&Actually, the stencil device is a good cdodge and might light-

en your own data processing chores on occasion. Lock into it.
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In this life you don't get something for nothing. The princi-
ple of TANSTAFL is universal. While we have reduced reading labor consider-
ably by using the "Standard System," we have introduced a certain amount of
error into the averages. This arises because the values of n used to form
them differ, more or less seriously, from the values we would have used had
we read the record at the correct intervals. The U.S.C.&G.S. compensates
for this be extending the constituent to a half-hour overhang at each end
of the record. The hecessity‘for the half-interval overhang can be shown
as follows:

Consider n = a cos[at - a)] with t in solar hours. Let

tO Z the solar time of the exact constituent hour in guestion
am At = the solar time span of a constituent hour,
er FoOX Ml, At = 1.035 hours. The amount of the miss may range from
+ ab g Ay = Q?—. The mean n over the interval is
o 2 o 2
t + kAt
— l o
N = f A cos[at - eldt
to— Lot

or, integrating and converting to radians,

t0+ LAt
H=—2--£TIE—:—Osin[at— ol
t - %At
o
or
— _ 180A _. - i o Wi
R {szn[ato a + kabt) s:m[at0 o satit] )

Using the trigonometric relation for the sum of sines this can be written



180n

e gt - in[ka
n s cos | & alsin[kabt]

Suppose ﬂo is the value n should have hadéd at to‘ Then
n_ = Acoslat - a]
o o

Now, if the record with which we are working is very long, it seems reason-
ezkle to assume that the repeated misread values of n will be evenly dis-
tributed on the interval (to—kﬁt. t°+HAt}, i.e., the average we compute
will be a pretty damned good estimate of the value of n on the interval

around to. With this in mind, form the ratio

3

) Acos[ato - al

TP
- 130 A
n

cos[ato - a)sin[%aAt]

- T haAt
nC‘.' ™
(1.09:14) — = 70 (#2bt) (sin(}abt] } = :
) n

This ratio is called an augmenting factor. All the material for it you

know. Using the mean solar hourly observations and stencils we get H.

Therefore

(1.09:15) E-x (the augmenting factor) = Ny

The validity of relaticn (1.09:15) hinges entirely on the assumption that
the record is long enough so that the values going into our estimate oflﬁ
are evenly distributed over the interwval about to.

For most work the U.S.C.&G.S. has tabulated a and At for each
constituent. They can be found in Schureman (1941), page 228. They are
independent of phase.

Another difficulty arises because the tide records with which
you must work are truncated, i.e., they are of finite, not of infinite,
duration. For one thing, the record has to be at least as long as one
cycle of the slowest constituent present. Lopping it off too soon will
louse vou up and some of the long-pericd stuif is really long-period, e.g.,
19 years. RAnother gimmick is that if ycu are trying to sepzrate out con-

stituents of very nearly the same pericd, you have to have a very very long



record to let them appear in a truly representative set of phase relaticns.
Some ccnstituents always seem to foul up on this because they are sc close
that the records zrxe never, repeat NEVER, long enouch. For instance,

Sz,_the principal solar semi-diurnal constituent, and X_ and T, which éiffer

2 2
from it by less than 0.1°/msh. 2also, there are Kl’ the luni-soclar céiurnal
constituent, and Pl which have speecds of 15.0411°/msh and 14.958%2°/msh and

a speed difference of only 0.0822°/msh.

The values for 52 and Kl obtained by following the routines

cutlined above are only approximate, constituents with closely associated
periods being, to some extent, still tangled up in them. We allow for this
with yet another special correction formula. We take, for example,

52 observed 52 equilibrium

K, observed K2 equilibrium

This seems a reasonable assumption; particularly since the speeds are about

(1.09:16)

the same. The waves are pretty much alike and what happens to one will
probably happen to the other. For example, if one constituent runs into
shallow water the other constituent will, inevitably, be running into
shallow water too and they can be expected to altered proportionally. The

U.S.C.8G.S. calls these things infering constants. The British use a

slightly different method for infering constants but they come out about
in the same place as we do.

Another correction process called elimination is used because
no record is ever long enough to cover enough multiples of every constit-

uent period present in a tide to yield a good statistical estimate.

Traznslation: Some constituents will have too few numbers in the average to

provide a stzble estimate.

Suppose we consider

(1.09:17) n = Acos[at - a)] + ] B,cos[b,t - 8,]
3

where the first term on the right-hand side represents the constituent of

interest and the summation all the other constituents present in the record.

If the series is long enough--which it never is in practice--

) B.cos[b.t - 8,1 =0 .
;i i i



The effect of the non-zero residue is that our estimate is
n=A'cos[at - a'] "
i.e., our estimates A' and a' are a bit off from the true A and a. Elimina-
tion gives a small correction factor,
B =2' X (a correction factor)
a = a' x (a2 correction factor) s
These elimination factors are given in Teble 29 in Schureman (1241).

The methods by which such tables are constructed are always
similar and always untidy. Roughly, a guess is made about the residuals
Bi' etc.. This guess is fed in and worked out to get a first correction.
This gives an ammnended guess which is fed back in again. 2and round and
round we go.

The methods discussed so far are for the semidiurnal and diurn-
a2l constituents. They are impractical for the long-period constituents
which have periods ranging upward from 14 days. For these, hourly values
of the record are discarded and mean daily values used instead. Some of
the longer ones, e.g., the annual solar constituent, use mean monthly values
from the tide record. With this change the methods developed carry through
as before. However, if vou are sometimes in a bind from short records on
the fast stuff, you are always in the bind on the slow constituents.

If you have not already done so, be sure to read "Tidal Datum

Planes," especially Chapters II, IV-VIII, and XI at this point.

1.10. Tiéal Currents.

So far, we have centered our attention on the vertical component, the tide,
to the exclusion of the horizontal components, the tidal current. We must
now tzke steps to repair this omission ané to relate the tide and the tidal

current.



In fection 1.05 we develcped an ecuation for the vertical tide
producing force, (1.05:24), which was expressed in terms cf a common coef-
ficient, ceodetic ccefficients, and long- and short-period celestial fac-
tere. At the same time, almost as & by-product, we exhibited the east and
north ccmponents of the tide-producing force in exactly the same terms,
ecuations (1.05:253) and (1.05:26). It should be clear without further com-
ment that tidal currents are, therefore,‘subject to exactly the same miser-
able harmonic analysis as tides and that such things as variation with
apogee and perigee, declination, and perellex will appear in tidal currents
just as they did in tides.

2t the very keginning we mentioned that Gallileo noticed the
wave-like appearance of the tide and, perhaps, the best way to get at the
relation between the vertical and horizontal motion of the water will be
through wave theory. Suppose we have a progressive wave of small amplitude

whose profile is

(1.10:1) n = Acos[kx - ot]
whers k = 27/L is the wave number
ang 0 = 20/T is the freguency.

For a given position, which we may take egual to zero for convenience, what

one sees passing the position is
(1.10:2) n = Acoslot] =

The horizontal component of the water motion associated with this wave, u,
is

KZ
(1.10:3) u = Ace coslkx - ot]

if the water is deep; h/L > %, while for shallow water; h/L < 1/40, it is

Ao
(1.10:4) U o cos [kx - ot]
or, with x = 0,
(1.10:3.1) u = Ace" Zcos[ot] (Ceep water)
and
AC
(1.10:4.1) u = — cosfct] (shallow water) g

kh



The parameter h is the deoth of the water and z is mezsured zlong the ver-
tical axis frecm an origin at the mean sea surface and necative downward.
The tide, considered s a wave, is always in shallow water.

Tor. example, consicder a semidiurnal ticde with T = 12 hours = 43,200 seconds.

(1.10:3) L = 572 L in feet and T in secondés .

-

Then the corresponding length is
L = 5(43200)2 = 5%4322x10% = 5x186624x10"% = 10!0 feet .
The ocean is nowhere deeper than 10° feet. Therefore
h/L £ 10571010 = 1,105
which is certzinly less than 1/40.
The aﬁplitude in eguations (1.10:4) and (1.10:4.1) is

a0
xh

which, for a particular water depth and progressive wave with constant «

and 0, is constant from surface to bottom since nothing involving z enters.

Remark: In contrast, in equations (1.10:3) and (1.10:3.1) for deep water

there is an exponential decay of the amplitude with depth =z.

From eguation (1.10:2) high tide occurs at x = 0 when t = 0,

2%/o, é4n/o, ..., 2nn/o, ... and, from eguation (1.10:4.1), u also attains
its largest positive values at the same times. For t = 1m/0, 31/0, ...,
(2n-1)7/0, ... low tide occurs and u attains its larcest value in the re-

verse direction. Thus, for a progressive wave the strength of the current
coincides with the high and low waters.

A standing wave may have the form
(1.10:6) n = Acos[kx]sin[ot]

and the horizontal velocity for shallow water is given by .

AC ., . =
(1.10:7) u = EH‘Sln[KX]CCS[Ut] : See Lamb, Ch. IX.)
Zgain, the current is unmodified by dezth and feor t = 7/20, 37/20, ...,
(2n-1)7w/20, ... and a given x position, n is either zt high or low tide

while u = 0. The tidal current, u, has its maximumn values when n is at
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strength cof the ticde corresponds to hich and low water while, for the stand-
ing wave, the strength of the tide corresponds to half-tide. Tides occuring
in nature are seldom purely progressive or purely standing so that the re-
lations exhibited can not be expectedé to hold exactly.
The results for progressive and standing waves are intuitively
appealing. For a progressive wave, Fig. 1.10-1, in progressing from a

crest at position B to a crest at position A' the water must rise to a2 pezk

/T/\/‘\-——K\\
o i ~ o

,....--/ | | S S —
A A —
Pig. 1.10-1
at each successive point between A and A'. Under the crest there can be no

vertical component of the water motion or the tide would continue to rise.

The entire motion must be horizontal. - .
For a standing wave, Fig. 1.10-2, the water sloshes to one end

and then back to the other. When we have high water at B it is clear that

there can be no flow of water since such a flow would force a further change

in the water level. At half-tide, when the water surface is level, the

Fig. 1.10-2

the current is flowing most strongly toward@ AC to drain B down to a low at
D and raise A tc a high at C. When the high at C is reached the current

must agein be zero since, if it were not, there would be further change in

the water level.

Tidal currents must be carefully distinguished from currents

due to cther causes such as gravity, density, wind, etc.. Tidal and
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nentidal currents almost always occur together; the actual current cbserv-

the resultant. However, in the open ocezn one cr another of the

kin currents may precominate. In

usuzlly very weazk. They

(=]

entrances to bays
-
(==

the

In the entrance to a bay or in a river and, in general, wvhere
the water is constricted, the tidal current is of the reversing rectilinear
tvpe. The flood current runs upstream for about six hours followed by the
ebb current which runs downstream for azbout the same length of time.
Figure 1.10-3 shows a current curve for the Narrows in New York Harbor. A
curve like this is produced by measuring the current velocity every hour,
plotting flood values above the zero velocity line and ebb values below,

and fairing a curve through the points. The curve locks a lot like the

oh e 12 igh oM eh 20 gh oh
T S AT A I i OO R N R A A ) R | A
t] CURRENT CURVE:
o THE NARROWS
S0 NEW YORK HARBOR
|...
pig. 1.10-3

tidzal curve. Maximum velocity of the flood current is cazlled the strength

cf flood and is analogous

to high water on the tide curve although it

coesn't necessarily occur at the same time.

of

is called the strength

cay,

Theoreticzlly,

zltered from top to bottom, eguaticns (1.10:4) and (1.10:7).

for a real fluid, which has viscosity,

currents are the same over much of the

ebb and corresponds to low water.

this can not be the case.

Maximum velocity of the ebb

The current

like the tidal dav, is best expressed in lunar time.

the current in shzllow water should extend un-

Actuzlly,

Tidel

cepth but near the bottom they drop
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to about 2/3 of the surface value. There are many effects that can okscure
this simple picture. Due to drag, the currents are generzlly slower nezar
the sides of & channel than they are in the middle. As a rule of thuwb,
the'average velocity of the ticdal current across a section will be about
3/4 the central surface velocity. To show how badly this rule of thumb may
serve you, consider Fig. 1.10-4, page 106. It shows a current profile
taken off Blocdy Point, Maryland by the Chesapezke Bay Institute. Here the
surface current is ebbing at 0.26 kt. At 10 feet it is ebbing at 0.43 kt.
Prom 35 to 45 feet it is practically slack while below that it is still
flooding more strongly than the surface layer is ebbing. Current profiles
like this are characteristic of two-layered estuaries like the Chesapezke
Bay.

The effects of nontidal currents on tidal currents can be in-
tuited in a general way. Consider Fig. 1.10-5. Referred to the zero vel-

ocity line, AB, a2 pure tidal current would be as shown. Strength of ebb

g . R oT H
T IE"/E\\ i //\\ e
g A \2:1’/// \\\“//B
- U

Fig. 1.10-5

and flood are egual and so are their durations. Now, suppcse a nontidal
current of velocity CD in the eﬁb direction is superimposed. Then the
strength of ebb is increased by CD while the strength of flood is reduced
by the same amount. The current picture can be had by moving the zero vel-
ocity line parallel to AB throuch a distance CD which puts it at EF. The
tide obviously ebbs longer and stroncer. If the velocity of the superim-
posed nontidéal current is greater than the strength of flood, say CP, then
the zero reference line moves to GH and there are no slack waters; the
current is constantly ebbing. The composite current azppears as a pulsating

direct current with minimum speed RS and maximum speed TU. It should
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@ly be necessary to mention that the direction of a composite current
will be in the direction of the vector resultant of the component current
Vvectors.

Ticazl current curves ccme in the same assortment as tide curves.
As examples, the Hudson hes an ecual semi-diurnzl tidzl current curve,
Mcbile Bay a diurnal, and Rich Passzge, Fuget Scund an unecual semidiurnal.
Wrere there is an ineqguality the cifference in the tidal current curve is
usually less than the difference in the tide curve.

As we have pointed out, for a pure progressive wave the strength
of the current occurs at the times of high and low water while for a stand-
ing wave the strength of the current occurs at half-tide. Since neither of
these cases occur pure in nature, we expect a differcnce in the times of
occurance, but, whatever relation strength of current and high water have
at a particular place, the relation is maintained.

The distance traveled by a floating object during a tidal cycle
can be determined from tidal current curves. The vertical distance travel-
ed by such an object constrained at a fixed point is, of course, simply the
range of the tide curve. The horizontal distance covered by a free float~
ing object is not guite so simple. If the tidal current were a step func-
tion, you could multiply the velocity of flood--there would only be one--
by the duration and similarly for the ebb: take the difference to get the
distance. However, the tidal current is continually changing so that you
must use the average velocities over the duration to get the distance.

You can estimate this average in severzl ways. You can read off along the
tidal current curve at more or less closely spaced intervzls and use a desk
calculator. You can planimeter the area between the curve and the zero
line and then divide by the length of the zero line. Or, if you can kid
yourself that the curve is pretty clcse to a cosine curve over a zero to
Zzero loop, you can use

% Voo = 0-637v___ = v
for the average velocity over the locp. The tidal excursion can be computed
from the mean velocity by multiplying it by the duraticn. 21l this is very

aporoximate. It is based on the assumption that the obkject in cuestion
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meves exactly with the water which surrounds it. Where this is not the

case you had better start piling con the corrections.

The cduration of slack water needs brief comment. Mathemztical-
ly,. zero velocity occurs only at a point in time so that can't be what we
mean by slack water. Because of the difficulty of measuring very slow

currents it has become the custom to ccnsicder any period during which cur-
rents are less than 0.1 kt as slack water. Slack water thus becomes an
interval about the zero velocity crossing. With a limit of 0.1 kt it is

easy to compute the cduration of slack water for a pure cosine curve.

Strength Duration of Slack
(kt) (min)
Semidiurnal Diurnal

1 24 48
2 12 24
3 8 16
4 6 12
5 5 10
6 4 8
8 3 6

You should distinguish carefully between the velocity of
the current which is an actual bodily movement of the water aznd the rate
of advance (progression) of the tide which is the movement of the wave~form.
The progression of the tide is usually many times faster than the velocity
of the current.

In the open sea, where tidal currents are not restricted by
banks, ticéal currents may flow in any direction and are not usually of the
reversing type. They change direction as well as magnitude continuously
and are called rotary currents. Figure 1.10-6, page 109, shows the current
for 12 houvrs from 12 miénight to 12 noon, 30 July 1922, &t Nantucket Shozals
Lichtship. The current is seen to have rotated once clockwise in a little

mocre than 12 hours. 1In a crude way, the tips of the vectors have traced

]

cut an ellipse. Since this is a single record accicental superimposed
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currents are present. If a long record were taken and the average consid-
ered it would be found that the ellipse was much better and the pericd
ebout 12 hours 25 minutes, i.e., the current day feor a rotary currenti,
iike the tidal day, is 24 hours 50 minutes.

uc

v’

Characteristically, & rotary current shows no slack water

m

there are mexima and minima of the cpeed corresponding to the semi-major

=nd semi-minor axes of the ellipse. These are related to cach other in
the sazme way that high and low water are related to slack water in the
reversing tide.

Since the current day corresponds to the tidal day, it is con-
venient in determining the average hourly velocity and direction of a
rotary current to use times of high and low wzter at scme nearby place
as a reference. For example, in Fig. 1.10-7 the average hourly values of
current velocity at Nantucket Shoals Lightship are referred to the times
of high and low water at Boston, Massachusetts. In this figure H and L
stand for high and low water at Beston and the numbers give the hours be-
fore or after.

The major features of a rotary tidal current at any place zare
specified by the major and minor axes of the ellipse which determine the
ellipticity, the direction of rotation, and the direction of the major axis.
In general, tidal currents rotate clockwise in the northern hemisphere and
counterclockwise in the southern hemisphere although local hvdrographic
conditions may produce exceptions. Rotary tidal currents show the same
periodic fluctuations as reversing tidal currents and can also be grouped
into semicdiurnal, diurnél, and mixed.

Neontidal currents can distort rotary currents in many ways,
Fig. 1.10-8, page 111. A strong current can move the "center" entirely
outside the "ellipse" as shown.

I suggest that you consult U.S.C.&G.S. sp. Fub. No. 215 and
Sp. Pub. No. 230, page 16 et seg. for further informaticn on measurement
and recduction of tidal current data.

It remains only to menticn briefly hydrauvlic currents. These

currents are not really tidal currents. They are founé in narrow straits
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connecting two bodies of water which have unequal tidéal ranges or in which,
although the tides have the same range, they are out of phase. The currents
zre of the reversing tvpe but are not simple cosines. They are not direct-
ly caused by the tide producing forces but result from the difference in
head at the enés of the channel--hence "hydraulic" currents--and, conseguent-

ly, are more appropriately considered in a fluid mechanics course. For the
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velocity of an hvéraulic current where nh(t} and nB(t} are the elevaticns
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wo ends of the channel we have

= CtrnA - nB‘

= 3 -

The sign difficulty is met by using the zbsclute differences of the hecights

and then ass ter t

fer

e scuare root is tazken. Althoucgh

h

gning the direction a
there is no naturzl ebb and flood direction, the texms are often ueed.
They are assigned arbitrarily. The velocity would follow this formula if

e were no inertia or friction. Actuzlly, there is usually a time lag
of 10 to 15 minutes in the response. The C includes gravity and other
things that adjust the units. A theoretical value may be computed for C
but in practice C varies enough from the theoreticel to make it an empiri-
cal constant for each hyéraulic current. You can find msterial on hydraul-
ic currents under discussions of flow in open channels in most of the
regular references: Rouse, Venard, Lamb, Milne-Thompson, etc.

For the oceanographer and the seaman hydraulic currents may be

important in narrow straits and kehind islands. Examples are: Messina,

Woods Hole, Cape Cod Canal, and Eellgate.

This concludes our obligation to tides as a howling empiricism
in the service of practical people. We are now free to move on to the

never-never land of tidal dynamics.
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Tides, &s it now stands, is essentizlly an empiricel science. The d&vnamics
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is, the response of the sea to the tide generating forc
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s embryonic. The problem is extremely difficult. Briefly it may be stat-
ed as: Given an ocean basin of a specified shape, filled with water of
known properties, and a specific tide-producing force find the tides in-
duced in the water. Obviously, to solve such a problem for any realistic
set of conditions is a task to stagger the imagination.

We must content ourselves with setting up simplified mathematic-
al models whose solutions are within our powers. From these we can hope
for some insight into the necessary connections among things. In this
chapter we will make a rapid Cock's Tour of some of the more interesting
mathematical models. We will frecguently discuss the possibility of apply-
ing these highly simﬁlified mathematical models to the real ocean. This
is a useful exercise--particularly if you are an oceanographer and care .
about what goés on in the ocean rather than a mathematician with a primary
concern with interesting mathematical problems. That the mathematical
models fail to describe the real oceazn very well will be no surprise since

they have been chosen for their mathematical tractability rather than for

their realism.

2.02. Rairy's Wave in a Canal.

There are two facts about tides which are pretty definitely established:
(1) The tide generating forces: These are well determined and are

inaccurate only to the extent ¢f the neglected terms in the series
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expansicn exhibited in Chapter 1. In setting vp mathematiceal models

it is customary to simplifyv the tide producing force by making it a

simple cosine. Since the curve describing any force can be synthesiz-

cces cut éown on the work.
(2) The form of the sea surface: The tide has the form of & sum of
emall-amplitude, Airy waves,
n= A.cos[8.
L A cos[8,]

where it is assumed that Ai/ki << 1, Fig. 2.02-1

‘-H-q\__h_“__“ o
Fig. 2.02-1

This ﬁas been fairly well established for a record at any single
point with time and also for the entire ocean at any given instant
of time. For shallow water, of course, the component cosine waves
become distorted. For the ocean the maximum known amplitude for the
tide is about 10 meters. At a conservative estimate the correspond-
ing wave length is roughly 2 =‘10 kilometers. Consecquently, in the
extreme case A/ A = 10/10“ = 10" 3 << 1 so that the small amplitude
condition is always met and the Riry wave is a valid approximztion.
In tidal dynamics it is essential to distinguish between a

free oscillation and a forced oscillation. A free oscillation results

when a stable eguilibrium is disturbed by a force which is then removed.
The system continues to oscillate about its eguilibrium position with a
perioé which éepends in no way on the initiazl disturbing force. A forced
oscillation is produced by the continucus application of a periodic force
which determines the period of oscillztion of the system to which it is

applied.

=]

Any system in stable eguilibrium, if disturbed, has its own

-

natural period of oscillation. For example, a simple pendulum that is




initially displaced through & small zngle has a natural period of
(2.02:1) T = 2nvL/g "

Easins of water also have natural periods.

: For & progressive wave in shallow water X >> h. 1Its phacse

(2.02:2) c = vgh g
Therefore, its period is
(2.02:3) T = A//ch ;
This is the period of a progressive Riry wave in shallow water of depth h.
It has sometimes been czlled a natural or free period but the usage seems
to me a bit forced.

2s our first model, consider an earth whose ocean consists of
a narrow eguatorial canal of depth h, Fig. 2.02-2. Suppose that there is

a wave in this canal whose wave length is the earth's circumference, i.e.,

Fig. 2.02-2
A= ZﬁrE. Then the period is
(2.02:4) T = 2an/Jg_h' :
If r, o 6x103 km ; g=103cm/sec? ; h=1km ,
then T = 105 hours 5

If h = 10 km, then

T = 33.2 hours "

-

In any case, if the wave is produced by a force with exactly
the same period as the free oscillation you have resonance and the wave

grows higher and higher as the energy feeds in.
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Airxy developed a moéel for a forced progressive wave in & can-
21 liXke that cf Fig. 2.02-2 but circling any perallel of latitude. Clear-
1

1y, such a mocdel has little hope cf any épplication since the Antarctic is

re oI

ck
1]
3

nterrvpted band of water & y latitude. 2ncther featr

i
Ziry's model is his neglect of Coric

(]

-te

c Zcrce so thet it could apply cnly

t

gsi

fi
(2]
Il

zt the =scuator unless adecuate resitreiring walls were precsent. 1ly,
what Riry did was to apply Bernoulli's theorem to a stream tube using scme
assumptions borrowed from Laplace. He neglected friction and he assumed
that any such wave would have complete symmetry with the tide genexating

force, i.e., you have one or the cther of the situations shown in Fig.

2023,

— @

- —

Fig. 2.62-3

The wave is a forced wave moving at the same speed as the gen-

erating force. We will symbolize this forced speed by c Don't confuse

e
it with the free speed usually svmbolized by c.
Remark: We get ¢ for speed from our British cousins. It comes from

"celerity" which also means speed.

We consider a canal in which the forcedé wave is traveling from east to west

with a speed ¢ Using the artifice of steady motion, we take a set of

ol .
axes moving from east to west at the speed p so that the wave remains in
the same position relative to the moving axes at all times.

With an Riry wave in challow water and with the dimensions we
are concsidering, the vertical component cf the water particle motion is
necligible in comparison with the horizontzl component, u. Under the crest

e wave the horizontal component of the velocity has the same éirection

as the wave profile motion while uncer the trough it is crposite.
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if the motion

form

(2.02:5)

Of the terms on the left-hand
per unit mass, the second the

is the pressure term, and fhe

as constant
part of the
Let us also
has already
in [2.02:5)

(2.02:6)

bt
‘*\\I

Let 2 be the potentizl of the tide generating force. Then with
u = the horizontal component of the orbital velocity

> = the forced wave velocity

g = the acceleration due to gravity

h £ the cdepth of the canal, assumed constant

n = the surface elevation of the wave form

p T the pressure

p = the density of the water,

is irrotational, we may write Bernoulli's ecuation in the

{u - cF)2 + glh + n) + §-+ 2 = a constant

side the first represents the kinetic energy
potential energy per unit mass, the third

fourth the tide generating potential.

At the sea surface p is atmospheric pressure and is often taken

since the variations in atmospheric pressure are a negligible

total pressure only a short distance beneath the water surface.

assume that g, p, and cp are constants. The canal depth, h,

been taken constant. Then collecting all the constant terms

and transposing them to the right-hand side

D

L2 - + + Q= ant - 2 - -
U cpu + gn Q = a constant %cF gh .

The right-hand side of (2.02:6) is just another constant so that

(2.02:7)

must be egual or there will be a pile-up of water somewhere.

that the canal is a ring.)

wicdth W.

v being zero at the mean section.

continuity.

(2.02:8)

% i
Lu Cr

-

u + gn + § = another constant

The volume flow rate through any two sections across the canal
(Remember

Consider the mean section with depth h and

Then we have

thw = (cF - u)(h + nw

This is a version of the eguation of

Deing & bit of juggling we get
. IR .
c (h + n) :

F
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If now we assume that the canal is cuite deep so that n << h, equation
(2.02:8) tells us that
u

(2.02:9) - oKl

i g
so that
(2.02:10) u << o
&nd
(2.02:11) u? << c.u

2

We can therefore under these conditions neglect %u® in comparison with cFu

in ecquation (2.02:7) to get

(2.02:12) c

FU —gn + Q = a constant
We are now ready to pick up some results from our previous werk
on the tide producing forces. In those discussions it was shown that the

horizontal component of the tide producing forces, F could be written in

Hf
terms of the potential as
(2.02:13) B w22 (1.06:8)
H rE 00
or alternatively as -
(2.02:14) g = o 2 S0
H r_ 28
B
where
8 = the geocentric angle
R T = the ecuilibrium tide.

Eliminating FH between (2.

02:13) and (2.02:14)

22 _ _ _ 2n
(2.02:15) 6 -~ 93 g
Integrating (2.02:15) we have
(2.02:16) Q= - g;'+ a constant 1

s previously set up, when n =0, 0 =0 so that the constant is zero and

(2.02:17) Q=-gn

Substituting (2.062:17) in the form of Bernculli's eguaticn given by (2.02:12)
we have

(2.02:18) = cgu + gn - ¢n = & constant
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which may be written
(2.02:19) g{n - n) = c_u + a constant .

WEENING: n is the eguilibrium tide. It is not the same thing as n nor is

it the mean valve of n. Watch vour step!

0
t-
23
4

; Ny &né u are all periodic functicns of the geoceniric zngle, &, and
they are 2ll zero together at half-tide for a progressive wave. Therefore,

the constant is zero and

(2.02:20) g(n - n) = cou ,
Now, by (2.02:2) we saw that u/cF = n/h so that

CFT']
(2.02:21) u = e
and, substituting in (2.02:20),

c.%n
— F

(2.02:22) g(n -n) = '£ .
Solving for n gives
(2.02:23) n-= ME;T .

e

Since the sguare of the free wave speed is
(2.02:24) c2 = gh
this can be put in the guite attractive form

(2.02:25) TR . -

There are three cases depending on the relative values of the
free and forced speeds:
Case It o2
cp > ¢ : (cF/c)2 > 1 and iy 0w D 3
In other words, a crest in the eguilibrium tide corresponds to a trough in

the forced wave. This is called an inverted tide.

