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PREFACE 

Thi~ material is a revision of my lecture notes on tides originally issued 

in 1965 by the Chesapeake Bay Institute. There is only one excuse for pre­

paring yet another screed on tides when there are already so many books on 

the subject. In my opinion, none of them present tides at the level neces­

sary to provide the tyro oceanographer with a foundation on which he can 

build, in whatever the direction his evolving interests may lead him. 

Darwin (1898) is, perhaps, the most profoundly insightful pop­

ular account of the subject. It is in the great tradition of the British 

scholars who, now and again, feel impelled to lay aside the paraphernalia 

and jargon of science and tell laymen, clearly, what they have found. 

Every intelligent person, no matter what his background and interests, 

should have ·read this book at least once. 

Defant (1958) is another good popular account but, like Darwin 

(1898), too light on the "flute music" to satisfy an oceanographer. 

Defant (1961) overwhelms with its coverage of observational 

material but, if that's what you want, Defant (1961) is the place to go. 

Proudman ·(1954) is good-"-and out of print. My Chapter 2 de­

pends heavily on this source. 

The monographs in "The Sea, Vol. l," Darbyshire, Groen and 

Groves, Hansen, Lafond and Cox, Munk, and Rossiter, give you a fine picture 

of the "state of the art" but only if you are already familiar to some ex­

tent with the topics they cover. 

Dietrich (1963) gives a reasonable sort of discussion for 

oceanographers and Pillsbury (1956) treats tides from the point of view of 

engineers who must build structures in tideways. 

Dronkers {1964) is the place to go if you need guidance on 

tidal computations but the title is a bit misleading. The tidal computa­

tions are there, based on the author's 20 years of work in Netherlands' 

waters, but he begins with a lengthy and excellent exposition of the theory 

of the tide. 
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The bibliography included with these notes is sketchy. There 

is no need for • +-
l. ... to be otherwise when one has the first three references 

listed there. In addition, the Corps of Engineers, U.S. Army has, since 

1954, been publishing an annotated "Bibliography on Tidal Hydraulics." 

it is called Report No. 2 and every so often another Supplement appears. 

Aspirant oceanographers should add to their private collections 

the publications of the U.S.C.&G.S.: specifically, Marmer {1951), Schurernan 

{1941, 1949), and u.s.c.&G.S. (1950, 1950, 1952). Harris is out of print. 

You should also own Doodson and Warburg (1941) and Dronkers (1964). 

The first c·hapter of these notes describes the phenomenon, 

discusses the astronomical background, and goes into the data reduction. 

Its purpose is to enable you to understand, as opposed to use, the tide 

and current tables . It is, in a sense, practical rather than theoretical 

although it may be difficult for you to see this at first reading. 

The second chapter is theoretical. It is devoted to the solu­

tion of co"ntinuity and motion under various boundary conditions and 

simplifying assumptions. One assumption always made in Chapter 2 is that 

friction is negligible. Because of the oversimplifications the solutions 

derived fit nothing in nature very well. Their value is that they show 

clearly the relations that must obtain among the various aspects of the 

tide and, thus, contribute to our understanding. 

The third chapter recounts some efforts to include friction 

and its effects. It is, of necessity, very incomplete and unsatisfying. 

Blair Kinsman 

August 1978 
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~al Analysis of the Tide. 

1. 01. .:.::. 5ill of Fare and ~ Bit of History. 

Schureman (1949) defines the tide as "the periodic rising and falling of 

the water that results from the gravitational attraction of the moon and 

sun acting upon the rotating earth ." This identification of the te:rm "tide" 

with the vertical movements of the water is conventional usage in the 

United States and England . There are also periodic horizontal movements 

of the water, called "tidal currents," caused by the same gravitational 

attractions. While it is useful to have separate terms for motion i n the 

vertical and motion in the horizontal, the two, taken together, form the 

phenomenon we want to study. 

If you go out and make a time record of water surface elevation 

at a point, · you will have considerable difficulty seeing the tide . There 

are many forces which act to change the water lev e l. Wind makes waves. 

Wind stress may. tilt the water surface as a whole. Pressure differences 

from place to place distort the water surface. Your composite record may 

contain all of these and more in addition to the tide:.-and they don ' t come 

labeled. One of our problems will be to untangle the astronomica l tide 

from surface fluctuations due to other causes. 

The subject of tides has five aspects: 

(1) The tide-generating forces: The tide-generating forces arise 

from the gravitational attraction of the celestial bodies of which only 

the sun, which is large enough , and the moon, which is near enough , are of 

practical importanc e . The net force acting at any moment on a particle of 

water is the result of the relative configuration of the earth, sun, and 

moon. The study of the relative motions of these bodies belongs to celes­

tial mechanics and the problem has been solved for practical purposes -­

an ythi ng you may have heard about the "Thr ee -Body Problem" not withstanding. 

Consequently, for practical purposes the tide generating forces have been 

we-11 established. 
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(2) The tidal dynamics of the sea: The tical dynamics of the sea 

concerns itself with the way in which the sea r es ponds to the generating 

forces. In essence, this is a problem in fluid dynamics. The kines of 

bo~ndary value problems you meet are of the sorts you are used to seeing . 

In tides , however, the important driving forces are among those usually 

neglected in water tunnel experiments or in studies of flows in la kes and 

reservoirs. Their solutions will depend on the geometry of the oc ean 

basins and on the viscosity of the water . As you might suspect, a ·general 

theory which would permit the prediction of tides in t.~e oceans would be ­

very complicated and no ·one has as yet managed it- - or even come close. We 

do have a handful of limited solutions for such things as rectangular 

oceans in case you ever discover one. 

(3) Observations and analysis of tide records: Lacking an adequate 

theoretical basis for the tide, we must obviously fall back on an empirical 

approach to keep our ships off the mud. Tide gages are set up at points of 

interest and carefu} records are made over many years. These give the rise 

and fall of the water. There are probably more of these measurements than 

there are of _any other parameter in the field of oceanography . Observa- · 

tions of tidal currents are generally limited to inshore waters and are 

far fewer and less accurate than are the tide gage data. Once records are 

available, they are analysed into harmonics. (For "harmonics" read "sines'' 

and "cosines" if it makes you more comfortable.) These analyses are a 

messy business but th~ procedure is pretty cut and dried. 

(4) Prediction of tides: Basically, this is a matter of extrapola ­

tion from the observed tide. The extrapolation day by day for a year at a 

time is what is contained in the "Tide Tables." Since tide prediction de­

pends on the maintenance of a large network of observing stations, and 

since the data reduction, usually done with special purpose computing 

machines, cf . Schureman {1941), pp. 126-152, all the major maritime nations 

have set up special organizations to carry out the work. The smaller 

countries depend on the larger ones for t.~eir tide information. 

(5) Miscellaneous : This is a grab-bag of modifications of the tide 

and of problems associated with, or similar to, the tide. It includes: 
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ications of the tide produced by meteorological 

cor .. _ . · ns: :;:::, Chesapea.\;:e Bay and many other shallow water coastal areas 

these c.~e so pronounced that they become the problem of primary interest. 

(b) Tidal waves: Tic.al waves, usually called "tsuna.."Tlis" by 

oceanosraphers because they are produced by seismic activity and not by 

the tide-producing forces, are included because they, like the tide, have 

very long wave lengths. Consequently, their mathematics is quite similar 

to the mathematics of tides. 

(c) Seiches: These are surges in confined bodies of water. 

Such bodies have natural resonance periods. Seiches can be set going by 

tides, wind stress, or atmospheric pressure differences. 

{d) Earth tides: The "solid" earth is a plastic, albeit a 

stiff one. It too responds to the tide-generating forces but to a much 

smaller degree than does the ocean which is highly mobile. 

The Mediterranean, around which the ancient civilizations 

clustered, is virtually tideless. In a few places the tidal range reaches 

a maximum of 3 feet but such extremes are uncommon. The Greeks noticed the 

tide, as they noticed practically everything, but it was of no practical 

importance to them and we have no evidence that they gave it much thought. 

Among the first recorded ideas on the tide that have survived are those of 

Curtius Rufus, the biographer of Alexander the Great, and Pythias of Mar­

seillia who make a voyage to England around 300 B.C .. There he encounter­

ed tides of size that made them hard to ignore. He connected them with 

the phases of the moon; as did the Romans who came to England a bit later. 

The Romans also distinguished between spring and neap tides. By the 13th 

century tide tables were being constructed. For example, there is one ex­

tant that relates the height of the water at London Br~dge to the age of 

the moon. Until surprisingly recently the construction of such tables was 

a private enterprise of single families, the methods being jealously guard­

ed and passed from father to son. Kepler and Gallileo first noticed that 

the tide could be described as a progressive wave and related its speed to 

the depth of the water. 
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Our modern approach to tides began with Newton and his law of 

gravitation. He discovered that the perturbations in the moon's motion 

are due to the sun and he developed a kinetic theory of tides, the "equil­

ibr.ium" theory, the basic idea of which is that there will be a bulge in 

the direction of a distant attractive body. This bulge he supposed to 

travel around the earth always pointing exactly in the direction of the 

attractive body as though the water had no inertia--no mass, hence kinetic 

theory. The agreement between tides predicted on this basis and tides as 

actually observed is pretty poor but the idea is still a useful one. Most 

subsequent work on tides begins with the equilibrium tide as a zero-order 

approximation and brings .it into closer agreement with the observed tide 

by adding corrections. Bernoulli was one who contributed to this. 

Laplace attempted to replace the kinetic equilibrium theory 

with a dyna~ic theory. He also tried to derive the forces which produce 

the horizontal motions. He showed that tidal periods fall into three natur- . 

al groups: semidiurrial, diurnal, and long-period. He also showed that a 

large number of small periodic perturbations could be treated separately 

and then combined. This is the basic idea of all hannonic (Fourier) 

analysis. 

During the last century the English mathematicians and physi­

cists followed out these leads. Kelvin did the most to bring the problem 

to its present unrewarding state. Other contributers were Airy, George 

Darwin (son of the evolution Darwin), Rayleigh, and Lamb. 

In the United States Harris wrote a book on tides which was 

published over a seven-year period as an appendix to the superintendent's 

reports. A meteorologist named Ferrel helped to develop a special-purpose 

computer to carry out the analysis. 

In the 20th century there has not been much creative work on 

tides although Dr. w~ H. Munk seems .to be reviving the interest of the 

problem by applying the methods of spectral analysis to it. The United 

States government is doing only routine predictions with little support 

for basic research. In Europe there is an active group at the Liverpool 

Tidal Institute which includes Proudman, Bowden, and Doodson. Liverpool 



5 

atural ::- research on tides since the average tide range in 

ti,E= sey is 20 feet while at springs the range increases to 26 feet. 

The co~~s at Liverpool have locks at the ends. The ships enter and leave 

at nigh tide and the lock gates are closed behind them to trap enough 

water to float the docked ships at low tide. 

1.02. Terms and a Description of the Phenomenon. 

If you observe the changes in sea level with a tide gage fixed to a pier 

in a harbor and plot the elevation against time, you have the tidal curve 

for that harbor and that period of time. It might look like Fig. 1.02-1. 

Fig. 1.02-1. Schematic Tidal Curve. 

MEAN 
SEA 
LEVEL 

The curve, as sketched, looks rather sinusoidal and shows the particulars 

of the tide. The water rises for about 6 hours, a period called rising 

tide, flooding tide, rise, or flood, until it reaches a maximum, called 

high tide or high water. The time at which high water occurs is called the 

hour of the tide. For a little while the water elevation shows no percept­

ible change, high water slack, after which it begins to fall and continues 

to do so for about 6 hours, falling tide, ebbing tide, fall, or ebb, until 

it reaches a minimum, low tide, or low water. Again, for a little while 

there is no change in the elevation, low water slack, after which the tide 

again floods. The rhythm of this repetition is generally two high waters 

(H'W) and two low waters (LW) every 24 hours and 50 minutes, the period of 

the lunar day. The expression tidal range refers to any of the values 
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secured by taking the absolute difference of a high (low) water and the 

next succeeding low {high) water. 

The flood current is the current which sets in after a low 

water and which produces the rise of the water level. The ebb current be­

gins after high water and produces the fall of water level. It is import­

ant to distinguish carefully between the terms "ebb" and "flood" applied 

to tidal currents and the same terms applied to tides since the change in 

the current direction does not necessarily coincide with the times of high 

or low water but may lag them by as much as 3 hours. Near land the change 

in current direction usually does occur at the times of low and high water 

but in the open ocean it more commonly occurs at half tide. 

Since we have been talking about an oscillation in water height 

we are, necessarily, thinking of it as taking place about some fixed level. 

There are a number of these reference levels in common use. There is mean 

sea level which is, practically, the average height of the water as it 

would be determined from a very long record. The half-tide level is the 

average of any pair of successive extrema. The mean daily level averages 

the heights over a day, the~ monthly level over a month, and the mean· 

yearly level over a year. The heights of these levels all differ from 

each other but their differences are usually small. Mean daily levels 

may differ among themselves by 1.0 to 1.3 feet: mostly because of meteoro­

logical differences. The same is true for mean monthly levels. The mean 

yearly levels show a variation of the order of a few inches and are usually 

quite close to mean sea level. Manner (1951) is devoted to the methods 

of determining fixed reference levels for tide measurements. 

The study of mean yearly levels for a place can be quite 

interesting. They often show long-term general variations in the sea level 

which can be related to climatological changes. They may also show tecton­

ic movements of the earth's crust, i.e., rising or sinking of the land to 

which the gage is attached. 

The tidal curve with which we began, Fig. 1.02-1, is not re­

presentative of conditions everywhere. A particular place may have a semi­

diurnal tide with two high waters and two low waters in a bit more than 
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ve a diurnal tide with only one hi~h water and one 

..c:1 a loose \,ay the harbors of the world can be arranged in 

four c .sses: 

(1) Harbors with regular semidiurnal tides: These harbors have two 

hig h waters and two low waters each day. The two highs and the two lows 

are about of the same heights and they are evenly spaced. New York , Brest, 

ind e ed, nearly all the harbors along the east coast of the United States 

and in Europe belong to this class. 

(2) Harbors with diurnal inequalities: These harbors have semi­

diurnal tides but the heights of the two high waters may be markedly un­

equal. So may the two low waters. Further, the spacing of the highs and 

lows may be quite uneven. Many of the harbors of the Indian and Pacific 

Oceans, including specifically Saigon, belong to this class. To distinguish 

the highs and lows of any one day from each other we use the terms "higher" 

and "lower" . as shown in Fig. 1. 02-2. 

MEi-1N ~ 
SEA .-------..-_.._ __ _ 

LEVEL 

24 HR 

HIGHER HIGH WATER 

LOWER HIGH WATER 

HIGHER LOW WATER 

LOWER LOW WATER 

Fig. 1.02-2. Tidal Curve for a Harbor with a 
Diurnal Inequality. 

The order of succession of high and low waters is called the sequence of 

the tide. It may have any order but for a particular harbor, whatever it 

is, it is always the same. Figure 1.02-3, page 8, shows some .possible 

sequences. 

(3) Harbors with mixed tides: In harbors with mixed tides one ob­

serves successively in the course of a fortnight two high waters and two 

low waters a day and then a period with a single high water and a single 

low water in a day. Tides of this class are very frequent in the Asiatic 
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EQUAL LI•;r ·LONG RISING 'EQUAL HW LONG FALLING 

.MEAN SEA LEVEL 

Fig. 1.02-3. Possible Sequences of the Tide. 

archipelago, in Indochina, near the coasts of Siberia, and in Alaska. They 

are also found occasionally in the Atlantic as in Fort de France, Martinique. 

(4) Harbors with diurnal tides: Harbors of this class have only one 

high and one low water a day and are rather rare. Examples include Tonkin, 

Dason in Indochina, Bangkok in Siam, St. Michael, Alaska, and Copenhagen. 

This classification is not comprehensive. For instance, in 

Tahiti the tide occurs at just about the same time every day and is called 

a solar tide. At LeBavre and Southhampton there is a double high water at 

each tide while at Portland and the Hook of Holland there is a double low 

water . 

In any one harbor the tidal range varies systematically incr~as­

ing, priming, during 7 days to a maximum, spring tide or springs, then de­

creasing, lagging, during the next 7 days until it reaches a minimum,~ 

tide or neaps. The spring tides are associated with the conjunction or 

opposition of the sun and moon, syzygy, full and new moon, while the neap 

tides correspond to quadrature when the sun and moon are at 90° to each 

other, half moon. While the tide is lagging strands of sea weed are left 

in rows on the beach by the high tides as each high water fails to reach 

as far up the beach as its predecessor. These lines are erased again as 

the tide primes. The point reached by the highest high tide is the high 

water mark. In harbors with semidiurnal tides springs usually follow 

syzygy by one or two days called the~ of the semidiurnal tide. Neaps 

lag quadrature by the same a~ount. The strongest 'spring tides of the year 

take place near the equinoctial syzygies, spring and autu..m, when the sun 

and moon are most nearly in line. They need not occur exactly at these 
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lag by as much as two months. 

- ha rbors with se midiurnal tides it is custo~ary to refer 

tidal =~~ges to the mean equinoctial spring tide range. The variation can 

be quite remarkable. For example, at Brest we have: 

Range Per Cent of Mean 
Equinoctial Spring 
Tide Range 

Extraordinary equinoctial spring tides 

Mean equinocital spring tides 

Mean spring tides 

Mean tides 

Mean neap tides 

Extraordinary neap tides 

126 

100 

94 

70 

45 

20 

The French tide tables give similar coefficients for Brest for each day of 

the year. These can be used all along the French coast without noticible 

error. 

It may be of some interest to see what the extreme tidal ranges 

are. The fifteen greatest are listed in order in the following table: 

Country Place Mean Spring Range 
(ft) 

Canada Bassin des Mines •(Fundy) 44.6 
Canada Frobisher Bay 44.6 
England Severn River 43.0 
France Mont-St. Michael 41.3 
Patagonia Magellan Strait (east) 39.0 
Siberia 37. 7 
Australia Collier Bay 36.l 
China Rambler Isle 34.1 
Canada Kotsoak River 33.l 
Alaska Sunrise 33.l 
Mexico Rio Colorado 31. 5 
Brazil Maraca Isle 29.9 
Corsica Masamplio 29.9 
Australia Mangrove Isle 29.9 
Indies Banhagar 28.5 
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These extreme tidal ranges generally occur at the heads of bays or large 

estuaries where the tide is amplified by resonance; much as a sound wave 

is resonated in an organ pipe of suitable dimensions and shape. You will 

notice that Africa with its smooth coastline is absent from this list. On 

isolated oceanic islands the tide seldom exceeds 1.6 to 2.0 feet. In 

closed seas the tide is hardly felt . 

On pages 11 through 14 extracts from "Oceanographic Atlas of 

the North Atlantic Ocean . Section I. Tides and Currents . " {NAVOCEANO 

Pub. No. 700, 1965) are shown. These are characteristic tide curves for 

the East and Gulf coasts of the United States and for the Caribbean. Each 

curve covers 17 days and is keyed to the phases of the moon. They are 

worth considerable study. 

The curve for Charleston, #6, is typical for the entire Atlantic 

coast and the Bahamas. I find a tendency among students (and others!) to 

feel that whatever the tide was where they grew up is the way the tide is 

everywhere. These curves should help you get that out of your system . 

Key West, #7, alternates between type (1), days 1- 5, and type (2), days 

7- 14. Pensacola, #8, is type (4). The curve for Reykjavik, #19, was in-. 

eluded here because it shows springs and neaps so clearly. You should try 

to find examples of the phenomena described by the terms we have introduced 

in these curves. 

1.03. Gravitation and Gravity. 

Newton's law of gravitation says that two masses, m
1 

and m2 , separated by 

a distance, r, attract each other with a force, F, which is directly pro ­

portional to the product of the masses and inversely proportional to the 

square of the distance between them. In other words, 
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is the universal gravitational constant when m
1 

and m
2 

are measured in 

gr~~s and r is measured in centimeters. 

If m1 is unit mass and we use m
2 

- m, then the gravitational 

force per unit mass is 

At the earth's surface the gravitational acceleration, g , de­
e 

fined as the force exerted by the earth's mass on a particle of unit mass is 

g = YL(m./r.2) = y13I<p./r.2) 
0. l.l. . l.l. 

l. l. 

where 1 is unit length and pis density. With ping cm- 3 the unit of 1 is 

cm. The SUI)1!llation is to be extended throughout the earth's volume. If the 

earth were a perfect sphere of mass M and radius a, we could write 
e 

Iim./r. 2 ) 5 M /a 2 
. l. i e 
l. 

This amounts to acting as though the entire mass of the earth were concen­

trated at its center .from which our unit mass is separated by a distance a 

equal to the earth's radius. 

Sadly enough, the earth is not 

a sphere. Due to its rotation it bulges 

at the equator and a better approximation 

to its shape is an ellipsoid of revolu ­

tion with the major axis in the equatorial 

plane. If a is the equatorial radius 

(semi-major axis) and b the polar radius 

(semi-minor axis), then the ellipticity, 

e, of the earth is 

e = (a - b)/a 

N 

Fig. 1. 03-1 

Naturally, measurements of e made in different places give different values. 

The figure of earth really isn't exactly an ellipsoid of revolution. 
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In practice, e is determined by very carefully measuring the length of a~ 

arc along a meridian and the angles made by the verticals at the encis of 

the arc. From these data, on the assumption that the arc along a meridian 

is a segment of an ellipse, a and b can be computed and from them the ec­

centricity. As one might expect, measurements in different places give 

different estimates of e. Each country tends to use the value that best 

fits its own geodesy. The International Spheroid of Revolution uses e = 

1/297. The Clark Spheroid (United States) uses e = 1/293. In general, 

the estimates range from 1/300 to 1/290. 

For an elliptical section the gravitational "constant," g0 , 

isn't constant but a function of latitude. Toward the poles a unit mass 

on the earth's surface is closer to the earth's center than it is at the 

equator and g 0 is a function of latitude. 

If the earth were at rest, this would be the whole story. It 

isn't. Since the earth rotates we must further modify g to include the 
0 

centrifugal force wh~ch acts against gravitation. The centrifugal force 

is given by W 

where 

and 

F = w2 R 
C 

w - the rate of angular rotation, 

Ro: cos<j> 

<j> _ the latitude. 
Fig. 1.03-2 

F is greatest at the equator where R = R = a and~= 0 so that cos~= 1. c max ~ ~ 

I:t decreases to .. zero at the poles where R = D and <I> = 90° which makes cos<j> 

= 0 as well. 

When the gravitation, the ellipticity, and the centrifugal 

effects are combined we get the apparent gravitation which, by definition, 

is the gravity, g. Observationally, the components of gravity are insepar­

able. On the equator g = 978.05 cm sec- 2 . At the poles g = 988.07 cm sec~ 2 -

WARNING: Gravitation and gravity are not the same thing. I have seen al­
together too many students foul up their oral examinations by 
failing to make the distinction between them. A word to the 
wise .... 
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::avi ty ction of latitude, a nu'Tlber of empi~ical equations 

:ric.. "n set u;> t.o desc:-:ibe the variation. The most com.'1lonly used is 

Clai~~-~•s formula: 

g = 978.05(1 + 0.0053sin 2$) 

wr:ere ¢ is the latitude. Obviously, Clairaut's formula uses the value of 

g at the equator and adds a correction term . An alternative formula by 

Helmert does the same sort of thing but uses the value of g at latitude 
0 

45 as the base. 

In spite of all this, one needs to go only a little distance 

away from the surface of the earth before earth behaves substantially like 

a point mass. Consider two unit masses , 

one on the equator but not rotating with . ' 
the earth and the other at the pole. 

I 

move them away from the earth radial-
go 

Now 

ly . If you . plot g
0 

as a function of dis -
0 I \ d tance from the earth's center you get 

something that looks l ike Fig. 1.03-3. 
POLAR RAD. b EQ. RAD. a 

The two curves merge very rapidly after Fig. l.03 - 3 

which the earth is indistinguishable from 

a point mass, i.e., you . can't tell from a knowledge of the curve whether 

you are moving out on a line with the pole or on a line in the equatorial 

plane. We treat the earth as a point mass in connection with the forces 

produced by the sun and moon. These are the principal extraterrestrial 

forces but we will have to make an argument for this later. 

There are other terrestrial forces on a particle on the earth ' s 

surface. The earth is not a true ellipsoid of revolution and mountain 

ranges over a fe~ miles high and unusually dense slugs in the.earth's 

crust, e . g., lodes of ore, produce local anomalies in g. These result in 

a permanent deformation of the sea surface. However, since t~ey are per­

manent deformations, they need not be taken into account in studying a time 

dependent process such as the tide. 
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From here on out we will consider the earth to be a sphere. 

Let's take a look at t..~e geometry. Consider any point Pon the surface of 

the earth, Fig. 1.03-4. 

Fig. 1.03-4 

Let Ebe the mass of the earth concentrated at its center, 

C be the mass of any celestial body concentrated at its center, 

e be the distance between centers, 

r be the radius of the earth, 

p be the distance from the center of the celestial body to P, 

and $ and e the angles indicated in Fig. 1.03-4. 

The attracting force of Con Eis directed along the line of centers, CE,. 

which is of length e. The attracting force of Con Pis directed along the 

line CP with length p. The attraction of Con a unit mass located at E, AE, 

is 

A = y(C/e 2 ) 
E 

where y is the universal gravitational constant. Similarly, the attraction 

of Con a unit mass located at P, AP, is 

AP= y(C/p2) 

We may consider that r, e, e, and$ are known from geodesy and celestial 

mechanics. Then, using the law of cosines with 

p2 = e 2 + r 2 - 2er[cos0] 

AP= (yC)/(e 2 + r 2 - 2er[cos61) 

This is directed along the line PC. The component parallel to the line of 

centers, CE, is obviously 

{ (yC)/(e 2 + r 2 - 2er[cos6])}cos9 
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'I. ~s viewed f rom a cele s tial booy will subt e nd a max-

.1.:: - ! e , C:\r,c..x and fer any poir.t of e arth we have O f I¢ j ~ qi max, Fig . 

1.03- 5 . The moon is our nearest c e lestial neighbo r and so has the largest 

Fig . 1.03-5 

Consequently, for the moon 1 ~cos~~ 0.99985 and the 

component of AP parallel to the line of centers, CE, differs from the full 

force along AP by at most 0.02%. For all other celestial bodies the differ­

ence is eve~ smaller. Thus, th e discrepancy is always so small that we 

frequently don't bother to distinguish between the two. However, in very 

precise work you may want to retain the distinction and the component of 

AP, as we have expressedit, has an explicit dependence on both~ and 6._ 

This is not really necessary since¢ and e are functionally dependent. The 

component can be expr~ssed entirely in terms of e by solving for¢= £(8) 

and substituting to get an expression in 6 alone. 

It i s often useful to measure the length of the line of centers 

in units of the earth's radius , e/r. For instance, the center of the moon 

is approximately 60 earth radii from the c enter of the earth. However, in 

the course of our analyses we will often find that it is the reciprocal of 

this distance, r/e, which appea~s in our equations . The parameter r/e has 

been named the parallax . The parallax is a sort of upside do~ measure of 

distance to a celestial body in units of the earth's radius. The moon's 

parallax is r/e = 1/60. The sun ' s parallax is r/e = (4x10 3)/(92xlo6) = 

4/92,000 = 1/23,000. 

With the forces acting one might expect the tv.•o bodies to ap­

proach each other and they would ~ere it not for the co~nterbalance of the 

centrifugal force produced by the raotion of the moon about the e arth in its 
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orbit: 

Actually, the centrifugal force is high­

er on t~e far si de but negligibly so . 

Our main problem is to determine the 

differences of the forces acting on 

points of the earth's surface. We 

have Fig. l. 03-6 

AP - AE = (yC)/(e 2 + r2 - 2er[cos0)) - (yC)/(e 2 ) 

C 

Notice that the first term on the right-hand side is the approximate form 

since the factor cos$ has been omit ted. Thi s may be rewr itten as 

AP - AE 
yC (1 1 

1J = :-7 (r/e) 2 -C - 2(r/e)cos8 + 

. = § (1 2(r/e)cose - (r/e) 2 ) 
e - 2(r/e)cose + (r/e) 2 

Notice the appearance of the parallax as a parameter. 

We want to find the values of the parameters that can give 

appreciable dif fe rences betw ee n AP and AE. For the moon r/e ~ 1/60 so 

that r/e ~ 1/60 for any celestial body. The extreme value of 6 gives 

cose = 1. With these values 

A_ - A ~ ye 2(r/e) = 2yr(C/e3) 
----p E e7 l 

For any celestial body, 2yr is a constant. Only C and e are different for 

different celestial bodies so that C/e 3 is the critical factor. It pro­

vides us with a means of comparing the effects to be expected from differ­

ent celestial bodies. Take the obvious four for a ch eck : the moon, the 

sun, Venus (the nearest planet), and Jupiter (the largest planet). Use the 

moon as a unit of measure. The numbers for comparison are shown in the 

table on page 21. While the sun has a mass 27 million times . as great as 

the moon, the rr.ass enters only linearly while the distance enters in cube 

so that the force exerted by the sun is les s than half th at exerted by the 

moon. The nearest fixed stars have masses comparable to that of the sun 
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--- '.:::.ss Minimum Rcitio C/e 3 

"! (C) Di sta nce '\. A - AE 
(e) 

p 

---

!-'.· on 1 1 1 

Sun 27.1x10 6 389 4.6xl0-l 

en us 66 108 sx 10- 5 

Jupiter 26Xl0 3 1630 6x10- 6 

bu t t he distances, 4.3 light years for the nearest as against 7 light min-

utes for the sun , are so en ormously greater that their effect is negligible. 

Even the planets, e.g., Venus and Jupiter, while closer, have effects many 

orders of magnitude smaller than the moon's. These calculations support 

the assertion made earlier that as tide producing bodies only the moon and 

the sun need be considered. 

1.04. On Astronomy and Time. 

1.04.1. The Sun and the Earth. 

Rotation: The rotation of a body is a motion about an inter­

nal exis, e.g., the earth's daily rotation on its axis. 

Revolution: The revolution of a body is a motion about an ex­

ternal axis, e.g., the ea rt h's yearly motion around the sun. 

Eccentricity: The eccentricity of an 

ellipse is one-half the focal distance divided by 

the semi-major axis, 

Ellipticity: The ellipticity of an Fig. 1.04.1-1 

ellipse is the difference between the semi-major and semi -mi no r axes divid­

ed by the semi-major axis, e = (a - b) /a •. 
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The orbits of the planets are nearly elliptical with the sun 

loca ted at one f ocus. All t he orbits lie ve ry near ly in one p lane. The 

ecce ntr i city of the earth's orbit is 0.017 = 1/60. 

The terms per:helion, aphe l ion, and line of aosides can best 

b e ncer sto on f ro~ F ig . 1.04.1-2 ~h i ch is gr ea tly ex agcrated. The dif­

ference betwe e n the distances of the ea rth to the sun at perihelion a nc 

ap heli on is o nl y abo u t 3.4%. 

EARTH LINE OF EARTH 

F1 APSIDES 

APHELION PERIHELION 

Fig. 1.04.1-2 

The earth'~~ distance to the~ is, by definition, one­

half the line of apsides, i.e., it is the semi-major axis. A more refined 

distance measure might be secured by integrating around the orbit but it 

wouldn't turn out to be much different. 

Viewed from outside the system, the earth rotates from west to 

east on its axis while revolving from west to east about the sun, the two 

motions being like a set of gears, Fig. 1.04.1-3 

--~m11a--W EARTH 

Fig. 1.04.1-3 

The earth does not travel uniformly on its orbit. It moves 

faster ~hen it is nearer the sun and more slowly when it is farther away 

in accordance with Kepler's Law which, incidently, is cerivable from Newton's 

Laws. Keppler's Law says that a pla net moves always in such a way t hat the 
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:n swe ep s out equal 
, . ·- ---...... ~ :. ::-::s AlA2, :1\32, c1c2 are 

tra ve,!. .:.n equ al time intervals and 

have quit-' ~ different l engths. The 

shaded areas, however, are all e qual . c, 
This conforms to the require ~en t tnat 

gravitational attraction be balanced 

by centrifugal force: 

areas in equal tim es. In Fig. 

82 s, 

A1 . 

Fig. 1. 04. 1-4 

As R increases, the right member (gravitation) decreases; an d in square . 

The left member (centrifugal force), on the contrary, grows with R; and 

lin ea rly . The equality (balance) would be destroyed if th e angular velo ­

city w did not decrease sufficiently to restore the equality . 

If a line is drawn through the center of the earth perpendicu­

lar to the plane of the earth's orbit, the earth's axis makes an angle of 

23°27' with it . Except for a very slow wobble , this angle is maintained 

at all times as is the orientation of the axis . 

The de scripti on of the motions of the earth and sun has so far 

been tacitly heliocentric; a view of things that you may have been taught 

somewhere or other was true with a capital "T." If so, you can forget it. 

Truth doesn't reside in a set of coordinates . For tides, life becomes 

simpler if we revert to Ptolemaic astronomy. From here on in the earth is 

a small sphere situated at the c ente r of the universe . That universe con­

sists of a celestial sphere on which the fixed stars are hung. The ea rth 

is at the center of the celestial sphere and the axes of the two coincide 

so that the North Celestial Pole is directly above the North Te r restrial 

Pol e . The celestial equator lies directly above the terrestrial equator. 

the earth is sta tionary but the celestial sphe re rotates evenly on its axis 

from east to west completing one rotation in something aro und 24 hours. 

The planets, which include the sun and the moon, share this movement of the 

celestial sphere but , unlike the stars, which remain permanently fix ed in 

po sition on the ce le stial sph e re, wande r ab out with mot io ns of their o· .... ,n. 

During the course of a year, for example , the sun is seen against different 
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pa ~ts of the celestial sphere at cifferent seasons. The pat h which it f ol­

lows on the cel estial sphere is a great circle called the ecliptic a~d is 

marked on the celestial sphere by the signs of the zodiac. The ecliptic 

inte~sects the e~uator in two points called the equinoctial points. The 

;:,oints where it ce pa rts most v.idely from the ee:_uator are called the solstices. 

The angle betw ee n the ecliptic and the equator is 23°27'. The way it looks 

is shovm in Fig. 1.04.1-5. 

NORTH CELESTIAL POLE 

AUTUMNAL 
EQUINOX SUMMER 

SOLSTICE 

ECLIPTIC 

CELESTIAL 
EQUATOR 

VERNAL EQUINOX 
(-r } 

Fig. 1.04.1-5 

The celestial sphere goes around once a day (more or less) 

carrying the sun with it. The sun meanwhile drifts slowly backward along 

the ecliptic making one circuit in a year. When the sun crosses the equa­

tor from south to north we have the vernal eauinox. h"hen it reaches its 

maximum elevation in the northern sky, the summer solstice. When it re­

crosses the equator from north to south, the autumnal eouinox. And when it 

declines to its lowest point in th e sky, the winter solstice. It is to 

these phenom ena that the first day of each of the seasons, as noted on the 

calender, refer. 

The equinoxes are used as re fe rence points in one set cf celes­

tial coordinates, Fig. 1.04.1 -6, page 25. This is the coordinate set 
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.tion. Consid e r a star 

~e t a gre at circle through X 

a nd -ch~ .:;r ... :1 pole intersect the equator at A. 

This cir __ e through X is called an hour cir­

c le. I :,ave indicated th e vernal e~uinox by 

a st y liz e d ram's head which is the old sym­

bol f or the constellation Aries , "f .. In 

Ptolemy's time the vernal equinox was locat­

ed at the first ~oint of Aries but not now. 

Of this more later. The distance~A is the Fig. 1.04.1-6 

X 

L 

right ascension of the star at X and the distance AX is its declination. 

These two numbers specify its position relative to the equinoctial point. 

Another system of coordinates passes the great circle through 

X perpendicular to the ecliptic instead of through the pole. In this sys­

tem specifi~ation of iL, the celestial longitude, and XL, the celestial 

latitude, locat es X. Since the angle between the celestial equator and the 
0 ecliptic is a constant 23 27' one of the systems easily converts into the 

other. There are other systems in use which are relative to the observer 

but we need not discuss them here. 

It was pr _eviously stated that the earth's axis maintains its 

orientation except for a slow wobble. Figure 1.04.1-7 shows the heliocentric 

picture while Fig. l.04.1-8, page 26, shows the geocentric version. 

EARTH'S POLAR AXIS 

\ 

Fig. 1.04.1-7 

PERPENDICULAR 
-.._--......, TO 

I ___ ...- ORBITAL 

PLANE 

APHELION 

/ 
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NORTH CELESTIAL 
POLE 

PRECESSION 

Fig. 1.04.1-8 

The effect of this motion is to make the equinoxes drift slowly westward, 

i.e., the ecliptic, while maintaining its angle with the equator , moves 

relative to it. It is to this phenomenon that the term , preces si on of the 

equinoxes, refers. The period of the precession is very long; about 26,000 

years . This corresponds to a shift in the equinoctial point of about 50'' 

of arc per year . l"'11en Ptolemy first worked out his astronomy (c . 100 A. D. } 

the vernal equinox was located at the first point of Aries. 

I would like to digress a bit here on the zodiac . The zodiac 

is a band on the celestial sphere 16° wide and centered on the ec liptic. 

It marks the region of the sky in which the sun, moon, and planets are al­

ways found . Hundreds of years befo re Christ the Babyloni an astronomers 

grouped the stars along this band into 12 constellations each oc cupying 30° 

of arc and gave them animal names (more or less)--hence the "zo." Each 

sign of the zodiac was civided into thirty points . In other words, the 

ecliptic on the celestial sphere was divided into what we now call degrees . 

The signs of the zodiac reading from Aries (which marked the spring equinox 

in Ptolemy's time) in the order in which the sun moves through them are 

Aries, Taurus, Gemini, Cancer , Leo, Vir go, Libra, Scorpio, Saggitarius, 

Capricorn, Aquarius, and Pisces. 
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0 years since Ptolemy, at 50" per year (0.01389), 

,~i nox has moved about 26° and is now at the fourth poi;- ,t of 

:his fact is well kno~~ to astronomers but seems to have escaped 

the - astrologers who make horoscopes entirely. They still work from the 

first point of Aries. 

Another slow motion is that of the line of apsides. It ro­

tates eastward at about 11" per year. The relative motion of precession 

and the line of apsides is about 1'01" per year so that the period of the 

double motion is about 21,000 years. 

These slow motions are not very important for tides but they 

must be taken into account in any long range "geological scale" study, 

e.g., a long range study of the fluctuations in solar radiation received 

by the earth. At present, perihelion occurs in December within 9 days of 

the winter solstice. This means that the northern hemisphere is now enjoy­

ing optimal. conditions of solar radiation. The extremes of insolation pro­

duced by the height of the sun in the sky are counterbalanced by the dist­

ance to the sun. The worst conditions for the northern hemisphere will 

occur when aphelion coincides with the winter solstice . 

1.04.2. Time. 

One of the most important features of the celestial movements so far as 

tides are concerned it that they ·aetermine the periods of the components 

which make up the tide. The tide is a forced wave and the celestial bodies 

provide the forcing function. The three most important period·s are the 

year, associated with the earth's revolution about the sun, the lunar month, 

associated with the moon's revolution about the earth, and the day, associa­

ted with the earth's rotation on its axis. 

To measure anything you need a reference point. Relative to 

you, as an observer standing on a meridian of the earth, a celestial body 
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is in upper transit when it is direct-

ly above your meridian. Upper trans­

its are particularly important for 

tides. For example, crude tide tables 

can be constructed reckoned from the 

last upper transit of the moon. When 

the celestial body is directly opposed 

to upper transit it is said to be in 

lower transit. 

OBSERVER ..9f 
- . 0, __ ..,._~ 

UPPfR ', 
,,.o 

.. -- - . 

TRANSIT ', 
1---.:S.:.--...J 

LOWER 
TRANSIT 

Fig. 1.04.2-1 -

The day: The day comes in three fundamental sizes depending on 

the reference point: 

Reference Point 

Vernal equinox 

The sun 

The moon 

Definition 

The time at a local meridian 
from upper transit to upper 
transit of the vernal equinox 

The time from meridian trans­
it to meridian transit of the 
sun 

The time from meridian trans­
it to meridian transit of the 
moon 

Name 

sidereal day 

solar day 

lunar day 

There is a slight foul up in applying the term "sidereal" to a day measured 

from the vernal equinox. In its derivation the word "sidereal" means 

"constellation," i.e., it refers to the fixed stars. The vernal equinox, 

as we have seen, has a slow motion of its own relative to the fixed stars 

so that you don't get quite the same value from it as you would using trans­

its of Sirius, for instance. Such a day would be a true sidereal day. 

However, it isn't used and differs from.the sidereal day by only about 0.01 

sec/day. In terms of civil time, the sidereal day comes out to be 23h 56m 

04.ls. Whenever the angular speed of the earth is required in Coriolis 

acceleration calculations, and such like, it is this value t~at is intended. 