Case II:

cF < e ; (cF/c)2 e 1 and E'> Onm>0 3

In other words, the configuration of the forced wave is the same as that



fcx the ecuilibrium tide but the ampliitude is g
Case IIX: B
.= g 3 {c./e) =1 and n>0~nn=w
E E
RESONANCEe OCCUYS==r=m=mm=— Duck!! Since (c_/c)? = (CF‘)/{gh), as h + =,
L
n, i.e., the fcrceé wave azproaches the ecuilibrium

= %=

=Y

e length A, in this

s
0

‘1) 1
TR

rk
1...!
O
i

The value‘ofc?,is determined by the w
mocdel the length of the canal, and the seriod cof the tide generating force,
ARs our canal is moved to higher parallels of latitude its

This implies that (cF/c)z + 0

90°.
Actually, this is pretty

Ty €. = A1
length decreases so that CF +~ 0 as ¢ +

as well and, from eguation (2.02:25), that n = n.
realistic behavior since polar-basin tides correspond very well to ecuilib-

iy

Proudman has computed some values for 60°S where the Zntarctic
parallel

rium tices.
forms the only available case of a continuous band of water zlong a
of latitude. Since the resonance condition is (cF/c)2 = 1 and c? = gh, we
can compute the depth of water for which resonance should occur for zany Cpe

- 9
h CF /9

For a semidiurnal CF and 60°S latitude, resonant h turns cut to be 5440
The averace depth at 60°S latitude is nearer 4000 meters so that

meters.
conditions aren't right for resonance.
We could go on to compute the cn appropriate for resonance with
h = 4000 meters and, in general, butch eguation (2.02:25) hither and yon

but the model is so totally unrealistic that you have to be a real masochist

to 8o it.

ified in two

2.03. &
rv's canal that is modif
cistinct improvement

force which is a

ord ¥elvin worked out a version of
irst, he included Coriolis

spects.
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en Riry and,

cecond, he used a free wave rather than a fcrced wave whi

rather a set back for tides. The result is still unrealistic so far &s
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and

If we: use:
u £ the east-west velocity component,
v = the north-south velocity component,
w = the vertical velocity component, positive downward,
L £ the latitude of the canal,
w = the angular velocity of the earth's rotation,

p £ the pressure,

p = the water density,

then the eguations of motion, neglecting friction and Reynolds stresses and

such, are

(2.03:1)

(2.03:2)

(2.03:3)

Du _ . _ p . _15p
56 2w(sin(L])v 2wicos([L])w 5 B
Dv ; 1 dp

= + 2w(sin[L))u = - 5 50

Dw - 1l3p

- + 2w(cos[L])u = - Py + g

where D/Dt is the material or Stokes derivative, formzlly

(2.03:4)

T SN SIS
Dt - 3t & O 3x 3y 3z

If we assume that the gradients of the velocity components are

small in comparison with the velocities, i.e., that u, v, and w are slowly

changing functions of position so that we may write for the materizl éeri-

vative in every dase D/Dt £ 3/2t and, if we assume that tha vertical veloc-

ity w is negligibly small, w = O, equations (2.03:1, 2, ard 3) become

(2.03:5)

(2.03:6)

(2.63:7)

su _ : e o 38
5 2w(sin([L])v S
v + 2w(sin[L))u = -~ Lép
at p 3y
1l 3p |
=——_—+ =
v p 23z g

Equation (2.03:7) is the hydrostatic eguation.



If now we further essume that the atmospheric pressure cn the
e

watey surface is cecnstant, from ecuaticn (2.032:7) we get
(2.03:8 = N +
(2.03:8) P=p_,+aorln+ 2)
so thet
(2.03:9) o BB w g
p ox ¥ ox
and "
(2.03:10) o B s v gy B
p 3y oy
and, substituting in (2.03:5) aznd (2.03:6),
(2.063:11) %3 - 2u{sin[L))v =~-g 31
¢t oX
3v : an
2.03:12 — + 2 = - —
( ) 5% 2w(sin[L])u g 3y
To get specific, let's take our canal in the northern hemisphere
and let x be along the canal with the positive Ly
sense in the direction in which the wave is b
y:
traveling. Let the y-axis be across the canal =
with the origin at one side and let the canzal's y=0
-
width be b. The Coriolis force will deflect ' = X

any current to the right. On the boundaries

t y =0 and v = b we must have the cross-channel velocity component v = 0.

]

Kelvin made the assumption that the canal was so narrow that v = 0 on
0 £y £b. With this assumption (2.03:11) and (2.03:12) reduce to

.13 5" S . |
(2.03:13) 5t 9 3%
and
(2.03:14) 2w(sin[L))u = - g {?; ;

=}
The form of the eguation of continuity which applieé here is
du _  8n

(2.03:15) B ™™ %

It rslates the amount of water flowing into or out of a regicn ané the local

LV o 7]
S

F'

n

rate of change of elevation. A soluticn of (2.03:13) ané (2.03:1

(2.02:186) u/c = n/h where c = vonh



Remark: This conforms to the results of classical wave theory:

= nocosI(Eﬁ/k)x ~ (2u/t)t] .

3

g = uocosl{2ﬂ/k)x - (2=/7)x)

What we want from (2.03:13), (2.03:14), and (2.03:16) is a functional rela-

tieon between n and y, i.e., we want to know how the elevation of the water

Selving (2.03:16) foxr u and substituting in (2.032:14),

26 (sin[L]) ‘;—“ = - g2l

or

Il

- 2w(sin(L])) ECH n

-

l:l)lru
ol e

or, since c¢ = ¥Ygh,

(2.03:17) 3n _ _ 2w(sin[L]) " _
oy c

Because we are dealing with a narrcw canal oriented east-west, we may take
L = ccnstant. Integrating (2.03:17) with respect to y gives

2w(sin[L])

(2.03:18) in{n} = - = y + B'

or

(1.03:19) _ n = B exp{- 2915%?iEll v} i ’
For y = O: n=3=8-: N, vnaty=0 .

Therefore,

(2.03:20) n=n_ exp{- Zateanlibl) v} ;

o} c

This is something you see over and over again: exponential decay.
The surfzce displacement n has its largest value in the cross-channel direc-
tion on the right-hand side looking in the direction of the current and it
falls off exponentially toward the left-hand side. The fall off is covern-
ed by two things: the Coriolis force »epresented by 2w(sin[L]) and the wave

speed c.

Exercise: Run through the effects of changing latitude and chancing depth

for yourself.

Locking at a cross-section in the direction of the wave, Fig. 2.03-1, pace

124, the "tides" are less con the left. Naturally, this reverses in the
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— SEA LEVEL

| LOW WATER

Fig. 2.03-1

Southern hemischere.

Zlthough the assumptions of the model are unrealistic, this
cross~channel feature does seem to occur in nature. Martin Pollak found a
tendency to greater tidal ranges along the Eastern Shore of Chesapezke Bay
and similar observations hsve been cbtzined for Long Island Sound and for
the Straits of Dover. They prove nothing. There are too many neglected
features of the real world. Still, the correspondence is intriguing.

If one chugs through the rest of the solution, one cets, for

Kelvin's version of Airy's canal,

. _ _ 2wsinfL) 27 _ 2.
(2.03:21) N exp{ S v} COS[A x = t)
and

_ e 2wsin[L) 2n 2w
(2.03:22) B=b, 5 exp{ ———?r———-y} cos[k x Z t]

which give the "ticéal" height and the current velocity at all points and

times in the canal.

2.04, Eorizeontal Crested Waves ané Rotating Currents.

in section 2.03 we saw that in & narrow canal where v was held zerxo in the

-

cross channel direction, the surface of the water, n, responded by tzking



cn an exponential variaticn with v. We got this result by solving tne
eguations of motion and continuity. Other solutions of the eguations
under cther assumptions will show guite different preoperties.

Suppese that our ocean is not restricted to a canal but is

tively unlimited and that our wave is long crested. In other words,

il
Hh
Yy

&=

9]

3=
44

rt
g
n

ection for any ¥ = a constant is the same as for any other. What-
ever M is, it is certzinly not & function of y. Further let the direction

of travel be east along the positive x-axis, Pig. 2.04-1.

Fig. 2.04-1

WARNING: Note-that the coordinate system here is left-handed.

Since we no longer have a narrow canal the assumption that v =
is not attractive. We would rather permit the velocity to have a y-compon-
ent. We will retain the small-amplitude assumption so that our wave is
still an Riry wave.

In section 2.03 the forms we arrived at for the eguations of
motion were

2u

(2.04:1) = - 2u(sin(L))v = - g %E (2.03:11)
(2.04:2) =+ 2u(sinlLlu = - g %3 (2.03:12)

on the following assumptions:
(a) Weglect friction.

(b) Neglect Reynolds stress.

M

(c) The velocity gradients zre small encuch compared with the

velocities to permit replacement of D/Dt by §/5t.

0
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) The vertical velocity ccmponent w is necligibly smaill,
W= 0.

(e) The atmospheric pressure is constant.

ong-crested

-

et

For vaves the crbitzl velocity is the same in any

Vg

f we are to allow & transverse veloc-

1o |

ction eince 21l are identical.

iy
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ity component, v, &s we wish to ¢o, then that v will have to be constant
for all y values or there will ke a pile-up of water along some y-section
and a conseguent disparity among the profiles. There is zero accumulation
of water in any vertical section so that we may again use the simple form

of the ecuation of continuity,

(2.04:3) u/c = n/h :
Since we have assumed a simple Airy wave, the x-velocity compon-

ent, u, is given by

(2.04:4) u = u cosfiEx - 2L ¢
o A T
L % = the wave length
o T = the wave period.

Solving (2.04:3) for u and substituting in (2.04:4) we cet for

the surface
uoh 27 27
2.04:5 = — cos[Z—x - =t :
( ) n = sl5-x - = ]
s we have said, n has no varizstion with y so that 2n/dy = 0. Substituting

in the ecuations of motion, (2.03:1) and (2.04:2), we get

3 su _ : e ety
(2.04:6) =€ 2u(sin(L])v g o
(2.04:7) %%-+ 2u(sin[L])u =0 "

We want to uvse (2.04:4)-(2.04:7) to determine v.

From eguation (2.04:4)

27u
cu o i 27 27
i) eu _ 27 LB .
(2.04:8) 3t szn[k x =
From (2.04:5)
- u_r
(2.04:9) én _ _ _© 2u Sin[-—z—r—' e S - .
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Substituting (2.04:8) and (2.04:9) in (2.04:6)

2%ua 27u _ch .

T 27 3 o7 B 2q

Elﬂ{jf'x - — t] - 2p(sin[L])v = ——— sin[=— x - = t]
- ] T (=51 A T
Dr,'solving for
Tua n
(o) i3 chi 24 ot

{2.04:10 Ve = i ein [ = ——= £
) wsin[L] {7 cnj [ A T €l

Selving ecguation (2.04:7) for v/t and substituting for u from (2.04:4),

2.04:1) 2Y. o wuiut RE o o B
( 11) ot 2w(s;n[L])uocos[x X : t]

Holding x ccnstant and integrating with respect to t cgives

v =~ Em(sin[L])uo(— g%)f cos[%;-x - %; t] (- %;ﬁdt + K
oF w(sin[L])uDT i - om
(2.04:12) v = ~ Sln[jr'x = ﬁ;'t] + K .

Eguations (2.04:10) and (2.04:12) give us two different
of the same thing, namely v. From (2.04:10) there exist some x and
which v = 0 and for these same values, by (2.04:12), v = K. Therefo
must be zero.

Setting K = 0 in (2.04:12) and eguating it with (2.04:10

u 5 w(sin[L])u_t
o 1 gh i, poW 27 _ i ¢ 20 27
wsinlL] [? - cx] st R E z si Al b
or , A
b gh{ _ wsin[L]
s RS w(sin[Ll) T (1 ¢A) T T .

Since ¢ = A/T or A = ¢T, (2.04:13) can be written

m gh| _ w(sin[L]))T
{2.04:14) w(sin [L}}T [l cl.) = T
and, solving for c? we get
h
(2.04:15) e* - =

(m/wsin[L))?

The guantity 7m/wsin[L) is czlled the half-pendulum day a

svmbolized by TP

Z PP |
(2.04:16) TP T wsin[L]

versions
t for

re, K

),

naé
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Ecuaticn (2.03:20) was
g ﬂo exp{— e e y}

vhich cculd have been written

8= expls — b ) = ewpl ey
5 XP ae 2 g SRR R g3 ’
wsin(L] P

Remark: The name "half-pendulum day" comes from the Foucault pendulum
where it describes the periecd recuired for a Foucault pendulum to
restore the orientation of its swing. A Foucault pendulum swinging
above the North Pole will maintain the plane of its swing relative
to the fixed stars. The earth turns under it. If it began swinging
in the plane 0°-180° of longitude, then in 11 hours 59 minutes it
would acain be swinging in the came plane relative to the earth. At
the North Pole the pendulum day, 2Tp, is the sidereal cday of 23 hours
58 minutes. As we move away from the pole, L decreases and sin[L]
decreases so that the pendulum day increases. At the equator 2TP is
infinite. A Foucault pendulum at the eguator does not change its

orientation with respect to the earth.

Using Tp, equation (2.04:15) assumes a particularly neat appear-

ance.
. PSR |, J
(2.04:17) c T (/) )

2

At the equator L = 0, TD = e, andc®“= gh, i.e., we have an

ordinary gravity wave. The minimum value of Tp occurs for L = S0° where

, ecuetion (2.04:17)

TP = 11 hours 52 minutes.

5 T %

(o7

If the waves we consider
2

fi

ave perio T
P
ositiv

|

h
yields reasonable numbers for ¢ in that they zare or T = T_ the

o)

€.
wave speed is infinite and for T > T, ¥e cet imaginary values for c.

The model seems to have scme sicnificant features for semi-

diurnal tides at all latitudes but for cdiurnal tides we must stay below 30°



where the half-pendulum dey is longer than 24 hours.

Cur analysis so far has been precdicated on the assumpticn that
the latitude L was constant. Hence, it is applicable cnly if the dominant
compenent is oriented east-west. If there is a substantial north-south

component, it cdoesn't apply and we weculé have to make some further modifi-
cations.

Consider the equation for v that arose from integrating ecua-
tion (2.04:11), i.e., eguation (2.04:12), having first introduced l[Tp for
wsin[L]/7:

T . 2T 27
(2.04:18) v=u|—| sin[5 x - == t] ~
o\T A T
We want to compare the y-component, v, with the x-component, u. The compar-

ison may be simplified by selecting a single convenient x value, say x = 0,

and carrying out the comparison at the single x-position. Setting x 0

in eguations (2.04:4) and (2.04:18) we have

(2.04:19) u = uocos[—z_;—r- t]
: T ; 2T
(2.04:20) v o= = uo[i]s.ln[ % t]

or, using the cofunction of the complement,

T 27 T
(2.04:20.1) v = uo{_rp]cos[_r t + 2] x

Therefore, u and v are 7/2 out of phase. Remembering the orientation of
the x~ and y-axes originally selected, v is positive when it is to the left
of 4.

Consider the current vector of which u, given by eguation
(2.04:19), and v, given either by (2.04:20) or (2.04:20.1), are the compon-
ents. I'm sure that you will recognize the eqguations as the parametric
equations of an ellipse. Certainly, when the ratio of the reriod to the
half-pendulum day is one they are obviously the parametric ecuations of a
circle. We need to check the direction of the rotaztion. This is most

easily cone for the special case where T/Tp = 1. In that case
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Plotting these we cet Fig., 2.04-2 Clearly, the current vector rotates
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= & |‘1 W
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Fig. 2.04-2

clockwise completing a full circle in cne period, .

Suppose T/Tp = a < 1. Then

t ) 0 /4 /2 31/4 T o
u u (0] -u 0 u
o o o o
v 0 -Qu 0 o 0 s
o o

The plot is the ellipse of Fig. 2.04-3, The rotation is still clockwise at

' 1:3?

GUgp t=T *
'Uo UQ

1

n
o[~

one cvcle rer period 7 but the magnitude now varies tec trace out an ellipse

with the major axis in the x-direction.



Should we have T/Tp = 0, then v vanishes and the motion re-
duces to a simple harmonic rectilinear reversing current of amplitude u .

We could consider the case where T/TD > 1 formally but this

macinary values for the phase speed ¢ as was shown in connec-

[us

woulé give
tion with equatioh (2.04;17}. It harcly seems werth while to do so. In
r &ven T/7_ = 1 is straining the znalysis a bit since for that case
ecuation (2.04:17) calls for ¢ = =. The circular case is thus to be con-
sidered as an upper bound to the ellipses just as the rectilinear motion
associated with T/TP = 0 serves as a lower bound. The major axis is always
lined up east-west since our analysis is no good if there is a substantizl
V-

The really important feature of this mathematical model is
that it suggests one way that a rotary current can be produced. In the
Southern hemisphere the rotation turns out to be counterclockwise. This
comes out at once if we realize that we have been consicdering north latitude
as positive in Tp. *South latitude will thus be negative and the sign of TP
will be reversed. This reverses the sign of v in eguations (2.04:20) and
(2.04:20.1) but not the sign of u in equation (2.04:19). The result is a
reversed sense of rotation.

As you know, observations of currents made at lightships do
show rotation, Fig. 1.10~6, page 1092, and in the same direction as that
indicated by this model. However, a rotary current set up by a mechanism
like that suggested by the model would be most likely to occur in a small
oblong enclosed sea where a progressive wafe was introduce§ by the tide at
one end and where the width would discourage the development of iarge V.
The lower Chesapezke Bay might be such a place although I don't know that
anyone has looked into it. It might be cood sport for somebody to pull the
data from the CBI Blue Crab cruise where stations were made hourly for
several weeks down there and do a few calculations to see whether rotary
currents do exist and, if by any chance, they azre of the right size accoré-
ing to this model.

An entirely cdifferent mechanism that can produce rotary currents

is the refraction of waves around an island. Surpose we had a configuration



like that shown in Fig. 2.064-4. xssume that a simple harmonic progressive
wave is refracted arcund the island On the back side the psrts cross each

DIRECTION OF ADVANCE 7~

—_—

Fig. 2,04-4

other and are out of phase. The eguations are similar to (2.04:19) and
(2.04:20) or (2.04:20.1) but in this case the rotation may be in either
direction depending on the amplitudes and the phase shift. The only case
where you fail to get a rotary current cccurs when the refracted parts are
so bent that they meet in the same direction, either following or opposing.
One seldom fincés a good "ellipse" behind an island. The figure is usually
wildly distorted.

Yet a third mechanism that can produce rotary currents is pro-
vided by the tide producing forces themselves. These forces have been
cshown to have both a north-south and an east-west component which, when
combined, show the same characteristics as rotary currents. We can assume
that thke tidal streams in the ocean are set in motion by these horizontal
forces and it seems intuitively appealing that, to a first approximation
at least, they should reflect the rotary nature of the cenerating forces.
There will, of course, be suitable modifications arising from viérious com-
binations of latitude, constituents, etc. so that any observed rotary
current is likely to be pretty complex.

In éeriving the properties of Xelvin's wave in a canal and
waves of constant amplitude we have rescrted to some cuite unrealistic
assumptions. In nature we can expect to encounter situaticns intermediate

to them. Feor example, we may have constraining walls bu

rt

they may be at
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diztance to permit the cdevelcpment of sizable cross-chennel
velocities as in lower Chesapezke Bay. There we micht anticipate the v # 0

except near the boundaries and that n = £(y) althcugh, in all probakiliti:

(23

he. function won't be anything very wild. In these more complicated cases

rt
m
)]

implified versions of the ecuaticns of moticn ané continuity will 5o

longer serve us. We would need much meore complete versions.

2.05. The Poincaré Wave.

The Poincaré wave is a generalization of the previous waves that includes
them as special cases. It alsc includes a rather remarkable connection
with inertial currents.
We start, as before, with the equations of continuity and motion.
Instead of the simple form of the eguation of continuity, however, we will
use )
du , ov 3n

(2.05:1) h(g; + E;J + e 8] P

This may be arrived at in the usuzal way by doing book keeping on the volume
flow rate of water into a prism with section dxdy extending vertically from
N te: k.

The ecuaticns of motion will be picked up from (2.03:11) and
(2.03:12) together with all the assumptions necessary to get them in that
form. In the interests of neatness, however, we will uee the half-pendulum
dav, TP, instead of the wsin[L] factors. The definition of TP is given by

equation (2.04:16).

“ su 27 an

(4-05.2) at T M = 1 2%
b

(2.05:3) 87 5 2y e g 20

g TD sy



lguaticons (2.05:1)-(2.05:3) supply us with three eguations in three unknowns,
n, u, and v, which is nice.
If our solution is to cover both the Kelvin wave and the hori-

zontal wave, we must allow for an eypeonential wvariaztion with y and also

irclude some parameter that will remcve the exponential wvariation so that
for come cases we can get the herizental crested wave. Further, we want

the moticn to be simple harmonic. To fit these stipulaticns it seems worth

while to try for sclutions of the form

- T 27 2
(2.05:4) n=n exp{g— vicos[— x - =L tl]
o b A T
T 27 27
2.05:5 u o= s il _
( ) uo= g e:\p{b yicos| ikl t]
2m 2% 2m
2.05:6 = {2 ylsin[S- x - ==
(2.05:86) EEE exr{b y}sln[:\ x - t

where no, uo, vo are constants to be determined, b is a parameter which is
assigned various constant values to produce the assorted cases, and Ay T
are constants specified ahead of time for any particular wave.

If (2.05:4)-(2.05:6) are to be solutions of (2.05:1)-(2.05:3),
then we can use (2.05:4)-(2.05:6) to feed (2.05:1)-(2.05:3) and the egua-

tiens must reduce to identities. We will need to compute

n an/ot an/ax on/dy
u su/3t su/3x
v ov/5t 3v/3vy
-4

From (2.05:4) . D ~ B
CALESS O ERC L.
T X T ,
_3_11 = g - 'D{ ; v : [E. v - 2_-” +]
" o explT yisinl[5m x =t
% 27n s
20 = ev:p{21 ylcos{=— x - =N 4
oy b b A T



From (2.05:58)

2%
- S W O S g
et 1 SRS e X T
3u 2nuo T . 2T y
= = = — expl— visin[=— x - — %)
ox A A T
From (2.05:6)
o
5 O G SR
3t T *P b ¥ A T
el - T BTN S
3y b Py Y A T

Substituting in (2.05:1) gives

- -

2- - — — I e— 2
(2.05:7) Y = W
Substituting in (2.05:2) gives

u, v, 9n

(2.05:8) B M T8 :

T T A
p
Substituting in (2.05:3) gives
u v gn
o o_ _ "0
(2.05:9) ‘T—-— = = "—‘-b
P

The values cf uo’ vo' and no must satisfy equations (2.05:7)-(2.05:9)
simultaneously if (2.05:4)-(2.05:6) are to be solutions of (2.05:1)-
(2.05:3). The constant b is to be set at various values and the character-
isties of the solutions explored.

Eguations (2.05:7)-(2.05:9) can be put in slightlv more usable
form. From (2.05:8) and (2.05:2) we can f£ind expressions for the ratios

uo/gno and VO/gno. FProm (2.05:8)

b PO,
T © o x o -
Prom (2.05:9)
A, - i o, B
T uo vo b no
P

Subtracting and solving for uo/gn

o
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s o) 5
i o A
(2.05:10) . T" =
n
gn 5 5
T T
e
hlso, T o3
y, = =—% = <Et=7n
[®] L Q be o
P
S gT
P
u - —F— 7 = _‘B n =
(o} T o =) o

(2..05:1Y) =

ey — iy Ay —

Substituting from (2.05:10) and (2.05:11)

L _ 1

T2 sz
(2.05:17) T 1 = c¢h

A2 B2

This can be shown to argree with Kelvin's wave on the condition that the
y~-component of the velocity, v, is zero. Equations (2.03:21) and (2.03:22)

gave the final results for Kelvin's wave in the form

27 27 2%
L exp{ - . cy}cos[k S~ t] .
— (o 2T 2r . _ 2%
u=n_ + expl Tcy}ccsth % = t)
P
if we use the half-pendulum day. Since v = 0, vo = 0 and solution (2.05:6)

érops out. From (2.05:4) and (2.05:5) it is clear that we must relate the

following parameters:
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L)
~l

b ] L] c
Kelvin wave: n el il c- ;.
o P o h
Poincaré wave: n b u
o o

Since L 0, eguation (2.05:11) gives

T
o1 2

(2.05:13) T + ET = 0
and plugging this in (2.05:12),
A2 . 2
(2.05:14) ¥§-£'gh il b c¢ = gh s
Plugging (2.05:13) into (2.05:10), i.e., 7_ = - %’5, gives
¥ gn

T o
(2.05:15) uo =g 3 nc ) M@y uo b s
The b is a free parameter. Let it be assigned the value b = - TPc. Then

from (2.05:13) c = A/t, as it should, and through eguation (2.05:14)
¢ = A/t = Ygh so that

5

¥ - c
no h

Yy ™ noﬂg/h =n

(o}
o

This is precisely the correct value for the Kelvin wave so that, for this

selection of the parameter b, the generzl solution becomes the Kelvin wave.
We can also show that these solutions produce the horizontal-.

crest wave as a special case when the parameter b is set b = =, If this is

done, the exponential factor exp{gﬂzﬁ = 1, Eqguation (2.05:12) becomes

b
1 1
Ehi s
B i
or bYa
(2.05:16) 22 _ gh
U 271 = (t/1)°
P
while (2.05:10) becomes
u A 7
; B = P o /3
GeuliBialnall) 9N, TP/T - T/Tp 1 - (T/Tpfz
while (2.05:11) becomes
(2.05:16.2) Yo _ T/ - S T Tt
e eng TP/T - T/Tp 1 - {T/Tp)Z

Dividing (2.05:16.2) by (2.05:16.1) gives



(2.05:17) 5 = i
u T
o P
The ratio of N to u, can be found from eguation (2.05:16.1). It is
_ "o 1 oy & _ At 1 1
(2.05:18) — == [l - (7/1.)%] == (= - =) "
\.10 g el & g T LD

This agrees with the results for horizontal-crested waves as given in

section 2.04.

Bh oy .
= =il & 25 (2.04:5
n —E—cos[k % = t] ( )
G g o e ) (2.04:4)
[o] A T
- T oin(2t 2% .
v = uo = SIHIA X - - t] (2.04:18)
P
? sh 2.04:17
- : .04:
- 1= (T/TP)Z : )

The last relation is already directly established by ecuation (2.05:16).
The ratio of the amplitudes of (2.04:4) and (2.04:18) is correct by
ecuation (2.05:17). It remains to show that the no/uo ratio is correct.
From section 2.04 it should be h/c. By equation (2.05:18) it is

(r\1/9) (1/72% - 1/TP2)

We need to prove the identity

h/c

(At/9) (1/x2 - 1/¢P2)

h/c

(1/9) /1) [1 - [T/Tp)z]

gh/c = c[1 - (T/Tp)zl

2=__i___2.h
" 1

- {T/TP)

which is known true from eguation (2.05:16). Thus, for b = =, the rela-

ot

ions among the constants in eguations (2.05:4)-(2.05:6) zre properly

justed to give horizontal-crested waves.

m
0
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211 this has been a matter of tidying up and sheowing agreement
with previous work. 2 far more interesting case results when the period

of the wave coincides with the period of the half-pendulum day, i.e., when

T =T We will consider two subcases: Case I, b = + A and Case II,
hE - )
Cese I: Withb =+ A and 7 = Tp eguation (2.05:10) solved for L
cive
e U T AT = TST
o g T./A+ 1/b .
P
Substituting,

u u
(2.05:189) N o= A B 2 O

This means that n = 0. We are confronting a “"wave" of zero amplitude with
a "wave length," A, and a "period," Tp!
Dividing (2.05:10) by (2.05:11) we get
u Tp/k + 1/b

O
i‘“ /A + /b

and, plugging in the wvalues of the parameters,

Yo _anr 1A
%, Tt/ + t/h
so that
(2.05:20) u =v
o o

This means that the solutions, (2.05:4)-(2.05:6), come out to be

(2.05:21) n=20
2T 27 27
(2.05:22) u=u exp{ﬁr-y} cos[jr-x = t]
P
f 20 oy g2, _ 2E
(2.05:23) VR expi 5 v} sin[5= x o t]

The unholy feature of these eguations is that they are the eguations for an

inertial current in a perfectly general form since they are not necessarily

uniform over level surfaces! Discussions of inertial currents can be found
in the standard hydrcdynamic places, among them Proudman, "Dynamic Ocezano-

graphy," section 48. This was the kind of current Stommel was after when
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P =g

ke was flinging buoys overboard off Bermuda. You micht check up on some

of that work.