The length of the true solar day is another kettle of fish. 

fl.s we have seen, the speed of the earth along its orbit varies with its 

distance from the sun. This means that the amount by which the sun lass 

the return of the celestlal sphere differs at different times of the year 
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and, in consequence, its time from transit to transit varies. In the 

course of a year this variation ~~cunts to as much as 48 sec . The range of 

the solar day is 23h 59m 41s to 24h OOm 29s . The differences are cumula­

tive so that the average occurance may get out of whack with the mean solar 

day by as much as 16 minutes. The relation between mean solar time and 

appa r ent solar time is known as the equation of time . It is frequently 

graphed on terrestrial globes where it _appears as an elongated "figure 8" 

called the analemma. The~ solar day is the average solar day and is 

the basis of civil time. 

N.B . : When hours and ~ays are used without specification civil hours 

and mean solar days are intended . 

Eve n if the sun were to move evenly on the ec lip tic , the so lar day would 

still vary since the arc through which it moves is carried by the celestial 

sphere. This means that the arc must be projected on the equator. For 

example , the situations near equinox and near solstice are s hown in Fig. 

1. 04 . 2-2. 

NEAR EQUINOX• 0<1/J 1-JEAR SOLSTICE• 
...-ECLIPTIC --7----.;- - B>t 

' I t 

- 'i'4 EQUATOR -Ji d -
~'•ECLIPTIC ARC 8 1 PROJECTED EQUATOR ARC 

Fig. l.04.2-2 

A similar situation exists for the lunar day but it is much 

more erratic than the sola r day . It may vary as much as 15 minutes from 

th e mean lunar day. The lunar period is of the utmost importance for tides. 

The average lunar day is 24.84 hours as compared with a mean solar day of 

24 hours . We will have more to say about the moon later. 

The year: The year also comes in various sizes. The tropical 

year is 365 . 2422 mean sola r days in length. It is the time tqken for the 

sun to make one roun d of the ecliptic from vernal equinox to vernal equinox. 

In other words, it represents one complete cycle of the seasons and is some ­

times called the year of the seasons. It is the year the common calender 

tries to keep in order. 
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The Julian calencer introduced in 46 B.C. by Julius Caesar 

used a year of 365 days divided into months as we do today. Every fourth 

year was a leap year. This gives a year that is about 11 minutes too long 

on the average. By 1582 A.D. the vernal equinox had crifted 10 days and 

Pope Gregory XIII-introduced the Gregorian calender now in general use. He 

dropped ten cays to rectify the vernal e~uinox making October 15 come the 

day after October 5 and arranged that of the years divisible by 100 only 

those also divisible by 400 should be leap years. The Julian calender ~as 

otherwise unaltered. Great Britain and her colonies did not adopt the 

Gregorian calender until 1752. 

The number of sidereal days in a tropical year is exactly one 

more than the number of solar days, 366.2422 sidereal days, because, in the 

course of a year, the sun slips back along the ecliptic one full turn which 

must be made up by the celestial sphere. 

The year with respect to a fixed star is the sidereal year. It 

is 365.2564 days. The difference between the tropical and the sidereal 

years matches the 50" per year of precession. 

WARNING: Here comes the confusion! 

The sidereal year is taken with respect to the fixed stars. 

The sidereal day is taken with respect to the vernal equinox. 

The tropical year is taken with respect to t.,e vernal equinox. 

Watch your step!!! 

Another year, the anornalistic year, taken with respect to the 

line of apsides from perihelion to perihelion is 365.2596 days in length. 

1.04.3. The Moon. 

We've ducked the moon as long as possible but I 'm afraid that the lunacy 

must now begin. The moon 's orbit about t.he earth is analogous to the orbit 

of the earth about the sun. It is an ellipse (mainly) ~ith the earth at 
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one foc us but, be cau se of the gravitational e ffect of the sun on the moon, 

i t is much more deformed, i.e., it has many more anomalies . The e cc entri­

city of the moon's orbit is 0.055. The earth's is 0.017. The motion of 

t he_ moon in it s orbit is, like the ea rth's about th e sun, from west to 

sa st, l. 0 4.3-1. 

PERIGEE -8- APOGEE 

WEST EAST 

Fig. 1.04. 3-1 

The plane of the moon 1 s orbit is inclined to the plane of the earth's orbit 
0 at a constant 5 . The heliocentric picture i s shown in Fig. 1.04.3-2. 

YEAR 

WEST EAST 

Fig. 1. 04. 3-2 

The geocentric version of the same thing is shown in Fig. 1.04.3-3, page 32. 

The distance from the vernal equinox to the node is a slowly changing value 

with a period of about 19 years. The moon covers its orbit in a month 

(more or less) just as the sun covers the ec liptic in a year (more or less). 

An attempt at precise definition of the month results in the same sort of 

mess as the de fin it ion of the year. Different lengths result ~rom different 

reference points. 

Three commonly used ~eference points fo r def in iti on of the month 

are: (1) conjunction with the sun, (2) conjunction with the vernal equinox, 

and (3) conjunction with a fixed star. Two celestial bodies are said to be 
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Fig. 1.04. 3-3 

DESCENDING ... 
NODE 

ASCEN .DING 

NODE 

LUNAR 
INTER SECTION 

in conjunction when they have the same right ascension, i.e., when they are 

located on the same hour circle. The first reference point gives you the 

synodical month of 29.5306 ± 0.5 days, the second the tropical month of 

27.3216 ± 0.3 days, and the third the sidereal month of 27.3217 days. These 

values are averages taken over a year. 

Other kinds of months arise from the mot ion of the nodes and the 

line of apsides. The movement of the nodes relative to the ecliptic is 

called the regression of the nodes and is analogous to the precession of the 

equinoxes. It causes a westward displacement of the nodes with a cycle of 

18.61 years. This amounts to about 3' per day. The motion changes the dec­

lination of the moon but in tidal work we usually take the moon's declina- · 

tion as const ant during a year and t he n jump it to the next value. This is 

rather hairy since the change comes to 16° per year. The saving feature is 

that the ter ms in which it enters our calculations are not very important. 
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The f ou rth kind of month , then , is the nodical month of 27 . 2122 days which 

represents a comple te revo l ution ~i th re spect to the ce l es tial latitud e of 

the node. 

During the 19 -year cy c le or the regression of the node the 

woon's rr.axirr.urn ceclination varies from 23°27 ' + s0 09• = 28°36 ' to 23°27 • 

5° 09 ' = 18°18' which ha s quite an effect on the tid es. 

Anot her long-period motion which p roduces yet another ki nd of 

month is th e ea stward motio n of th e l in e of ap sid e s wit h a period of 8.85 

years . Thi s gives us the anomalistic month of 27.554 6 day s measured with 

respect to the moon ' s r e turn to pe ri gee . 

Ever y last bleeding one of th e se months is importan t f or t id es . 

For example, ta ke the anomali st ic month . During this month the moon goes 

thr ou gh one complete cycle of distances from the earth . Since the ellip­

ticity of i ts orbit is 0.055 th i s means tha t the variat ion experienced is 

11% of the mean distance and , since the distance enter s the tid e p ro du c ing 

fo r ces in cube, a variation in fo rc e of the order of 30% i s to be ex pe ct ed 

with a period of on e an omalist ic month. 

The spe ed of the moon along its orb it follows Kepler's Law and, 

since its eccentricity i s greater, s o also a re the va ri at io ns. In add iti on, 

the orbit its e lf changes shap e b ec aus e of th e gravitational attraction of 

the sun . The lunar da y varies f rom the average by a s much as 15 minutes . 

The last time I noticed (whi ch was a lon g time ago}, as tr onomers had piled 

up 51 anomalies trying to keep track o f the irregularities in the moon ' s 

motion . Because of these irregularities tide ta b les can no t be extrap olat ­

ed ov er l ong periods without s eri ous error . 

The pha s es of the moon-- new , full , and h al f-- are optic al pro­

perties and, as suc h, o f no interest in tides. However, they do mark rel­

ative positions of th e sun and the moo n, Fig. 1 . 04 .3 -4 , page 34, and the 

positions are important. The moon is in opposition to the sun ·at full moon 

and in conjunction with t he sun at new moon . At hal f moon it is in quad­

r a ture. 

At conjunct ion and oppo sitio n the hig hest or spring tides 

occur. At qu adratu r e the ti dal ran ge is a t i ts lowest and neaps occur. 
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This is the period of the synodica l month . 

QUADRATURE 
~ !1ALF MOON .,,,....--~-------

/ " 
':"· / . ~-(/ EARTH : -- -- ..m_ - - ,- . - - - LI\_ -- --\1>/ ":-;_\: ~~ JUNCTION 

, ... ,,, / NEW M 00 N 
OPPOSITION "- ,, 

FULL MOO N '- - -W,alM;::ruRE 
. HALF MOON 

Fig. 1. 04. 3- 4 

The moon also rot a tes on i ts own ·axi s, the period of the ro ­

tation being just equal to the per io d of re volution so that the same face 

is always turned toward the earth . 

·This account bare ly begins to scratch the surface of the mo­

tions of the sun and moon but I think it will be enough fo r our uses . 

1. 05 . The Tide-Generating Forces. 

We have been talking about the tide-generating forces in a very loose way. 

Our next jo b is to be more precise about them so that we can wr it e their 

equations in terms of the ast ron omic al parameters we hav e just di scu ss ed . 

The mathematical equations for the tide-generating forces due to the sun 

and moon express th e combined effect of forces arising from: 

(1) the rotation of the earth, 

(2 ) the revolution of the moon about the eart.h in an orbit inclined 

to the earth's equ at or , and 

(3) the motion of the earth about the sun which is also inclined to 

the equator. 
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The first step is to account for the "double bulge," Fig. 1. 05-1. 

EARTH 

------------0--MOON 
Fig. 1. 05-1 

We have noted that it seems re asonable that there should be a bulge in the 

hydro sphere in the direction of a distant attractive force. What s eems un­

reasonable a t first blush is that there should be a second bulge away from 

the direction of the attractive force . Unreasonable as it may seem, the 

double bulge is there. '!'he "unreason" comes from taking too parochial a 

view of the earth-moon system. 

We have said th at the moon revolves about the earth in its orbit and 

that this revolution developes a centrifugal force which balances the grav­

itational attraction so that the earth and moon maintain their distance in­

stead of falling in to each other. The statement is not strictly accurate. 

The moon does not orbit th e earth as a center. Both earth and moon, con­

sidered as a system, rotat e about their common center of gravity. 

Consider the earth-moon system alone for a st art. Since the 

mass of the earth is roughly BO times that of the moon, the center of grav­

ity of the system lies within the earth and the period of rotation about 

this center is one lunar month . Simplifying considerably, the distance be­

tween centers is 237,000 miles and the position of the: center of gravity 

can be calculated from the Law of Levers, Fig. 1 . 05 -2. 

EARTli 

I 
lsoMI 

237,000 mi 

t:, 
237,000 - X X e.g. 

Fig. 1. 05-2 

80~1x = M(237,000 - x) 

79x == 237,000 

MOON 

I 
E[ 
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Thus, the distanc e of the common cent er of gravity from the ea rth's ce nter 

is 
X = 3000 mi 

he ra dius of the earth is approximately 3850 miles. 

Simplify the situation further by sto pp ing .... -1..!"!e diu rnal rotation 

of the earth . Thi s means stop al l rotation of the ear th . The motion under 

consideration is not that of a rigi d rot at ing dumbbell. Con sider Fig. 

1. 05-3 . 

orbit of center of earth, 

O" 

'!---. 

earth's surface 

Fig. 1.05-3 

Let o1 be the cormnon center of gravity and O' and O" be the positions of 

the earth's cen ter Oat times t' and t" during a rotation of the system. 

Let P be a point on the earth's surface and P' and P" its positions at times 

t' and t". Then P' and P" lie on a circle with center at P 1 .. hich is the 

orbit described by P. It will hav e the same radius as the orbit described 

by the center of the earth, o. Thus , the radius vector of P will be para­

llel to the radius vector of O. 

Conclusion: P 1P 1 is parallel to 0 10 1 and P 1P 11 is parallel to 

010". 

Karning: Valid only for no diurnal rotation. 

Consequence: The ce nt rifugal force vectors at P and O will be 

equal and their magnituce will be 

4 112r 1/T 2 time- 1 mass - 1 
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,,.-he re r 
1 - the radius of th e orbit o f t h e e a rth ' s center 0 

and T - the period of th e motion of t.11e sy stem . 

Cl ea rly, the to tal ce nt rifugal force acting on the earth must 

be 1=1alan c ed by the total at tr action al force exerted by t he moon. However , 

~~ey ne ed not be, and are not , ever~,,here in halanc e in detail. There ar e 

points of earth whe re the attraction is s tr o nge r th a n the n ean value of the 

attrac t ive force so that th e at tr active force i s greate r than the centri­

fu g2 l force. At points whe re the attra cti on is weaker t han the mean 

attractive force the reverse holds. 

We define the tide-generating f o rce at an y point P of eart h as 

th e di fference between the attractive force at P, ~• and that a t the center 

of the earth, AE, where a tt ractiv e force an d centrifuga l fo rc e a re e xactly 

in balance. Note th at th is exact balance is implicit in our calculation 

for the system e.g .. If it were not true, i t would mak e no sense to treat 

the e arth an .moon as point masses located at th ei r centers. 

As we know fr om Sir Isaac, th e at tr ac tive force between tw o 

mass particles v aries directly as th e product of th ei r masses and inversely 

as the square of the distance between them . Th e force is e x ert ed along 

their line of centers . 

ea rth an d moon. 

In Fig. 1.05-4 let O and C be the centers of the 

----
Fig . 1 . 05-4 

,..,.. -...; -PC? 

C ......, O(f 

Remark: use mean po sitions of the e a rth and moon. Or simplify in any way 

you want to mak e the motions circul ar and uniform . 



Let l.JVU'V' - the great circle cut by a plane through OC. 

a - the radius of the earth. 

c = the distance from the earth to the moon . c ~ 60.26a. 

There is 

purposes 

(1.05:1) 

the 

r -p 

M 

E 

go 

usual 

- the distance of a point of eart h p from the moon, PC. 

- the mass of t~e moon. 

- the mass of t}ie earth. 3 = 81. 53M . 

- the mean gravitational acceleration. a ~o = 980.6 

cm/sec 2 at 45° latitude. 

hassel here over gravity and gravitation but for our 

is satisfactory. Thus, the attractive force of the moon acting on a 

particle of unit mass located at Pis 

(1.05:2.1) 

directed along PC and for unit mass located at O is 

(1.05:2.2) A = y(M/c 2 ) = g (M/E) (a 2/c 2 ) 
E o 

directed along OC. 

Remark: This .is something of a replay of our discussion in section 1.03. 

By definition, the tide-generating force is the difference between vector 

PQ with magnitude given by (1.05:2.1) and vector OA with magnitude from 

(1 . 05:2.2). Simple vector subtraction gives the tide-generating force. 

The subtraction is particularly easy when Pis at U or U' where the vectors 

are in line. At U, 

and at U', 

vp/a = v /a= 61 26 U' . 
If you slug reasonable values into Vi/E and a/c, the tide - generating force 

at U works out to 

and at U' to 

1.sx10- 7g grams to~ard the moon 
0 

1.lOxl0- 7g grams away from the moon. 
0 

Remark: Grams force --obviously. 
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You c an ge t an approximation for the tice- gE~e rating fo~ce at 

V by multiply ing AE by a/c, i.e., effectively, by the cotangent of angle 

OVC which a ssume s that the component of the attractive force at V pa rall e l 

tq AE equals AE. One g et s at V and V' 0.56 10-79 0 grams. 

?or U f P ~ V the size of the tid e -producing force is inter­

rnec i a te to the values at U and V. Similarly f or the other arcs. At U and 

V th e force acts vert:i.cally and th ere is no horizontal component. In be­

tween the force will always ha v e nonzero components in the directions of 

the local vertical and horizontal. It is the horizontal component which 

produces the late ra l motio~ which makes the tide. The vertical co ~p onent 

is just one more modification of earth's gravitation; at most of the order 

of one ten-millionth of g {10- 7g) which is of no practical inter e st. 
0 0 

The horizontal component of the tide-producing force has been 

named the tractive force by Doodson. It is zero at U, U', V, and V'. On 

the hemisp~ere VlN' it lies in the earth's surface and points toward the 

moon. The tr active forces at all points on the earth's surface lying in 

any plane perp endicula r to OC are equal in magnitude though not in direc­

tion, Fig. 1.05-5. 

D 

Fig. 1. 05-5 

•·- Of - - - - - -

I 
I 

since the tractive force is zero at U, V, and V' it must have.some inter­

mediate maximum. The same is true for the other hemis pher e except that the 

tractive force is away from the moon. Figure 1.05-6, p age 40, attempts to 

suggest the distribution of tractive forces on the sphere rather than in 

section as in Fig. 1.05-4. 
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Fig. 1.05-6 

So far we have not permitted our earth its diurnal rotation. 

If now we permit rotation, the tractive forces at any point P will gener­

ally change continuously with time. Let PN be the north pole . Notice 

that it doesn't coincide with V. Let P 1 , P2 , P3 be a parallel of latitude: 

The earth's rotation will move any point through the tractive field along 

a parallel of latitude. This gives you the variation in tractive force ex­

perienced by any position. In Fig. 1.05-6 it increases from P 1 to maximum 

at P2 and then decreases to P3 . For a point at P3 the moon is setting. 

After moonset the force reverses its direction until moonrise. 

This whole argument goes through for the earth-sun considered 

as an isolated system. The chief difference is that the com.~on center of 

gravity is interior to th e sun rather than to the earth. 

Having disposed of the "double bulge" we can get along to ex­

pre ssing the tractive forces in terms of astronomical parameters. We will 

want to resolve our forces into local horizontal and vertical components, 

Fig. 1.05-7. From sect ion 1.03 we have 

(1.05:2.l) 
and 

(1.05:2.2) 

~ = (yC)/(e 2 + r 2 - 2er[cos8)) 
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whe~e AP is in the approximate form se cur ed by deleting t:,e factor cos¢ , 

see pag e 19 . Thei r vertical and horizonta l components are : 

(l. O5:3 . l, 2) 

y:cos[0 + ¢) 
A~(V) = eL + r 2 - 2er[cosSJ 

(1.05 :3. 3 , 4) 

A (V) = yccos[8J 
E eL ~ (H) 

yCsin[B + qi] = e 2 + rL - 2er[ cos8) 

= 
yCsi . [SJ 

e 

Their difference is the tide-generating force and we will use the notatio n 

for the vertical component and 

for the horizontal compon en t or tractive force. From eq ua ti ons (1.O5:3.i) 

(1.05:4) "t:' = yC( cos[e + <Pl 
cos(eJ) "'"v e2" 1 - 2(r/e)cos[0) + (r/e) 2 -

and 

(1. 05: 5) ye ( sin re + qi] 
(r/e) 2 - sin(eJ) F = 

~ 1 -H 2( r/ e) co s [8) + 

It will be handy if we eliminate¢ from eq uation s {1.05:4) and (1.05:5) and 

exp r es s FV and FH as functions o f r, e, and e . By the Law of Sines we have 

sin[p) = sin[8] 
r P 

an d by the La w of Cosines 

p = /e2 + r 2 - 2e r[cos e) 

so that 
rsin[e) sin [ .1..) = _______ ;_;_; ___ ~_ 

~ {ez + rZ - 2er[cos0]} ¾ 

and 

cos [ <Pl = {l - sin 2q,}i, 

or 
cos [ cj,) (1 - (r/e)21 -

sin 2e 
(r/e) 2 ) = 2( r/ e)cos[ B) + 

or 
co s [ </)) 

1 - (r/e) cos rel = (r/e)L}~ {l - 2(r/e)cos[6) + 
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Using the angle sum formulae from trigo nometry 

and 

cos(e + c osec os cp si n6 sin 4> 

sin(e 

ccs (5" + ¢ l 

+ ¢) = si ne cos¢ + cos9sin¢ 

cos 5[ 1 ~ (r/e)cose] 
= {l - 2(r/e)cosle] + (r/e)• !} ~· 

stne. [ (r/e) sine J 
- {l - 2(r/e)cos[6) + (r/e) 2}½ 

cose - (r/e) 
= {l - 2(r/e)cos[e] + (r/e)2}½ 

sine 
sin(S + ¢) = {l - 2(r/e)cos[S] + (r/e) 2 }½ 

Feeding all this back to equations (1.05:4) and (1.05:5) we get 

(1.05:6) ye( case - (r/e) ) 
?V = e2'" {l - 2(r/e)cos[S] + (r/e)2}j/2 - cos(e] 

(1.05:7) ye( sine ) 
FH = e2.{l - 2(r/e)cos[6] + (r/e)2j3/2 - sin(S) 

No approximations have been made so far from equations (1.05:2.i). In 

(1.05:6) ana·(l.05:7) things are pretty messy. To get a useful result we 

have to begin throwing stuff away. It is the denominator that gives the 

trouble. Consider 

1/{l - 2(r/e)cos[6) + (r/e)2J3/2 = 1/(l - x) 3/2 

This can be expanded in a Maclaurin series which converges in the region 

x 2 < 1. 