Case II: With b =- X and 1T = TP, working with ecuation (2.05:7),
u v sl n
e or u +v_= -
A X ht [o] c T h
p 2]

and with (2.05:8),

<
(o]
o3
-1
ie]
i |

A o o p° o
—_—— = or u - v =

T T A o o

P P

and with (2.05:9)
T

T T A o o A .
P P

The f£irst two give us the ratios uo/no and vo/no. The last two are

icdentical.
5 ® ] g>
o _ 1 [ A D ]
(2.05:24) et A e
° - :
hva T g
(2.05:25) - S -
Ti=e 2 |T.h A
o P

Eguations (2.05:24) and (2.05:25) are servicable only in a limited region
since with b = - A we face an exponential blow-up in the y-direction in
ecguations (2.05:4)-(2.05:6). Only the Kelvin wave can tolerate a coast
line parallel to the x-axis. In a general way, equaticn (2.05:12) cgives
b2 as a function of A%, 12, and TDZ. Snould the b? defined by (2.05:12)
turn cut to be negative, define aﬁnew rarametex k2 such that b? = - k2.

-

Then (2.05:12) becomes

1/12 - 1/1 2 y
=R ch .
1/x% + 1/k¢ s

(2.05:26)

Since g¢gh is positive and the dencminator is positive this recuires

1/72 - 1/t 2 50
T v %



or %
(t 2 = Tz}/('né?b‘} >0
ok T 2 - 72 50
P
i
O”. T 2 > 12
P
or
gl -
D

if beth are positive which, being periods, they had better be.
In this case, rxeplace the solutions (2.05:4)-(2.05:6) sucggested

originally with

27 27 2w
(2.05:27) e cosljy-y] COS[3T R e t]
g1T T 3
. - P P 27 o B BT 27 _ 27
(2.05:28) u no ;;?—:_;Z'tir cos[j: y] X 51n[3;-y]‘ cos[7r X g
: g1t ( T i
o) T 27 P e g2W , 2T 27
9 = & etilh P 4 =% el PR 1
(2.05:29) v A T—;—_—{z g cos[k v] X s:m(k y]J s:Ln[)1 X >

That (2.05:27)-(2.05:29) are solutiocns of (2.05:1)-(2.05:3) may be verified
directly by substitution. They have the great virtue of beating the expon-
ential blow-up to which eguations (2.05:4)-(2.05:6) are liable and they can

tolerate a coast line along a line in any direction.

2m ki g
(2.05:30) tan[iz'Y3 W
P
or
=K e iR T
(2.05:31) Y = 5o tan [A TD] -

This is as far as we will go with mathematical models of this

kind. The next item on the docket is seiches in lakes and tides in gulfs.

t]
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Cur starting point, as usual, is the ecustions cf continuiity and motion.
Cur axes are taken, ag usual, at the undisturbed water suriace and, zs
usual, n is the surface elevation.

For homogeneous water, constant atmospheric pressure, and no
friction where the half-pendulum éay represents the Coriolis force, the
w-eguation is the hycérostatic ecuation and, if w is negligible, the egua-

ticns of moticn take the form

su 27 _ an
(2.06.1:1) 3t =l 9 %
(27061 2) WM y=-gh :
ot TP cy

Since 3u/3z and 8v/3z do not appear in (2.06.1:1) and (2.06.1:2), we can
conclude that u and v are not functions of z.

Consider an elongated lake where the currents are pretty much
in the long direction. Let x be along the axis of the lzke. Let A be the
area of a vertical cross-section at some point along x and let b be the
width of the lake at the surface. 2t any time, t, let n be the mean eleva-
tion across the section and u the x-component of velocity averaged over the
whole cross—-section. By book keeping over the segment of the lake between

¥ and X + 6% we have

5]

dks

ru - (B 4+ 8a)(u + gu) = b 8&x

(o]
[g)

Expanding and dividing by éx

s x =+ 0, the second term -+ 0 and

]
(@]

(220651 532) =, T D

is the form of the eguation of continuity we want.



Since we have banks in the way ané are using averages, v averag-
ed over the y-cdirection must be zero. Thus, for the ecuations of mction,

(2.06.1:1) and f2.0|6:2), we have

ey _ 2u on
.-'6-1:4 = - 2
. ) et ? 5x
(2.06.1:5) - NP | :
T‘D cy

The general eguation of continuity for an incompressible fluid is

ol

w

n)lm
i<
[+3]

N

(2.06.1:6) + +

|

=0 §

ax|o2
%le

Since u and v are independent of z, this can be integrated with respect to

z from surface to bottom.

(2.06.1:6.1) [f—“ + §-‘i] 2 b e BB
oxX - 8y ¢
since, at z = 0, we take w = - 3n/2t--with a small departure, we take the

boundary condition on the mean rather than on the actual surface--and at

z = h, w= 0 if the bottom is taken level, we have

. 3w 3v]l ., _ _3n
(2.06.1:7) [Ex + By] h < .

Solving for w between (2.06.1:7) and (2.06.1:6.1) gives

oz

n
<

(2.06.1:3) w=- (1~

“
h

Q2

This has been obtained by neglecting vertical accelerztion and (2.06.1:8)
says, in effect, that the vertical acceleration is small.

We need to manufacture some criterion for the neglect of verti-
cal acceleration. The version of the egquzations of motion that we are using
arose from setting 3w/3t, the vertical acceleration, zero in the third

component egquation,

ar

W

(2.06.1:9) e + g '

%l

O |

a2

so that we got the hyvérostatic eguation. From (2.06.1:8)



se- - Wy 3z
sc that (2.06.1:2) reads
~ 2 Ll
Z., ¢n 1l c»
- s e = - == 4
{ n 32 p Tz 7
or _
" not
_ICEA: s L l .,_Z.. e n
5. = eg il -9 w2 d
Integrating this over z gives
2 2
1 z g n
- =2 [y + 1) +p - = = ¥
P - P, pglz 1) plz 5 h)ﬁz
3t the bottom z = h and
1 32n
- =p + + = i
P =B pg(h + n) 2ph—73t
Putting this in nondimensional form 325
P-PD b =
; h + at
(2.06.1:10) 2 = D g )
; pgn n 2 gn

The left-hand member and the first member on the righ-hand side constitute
the hyérostatic equation where 2w/t = 0. The last term on the right-hand
side is the departure from the hydrostatic ecuation and must be small.

Therefore, the criterion we recuire is

(2.06.1:11) —_— g 1 3
gn
Consider an elongated basin oriented east-west for simplicity.
Assume a periodic motion possible with period Tq- &t time t = 0 suppose
that the water is at rest but piled up at the west end and depressed at the
east. By time t = 11/4 the lzke will be level, by t = 71/2 the high and

low areazs will be reversed, at t = 311/4, level zgain, and by t = Ty back
o the initial configuration. With uniform density, the pressure gradient
at any time will be the same at all points in a vertical line anywhere in
the lake. Therefore, the acceleraztions and the currents are also the same.
Suppose that the basin is rectangular, depth h, width b, both

constant, and that the ends are &t x = 0 and x = £, rig. 6.01.1-1, page 145.
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ig. 2.06.1-1

Picking up continuity, ecuation (2.06.1:3), since the cross-section 2 is
A = bh

gbhu & omn

e TP E e
or
du 3an _
B b e
or
R A (T
9 o

We want solutions for n and u as functions of x and t which are harmonic
and which satisfy the boundary conditions, u = 0 at x = 0 and u = 0 at
x =%, i.e., there ié to be no velocity component in the x-direction at the
ends of the basin.

Having in mind that we have just described the motion as a
standing wave, it seems worth while to give a bloody go to
(2.06.1:13) u = csin[Z x1sin(ZX ¢] .

2 T,

At least, this will fit the boundary conditions. From the first factox
u=0 for x =0 and x = £. Further, by the second factor, for 2ll x, u =0
for £t = 0 and t = 1, &and it also fits the initial and perxriodic conditions.

1
stuff (2.06.1:13) back into (2.06.1:12).

- L} v 2
Eﬂ = - Eggvcos{z x]szn[—i £]
ot L L T
1
Integrating with respect to t gives
il f . 2
n=- ios cos [ x] fsln[—j-t]dt + a constant :
L 2 Tl

The constant may be made zero by putting our origin of coordinates at the

mean water level so that we get
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(2.06.1:14) n=— cos[i >:]cos{21 £]
2% £ Tl

Notice that this zlso satisfies the initial and boundary ceonditions as well

(8]

-

|t
e

No cleim is made for (2.06.1:13) and (2.06.1:14) as the
solution. There may be others but, at least, this one looks good. Feeding

(2.06.1:13) and (2.06.1:14) into the ecuation of motion, (2.06.1:4),

8u 20 . AW 27
-,;E = T_ Sln[i‘ X]COS[T— |
¢ 1 1
= mT.hC
i FEN ——— S 1N E-x]cos[--z—1 |
ox 28 TN Ty
e Ehat 2nC _3.570 2T ﬁTthg T 27
—= ginl—x]cogi— t] B —o— sin]-alcos|=— t]
T £ T 28 15 T
1 1 1
or
(2.06.1:15) T, = if; . MERIAN'S FORMULA (VERY IMPORTANT)
¥

Merian's formula is very freguently used. It defines the
natural period of a confined parallelopipedal body of water with a free
surface. It depends only on the length and depth.

The coefficient of (2.06.1:14) is often written in the form

Tth

25

m

(2.06.1:16) H

so that, with (2.06.1:15)

(2.06.1:17) . S

€& T i

Picking up our criterion for the neglect of vertical acceleration, (2.06.1:11)

2. - o
h 82n h[— E%_QE ccs[t x]cos[iE t]]
3t *q 5
; gn T He
* T 2%
g[ 7 cos[z x]cos?;— t]}

X
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gn 2%
Thetrefcore, the recuirement for the validity of the neglect of the verticsal
accelerztion is that h/% be smzll, i.e., the lzke must ke long comrzred with

Tatural lakes aren't rectancular but Merian's

formula is often

used to provide an order of magnitucde estimate of their natural periods in

srite of thedifficulty in deciding just what £ and h are to mean. Some
examples are:
Lake Length Depth Merian Observed Comment
Natural Period
Period
(km) (m) (min) (min)
Loch Earn
10 60 14 14.5
Scotland .
Lzke George 30 5. 136 131 Unusually shallow
New S. Wales
Lake ginevi a 70 160 59 T3.5 Seriously out of
Switzerian rectangular
teke Baikal 665 680 270 278.4

Siberia

When the basin is not rectangular the fundamental eguations are

(2.06.1:3) and (2.06,1:4),

cAu+b

il.esy
on
b =
ot

an
ox

where A
is

(2.06.1:

(2.06.1:

znd b are slowly varying

18) n Z(x)cos[%z

1

tita) shn o
X)sin|\—
!

19)

o
]

functions of x. A possikle solution here

]

rk



Z(x) znd G(x) are functions of x only and ve recuire A()U(x) = 0 at

encés cf the lake since we must have u = 0 there.
cu <18 [N
%~ gy Sind t]
b4 dx T
1
du _ 2% 2¥
e = = U cesf—= ]
L)
3 il
3 az 2%
%ﬂ = — cos[— t]
cX ax *F
1
e 27 o 2T
%%-= R 51n[?— t]
o 1

Substituting in (2.06.1:3) and (2.06.1:4), remembering that

Q2

.\'L'I.A =1 -E-.'-A— + A ﬁ 4
ox o ox
U(x)sin[gl £] aa + A gg sin[gi £] - b ol Z sin[31 £] =0
Tl ax ax Tl Tl Tl
and
2 27
22 U(x) cos[—r t] =~ g £ cos[z—ﬂ t]
T T ax T
1 3 1
or
e 2R p B L B ey
ax ax T,l
and
P
L ux) = - AL
T ax
L)
or
(2.06.1:20) 2 rau(x)} = 2 pz(x)
ax T
1
2
(2.06.1:21) 2T oyix) = - g S{z(x))
T céx
3
Solving (2.06.1:21) for U(x)
g7
UG = - 5= SHz)
T CcX

3



or
s
(2.06.1:22) g B o - 47°bZ (%)
. 8 tney Szt 1}
g dxnr’; £ b

Eguaticn (2.06.1:22) gives a means of making a more refined estimate of T

i

in terms of the elevation 2, its gradient, the cross-sectionzl area, and
the width of the lske. A finite difference eguation could ke used for the
computation. Using (2.06.1:22), &n estimate of Tl for Lake Ceneva is
74.45 minutes which is in better accord with the cbserved 73.5 minutes
than is the estimate of 52 minutes from Merian's formula.

There is one line across the lzke on which there is no rise or
fall of the water. Such a line is called a nodal line. The oscillations

so far discussed have one such line and are called uninodzl seiches. There

may, however, be two or more nodal lines. In a simple-minded way, suppose
you partitioned the lake into n sections. By adjusting the spacing of the
barriers you could get smaller basins each with the same natural period
which would, of course, be shorter than Tl since in Merian's formula £ would
be reduced. If you started seiches in each compartment so that the eleva-
tion was the same on the two sides of each barrier, the elevations would
always match, because the T's are all egual, and the partitions might jusﬁ
as well not be there. Each compartment would have a node. If the motion
has two nodes it is called binodal, if three, trinodal, etc..

For the uninodal seiche in a rectangular basin described by
equation (2.06.1:14), the node occurs for that value of x between O and 2
for which the cos[mx/%] faétor is zero. For this value, clearly, no time
rarying factor can have any effect. There is just one value of x, i.e.,
x = /2, for which cos[mx/%] = 0.

In general, if the x-dependent cosine facter in (2.06.1:14) is
replaced by cos[nwx/%2), then between X = 0 and x = £ there are zeros at
= (2v - 1)8/2n; v =1, 2, ..., n. Ifn =2, nodes are located at x = /4
and x = 3%2/4. The period Ty = (1/2)T1. If n = 3, nodes occur at x = 4/6,

£/2 and 5L/6 while the period is T, = (1/3)T etc., Pig. 2.06.1-2, page 150. -

3 3t
In Loch =Zarn the rectangular approximation for the bincdal seiche gives

—
1

7 minutes. One based on (2.06.1:22)givesT2 = 8.1 minutes. The observed

8.1 minutes.

~
Il
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Fig. 2.06.1-2

We have been talking zbout longitudinal seiches but transverse
seiches are also possible. MNear Morges on Lake Geneva the lzke is 13 kilo-
meters wide and the mean depth is 170 meters. Using Merian's formula you
get a2 uninodal transverse seiche period of Tl = 10.6 minutes. The observed
transverse seiche has a period of 10.3 minutes.

Since the seiche is a standing wave, if E is its total enexgy,

P its potential energy, and K its kinetic energy, we have from wave theory

(2.06.1:23) P=E coszgfﬂ—t]
and 1
(2.06.1:24) T sinszﬂ-tj .

1
For an elongated basin of variable section the basic ecuations are (2.06.1:3)

and (2.06.1:4). Multiplying the eguation of motion by Au and integrating.
from end to end, xl to Ao of the lzke
% X
2 du 2 an
= dx = - \u = @
xf Au A % g xf Au rx OX
1 1
or, interchanging operations on the left-hand side and integrating by parts
on the right, remembering that u(su/dt) = %[EuzXSt], g
X x b
3 2. 5 2 2 .
s ax} = - gaw + 3
SEt 3 'f Eu } gaun . g Xf ‘%‘; (i) faER )
*1 1 1
But (au)_ = (Ra)_ = 0 and, feeding in the value of &(Ru)/ox from the
1 2 '

continuity eguation,



Ln
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3 x2 x2 &n
—{ f aulax} = - g f bn %# éx}
Xy Xy

Integrating with respect to t

% %2
(2.06.1:25) L f au?ax + kg f bnédx = a constant
i 1
But
*2
K =3 [“au?éx
and xl
2
P = %pg [“bnex
*3

the only thing lacking in (2.06.1:23) being a factor of p which can be
pulled out of the constant. Thus, (2.06.1:25) is a statement of the con--

servation of energy.

For the special case of a rectangular basin x, = 0, X, = L. 1
and n are to be had from (2.06.1:13) and (2.06.1:14) using (2.06.1:16) in

(2.06.1:14). From (2.06.1:25)

K = Ypbhic2sin? [%3 £]
1

P = 1;;:;;]::I;i-12cc>52 [2—1T t]
L

By (2.06.1:17)

and the results, (2.06.1:23) and (2.06.1:24), are verified.
For Loch Earn with p = 1 grams/cm , £ = 10 km, b =1 km, h =
2

60 m, and C = 4 cm/sec we find £ = 4x1015 erg = €7 kw-hr.
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Tidel Co-oscillations in a Karrow Gulfi.

o7

We are now going to knock out the eastern end of our long narrow laie and

hitch it up to an ocean to make a gulf of it, Fig. 2.06.2-1. Take 2 cross-
secticn at B Bzftween B and B2 we will continue to maintain a "lake like"

A \ B OCEAN
\

Fig. 2.06.2-1

behavior, i.e., we want exactly the same elevations and currents as we had
before we knocked the end out. Clearly, there must be some sort of oscilla-
tion going on out in the ocean bevond B to maintain what we want. What

goes on in the ocean is harmonic constituents of the tide so that's what we

will take. We name the sloshing in the gulf the tidal co-oscillation.

Since we are thinking about tidal constituents we can suppose that the
period, T, is specified. We will azssume that the elevations along B are

f the open sea and we will ask ourselves how the

jol]

etermined by the tide

o
eatures of the co-oscillation depend on the dimensions of the gulf.

+h

The first nodal line in the culf mav occur on either side of B,

i
Fig. 2.06.2-2. If N is outside AB, then the tide at z2ll points in the gulf

\

@




will have the same phase. If N is between A and B, then W divides the gulf
into two regions whose tides are 180° out of phase with each other. 1In
cither case the ratio of the tide range at A to the tide range at B increzs
as N + B. When N is near B the tides at A are comparatively large. t is

to this phencmenon that th

m
-

2
|
51
m

SCcnence refers.

=

Surppose a rectangular gulf of uniform éepth h and let 5 =
Then the pertinent eguations are (2.06.1:13), (2.06.1:14), (2.06.2:16), and
(2.06.1:17). For x £ L, from Merian's formula
(2.06.2:1) § = Ltvg .

At B, x = L and the elevation at B comes from (2.06.1:14),

nB = Hcos[% L}cos[ﬁ; t]

or, if we cefine HB as the amplitude at B, i.e.,

- - i
(2.06.2:2) HB = HCOS{E L] .
21
then = HBcos [T t] 3

The tide at any point within the gulf can then be expressed as

s cos[%-x} o . :
(2.06.2:3) n=H ———— cos[— t] v
B kil T
cos[E-L]

For a nodal line in the gulf between A and B we require L > k8 or, using

(B:025:2:7) ;

(2.06.2:4) L > %t/gh .
Clearly, the condition for resonance is
(2.06.2:5) L = k1/gh .

Semidiurnals in the Bay of Fundy approach resonance of this
kind. At the head of the bay are the largest tides in the world. Natural-
ly, Fundy isn't iectangular but, taking as rouch approximations, T = 12.4
hr and h = 75 m equation (2.06.2:1) gets us £ = 600 km. The length, L, of
the Bay of Fundy is about 270 km. Therefore, L < %L and the tides will be

simultaneous with the strencth 3 hours bsfore hich and low waters. This is
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rouzhly what is observed:
COCIE-L] = cos[—zg 7] = cos[8l°] = 0.156
it GO0
Therefore, from (2.06.2:Z2),
HB £ B.158H B H = 6.4HB

Wnen the culf is nct rectangular we do b

M

tter with eguaticns
(2.06.1:18)-(2.06.1:22) with the condéition that AU(x) = 0 at the head of
the gulf. We can get b and A from a chart of the gulf and, unlike the
seiche case, we now know T. This means that we can have at eguaticns
(2.06.1:20) and (2.06.1:21) by practical numerical methods of integration.
Sterting at the head of the bay with any handy value of Z(x), successive
values of Z(x) and U(x) can be calculated down the bay. Then Z(x) and U(x)
can be adjusted to make them agree with the observed values for some x

aﬁd comparisons made between the adjusted computed values and the observed
values. For this operation we can replace the differential eguations,

2.06.1:20) and (2.06.1:21), with their finite difference analogs:

. - ca 2L "
(2.06.2:6) AU(x ) = 2U(x ) = == b2(x  I{x ., - %)}
(2.06.2:7) Z(x..) - 2(x) = - = ulx_, ){x_ - x}
et V+2 T T o gt es T % ‘

Proudman (pages 233-236) gives a calculation of this sort for
the Red Sea. He divides it into 40 sections and works out the values
section by section for the M2 constituent. You would do well to check this

over, The final upshot of his calculation is:

Section Station Co-oscillation
Calculated O=served
H Y ) H Y
(cm) (=) (cm) (°)
1" | Shadwan 55,1 117 25.1 117
3 Koseir 24.4 117 21.9 112
LR G- Jicda 4.4 117 7.4 124
19 Port Sudan Q.2 117 0.2 204
29 Maccsawa 25,4 297 34.4 227
33 Kamaran 30.3 207 32.8 303
* Point of forced agreement. ** There is a node somewhere around in here.
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he sgreement could ke a lot worse.
For the Bay of Fundy the factor, 6.4, that we cot is of the
richt orcder of magnitude hut it is about twice as larce &s it shoulé ke.

The. measzsured tides at the head of the bay are about 40 feet and those at

h

the mouth 12 feet.which comes out to 40/12 = 3.3. If veou use Proudman's

<

alues to compute u &t the mouth vou cget about 1l knots which is off Ly
an order of magnitude. All this isn't too surprising since no natural
body of water is a rectangular gulf. What to take for its length is a
guestion. We have the same difficulty, only more so, with so branched a
structure as the Cheszpeake Bay. There is really no good answer.

The same sort of problem arises in picking a number to represent
the depth. Bays choal toward their heads and this has an effect on the
speed of propagation. Martin Pollak once ciphered it ouvt for the Chesa-
peake Bay using h = 36 feet and wound up with the tide moving 70% too fast.
He then worked back from the known travel time for the Bay and got h = 12
feet which is pretty silly since it is less than the average depth of the
Bay.

AZnother source of disagreement between observid tides in the
Chesapeake Ba} and those computed from Merian's formula arises from the
geometry of the Bay. Where sharp constrictions exist, e.g., as at Kent
Island, the tide usually runs higher in the vicinity of the constriction.

If one starts a progressive wave moving up the bay and computes
the potential and kinetic energies for a small section of the wave length,
mA << A across the breadth, b, and over the depth, h, of the bay, one can
replace n by N and u by u over the small section. For the potential enercy,
P, we get
P = Lpgbn?Xm

and for the kinetic energy, K, of the same section assuming frictionless

flew and u uniform from top to bottom,
K = %eb(h + n)u?im .

If we follow this element up the bay, i.e., ride it up, the P will remain

constant and, in general, to first order P = K. If n is small, we can
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arison with h in the kinetic energy znd write

i
—
(1]
9]
t

5
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ol
i
0
b

3

K = %pbhu21m "

The. wave lengih, X, can be removed from these eguations by
5 ' e
» = c¢c1T = vgh T .

The the potentizl energy is

P = (%993/2Tm)h1/2bﬁz = a constant .

Therefore; 1y

nzbh = znother constant

L

or : % -
n~ b ‘h ;

Doing the same thing with the kinetic enexgy leads to

W% B S s
This indicates that the dependence of the amplitude and the orbital velocity
on the breadth is the same but that the orbital velocity is more strongly
affected by the depth than is the amplitude. -

The same sort of thing holds for a reflected wave in a bay. At
the head of a bay the u's for the incident and reflected waves neutralize
each other but the amplitudes add. In the Cheszpeake Bay the tides show a
slight increase north of Annapolis.

One of the big problems is how to separate the effects of reson-
ance from the effects of a constriction. I know of no way to do this very
well. In any case, these mathematical models are much too simple. To name
just one important neglected feature: How about friction? Bottom friction
in a bay would eventually damp out the tide if the bay were long enoucgh.

Proudman's more elaborate methed which he used for the Red Sea
could be applied to places like the Chesapeazke Bay or Long Island Sound--—

if anyone felt like it and had the energy to waste.
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Standing Oscillations in a Channel.

We can make a guick profit by extending seiches in a narrow lake and tical
co-oscillations in a narrow gulf to standing oscilletions in a channel.
Just as in the czse of the gulf where we had to specify T at the open eng,
we must now specifiv 17 at both encds oI the channel. Ls kefore, lines coif
zero range are nodes. Lines of maximum rancge are known as locps, Fig.
2.56.3=1.

=
toop  MOPE  o0p NODE  o0p

Fig. 2.06.3-1

With our usual channel with parallel vertical banks and uniform
depth equations (2.06.1:4) and (2.06.1:13)-(2.06.1:17) apply. Four times
the distance from a node to the nearest loop is called & "wave length" and

is usually denoted by X so that A = 2.
Prom (2.06.1:14) this gives

(2.06.3:1) n

]

27 27
H cos[£ x]cos[_{ t]

since H = ThC
28

and from (2.06.1:13)

" . 2
(2.06.3:2) us=C Slnf%? x]s;n[:; t]
with '
Cc g T

This is all analocous to the results from the study of sound in

closed and open pipes.



2.06.4. Geostrophic Effects.

tatively, the geostrophic effects on za
tidal co-oscillation in & narrow gulsf.
Ccnsider the situation covered by ecua-
tions (2.06.2:1)-(2.06.2:7) and measure
time t from the instant of hicgh water
at the head of the gulf. This, of
course, will also be the time of hich
water as far as the first nodal line.

At t = 0 the currents will be
zero. As we have seen, at t = 1/4 the
currents reach their maximum speed to-
ward the sea.

Let us restrict our attention to
the northern hemisphere. Owing to the
geostrophic effects the surface at
t = 1/4 will not be level. It will be
high to the right and low to the left
of the current. Between is a line, nn',
which will be at mean sea level. With-
out the geostrophic effect, the whole
area would be at mean sea level at
t = 1/4.

At t = T/2 the first picture is
reversed. At t = 37/4 the second pic-
ture is reversed. Finally, at t =71
the whole cycle starts over again.

Continuity suggests that to get
this progression of high and low water
we will need currents at time t = 0

which may be as shown in Fig., 2.06.4-1.

A similar picture holds for time t = 7/2.

t =

v
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i
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L
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cecstrophic effects of these currents will mcéify the elevations at

D end .5 542 bk, oaf

rt
Il

ot

he culf is narrow, the transverse components
of the currents are small.

. At the intersection, A, of NN' and nn' there will be no change

in the water height.
2t t = 0 high water cccurs zlcng An.
At t = 17/4 high water occurs aliong ZN.
At t = 1/2 high water occurs along An'.
Et t = 317/4 hich water occurs along AN'.

At any one time all the points of high water lie on a line through A. This

line of hich water is called a cotidal line and 2 is called an amphidromic

point. The region around A is called an amphidromic region. The cotidal

line rotates about the amphidromic point; in the northern hemisphere,
counterclockwise.

an amphidromic region of this sort exists in the Adriatic. The
mean depth of the inner 250 kilometers of the Adriatic is about 50 meters.

For the Mz constituent, by (2.06.2:5) for the resonance condition, we get

Ly = %xlz.4hr{9.81m/sec2x50m)5 = 247 km .

By observation, the amphidromic is located about 240 kilometers from Venice.
Bigh water at Zara on the east coast preceeds high water at Venice by =about
2 hours 53 minutes while high water &t Viesti on the west coast lags it by
about 4 hours 37 minutes.

The same situation occurs in channels where an amphidromic
region is associated with each nocdazl line. An example occurs in the south-
ern part of the North Sea.

Cotidal lirnes and amphidromic points have interested investiga-
tors for cuite a while. Whole oceans, for example the Atlantic, have been
analysed into cotidal lines and amphidromic regions. If it could be done,
it wculd be nice. But no two investicators seem to come up with the same
picture. There is really very little data except along the coasts and
everyone seens to be playing it by ear.

Harris worked out a thesoxry in which he divided up the ocean into

é
basins with small overlaps at the edces. Each of these basins wculé then
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Lave its own natural period which wouvldé single out constituents of the ticde
that would be rescnant, and therefore dominant, for that kasin. At least,

he managed to cet pretty consistent results, but his theory, as & picture
of reality has crave defects. The secticns are arkitrary, no flow can take
rlace bpetween sscticns, ané Corxiclis fcrce was neglected.

Froucdman and Docdsen worked cut cotidal lines and amphidrcmic
peints for the North Sea and the English Channel. In this area tide meas-
urments are much more numerous, both for shore stations and for the cpen
sea frem lightships and oceanocraphic expeditions. They went throuch a
very elzborate reconciliztion of orbitzl velocities and tidal heights zand
their result is a very realistic picture of the region.

We can cet mathematical expressions for an amphidromic recgion
in a channel by using the Kelvin wave. Suppose we have a combination of
two harmonic Kelvin waves traveling in opposite directions. Take the
origin of co-ordinates at a point where their elevations are always ecual

and cpposite. Then

27 2 2% 27 27 271
2.06.4; = wp{ — — = & sy (i B o o
(2.0 1) n H e:«p{c y}cos[k % + . t] H exp{ ~ y}cos[l x 3 t]
and
: 2 2 2 27 25 27
(2.06.4:2) u=-C exp{:?—y}cos[j? X F ;? t] - C exp{- Tg-y}cosli- Ry e 2t t]

where H and C are constants and the channel is sufficiently restricted in
latitude so. that Tp is approximately constant.

At high water 3n/3t = 0 so that, from (2.06.4:1),

27 o 2% 27 P 27
2.06.4: xp{— — % + — t] + exp{~ — ylsin[—=x - — =0 2
(2.06 3) exp{ = y}sin| X = ] p{ = Yis [A = t]
Bouation (2.06.4:3) is the equation of a cotidal line at the time t. It
can be rolled over into a neater form as follows:

Using the ancle sum formulze from triconometry and then grouping

ané factoring (2.06.4:33) takes the form

i oW 27 iy, i g
(2.06.4:2%) sinlZL xJcos[== t] (exp{=— v} + expi- == 1)
A T c c

Sam p

B oAb PP X B P ST s sl 2L oW g
+ ccs{T >.]s1r1[_L t] (exp{= v} - exp{ = v} 0
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or
27 p AT
exp{:;-y} - exp{~ — v} on G 9
= s = - tan[= x)cct[— t] = tan[= x]tan[Z>
exp{=— v} + exp{- == y} A ¥ A N
2ol c
Invoking the definiticns of the hyrexbelic functions, (2.06.4:4) is
tanh[%} v] 5o
(2.06.4:5) . = tan[=Z (£ + )]
tan[il ' o
A
/2, 31/4, ... the cotidal linss are the axes.
“Tanh" and "tan"

For t = 0, /4,

Near the origin x and y are small so that the arguments o

on the left side of (2.06.4:5) are small and the functions may be zporoxim—
This leads to

ated by their arguments.
- B 2n g
=3 tan{T (t + 4)]

% <

L+ 2

in the vicinity of the origin. But c/) = TP/T so that, near the origin,
2T

. T
= ——E. tan[
T T
This reproduces the features of the surface described at the beginning
However, the velocities, being those of a pair

% <

(2.06.4:6)
of directly cpposed Kelvin waves, produce a rectilinear current rather than

of this section fairly well.
Proudman discusses the cotidal lines and amphidromic regions

a rotating current.
constituent in the English Channel on pages 256-262 of “Dynamic

You should check this over.

for the M2
QOceanography."”
2,06.5. Compound Seiches.
2s a final move, let us consider scme cases in which we remove the narrow-
If a transverse seiche and a longitudinal seiche exist

ness restriction.
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and so cdoes the mean water level line. Where the NN' intersect there will
be an amphidromic point.
Suppose we had a square of uniform depth h and sides at x = 0,

L, vy =0, y =%, Fig. 2.06.5-2. Then the two simple seiches can be

4

¥
L




b1 27
2 B = — —
(2.06 1) Ny }-llcos[2 x]cos| - t]
(2.06.5:2) u, = ¢, sintZ x)ein(3L 1)
o. - - 1 l v E’- . —— T —
(2.06.5:3) o o B e[ — v]ed [EE £]
06 B Ry & Hycos[ ¥ vlsin[ —
(2.06.5:4) v, = ¢.8inll vicest 2L g
2 2 g = T
where Hl Hg ™
(2.06.5:5) E_=E:—= [——'}
and 1 2 g
)
(2.06.5:86) T = oR
The compound seiche is the sum of the two.
Suppose, for instance, that H, = H, = H while C., = C

3 2 2
Then for the compound seiche -

(2.06.5:7) n = H{cos[% x]cos[-zT—ﬂ t] - cos[% y]sin[-zT1 tl}
(2.06.5:8) u=csinT x]sin{i—“ £
(2.06.5:9) v =C sinl% y]cos[i—“ £]

For high water sn/2t'= 0 so that, from (2.06.5:7),

s S & D 27 ™ 24
2 (e R — =t ] S e iz =
H{ - cos{£ x] sin| = ] - cos[ﬁ ylcos| - t]} 0
or .
s %ol 2
(2.06.5:10) T i tan[— t]
cos[E-x] ¥

This connects up the where and when of high water.



2 can cenerzlize this a it to & rectancular basin. XNeglecting gecstrorh-
ic effects, the eguations of centinuity and motion are

~ Tiar -
niis + =) + 22 =0
cx Y ct
2u z7
e ® Bk
ot cxX
v an
B oo g B .
ot Yy

-

gt the sides of the rectangle be x =0, x =2, y =0, vy = b and try for a

spolution
. T T o o o gk
(2.06.6:1) u =2 sm[’-“a—' x) cos[%‘- v) s;m[—T-TL t)
. A, B constants
i o B 2 m, n integers
(2.06.6:2) = B cos[zf x]sin[i; y]sinifﬁ-tl

The boundary conditions at the coasts are

I

u=02zat x=0and x = a

]
I

b ¢

v=20aty 0 and y

Clearly, whatever else theyv do or don't do, (2.06.€:1) a2nd (2.06.6:2) meet

these conditions. Substituting them in the equations of motion gets you

8n _ _ 2w i U7 nw 27

B E; A _1n{:;-x]c05[i;-y]cos[fF-t]

2n 27 mm . DT 27

—_— = = — B —_— — —

3y o cesl - x]}sin| 5 y]cos| = t]

and integrating,

2a my ba .. 27 "

n= e A cos| 2 x] cos| 5 )‘}c:os{--—_r t]

= JEl—B cos[ﬂi x]cos[gz-y]ccs[gi t) "}

ngt a b T

These are identical in foxm, viz.,

{'\ - = -\} . CDS[n: \1c sr T ,\"1(_ r2— a.]
Ly btS = .4 — Xicos| —— ¥lcesi—

W a ‘b oy
with



‘, i
o
)

Teeding (2.06.6:1)~-(2.06.6:3) back to continuity we get

%]

(2.06.6:5) T

P

£, 52 =2
b

(w2
az :

2

Ecuation (2.06.6:5) includes Merian's formula as a special case when m = 1

znd n/b << m/a.

2.06.7. Seiches Across a Uniform Channel.

The last model for consideration in section 2.06 treats seiches across a
uniform channel when geostrophic effects are important. Free waves are
taken and we.will suppose all cross-sections are egqual and that conditions
on all of them are the same. Take the latitude constant. Take axes Ox

cross channel and Oy with the channel. For continuity we have

(2.06.7:1) 2 _(hu) +

o)E?
]
Q

For motion,

du 27 _ an
(2.06.7:2) St T ¥ == g T
D
v 27
(2.06.7:3) —d— 7 =0
ot lp

At the sides of the channel

(2.06.7:4) hu = 0 »

Back a stretch we hit these equations without the geostrophic
terms--ecuations (2.06.1:18), (2.06.1:19), ... for the non-rectangular
basin--and cot forms

’
N = 2(x)cos( 7 t] ; u = U ) sinf 2T ¢
H =



vhere e is the period of the ordinayy transverse seiche andéd Z(x) ané U(x)
@re functions determined vp to &n srbitrery factor which satisfy

A s 2%
(2:06:7:5) —{hU(x)] = — 2(x)

éx T

[See (2.06.1:20) and (2.06.1:21).)
22 2% e .. .

(2.06.7:6) “'_"U('-K) = =g —Z(x)]

T ax

s
zcross the channel and hU(x») = 0 &t the houndaries.

Working on this pattern, let's try
(2.06.7:7) u = U(x)sin[?;“— £]

keeping the reguirements on U(x) expressed by (2.06.7:5) and (2.05.7:6) but
letting 1T be something other than T The boundary ccnditions, (2.06.7:4)
are automatically satisfied.

Feeding (2.06.7:7) into (2.06.7:1) and (2.06.7:3) we get

an . _ 8 . . 27
(2.06.7:8) .EE'— E;{hU(A)}SlnIfF-t]
(2.06.7:9) %E = - EE-U(x.‘l sin[zl t]
ot T T

P

Using ((2.06.7:5) on (2.06.7:8) it can be written

(2.06.7:10) n 2% oy sinl2 ¢
ot TS T

Intecrating (2.06.7:9) and (2.06.7:10) gets

(2.06.7:11) a = e F Y enslal &)
TS T
(2.06.7:12) - ;T_ U (x) cos[?} £]

P

There are no constants of integration here since the moticn is harmonic.
Feeding (2.06.7:7) (2.06.7:11), and (2.06.7:12) into (2.06.7:2),

5 2% T T T L
(2.06.7:13) - U(x) - 2n szb"" . 2]

and then working on (2.06.7:13) with (2.06.7:6) cets wvou

(2.06.7:14) 1/t = 1/e. 2 + 1/102



rrem (2.06.7:14) it can be seen that, independent of the dimen-

sions of the chaznnel, we must have

=% R T3 =

s’ p'nmin

Also from (2.06,7:14), if either Tq << 1, or Te << Tor thea 1 2 © or
: I I s

ol AT

g

For a very wicde channel T is very larcge &nd ecuations (2.06.7:5)

and (2.06.7:6) tell us that U(x) and Z(x) are practically independent of x.

2.07. Response to the Tide-Generating Forces.

2.07.1. Introduction.

We have already discussed the equilibrium tide in section 1.06 and, in sec—
tion 2.02, developed the fdrced wave in a canal along a parallel of lati-
tude. The problem of the response of the sea to the tide-generating forces
is a most difficult one and we will restrict ourselves to those cases in
which transverse currents may be neglected. We will consider a forced tidal
wave in a narrow meridional ocean, the tides in a closed basin, shallow-
water constituents, and, because of the mathematical similarity, changes in
water elevation due to changing atmospheric pressure.

The fundamentazl eguations are, as usual, centinuity and motion.

If n is not negligible in comparison with h, then continuity takes the form

=0 @

a2 Im
rt |3

(2.07.1:1) 2 fth % mul +-2g 4 vl &
oxX oy

For an elongated basin continuity, as before, is

3 an
. i ey o<l [ g
(2.07.1:2) eX(Au) b ¥s 0

In the eczuztions of motion we must now include a body Zorce per unit mass,

F, with components %U %, and é. The wverticel component may be neclected



since its cnly contrikution 1s to meke & s=light mocdification of the value
of gravity. Including these forces, the horizontal comvenents of the egua-

tion of motion are

i 7 D5 b ] ::;
@87 33 - QN R S
B T p X% X
D
(2.07.1:4) SO TINE ) F .
Dt TP p 3y v

Neglecting Fz and using P, for the atmospheric pressure the vertical com-

pcnent of the eguation of motion becomes the hvdrostatic eguation,

p=p +pgn+ 2)

a
from which
D Bpa an
—_—— + -
3% ax P93y
and - 3Pa "
o n
—_ = — 4 hibh 1B 2
3y 3y Pe oy

Therefore, (2.07.1:3) and (2.07.1:4) can be written

(]
Du 2n on i oPa
(2.87.1:5 —_— - y=-—g& = _=
) Dt 1_ 9 3x X op 8x:
b
oD
Dv , 2 3n 1 °Fa
(2.07.1:6 —— h— = = + F - = .
} Dt 7 ¢ 3y Y ¢ 3y
P
2.07.2., A HNarrow Ocean Bouncded by Two Meridians. g

Consider zn ocean of uniform depth, h, bounded by two meridians so close
together that we can make 2ll the approximations usual to the neglect of
transverse currents. Let a be the radius of earth and ¢ the latitude;

¢ > 0 for north latitude. Put the x-axis along the ocsan with its origin

at the e

fis]

nator so that x = 2¢. Let bo e the breazdih of the ocean at the



eguator. Then b at latitude ¢ will be b = bocos(é) and the cross-seciional

YU
]

ez, B, will be A = boh cos(é¢). If u is the northerly current, then con-

tinuity, by ecuation (2.07.1:2), is

a2

g h @ -
(2.07.2:1) .E-a¢tu ces(¢)} + cos(é) ok 0

ar

It will he convenient, as in the case of the forced wave along z
parallel of latitude, to express cur results as a modificztion of, the eguil-
ibrium tide. The eguilibrium tide is one in which the accelerations rela-
tive to the earth are zero. Using n for the equilibrium tide the horizontal

components of the equation of motion are

an BPa

=)

(2.07.2:2) g;{-—?x—p T
== 3p
3 i 5 a

2.07.8:3 Map ==

{ ! R 3y Yy p 3y

so that (2.07.1:5) and (2.07.1:6) can be written

Du 27 3 =
(2.07.2:4) == s o e s gho il < ald
b
Dv . 2m - 3 =
(2.07.2:5) ol A g{ayfn n)}
P
Since v = 0 and we may neglect geostrophic effects while
g% = %%, equation (2.07.2:4) becomes
8 .. Gl .
(2.07.2:6) = E{a¢(“ n} &

The equilibrium tide for a single semidiurnal constituent may

be written
Faat b 2'
(2.07.2:7) n=-*H cosz(¢}cos(-::1 t)

where H = a constant.

What we want is a solution of (2.07.2:1) and (2.07.2:6) of

the form

(2.07.2:8) n = Blcos?(¢) - 3leos (3L 1)



The total velume of water in the cocean basin must remain const-
ant and eguation (2.07.2:8) tekes cere of this z2ll right with tiie limits
of integration &t ¢ = - 41 for the south pele and ¢ = + Ly at the north pole,
we have

"1‘|l - +1§"T i
nb coslilds = Bb cos[~— £} [ (cos?[2] - S)cos(elds
§ o o) T . 3
=RET ~hit
27 g
= Hb cos[— t] j cos3 [6]ds
o
L7
27 :
23*:bOCOS [T t] 4k
- 3 f cos[¢]cd
L7
Now
* +h7 . -
f cos3[¢]d¢ = E'sin[¢](cosz[¢] + 2) =3

L -Ly
and

+hsT . +Heq

[ cosl¢ld¢ = sinl¢] = 2

_l,;-T i T
so that = e -

i 2 2Hbocos[jr't]

— Hb cos[— t] - 2 : =0

3 o T 3

Conseguently, we at least conserve the water.

Feeding (2.07.2:7) and (2.07.2:8) back to (2.07.2:6)

du _ _ gi3 2 T Y 27
-y a[g;{ﬁ(cos [¢] 3) H cos Itp]}cos[T L]]
= - £ cost3T t1{ (1 - MI(cos?214]))
a T od
or
: 8 L B L i b B 27
(2,07 .259) it i (H H)cos[¢]s:.n[c;z]cos[T t]

Integrating with respect to t,

-
.

(2.07.2:10) u =

=G
5

= 27
(H - H)cos[¢}sin[¢]sin[f;-t}

No zécéitive constant is reguired since the motion is harmonic in t.
Feeding (2.07.2:8) znd (2.07.2:10) to (2.07.2:1),

2 22
)51n[j; t]
L

- sns DO ] 27 B
— ==(H - H)coszlélsin[¢151n[jF-t]J -~ cos[¢] H — (cos<[¢] =

W

=0



or
gkt = £ 9 2 A
~ar (H - H) {-2cosl§)sin® [¢] + cos’ E¢]}Eln[f_l—t]
ZTH X -
- {cos[4] - %-cos[¢]}sin{ﬁ;t] =
Therefore;
= f;“zmsiilsinz [¢] + ces®[¢])sinS)
H = (8 - g2) — T
Al 3 g . ; _2i
— (cos®[¢] - T cosle))sin[—t]
o . m 9h 12 (-2sin?[4] + cos?
H=(H-H8H <75 () 2 (¢])
' (cos?[¢] - 2)
3
H= (H - H) 3ght? - 2sin?[¢] + cos?[¢]
1 2n‘a 3cos®[¢] - 2
H= (H - H) Eﬂ%l;,‘ 2 + 2cos?[¢] + cos?[§]
2n°a 3cos“ (9] - 2
. 9 2
LR
and
e T 1
(2-07.2'—11) H=H _2“‘2';2‘ .
T 3t

Clearly, the rescnance condition is

2112a2 o 3
3ght?
oY . 12 -
(2.07.2:12) = |=| =
[2] Yoh

vhere 7a is the distance from pole to pole and Yoh is the free-wave speed.
Therefore, ﬂa/JEE is the time taken for a free wave to travel from pole to
pole. O©On the other hand, 7ma/T is the speed of the forced wave which we will
call o to distinguish it from c = AEJ. Then in a menner similar to that

vsed for Airy's canal we get

(2,07.2:13) ne=n - .

c 2



[

We have no oceans which extend from nole to pole between clcose-
ly spaced meridians. The only sea that even remotely matches this mcdel

a which is, at least, nerrow and lies sukstantially north-

i

(o]

n
1]

south. Prcudman has used the model and numerical methods to calculate the

¥, Tides in the Red Sea. You will find his discussicn on pages 282-285 of
1

Section Station Az Tice

Calculated Cbserved

H Y H Y
(cm) G2y (cm) (°)

1 Shadwan 25ut 117 2541 137
3 Koseir 242 118 ¥+ 112
17 Jidda 4.0 149 7.4 124
19 Pcrt Sudan 2.0 232 0.9 204
29 Massawa 24 .8 298 33.4 327
33 Kamaran 28.4 304 3248 303

You should compare these results with the results shown on page 154 that
Proucdman got by treating the tides in the Red Sea as a tidal cc-oscilla-

tion. The order of agreement isn't particularly different.

2,07.3+ Tides in a Closed Basin:

In a rezl tide problem the kasin and forces are given and one muest calcul-
ate the water motion. It is much easier, however, to speciiy the water
motion and then work back to the forces necessary to vroduce the specifi-

ed oscillation.

n
m
-
0
o g
m
wn
o
H
H
m
f
Dl
<

Suppcse that we have a motion just like the
diccussed except that its period is T rather than the rnatural period T
given by Meriean's formula. From the varying water level the scccmpanying

accelerz+-ions can be calculated. 1In the case of & seicne oscillating at 1



1=t
~1
L2

pressure gracients resultisc

ne other zericd,
the resulting accelerations will not be due entirely to the pressure cradé-
ients ard the generating forces must make up the differernce. When the

face is level the pressure cracdients are zexo sc that there is =o
erence to ke made up by the generating forxces. When thrhe surface eleva-
tions reach their extrema the difference to he made up reaches its great-
est value and, therefore, so also must the generating forces.

If T <& 71 the zcceleraztions are smaller thaen those of the

17
natural seiche so that the cenerating forces will have to oppose the
pressure gradients. When T = « the accelerations are zero and the generat-
ing forces exactly balance the pressure gradients. This is the eguilibrium
case. For Ty < T < =, the generating forces are less than the pressure
gradients and for 1 = Tl they vanish. For T < Ty the period is less than
the natural period and the generating forces must help the pressure gradi-
ents to speed up the accelerations. As 1 + 0 the generating forces become
infinite.

We may restate all this on the basis of cenerating forces of
constant amplitude and take up the variation on the displacement of the
water surface which will now vary with 1. When 1 = « the elevation has
the eguilibrium form. When ] CE < = the oscillation is in phase with
the ecuilibrium form although its amplitude is modified. 2s 1 decreases
the amplitude increases and for T = 71, it hits resonance znd becomes,

1
theoretically infinite. When T < T, the oscillation is 180° out of phase

1
with the equilibrium form and, as 7 + 0, the amplitude also goes to O,
Fig. 2.07.3-1, page 174.
iet's get down to cases again with our usual rectangular ba-
sin, length %, depth h, small amplitucde, no transverse currents, etc..

Continuity and motion are 3

(2:07.3:1) h

(2.07.3:2) §-€=—g [—(n - m] .
(=} (=]



(2

= o |

Figh 1207341
We want a solution,

(387 .3 %) u=C sin[—;‘- x}sin[i—“t] ,

v

which has the form, but not the period, of the natural seiche and which

¥ills off the boundary conditions, u = 0 at x = 0 and x = £ without further

ado.
Firing (2.07.3:3) into (2.07.3:1) and solving for sn/dt,
Ba .. . BEw T oeinl2
at ) cos{£ x}s*n[.r t]
Integrating,
= ht g cos[E-x] os[zl t]
d 295 L ¢ T

No zéditive constant is needed since n is harmonic in t.
Feeding (2.07.3:3) and (2.07.3:4) into (2.07.3:2) solved

for 3n/3x,

an 3 1 3u
ls B8 el
X oX g T
whE 3 7 3 ) 27 -
= - 237 C sinly x)lcos[— ] + 5t € sinl- xlcosi— &]
2% ek il -
= (/= - —;:) € sinl— x]eces[— %]
g1 20 % T



ILCh, en integratlon, Clves
= I whT T T
B = = e B Bo8s Klebsl— ]
i1 gT E.. X
where the additive censtant is zero if
i

f ; gx = 0
5 :

Thus,
— ht 20 T 27
.07.3: = o i R s[— x — .
(2.0 5) n {22 g_{) € co [£ \]t:os{T t]

If we cather up the amplitude factors and write

(2.07.3:6) ;-= ﬁ-cos[% x]cos[%ﬁ ]
(2. 0737 Y= H cos[% x]cos[%?—t]
then _

H hTt 2%
(2.07.3:8) ok
and

H _ bt
(2-07.3.9) C g 2£ r

then the ratio of the amplitudes is

B _ hi/28 - 28/gT _ | _ 412
H ht/2% ght2

Using Merian's formula,

s el 2 e @
H i) 1
.07.3:10) ==1- |=| =—
(2.07.3+10) T X [T] =z
or
H 72
{2.07.3:13) - i T -
H 'r-“’l"1
From (2.07.3:8)
e 2561 . % 28
B  ght- — 48% 2 _ 4% h
S e
gh
or
(2.07.3:12) PP ...
H T =i h
1
An inspection of eguation (2.07.3:11) will ceonfirm the cualitative rela-

ticns described at the beginning of cur discussion. In particular, direct

tides occur for v > 1 resonance for 1 = T and ipverted tides for T <€ T

l'



Cur sclution can oDe &xt

pelvnodal forced tide in the same

1
e
=
1]
)
b
rt
M
o
81
i
(o7
rt

n an intecer, 2nd (2.07.3:2),
nT 27

F2. 07 3Tl fi ® K. sesl5— >:]cos{—T— t)
A
n7 27

{207, 321.5) w = g winlt x]sin[== t)

where the relations between the ¥ and Cn must be determined.
n
Remark: You micht try this for the exercise.
If instezd of (2.07.3:5) we have the more general

(2.07.3:16) 7= Elx) coslZZ4) g
L

then, clearly, since x is defined over a finite interval, 0 to &, f(x) can
be fanned out in a Fourier series and the solution of (2.07.3:1) and
(2.07.2:2) will be a sum of terms of the form (2.07.3:14) and (2.07.3:15}):

A particularly interesting case arises when the tide gensrat-
ing forces are uniform over the entire basin at any one instant. This
corresponds, roughly, to the state of affairs for, say, the M2 constituent
acting on a not so very large lzke.

Ignoring the ends of the basin for the moment, the uniform
forces oscillating in a definite period correspond to uniform accelerations
with the same period and so to uniform currents over the whole lake with
the same period. Now we have to fix up the boundary conditions. Suppose
we extend the length of the basin and, in the enlarged basin, produce a
seiche whose accelerations are just right to neutralize the currents at the

places where the ends of our original bzsin used to be located. The eleva-

rt

on of the water surface will be produced only by the seiche motion. 1£

i
the tide-cenerating forces attain their maximum toward the east at t = 0,

"

1

then the currents generated by them will reach their maximum toward the

cact at + = %7, Then, to counteract this at the ends of



‘_.
~1
~J

seiche currents will have to pick up meximum velocities to the west zt time

rt

= &

ET

Let & denote the lencth cf the enlarced basin, desth h, and Ty

the pericd of the uninodzl seiche. Then, with £ < a, the tidal elevaticn

will be in phase with the ecuilibrium tide. &2s a + £ the amplitude o

the

seiche will have to become larce tc procduce current encuch to counteract

the tide procducing forces and, acain, resonance sets in for a = 1.
Take
8N 27
(2.07.3:37) g — = X_cos[— %l : X _ constant.
oX (8] T o

Ignoring the boundary conditions, a solution of (2.07.2:1) and (2.07.3:2) is

cu 27
n=20 i = = X cos[T t]
or, integrating . . 5 T " sintgi "
R g 2n o ¥ - .

Now put the origin at the center of the besin so that the boundary condition
u = 0 applies at x = - %2 and x = + %L. Solutions for (2.07.3:1) and

{(2.67.3:2) with Bﬁ)ax = 0, i.e., seiche motion, are

2

(2.07.3:19) n=H' sin[% x]cos[:? t]

(2.07.3:20) o costg-xasin{%} t]

with

(2.07.3:21) T = 2a//gh ; H'/C' = hr/2a

as in section 2.086.1.
To make u given by (2.07.3:20) neutralize u given by (2.07.3:18)

at x = = L we reqguire

m(tE 27
— X sin[— t] + {-C' cos[q( 'L)]sin[*— t1} =0
2 o a T
- T Txo 3
= ' —_—] =
(2.07,2:22) c cosfza] oo

so that the elevation of the resultant motion from (2.07.3:18) zand (2.07.3:18)

using H' = C'(ht/Za) from (2.07.3:21) is



2 sinly %) S
{200 3803 n = ﬁ:a X —s peg %)
w cos [+=] '
2a
wnile u will be given by
cos{: ol
2w T 2 o BT
0= o= X sin[= &) - o= T— gin[—
27T T © T 27 T T
gesl=1
ox
. cos [-—Li x] 5
T T R R ) u ==X 1 =~ —= | ein[— t]
2m ' © (i T
cos [5]
Za
The amplitude of n at x = = %8 is, from (2.07.3:23),
2
(2.07.3:25) H = Z’T R Ly
Ata "o 2a
The amplitude of n at x = = %4 from (2.07.3:17) is
en . o (. 'rr
f e dx = — fcx cos [— t]
b4
= —=x r:os[2—"-F t]
g T
= % 27
= + — e
n g v XO COS[T t]
so that
=
(2.07.3:26) H=-—X
2g ©
Conseguently, from (2.07.3:25) and (2.07.3:26)
2 o
'} 1 I
@ 22/Vgh 2a/vVgn
or, using Merian's formula,
Ty = 25‘,/\/5'; and T = Za/r"g‘? i
H 2 1 =L
¥ —_- = = — + —]
(2 070 B%27) = ol an[za.
%
= TP. . -~ n - AN = ey =%
Regonarnce occurs Ior tan [72*;] =@, i.e., for L = (2v - 1lla with
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calculeticons based on this model for the M2 constituent in Lake Baike
Pestschannajz Bay his result is

0.82 cos[360°

..|||—-1-

+ 164°] cm
&= acainst &n observed valuve of

0.48 cos[360° + 173°] em z

~ |k

He suggests that the discrepancy may arise because the model does not take
into account the elastic yield of the "solid" earth to the tide-generating

forces.

2.07.4. ©Shallow-Water Constituents.

We will consider the rectangular bacsin of section 2.07.3 and show how allow-
ance may be made for the development of overtides by taking the higher order
terms in the eguations into account.

From equation (2.07.1:1), after deleting the cross-channel
components and gradients, we have for continuity

. 8 8n _
(2.07.421) = [th + n)a) + % = 0 ’

Similarly, from equation (2.07.1:5) after deleting, in aédition, the geo-

strophic term and replacing Fx - (Bpa/ax) with g(8n/éx) from the equilib-

e}

rium tide, we have for motion
2u au 3 =
- ri—— + — LT — — — =
(2.07.4:2) e T U g Ex(n n)

Suppose the solution expanded in powers of some small ordering parameter.