(1 - x)-3/2 = 1 + (3/2)x + (15/8)x2 + (105/48)x3 + ... 

We have shovm that the maximcm value of r/e is 1/60. Thus, the maximu_rn 

value of 

x = 2(r/e)cos[e) - (r/e)2 

must be not greater than 

2(1/60)(1) + (1/60)2 

x2 is certainly less than 1 and the expansion converges. Explicitly, in 

terms of the harmonic function s ~hen the highe r orcer terms have been 

suppress ed 
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1/{l - 2(r/e)cos[8) + (r/e) 2}3/2 

= 1 + 3(r/ e )cos6 + (3/2) (r/ e) 2 (Scose - l) 

+ (5/2) (r/e) 3 (7co s 3e - 3cos8) 

Tr-:e negle ct ed t er ms in t ro du ce an error whi ch is, at worst , less than 2x10-6. 

Subst itu t ing (1. 05: 8) in (1. 05: 6) and (1.05 : 7) an d neslecting 

t el:::s containing (r /e) 4 and h ig he r p owers , we have 

(1.0 5 :9) Fv = yC 
;z- ( (r/e) (3cos 2 e - 1) + (3/2) (r/e) 2 (Sc o s 3e - 3cos8) 

+ (1/2) (r/e) 3 (35c os 4 e - 30c os 2e + 3)) 

and 

(1.05 :1 0) FH = 
ye 
"e2" (Cr / e) (3sin8cose) + (3/2) (r/e) 2 (sine) (5c os2 e 1) 

+ (5/2) (r/ e) 3 (sin6) (7cos 3e - 3c osS)) 

If the term in (r/e) 3 were ne gl e cted, t he maxi mum error th a t 

could be i~troduced in FV would be less than 6x10- 4 and in FH less than 10- 3 

whi ch di f fer only by ab out one order of magnitude. These are small errors 

s o we will th row out the te rms in (r/e) 3 . Thus , after fac tor ing out an 

(r/e), (1. OS: 9) and (1. 05 : 10) take th e forms 

(1. 05 : 11) 

and 

(1.05:12) 

F = yCr ( (3cos 2e - 1) + (3/2) (r/ e) (Scos 3e - 3cos6)) 
V 7 . 

= ye{ (3sin0cose + · (3/2) (r/e) (sin e) (5co s 2e - 1)) 
e 

Some books on tides toss out th e (r/e) 2 -terms as well. However, 

f or the moon it is somet imes i nte re st ing to retain t he (r/e) 2-terms as we 

have do ne i n eq ua ti ons (1 . 05 :11) and (1. 05: 12) . For the moon 

r/e = 1/60 = l .6x l o-2 

For th e sun 

r/e = 4. 26xlo - S 

so that ~e ~ill never r et ain the (r/e) 2- t e rms in dealing ~ith the sun. 

So far we have been drawing our picture in two oimension s. We 

must now ext end it to three, Fi g. 1.05-8, page 44 . FV lie s along the line 

EP extended. FH l i es in t he inters ec ti on of t he pl an e PEC with the pl ane 



TH POLE 

C 

-------

Fig . 1.05-8 

tangent to the earth at P. To specify this direction we use the azimuth A 

whi ch is the an gl e between the l ine of intersection of t he meridian plane 

and the plane PEC with the plane tangent at P. A is independent of the 

height at which C appears in the sky . By conventi on, A is measured from 

the north in a clockwise direction. Thi s conforms to British naval usage. 

To louse things up the U.S. C.&G .S. and the U.S . Navy Oceanographic Office 

view the angle from the south. 

To re -solve F H into an east component, FE, and a north cowponen.t , 

FN all that is required is to multiply FH by a sine or cosine of A. Thus, 

equations (1.05:13) and (1.05:14) replace equation (1.05:12): 

(1.05:13) 

(1.05:14) FN = FHcosA 

For a celestial body v,hich appear due east A = ½lT and F H = FE while F N = 0. 

The variables 6 and A are functions of time and of position on 

the earth. Th e distance between centers , e, is a function of time alone 

and the radius of earth, r, is a function of position. So far as r is 

concerned 

so that the difference between the equ at or ial and pol ar radii is about one­

third of one percent of the mean radius. Consequently, for tidal work we 

user constant equal tor. This is not absolutely necessary. \~e could 

carry a variabl e r but nobody ever s eems to do it . 
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Fo r com~a r i son , we c an h ave 

e - e . 
max min 

e = 1/32 = 0 .0 31"' 3% 

We have considered the mot i ons of the su n a nd moon in a qual­

itative ~ay anc sta t ed some quanti tat ive resul ts. The exact formulation 

and de ri va tion of the qu an ti ta tiv e r es ul ts b el ongs to c ele st i al mec ha nics, 

a subject into which we can't go in th is cou rs e. We will si mply assume 

t h at th e as t ronomers know their business, ac ce pt their r esu lts, an d try to 

c onvert them to fo rms useful for tid es . 

We must f irst express 8 and A in both te r restrial and cele stial 

coordinate fr ames. We will use th e symbol s 

TH IS IS THE 

L - the latitude of a poin t Pon th e e arth . 

D - the declination of t he ce les ti al body. 

h - the hour angle of th e celestial b ody from P used without 

regar d to direction. (See Fig. 1.05-9.) 

- . 
CELESTIAL NORTH POLE 

HOUR Cl RC LE OF P 

CO-LATITUDE OF P.._ ~ 
90°-L 

~--THE HOUR ANGLE OF C FROM P 

THE AZIMUTH 

POSI TION OF THE ZE N ITH --­
ABOVE A POIN T ON THE 

90°-0-THE POLAR DISTANCE 

J_:..:...L- - .,,.._ _ _,,~.---THIS IS THE SAME 0 AS 
C BEFORE;LPEC 

I \ --- POSITION OF CELESTIAL EARTH 

" L IS THE LATITUDE 
OF P 

L/ \D BODY ON CELESTIAL 

-- l ) " SPHERE 
-. _ _ _ __ THE DECLINATION O F C 

CELESTIAL EQUATOR 

Fig. 1.05 -9 

One h a s, cle ar ly, a sp herical tr ia ngle whi ch h as 3 of it s si de s gi ven by 

90° - L , 90° - D, and 6 an d 2 of its angles by hand A. These parts are 

relat e d by sphe rical t r igonome tr y . In ge neral we have 

cos x = ~(1 + cos[ 2x)) 

sin x = ½Cl cos ( 2x ) ) 
{multiple ang l e formulae} 

sin(x) co s[x) = ~si n(2x ] 
and co s x = ~(cos[ 3x ) - 3c os [x ) ) 
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1-ve wan -;-_ to ge:t e i n term s of L, D, and h, i.e ., we 1,:ant the distar:ce be­

tween the zenith o f a point of ol:-servation an d a giv en celestia l bo dy, e , 

in t erm s of the l atitude of the point, L, the decl in ati on of the c e lestial 

bo ~y , D , ar.d tile angle between their hou r circles, h . \·:e assume th at the 

la ti tuce of an y ~oint on the earth is kno~n an d that the declinati ons of 

the celestia l bocies hav e been determine d by celestial mecha nic s and pub­

lished in tables . 

(l.O5:15 . 1) 

a nd 

(1. 05 :15.2) 

From spheric al trigonorn e:t ry we have 

cose = Jsin[L}sin[D}) + (cos[L}cos[D])co s [h] 

sin[D} = sin[L)cosfel + cos[LJsin[eJcos[A) 

The first of these equat ion s gives th e required re lati on fore. It will 

also be useful to have similar expressions for cos 2e and cos 3e. Solv i ng 

(1.05:15 . 2) for si n[S)cos[A), 

si n [D] - sin[L]cosf0] = cos[L] 
s'in [ 6) co s [A] 

and substitut in g for cos[6) from (1.05:15.1) 

sin[6)cos[A ) sin[D] - sin 2 [L}sin[D) - sin[L)cos[L)cos[D]co s [h) 
= cos [L} 

so t hat 

(1.05 : 16) 

_.s..i-ntij] - s..i-riiu] + cos 2 [L)sin[D) - sin[L]cosfL)c os[ D]c os[ h J 
cos[L) 

s in[S ]cos[A] = cos[L]sin[D) - sin [L) cos[D)cos [hJ 

Again, from spherical trigonometry 

or , sin ce 

Therefore, 

(1.05:17) 

sin[A] sin[h] 
-----'---'--= 
sin[9O - D) sin[8) 

sin[9O 

sin[A) 
co s[D ) 

= 

D) = cos[D] 

sin(h] 
sin[6) 

sin[S)sin[A) = cos[D]sin[h) 

S~aring (1.05 : 15.1) we get 

co s 2 [61 = s in 2 [L]sin 2 [D) + 2sin(L]cos[L)sin(D)cos[D]cos[hJ 

+ co s 2 [L)co s 2 [D]cos 2 [h] 

and using th e double an gl e relation for co s 2 [~] this can be rearranged as 



Ther e =ore , 

(1.0 5 :1 8 ) 

4. 7 

cos 2 [8) = sin 2 [L] s in 2 [D) + cos 2 [L)cos 2 [D]{ ~ (l + cos[ 2h])} 

+ 2si n {L)cos [L]sin[D ) cos[D]cos[h) 

= {sin 2 [L)sin 2[D] + ½cos 2 [L]cos 2 [D)} 

+ 2{sin[L)cos[L]}{sin[D)cos[D) }cos(h) 

+ ½co s 2 [L) cos 2 (D]c os(2h) 

cos 2 [ 6 ] =· {si n 2 [L] s in 2 [o) + 1:icos2[L]c os 2 [o)} 

+ ~{sin[2L)sin(2D)}cos[h) 

+ ½{cos 2[L)cos2[D)}cos[2h ) 

This is the expression for cos2[9). 

To get the expression for cos3[9) begin with equation ( 1. 05 : 15.1) 

and cub e it . 

cos3[e) = (sin[L)sin[D)) 3 + 3(sin[L)sin[D))2(cos[L)cos[D))cos[h) 

+ 3 (s in [L] si n [D)) (co s [L) cos [DJ) 2cos2 [hJ 

+ (cos[LJcos[D))3cos3[h) 

Fo r convenience let 

(sin[L]sin[D)) 3 = A (sin[L]sin[D)) 2 (cos[L)cos[D]) _ 8 

(cos[L]cos[D)) 3 = E (sin [L) sin [DJ) (cos [L) cos [D) ) 2 ·= C 

From trigonometry 

and 

Therefore, 

where 

and 

Therefore, 

cos [h] = · ~(1 + cos[2h]) 

cos [h) = ¼(3cos[h) + cos[3h]) 

cos 3 [e] =A+ 3Bcos[h) + (3/2)C(l + cos[2h)) 

+ ~E(3cos[hJ + cos[3h)) 

={A+ (3/2)C} + {38 + (3/4)E}cos[h] + {(3/2)C}cos(2hJ 

+PzE}cos [ 3h ) 

A+ {3/2)C = ½{2sin3[L]sin3[o) + 3sin[L)sin[D)cos 2[L)cos 2[D) 

3B + (3/4)E = ¼{12sin2[L)sin2[o]cos[L)cos[D) + 3co~3[L)cos3[D)} 

(3/2)C = (3/2){sin[L)sin[D]cos2[L)cos2[D)} 

\E = ~{cos3[L)cos3[o)} 
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cos 3 [ 6] = ~{2 sin 3 (L]sin 3 [D) + 3sin[L]sin[D)cos 2 [L)cos 2 [D)} 

+ ~{12sin 2 [L)sin 2 [D)cos[L)cos( D) + 3cos 3 [L)cos 3[o)}cos(h] 

+ (3/2){sin[L)sin{D]cos 2 (L)cos 2 [D]}cos(2h) 

+ ~{cos 3 [L)cos 3 [D]}cos[3h) 

~s~ati on s (1. 05 :15), (1 . 05 : 18), and (1. 05:19) give us express i ons f or 

po;..•ers of the cosines of 6 in terms of L, D, and h . For any give n j?Oint of 

e ~rth, P, its latitude, L , is constant. The declina t ion of the sun or 

moon is a slow ly varying fun ction of time v;hich can be treated as c·onstant 

for period s of useful leng th. The ho ur angle, h, is " the vari abl e" and 

appears in multiples, i.e.", cos[8] = f
1

(h), cos2fs) = f
2

(h, 2h) , and cos3[e) 

= f 3 (h, 2h, 3h). Since h makes a complete cycle in one day, 2h in half a 
n 

cay, ... , the probable advantage of this form of ex press ion for cos [el 

should be ~e adily appreciated. 

In equation (1 . 05:11) we have an exp ression for the vertical 

tide-generating force, FV, in terms of the powers of cos[8) . Substituting 

(1.05:15), (1.05:18)', an d (1.05:19) in (1.05:11) gives 

(1. 05:20) 

FV = ~Ye~r .({2sin 2 [L)sin 2 [D] + cos 2 [L]cos 2 [D] - (2/3)} 

+ {sin[2L)sin[2D)}cos[h] + {cos 2 (L)cos 2 [D)}cos[2h]) 

+ 3YCr !. ({ 5 (sin [L) sin [D)) (sin 2 (L) sin 2 (DJ + (3/2) cos 2 [L) cos 2 [DJ) 
2e" e 

- 3(sin(L)sin[D))} 

+ {lS(cos[L)cos[D]) (sin 2 [L)sin 2 [D) + lrcos 2 [L)cos 2 [D)) 

- 3(cos(L)cos[D))}cos[h) 

+ {(15/2) (sin[L)sin(D)) (cos 2 [L)cos 2 [D) )}cos(2h) 

+ { (5/4) (cos [L) cos [D)) (cos 2 [L) cos 2 [D))} cos [ 3h )) 

A similar expr ess ion holds for FH. 

A bi t of contemplation shows that the second term, lines 3 to 

8 above, is small . The quantity enclosed in the large parentheses is always 

rather small and , fur the r, it is multiplied by r/e which is, at most, 1/60. 

The entire second term may be neglected in co m?arison with the first . We 

are impelled to this step by the messiness of the expression . 
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The easiest place to suppress the powers of r/e that you ,.,,ant 

to neglect is in equations (1.05:11) , (1.05 : 13) and (1 . 05:14). If you do, 

only the first term remains on the right-hand side of equation (1.05:20) . 

For.the sun r/e = 4.26x10 - 5 and the error introduced is real l y negligible. 

In the case of the moon we had better have a closer look. w-:r-iat are the 

~axirn~~ values that can result in equation (1.05:11)? For the first term 

in (1.05:11) 

(3cos 2 [0] - 1) = 2 
max 

and for the second 

(3/2) (r/e) _(Scos3[e] - 3cos[e]) t =.,. 0.05 
ex reme 

Thus, neglect of the (r/e)-term could amount to 

± 0.05/2 = ± 5/200 = ± 2.5% of the retained term. 

For a 10 - foot tide the error introduced is of the order of a quarter of a 

foot which is hardly serious for practical work . 

. To get an estimate for (1.05:13) and (1.05:14) we have to con­

sider (1.05 : 12). The first term of (1.05:12) will exhibit extrema for 

d(2sin[6]cos[8))/d8 = 0 

The maxima occur at 8 = n/4, 3n/4, 5n/4, 7n/4 , and they have the value 

1 . 5 . In the same way we compute 

d{(3/2)(r/e)sin[8](5cos [BJ - 1)} 
ae = 0 

The resulting extrema from this term are± 0 . 0344 which introduces an error 

on neglect of r /e of 

± 0.0334/1 . 5 = ± 0.0688/3 = ± 0.023 = ± 2 . 3% 

Thus, errors introduced in the horizontal force by the neglect of r/e are 

of the same order as those introduced in the vertical force and, even in 

the case of the moon , are of no great size. 

Our approximation for the tide-producing force is now: 

{1.05:21) F = 
3yCr 

{{2sin 2 [L]sin 2 [c) + cos 2 [L)cos 2 [D) - (2/3)} 
V TeT 

+ {sin[2LJsin[2D]}cos[hJ +· {cos 2 [L]cos 2 [c)}cos[2hJ) 

(1.05:22) FE 
3yCr 

+ {cos[L]cos 2 [DJ}sin[2hJ) TeT ({sin[L]sin[2D)}sin[h] 

(1.05:23) FN = 
3yCr 
-ie-r '( { sin [2L] (sin 2 [DJ - ~cos 2 [DJ)} + {cos[2L]sin[2DJ}cos[h) 

- {~sin[2L]cos 2 [c)}cos[2hJ) 
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l1s suggested before, tne grot:ping of these forces into terms 

according to multiples of his very useful for describi ng tides. Consid e r 

the changes in L, D, and h. ?o~ any particular point of earth the latitude, 

L, .is constant. For the sun the declination, D, cha~,;E:s about 15.5' per 

aay . Fo r the :noon t he declination, D, exhibits changes ranging from 4°12' 

pe r cay to 2°41' per day. These c.re relatively slow changes compared with 

h, the hour angl e , ~hich goes through 360° in a day and 2h which goes 

through 720° in a day. These changes in hand 2h are not slow . Thus, the 

terms not involving h vary slowly and contribute the long period co mponents 

to t~8 f0rce . For the sun, D runs through one cycle in a year while, for 

the moon, D runs through one cycle in a month . The terms involving only 

Land Dare called long period terms. The cos[h] term runs through one 

cycle in a day and is called the diurnal term . A term containing cos(2h] 

completes two cycles per day and is called the semidiurnal term. Se:nidiurn­

al terms are prominent in the tides of the Atlantic which show two high 

waters per day . 

Should any further indication of the unimportance of the {r/e)­

terms which we have neglected be needed, the fact that no place in the 

world has three high waters per day would offer confirmation. Should such 

a triple tide ever be found it would correspond to the cos[3h) term which 

has been suppressed by the approximation. 

Let us consider now the coefficient com.mon to all three force 

components called, naturally enough, the common coefficient: 

3yCr 
27 

Unfortunately, e is a variable and must be retained as such. The use of e 

or any other single representat i ve value is inadequate . For the moon, e 

cycles in a month and, for the sun, in a year. 

For practical work we use the cortl~on coefficient in another, 

approximate form. The apparent gravity is given by 

so that 

a~d we may write 

g = yE/r 2 

y = gr 2/E 

(3yCr)/(2e 3 ) = (3/2) {C/E) (g) {r/e) 3 
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Consider, for E:xa.rnple, t}1e vertical tide -s ener-ating force as 

given by (1.05:21). 

F\,jg = (3/2) (C/E) (r/e) 3{terms.'.in • L, D, and h} 

Both g and rare variable. How big is the error introauced by taking g and 

r constant? At the equator g = 978 gal. At the pole g = 983 gal. Working 

from a mean value for g , g = g(l ± 0.0026) . If we taker constant in a 

similar way, r 3 = ; 3 (1 ± 0.0051). Further, rand g have countervailing 

effects at pole and equator. Thus, the error introduced by using constant 

g and r is about 0 . 25%. It would be possible to retain the variation in g 

but this never seems to be done. 

Let d - the mean distance of a celestial body. 

e - the true, variable distance of the celestial body. 

Then we can write the common coefficient as 

{ (3/2) (g) (C/E) (r/d) 3 } (d/e) 3 

In this expression only d/e remains variable. 

In tidal work it is customary to define a constant factor by 

U = (C/E) (r/d) 3 

which has the nwnerical values 

Sun: Us= 2.569x10-8 

Moon: U = 5.582xlo- 8 
M 

u5/UM = 0.4602 

is the ratio of the solar to the lunar tide-generating forces. 

We have, then, as final approximate forms for FV, FE, and FN 

equations (1.05:24), (1.05:25), and (1.05:26) shown on page 52. 

The only remaining step is to introduce numerical values for 

the parameters 1,J, d/e, g, L, D, and h. The ultimate objective is to ex­

press all the variables as simple functions of mean time in such a way that 

the rates of change with time will be constant. If this could be done, the 

components could be fixed once for all. 