.2 = 2
(2.07.4:3) 1 eny + g Ny £ gy

NG A 2 +
(2.07.4:4) u Eul + € u, ... -

fIES
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Substituting (2.07.4:3) and (2.07.

tzining only the terms to order e cives
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. tm, By -
(2.07.4:5) H oo § o= = iy il
o ot
su on ¥
1 1 cTi
2.07.4:6 + = g &
Sk s ae % ox T % i {2 053221
Trhece are the ecuations scolved in section 2.07.3 They gave
2 BE 5Ty e shnlied SEATEY B (2.07.2:3)
P ey S 1) Ll = k_l Ulh[f‘ o BTy = [ o b s -
i 2m
(2.07.4:8) i, = B cogl—x]leosl— £l (2:507:327)
1 1 % T
(2.07.4:9) n = § cosly S1ee12E 1] (2.07.3:6)
where
(2.07.4:10) C. =8 2L, (2:07%3:9)
- - - l l h-[ - . -
Substituting (2.07.4:3) and (2.07.4:4) in (2.07.4:1) and (2.07.4:2) and
equating terms of order £2 gives the eguations for the second-crder correc-
tion. “ &
ou2 onz
L0 2 + = - —
(2.0 11) h i ¥ 5 {nlul}
du an su
2 2 1
2.07.4:12 = _—= - -
{ 12 st 9 x U1 Tx
Multiplving (2.07.4:12) by h and taking the partial derivative with respect
to x, then téking the partial with respect to t of (2.07.4:11), and forming
the difference we get
3%n, 3%n, 32 3 i
2.07.4:13 — = s o o + 2o
(2.0 ) YLy A MYt gy 5o

Substituting in the right-hand side of (2.07.4:13) from (2

07.4:7) and

,l-solution foe

(2.07.4:8) gives, with the use of (2.07.4:10)
azn 32ﬂ 2
2 2 2 127 gl 27 2 2T
5 = - H oo, taathl e[ 9— e - et
Yy gh P By h['l‘] co-[2£ x]{cos[zT t] sin [‘r 1':]
or 5
3%n g4n 2
2 2 5 142 T 2T
L4 - = I sl s 2 - 3 2—
(2.07.4:14) T2 gh =77 Hy 2n['r] cos | 2 x1{1 cos [27 t]
Since the Ariver contains doubles of the arcuments of the
seems veasonable to try a particular sclution of the Zcxm
(2.07.4:15) Ny = B ccs[2;-x] + B cos[21 )r.Icos[.?iE
2 = IS 2 5 i



cide becomss

(2,07.:4:16)
2 (__‘!2 (w2 _
(] i i 21.‘ T 2',1’
D, (4ch|—| ) 2—x] + E_{ hi—f - |— ) = 3 = i
2( gh[ﬁ Yecos [ 7 x] :.214(9. U’-J l_‘} )'COS[“Q >.]cos[2T «
Cleerliy, we reguire
; w) 2 , 1 [2%)2
D_(4ch|— e S el
- ARy IR ™
— 2 2— 2 l 2.— 2
f di A Ut — 2 R
E214(9n[£] {T] ) } 3H, 2h[ ]
or
1 1 [g)®
2.07.4:17 = H 2 = —|=
T st Lt Py =BT gh[T]
and
3 1
A: > = 2 e ¥
(2.07.4:18) F2 Hl 2% 4 = BhiT/aiZ
Using Merian's formula for the naturazl period of the basin fy = 28/¥gh
(2.07.4:17) and (2.07.4:18) become
' 3 . .2
(2.07.4:19) 5 m ok oL
e 2 gh |t
and 3H12 Tlg
(2.07.4:20) By ® i e Sy
1
Thus, the solution in terms of the natural period is
2 2 o
(2.07.4:21) = gi— { 1£ cos[21 %] =~ 3 —721—‘ ]cos[zE
e iy = gh T i B o By i L
Expressed in terms of the equilibrium tide, since by (2.07.3:11)
T2 o
B ~goawd '

1

L ; = ﬁicos[%-x]cos[%?-t]
1

—f T 21
= —_— — s — t
ny thé = Tlé]cosl2 'v(]cosIT ]
= To it 2 Tn Y0
a3 X 1 i
(2,07:4:28) m, = Eop {;7—:—;—2 {41~ {—T} Yeos {25 x] =

x]cos{2%; t]} .
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Ecuation (2.07.4:23) is the first overtide expressed in terms
of the amplitude of the egurilibrium tide, T} the length, depth, and natural
periog, ¢ H, Tl, of the rectangular basin, and the period, 1, of the tide
sroducing forge.

The corresponding expression Ifor the current, u,r can ke had
kv feeding h2 gs civen by (2.07.4:23), &long with (2.07.4:7) and (2.27.4:8)
into (2.07.4:11) and (2.07.4:12).

-

The next overtide is secured by extending the ordering -series,

(93]

(2.07.4:3) ané (2.07.4:4), to e°-terms and equating terms of order ¢
substitution in (2.07.4:1) and (2.07.4:2). Successive overtides will con-
tain the factors

@\/n), EM2, cons EMY .
where v = 1, 2, .... In other words, the amplitude dependence of the cver-

tides on the basin depth obeys a reciprocal power law.

2.07.5. A Traveling Atmospheric Disturbance.

The eguations of continuity and motion are

(2.07.5:1) 990 B
oxX ot
su ? =
(2.07.5:2) —*at'_g#_ax(n - )

Let the traveling atmospheric pressure disturbance be
(2.07.5:3) n = F(x - Ut)

where U is a constant velocity and F is any physically possible function. We
want a solution of (2.07.5:1) and (2.07.5:2) such that
(2.07.5:4) n=MF(x - Ut) ; M constant ;

Feeding (2.07.5:4) to (2.07.5:1)

ﬁt[?(x = Byl 5
[e]



T

How, 'since the argument of F is (x - Ut)--N.B.: not (%, Ut)--integraticn
and differentiztion with respect to either x or t bring apout the same
chances in the functicn. Therefore, if we intecrate with respect to x,
we 'will bet back F, i.e.,
U

B == M
h

]

(x - Ut) + & ccnsteant y

Zut, if we suppose that things are at rest when there is no pressure
disturbance, in other words, that u = 0 wvhen n = 0, the constant of integ-

raticn is zero so that

(2.07.5:5) = - % M F(x - Ut) :
Feeding (2.07.5:3, 4, & 5) into (2.07.5:2)
z
%= MF'(x-Ut) =~-gMFP'"(x - Ut) - F'(x - Ut)]
(o) o
U2
(2.07.5:6) . R g(l - M) "

Consequently, solving for M, we get

2)1-1
8]
WA L
Therefore, from (2.07.5:3 & 4),
— U2 _'1
{2.07.5:7) e L = EF .

From (2.07.5:7) the elevation of the surface is a constant
multiple of the eguilibrium elevation. When U = 0, i.e., when the atmos-
pheric disturbance just sits there without c¢oing anywhere, the elevation
is the equilibrium elevation. When the atmospheric disturbance travels

slower than the free wave speed, U < Ygh, the phase is the same as the

03 . . s - > - % F :
eguilibrium form but the amplitude is greater. When U veh we have reson-—

ance. When U > Vgh the wave is inverted. When U >> vch the amplitude is

small.
E a g - e : e £ 4= o 27 =1 21 i
I n contains the gecstrophlc Iacicor expi- ?r Vi, where c =
same factor in n and u.

ghTD/U, complete allowance can be made by inserting the

So far we have been using an infinitely lcng canal. Ncw, sucpose

[

a2 barrier at x = 0 where u = 0 for 211l t. For converience, shift (2.07.5:3) to



(2:07.5:8) = £(t - =
n { U}
and try fcr solutions of (2.07.85:1) zné (2.07.5:2) that will make u = 0 when
x =0 Ls usual, try
My ait e = 3
(2.G7.5:2) n=M8I(t -2
(%}
Substituting dn (2.07.5:1)
cu 1 x
—_— = _-x' t - —
3 h ( U)

and integrating with respect to x

MU _ *
- e = e— T - —
{2.07.5:10) u h £t U)

where the constant of integration is zero for the came reascn as before.

For x = 0 this says that

(2.07.5:11) u=3‘hgf(t) =0

This can not be true for z2ll t unless f(t) = 0 for all t. If that were the
case, T would show no, variation with time and the baby would go out with the
bath.
To get away with it without actually cheating we must superimpose
another motioﬂ with the following characteristics:
(a) It must correspond to n = f(t - %) = 0.
(b) At x = 0 it must take on just the richt value to offset the value
of W given by (2:07.5:11).

Let's try & free wazve for the additionzl motion, sazy ome with u given by

(2.07.5:12) T ¢ =)

074 Ba u = X (t - UC
where Uc2 = ¢ch is the scuare of the free wave speed. Eguation (2.07.5:12)
will certainly do cur business at X = 0 and the motion can exist in the pres-

ence of n = 0.

That (2.07.5:12) is a solutien of (2.07.5:1) and (2.07.5:2) may

be verified. From (2.07.5:1)
0 _ . a(_ EE}[_ JL}F-{ﬁ o onch
ot % Bt 9 U,
or
LRI (1 RS )
(s (o
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cr, intecrating with respect to &

)

rt

(2.07.5:13) n=—MGU-f(
c
Substituting from (2.07.5:12) and (2.07.5:13) in (2.07.5:2)

S
u
c

L] % L X
——h—I({...—'a—}:—g[?-s‘v—"'zs.(l."u_}"ol
c c c
LA M
h %%
c
or Z
U * = gh

as it should.
The complete solution, i.e., the traveling disturbance plus the

patch to make it behave at the barrier, is

_ X U o Tt
(2.07.5:14) n = M[IE(t U) 0 f{t 5 1]
[ { o

. ‘ = MU o By o e
(2.07.5:15) u h[f{t U) f(t 5 )]

c
Inspection of (2.07.5:14) shows that we have two waves travel-

ing along the canal. One rides with the pressure disturbance at the speed,

U while the other travels away from the barrier at the free wave speed

Remark: Equation (2.07.5:14) is sometimes referred to as "Lagrange's formula."
I wish they'd leave off this kind of thing.. Any famous scientist oxr
mathematician has so many different results named for him that you

have one hell of a time finding out which one is being referred to.

When the atmospheric disturbance travels away from the barrier at a
speed U < U, the result looks like the first two sketches in Fig. 2.07.5-1
when M > 1, pace 186. Since M > 1, there is a macgnified wave keeping pace
with the disturbzance at speed U and, since U < UC, there is an inverted wave
with speed Uc running ocut ahead of it. If U > Uc and M < 0, with the disturb-
ance traveling away from the barrier, vou cet the response shown in the third
picture in Fig. 2.07.5-1. It is an inverted wave keeping pace with the dis-

turkance znd a direct wave trailineg behind it.
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his analysis can be edapted for a moving pressure jums such as
veu find in a frontal passage. The ecguilibrium response is an adjustment
from one level zhead of the jump to a lower level behind it if the Zump is

gn increzse. 1In the region of the front there is & traveling co
guel to the volume of water displeced hehinég it, Fig. 2.07.%

0 DISTURBANCE
= X
B TUe

___________ RESPONSE

0 X o
| U

Bl ssam g " RESPONSE

¥ g

Fig. 2.07.5-2

Let H be the decrease in the eguilibrium height 7. Then the
height of the wave which travels with the speed U is
- UCZH
SR o
from (2.07.5:2) and (2.07.5:7) and the height of the wave which travels with

the speed Uc is

UU H
i § c
M U 2 - U7
e C

from (2.07.5:13) and (2.07.5:7). The superposition of the two cives

U H 2
o
U + U '
©
If b is the width of the canal perpendicular to the cirecticon of trzvel and
is the éistance from the barrier trav 3

led by the wave of speed U, then the
U

veled by the wave of s

™
' ’
n
oF
fu
b |
a
()
ct
A
1

L
eed U is (ch/U). s S
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traveling column is [EUC/U) - 1l)s long and the water volume is
UUH (U u_ B
m—— = LR = = skH .
u ¢ - uflu U + U
o ¢
This-is egual to the volume of watsr disclaced hehind the column. IZ Uc < B,
the length of the traveling columa is
v 2 H ( U v’
—————11 = —|sh = ~——————— gkH
uc - u 4| U j u(o_ + v)
c 5

and is also equal to the volume of the displaced water behind the column.
Surces caused by frontzl passages are nct uncommon. Prouéman
Gives an example of one that hit Sussex, "Dyvnamic Oceanogrzaphy,” page 300.
A number of them that have been rather disasterous to Chicaco have been
analysed in the literature. Try the Transactions of the American Geophysi-

czal Union.

2.08. Internal Seiches, Tides, and Waves.

2.08.1. Introduction.

So far we have been discussing situations where the maximum vertical varia-
tion in the water motion occured at the water surface and where the currents
were substantially the same from top to bottom. Another situation is
possible. In it the maximum verticzl motion occurs somewhere between sur-
face and bottcm and aleong any cne vertical there are larce changes cof

current in both size and direction. This case can occur only in the presence
of large vertical density gradients such as those incdicated by sharp thermo-
clines or haloclines. When oscillations of this scrt are rresent there will

be 2 wave-like uncdulation of the thermocline and hzlocline. What this can

s
£le measurements taken at cifferent times and rlzces I leavs to

i
o3
n
m
=]
&
ot
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In ocur detailed work we will simplify thinecs by considering
g two layvered system having homogencsous water of different densities in ezch
laver <=o that there will be a surface of discontinuity of density rather
than'a layer of rapid change. Friction will be neglecteé zné, whenever ceo-
strcohic eifects are considered, latitude will be tazXen uniform.

The direct effect of the tide-generating fcrces is still ordin-
ary tides on the surface but we will see that in scme cases they may produce

internal tides as well.

2.08.2. The Ecuations for a Two-Lavered System.

For our two-layered system suppose an upper layer with censity, p, depth, h,
lying on top of a lower laver of density, p', and depth, h'. The depth of the
water from surface to bottom is then h + h'. When a disturbance from the
level position occurs, use N as the surface displacement and n' as the dis-
placement of the surface of discontinuity. Take the Oxy-plane in the mean
surface with 0Oz vertical and let z denote depth below the mean surface while
z' denotes depth below the mean discontinuity surface. u, v will be the cur-
rent components in the upper layer and u', v' the current ccmponents in the
lower layer. § is the tide-generating potential and P, the atmospheric
tressure.

Continuity for the upper laver will be the same as usual except
that the displacement must be taken relative to the discontinuity sufface,

i.e., instead of n we use n - N'.

3 3 3
. i e e + —M -n") = -
(2.08.2:10) ax(hu) By(hv) c__tm n') 0
FTor the lower laver there is no mocification so that

(2.08.2:1L) %;(h'u‘} +g—v(h'v') + _g*tL= 0 )



The =uuati
(2.08.2:20) ==
2t
(2,682 50) A
ot
znd for the lcwer laver
an!
(2.08.2:2L) =
ot
ev!
(2.08.2530) =
st

where p and p'

On the neglect of the vertical velocities and accelerations,

crig of mociticn for the upper laver are
27 1 2p ch
U = = = -~ = -
T p oX o
-‘.J
27 1l 2» =0
2 o= e D BB o D0
T o ey oy
B 3
2 o, _ _ 1 &p' A0
- 1~ I —
T ox oX
D &
21, 1l s»!’ e
e ™ T R o R
4 ey 3

are pressures in the upper and lcower layers.

the

third member of the eguation of motion trio produces the hydrostatic eguation

so that we have
(2.08.2:4U)
(2.08.2:41L)

Substitution of (2.

(2. 08, 250)

(2.08.2:60)

(2.08.2:5L)

(2.08.2:6L)

or, if we

(2.08.2:80)

P=Pp, + pagln + 2)
p' =p_+pgn+h-n') + pragln' +=2")
08.2:4U&L) in (2.08.2:2U0)-(2.08.3L) gives
au 2% an 29 1 °Pa
B BT o s g D e T o
ot T - ex ex p 9%
P
5 5 - ap
v, L.gn 2 1
at T oy oy p oy
P
~ o0 - o Lo P
= QV'=-9%3—“—9[1—3."]%L-%§%-L.
a T (o} ox t p oX oX D
P
g | ~ [ |
BV cp B f pee g BB o gl g o DB B L
ot Tp p' 3y oy a3 ]

02
=

az?
rk

FER IR
?

4?2
t

invoke the eguilibrium Zfoxm through @

~
5

2 3

?*-v = ~-g 8X(n n)
)=

27 3 =

?— Qg o Syfﬂ - n)




(2.08:2:71) B e Bhogii i g B B oy BB o R
st TP o' ox | e') ex ToEx
~ r .}l ~ - ] nl_
(2.08.2:81) CASNIEY YT R 1. I gfl o W PEI o o BT )
et T o' By | o'}ty L
B ® =
IZ, ‘incstesd, in {(2.:08.2:51)-(2.08.2:51) we neglect the tide-cenerating forces
and use
pa = a conctant - cgﬁ ¥
equations (2.08.2:5U) and (2.08.2:60U) again Pass over into (2.08.2:70) and
(2.08.2:8U) but (2.08.2:5L) and (2.08.2:6L) become
du' 27 o an o |an' o 3;
(2.08.2:914 ---—V' = = —— — - l__'_ R
/ ot T 3 p' ox d p'] ax g p' Bx
B W e ey, oy olE b BR
’ 5t Tp p' By o'} By p' By '

The final bit of business
of the vertical acceleration. For the
as that given by eguation (2.06.1:11),
3%n
3t2

<<
cn

h

(2.08.2:11U) i ;

The lower layer reguires a bit of modification.

tion arose from the neglect of aw'/3t. in

is to get a criterion for

upper layer the criterion

the neglect

is the same

For it the hydrostatic egua-

ow’ 1 ap’
Tegm e S *T'“ET g
et p' 3z
so that, as before,
¥ zl Sni
w' = - |1 - —
[ h‘JSt
and
D' _ ig 4 pr[1 - 21|35
a2 5 T
or integrating ( 1 21)252.
o' =p. fpg{n+h=u")4%o'gln" +# 2"y ¢ g'jzr ~ =2 | 2 1
- “a L b e o t 2 ht ctd
Comparing this with (2.08.2:4L) we see that, as before, the last term is the
departure from the hydrostatic case so that what we recuire at z' = »' is that

-

Lop'h' (3%n' /et?)
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)
1

be small in the lower laver inh compariscn with the hycdrostatic terms

- pgn' + p'gn’

so that ouxr critericn for the lower layver will he
3 22n
, Al e
B H L P c”
(2.08.,2:311) 7 - L
g =P cn

2.08.3. Internal Seiches in a Narrow Lake.

Consider a long narrow lake with two lavers of water. If the upper layer
were drawn off, an ordinary seiche would be possible in the lower laver and
it is useful to use it as a reference. Its period will be the Ty of Merian's
formula.

Now suppose that a free uninodal oscillation is possible with
both layers inlplace; one of such a nature that the oscillation of the free
surface is very small compared with that of the discontinuity surface. It

will have some period Ti which is not necessarily the same as 1 Continuity

1°
in the lower layer will be as before with Ty replacing Ty To compensate
for the movemant of water in the lower layer without much change in the sur-
face elevation, the volume of water moved in the upper layer will have to be
about egqual to the volume moved in the lower but it must move in the opposite
direction. One can expect that the currents in the two layers will be in-
versely rcroportional to the depths of the layers, more or less, and opposite-
ly directed, Fig. 2.08.3-1, page 193. Since the currents are a2lways opposite
in the two layers so also are the accelerations and, conseguently, the hori-
zontal pressure cradients as well. It follows that the elevations of the two
surfaces are cppcsite in sign.

In an ordinary seiche water cf density p' cEisplaces air. 1In an
internal seiche it displaces water of censity p. At any point in the lower

layer the changes in pressure céue to the two layers will be oppesite in sign.
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Fig. 2.08.3~1

The pressure gradients in the lower laver have the same direction as those 5f
the ordinary seiche so that changes due to the mction of the discontinuity
surface must prepcnderafe over those due to the free surface. This confirms
our assertion that the motion of the free surface must be relatively small.
It also follows that the horizontal pressure gradients in the lower layer are
reduced from those in the ordinary seiche. This means that the accelerxations
are smellexr and that Ti must be much creater than Tl.

Consider the usual rectangular basin of length, &, constant depth
h and h', basin ends at x = 0 and X = & where we have the boundary conditions
u=0zandu =0; n=20; vi=0, v' = 0.

Continuity from (2.08.2:1U&L) is

2 2
(2.08.3:1U) h <=+ (5 - n")

X ot

Naal AR |
(2.08.3:1L) jr BB g Tl g




At
10
fiIeS

frem (2.08.2:8U8L) thé eguations of moticn, after neglectin

boéy and ceostrerhic forces,; are

:!u ev-\
(2.08.3:20) il - e
ct c¥
- " g’ g &n f o 13n!
(2.08.2:21) —— = = g — == Y = |5
ot ol ox L p') ex
Zs usual, we try for a solution
: i 5 27
(2.08.3:3) W= g szn[E-x]51n[f;-t]

where C is a constant speed. Eguation (2.08.3:3) certainly tekes care of
" the boundary conditions at % = 0 and x = £.
Feeding (2.08.3:3) into (2.08.3:20)

27 . T 2n
o g C s:m[2 x]cos| - t]

=

ar|as
"

which, on integration, gives

27
(2.08.3:4) = 2F p estl wiesssE vl .
+ gt ey T

No additive constant is necessary.
Substituting (2.08.3:3) in (2.08.3:1U) gives

o th s

—(n = n') = - — C cosl x]sin{gﬂ-t]
at L £ T

which, on integration, gives

ht b 2%
_ 1 = w— et - P
n n o C cos{2 x]cos{T t] .

Substituting from (2.08.3:4) and solving for n' gives

o[22 b il 2,
(2.08.3:5) n' = [g? 2£] & cos[ﬁ x]cos{T t]

which is the elevation of the interface correspending to the free surface
elevation, (2.08.3:4). Y

1

To complete our znalysis we need to find u' which can be done

be feeding (2.08.3:5) into (2.08.3:1L) to get

cu’ Tk, .. B ' o2
= _Ilj 4£¢ = "] C cos I:,r* x)sin[— &l .
ax h'lgr L T 5
Integration with respect to x then gives
1 (482 G P -
(2.08.3:6) B =7 (‘ & h] C einl— x)sin[= t] :
1

th,‘,; J ~
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2.08.3:7 gt e B BTSN
e ) cht gt nht C hr
cxr C=%—;%r!
% I 3
where
(2.08.3:8) HE 4 c =
aTt

H is thus a constant length--we can cather up our solutions in the form

1

-
£

(2.08.3:9) n=H cos[% x]cos[—-_;-* t]
(2.08.3:10) g = 522 g ostn s 6
B ht L T
(2.08.3:11) W = (1 - %ﬁ B cos[%—x]cos{%? £
since
28 ht ht2]28 1
[g‘r 22} C = [1—3—2—42 ]gTC— (1-8) H
and
f == = _]:__2'?‘ 1 lT. 3 .?_1
(2.08:3:12) u! = {1 Blh'r H s;n[z x]s:m[T £7]
since -]-‘-42’2-}1 e 1-—ghT24E’2LC
n' grz 4872 gfz h'
1,482 1 1 22
1= B)grz h' 8 ht ©
1,422 1 2%
= & - B)ghTz B8 h't H
¥ 2L
all S)h'T H

B may be expressed as a function of h, h', p, and p' by sub-
stituting (2.08.3:9), (2.08.3:11), and (2.08.3:12) in the conly fundamentzl
equation as yet unused, (2.08.3:2L). The makings are

su'

1. 4=n§ o 2%
ok (1 - B}ET?Z B 51n[£ x]cos[T |

E.T-l--_l 'E, ﬂa.

i : H s;n[ﬁ x]cos[T t]

Cas L% o wwr®E rese el &
= (1 5)1 H s;nli x]co_[T )

N -

Clearly, the factor 7H sin[i—x} cos[%ﬁ-t] common to all terms will divide out
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1. 48 v B P .
B=ghmz=-g 7t ~gld=gpil= W |
~
44 1 0 N\ P I
- — e = e - - — —_———
hl_L.-.: ,.ll-‘-ﬁs z\’,.\| &(l r‘: E*Ep;}
L2 N 452 i o
g,.ilT/_ > gnn.l_.z. i e ot
Jat by (2.08.3:7)
a8 o M2 oo B oo
gh't¢ ° = ght‘ h' s

AT . - O S B
o B o 8 g 1< 5
or
. g ¢ Mxom e By e
(2.03.3:13) =B A48+ E—5) =D ;

Eqguation (2.08.2:13) is sometimes called Stokes' Equation.

Solving for B we get the roots

' . +’V A = h .8
8_(1+h, -3 (1+h.) 4371 p,)
h
2 ar
or
. . h' Blyp _ Bl | B yak
(2.08.3:14) 8 = (1 + h) £ [H(1 + h) h(1 p,)}

Call the root with the positive sicgn So and the one with the negative sign

B.p
i
- h' n''s h' . o ..%
B, = %{1 # - M Bz (1 + ) n (2 p.)]
o 1 e _ hivs B, p..% 3
B, = 81+ ~ Pl +5) palER el

~
In actual cases, p and p' are nearly equal so that 1 - g%-is very small.
P : i p - "
We will approximate 30 by neglecting the (1 - ET)-factor entirely and Si by

"~
retaining only linear terms in (1 - ETJ. We get

hl
(2.08.3:15) g = L &=
o h
Remark: You can see that if we used the sazme aprreximation for Ei that we
result 8

are using for £ , we would cet the rather uninteresting
o)
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Exmpanding the bracket by the binomial thecrem

il 4232 - %&(1 " é%}}a = (1 + %&)21* < Bt &

the following terms being dropped since they are cuadraiic or higher in

(1 - f?) Simplifving and substituting

0 h'
2.08.3:16 , = - — &
( ) Bl (1 p,) h+ n

From (2,08.3:15), and to the same order of approximation, it

follows from (2.08.3:7) and (2.08.3:9)-(2.08.3:12) that

(2.08.3:17) T = .
vg(h + h')
. i M - |
(2.08.3:18) il ey
ul
(2.08.3:19) — =1 3
u

Equations (2.08.3:17)-(2.08.3:19) are the relations for an ordinary seichen

Epparently, the presence of a density stratification does not prevent, or .

seriously alter, the pqssibility of the development of an ordinary seiche.
Correspeonding to (2.08.3:16), and to the same oréder of approxi-

mation, (2.08.3:7) and (2.08.3:9)-(2.08.3:12) give
(2.08.3:20) o i Bt L S .
b - h

n"/n=1-~1/8= (8 - 1)/B. Therefore n/n' = B/(B - 1) = £(8) and, using

Mzclzurin's expansion,

£(8) = 8/(B -1) ; £(0) =0 ; £(B) =-1/(8-1)2; £(0) = -1
Higher order terms will yield (1 - b/p')z etc.. Therefore n/n' = - Bi
so that
] - 1 .ﬂl_ e -1— = - ——f'— _}l.
(2.08.3:21) i 3 58 (1 * h'}

il



w/a o= 2 (h/h"Y Il - 1/8) = (h/hRY) B - 1) = 0g(8), ané using Maclaurin's ex~
ransion,
g(g) = (W/h') (B - 1) ; g(0) == "h/hA' ; g'(8) = (h/h'}(1 - 1) = O
Tnerefore,
‘J' =
(20853 22) — = e =
u N
Eguaticns (2.08.2:17)-(2.08.3:22) civen the features of the internal seiche.

We can rework our criterion, (2.08.2:14L), for the neglect of

vertical acceleration by uvsing (2.08.3:11) and (2.08.3:16).

L R A . T Feinilh

ae. : (1 8) H cos[£ x]sin| - t)

nZ ,2 2

Z;l = —-%%r(l - %) H cos[%—x]cos[:; t]
o' EL 32n1/3t2 _ o' BL._ sz

p' - p g n' p' - p g T

o'  hh'm2 482
' = p X ol

0! hh'ﬂz
ST oo 12 °

and, using R, to approximate for B,
* o' nn'n2p' AH _ h!
o B)/— o [ :7%. h + h'
h'  w2hh! .
"h+h 7
In the rectangular case this is the quantity that must be made

small. Eguation (2.08.3:20) plays the same role for an internal seiche that
Merian's formula plays for an ordinary seiche. Proudman applies it to Loch

Earn and gets T, = 18 hours as against an observed value oif 15.2 hours.



In section 2.06.7 we discussed free cescilleations acres

in

Tnternzl Seiches Zcreoss 2 Uniform Channel.

“royhic effects. This discussion

2 channel

n

with

will now be extendeé to a two-layer svs-

Tem Take the dznth as uniform &nd suppose &1l conditions unifcrm
chnannel
For continuity
2 3
(2.08.4:10) hE s S (n-n") =0
Ex ot
" 1 ]
(2.08.4:1L) py S 5 B0 L
oX ot
For motion
du 27 en
(2.08.4:20) e o
P
v 27
(2.08.4:3U) Be T =0
P
qu' _ 2w ., _ L_2n _ 0,30
(2.08.4:2L) e = g op B8~ 2N
’ 2
(2.08.4:3L) L AT :
ot
Try for solutions
g il o 42
(2.08.4:4U) u = C sinly x]sinl=F t]
1 1 . n 2 2“
(2.08.4:4L) u! = C Eln[E x]s;nP?ﬂ t)
where C and C' are constant speeds. The boundary conditions are u

u' = 0 at x = 0and x = £. From (2.08.4:3U) and (2.08.4:3L)

dv_ _ 21
at
av' 27
5t

T
R R
T

P

T I
= - — C sinl[} x]sln[*l t]
T 4 T
o T 1
= = — C' gin[— x)lsin[— £]
T £ T

27
+ _— [ ¥
o) 51nI2 A]CGSLT t]

¢ and



- - e
(2,08 4:8L) v = — ¢' gin[— x)cos[— t]
T A T
P
No sdfitive constant recuired

Al . % i it
== . B* = 2 puslyxisanli— %l
gl b ' L
Intecrating with respect to t
h'st T 27
(2.08.456L) n' = =—— C' cos[+ xJcos[— t]
2% X T

o additive constant required.

With (2.08.4:4U) and (2.08.4:6L) in (2.08.4:1U)

an , W il ) ™ m i T
= = - e B = = - h — — xlsin[— t
5t h £C cos{R x]sln[_[ 5 hECcos[£ xls [_L ]
T 29
= - Zth'c' + nO)cos [T x)sinl== t)
L £ T
Integrating with respect to t©
i 2
(2.08.4:80) n £2—T£(hc + h‘C'}cos[% x]cos[-j_'r- t]
L

or, if we define

o

(2.08.4:7U) H & 5ohe + hiEh)
T
T $ i e
(2084 ¥TE) H' = 5L n'C .
then
i 27

(2.08.4:81) n==H cos[—g-: x]cosIT t]

T 2%
(2.08.4:8L) n' = H' cos[,T x]cos[-;- t]

Using (2.08.4:4), (2.08.4:5), and (2.08.4:8) in (2.08.4:2)

z 27 27 g il 27 T . . T 2T
2L ¢ einfE x]cos{?—— t] - —-1} C sin[= xlcos[™ t] = g — K sin[= x]Jcos[— t]
T 2 T T L T I8 2 T
o)
27 i 27 27T i 2T
T o' ginl= x)cos[— t] - == C' sin[+ xlcos[=— t]
T L T T X T
T 3 2T B T i v $TE s 25
= & i B sin[ix]cos{z—* t] + g(l - =)~ B' sinl; xjcos[— t]
*pt & £ T g 5 T
or 2C _ 21C _ gH
T T & 5
R 2¢) _2wer _g b <., .
>y _ = —— W [:_|_ - ——-;—) fot
T %, 58 L p! ) o



Solving for C and C' in (2.08.4:7)

ct - o _:l
Th'
- ] & 4
C:‘é_.g:'h—‘}?—C'=g:£H—g'{-'-'=*.’r(H_H')
Th h Th T i
end gubstituting
2 22 ; 21, 2% vy, e 3
T‘[h(h H') T 2 Lh{!‘l—ﬂ)—ﬁ_l
b
ap 1 248 1 g
— 7 {(H-R") = ——(H ~ H') =2
W BB el W) =W
b
482 1 1
sS4 _ _HI e
gh ‘12 71 Z) B } ¥

for the first and

y L e 0 2 Bl '
T Th' T 2 Th' A 2{0‘ wE & p') '

. P D

i — b H! = .50 + MRS, |21 a.

gh' (xZ2 = 7 2 ra+ 4 v B
for the second.

Defining
482 1
4:9 e
(2.08.4:9) g8 oh P?z = )
P

gives

B(H ~ H') = H
and h

By H =S H+ -2y

h p

or
(2.08.4:10) (L - B)H + BH' = 0
and
(2.08.4:11) Zr+a-L -9y =0

o] o] n

Conseguently, we have from (2.08.4:10)
(2.08.4:12) i s 8 - lu= -2
tocether with
08.4:13) § s SR [, = 29 = L2 Ay

(2. a2 = Thl E,ﬂ..j = Th B L



and
(2.08.4:14) c' =_ﬁﬁ(1 = %}H
so that our scluticns may be written with directly comparzble amplituces.
(2.08:4:150) (2.08.4:15L)

n o= = ccs[;-x]cos{%;-t] nt = (1 - %}H cos[% x]cos [— %]
(2.08.4:18U) (2.08.4:16L)

2 7 : T 2%

o % E% B sin[%‘x]sin[gg—t] wt o= (1 - %Jﬁ%;—a sin(T x)sin(=E ¢]

(2.08.4:170) (2.08.4:17L)
1 28 . 27 1, 2 ) 27
v =-§ th Y 51n1% x]cos[f§~t] vt = (1 —-E)h,TD bl 51n[E-x]cos[fF-t]

Compared with (2.08.3:9)-(2.08.3:12) n, n', u, and u' are seen
to be formally identical. However, the 8 used here differs from the B in
section 2.08.3 by a term in T

From (2.08.4:9)
H - B

H' -8B
while from (2.08.4:10)

B e P Dy e

= ms o= omes AAER
so that

gl -a-pa-2- 3

D‘ .Dl h'
or
; D2 h - I

(2.08.4:18) -2 = e efE @ ) =0

which is Stokes' Eguation again.

Let T be the period@ of the transverse seiche, ordinary or inter-

nal, without gecstrophic effects as in section 2.08.3. Then from that secticon

422 1
g = R T 2
gh T

Since the two possible values of 2 are the same in this secticn as in 2.08.3

being rocis of the same eguztion throuch (2.0B.4:%) we have
1/1 2 = 1/12 - 1/71 2

Qr -

(2.08.4:19) 1/72 = 1/7 %2 + 1/1.°



When, &s often happens; 1. >> T_ we have 7 = T . In this case

s =

£

ceostrorhic effects dominate the period of internazl cseiches.

ta
=
w
0
=
11
|
(oN)
1]
iv]
(0]
H
e
0
ol
0
Hy
|t

cat with an amplitude cf X 4.3 Hoeurs. t for this

2.08.5. Internal Waves with Horizontal Crests.

The analyvsis of section 2.08.4 also applies to standing waves of length, 2,
with horizontal crests. From (2.08.4:9), if X = 28,

1 =

o 8

(2.08.5:1) Z2 = gh{%z -

P
and, for internzl waves with B = Si'

ghh'
h 4+ h'

: - N TS S -
(2.08.5:2) MnP= 0 p,)(? s

Therefore, for real values of Ai we require T < Tp. If the waves are of
tidal period, (2.08.5:2) tells us that the wave length, Xi' is small compar-
ed with ordinary tidal oscillations.

Now consider progressive waves. The fundamental equaticons are
still (2.08.4:1)-(2.08.4:3) but the solutions we try for, instead of
(2.08.4:4), will be

t
(2.08.5!30) 1 = C oos [271 (2;. i .‘?)]
(2.08.5:3L) H cos[Zw(? -39

The net result of precisely the same attack will be

(2.08.5:40) (2.08.5:4L)

i &R CCSIEW{§-— %}} n' = H' cos[2r(§ - %)]
(2.08.53:50) (2:08:5:5L)

s R %1n[2ﬁ(§ - %ﬁ] v' o= i; e EiR[E (S = =]



Tie ccnnections bketween H, ', C, anéd C' are just the same with A xerlzcing
2L throuchont. Since U = 2/7, (2.08.4:1%) tells us that
5 2 w2 2
7_J2 s A = A + >\
. = T = g
s P
2 o
w2
- A
(2.08.5:6) 2 =y ?+ 2o
s T,
D

where US is the spced of propagation of waves, either ordinary oxr
vhere there are no geostrophic effects. From (2.08.5:6) it is clear.:hat
u > )/Tp always.
. It seems that ceostrophic effects mey dominate the speed of pro-

pacation of internal waves. From (2.08.5:1)

%; = v? = gh(1 - ;T—zg)“lﬁ
or P

UZ|- 1 - (Eﬁ/sz) 8 '
When i go . & o %%

v B a4 g(h + h')

= . T Z
o 1 (7 /TP )

which is the result we got before for surface waves.

When
e " L, h'
B = Bi = (1 o‘)h rag
b D e X s _ P, _ghh'
H 1 = {z%/1 ‘)(1 s''h + n' :

If h/h' is small, i.e., if the surface laver is shallow, then

1 -~ (p/p")] .

u, = gh ¥
1 (X = (2 =) ©
P
- - ! . “ ) Yoy i ) Toun o e . < -~ - 1 e L e
U. is generally much smaller than U kut, if 1t = 1, U YGh.

i o o] e



2.08.6. 1Internal Xelvin %Waves.

If we drop the transverse currents and retain the geostreocphic effects, we

can produce the Xelvin wave. The ecuations of continuity are
ou o
(2.08.6:10) h— + —(n + 7')
cX ot
o r t
ol 3
(2.08.6:1L) -+ £ =
. cX ot

The ecuations of motion are

3u an
2.08.6: i PR
(2.08.6:20) = 75
(2.08.6:30) 2T 5 o g BU
T oV
p
, su' P 2n _ o B DAY
(2.08.6:2L) - g oo 27 = i m s
(2.08-6:3%) LN )
TP p° oy o] cy

We start cut in the plane v = 0 looking for a solution
(2:08.6:3) n = Tl ~ Ut

where U is a constant speed whose value is to be determined. By the usual
rock hockeyv, and by defining

_ u?
(2.08.6:5) B = Eg‘ '

we again wind up with Stokes' Ecuation contrclling B and

(2.08.6:60) (2+:08.6:61) .
r i 2
n = expi- =t viF(x - Ut) n' = (1 - %)exp{--—Tl vIF(x - Ut)
& S (e
(2:08.6:27U) ¥

.__1U 5 2_“'1 - [ — _.];_[:"..--!gf_ -

@ e exn{ ~ yIF(x - Ut) al¥ = 1 S)h' exp{- = vIF(x - Ut)
znd, corresponding to the two solutions of Stokes' Ecuation, SO and Ei,
(2.08.6:8) 002 = g(h + n')

(2.08.6:9) 1.2 = o e 000

o p_'h+h'



Uo correcsponés to the ordinary surface wave. Ui coxrresponds
to the interrnzl wave and, clearly, from a compariscn of ecuations (2.08.6:8)
ané (2.08.6:%8), is much smallexr than UO. Since c = UTD this means tnat c is
much 'smaller fox U, than it is foxr U Conseguently, %Fe cross-channel

chance for an internzl Kelvin wzve is much more marked tnan 1t 1s 1o &n

) ol eI & 4 e
crdinary surfzce Xelvin wave.

2.08.7. A Submarine Barrier.

Consider a two-layer system with a thin barrier at x = 0 extending from the
bottom to the interface. This is a simplified model of a sill. Take the
usual rectangular charinel kind of thing with v and geostrophic effects in-
cluded. The equations are still (2.08.4:1)-(2.08.4:3) but the barrier adds
the boundary condition u' = 0 at x = O.

From the resulis of sections 2.08.4 and 2.08.5 the oxrdinary

wave corresponding to 80 with

3 2
% v
B = gh(T‘ - =)
gives
(2.08.7:10) (2087 231)
b'e t P o x _t
n = Hoc05[2ﬂ(1—~* - T)] n' = (1 ; )Hocos[2'ﬂ(>\ T)]
o o
(2.08.7:20) (2.08.7:2L) :
A A
il o x E (- - __1_ e W o S E
u = B_ ';]? HOCOSIZTT(R T)] ut = (1 g )h"f HOCOS[z-(}\ T)]
o o o o
(2.08.7:30) (2.08.7:3L)
1 A + 1 AQ 5 ol
o [ oo 5 - N,
%= T A sln[zrti— - ?J] vt o= {1 z )P‘* H SAP[2F(1 )]
c o) o 5 o



i
(2.08 21) (2.08.7:4L)
- t . - x t
n = H,cos[23(— - 3] n' = {1 -~ JH.cos(275(— - =}]
Ay T o Ko T
i i i
(2.08.7:50) ) (2.08.7:5L)
i 5 x t 5 % x ot
1l =——H T[—— - —= L - — — 3 gl = =
u 5 Tt lccs{E (A. T)] u (L 5.)h'T Picos[21(3‘ T)]
i i i
(2.08.7:6U) (2.08.7:6L)
p 2
A& & o X t _— 1 i : x £
= 7 e n151n{2ufkl T)} v = (1 - 5.)h'7 HiSln[2“(l. T)1
i P 1 P

We have the values of HO and Hi at our disposal. Let HO/Hi

be such that
1
B

1
]KDHO + (1 - ET

o 1

(2.08.7:7) ] (1 - JA.H. = 0
2 e ¥

and superpose the wave, (2.08.7:1)-(2.08.7:3) on the wave (2.08.7:4)-

(2.08.7:6) with the same 71 in each case. On the plane x = 0 the combination

gives
(2.08.7:8U) , (2.08.7:8L)
y 23 - - L = L ..?_TI.
n= (Ho + Hi)cos[T t] n' = [(1 BO]HO + (1 Bi)Hi]COS[T t]
(2.08.7:20) (2.08.7:9L)
_:I.'_[AOHO € )\iHi]cos [2_'” 4-] u' = G
ht| B £, T
o i
(2.08.7:100U) (2.08.7:10L)
X H . )X H,
v o= = 4 AR e X sin[—z—L t] v' =0
hT 80 Bi T

This suggests that an ordinary tide wave cassinc over a sill of
the right height may give rise to an internal tide wave since the condition

t the sill cé&n not be satisfied without both. The two waves could have

o1

been made to progress in opposite directions.

s



2.08.8. A Forced Internsl Tige Weve with BHovizontal Crests
Consider a foreced tide wave with conéitions uniform transverse to the pro-
pEcETion @ilrection

Continuity is
(2.02.8:10 h TC:___ 2 n - ! ax [y
) X Ettl n)
~ 1] oy |
(2.08.8:1L) pr 2y 20 o g
cX ot
Motion is
au 27 —
(2.08.8:2‘_}) T——-v:—g:——-(n— n)
ot T ox
P
oV 27
(2.08.8:3U S~ + = u=0
) ot T
P —
su’ 27 o @én g ,en' 81
(2-08.8:2L - = y' = = —_——— - l — S ol
) st T 8 5rae " 9t Tax 7% Bx
av! 2;
(2.08.8:3L) = 4+ = u' =0
ot T
p
Let
- o b t et .
(2.08.8:4) n=H=H COS[2W(K - ?}] ; H, *, and 7 given.

The form of ecuations (2.08.8:1)-(2.08.8:3)

L

sucgests that we try for

:5L)
H' COS[2ﬁ(% i %)]
:6L)
e C05{2ﬁ(§ - %)}
:7L)

T ¢ osin[2nd - &
T A TS
p

Substituting (2.08.8:5)-(2.08.8:7) into (2.08.8:1)-

(2.08.8:5U) (25085
n==4H cos{Zﬂ(E‘u E)] n'
A T
(2.08.8:60) (2.08.
3 T
1 = O cos[Eﬁ{%—— ?)] u'
(2.08.8:70) (2.08.
v o= ;L-C sin[2ﬂ(£ - E}] v
T A T
P
where H, H', C, and C' are constants,.
(2.08.8:4) you ultimately wind up with
h 1
(2.08.8:8) TC = —=(H = BE'Y)
v L
% i 1
(2.08.8:9) —c' s =
\ L



£
(2.08.8:10) Ll = ——.—‘(_‘};C = —;-(.-z 4
T T %
o]
B B [%'- TTé}C' =25 m s - Sy -1 :
T LD !
P
Substituting (2.08.8:8) and (2.08.8:9) into (2.08.8:10) znd (2.08.8:11) and
using
/
8 :i?.[.l.. .
T ghlt? 1 °
% P
one cets
(2.08.8:12) 1 - QIF 4+ BHY = F
(2.08.8:13 B o - S N
) ot (1 = Bh,)H H

Solving (2.08.8:12) and (2.08.8:13) for the ratios H/H and H'/H

. H Lo o B h
(2.08.8:14) T = A[1 e B(1 + 1,1,)]
H L. 8
(2.08.8:15) T @t -8
where
(2.08.8:16) &= ﬁ%(s = B )ig = B.)
o " 1

and BO and Bi are the roots of Stokes' Egquation.
Equations (2.08.8:14)-(2.08,8:16) shew that two kinds of reson-

ance are possible:
(a) B =+ So " ordinary surface waves.
(b) B =+ Si v internal waves.
The ratics of the elevations, n'/n, and the velocities, u'/u,

are interesting. From (2.08.8:5, 6, 8, 9 & 14-16) we get

s 1 —oo—,— 3
(2.08.8:17) " o h
1 - o 8(1 + %)
u' 1 o
P | ——— e PR i3
(2.08.8:18) = 55 2l » =58

ble Irom ecuaticns

o

Compare (2.08.8:17 & 18) with the same relations dexiv

(2.08.4:15-17). ZTor B = BO or § = Ei the two sets agree.



P

This indicates the possibility of direct generation of forced
internal waves with a period of nearly the half-pendulum day. In secticn
2.08.5 we saw that the propagation speed of internal waves may be nearly

A/t_. This is often the magnitude of the speed of the tide-generating
: P

potential.

2.08.9. Forced Internal Tides in a Closed Basin.

Consider a narrow rectangular closed basin bounded at x = 0 and % = 2.
Neglect v and the geostrophic effect.

Continuity is

(2.08.9:10) h —;’: + %E(” -n') =0
gu'’ an'
w 'V 4 —— = .
(2.08.9:1L) h % "t 0

. su _ 9 -
(2.08.9:20) = T EH ax(n ub; 2
2u! p on 04 8n' 31
5 e e e el A B et <] prdtd .
(2.08.9:21) = g o B g(l p,] x =licve
Try for a solution in the form
(2:08.8:310) (2., 08.2:3L)

i 21 4 s 28 .
n = H cosly xJeos [T t] n! = H' cosl: xleos = ]

P & t
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(2.08.2:810) (2,08.9:4L)
T T L~
u = C sin{= zlsin[— t] ut = ¢ sin[z x)sin[— t]
L T L T
here H, H', C, znd C' are censtants.
With (2.08.9:1-4) we need for the ecuilibrium elevation
(24085 9:5) n = 4 cos %-x]ccs{%; t]
v L
Suppcse that H and T are given. The usual feedback ultinmately
produces
(2.08.2:6) 4EZ(H—H')-H—:
. e E‘x—‘{-z = H
482 o p =
2708957 H' = —H + (1 =~ —)B' -
( 8.9:7) = o ( D') B
Defining 5
44
.08.9: Sha—=r=s
(2.08.9:8) B okt
leads to
H 1 p h
2:08:9: =t e sy g
(2.08.9:9) T A[1 a1 g(1 h,)]
(2..08,9:10) W Y o
T = ﬁ(l bt )
where
‘h
: Bl s s - .
(2.08.9:11) h,(B BO)(B Si)

Formally, (2.08.9:2-11) are the same as (2.08.8:12-14). The
8 used there can be identified with the 8 used here if X = 2% and TP - @,

The formalism continues into

1-2 -
T.]l ol
(2.08.9:12) 7? = - 5 (2.08.8:17)
- —_—— R N e <%
14 T Bg(1 n.)
u' i 0
(2.08.9:13) w T 1 - E%l - =) (2.08.86:18)
Acain, resonance is possible either for ordinary suriace waves or
for internal oscillations. 2As befcre, when B is not small
A gy el - Y
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Tor £ resr 2., 7'/n will be larcge Tnis case is of frecuent

cocurence in small basins so that one may sxpect forced internal tidzs of

come importance in such places: OCnce having been started, they cen Lz pro-
Tacated cut into the sea as free internal waves

pheric Pressurs

mn

o]

2.08.10. 1Internzl Response to a Traveling Atmo

Disturbance.

Neglect geostrophic effects and v.

Continuity is

(2.08.10:10) ; %ﬁ-' %:(n -n') =0
™ 1 o ]
(2.08.10:1L) il S et e §
b4 ot

Motion is

du _ d L=

(2.08.10:2U) = = = gy = )

(2.08.10:2L) B0 g BN e BGEW g B W )
ot p' 2x o] oX ' oX

Suppose the eguilibrium form given by

(2.08.10:3) n o= F(x = Ut)
where F is any physically possible function while U is the speed of rrepaga-

tion of the pressure disturbance.
Try for the soluticn
(2.08.10:4U) (2.08.10:4L)

Vo= w0 Fx -

3
o)
rt
S

n=MTF(x - Ut)

where M and M' are consitants to be determined.
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Feeding (2.08.10:4) to (2.08.10:1)
2w _ oMU o, i +
= - K & (x U) h P (2 = ut)
or
Zu 1]
— $h o REVNOL TV e ‘L
e ( o )h £ L3 UL)
.1 ]
M s M e B (% - UE)
¢ h
Therefore,
(2.08.10:5U) (2.08.10:51)
e oy O U 5 -
u= (M- m')'}-{ F(x - Ut) W = M h_' Plx - UL)
with no additive constants if we take u = u' = 0 when ;-= 0, i.e., at rest.

Feeding (2.08.10:3-5) to (2.08.10:2) and reducing gives

2
- {M—M')%=—9M+g
"‘M' ﬁ:_gﬁ.}d_gtl_&}ml +g_o,_
h' p' p' p'
which, on defining 5
_ U
(2.08.10:6) B =5 oh .
beoils down to
(2.08.10:7) (1 - B)M + 8M' =1
(2.08.10:8) Dol ¢ i1 = £ = 8 ilyw R
p n P

Eguations (2.08.10: 7 & 8) are similar to the ecuations for H/H

and H‘/E in sections 2.08.8 & 9. Their solution is

. o e B e e B
(2.08.10:9) M ﬁ[l P S{p, i+ h,)]
S < 1
(2.08.10:10) M!' = A B i
where
s JE o N
(2.08.10:11) é_h,(B 301(5 BiJ

Acain, the two kinds of resonance are possible. The ratios in

the two layers are

n p' h 1 p'
. —_— s e e e o
(2.08.10:12) e 1 5 B + =zl i)
> Sy LN NP &
(2.08.10:13) At g Rk e



Mooy B ; B g
4] h u
s

This value of 8 is very approximately ecual to Bi' Thus, it seems that the

ass

fit

ce of a front could set off an internal wave in stratified water even

3

ct

hough no disturbance appeared on the surface.
Prouéman, "Dynamic Oceanogrerhy," page 358 discusses a possible
case observed by the METEOR. Pages 364-367 give a discussion of observations

of internal tides. VYou should take a loock at it.



Chapter 3. The Effect of Friction on the Ticde.

Uz to nmow we have éonsistently necglected the eifects of Iricticn en cur
cscillztions. t is pleasant to neclect fricticon since it mekes such a2 mess
of the equations. However, shallow water will require some consideration of
friction if we are to derive realistic models.

We will assume water of uniform density and constant atmospher-
ic pressure. To make things simpler, let all the motions be parazllel to one
vertical plane and let there be no wind so that what friction there is is
entirely with the bottom. 1In reality, most of the geostrophic effects will
be balanced out by transverse surface gradients but we will ignore them.

Let p be the water density and let the x-axis be taken in the
direction of the current, u. Pz will represent the force of the internal
friction per unit area.

The appropriate form cof the eguation of motion may be deduced
on the following argument. Take an element of length 6x and width b between

depths z and z + ¢z, Fig. 3.01-1. Doing our book keeping on this element

0 = ol e
7 X
5 82
Y
z¥
Pig. 3.01=1

the force components parallel to the x-axis are

the pressure force: - b 8z pg én
il —_— X i 8N
the tide-generating force: b €x &z pg T
the friction force: - b éxF (upper face)

- b 8x(PF <+ 6?7) (lower face) §



he mass-zccelerzticn of the water in the element

to & linear srprodMimation, 1is
2% 2u

b SweEn =

o -

binézp —— = — blzpgln + + bEnF_ - bix(F_ + &P
S ST z z z)
or .
dxizp en ¢zpgén + Sxéz 2 ExéP
XSZp T = o= \ e} T = T
IUECE B 7Y e ox z
ox - eF
'\u 61 3 l I &
_C__ = - g —! + g .:\._Tl - —
ot &% ax p &z
or
2u 3 1 B,
= z
(3.01:1 == = —f{n - - = .
) st El ax n n) p 28z

Let [u] be the mean value of u from the surface to the depth z,

1 -
[ul = o f u dz '
0
and take the mean of (3.01:1) from the surface, 0, to depth z.
oF
1 "u 1 d = G 1 1 5.
Ef%— =-z-f g:;(n—n)}02+-z*f{-“.\z}oz
Oo o o 0 p o
z z z
3 (1 3 = 1] 1, W
Ef;{;fudz}={—g~;—;(n-n}};fdz—-;f
" %0 0 P20
3 3 5
o s o e s T e e
{30132} at[u} g ax(n n) e -

When the upper limit of integration is z = h, then Fz becomes
Fb’ the bottom friction, and we will use [ul = u for this particular mean.

I+ has been observed that, to a cood approximation, bottom
friction is proportional to the sguare of the bottom current and directed

opposite to it. We can express this by writing

Fb v ub|ub] .

Uy but does not desitroy its sicn.
We can make an eguation of this in the usual way by including a constant ©

proportionality and writing

emark: Note this trick with the ebsolute value sign which, in effect, scuares



(%]
=
=~

b 5% .
If there is no spatial gradient in the tide-procucing force, EEYEx = 0 and
ne mean mass-acceleration from top to bottom, EE)St = 0, then we can writs
(3,09 o3) 28 =
0=-g2-2
c¥ [ale}

ox, using (3.01:3) and rearranging,

his; 1u
(3.01:4) Bl vy B .
oX o

Zefore developing and aprlving the more general forms, eguations
(3.01:1) and (3.01:2), we will go into a use of (3.01:4) in the Irish Sea.
The initial work was done by G. I. Taylor with later contributions by Proud-

man, Doodson. and Corkan.

Remark: If you would like to have the pleasure of reading a really well
written scientific paper for a change, you should take the time

to go through "Tidal friction in the Irish Sea" by G. I. Taylor.

3.02. G. I, Taylor's Analysis of the Tide in the Irish Sea.

Taylor was started on this study when he found some previcus work based on

a mathematical model using laminar flow and which suggested quite low enercy
dissipation rates. His own I'ractical experience as a yachtsman, as well as
consideraticns based on Reynolds number, made him feel that the flow must be
turbulent and that any model based on laminar flow must be inadequate.

2s a first step it was considered that the mechaniem for the

dissipation of energy from a tidal current must be analogous to that in the
flow of a river over its bed or to that in the flow of azir over the ground.

3y this anazlogy we write at once



5l

P

o = the density of the fluid.
v = the velocity of the fluid.
¥ 2 a constent whose wvalue the nature of ths sur-

face cver which the fluid flcws.
This is &1l very well but it won't Zo us much cocd unless we can find some
nunbers for X.

If we turn to flow in rivers we Zind Bzzin's formul

il
k9]
H
1]
rk
rt
2.+t

well esteblished. It says

1 kA
(2. 0242 A W e S e~ B
) 7569( T
vhere
r = the hvdraulic radius of the channel, i.e., the ratio
crcss-secticnal area
wetted part of perimeter

s the slope of the river bed.

"

Y a constant depending on the nature cf the bottom.
To connect (3.02:1) with (3.02:2) we must ecuate the resistance actinc up-

stream to the compeonent of the fluid weight acting downstream which gives

Fx (wetted part of perimeter)} = spgx(cross-secticnal area) , il.e.,
Kov?2
' = rs
pg
so that
ey -4 I R - 2 TR
K = 7569{1 - y/Vr}< = 0.0013(1 Y/ir}
where g = 9.81 m/sec? 5

In the Irish Sea the fzpth is about 80 meters. In a very

broad stream the depth is, effectively, the hydraulic radius. Therefore,

s

yr = V20 = 9
are ¥ = 0.85 for clean stoney cr smooth earth bottoms zrnd y = 1.7 for un-
éven or weedy Lottoms. These give, respectively,

(3 020 3l (2:02:3.2)

The value of y éepends on the bottom roughness. Eazin's values
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You see that larce chenges in bottom rouchness meke very

iy

slicht changes in the amount of friction on the bottom. From eguation
212

(2.02:2) it is obvious that this results from the great degth of the sea.
In cxéer for bottom rouchness to have much of an effect in slowing up &
gtrezn, the stream has to be shallew. It secems that the size of the zre-

ections whicn make up the bottom rouchness have to be some arcpreciartle
raction of r if they are to be felt by the stream as a whole. For our
purposes this is important since it permits us to make a rezsonable siab
at the friction in the Irish Sea without knowing in any cdetail what the
bottom is like. BAlso, our estimate will be, if anything, an undesrestimate
since the friction will be larger in shoal areas over banks and shelves
where the depth is small enough for roughness to be important.

. We've made some milace out of the analogy with flow in rivers.
Now let's see what can be had from the analogy with air flow over the

= .

ground. According to the principle of dyvnamic similarity the flow patterns
in sea and air will be the same if the scales of roughness ere the same and
if

(3.02:4)

"wPa

a uapw

<|£<

where v, y, and p are cpeed, viscosity, and density and the subscripts
a and w identify azir and water. From the tables for viscosity and density
ecuation (3.02:4) gives

v /v = 11 .

w/ 5 1/

Measurements over grass on Salisbury Plain with wind speeds ranging from

6 to 30 mph fit
F = 0.002p v 2 .
a a

By éynamic similarity we expect the same relation to holé feor water moving

at speeds of (1/11)x6 to (1/11)}x30 mph, i.e. from about 0.5 knots te 3 knots;

"

which is the kxind of speed one has for the tide in the Irish Sea.
Of course, for this to be valid the roughness of thes botiom

in the Ixish Sea has to look to the water about the wav grass locks to the

L]
il
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m
0
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]
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wind. But this needn't worry us. Ws'wv

is not very sensitive to the roughness. So--let
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(3.02:5) F o= 0.0020v2
For (3.02:1) arnd he done with it

Bowden and Pairkairzm {185
1221 currents at 75 cm gbeve the bott
Reyrolds stresses znd found them goénsi
0.0025. It certainly lcoks &s thougn
rights ball parks
Remark: incic

ist or oceanographer is th

—_
aT,

2) meszsured turbulence assccizted with
om of an estuary. They computad

étent with & ¥ between 0.0020 gnd

3. T. Taylor, in 1918, were in the

entlv, in my opinion, cne of the stigmata cf a2 real georhysic-

in most cases, he can intuit his way

into the right kall park before any decent data are available.

Sverdrup had this ability to a marked degree and so nas Pritchard.

The rate of dissipation of energy by friction is the

multiplied by the relative velocity of

ticn acts. If we use (3.02:5) for the

amount of energy dissipated per sguare
by

(3.02:6) w = 0.002pv2]|v|

Since the currents in the
space what we need here is an estimate
and over a tidal cycle.

approximation, take v sinusoidal.