From a theoretical point of view, Laplace was the first to sug­

sest that the tides could be represented as the s~~ of small perturbations 

linearly combined . That is, he pointed out that, if the tide-generating 



(1.05:24) 

(1.05:25) 

(1.05:26) 

F = 
V 

F = 
E 

F = N 

common 
coefficient 

(3/2)gU 

(3/2) gu 

{3/2)gU 

geodetic 
coefficient 

celestial 
factors 

( { (3sin 2 [L] · - 1)} (d/e) 3{ (2/3) - cos 2 [D]} j 1ong-period componen t 

( 

( 

+ fsin[2L]} 

+ {cos 2 [L]} 

{sin(L)} 

+ {cos (L]} 

{ (3/2) sin [2L)} 

+ {cos[2L]} 

- {~sin[2L]} 

(d/e) 3 (sin(2D])cos[h] ic1iur nc1J. component 

(d/e) 3 (cos 2 [DJ) cos [2h]) I scmidiurnal component 

(d/e) 3 (sin[2D])sin[h) I (li111.-ni-1] component 

(d/e) 3 (cos 2 [DJ) sin [2h)) I scm.i.d.i.urni'l.l component 

(d/e) 3{ (2/3) - cos 2 [D]} liong-pcriod compon0.nt 

(d/e) 3 (sin(2D])cos[h] laiurnal component 

(d/e) 3 (cos 2 [D])cos[2hJ) jsernidiurnal component 

'J 1 
h.J 
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:::or c € S could be e:>:pre s sed as a s um cf cosines then t he y cculd be e >:pre ss e d 

as IA .c os[8. + k.]. Lo rd Kelvin ~a s the first to do the Fractical wor~. 
l. l. ). 

The pro;:,l e m of ex p ressing (1.05:2 4), (1.05:25), and (1.0 5 :26) 2.s su n:s of 

cosine terms is so difficult, te di ous, and unproductive of insisht t:i.at we 

~o ~ •t soi to :tin de~ ail. 

l e ~ in a gener al ~ay . 

1e wil l only ~i scuss so ~e aspects o f t he prob-

To begin with, let us take the a st ro nomi cal motions an d expre ss 

them a s functions of time. The method is to introcuce mean longitud e s for 

the motions of sun a nd moon and then pile anomali ~~ on them as needed. 

Perig Pe and perihelion are used as 

reference points, Fig. 1.05-10. 

The rate of motion on the orbits 

is not uniform but for the sun to 

a good approxi mation we can use 

d6/dt .= a constant 

The moon is more complicated since 

its motion is influenced by the 

sun as well as by the earth. The 

position of the moon's nodes moves 

Fig. 1. 05-10 

around the ecliptic o~ce in 18.6 years. This position has an important 

effect on the tide. In practice, in any one year we assign it to its mean 

position and then jump it ahead for the next year. The movement of the 

vernal equinox due to precession is even slower and, a fortiori, can be 

taken constant over a year's time. 

In the development of harmonic t erm s the Bri ti sh and Americans 

pur su e differ en t routes . The U.S.C.&G.S. uses an obsolete method due to 

Charles Darwin which refers the motion of each celes ti al body to its own 

orbit. The British Admiralty method refers all motions to a reference 

point on the e cli ptic . Th e differences in the r esu l ts secured·by the two 

methods are negligible even though the methods of att ack aYe radically 

different. Schure~an (1941) p res ents the U.S.C.&G.S. rne~ ho d in gory cetail. 
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h'e r.,ay s:.-:etch the mode cf at tack &.s follc•--•s: 

X - ~he true longitude measured on the ecliptic from t he vernal 
equinox, "T', 

X - the mean longitude. 

c...X/d t - a. con st ant . 

p - th e longitude of pe rig ee . 

N - the long it ude of t:1e node . 

R - the rigi1t ascension . 
a 

R 
aG - the right ascension o f th e merid i an 

L - the longitude of a point of earth. 
0 

of Gre enwich. 

As an example, for the moon 

(1.05:27) (d/e)M = 1 + O.OSSco s[XM - PM) + O.OlOcos[XM - 2Xs + PM) 

variational term 

+ 0 . 00 8co s[ 2 (X 
M 

--advectional term--

The acvection al term cov ers the eff ect of the sun on the moon ' s motion . 

Fo r (d/e)
8 

there is no corr espondin g term . The numerical coeffici en ts 

come from the characteristics of th e moon 's orbit. To our degree of ap pro x-

imation, all the variables change uniformly with time . 

pe ri od term . 

The moon's true longitude is given by 

(c/e) is a long-

XM = XM + O.l lOsin[XM - PM] + 0.022 si n[XM - 2Xs + PM) 

+ O.Ollsin [2( XM - x
5

)) + 0.004sin[2(XM - PM)) 

The sine of the moon's declination is a function of its right ascension, 

sin [D ] = f (R,, ,M) 
M ..._ 

and the moon's hour angl e is given by 

hM = Ra!"! - (RaG - Lo) 

We have mentioned that fer the sun the acvectional term drops out. In add -

ition, any expression for the moon which inv olv es the longitude of the node, 

N, will have no counterp art in the co mFarable expression for the sun . 

r.ar monic e>:pansion s of t:,is so ~t ah,ays f orce us into a cer ta in 

a-nount of approxim ation to keep them in J-,and. For exa..'":lple, when (d/e) 3 is 



55 

co:.i;?ute d fro m (d/ e) , 35 co s ine t erms result. 
M 

Whe:n you beg in to feec t::i s 

and the oth~r required exp an sion s back to get FV, FE, an d FN the express i on s 

ca n run to hundreds of term s without half trying. The n~-nbe r of t er ms you 

ele~t t o kee p depends st rongly on th e part ic ul ar poi nt of ear th f o r whi ch 

ycu wa~t to pr e~ ict . In th e Chesapeake Bay you can get by ~i th relatively 

re w. In the Bay of Fundy you have to ret ain many mor e . 

In approximatin g, the small angle rel at ion sh ips, 

si n[e ] ::, e and cos [0 ] ::. 1 

ar e frequently used . 

For no discernable reason i t has become conventional in tid al 

work to use on l y cosin e terms . Whene ver a sin [8] appear s it is re pl ace d 

with 
sin[6] = cos[6 - 90) 

Any time cosn[e ] appears it can be r educed to exp re ssi ons in 

multiple angles by means of the tri gonomet ric identiti es . 

·with the procedure of bre ak ing t he forces int o harm oni cs has 

emerg ed t he no tio n of "a str es fi c tifs ." The idea is tha t you junk the 

cel e sti al bo di es whi ch actually ge ner ate the forces and replace them with 

a whole swarm of imaginary celestial bodies of t he proper mas s whi ch move 

un iformly ar ound th e earth; one for each harmonic compon ent. The id ea is 

fu n in a macabr e sort ·of way bu t fruitless. It should b e a strong warning 

to you not to go ar oun d naively as signing physical in terpretations to the 

components of an ha rmoni c ana ly sis. 

For long-period components there is (a l most) no cha nge in the 

hour angle per ho ur . 

For the diurna l constituent th e hou r angle o f the mean sun 

changes 15° per hour. 

For the semidiurnal con s tituent, the hour angle of the mea n sun 

ch an ges 30° per hour . 

Fo r the mean lon git ude, X, the longitude of perigee (or pe ri­

he li on) , and t he l ongitude of the nod e, N, we have the following ra t es of 

ch an ge..:.. 
(dX/c t )M X '\, (cX/dt)

5 = 0. 041 069 o /h::- X '\, = 0.549017 0 /h r 
s M 

p '\, (dP/ctl
5 = 0.0 00002 c/ hr p '\, (c.P/dt) = 0 . 004642 o /hr -s - M M 

N '\, dN/ dt = 0 . 00 22 06 o /hr 
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Up to rio\.: \-.:e have bee:, primarily conce r ned with the development of t:-ie tic e ­

gen.e ra ting fo rces . The tim e ha s cor.,e t o look at th e response of t;;e water 

to t:-:cse fo rc es .. The sim pl es t c.p_;_:roach is cue to Is2.2.c Ne,,,ton . It is bas­

ed on a ~urr.cer of su ite unrealistic a ss ..:.-:i:;:tions that reduce the prc!)lem 

fro:n one in dynami cs to on in s ta tics . In spite o f the unre al istic assump­

ti on s the approach still giv es useful re sult s. The theory is called the 

equi libri ~~ th eo ry of tid es or , a lt e rn a tively , t he e~uilibrium tide, t he 

as tron omi cal t ide , or the gravitational tide . 

The tw o prim ary ass umpti ons made in the esu i librium t heory are : 

(A) The e ntire ear t h is cov ered by water to a uniform dep t h. 

(B) Friction and in erti a ar e negligible .. 

The first assumption mean s tha t any pert urba tion in phase with a force can 

be propagated enti re ly around the ear th with out int er fere nce from lan d 

masses. In eff ec t, .it throws out the boundary cond it ions . 

Assumpti on (B) is a l ittl e trickier. The negl e ct of frict ion 

(viscosity) is a common one in many ap pr oxim ate sol uti ons to f luid p r ob l ems . 

It fe els comfort ab le. We're used to it and it seems reasonable here. But 

what abo ut th e negl e ct of inertia? Inertia is a p rop erty of matter, i.e . , 

mass , as is the very gravit at ional at trac t ion we assign as the cause of t he 

tide . It se ems a bit incon s istent to negl ect inert ia whi le ret ain ing 

gravit a tiona l attr act ion . Careful in spection of th e equi lib rium t heo ry 

s ee ms to in dic ate that the f unc ti on of this as s ~~ption i s to provide that 

there shall be no lag in t he re sp onse of the water to th e tid e - generating 

fo rce s. .At ev er y in stan t the wat er is in eq uili br i1;m. We ask no ques ti ons 

ab ou t how it passe s fro m eq ui libri um at one ins tan t t o equ il ibr ium at ano the r 

instan t. In e ffe ct, the water is to have no memory at all abou t i ts p ast . 

Despi te the h i ghly arti fi cial as sumpti ons jus t made, th e equi­

l ibrium theory prov ides a valuab l e aajunct to tidal t heo r y . For one thing, 

it offers a r eference fo r actua l t ica l neasu r ement s . For ex ample, a t a 

parti cular place the mea su red tide mig:i t come to hi s~ ·,,·ater one hour after 

the com_:?uted equil ibr iwn ti de . It al so give s a visualiza ti on c f t he forc es 

of attraction tha t are at work . 
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The for ce components we i;ave been stu cyi:-,g --di urnal , ser:iici­

urnal, and long-period -- a re all p:::e sent in t he equilibri U."?'l tide; as tJ-,ey 

a re i n t he actual tide. But the actual tid e also includes such things as 

t~e. effects of changing pr es sur e gr adi en t and o the r large sc ale phe nomena , 

wine str es s, ~~i ch can be fairly steacy in th e Trades , ant Coriolis f o rce . 

Ho·,-,ev e ::, ou r ini ti al as sumpt io ns are so cru de th at i t is not •, .. ort h ou r 

whil e to introduce these refineme nt s into the analysis . Our oc ean wil l be 

homoge neous as well as ubi qu ito us. Cl ea rly, assu..111ption (B) will ru le ou t 

Coriol is force. 

To assumptions (A) and (B) we now add : 

(C) The e arth is a sphere . 

(D) The tide-generating for ce s are such that the cent rip et al 

acc el era ti on is ne gligible. 

This means tha t we can write gr avity in the simplified form 

g = y (E /r 2 ) 
E 

where 

rE = the mean ra di us of t he earth. 

We will begin by usin g potential the or y. By its ver y name th e 

equili brium th eo ry su gg es ts that the sea su rf ace will be eve ryw here perpen ­

dicula r to t he resultant of the acting fo r ces . Now an equilibrium su rfac e 

is also an equipotential surface . The p otential of a forc e is defined by 

the amount of work re quire d to move a uni t mas s fr om th e surface on which 

it is loc a ted to a position where th e force i s zero. Further, th e amount 

of wor k done in moving the uni t mass mus t be independent of th e path along 

which it is moved. 

So the f irst que sti on be fore th e hou se i s : Where ar e the posi­

tions where t he f orce s are ze ro? Conside r gr avi ty . If th e ear th were a 

point mass , t he n we would ha ve 

rE + 0 g ➔ m rE ➔ = g + 0 

Act ual ly, the ea rth is no t a po i nt mass so that, appealing t o Poi ss on's 

equati on, we ha ve 

r -+ 0 
E 

instead of t he =ir s t rel at io n abo ve . 

g ➔ 0 
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~ -e ~id e- gene ~at ing forces as ex? r esse d in equ ati on s (l . 05 : 6) 

and {l. 05 : 7 ) were 

ye 
({ 1 

cos[6) - (r/e) 
cos[eJ) FV = e" (r/e)L}-/"L -- 2(r/e) cos[ e ) 

. F 
C 

({ 1 
s in [8 ] 

sin[el) = (r/ e)L }:;,/'L. -
H e - 2(r/e)cos[ 6] 

C is the ma ss of t he ce l e st ial b o d y an d e is the length o f t he lin e of 

center s. We wi ll take them as c onstants . Fv and FH go to zero as r 

g oes to zer o. Th is i s t he plac e t o whic h we mu st mov e ou r unit ma ss to 

get th e potentials . 

Le t 

n - th e pot ent ial of gra vit y g 
and n 
By definitio n we h a ve 

(1. 06: 1) n 
g 

Su bst itu tin g for g 

There fo re , 

(1. 06 : 2 ) 

Q 
g 

Q 
g 

- t h e pote nti a l of t he 

co 

= f-g d r 
r 

co 

J dr 1 = y E - rL = - yE ~ 
r 

F rom equ ati on ( 1 . 0 6:l}, cl ear ly, 

g :: - an ;ar 
g 

tid e-p rod ucin g f orc es 

Th e pr op e r e xpr ess ion fo r Q i s s ome ,,•ha t l ess obvi o us. Q can b e 

w~itten as a functi o n of r and 6 , 

so th a t , &ormally , 

W''nenae 

Q Q (r, 6 ) 

dQ = an ar + an ae 
clr cl6 

;;n ae 
06 

At th e cente r of th e earth r = 0 , . = 0 and the angle is in.Ttater ia l. We 

c an , i f we c ~o o se , s et e1 :: s2 so tha t 
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Th en 
r 

n = J aa dr ar 
0 

T·his sa ys th a t the effect of moving a ur,i t mass from the s>Jrf ace to the 

ce:1t er of the ea!.'th along any pa th i s the same . Tha t is , i t is ind epend­

ent of the angl e 8. For s imp li ci t y , take a ra di a l pa t h , 

e = a constant 

The wor k is done against FV so that 

r 
(1. 06: 5) 

This te lls us that 

(1.06: 6) 

so th at we have 

n = f Fv dr 
0 

8 constant 

n = ~( (3cos 2 (61 
e 

r 
1)/ rdr + 

0 

r f ~ (5cos3[e) - 3cos[el>f r2ar 
0 

and , in t eg ra t ing, 
3 yc r 2 ( 1 1 r ) (1.06:7) n == 2 ~ (cos 2 [e) - 3) .:Y 3. {t) (5cos 3 (9] ·- 3cos[0) 

gives n in terms o f t he geocentric angle e. For use this exp res s io n would 

have to be hack ed over to right ascension and declination as we did in 

sect io n 1.05. 

We can now write 

(1. 06: 8) 

The condition that the s ea su rf a ce be an equipotentia l su rface 

may be writt en 

n + n = a constant 
g 

To deterr.1ine th e constant consider e~uation (1 . 06 : 7) . I f it can be show n 

th a t n beco mes zero at any po in t, th en th e constant must be the mean va lue 

of n . With t hi s in mind we set e~ ua ti on (1. 06: 7) equal to zero and so lv e 
9 

f or 6 either graph i cally or by insp ection. Looking at Fig. 1. 06 -1, p age 60 , 
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21//:.1::r= (~''\~ (---'-l/{:.o s2 8 - 1/3) ACTU<LLY THE 
::, ., ., ~ r / e ( 5 co s 3 8 - 3 CO s 8) L,.,/ 0.11, P LIT UDE OF 

2 , ,r 2 21i / THIS F\JN CTION 
--,_"./ _ _ _._~ . IS MU CH S!J t- L LER ; -,/: iv-· I· --u ' 18 ,-. 3 -2 ~(5cos 8 - 3co s9 ) ~ 2 

AND r /e ~ 1/ 60 . 
-2/3 

F ig . 1. 06 - 1 

it is obviou s that there is at l ea st on e e f or which Q = 0 . For th is e th e 

condition becomes Q = a co nst an t or, s inc e we are at the earth 's sur fa ce 
g 

where r = rE, the constan t is yE/rE . 

Remar k: You migh t f ind it profit ab le to chec k this t hrough in th e ligh t of 

th e Gau ss mean va lu e theorem. 

Now, in g eneral, Q !: yE/ r so that Q + n = a constant becomes 
g g · 

(1. 06 : 9) E 3 ycr2 ( 2 l 1 r 3 J 'if + 2 e 3 (cos [el - 3) + 3 <;) (Scos [S) - 3cos [e l) = rE 

Remark: Thi s same ba sic development is to be fo und in Schureman , U.S .C .&G.S. 

Sp . Pub . No . 98. 

Define the di spl ac emen t of the sea s ur f ace fr om mean s ea lev e l, 

n , by r = rE + n- Our pr ob lem now is to express n as a function of 0 and 

th~ constants. Begin by divid i ng equation ( 1. 06:9 ) through b y yE/r to ge t 

(1. 06 :1 0) 

and, substituting for r, 

• 3 
3 c rE + n 

u .. 06 : 1 1 ) [ 

1 + 2 E l e l (cos2 { e J 

This can be 
(1. 0 6: 1 2) 

r ewritten as 

1 ~[rE)j3 (1 + 
2 E e 
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much much smaller tr1a n this so tr.at :-i/r~ << 1. E>:9andin g t:-ie powe:>:s of 
L 

(1 + n/ rE) and neci;lecti:1g all tEiT. .s containing n/ rE to th e se cond pc·,:er and 

hig _he r we have 

(1.05:13) 

l ~J rE] 3 (1 + 
2 El e 

1 3 C -) + - -
3 2 ::s 

= 
r + n 

E 

Solving (1.06:13) for n/rE gives 

(1.06:14) 
3 4 

+ 4 ....!l..) (~ ccs 3 [8) - cos [9]) 
rE 3 

l,iiE l 3 C rE 5 
(co s 2 [8) - - ) + - - - {- cos 3 [8) - cos[S)} 

3 2 E e 3 

[ 
3 C r~ ,:) 

l - 3 . 2 E : (cos 2 [6) 

In working out the tice-s en erating forces we used 

r~/ e = (r /d) (d/e) 
r, E 

and defined a numerical constant 

U = (C/E) (rE/d} 3 

where d was the mean distance fro m the earth to the celestial body . For 

th e moon U = U = 5.6x10-S 
M 

The denominator can thus be written as 

1-3 ~u(~)'(cos2[eJ -½)]-4 [½u[r:]r~J4(½cos3 [6J - cos[6))] 
d/e is of order 1 and rE/d f 1/60. Consequently , th e second and third 

terms are negligible in comparison ~ith 1. With this in nind , equation 

(1.06:14) is approximately 

(1.06 : 15) n = ½ rEu[;J'[ (cos2[el 

Equatio:-i (1.06:15) is used to get t:-.e r.,agni tuo e s for the es:uilibriu."71 tic.es 

s ~O\-:n on pa ge 62 . The -, alues a_...-;:, ~c:::-.ar. ·a "::>ly small . The tice, as c::served , 

is ger.eral ly r:rnch sr e a t ea . Howevi:~, ti ces in s nall enclosed seas a:::e close 
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t o these valu e s and no c.a ta are available from the C?Sn oc e an ~~ere assu~;­

tion (.1.1.) i s bes t r e:,_:,resen te d. Tr,e nu:-71bers given are f o r the moon ' s mec.n 

6 istanc e . Vnr iati on s up to 24% r es ult from its clos e r a pp roaches 

::..,una r tice Solar tice 

(e n) (ft) ( er:-,) (ft) 

Gre atest r:ise 36 1. 2 17 0.6 

Greatest f all 18 0.6 8 0.3 

Pu tt ing the ecu ilibri um tic.e, ( l. 06: 15) , in te:.-:ms of latitude, 

L, decli n ation, D, and hour angle, h, we have, after sup?ressing the 

rE/e term, 

(1.06:16) 
common 

coefficien":. 

ri = I u(i)3r 
2 e E [! (! - sin 2 (L]) (3_ - 2sin 2 [D]) 

3 3 

+ (½sin[2L)sin(2D))cos(h] 

+ 1,cosZ [L] cos2 [DI) cos [2h]] 

long-period 
species 
diurnal species 

semi diurnal 
species 

Thus, the equilibrium tide exhibits the same kinds of constitu ents as the 

tice producing forces. 

Let me reiterate: The equilibriu.~ tide is a construct of the 

mind. There is no reason to suppose that an observed tide behaves--or 

should behave--like an equilibriu.~ tide. Its chief uses are two. First, 

it ties the astronomical forces in with the tides as they appear. Second, 

it is useful as a reference for observed tides. For t11is second use it is 

indeed fortunate that the characteristic variations of the equilibrium tice 

ex h ibit the characteristic variation s of the observed tide to a greater or 

lesser deg:!'."ee. 

The variations in the equilibrium tide and the way the various 

tidal species enter may be visualized as follows. Under the equilibrium 

theory, the moon would tend to draw the figure of earth into a prolate 

sp:-,ero i d with the long a>:is directed tc--•:ard the moon, :?'iq. 1. 06-2, i:,age 63. 

The picture, grossly exaggerated, is shown with the rnaon on the equator 

an d with the moon a a declination of 15° N. 
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~ ~ 
60° ~J ~ ,,1-.00~ 

Ii ~ \ ef'.~-?--:-' 
30° N 30° I~ 

, r 

( 
\ MOON I l EQ UATOR 1 ~~ ( 

EQUATOR 

\ 
r I I \ 

~ 
30° s 30°s 

1/ ~ -~ 

Fig. 1. 06-2 

The moon produce s one high water immediately beneath it and 

another diametrically oppos ed. Low Kater extends like a belt entirely 

around the ear th halfway between. Since we have assumed that the water has 

no inertia, the bulge will track the motion of the moon exactly alw a ys re­

maining directly beneath it. 

When the moon is above the equa tor, declination 0°, the ~aximurn 

tide range occ urs on the equator and dimini s hes to zero at the pole s. vfuat­

eve r the range at any particular point, the highs and lows will be of the 

same size. 

For declination s other than 0° a declinational inequality is 

introduced, the two high waters being of unequal size everywhere except at 

the equator. This inequality increases with latitude until , near the pole s, 

there is only one high water per aay. The variations in the luna r e~uilib­

rium tiae with de clination are illu st rated in Fig. 1.06-3 £or DM; 15° N 

and latitudes of 0°, 30° , and 60° . 

I-
w 
w 
LL 

0.5 

0.0 

-0 .5 

-------- 30° 

Fie;. 1. 06 -3 
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F rom t1:ese c on s iGerc.t :_01"'!S a ?1wr,.ber o f Cea ~c t i cn s can be mc.C:e 

abou t t: 1e eq -..ii 1 ::.br i um tide: 

(1 ) Th e equilibriu.1T1 tide is c omposed o f "consta nt" t erns, di urnal 

o s cillations, and se~idi u rn a l oscil l atio n s. 

( 2) T~e d ::.~r n a l pa rt in c re a s e s wi th decli n ati on a nd vani shes ~ i t h 

zer o decl inati on 

( 3 ) The semi d i urnal part decr e a se s wi t h declination. 

(4) The tide varies with the lunar distance approximately as the 

cube of the parallax . 

Simi l ar conclusions can be reached about the solar eq ulibrium tide . 

One important point to note is that the effects of d eclination 

and parallax tend to appear as com'Tlon factors to all tides of t h e same 

species, e.g., the diurnal force s and the diurnal equilibrium tide have 

factors depending on parallax and declination which are qu i te independent 

of position on the earth's surface . If declinat i on or parallax reduces 

the diurnal tide at ~ne point of earth, it will reduce it everywhere else 

in the same ratio. This was sho~~ when we wrote n in equation (1.06:16) 

as a sum of terms in h, and 2h and separated eac h coefficient into a 

p roduct of factors each of which contained only one parameter . While it 

does not follow that the actual tide will be governed exactly by this rule, 

there is a strong presumption that the rule will be followed approximately. 

The cube of the parallax, (rE/e) 3 , or its equivalent, (d/e) 3 , 

in eq uation (1.06:16), is a factor common to a l l species so that we expect 

changes in tides due to ch anges in the parallax to affect all species in 

the sa Jne ratio. 

The diurnal constituents have a common factor which depends on 

the d e clination, sin[2D) , so we expect all diurna l constituents to b e 

affected to the same relative degree by changes in D. Si milarly for the 

semiaiurnal constitu e nts affected by cos 2 [D) . Ho~ever , since 

2 2sin [D] long- p eriod sp ecies - '\, 

3 

sin[2D] "v ciu:r na l speci e s and 

cos 2 [D) '\, s emidiurnal spe c i e s 

t h e d i ffe rent species are affec t ed i n diff e r e nt ways by a cha nge i n D. 
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-:::e y e f o:::-e, E:ve n if you could nec;lect th e long- pe r i od sp e ci e s, it wot:ld be 

absolutely necessary to work up each sp ecies s ep arat el y and then co rr~ine 

t he four es s ential contr i bu t ions : (1 ) luna r s ernidiurn a l, (2) so l ar se mi­

ch.:i- nal, (3} luna r diurn al, and (4) solar di ur nal. 

For tne L .nar se mi diurr.al eC::uilib r i u.rn ti de J,i c;h water occ urs 

·.,·.:-,s:1 cos[2h) = 1, i.e., ,.,-;ien the :-1our angle is h = 0° or 180 °. This co r ­

r esponds to t he tines of uppe r an d lo·.,1er luna r transit . In nat ure it does­

n 't happ en t hat \•:ay. However , Lapl ac e s ugges t ed th at, if th e f orces vary 

with a known periodi ci ty , th e t ides must exhi bit the s~~e periodicity . 

This would ju s tify th e notion t hat high water must lag transit by s ome 

fixe d amountwhi ch may be differ ent at different places. A similar st atement 

can be made f or the lu nar diurnal constituent but the constant lags appr opri­

ate to t he two species need not be the s ame. This whole notion of Laplace's 

is ba sically ind ep encent of any theo ry of tidal motion . However, it can 

only be exactly true if the periodici t y of the f orces is stri ctly constant . 

As you know, they are not. 

People working with tides found that th ese relations were 

appr oximately true for observed ti de s but t he y had t he devil's own time of 

it when they t ri ed to combine the fou r b as ic consti t uent s to give the whole 

tide. Further, they ~ound that th e variations i n the sep arate constituents 

due to changes in parallax and declination didn't always follow the simple 

relations indicated by the forces. The reason is not too difficult to in­

dicate. Any oscillation, left to itself, will ultimately die out because 

some frictional damping is always pre s ent. To maintain the oscillation, 

force must be appli ed in ph a s e with t he oscillation . If t he force is 

s e riously out of ph ase, it won ' t hel p maintain the motion. If it is nearly 

in phase, it will p r olong th e os cillation. The t id al f or ce s ha ve p er iods 

of roughly 12 and 24 hours. The na tural period of osci l latio n of a body of 

water depends on the dep th and the surface d imen s io ns. For a s~mple r ect­

angular basin of de ? th hand length£ th e natural pe r io d is 2£/,lgh. Such a 

basin would have to be large and e:ui t e s ha ll ow to have a natural p eriod of 

24 hours . The re are few oceans that come eve :1 clos e t o :-:-.et chi ng this . 

But e ar t h's geometry of ten come s clos e to a 12- hour na t ur al period . 



Becau s e ea rt~ f av or s ~he 12-hour p er ic6, s ernid iu rn al t id e s te nd to be 

s r ca te r t ~an d iur na l tides . In ge~ e ral, loc a l confi gu ration nodifies 

e ach Sfecies . In stead of hav i ng the se mi diu rnal real tide al~ays related 

t o th e s e:.1ic.i urnal e<:_uilibrium tide by a co:1s ta nt factor ar.d a con s tant 

ti :r.e l as, it i s f ou nd t:-:at both the fact o r an d t:-ie l ac; vary with the length 

o f t h e lcna r day . 

1.07. Harmonic Constituents . 

In equation (1.06:16) we have an expression for the e~uilibrium tide whic h 

organizes it into a sum of terms, each of a different species. Each t erm 

is compos ed of factors dependent on a singl e parameter; e, L, D, or h. 

These terms are quite complex . \•Tr.at we want to do is to resolve the ex ­

pression into " simple harmon ic s " in v.,hich the angles change uniformly with 

time and th e amplitude s rem a in s ubstantially constant ever reasonably long 

per iod of time. 

(1. 07 : 1) 

where 

In general, a simple harmonic term can be written in the form 

Acos[Gt - w)) 

A - the amplitude (a constan t) 

t - the time 

0 - the s peed (increnent of angle/unit time, constant) 

w - the phase lag (co ns ta:-it) 

ot - w - the argument 

2n/cr - the period 

To avoid continual use o f the jawbreaker "t he numerical value of the speed 

in degre e s per mean solar ho ur" we •,:i:! .. l use the brief e r, ::iu t less explicit, 

ter m speed number. 
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.'A. co:-.-,_;:01.:;;d 1,ar:-nonic is one in which at least cne 0£ the suanti­

ti es A, cr, w are -_·ariable. It is usu al ly po ss ible to brea~~ such 2. cc-rn?ou nd 

harmonic int o sim;:le ha nnon ic s. For example, suppose that in (1.07:1) A is 

va r~ ab le and, sp ~cifically, that it is compos e d of a constant and a simple 

:"1a :::r,oni c pa ~t. T::E:n instGad of (1.07 :1 ) we wo~ld writ e 

(1.07:2) 

where 

Exp anding, 

and using the cos in e product relation from trisonometry we have 

(1.07:3) 

ea ch term of which is simple harmonic . Thus, if the a:-nplitude of any com­

pound harmonic term with sp eed o and phase lag w includes a vari able term 

which can be written as a simple harmonic with sp eed o
1 

an d phase lag w
1

, 

th en the expressi on ca n be r epresented by harmdnic terms with sp ee ds o + o
1 

and o - o
1 

and corresponding phase lags w + w
1 

and w - w
1

. A similar result 

hol ds for sines. Clearly, this wi ll have its uses in equation (1.06 : 16). 

In the example just off er ed only the amplitude was allowed a 

variation . However, consider the fir st two terms of (1 . 07:3). For con ­

ve ni enc e take the phas e lags as zero. Then 

(1. 07: 4) 

Fort= O both co sin es are 1 and, if this re pr esents a tide, then high 

water comes to A
0 

+ ½A
1 

and occurs at t = 0. If A
1 

is small in comparison 

with A , near hi gh water the compound wave is behaving like neither cos[ot) 
0 

nor lik e cos [ (o + o
1

) t] but like an oscillation with some intermediate 

speed. Although only the a.rnplitude varied, at high ;,;ater the speed is 

s o;newhat greater than o (o 1 > 0) and the amplitude is a bit grea t er than A. 

(If o
1 

< 0, th e spe e d is less than o near t = 0 . ) 

Fr ew esuation (1. 06 :1 6) the eguilib ri ~~ se~ici~~nal tice , ignor ­

in g the geodetic fac t or, va ri es as 



(1.07 : 5) (;) 3cos 2[D)co s{ 2h) 

Suppose the ~oon in t he plane cf the csu a tor , D = 0°, and r.ioving a lwa ys at 

its ~ean dista~ce, e = d ~ (d/e) 3 = 1. Then the seniciu~na l ti de i s pro ­

pcrtiona l to c o s [·2h) and , if the r:.oon moves ·,mifo rnl~• 0: 1 its orbit, t he n 

2h incre c.ses uni::"'orwly . Under these ccncitions (1.07:5) is a simpl e ha !.""­

monic oscillatio n as it s tands . Its period is half a lunar day , 12 . 42 mean 

solar hours . I t s speed number is 360/12 . 42. This mean t ice is denoted by 

the symbol M
2

. 

M2 = t he p rincip a l lunar semiciurnal co nst it uent 

spee d= 28.984° per mean sol a r hour . 

Now, suppose e is no t constant but, as in actuality, va ries 

with a p er io d of 27.555 da y s (661.3 hours). The spe ed n umber o f th is varia­

tion is 360/661.3 = 0. 544. Looking a t (1 . 0 7:5) we see (d /e)3 p re sent a s a 

variable ru~pli tude and the p r evi ous r esults can be applied. In addition to 

M
2 

·we ge t two other. s imple h armonic constituents with speed numbers 

28 . 984 + 0.544 = 29 . 528 
and 

28 . 9 84 - 0.544 = 28 .4 40 

These constituents would hav e equal amplitudes if only t he amplitude of the 

main t erm were modified ; see (l . 07:3) . However, the change in the distance 

e also changes the speed on t he orbit. Bodies move mor e s lowly at greater 

cistances according to Kepler ' s Law . This me an s that the hour angle, h , 

can no longer be tr e at ed as increasing uniformly . Since the moon i s revolv ­

ing wi th the earth's rotation, 

larger speed~ e < d ~ a slowe r ra t e for the in crease · in h ~ a greate r 

Conversely, 
tide. 

sl ower speed~ e > d '\, a faster rate for the increase in h ~ a lower 
t id e. 

From this we associate the larger of the two speed nu.-nber s with a small er 

tide and converse ly. Thus , the tw o additi on al constituents acting with M2 
are : 

N
2 

- t he larger lu nar ellipt i c se~ i diurnal consti t uen t 

speed= 28.440° per mean sol2r hour . 

L
2 

_ the s~aller lunar elli?tic se~id iurnal co~stituent 

speed= 29.52 8° per mean solar hour . 
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In this simple mind e d e:-:pla nation we have tac i tly a ss1.:z:iec t h at 

.:he var i ation in c./e could be expressed by a single simple harmonic term . 

'A better expr es si on in terms of longitude was presentec i:1 (1.05:27). It 

was 

{d/e)_,
1 

= l + 0. 055cos[XM - P) + 0 Ol Ocos [X 2X + P) 
• !·I • M ·s 1-1 

+ 0.008cos(2(X - XS)) + 0 . 00 3cos[2(X P }) M M - -M 
\,·her e 

the moon ' s longitu de , X - nean 
M -

XS - the sun ' s mean longitude, 
and p - the longitude of lunar pe ri gee 

!1 

The terms have the following speed numbers : 

XM - PM"' 0 . 544 

X - 2X + P "'0.471 
M S M 

· According to the development of equation (l.07:3}, each simple 

ha rmonic term in this equation will produce two constituents whose speed 

numbers are sums and differences and, by analogy with the argument for N2 
and L2 , we have the following: (Among others!) 

'J2 speed 28. 513° per mean solar hour 

).2 speed 29.455° pe r mean solar hour 

1J2 sp eed 27.968° per mean solar hour 

s2 speed 30.000° per mean solar ho ur 

2N
2 

speed 27.895° per mean solar hour 

WARNING: The s
2 

constituent listed ~ere is not a solar constituent as the 

symbol might lead you to suppose . 

The relative importance of each o f these constituents could be establ ished 

by checking through their amplitudes. 

We s-till have the declinational factor to worry abou"t. In the 

semiaiurnal tide the declinatio na l facto r is cos 2 [D). Suppose the moon were 

to move exactly on th e ecliptic . Of cou rs e, it doesn ' t bu t the at -tack is 

the stancard one : a constituent for a restri ct ed case ? l us ~ore stu:f to 

allo\,· fo:!'." e·,e staggers . Then a full cycle of de clin atio,,s is run through 

in one revolu"tion, 27.3216 mean solar days or 65 5.7 ~e an solar hc~rs. 
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Si '1ce ccs 2 [DJ = ~ ( l + cos [2Dj), t! ;e c:eclinational te~w :-,as a period o: 

327. 85 i·.ours z.r,d , ccnsec;,uent ly, a sp eed nu:nber of 1 . 098 . This var i able 

factor i :1 the lunar crnplitude ,,ill sive rise to two ha!7.1o::ic terms in 

as s ocia t i on ,,i t:: 1 the principal te!:11\ !-'J
2

--and a pair fo:; eve:!'.y othe r bl oo cy 

cc:-:sti t ·.1e,,t v:Ee' ve ;:,icked t:.p so far as ·,:e ll. Their sz,ee d ml!ober s will be 

ti , e sum and di ff er en ce of t :,e 11
2
· speed r:~"!lber and 1. 098, i . e . , 

and 
28 . 984 + 1.0 98 = 30.082 

28.984 - 1.098 = 27.886 

We have mentioned that motion at the equinoxes is diffe re nt 

from motion the solstices . If this were not so, these two terms would 

be equal. When the moon is at C'f' , D = 0 . However, the change in right 

ascension is then less than av erag e . Consequently , his changing more 

rapidly than usual and the speed of th e compl ex harmonic representing the 

tide is greater than the average speed. Thus, we find from the second 

situation initially_discussed that the more important of the two constitu­

ents is the on e with the greater speed . Therefore, add to the ro st er of 

con s tituents: 

K
2 

= the lunar declinational sernidiurnal constituent 

spe ed= 30.082° per mean solar hour 

We will discuss the changes in declination due to the 18 . 61 -y ear cycle a 

bit later. 

You can see th at there are many constituents of the lunar semi ­

diurnal tide t ha t we haven't rnentio~ed . Fortunately, they are quite small . 

The ones listed are the on es usually used; and of ten no t all of them . 

The harmonic constituents of the so lar semidiurnal tide come 

fr om an expression of ex actly the same form as the correspo:1ding lunar on e s, 

(d/e)3cos2[D]cos[2h) 

but sola:; instead of lunar values are used for the par~~eters . 

The parallax factor has a period of 365 . 24 days so that the 

corres p onding harmonic con st itue nt has a speed n~-nber of 0 . 041 . The cycle 

of declination has the same period b'..lt t:i e declinatic ,r.al ::actor i nvolves 

co s [ 2::>] so that its speed m.1.:1'.ber is O. 082, twice that c :: t:.e pa ~alla>: factor . 

Re_?eating the rock hockey all over ai:;ain, if th e sun ::-,o·;ec c:1 the e~uator 



~~i~o~~ly a t a co ns t a 11t cista~c e , the tid e would va~y as cos(2h) and a 

s t ea dy rate of 30° per ~ean solar hour would result, This gives 

s
2 

= t~e princi p al s olar s enid i urna l con s tituent 

sp e ed= 30.000° per rr.ean solar hour . 

The pa ~allax fa cto-_ app1 , ~~ ~'-c ~ oroc " e s -'-'--'-' ~ 2 1. - UC tv.'c cc :1s~i.tuents \-.'i th 

spe e ds 30 . 041 a:-id 29. 959. By a n argu..11<:nt analos-ous to c::-ic. t for L
2 

and N
2 

\, ~A f inC th e s;nall e r the mor e impcr-:a~lt and list 

T2 = the principa l solar elli p tic semidiurnal const ituen t 

speed= 29 .95 9° per mean solar hour . 

The declinational factor applied to s2 , as the sir.iilar one was to M
2

~ 

g iv es constituents with speed numbers 30 .0 82 and 29.918 of which the great­

e r is the more important. Thus, 

K
2 

= the luni-solar declinational semidiurnal constituent 

sp e ed= 30.082° per meari solar hour. 

The name 11 11,mi-solar" applies because the speed is exactly the same as the 

lunar declinational tide, K
2

. 

Of the constituents called "luni-solar'' t:-ie principal ones are 

K
1 

and K
2

. It means that each constituent is made up of two components , 

one from the moon and the other from th e sun, ea ch having the sar:ie sp eed 

nu.."!1ber. They could b~ symboliz ed , for example, by 

The coefficient of th e constitu en t is very nearly, but not quite, the sum 

of the coefficients of the components. If we plot am?litude against time 

for th .e components , Fig, 1.07-1, we get curves which ar e a bit displaced. 

The phase difference is mainly cue to the presence of au in the argument 

o f the lu::1ar component and not in the solar component . We ....-ill.get into 

this a bit later ·. Consequently, for a compound constituent like K2 we have 

the maximum amp litude of the tidal const itu ent not e~ual to the sum of the 

maximum am9litudes of the components. 

~--~ ;;; ::11~: 
~--~:L 

Fig . l. 07-1 
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i•:e tu rn now t.o ti-,e ha~..-,o:-iic co ns tit ue nts o :: the ec;uilibriUJ"Tl 

diurnal tide . The variation for e ither t:-ie sun or the r.,ocn <;oe s as 

(d/e) 3sin[2D)cos[h] 

If .-:e attack ed th is as be::ore with the cel es tial body on th e ec;uat or we 

~culd have D = 0 and noth i~g woul6 result. Instead , hit the declination 

fir st . It is har monic ·,:i th l'lec.n pe r iod 655 . 7 hours and mean speed r.i.:.-.be r 

0.5 49 for th e moon. This is the same as we had i n the se rnidiurnal case. 

Since t he sp ee d number of the hour an gle factor is 14.492, the resu l t is 

a pair of terms with speed numbers 

14.492 + 0.549 = 15. 04 1 

14.492 0.549 = 13.943 

These are 

and 

K1 = a lunar declinational diurnal constituent 

speed= 15.041° pe r mean so la r hour 

o1 - a lunar declinational diurnal constituent 

speed= i3 . 943° per mean solar hour. 