Let V be the maximum tidal velocity and,

friction
+he surfaces between which the fric-
friction on the bottom, then the

centimeter per second will be given

Irish Sea vary in both time and
cf the average over the whole sea

as an

7
v =V coslﬁ? £] = V coslot]

where T = 12 hours 25 minutes is the semidiurnal tidal period. This gives
(3.02:7) w = 0.002pV3|cos?lct]] <

The mean of lcoszlct]] over T is E?‘ If we can figure out what

b

would be reasonable for V, the maximum tidal current averaged over the whole
Irich Sez, om tidal current measurements
but G. I. e rest of us, notes that some-
body has already pub spring tides over the Irish
Sez, viz. kt., If we use this for the
mezn V--which it isn't-~we probably won't be tco fzr cut of line and, in
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If instead of X = 0.002 we use the smzller value X = 0.0016

we still get
(3.02:8.2) w = 1040 ergs cm ?sec”} _

This is a hair raiser. VYou will have noticed that zll zlong

G. I. Taylor has been careful to keep this an underestimate. The best pre-

vious estimate, the one that got Tevlor thinking zbout this, was Street's

at

2 1

w = 7 ergs cm “sec” i

Our smaller estimate is 150 times bigger.

All this is pretty unsettling and it would be nice if we could
find another, independent, way of estimating the energy dissipation. 1If we
can, and if it confirms the general size of our first estimate, then we can
feel a little better about suggesting that everybody accept our estimate in
preference to others. This is exactly what Taylor did.

His program is simple enough. Taylor says:

"Instead of trying to measure the rate of dissipation at every point
of the Irish Sea, I have calculated the rate at which energy enters
the Irish Sea through the North and South Channels. To this must be
added the rate at which work is done by lunar attraction on the
waters of the Irish Sea. The sum of these will cive the rate at
which the energy of that sea is increasing plus the rate of dissipa-
tion of energy. When the average values of these expressions are
taken éuring & complete ticel reriod it is evident that, since the
energy of the Irish Sea doces not increase or decrease continuvally,

the averace rate of dissiration by tidzl currents czn be found."

By the usual sort of bock keering Tavlor findés for the amount

of energy crossing a vertical cylindricel control suriace, §, in time, &t,
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(3.02:9) pedt [ hnv sinl6l@s + fhev sin(é] 6t (2gn? + nw? + pwdas
the integrals to be teken arouré 5,
whe;e A T the intersecticn cf the cylinder, S, with the water surface.
v = the speed of the current at any moint on 4.
£ = the angle between any element, &3, and the current direction.
h £ the tide egbove mean sea level.

n £ the heicht o
and p and g are as usuval.
Assuming n small comzared with h, as it certainly is in the
Irish Sez where the mean spring rise is about 6 feet as acainst a mean h of
zbout 40 fathoms, and noting that v must be roughly the size of cn/h where
c is the speed of the tide wave in water of depth h, (c = ﬂﬁ;} we see that

the second integral is much smaller than the first and we take
(3.02:10) pgét [ hnv sin[6]ds

as a sufficient approximation.

For enefgy to be conserved (3.02:10) must be egual to the sum
of the increase in kinetic energy of the sea enclosed by 4, the enercy dis-
sipated by friction, and the work done by the moon; all during the time dt.

Taking the mean over a tidal period the first of these must be

zero and we can write

(3.02:11) W= W = <pg [ hnv sin[6]ds>

m T

where S i 5 ;
: W = the mean rate at which energy is dissipated by the tidal

friction within 4.

W

Hi

the average rate at which work is done by the moon's

gttraction on the recion enclesed by 4.

.

Irish Sea we need a few numbers.

s
m

To apply (3.62:11) Yo ¢
Tavlor cot them from published Acdmiralty souvrces. The principzl fezture of
the tide is a lunar semidiurnal censtituent with 2 pericéd T = 12 hr 25 min.
“To a sufficient asproximation we can repressnt the height of the tide abeve

mean sea level by a sinusoid,

{3.02:12) n =2 cosl[o(t - tlj]



cre 3
H = 2A is the tidal rance.
-
T £ the tidal period: 12 hr 25 min v ¢ = "5: :
1=
c0

ct

the time measured Ifrom the time of the mocon's passege of

Greenwich so thet at £full ané chance £ is CGreenwizch

t. = the time of high water at full and change, i.e., it is
the "establishment”" of the place under discussion.
Te evaluate (2.02:11) we must know the heichts of the ticde

cross a section. Fortunately, since the Irish Sea, Fig. 3.02-1, pace 224

m

is open only at the two ends, integration around 4 is simply integration
across the ends.
That still leaves us up against it as by far the greater part

of the tide records have been made zlong the coasts.

Remark: By the way, if making bricks without straw and silk purses ocut of
sows' ears isn't to your taste, perhaps you'd better go into some-—

thing other than geophysics.

To make the cheese more binding, the tidal ranges are not the same on the
two sides of the channel, Table 3.02-1.
Table 3.02-1. Tidal Ranges in the.Irish Sea.

Welsh Side Irish Side
Place Spring Place Spring

Range Range
(££) (£t)

Beardsey Island 15 Arklow 4

St. Tudwell Road 14 Courtown 3.75

Port Dynllayn 12,25 Arklow Bank 4.25

Llandéwyn Island 14.5 Kilmichael Point 4.34

Holyhead 16

- dd

The cuestion is: What is the shzpe of the water surface acress
the South Channel from A to B? To get an answer we ring in the gecsiroghic

forxce. The current throuch the Soutnh Channel is sukstantially rectiliinear
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reversing. &Any current left to itself on this earth flows in a curvaé rath.
To keep the current flowing straicht we invoke a pressure cradient Just
sufficient to kalance the ceostrorhic force; one created bv a linear tils

czn cet the tide range at mid-chanrel.

The ceostrophic force is Z2wgv =sinl[é] and the cross-stream grad-

ient just necessary to balance it is

2wpv_sin(¢] _ 2wv sin(¢]
£g g

The measured maximum speed at springs across section AB, bcth ebb and flood,

is 3.2 kt = 162 cm sec '. With w = 0.000073, ¢ = 52°, and g = 981 cm sec 2
the slope comes out to be 1.9x10°° radians. The distance from A to B is

48 NM = 288,000 ft. Conseqguently, the difference in level between RBeardsey
Island and Arklow at the time of meximum current shovld be about 5.7 feet.

The maximum current in these parts occurs substantially at

hich water and low water so that the difference in rance, on this argument,
sould be about 2x5.7 = 11.4 ft. From Table 3.02-1, page 223 vou can see
that the measured value is 11 feet which is not bad. Perhaps we can get

away with a linear slope of the sea surface between A2 and B.

Remark: Taylor says, rather wistfully, that it would be nice if somecne

would actually measure this someday.

The next order of business is the speed of the tidal currents.
If vou have been wondering why G. I. Taylor chose the line 4B, the answer
is easy: There are a few measurements there at the positions Sl, 52, 53,

and S,, Table 3.02-2.

4

Table 3.02-2. Results of Mezsurements along AB.
Station Maximum Directicn fax imum Direction

Flood (°T) Ebb (°T)

! (kt) (kt)

Sl 3.6 032 3.6 206

52 By 035 ¥ e 212

53 R 025 = 208

8 3.0 016 2.3 196




Table 3.02-3. Direction and Sgeed of the Tidal Streams at

Licht-Ships at Various Stages of the Tice.

02-2; rpage 227.

hree

Hours North Zrklow Scuth Arklow Carnarvon Eay
from Light-Ship Light-Ship Licht-Ship
HW at Direction Speed Direction Speed Direction Speed
Dover (o (kt) (°T) {kt) (°T) (kt)
=5 043 1l 043 1.0 021 i
-4 043 S 043 24D 021 1.2
-3 043 ¢, Y7 043 B2 021 2.0
-2 043 3.2 043 3.0 021 242
=4 1 043 2.2 043 2.0 021 2.0
0 043 Qs 7 054 10 021 1.0
1 223 1.2 112 L5 slack it
2 223 S 223 23 201 Xioid
3 223 4.0 223 3.5 201 .
4 223 > 223 3.2 201 2.0
5 223 2.0 I E 2D 201 3
6 223 0.7 223 1:2 201 50

You can see that
(3.02:13) v = V cosfo(t + to)]
won't be too bad if we use V = 3.2 kt from the AB section
to adjust the time to the Dover reference point.
We still have n tc go. To kbegin with, A3 is

co-tidal line, Table 3.02-4, page 227.
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SPEED

(kt)

x
/
/
V4 ——
”~
7~
TIME (h
O———N. Arklow W
w Referred to
X— S. Arklow HW at Dover

+—-——Carnarvon

Fig. 3.02-2.

Speed of the Tidal Stream at Three Light-Ships in

the South Channel of the Irish Sea.

Tazble 3.02-4.

Times of High Water on the Welsh and Irish Sides of

the South Channel of the Irish Sea.

Place’ Time of HW
Irish Arklow Bank €h 24m
ik
e T 8h 25m
¥ilmichael Point 8h 25m Where %22 comes ashore
Courtown 7h 55m 4 mi south eof XKilmichael Pk.
Welsh St. Tudwell's Rd. 2h 02m
hiss Zeardsey Island 7h 55m
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water everywhere along AB as 8 hours 10 minutes after high water at Dover.
This is the mean of the ends; more or less. Picking up (2.02:12), sirce

the water surface slopes across the channel, A must varv. Let the cross-

charinel axis bhe ¥y &nd, invoking the gracdient already derived and the azssump-

ticn of censtant slere, we can write

(3.02:14) B By —4——~*;4——~ y
where Al is hzlf the tide rance at mid-channel; explicitly here,
1 .35 + 4
= -(——) = 4.75 £ "
1 2( > ) 5 feet
rurther, if 4 is the distance measured from the mid-channel point L of line
AB,

(3.02:15) 4 y = 4 sin[6) "

All of this gets us the average rate at which energy enters the

Irish Sea across the section AB,

L B
(3.02:16) W _ = <pg [ hnv sin(€] ds> .
AB T
A
Substituting (3.02:13, 14, & 15) in (3.02:16)

B ;
W, = <cq i h(a - 393—%;3191 4 sin[6])coslo(t + t,)] V coslo(t + t_))sin(8]ds>, .

Cnly the two cosine terms contain t so that, averaging them first over T we
cet
4 coslo(t, - t )] .
1 o
Thus, after taking everything which is substentially constant on the section

B outside the integral sign, we come down to

B >
_ . B » 2uv sin[¢) 4 f
WAB = LogV 51n[8]cos[c{t1 to)] i h(Al = A sin[€))és .

If we measure the depth acreoss the secticn, the integral can be evaluated.

Letually, it isn't necessary, the depth being constant at 37 fathoms along A3

(1)

to a sufficient céegree. The result is

(202217 ¥

P o= ko in[& [c - AR
R scgV sin[€£)lcos (tl to)] p )}

vhere § is the length of AB.
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he roster of numerical values to use is:

-

g = S8l cm sec™2
o =1.03 g em™ 3
V = 3.2 kt = 163 cm sec”!
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t. = 8 hx 10 min

t = 8 hr 20 min

fo)

h = 37 fathoms = 6800 cm

Al = 4,75 £t = 145 cm

£ = 50 NM = 9.1x10® cm .
Conseguently,
(3.02:18) W, = 6.4x1017 ergs sec! .

EB
The same razzle-dazzle cazn be used for the energy coming into

the Irish Sea throuch the North Channel across a section RC from Red Bay to

the Mull of Cantire, Fig. 3.02-1, page 224. Fortunately, it isn't necessary

since almost no energy comes through.
Remark: G. I. Taylor says it's obvious. Maybe it is--to him!

There is a strong tidal current through the North Channel. It runs in from
5 to 11 hours and out from 11 to 5 hours. The neck between the Mull of
Cantire and the Irish coast is a loop in a stationary oscillation. The
times of hich water are: at the Mull of Cantire, 10 hr 58 min, and at Red
Bay, 10 hr 55 min, i.e., RC is a co-tidal line. It was chosen for just
that reason. The tidal streams change éirection at the time of hich water,
Dover. That puts them B7° out of phase with the local hich water and low
water. They lack only 12 minutes of being exactly 20° out cf phase. The
maximum current speed is azbout 4 kt and there is quite a small tide range.
Red Bay and the Mull of Cantire both show about 4 feet. The geostrophic
tilt éoesn't show up because, when the current is running full stirencth,
which is the time the maximum tilt should occux, the watsr is at its mean
level. Zt high water and low water the current is slack which rules cut 2

cecstrophic effect.



For the enerty ecross RC we have

HRC = BE 5 cos{&]cos[:(to - tl}]*-c
Th= "valuss t¢ use are:
o= %{d £t) = €1 em
c(to - tl} = g7°
V = 4 kt = 200 cm sec™!
RCxcos[8) = 11 NM = 2x10% cm
h = 65 fathoms = 10" em , the mean depth.

Ccr.sequently, we have

(3.02:19) WRC

From (3.02:18 & 19)

I

6.2x10!5 ergs sec” 8

W
RC _ 6.2x10!5

w = i o |
AB 6.4x%10

1% 5

Therefore, we neglect W in comparison with W

RC nB’

The remaining bit of business is to assess the amount of work
done by the moon's attraction on the Irish Sea between AB and RC. The moon's
zttraction can be expressed as a potential function, f. If an element of
volume fixed with respect to the earth contains water at zll times during
a lunar cay, then no net work will be done since potentials are conservative.
However, if the velume element contains water only part of the time, net
work is possible.

Take a column of water 1 centimeter sguare extending from sur-
face to bottom. Then the work dcne cn it is

m = f pnafl 5
lunar
aay
The enercy cocmmunicated by the moon in & lunar day is
B, = ‘ff o €%
Irish Sea
2E-RC

n areza element.

3
m
H
m
(o1
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n
m



In Chapter 1 we worked cut Q@ and expressed it

latitvde and hour angle. Taking the simplest sort of aprroximation for a

- . s oms y i ]
cominant semicdiurnal tide, and taking (d/e)-c032[D] =1, we get
3T - By i 0
m = - — UpchAr cos4[¢lsinc (v ]
2 o]
wnere i is the phase of the tide gt the time of the moen's upper tranmesif.

The numerical values to use are:

5.582x10~8 for the moon

1=
p=1.03 gem?®
g = 981 cm sec” 2
r = 6.4x10% cm 3
These give
m = - 6.6x10%a sinz[wo] ergs.

Thus, the mean rate at which work is done by the moon's attraction per
square centimeter of the Irish Sez is

_ - 6.6x10" 5
g [ lencth of the } e [¢0]>

lunar day (sec)

over the Irish Sea
from 23 to RC

The mean value of H for the Irish Sea is about 14 feet or 420 centimeters.
Take A = 210 cm. The average time of high water is about 1.5 hours before
the moon's meridian transit. Take wo = 22.5°., This gives a rough approxi-

mation of 150 cm for <A sin2[¢°]> and
(3.02:20) WM = ~ 110 ercs em™2 sec™! .

Remark: Don't be panicked, as I was the first time I saw it, by the minus
sign. Since high water in the Irish Sea comes shortly before
meridian transit of the moon, the tides in the Irish Sea do work
on the moon rather than the moon doing work on the tide; hence

the minus sign.
The area of the Irish Sea included between the sections AB and
L (] . -
RC is about 11,600 KM or 3.9x10'% em . Using the estimzte from (3.02:18)

we have



(3.02:21) 1640 - 110 = 1530 ergs cm % sec™! b
This incependent estimate agrees cuite well with our previous estimates,
1340 and 1300 excs em™ 2 sec'l, and not at all well wiih Street's estimate
¢Z 7 ergs cm™¢ sec”l.

So creat! The kig estimate for fricticnzl dissipation is the
riz to use. What can we get cut of it? Well, for cna thing, the large

13

mounts of tidal energy sopped up in the Irish Sea cculd make us wonder
how much of the tide wave is abscorbed and how much is reflected baﬁk out
acain. The very fact that you can find recicns where high water and the
strencth of the current are substantially in phase succests that not much
energy is reflected out again. In other words, the cbhserved facts match
the progressive wave. If lots of the wave were reilected, one would ex-
pect a standing wave with the strencgth of the current 7/2 out of phase
with high and low water. Of course, any cbserved tidal curve will be a
tangle cf the incoming ané the reflected waves. When vou get them un-
tangled what looks iike a very complex tical situation in the South
Channel turns out to be remarkably simple.

In a ceneral way, the Iricsh Sea acts like a resonator with two
oven ends which are "loops" with small tide range and maximum currents.
In the middle, near the Isle of Man, Fig. 3.02-1, pace 224 the ranges are
large and the currents are small. If the analogy with a loop in & station-
ary oscillation is anyv good at zl1l, it will be worthwhile to analvse the
motion into two opposed waves.

Consider the moticn in the South Channel to be entirely
rectilinear reversing and work along the axis in the center of the channel.

Suppose we assume two waves and write

(2.02:22) n = a cosfot - ¥«x] - b cosfot + «x] ;

entering wave reflected wave
» positive intec the Irish Sea. Let ¢ be the speed of 2 long wave in shal-
low water of éerth h, i.e., ¢ = ¥ch. The prorclem is to cdetermine a and

-
[

L

b so that they make n track the okserved tide an

th

n gse (3.02:22) %o

exmlain the varicus charzcteristic features of the tide in Scuth Channel.
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The tidal current corresponding to (3.02:22) is
(3. 025239 v o= a/?7g coesfot - xx] + b/E7H cos[ct = xx] 5
The maximum of v occurs at x = 0 when t = 0 and is
(2.02:24) "V = (a + b)Vg/n .
Llsc, at x = 0 the phases of the current and the height of the water sur-

face are the seame.

At x =0, £t =0n(0, 0) = a - Db. Thus the tide range is
2(a - b). At point L on the AB-section, taken as x = 0, we know the
half-range, the depth, h, and the maximum velocity, V, so that we also
know a and b.

a - b= 145 cm

a + b = Vvvh/g = 163v/6800/981 = 430 cm .
C ;
BRIy a = 287 cm

b = 143 cm

a/b = 2.0 "

Conclusion: At springs the tide wave is cut almost in half during its
passage into and out of the Irish Sea and the energy is, therefore, re-
duced to one guarter.

This conciusion seems to have a sound basis in theory as ex-
hibited but, at the time G. I. Taylor made this argument, the generally
accepted idea was that friction had very little effect on tidal regimes.
To combat this entrenched idea Tayvlor again tried for scme confirmation
of his result. One argument is based on the movement of co-tidal lines
in the South Channel.

Since for progressive waves co-tidazl lines érawn for success-
ive instants of time mark successive position cf the crest and represent

;ave velocity, there is a tendency to interpret co-ticdal lines in this

by

way for zll waves. You can't do it. In the case of two superposed pro-

gressive waves moving in opposite directions, for exampl

o
cl
3
(D
O
e]
|
r'-
-
(o)
v
[

line moves in the direction of the wave of greater amrclitude but at =z

'
{519

2

h

erent speed.



1
)
™~

()
(15
—r
fu
in

Supncse we write the ticde civen by ecuation (3.02:

(3.02:25) n =3 cosloc(t - tx)]

where

(3. 02:28) 2 = Ya* + B - 2ab ccs[2¢x)

and

t3.02:27) cotlot.] = E—:—E-cct[<x] ‘
bt a+b

The symbol tX represents the time it tekes a co-tidal line to move . a dist-
ance x from the place where the phases of current and tide are the same.
Ecuation (3.02:27) relates tX and X. The velocity of the

ce-tidel line, VC, from (3.02:27); is

8 o B2 T
(3.02:28) O - T (a & b) cot®lkx] - 1 | b]
‘ : c dtx - Cotdle] e — .

For » = 0 where the amplitudes are opposed and the tidal currents concur, we
have ge o AT »

£ a + b

which is smaller than the wave speed, c.

It would be nice if there were enough data to permit us to
follow the co-tidal line in the vicinity of the Arklow-Reardsey section
but there aren't. Krimmel's co-tidal lines show a crowding near AB which
is what you would expect from equation (3.02:28); at least since Vc is a
minimum near x = 0. However, there are two sections of the channel where
we can nail down single co-tidal lines pretty firmlyv. Between them we
can, at least, get a mean speed for the co-tidal line and compare it with
our theory.

On AB you can arcue yourself into a co-tidal line at 8 nr 10 min
without much effort. We will take this as x = 0. The other secticn runs
from the vicinity of Tuskar Rock to Ramsey Sound, TS on Fig. 3.02-1, pace
224, There the co-tidal line is present at 6 hr 15 min. We can use

equaticn (3.02:28) and these cata to estimat

Y

the ratio of 2 to b agein.
The distance between micépoints cf the co-tical lines, ML, is

albout 43 WM so that x = = 43 NM. The mean depih between ¥ and L is around



o
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cotlkx] = cot~ 22.3%] == 2 44
arnd

tx = 6 hr 15 min - 8 hr 10 min = - 1.82 hr
so that '

cct[ctx] = cot[- 56°] = - C.&7

and, stuffing (3.02:28),

a=>» _ cot [kx] - 2.44
a+b cot[ctx] 0.67

or, getting the ratio of a to b

a 2.44 + 0.67
b~ 2.44 - 0.67 48

vwhich is amazingly close to the value of 2.0 based on cuite different
cdata. Note that this second method involves only measurements of depth
and time. No data on currents or tidal ranges are used.

From here on Taylor, in his paper, goes on to clear out a
few more thincs like the change in direction of the co-tidzl line between
AB and TS and the effect that the shape of the coast has on the times of .
high water along the coast. We won't follow him further. Perhaps you

should give yourself the pleasure of reading Taylor's paper.

3.03. Munk and Macdonald's Oceanic Tical Dissipation.

Day after day the moon and the sun co werk on the earth's oceans yet the
tides neither grow nor diminish. &ll this energy must ¢o somewhere. But
where? That cuestion needs an answer. One possibility is that the energy
of the tide which must be dissipated zcts tc slow the earth's rotation
zand increase the length of the day.

The material in this secticon i

s
Macdonald's "The Rotation of the Earth." This is a bock that veu, as



ceoprnysicists, can not zfford toc reglect; princirally tecause it is =uch

]

=n1 excellent example cf what the practice cf ceorhycsics, as distinct from

1)
'l

”

physics, is,

in the rctaztion of the earth whnich ccre in two varieties:
(1) the wobble, and
(2) the changes in the rate cf rotation, i.e., in the length of the

Gay, abbreviated l.o0.d.. -

The astroncmers consider these irrecularities a big pain and have simzly
legislated variations in the l.o0.d. out of astroncmy by redefininc time

in terms of the length of the vear rather than in terms of the length of
the cay. This is fine for astronomers but it has become clearer and clear-
er that these rotational irregularities have a cleose connection with events
on earth and, thus, offer a means of studying large scale geophvsical
phenomena.

However', like any truly geophysical problem, the diversity of
fields of knowledge that must be brought into play is hair raising. It
touches every branch cof geophysics. One needs to know zbout winds and air
masses, about atmospheric, oceanic, and earth tides, and about motion in
the earth's fluid core. In each case, what one needs to know are integrat-
ed, i.e., averaced, quantities over the entire globe. This is the weak-
ness of this method of attack; and also its strength. "“In principle" we
get the intec¢rals by summing over data taken at properly spaced observa-
tion stations at sufficiently rapidé rates and over long enough times.
Actually, of course, there aren't enouch stations. They aren't precperly
spaced. &nd, the data are not taken at the proper rates or for sufficient

lengths of time. This is true now. VERY PROBABLY IT WILL ALWAYS BE TRUE.

m

Remark: Centlemen, this is the field in which vou aspire to work so bear
this fact in mind. The men who have cone before vou were well
aware cof the inadecuacy of the cdata and they cicén't rectify the
situation to anv great extent. You aren't coinc to either.

Your real problem is lesarning how to live with inadeguate cata and

o

n

-

Tt

1 cet scmething useful, ané mernaps interesting, done in the

3
i}

40 years.
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Since Munk and Macdecnald need so many tools they have to cive

tne kasic information. This makes their book &n excellent source for a

F=

ot of

=t

things not necessarily limited to the rotation of the earth. They

giée you chapters and appendices cn:

(1) The dﬁnamic eguations in a form sufficiently generzl to imuose
no restrictions on ceicrmation.

(2) The stresg-strain relaticns.

(3) The technigue of reducing stress-strain relations to dimension-
less terms by the use of Love numbers.

(2) & lucid exposition of perturbation methods.

(5) & discussion of power spectra with particular attention to

handling the spectrum of both wobble and rotation
Remark: You won't find this anywhere else in the literature on spectra.

(6) A development of the "ocean function" which expresses the loca-
tion and boundaries of the world's oceans as an expansion in
spherical harmonics. They also give the "continentality
function."

1 where there is water

C(oceans) = C(B8, A) = .
0 where there is land

0] where there is water
C(continents) = C(8, A) :
1 where there is land

where 8 = co-latitude and A = east longitude.
These parts of "The Rotaticn of the Earth" are worth reading for themselves.
The irregularities of the earth's rotation can conveniently ke
separated by period, Fig. 3.03-1, pace 238. TFor those with time scales of
a year or less the evidence on the wobble comes laréely from the observa-
tions of the International Latitude Service and for the varizbility of the
l.c.é. from ccomparisons of clock time with astronomic time. The annual

wobble is largely due to seasonzl shifts in the 2ir mass, that in the 1l.o0.d.

4

to winés. The shorter period terms in the 1l.o.4. are due to short reriod

terms in earth tides. The Chandler wobble is a lé-month variation



DATA SOURCE WOBBLE

INTERNATIONAL LATITUDE SERVICE FOSSIL MAGNETIS
CHANDLER
POLAR WAMDERING
”‘”NUAL,:; 2\ DECADE WOBBLE
: %y I ~g . -#“z—
ﬁjﬁ'm, —f”ffft;¥
3[4.__-.:_‘ T i i - l — | | TR !
1 10 100 000 j0°  10° 109 YEARS
- CONTINENTAL UNREST
v N -
PROBABLE CAUSE AIR MASS "éggﬂ"é\}‘éfom SEDIMENTATION
GLACIATION
, LENGTH OF DAY
DATA SOURCE
CLOCKS AND ASTRONOMIC TIME MODERN OCCULTATIONS ANCIENT ECLIP3ES
NEWCOMB'S EMPIRICAL 0
SEM| - ANNUAL TERMS m
AMNUAL DECADE VARIATIONS SECULAR
FORTNIGHTLY 7 bl i
MONTHLY h e
: E e I |
1
I 10 100 1000 YEARS
PROBABLE CAUSE | ‘
BODILY TIDES WIND MOTION IN CORE SEA-LEVEL TIDAL FRICTION

Fig. 3.03-1. The Spectrum of Rotation. The "wobble componcnts (top) and the "length of the day"

components (bottom) are schematically arranged according to their time scales in years.
Vertical lines indicate discrelle frequencics. Shaded portions indicalte a continuous or
» noisy spectrum. Principle sources of the obscrvations are shown above and presumable

geophysical causes beneath each skelch. [from Munk and Macdonald (1960)]
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coverned by th
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ellipticity and rigidity of the ezrth. Sayv
the wobble is cenerated by random impulses of unknown cricin and darped
by some unknown imperfections from elasticity, or by some other mez=zs."

An‘-assertion to conjure with!

‘r

or tThe longer icc

'ty
A
0
[1}]

» evicdence comes mainly from modern
cheervations cf cccultations anéd Zrom records of ancient eclipses.

rregular variations in the l.o.d. with a time sczle around

o

Very large
a decade may be cdue to electromagnetic coupling of the ezrth's mantle to

a turbulent fluid core. The century scale stuff may be éue to chances in
the earth's moment of inertia. 2nd so on, and on. Fig. 3.03-1, psce 238,
which was lifted from Munk and Macdonald, summarizes the whole situation
as they see it.

Munk and Madonald say, '"Changes over the last few thousand
years are precdominantly the result of tidal friction, but here again
changes in inertia (presumably associated with a varizble sea-level) must
play an important part." You see that they have to worry about tidal
dissipation. 1It's all very well to estimate the value for the Irish Sea--
if 211 vou are thinking about is the Irish Sea. But, if you are consider-
ing the Earth~Moon-Sun as a clecsed system, energy blotted up in one part
of the system has got to show up as a change in some other part of it.

And as a great deal of energy does get dumped into the tides, and as it
coes get dissipated, and to assess the effect of this process on the
earth's rotation, the when, where, ané how of this dissipation becomes
very important. Let's follow Munk and Macdonzld through their analysis
of oceanic tides.

The flux of tidal energy in the oceans can be represented
cuite simply. Suppose RM and RS represent the mean rates per unit surface
area at which the moon's and the sun's gravitaticnazl attracticns do work

on the water. The usual essumption is that within the volume of the

oy

oceans there is little or no dissipzation; substantizlly 21l of it tzking

place cn the boundaries, i.e., on the bottom. But, over mecst of the

ocean the bottecm currents are very weak and there is neglicilkle dissire-

1]

tn

N
i

w

+ion. Conseguently, the dissipation must ke cencentratsd in the

challow seas.



ie shown in Fig. 3.03-2.