They have equal ampl itu des and neutralize ea ch other to give zero when 

D = 0. There are minor refinements on all this that spew up additional 

constituents but we won't bother . 

Now stir in the changes in parallax. This variation is exact ­

ly t he san1e as for the semidiurnal tides. The terms proliferate on the 

sa~e argUJ11ents as before . . Of them we retain 

Q1 = a lunar diurnal constituent 

speed= 13.399° per mean solar hour. 

M
1 

- a lunar diurnal constituent 

speed= 14 . 492° per mean so lar hour. 

_ a lunar diurnal constituent 

speed= 15.585° per mean solar hour. 

Actually , there should be four constituents on this list but 

two of them have speed numbers 14.497 and 14.487 so that , practi cal ly , they 

are nearly inextricable. :or th em we use th e average for M
1

. 

A serious problem arises wh<=n two constituents ha.ve ve ry :,early 

the sc.rne spe ed number, say a ciffere~ce of 0 . 01°/m£h or l e ss . A short 
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o;:;~erv ation o f t: ,e ti de ca n no t possi bl y s ep ar a te such con stitue nts. ':"he y 

":i ll , ho wever, sr ad ua lly get out of phase . For 0.01°/ msh th ey wi ll co::ip­

letely separate in 360/0.01 = 4 years . At lea s t 4 ye ar s c f continuous ob­

sen ia.t::..on wot:ld be necessary to u:~tan gle such a pa i r. 

T::ere a.re a nu.rr.ber of r ou s h \,;ays to handle s uch a si tu at i o:1. 

Very often the ~~plituce o f on e of th e co~ ponen ts has a much greater rr.as-

nituce . In t hi s ca se th e smal l e r can be th ou ,;ht o f a s a perturbation on 

the domi nant component. Examples are the l\ and L 2 const i tuents. Tw o 

ass~~ptions ar e made: 

(1) The ratio of th e observed amplitudes is the s ame as the ra tio 

of the equilibrium coe fficients of the components multipli ed by 

the corresponding node factor (if applicable) . 

(2) The lo ca l ep och s of the two constituents, i. e., the ir phase 

shifts, are the same. 

These as sumpt ions are reasonably good when the con stituents in question 

are of the sa~e species and have very nearly the same speed number s. 

Consider two cons t ituents 

and 

!~o ph a se shift has been included in the arguments because of ass ~mption (1). 

Let A
1 

> > A
2 

so that the compon ent s ubscripted with " l " is dominant . We 

can write 

A
1

cos{v
1 

+ ul l = A1
cos[n

1
t + al + ul] 

A2cos [v 2 + u2) = A2cos[n 2t + a2 + u2] 

== A
2

co s[n
1

t + t.n t + a
1 

+ 6a + ul + 6u ) 

wher e 

and 

/:m = n2 - nl 

6a = a2 - al 

Liu = u2 - ul 

The combination res emble s the A
1

-curve with A
2 

adding a small 

pe:::tur ba tion. I f we rewrite the a rgum en t as e + /J.B, th e cor.ibined ti de i s 
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A A1cos[6] ~ A2cos[S + 66) 

= A1cosf8) + A2cos[6)cos[L.19) - A2sin[8)sin[L.16] 

or 

De fine 

Then 

But 

Therefore, 

Also, 

Therefore, 

and 

[ ) [ ~ l ~cos r - Al+ k2COS 

Rs in [ r] - A 2 sin [ 6 e) 

R2 = (Al + A 2cos[L.19]) 2 + (A 2 sin [L:.8)) 2 

= A 2 + 2A l A 2 cos [ 6 e) + A2 2cos 2 [68) + A 2 2 sin 
1 

:a: A 2 + A 2 + 2~.1A2cos [69) 
1 2 

A= Rcos[r]cos[9) - Rsin[r)sin[8) = Rcos[9 + r] 

A= (.r..l 2 

tan [r) :a: 

A= (A 2 
1 

+ A 2 + 
2 

Rsin[r] 
Rcos[r) 

1l 2A1A2cos[66)) cos[8 + r] 

A 2 sin [69) 

= 
Al+ A 2cos [66] 

[ 69 ) 

If b9 = 0, i.e. , if there were no differences between the two arguments, 

this would reduce to 

A= (Al+ A2)cos[8] 

as is only t o be expected. Therefore 

Define 

Al so 
R = AlRl 

Then A= R1A1cos(6 + r] 

2.S 68 ➔ o, 160°, 
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c -· 
- I if you tra ce ;)a d:. U? tne symbolism, 

A = R/~l cos [V1 + ul + r) 

\•::~ich can be cor:ipare d with t}1e dominan t compon e nt , 

A
1

cos[V
1 

+ u
1

J 

The sc.me kind of ha ss el .., .. i t:ri the sun l eave s us with: 

K1 - the luni-solar declinational diurnal constituent 

spee d= 15. 041 ° per mean sol ar hour. 

P1 - the solar declinational diurnal constituent 

speed= 14. 959 ° per mean sol ar hou r. 

The harmonic constituents of the equilibrium long-period tide 

var y as 

By this time you should be able to ~hemp this up yourself. The results 

are : 

Mf - the lunar fortnightly constituent 

spe ed = 1.0 98° per mean solar hour . 

M -m 
the lunar monthly constituent 

spe ed = 0.544° per mean solar hour. 

s a - the solar annua l constituent 

speed = 0. 04 1° per mean solar hour. 

5sa - the solar semi-annual constituen t 

speed = o.o s2° per mean solar hour. 

As we have pointed out, the line of apsides of the moon goe s 

through a cycle in 18.61 years. Thi s moves the moor.'s nodes around the 

ec liptic 2.nd introduces a variation of the sa me period in th e declination 

and all terms ~epending on it . Instead of introcucing more harmonic con­

stit uent s on the pattern us ed up to now, we allow for the variation by 

a?plyir.g a factor, f, and an in crem en t in the ph ase, u. The f,u - values 

are no t the same for all lun ar co nst itu ents. We will only point out here 

tha t all constituents can be written in the form 

f Hcos [V + u) 
..,;here 

f ~ a factor varying with a pe rio d of 13.61 yea rs 



76 

u a:1 angle vary i ng . --. a per i od of 18.61 ye ar - ; .. ,~l,.n 

V - an an gl e ch a :1ging un if o::711ly at the me:an sp ee d of 

the con stitu en t 

H = t he ampli tu dP. of t he co nstitu ent. 

Thi s aFplie s only ~o lu na r constituents . 

For so lar constituents, f = 1 and u - 0 since th e sun ha s no 

noce s. 

,-:e have r ep e ated ly ref e rr ed to th e equilibrium tide as a, ref­

er ence for the actual tide. Using Laplace's constant lag i de a, th e ac t ual 

tidal constituent corre sp onding to the es u ilibrium tidal constituent will 

be given by 

f Hcos[V + u - K) 

where f , V , u, and Hare as before and 

K = the lag of the phase of the tidal constituent behind the 

phase of the corresponding equilibri~~ co ns titue nt . It 

is.called the epoch . 

Hand Kare called t he harmonic constants of the tidal constit­

uent. For fu rther details about the harmonic constitue n ts of t he t id e- ­

should any vestige of interest o r cu r ios i ty still remain with yo u--con su lt 

( 1) The Admiralty Manual, Ch. VII, pp . 50-61 

and 

(2) Schureman , U:S .C . &G. S. Sp . Pub. No. 98 . 

I might mention, in passi ng, that the U.S.C . &G.S . uses F - 1/f so that th ey 

have 
FH b , = F . 1 . b . o servea equ1_1 rium 

Tables of the ep och, K, a re base d on the Greenwich meridian . 

To get the local epo ch th is must be co rrected to your loc al meridian and 

ti me . 

Even when only (r/d) 3 and (r/d)Y are retained in the ap~ roxim at e 

equations some 124 constituent tid e s re sult. This includes both solar and 

l una r tid e s . Actually, very f ew r,ave a.rnpli tudes that a.r.1ount to muc:,. The 

gr eat es t number usually us ed in ti ce work is about 30. I n Che sapeake Bay 

-..:he re the tide is about 2 feet t:-ie lesse r constituents Ki t ~ a,,ipli tuoes of 

the order of 0 . 01 in ch aren't worth bothering about. The fir s t 20 
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consti tu ents inc lu de the most i mporta~t ones. 

'I"he sym!:>olism that \.:e have been using for constituents is 

com?ose d of a letter and a num.½er. The long-term constituents use a dif=er­

er. t· system omitting the subscript n~'Tiber . 

G 

where 

The equilinrium tide can be written, as we have seen , 

fRGAcos [V + u] 

f - the node factor 

R - the gener al coefficient 

G - the geodetic coefficient 

A - the astronomical coefficient. 

depends only on latitude an d is di ff ere nt for different species but the 

sarae for any one species. A depends on astronomical parameters and is 

different fo r ev ery constituent, even those of the sw~e sp eci es . Tide 

Tables give only A which they ca l l "the" co eff ic ient or, sometimes, the 

re lative coefficient·. To compare th e sizes of constituents, for example, 

th e size of the lunar semidiu rn al M
2 

with th e siz e of the solar declination ­

al diurnal Pr, we begin by checking up on their coefficients--the as tro n­

omical on es --in some place like Schurem an , Table 2. They tur n out to be: 

M2 "' 0 . 9085 

P
1

"' 0.1755 
(astronomical) 

The common coefficients from Schur eman's Table 1 are: 

and 

Their ratio is 

0 .55 82xl0 - 7 

0.2569xl0- 7 

0 .46 02 

(for th e moon) 

(for the su n) 

All solar astronomical coefficients have been adjusted by this ratio so 
, 

th at, as listed, they give direct comparisons in lunar terms. Als o, differ -

ences arising from approximations using the third and fourth powers of the 

pa ral l ax have bee n incorporated. 

WARNING: You have to watch your s tep with differen t tables on this sort of 

th i ng. We compared FV/g from the tide generating forces with ~/r 

in the equilibriu,~ tide . T~e y aren't equal. For terns containing 

(r/c)3 there is a factor of½ and for terms containing (r/d) 4 a 
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fa ct or of 1/3. Some tables use FV/g a s Schureman does; othe~ s 

use n/ r. 

Even with al l these adjustments mace for you, yo u st ill have to worry about 

the · geodetic and nodal 

"' . '2 
'\, 0 . 500 

pl '\, 1.000 

(Schureina n, 

Therefore, 

= 

factors . For exc,ple, at 45°N in 1958 we 

M2 '\, 1. 03 3 

pl '\, 

Table 3) (Schureman, 'i;'able 14 ) 

0.9085 X 0 . 500 X 1. 033 
0 . 175 5 X 1. 000 = 1. 3872795 

0 . 3510 = 2 . 67 

have : 

Thus, the M2 tide has an amplitude about 2.5 times as great a s does the P
1 

tide. 

1. 08. A Few Remarks on Shallow-Wate::::- Tides . 

Before go i ng on to the p ra ct ic al analysis of tid e re cord s a few remarks on 

shallow-water tides are in order . I f coastal waters were deep , we wouldn ' t 

have to bother with this but, actually, estuaries and bays are quite 

shallow and the shallow-water effect s are quite promin en t. Mathem a tically, 

not much is known about the di storti on s of standing waves in shallow water. 

Progressive waves are in a bit better sh ape and , working empirically, we 

can do something about them. Viscosity, bottom friction, and interference 

from reflected waves are the kinds of things which act to distort the wave 

profiles. 

Suppose we have a simple harmonic wave , cu rv e (a) Fig. 108-1 , 

page 79, entering shallow water . The time interval frc::i LW to HW is the 

same as that from BW to LW. the v:ave is nicely regular a:-id sym,11etrical. 

Wnat happens? In gravity -..:ave th eor y ,,e use as an approxi:.,a t ion fo r the 

speed of a wave in shallow water , c = 11gh. This won't cio for tides. It 
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can be sho wn th at different parts of the wave pro fi le travel at different 

speeds s o that 

( 1. 08 : 1) 

where 

C = 

c _ speed of a point on th e wave profile, 

g _ grav ity, 

h _ the mean depth of the water , and 

n _ th e dis pla cement of the poi nt on th e wave p rof ile 

f rom mean wat er l ev el. 

By equ at ion (1.08:1) points on th e pr ofi le with di ffe ren t n ' s 

will travel a t di ffer en t speeds so that, as ti me pa sse s, the wave profile 

.,:ill distort. Le t the v:ave travel , and dis t ort , during a tir.ie T . Then 

freeze the profile and ove rlay it on the original wave for comparison . 

Make the points at mean level M coincide . This is the cotted curv e (b) in 

Fig . 1.08 - 1. We ~ind th a t hi gh wate r Has pu lle d ah ea d to H' while low 
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~ater L has fallen back to L' . In tim e T each point on the profile ~ill 

have :noved a distance : \,·hich is a function of elevation thyough e~·..:a tion 

(1.08:1). The point M moves c, = ,lgh since n = 0. Rela tive to Mall the 

other poin ts move 

( 1.08: 2) T (1 

T}1erefore , th e distance RR' traveled by the poin t R relative to M is pro ­

po rtio nal to its elevation nR • Similarly for H so that 

RR' nR 

HH' = 

Figure 1.08 -1 has been drawn on the assumption that Twas picked long 

enough to let H' get 30° out of phase with the position H would have occui ­

ed had there been no distortion . 

Now, if the differences of (a) and (b) are plotted yo u get the 

wave (c) , Fig. 1.08-1. Clearly, the distorted wave can be though t of as 

being made up of the undistorted wave, (a), plus the wave , (c). Wave (c) 

has two complete oscillations where the original wave (a ) has only one . 

We have been looking at the wave prof ile in space. We could,• 

of course, sit at a point and get the same picture as a function of time: 

Then, if (a) had a pe:i;iod of, say, 12 hours, (c) would have a "period" 

of 6 hours . 

Suppose, for the ~oment, that (c) were a pure harmonic . The n 

what we have just done would mean that the actual tide (b) could be re­

presented by a pure harmonic, (a) , plus a pure harmonic, (c), with (c) 

having a period half that of (a) . The additional tid e {c) is called a 

shallow-water tide . 

Even a glance reveals that (c) is no t a puYe harmonic so that 

we have to analyze this curve further . if we want to work only with pure 

harmonics. Fick up (c) and draw Fig . 1.08-2, pag e 81. Superimpose on (c) 

a simple harmonic wave (d) with an amplitude equa l to the average ~~pli­

tude of {c) and with a period that is st rictly half the period of (a). 

Tnt=:i, taking the differences e>:actly as before we can constyuct a c-:..!rve, 

(e), ;.;hich exhibits a "period" (?!?!?!) one-third of that shown by {a). 
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Fig. 1. 08-2 

For exfu~ple, if (a) is semidiurnal, (e) is one-sixth diurnal. At this 

point the actual tide is represented by 

lb)= (a)+ (d) + (e) 

where 
(a) is pure harmonic ; pe riod 12 hours 

(d) is pure harmonic; period 6 hours 

(e.) is compound; average period 4 hours. 

Obviously, this process can be repeated until th e actual tide 

is represent~d by a sum of pure harmon ic terms of decreasing period plus 

a negligible compound harmonic t erm . 

Thus, we eh-pec t any tide observed on earth to contain terres ­

trially generated compon en ts. If the primary is semidiurnal th en the over­

tides will be quarter - diurnal, sixth-diurnal, . . . while if the primary is 

diurna l, the overtides will be semidiurnal , th ird-diurnal, 

Checking back to Fig . 1.08-1, one sees t ha t t he pr i mary , (a), 

and the overtide, (c), are zer o together. The overtioe, (c), of course, 

ha s some extra zer os. Further, when (a) i s at rising half - tide (c) is 

rising. However, when (a) is at falling half-tide (c) is ri s ing. In the 

former case (a) and (cl reinforce each other to produce the rapid rise 

shown by (bl. In th e latter case th ey oppose each ot~er to produc e the 

slow fall shO\m by (b). 

Suppose that 

wave (a) ~ cos [nt - k ) 

The n, if the secondary wave were a pure harmo nic it ~ould be 
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wave (c) ~ cos [2n t - 2k - 9G0 J 

This means , for e>:a.'"llple, that if th e p r imary is an M2 tice with a f!~ase 

lag k, t!:e sh&.l lo w-water tiae , in this case an M 4 , v:oulci n2.ve a phase lag 

o f. 2k + 90° . Obse rvati on show s tha t for many p la ces this relations11ip 

fits th e fac ts pre tty we ll. Ho·,:eve r, can 't ju.mp to co:-iclusions . !:: isn't 

un i versally a?plic2.ble. Results of t~is sort gained fro~ theory a~e chief ­

ly usef ul as a guide t o what to loo k for . 

For standing waves we know ju st enough about shallow - water dis ­

. 0 r tion to indicate that the phase rel ationships a re different. If the 

primary ti de is co s[nt - k], then the se cond ary tide will be approximately 

either cos(2nt - 2k] or cos[2nt - 2k - 180 °] . Hence , if k is the pha se 

lag of t he M
2 

tice , then the pha se lag of the M
4 

tide due to a standing 

os ci lla ti on will be eith er 2k or 2k + 180°. This means that when the pri­

mary is at HW the secondary is at either l-IW or LW. In th e first case the 

distorted high water will be more peaked while t he low water will be fl at ­

tened out , Fig. 1.08-3. In the sec ond ca se the reverse will be tr ue . 

PRIMARY 

~SECONDARY 

Fig. 1.08 - 3 
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The amplitude relatio ns of th e se t er r es t rially gene ra t ed ti des 

to t he ampli t ud e of the p rimar y i s a mat te r of s ome importance . Sup pose we 

ta~e a se c tio~ of Fig. 1 . 08 -1 and co~pa r e it with the same t hi ng for a p ri­

r.,ar-y o f ha lf th e a.."llpli tude , Fi g. 1. 08-4 . Si nce th e d i stortion is propor ­

tional t o t he eleY ation i t follo~ s that 

H 

H H I - l.,·~ I · 1 1 - ,Jin and RR '= ½RR' 
l 1 

' \ 
\ 

\ 

\ 
\ 

Fig . 1. 08-4 

On the other hand , when we c ome to consider the differences between the 

distort e d an d undistorted curves, we find that the ratio ~n
1
/6n i s about~ ­

In other words , a t an y place the ~"llp li t ud e of the quarter-diurnal tide 

var i es appro x imately a s the squar e of the amplitude o f the s emidiurn a l tide . 

According to this the qu a rt e r-diurna l a t neap s will be l e ss th a n t ho s e a t 

sp ri ng s in t he r atio of the squar e s o f neap an d sp r ing r a n~e s. The is 

generally approxim a tely true and c an be used to estim a te th e relative im ­

portance of t he shallow -water tides when the amp litude of the primary is 

known . A similar r el a ti on holds f or th e s ixth-diu rnal tide which go e s as 

the cube , etc .. 

For Chesapeake Bay only the M4 and , po s si b ly, the M
6 

shal low­

wat er t id es appea r to be of any real in t erest . Howeve r, in many estu aries 
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t he dis to rtiona l effects are so great t:-1?.t the n1.1i"T\ber of sh al low -v:a.: eY 

con stituents becomes co:npletely unmanageable . It was o ri ginally thought 

that the overtiaes dropped in importance very ra ?i dly but recent work at 

Li~erpo ol s ug ge sts that, in many cases, the convergence is much sl ower 

t~ an ~a s hoped . Tr.is in di cat es that t~e hisher constituents, neglec~ed 

up t o now, may be worth looking i~to . 

The attack we hav e outlin ed is bas ed on a pure harmonic primary 

wave . Such a wave is se l dom--i f ever -- met with in an estuary. The wave 

which enters the estuary misht, conceivably, be pure harmonic but, in the 

es tuary, it is damped by friction, refracted by variable depth, bounced 

back off barriers to form standing ~aves, and, in general, treated like 

the bal l in a pinball mach ine . No one has made much pr oqress with the 

problem. However, the explanation we have offered is actually pretty fair. 

One warning though is in order. Amplitudes and ph ase lags must, repea t 

MUST, be gotten f rom observation; not from theory. 

Just to suggest to you that there are mis er ies as yet un­

mentioned, in addition to the overtides there are things known as com­

pound tides which have speeds which are combinations of the primaries . 

For example , there is an MS
4 

tide whose argument is arg{M 2} + ar g{s
2

} an d 

a long term tide whose argument is arg{s 2} - arg{M 2 }. 

The whole subject of shallow-water tides is quite analogous 

to the results Helmholtz got in stucying sound. He found both overtones 

and compound tones in music. If you plan to do anything seriou s about 

tides, I suggest that you begin by becoming very familiar with sound. 
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1. 09. The Har~onic A~alysis of~ Tide Record. 