EEP OCEAN

Fig. 3.03-2

You have three ways to arrive at the enercy dissipation:

(3.03:2.1) —'%% = / (R, + R)AZ
Total Sea i
Surface
(3.03:1.2) - £ - / R 4I
Entrances to
Shzllow Secs
dE _
(3.03:1.3) o i R dI

Area of
Shallow Seas

211 three have bheen used.
Let the observed variation of the Mz—tide about mean sea-level

be approximated by the sinusoid,

= - é .
nM nmcosIZ(omt H)}

Then, with &, the potentizl function for the moon,

3.03: = ©ah > = LocX h o A sin®[flsinl? .
.4.\.3.2.1] Rf"; + M &t FECR T U T = L-4 i ¢.,J]

Similarly for the Sz—tide
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(3.03:2.2) Rg = hpgK b o A sinQIe]sin[2¢S]

where the b's are amplitude facters,

23 27

— e i -] ad l=E o &
¢, 12.42 ' TR g g 12 ' - Tk
7l i
Enc KM ig the cenerzl lunar coefficient,
3
C..lx
2 o 33.7 cm
! (e e = A %
2
E M E

For Rb vou can use equation (3.02:6) frocm the Taylor discussion.

cl

(3.03.3) R = yp<u|u?|> = g%-wpuoa

where

u = u _coslot) and <|cos3[ot] |> = 2
o 37

and you can use y = 0.002 and be pretty safe, G. I. Taylor (1919); Bowden
and Fairbairn (1952).
If we can now produce an expression for the flux of energy by
tidal currents, Ra, we will have all the makings for eguations (3.63:1.i).
With u(t) and Ap(t) for the tidal velocity ané pressure depar-
ture, the flux of energy across a vertical face of unit zrea normal to u

is Apu. Tor a progressive wave
(3.03:4) <Apu>h = pg<n?>v = %pga?v = Ev .

A is the surface amplitude and E is the wave enexgy per unit area. For
shallow water, i.e., tide waves, V is the croup velocity so all we've
szid here is that the energy flux is the energy times the croup velocity.
If 211 the wave energy crossing the entrance to a2 shazllow sea
were absorbed, then this would be it. Unfortunately, some of it is re-
flected. If all were reflected, there would be a standing wave and no

dissipation. The case lies somewhere between "procressive" and "standing"

I

ut is usually found to be closer to standing.

To treat partizl reflection set

Ap = pgA cos[2 t] and u = — sin{2(cz + ¢)} i

L
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<spush = Ypcalc sinf2¢] = Bc sin[2¢) 3
We can consider that the incident wave carries carries Ec ergs sec ' cm °
into thz kay ané that the reflected wave carries z?Zc cut where 0 £ ¥Z £ 3,
The net cain to the bay is Ec(l - r?) and we can form the eguation
sin{2¢] =1 - r%. Perfect reflection correspends to r = 1 and 2¢ = 0 while

perfect zbscrption corresponés to r = 0 and 2¢ = 4w,
Let S be the surface zreaz of the bay. Then the average ¢is-
sipation is

L : 2
R_ = =(%pgc) f A251n[2¢]cx .
a )
across the
entrances
In most cases you can use the shallow-water approximation, ¢ = ‘Gﬁ;, so that
all you need to know to make this work is the tidal emplitude and the rela-

tive phase of height and current zcross the entrances.
Remark: Again, revert to section 3.02 and G. I. Tavlor (1919).

If, because of friction and the earth's rotation ¢ = ﬂﬁ; isn't good enouch,
vou can still cet by with a knowledge of the maenitudes and phases of both
height and current.

We have gone along with the assumptien that dissipation on the
deep-sea bottom was negligible but we had better mzke some argument for it.
The phase speeds we are concerned with are roughly ¢ = O(sa) = 5x10% cm sec”
and the amplitudes like A = 25 cm. Therefore, u = cA/h = 3 cm sec™?! at

most. Swallow (19535) using his neutrally bucyant float finds tidal compon-

ents of the order of 1 cm sec™). This would make Rb around 0.002 ergs cm~?
i (s8] - ; ; s el : i
sec™! and - TS = 1018 ergs sec 1 vhich is completely negligible in compari=-

scn with the "observed" dissipation--mezning "the-enercgy-income-you-have-
to-get-rid-of~-if-you-aren't-coing-to-accumulate-enercy;" that amounts to
- 1¢ -1
about 3%10°° ergs sec™-.
With the makincs in hand let's ¢st to it. Continental shelvss

n
depths less than 200 meters cever about E5.3% c the earth's
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strfzce, about 2.8x1027 cm . if we cissipated z2ll the ticzl enercy on the
1

[}
(45

ghelves, it would come to an average of 114 2rcs cnm 2 sec *. If wa ecuzte
this with 0.002p<|u’®|>, we come down to something like 38 cm sec™! cr

ebout 0.75 kt for the averazce current reguired over the shelves. The ©

served currents are roughly of the right order. 3ut don't jump yet.
We've been through Tayleor (1212) and found that his resultis
look pretty c¢ood. A second look shows that the numerical value derived by

Taylor for the Irish Sea alone zccounts for about 2% of the total regu

Jts

red
dissipation. That's pretty big. Perhaps the shallow seas play a special
role.

Once G. I. Taylor had broken the ice it didn't take any longer
than usual for evervbody else to get into the swim. Jeffreys (1920) ex-
tended the estimate to all oceans producing 1.1x1019 ergs sec™! which was
80% of what he needed to get according to his interpretation of the astro-

nomical reguirements.
Remark: But only 34% of what he needed according to Munk and Macdonald.

Heiskanen (1920) also did the same thing based on substantially
the same data and, as revised by Lambert (1928), got 1.9x101° ergs sec™1.
Both of these estimates depend heavily on the bottom friction argument,
eguation (3.03:1.3). Heiskanen (and Lambert) also had a go at the work
done by the moon and sun, equation (3.03:1.1). There was a slight foul up
since Heiskanen added where shouldn't have according to Lambert. BRut,

aside from that, the problem was considered closed.
Remark: Munk and Macdcnald have taken a can opener to it.

Table 3.03-1, page 244 gives a summary of Jefireyvs' and
Heickanen's results after two adjustments have been made:
. 4 P ; £
(1) Multiplication by 3. to get mean dissipation over a ticdzl cvcle

in line with ecquation (3.03:3).

L

(2) A reduction by a factor of 0.51 [Jeffreys (1852), page 230] to

2lleow for the fact that spring tides have maximum velocities.
Eeisgkanen overlooked this correction so that his puklished

values are about double what they should be.



Heickanen

Irish Sesz C.C¢ 0.24
English Channel 0.11 0.23
North Sea 0.07 ————
Other Seas T 0.16
0.24 0.43
Asiatic Waters
Yellow Sea 0.11 ————
Malacca Strait 0.11 0.18
Other seas 0.01 0:73
0.23 0.91
North American Waters
Northwest Passace 0.16 -—
Bay of Fundy * 0.04 0.04
Other Seas e 0.30
0.20 0.34
South Zmerican Waters e 0.40
ARustralian Waters B 0.34
African Waters D 0.08
Erctic Waters e Do d3
Bering Sea 1:50 0.¢6
Total:Spring Tide 249 3.60
Total x 0.51 Lol 1.9

* The larcest known tides are in the BRay of Fundy but the dis-

sipation there is relatively smzll.

lan (1©58) gives 0.027x10%°¢ ergs sac’

1
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A new cealculation by Mc-



g
s
w

Now--how does this stack up? Cne-third to cne-half of Heig-

kanen's itotal dissipaticn occurs along the ocen coastlines of continents.

+ even consider this &s a possibility. Munk and Macdonaid

current [Shepard, Revelle, and Dietz (1939)] are rarely higher than 0.5 kt.
Svstematic measurement off Los Anceles [Stevenson, Tibby, and Gorsline
(1956); San Diego Geologic Diving Consultants (1256)] showed maxima of

0.1 anéd 0.25 kt during springs in 100 feet of water. 1In general, you can
rule out velocities above 0.5 kt on the open California coast.

2s an example of a place where Heiskanen seems to be on, con-
sider Patagonia. The shelf is about 500 km wide and about 2000 km long.
The tidal amplitudes decrease from 12 feet at 50° South to 1 foot at
37° Spouth. Formula (3.03:4) suggests that a maximum velocity of 102 cm sec”?
over the shelf might not be too far out. Measurements taken by the Argentine
Hydrographic Service show.velocities varying from 2.5 kt in the Falkland
Passage to 1 kt off the Rio de la Plata which is in good agreement. The 
corresponding dissipation is about 0.2x101¢ ergs sec”! which matches
Heiskanen.

Another estimate by the flux method supplied to Munk' and HMac-
donald by Redfield considers the tide as a wave that enters from the Znt-
arctic between Falkland and Staten Islands and which is attenuated as 1%
rolls north over the shelf. With A =1.5m, h = 530 m, and an entrance of
500 km one gets %pgﬁzﬁgﬁ'x 500 = 10'°® ergs sec”! which is of the same

rder of magnitude.

What about the Bering Sea? It has by far the largest estimate
entered in Table 3.03-1. 1In the eastern Bering there is a larxge shozl area
roughly 1000 km x 1000 km with depths generally less than €0 méters. Bcth
Heickanen and Jeffreys agree that this shelf is of paramount importance &s
a eink for tidzl energy. In fact, the whole proklem gets real locezl zlong
=bout here. Three-guarters of the glokal dissipaticn cccurs in this cne

relatively small region according to Jeffreys.
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Ectuelly, the whele thing ninces con what you =lect to use for

2 on the shelf. Says Jeffreys, "... it is stated that the maximum raie

'ty

1y "ebout 2% Xncts when the derth is less than 100 fzthoms." Both Seffrevs
erd Heiskanen accept reporied scceds o Zk Xnots at St. Mzthew Islané and
the Pripilef Isiands. Jeffreys tekes u_ = 2%k kt and Heiskanen uses M, B 2

The U.S.C.&G.S. Coast Pilot for Rlaska and "Current Tables,
Pacific Ocean" aren't very useful here but at least nothing they picture
requires a great sloshing about of water on the Bering shelf. Forty years
are vorbei and still there aren't any decent measurements. The icebreaker
NCORTEWIND [U.S.H.O. (1958)] drifted around up there znd found no sireng
tidal currents over the northern part of the shelf east of St. Lawrence
Island. In the Bering Strait there is a northward current of about 1 knot
but the superposed ticdal oscillation is only about % knot. To the south
there have been numerous oceanogravhic anchor stations but no current

measurements.
Remark: !

However, there was never anyevidence of the kind cf strain you get on an
anchor line if a 2-knot current is running. The NAUTILUS éuring its jour-
ney to the north pole encountered none of the discrepancies in navigation
that would be expected if a 2-knot current were present. In short, even
thcugh there are no measurements, 2 knots looks excessive and Munk and
Mazccéonald think 1 knet, as an absolute blithering upper limit, is the most
that should be zllowed.

Since the dependence on v, is in cube, the reduction in e Zrom
2 to 1 krings the dissipation down by zn order of macnitude and the Bering
Sea isn't anything special at all.

The “"data" for this argument aren't exactly the hich cuzlity
kind ¢f thing one likes to have. Fortunately, one can cet at the dissiza-
tion bv the adévection method, ecuaticn (3.03:1.2), anc this a

t%at Heiskanen's and Jeffreys' estimates are high by an order of magnituie.
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Item: Rlcong the porticn of the ARleutian chain which forms thse sou=i-
ernmcst boundary of the Bering shelf, hich water and maximum northward cur-
rent occur at zbout the same time which correspondés to a crocressive wave

trdveling north conto the shelf. Deduction: where it must be just about all

Item: ESemidiurnal amplitudes are about 25 cm at the Aleutizns ané

decrease northward, Bristol Bay excepted.

=

tem: There is no possibilityv of a large standing wave with nodes
a2t the southern boundary of the shelf.
Numbers: Set ¢ = ¥ch, h = 60m, & = 25 cm.

This gives us an RaS of

aE 1000 km
it E = Ras = Lpce f A2dx = 0.8x1017 ergs sec™!

0

or only about 1% of the Munk and Macdonzld reduced estimate.

‘The formula used for ¢ implies that u, = cA/h = 20 cm sec” ! =
0.4 kt; way low from the u, used by Heiskanen or Jeffreys. Even if you
assume that the whole Bering Sea rises synchronously, the required inflow,
neglecting island obstructions, can hardly be more than u = {GMALQJ/(hL}
where L is the surface area and h the depth just north of the Aleutians.
With L = 1000 km this gives uo = 60 cm sec”! and - GE/dt = 2.4%1017 ergs
seg Sy

We have one more shot in the locker. We can estimate - &E/dt
from the work done by the moon and sun. Grab vourself some co-tidal charts
and read off the amplitudes, 2(Xx, 8), and phases, ¢(A, €). X is the east
longitude and & is the co-latitude. Get R as a function of 2 and & from
ecuations (3.03:2.i) and get the dissipation by integrating over all the

oceans according to (3.03:1.1).

This program has its difficulties. There azre large variabilities
in phase associated with amphidromic points and positive and negative con-
tributions to - GE/At are not very widely seperated. ZIZven worse, the data

cf the open sea. Heickanen had a crack at it with co-tidal charts rublished
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by von Sterneck in 1920 Groves and Munk (1958) ¢€id a ccurle more lzaos

using Tietrich's (1%44) compilaticn bzsed on ebout threse times &s many

tide staticns as von Sterneck had. Trhere wasn't much imgrovement, rezlly

Tne kis hole is in the Scuthern Gecean and Dietrich éicdn't have stations

frem there elther,

Remark: Maybe the IGY data and the Indian Ocean data will bring in comea
worthwhile information if anycne ever c¢ets arocund to éoing some-
thing with it.

The results are shown in Table 3.03-2. All Munk and Macdornald will say

Table 3.03-2. UVork Done by the Tidal Forces of the Moon and Sun
on the Oceans. (units: 101° ercs sec“l)
Ocean Heiskanen Lunar Solar Total
Lunar Semi Semi Diur Total Semi Diur Total
Pacific 3.8 2.8 0.6 3.4 0.7 D9 0.9 4.3
- =25 -1.9 ~0..0 =X =35 -0.0 =05 -2.4
ot J|C L3I Ton|CSEICLS ] 0| 0.2 ] CGd I LY

Atlantic 1.8 2.1 0.1 2.2 0.5 0.0 0.5 2.4

= -1.2 ! | -0.1 =1 02 -0.2 -0.0 -0.2 2] e
Tioem” C|T 08I0 |" 68 hol 0| 88l Gil LT
Indian L@ Te5 02 i 0.4 0.1 Gun 2.2

e =G ~0:"B —0.1 rzilivad) =2 -0.0 -0.2 =1.2
“Total | 0.2 T 0.6 0a] 0.7 ] 0.2 0.1 0.3 71 1.0
Total 2.1 Sieid 0.7 32 Gt 5 I 1.0 4.2

from Munk and Macdonzléd (1960))

is "... that the tectals may be far smaller than we cbtained, oxr’ twice &as

large."”

Remark:

[enyen

lv adcing energy

For the lunar

E-—.

3.2%30!2 ergs sec

terms

=1

Ey this time it is a matter for congratulaticn that the totals
for each ocean are, at least, »ositive, i.e., no ocean is actual-

to the tide.

(Astronomical Input)
o =) -
2.7%x10-7 e&xgs s=c¢” "



For the solar terms
(Astroncmicel Input)

- == = 1.0x10%° ergs sec™!] 2 0.6x101° ercs sec™!

¥acdocneld say,; "The acreegsent is better then we ha
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They next calculate the Q_l of the cceans. 07

[

is the specific

cissipation function defined by

It is the dimensionless measure of the rate at which energy is dissipated

in a vibrating svstem.

is the eneréy dissipated over a complete cycle and E is the peak energy
stored in the system during a cycle. You'll find Q7! particularly useful
in discussions of observational data since it does not depend on the de- |
tails of the mechanism which causes the dissipation.

Aside from local resonances, the total energy contained in the
ocean tide at any momént can't be different from the total energy contain-
ed in the eguilibrium tide by more than Q"l. The enercy of the lunar
eguilibrium tide is

- i

og f E?- ar = ogK%Zb 2 % 27a? f (}3sin?[6))2sin(8]&6 = 8x1023 ergs .
: 0

Since the earth isn't entirely covered by water, use 5x1023 ergs.

From astronomiczl data one hes

; 19 .
2n e 8E/dt & e 2.7%10 o

2 20, F (1.4x107Y%) (5%x1023)

2
= 4
2.6 "

for the relative cdissipation per cvcle. What this says is that once every

24/2.4 = 10 heurs 2ll of the tidal energy is dissipated
If we take Jeffrevs' estimate for the dissipation on the Bering

Sea shelf, 0.51%1.5%10'2 = 0.77%10*% ergs sec~!, then once every 18 hours
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Surpose the ocean ticde approximates the ecuilibrium configura-
tion; which, of course, it doesn't. Then the maximum dissipation would
occur with 2% = %7 in ecuation (3.03:1.2)., One gets 11.2x10%° exrcs sec™!
which is a bit more than the 2.7x10!9 ergs cec™! reguired by astrcnemical
considerations. If you stick with the ecuilibrium conficuration but put
a rhase lag of 26 = 14° on it, then vou produce exactly the reaguired dis-
sipation. It begins to look as though we should not have assumed that the
dissipation within the bulk of the ocean is negligible.

A little independent esvidence would be useful. A related
problem is that of tsunamis. Tsunamis, like that following the Xamtschatka
earthquake of 4 November 1952, release energy into the Pacific of the same
order as the. tide. The waves zre long and their bottom currents should be
comparable to those for the tides. As it turns out, most of the energy of
a tsunami is dissipated in one day although the activity can remain above
background for a week or so. &s far as this cgoes, it doesn't ceonflict
with the rate of tidél dissipation.

Well--vhere o we stand? Astronomical observations call for
& tidal dissipation of 3x1019 ercs sec”™!., Table 3.03-2 shows that there
is no sweat in getting this much enercy into the ocean. So far as the how
eand where of the dissipation cces, we are staring a éilemma right in the

eveball. If Munk and Macdonald are right zbout the Berirg Sea,

Remark: I, personally, think they are.

Bt

. . . . . ic - .
then the dissipation in the shallcow seazs is, at most, 10°- ercs sec °. And

g o TG oL ” . iz
how do we get ricé of the cther 2x10-° ergs sec” *? Cf course, Murnk and

"

¥acéonzlé mav have overlooked recions of concentrateé dissipeatiorn kut, con
e
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, concentrated dissipation has a scrt of sky kbl
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—amplitudes are around 10 meters which is cne or two crders of
magnitude larger than the eqguilibrium tide. Working the other way is the
density difference of around 1073 times that at the surface so that the
work done by the moon and the sun on internal tides is pretty small.

We have no satisfactory theory of internal tides. For free
internal waves, neglecting the earth's rotation, you have phase speeds of
roughly 20 km hr~! in the open sea. For comparison, the speed of the
equilibrium tidal bulge is around 1500 km hr~!. 1It's a pretty impressive
mismatch. Defant (1950) suggested that it could be reconciled by allow-
ing for the .effect of rotation on the phase velocity and that the result-
ing ccupling could lead to a large internal response to the tide-generzt-
ing forces. Recent observations by Ried (1956) mazke this look unlikely
as a way out. Ried measured simultaneously at two points 100 kilometers
apart and found no obvious phase relations. 1If the internal tides were
due to the tide-generating forces, then the phases at the two stations
should have been virtually identical.

Chip Cox (in a personal or "beer-hall" communication to Munk)
suggests that in regions of variable depth the internal (baroclinic) and
external (barotropic) modes are not independent and that a flux of enercgy
must tzke place from esach mode to all the others. More specifically, the
degree of coupling depends on the extent to which a spectrum of the sea-
bottom tepograrhy contains "power" at the local wave lencth of the tides.
The results of Ried (1956) are ccnsistent with the hypothesis that intern-
2l tides are cenerated all zlong the ccast line with the degree of con-

version depending on local bottom topography. Ccx estimates that the

2 1

conversion from surface to internzl modes may amount to 5 ergs cm™ < sec”

or the North Atlantic deep waters. There may alsc be arprecizble
i

reconversion to surface modes so that perhaps 5 ercs cm szcC is some
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cucht to try to do something about tides in your own resecarch. The

dissertation that Dr. E. J. Xatz wrote at The Hopkins dealing with the
spectra of bottom topography and his (1962) and (1983) papers should have

some relevance.

3.04. Redfield's Reflected Wave with Damping.

Redfield (1950) created a model along the same lines as the incident wave/
reflected wave of both Taylor and Munk and Macdonald. It differs in sub-
jecting the waves to frictional damping and looking for the details of the
motion. He begins by pointing out that, in most natural cases, the princi-
pal disagreements with the standing wave tidal co-oscillation model are:
(1) High water does nct occur simultaneously sc that the wave can
not be strictly standing.
(2) The nodal "line" is usually present only as a region of rela-
tively small tidal range.
These discrepancies can be taken into account by considering theé ticde as
a sum of an incident and a reflected wave if the wave is subject to fric-
tional camping.

The problem, then, is to determine rumericall

et
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g
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of the primary and reflected waves in such a way &s ©o force agreement

with the observed displacements and velocities anéd to relate these SumeEri-
cal values to the geometry of the bav.
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Reéfield savs of his racer:

By expressing the relationship of the several azsrectis of a reflecki-
ed wave in a2 form in which the wave periocd is tazken as the unit of
time and distance is given in terms of the relzted rahse changes,

it is pessible to eliminate the
&

1

urely gecgraphical cimensions and
in & wholly ceneral cescription of the ticde which may be
used to indicate how any give channel distorts the hkehaviocr of the
wave as it advances.

"In the case of irregular channels, in order to justify the
applications of relations deduced for uniform channels, in which
the change in phase of the primary and reflected waves and their
damping is proportional to the distance traveled and in which the
velocity of the waves is constant, it is necessary to mzke the
following assumptions:

. 1. That the effect of irregularities in cross section is to
alter the velocity of the primary and reflected waves, i.e., to dis-
tort the geograrhical distribution of phase differences.

2. That damping is proportional to the phase change in the
waves rather than to the distance traveled.
3. That .the damping coefficient, as defined is constant

along the length of the channel."

Let's follow Redfield through and see what he's up to and how

it ccomes out. We begin by taking a narrow bay which rules out v and we

zlsc ignore geostrophic terms. Our crigin of coordinaztes is taken at the

head of the bay at that point which may be considered the reflecting

point.

The water motion will be rectilinear reversing.
If no damping were present, we could write

= A cosot - kx]}

l'tl .

for the primary wave and

= A cos[oct + «x]

n
2

£for the reflected wave where o= 2%/7 and k = 27/, Their sum is a stané-

ing wave if the channel is uniform. EHowever, if we assume eXpcnential

o

damping we must write instead

=
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A = the amplitude of each wave at the reflecting har-

rier, x = 0

o £ the change in phzse per unit time

t ¥ the time measvred frem high water at the barrier
when t = 0

Kk = the change in phase per unit distance with x
measured from the barrier

¥ £ the damping coefficient.

To cet generality, use the wave period 27 as a unit of time so that ot then
expresses the phase change during the lapse of time measured from hich
water at the barrier. Denote the true ancle for high water at any point

aleng the channel by ctH. €imilarly, ot_. will be the local time angle of

s
slack water relative to high water at the barrier.

For nonuniform channels, the velocity changes and k can not
be a ccnstant. However, we can use ¥x as the phase difference relative
to the barrier due to position. Thus, x represents the part of a cycle

completed by the wave in passing between any point and the barrier.

3.04.1. The Time of Hich Water zt Any Point.

The elevation at any time and place is given by n = ™ + Ny or

(3.04.1:)) n= A[exp{- ux} coslct - kx] + expiux) coslot + ux]] :

Hich water means on/et = 0O,

A[- expl~ ux} o sinler = kx)] = expiy
or

(3.04.1:2.1) expi{- ¥x} sinfet = x] + explux} sinloct + k] A
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crpi- g\}[SLTrCt]COS[le - cos{:t]s;n[nx]) + e}p[;m}{sin{gt]cosgng'
+ coslctlsinlxx]] = 0
or
- r ¢ r .
£3.,04.242.2) texpipn} + expi- uxij;sinfotlcos [kx]
+ {exp{px} - expl- px})cos[ctlsinlxx]
or
sinfot] _ _ exp{ux} - exn{- ux} sin[kx]
cos [ot] expiuxt + exp{- ux} cos[ikx]
or
tan[ot] = - tanh[px)tan[kx] ¥
Therefore,
(3.04.1:3) ot, = tan™! (- tanhlux]tan(xx]) ;

Ecuation (3.04.1:3) gives the time of high water at any point zlong the

bayv, x, and for any damping coefficient, yp, Fig. 3.04.1-1.

~180¢ o, S e R T SE TR, R e s T
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Use the heicght ¢f high water at the barrier as a reference. By the same
mafdipulation us=d to secure (3.04.1:2.2) fxrom (3.04.1:2.1) ecuatiocn
(3.04.1 1) ean s BuE in the form

[2.04,251) n = 2A[cas[ct]ccs{xx]cosh[;x] - sin[:t}sin[wx}sinhi;x]) z

From (3.04.1:3) we have

tan[ctq] = = tanh[ux]tankx) 3
Therefore, |
' o }
stk 7 tanh [px)tan[kx] - ty 1qnh(}Lx}1un(Kx)
(1 + tanh?[px)tan?[kx])
coslot,] = 3

H ¥ 1
B % tanhzlux]tanzixx])% {I+1unh2{px}ton2 (Kxi}fa

Therefore, substituting in (2.04.2:1) gives

7 cos [kx]cosh [ux] 5 tanh [ux] tan[kx] sin[kx] sinh[px]

1+ tanhz[uz\c]‘.:e:anz{n::-;])!:I (1 + ta:n'nz{*..1):}*.:&:*:2[rc:ﬂ:]};i
which reduces to

= M
n = 2a(%(cos[2kx] - coshtzux],] .

At the barrier where x = 0, nO = 2A. Therefore,

(3.04.2:2) = (%(cos[2x»] + cosh[2ux])]%

T
nO
gives the ratio of the height of hich water at any place, x, for any cdamp-
ing coefficient, J, to the height of high water at the reflecting Lbarrier,

Fig. 3.04.2-1, page 257.
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[from Redfield (1950)]

(3.04.3:1) ul = A %-(uz + KZ)_% e—ux coslot - kx + &]
(3.04.2:2) u2 ==~ A % (p2 + '2)“!2 Eux cos[ot + k%X + ¢)
where

h = the water depth

tan'l(u/x) is the phase difference between the time

-
1"t

of high water and the maximum current for a pro-

gressive wave with damping.
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Tne resuliant velocity is u = ul + 2, &rd slack water occurs focr u = 0.
For » = 0, u = 0 for 211 t and it is alwavs "elack waiexr" zs it should be
&t the reflecting karrier. For any other point, x, slack water cccurs at

—u b
ccsict - ux + 4] - e cesfct + #sx + ¢) = 0
whnich redéuces o
tannlux
(3.04.2:3) tan[ot + ¢] = Fann i) :

tan[xx]

I£ ¢t denotes the time cf slack water,
o)

tanh[ux]

(3.04.3:4 ot = tan™!|—/——=2| - ¢ .

- ) R - tan[«x] N

Eguation (3.04.3:4) relates the time of slack water to the phase differ-
ence cue to position along the channel for any damping ccoefficient,

é
ig. 3.04.3-1. The maximum current will preceed or follow slack water by

Hy

cne-guarter of the period, S0° or 7/4.
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0

3.04.4.
To epply this model we cencrally have at our dispcsal records of the
of hich water, the elevaticn of hich water, the time of slack water, ané
the time of maximum current at varicus points arcund the Lay. To figure
cut what any particular bay will do in the line of mcéifying the primary
and reflected waves we also need information on the &istribution of

phase differences and on the damping.

.

X

g

. 3.04.4-1 cross breeds ecua-

tions (3.04.1:3) and (3.04.2:2), i.e., Figs. 3.04.1-1 znéd 3.04.2-1.
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zny clutch of data giving elevetions and times of high watsr can be rlo
ted on semi-log peper and cverlaid cn Fig. 3.04.4-1 to see whether a £fi
is possible. 1If one is possible, then the plct can be fanned over to
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Bay of Fundy w

to be about

system with

e o
distances to Cetermine the rhacse differences of the primarxy
channel. By changing the sign you pick up the reflected wave.
In the same wav, ecuations (2.04.1:3) and (32.0£4.3:4), i.e.,
-1 and 2.04.3-1, can be crossbreéd to give Fig. 3.04.4-2.
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Fig. 3.04.4-2. [from Redfield (1950)]

Redfield has used this model on Iong Island Sound and on the

4=
15

ith good success. The camping coefficient, u, turned out

1. He also gave a whirl to the Juan de Fuca-CGeorgia Straits

egual success but found in this case that ¥ had to be some-

what greater than 1.
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