The ti me has come to go into the methods of analysis used by the U.S.C.&G.S . 

Suppose you have a continuous recorc of sea surface elevation made by a 

tice gage at .some.point . The proble.-n i.s to de ter mine :::rom tne obser ve d rec­

ord t he amplitudes and ep ochs of the constitu ent tid e s at the po int of ob ­

servation . The theory of how to proceed is simple enough. Carrying out 

the necessary manipula t ions is extremely curr~ersome. As I have mentioned 

before, the Admiralty and the U.S.C . &G.S. follow different procedures . 

My remarks will cover the U.S.C.&G.S . method. The Acmiralty method is de ­

scribed in the Ac.Iniralty Manual. 

Consider a tide having only two constituents and , for simplicity, 

no phase difference. Then the record will be described by 

(1. 09 : 1) n(t) = Acos[at] + Bcos[bt) a -:/-b 

Assuming we know the species of constituent that enter , the fundamental 

periods are known so that at and bt are known. Since we haven from the 

record as a function of time, t, it would seem that any two values of n 

at two different times, n(t 1) and n(t 2), would be enough to set up a pair 

of simultaneous equations in A and Bas unknowns . I f so, they could be 

solved for A and B. For three constituents the system would need t.~ree 

equations, etc . for as many constituents as you wanted to use. This sounds 

simple, and it is, but it doesn ' t work in practice for a number of reasons: 

BUT 

First : The actual tide usually contains so many constituents that 

the system of simultaneous equations is very large. With hand­

computing this is a real objection. With the adven t of high­

sp eed computers it really doesn't have too much force. 

Second : The trigonometric arguments must contain phase lags of assort ­

ed sizes. The constituents are ce rtainly not all in phase and 

this doubles the number of unknowns. We have instead of (1.09:1) 

(1. 09: 2) n(t) = Acos[at + al + Bcos[bt + BJ a -:/-b 

The variables are JJ,. , B, a, and S. Much v:orse than the doubling 

of the nu.'11ber of unknowns is the fact th a t some of them are 
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out sid e t},e tr igo nometri c functions and so me inside . ?hi s 

means that ycu no lo ng e r have a simple system of linec:::: equa­

tions and th at the meth ods for such equatio n system s no lonser 

apply . 

Th~r d : The values of n r ead fr om the record are s ubje ct to 

errors of var i ous sor ts . There are the in e vitable in st rume nt 

errors . Wind-\, ;ave motion, a l th ous h u su ally pretty well danip ed 

out by th e tide g age, may not b e en ti rely r emoved. Meteoro ­

logi cal co nditi on s may alt er th e se a l evel for days at at ti me . 

And on , and on. All th ese things will intr odu ce s purious os­

cillati ons o f vari ous fr equencies in the recorded tide. They 

for ce us to use a vera ge s in ord e r t o stabilize the measured 

values of n(t) . 

The principle of the metho d of averaging is to is o late t he 

ef fe c t of a · single c omponent. For example, in e quation (1 . 09:2) suppose 

we wan t to take the average in su ch a way th a t 

(1. 09: 3) 

i.e. , 

<Bcos[bt +S J>= 0 

n(t) = Acos[at + a) + Bcos[bt + SJ 

<n( t )> = <Acos[at + a) + Bco s[ bt + Bl > 
T T 

<n( t)> = <Aco s[a t + a)> + <Bcos[bt + SJ> 
T T T 

If we can choose T adr oi tly en ou gh , we can satisfy equation (l .09: 3) so 

th a t, for tha t period of av er agi ng , T, 

<n(t)> = <Aco s[a t + aJ> 
T T 

The ideal length of tidal rec ord t o pick for Tis some multiple 

o f t he synodic pe riod of the co nstituents involved. The synodic peri od o f 

t wo or more con s tituents is the time b e tween s ucc ess ive conjunctions of 

like pha s es, Fi g . 1 . 09 -1, page 87. 

The method of averaging to knock out a constituent is ba sed on 

t he fac t that for a simple harmonic, say 

n(t) = Bcos[e) 

averaging ove r a period, or any mult ipl e of a per i od , give s zero . 
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Tb= 3 

0 4 

To Tb 6 
I To-Tb I 

Fig. 1.09-1 

1 
6=K·1 +2k-rr 

1 
0=K1+2k7i 

f nd6 = J 2kr, 2k,r 
6==K 8=K 

1 1 

Bcos[6)de = 

7 

SYNODIC 
PER 10D 

0 

This is also true if the record is re ad at a discrete set of points evenly 

spaced over an interval equal to a period or to some multiple of a period. 

In other words, if one comple te cy cle is d iv ide d into equ al increments, m, 

then m-1 
In. = 

i=O 1 

m-1 ( 2-;r 
A l cos -

i=O m 

One can start anywhere in the record and this is still true. 

Suppose we have recorded o ur two-constituent tide, equation 

(1 . 09:2) , ove r many cycles and we want to determine the value of A. We 

know th at constituent Acos[at + a) has a period T = 360°/a. Just to make 
a 

the dis c ussion de finite, suppose T = 24 hours. 
a 

Our record i s then many 

days long . ive read off the values of n at hourly intervals on the record 

sta rt ing anywhere and tabulat e by hours, Fig. 1 . 09-2, page 88. 



0 

l 

2 

23 

88 

l 2 

nO,l ;io, 2 

nl,l nl,2 

n2,l n2 2 
I 

n23,l n23,2 

Fig. l. 09-2 

n 

n 0,n 

nl ,n 
n 2,n 
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Now, because we are using the period of Acos(at +a], the con­

tribution of this term ton at any particular hour is always the sa~e, but 

because its period is different, the term Bcos[bt + 8) contributes differ­

ent amounts ton at any one hour on different days. We cc.n hope that for 

a long record, n large, the contributions from the second component will, 

on the whole, tend to cancel each other so that when we average we get 

l 
n n 

1 n ~ L n0 . 
1 l Acos[at 0 . = + a) + - I Bcos · t 0 . + 61 n . 1 , l. n 

i=l ' 2 n . 1 , l. l.= i= 

0 

1 
n 

1 
n 

1 n r L n1 - = l Acos[at 1 . + al + - l Bcos t 1 . + BJ n . l ,i n . l , l. n . 1 ,l. l.= l.= l.= 

0 

1 
n 

1 
n 

1 "7' I n . = l Acos[at 23 . + a] + - I Be [bt 23 . + Bl 
n . l 23,l. n . 1 , l. 0 ·i=l ' 1 l.= 1.= 

0 

or 

<no> = <Acos(at 0 + a]> 

<nl> = <Acos[at 1 + a]> 

<n23> = <Acos[at 23 + c: l > 
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Th~s , yo u ha ve 24 e stima te s of the first co nstitu ent sp a ced equa ll y ov e r 

i ts period . Cf course , th ey won't be pure but , if n is large, the t isturb ­

~ng re si cues -....:il l t end to be small. Th_e points can be p lotted and a curve 

repr e s en ting Acos[at + o) f aired throu gh th em. From the plo t th e value of 

t r:e a.n,?li tu c e ;.. c.;.n be estima '.:.ed . The valu e of t he pha s e lag, a , c an be 

se cur ed by no ti ng the ti ~e of occurance of t he maximum and subtract i ng fr om 

it t he hour of t he equilibrium tid e for the constitu ent. 

This process can be repeated for each constitu ent in turn. 

Su?pose t he Scos(bt + 8) constituent had a peri od of 25 hours. You could 
1 divide the 25 hours into 24 equal part s each 1

24 
hou rs long, re-read the 

curve at these points, and again get 24 estimates . The only esse ntial 

thing is that t hey be equally spaced ove r the period . So--in this case 

you could use the values already read but run from n
0 

to n
24 

and get 25 

estimate s. That could save a lot o f work . 

The operation outlined above is simple minded enough but th e 

mechanics can get fa_irly invo l ved . Try to picture to yourself the a.'llount 

of bonehead labor required to resolve a record from a major station which 

could well have ten to twenty constituent s and be a year or more long . 

Aga in we sing the old refrain : It's a nice idea but it b re aks aown i n 

practice . 

Qui te aside fro~ that, there is another reservation that must 

be made about the method. Suppose you had 3 constituents with periods 

, = 10 hours , 'b = 5 hour s, and T = 4 hours. The sepa ra t ion method de-
a C 

pends on the contributions from one componen t being the sc;me f or a given 

time while t hose for the o t he r components are randomly d is t ribut ed if t he 

record is long enough; the record bein g analysed over one of the given 

periods at equa l time intervals. It is e asy to see that th e con s ti t uents 

with periods, = 5 and,= 4 fit the r eq uirem ent . But what about T = 10 
b c a 

and, = 5? 
b 

From Fig. 1 . 09-3, page ~O, it can be seen that the wave pr o-

cuced by two p ure harmonics , one with a period double the other, is an 

oscillation that is anything but pure harrnonic--which i s no surpr is e. More 

t o t he point is the fact that , i f you take the 10-hour p eriod, setti ng zero 

any-where, and even if there is a phase diff e rence, the two waves are in 
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,/ 

Fig . 1.09-3 

exactly the s~~e relation to each other at hou r 10 as they were at hou r O. 

The heavy line simply repeats it self over and over. In other words, th e 

sum of the contri~utions of the two constituents is always constant at a 

particular time . The method will not separate them. 

In general, the method will not separate constituen~s whose 

periods are integral submultiples of a primary period . For example, suppose 

the primary tide h ad a period of 24 hou rs. The the method would fail to 

separate constituents with periods of 24, 12, 8, 6, 4, 3, 2, 1 , ~, .. . , 

hours. This is the Fourier se ries situation where you hav e 

(1.09 : 4) 

Aavice : If you are not familia ·r wi th Fourier series perhaps you should poke 

about in the tex ts a bit. R. V. Churchill, "Fouri er Series and Bound­

ary Problems" is simple and I have found it useful. 

The difficulty raised here is important in tidal work because 

some of the major constituents have such relationships. For example , 

M
1 
~ 14.492°/msh while M

2 
~ 28.984°/msh . The shallow-water tides can show 

the same property. 

What the averaging method will do is to pull a record apart into 

con s tituents which are either pure cosines (if th e re are no important sub ­

multiples corresponding to them in the rec ord) or deformed oscillations 

lik e the heavy line in Fig . 1. 09 - 3. 

To meet the difficulty ..,,e ca l 1 upo n some res'.ll ts from Fourier 

analysis . We begin by consideri ng tha t a deformed "c onstituent " o= the 
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of the kin d under di scussion can be ~r it ten as 

(1. 09 : 5) + .. . + f (t ) 
T 

l•': .k 

Jus ~ to b e s pe cific, suppose I a~ talking her e ab out the disto rt ed curve 

yo·c1 would get DY a·veras in g f or t::e !'\ cor. s ti t uen t when t he sub;.1ul tiples 

M2 , M 3 , . .. wer e presen t and import ant. 

Now Fourier analysi s cc.n always duplicate a curve ex ac tly l:,y 

taking an infinite number of such terms . The rou ti ne of Fourier a nal ys is 

just go es ahead and generates the whol e infin i ty of te:rr.is . The Fourier 

mechanism won 't te ll you ah ead of time which compon en ts a re pr es ent and 

impor ta nt in your record. You have to make up you r mind befor e you beg in 

how many and whi ch on e s you think are there. Havin g made your dec is ion , 

you carry out yo ur computa tio n and t he n ch ec k back to s ee how much resi du al 

wobble is unaccounted for. 

Since each of the £-t erms in equation (l.09: 5) is ac tu ally a 

pure harmonic of the·f orrn f = Aco s[a t - a], a vit al relation f or us is 

(1. 09 :6) acos[at - a) = Ccos( at) + Ssin(at) 

where it is not necessary tha t C e~u al Sand 

(1. 09: 7) 

while 

(1.09:8) 

Thus , the an alysis for (1.09:5) can be put in the form 

(1. 09 : 9) n = H0 + C1cos(at) 

+ S
1

sin [a t) 

----!\---

+ C2cos(2at] + 

+ S
2

sin[2at ) + 

-- -- M2-- - -

con st it uent constituent 

+ Ckcos[kat] 

+ Sks in[kat) 

---- Mk--- -

const itu ent 

The con st ant, H
0

, relat es mea n se a lev e l to the height of t he tide gage . 

If the re lation be twee n mean se a level and the he i ght of the tide ga ge , 

which usu a l ly has an arbitrary zero l eve l, is know~, t he~ we can remove 

t his co ns ta nt c.i splac ement f ro:n the record by f orming Tl - !-:
0 

but i t ha rdly 

matte rs s in ce HO i s quite easy to ce t er mine fr om th e rec ord. Supp os e the 
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ti t e h es a p er io d o f 24 h ours a~d t h at t h e r e cord is divid e d into hourly 

in te rvals . The n 

(1.09 : 1 0 ) 
23 

Ho : 2\ l n. 
. 0 l. :i.= 

i . e ., :--i0 is<> ov er a co mplete cycle or o ve r a n int e:c;ral multiple cf a 

cc~; let e cyc le of the primary wave. 

It i s well Known fro m statistics that in s2.mpling an os cillation 

y o u mus t sa ;np le at at. l e ast twice the frequency of the most rapid osc ill a ­

tion present. If you sam ple less of ten , a high frequency oscillation will 

look to you like a slower one . Th is is il l ustrated in Fig. 1 . 09 - 4 . Suppose 

IOHR 

Fig . 1. 09-4 

you have a wave that oscillates 4 tim es in 10 hours an d you want to explore 

it by sampling it at .a fi nite n umbe r of points spaced eq ually over the 10 

hours . Suppose you decide that anything smaller than 2- hou r interval s 

would make too much work. So you read off the solid curve at 2-hour inter­

vals. What you know about th e curve is a set of values 

<n0 , t 0 ) , (n1 , t 0+ll.t), (n2 , t 0+2tit), ... , <n5 , t 0+s6t) 

If only this in formation is available to you, it looks like Fig. 1.09-5. 

1l;; 
01/4 

'10 I 1Z 
0 I 0 5 0 I 

I I 
I I . ! I 

to .6. t I .6. t .6. 1 .6. t .6. 1 t 0 + 5.6.t· 
I I 

0 6 
1l 1 '112 

Fig. 1.09-5 

I a.-:i w~:l:ling to bet that, if any one of you ,,:ere handed Fig . 1. 09-5 and 
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as}~ed to fa i r a c urve through the points, you would c!"aw t':-,e de.shed cu r ve 

in Fi g. 1. 09 - 4 and not the solid cur v e th at produc e d the siven values of 

ni. The sam?ling rate is too sl ow to eve n suggest the ti~h frequency 

CU:!'.'Ye. To pick up the solid curve in Fig. 1.09-4 you r:iust sample at least 

every 1.25 hours . . Thus, the number o f intervals into v:::ich you divice 

your primc.ry must be at l e ast doub l e the fr equency o f t: ,e hi,;hest co:,stitu­

en t present , say k . Then, if mis the number of subdivisions of the period 

of th e prima ry cycle, we require 

(1. 09 : 11) m ;;; 2k 

For any k , Fourier analysis gives us 
m- 1 

n. cos(k~d (1.09:12} Ck = ~ I 
m i =O i m J 

and 
m-1 

(1. 09: 13) Sk = ~ I . ( k2n ·) ni sin m:l. 
where 

m i=O 

k '\, the harmonic 
and 

the total number rn '\, of increm en ts used in the 

primary cycle . 

From (1.09:12) and (1.09:13) yo u can compute Ak and ck from .equations 

(1.09:7) and (1.09:8) . 

Let me recapitulate th e "ideal" method outlined so far: 

Suppose we wish to analyse a tide in which we know or hop e that the 

constituents M1 , M2 , ... , Mv are important. The Mis used in the generic 

se n se to r epresent any constituent here. For these tides we know th e 

corresponding periods T1 , T 2 , . .. , T\> What we want to calculate are the 

amplitude s A1 , A2 , .. . , Av and the epochs o 1 , o 2 , ... , av . 

Step l : De termine the length of record to be used by computing the 

synod ical period T and using a record length R = µT where 'I.I is any con -s s 
venient integer. 

Step 2: Divide the period T1 into a su ffici ent n~rnber of equal inter ­

vals so that a good plot can be maae . Carry out an avera ge for each point 

.. ·i t hi n T 
1

, plot th e averages, and fair a cu rve through then . Repeat Step 2 

for e2.ch period T.; 
1 

i = 1, 2, ••• I V. 
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From Step 2 b:o kind s of cur ves will re s ult : :;:-ure harnc:,ic 

a r,c corr.pound . 

For th e pu r e harmon ic cu rves: 

St ep 3: From the graphs read cf f " r.. 
l. 

an d f rom th e oos iti on of A. on 
- l. 

~te t i~ e ax is relative to the ti~e of th e co rr€ spo ndi~g e~~ilibr iw~ ccn -

st~t~E nt Cet e 1-mine a. for each of the pure harmonics . 
l. 

For t he compound cu rv es : 

Since the compound curves are compose d of pu re harmonics v:hos e fre quen cies 

are multiples of the frequency of some primary cons tit uent fu rthe r step s 

are ne ce ssa ry. For any such compound cu rve resulting from an an al ysi s for 

a cons titu ent with pe rio d TA, the frequency of the prim ary is 1/TA . 

St ep 4: Determine, as well as you can, the numbers and frequencies 

of the constituents present in the compound curv e. Suppos e Tk to be the 

period of th e shortest constituent present. 

St ep 5 : Divide TA into at l east 2k equ a l inte rv als m and read the 

corresponding n .. 
l. 

st ep 6: Compute H0 = <ni> . 

Step 7: Replace n. with n. - HO = n. - <n.>. 
l. l. l. l. 

St ep 8: With the new ni comput e Ck an d Sk according to equations 

(1.09:12) and (1.09:13). 

Step 9: Compute Ak according to equation (1 .09:7) and ak by equ ation 

(1.09:8). 

Step 10 : Test how closely the values secured in Step 9 agree with 

th e initial compoun d curve. If the agreement is go od, the job is done . 

If not, repe at Steps 4-10 using more harm oni cs and keep it up until the 

agreement is satisfactory. 

The values fo und in St ep s 3 and 9 ar e the values of A
1

, A2 , ... , Av an d 

a
1

, a
2

, ... , av required . 

It takes very little thought to see w;,y th is is stil l an "ideal" 

pr ogr am ra ther than a pra ctical one. Suppo se that you must take into ac­

count a modest 20 constituents. Even one syn od ica l perioc could easily 

r e~u ire a SO- year rec ord (St ep 1). Fo r each of t he 20 pe riod s tne rec ord 

would have to be redivided into eq ual incremen ts (Step 2) . If you t hi:, k 
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back to th e speed m.:.rr.bers you have se en, you ,._.ill app re c iat e how mess y 

this could be . For instan ce , M1 has a pe ri od of 24.84 hours r equ ir in g 

fo r a 24-point division an interval o f 1 . 03 hours . N
2 

ha s a period of 

12 .66 hours requiring an interval of 0.55 hours, etc .. Afte r each re ­

c ivi s ion the values of n must be read off t he curve a ll over again. 

The U.S. C.&G.S . avoids t~1e problem by using what is known as 

the "Stancard System." Inst ead of adjusting t he division for the pe riod 

of each constituent, the values of n ar e read on ly at i nt egral values of 

the mean solar hour. This gives you 24 value s of n per mean solar da y . 

These values are then used fo r eve ry constituent re ga rdless of pe riod . 

Natu ra lly, the values of n will be a bit wrong for every co ns ti tu ent th a t 

has a period not made up of an integra l nu1nber of mean solar hours . 

Remark : With a sampl ing ra te of one per ho ur , according to wha t I have 

sa i d earlier , we can work down to the 6th harmonic of a semidiurnal 

ti de . The U. S . C. &G. s -. seems to think that th ey ca n ge t down to the 

12th but I don ' t se e how they figure . 

The practice with constituents whi ch do not fit this Procustian bed is to. 

assign the va lue of n re ad at an in teg ral mean so lar hour to the near er · 

consti tu ent ho ur. What is going on is shown in Fig. 1.09 - 6, p ag e 96. If 

th e const itu en t day is long e r th an the mean solar day you will now and then 

pick up a double assignment of n's as at th e 15th constituent hour in Fig. 

1 . 09-6. If the constituent day is shorter th an the mea n solar da y, then 

so me constituent hours will have non assigned to them . In the long run 

th is evens out . Since you ar e tak ing av erag e s it just means t hat there 

may be one n~-nber more or less in the average for some of the n ' s . 

The assignment of n's i s carrie d out at the U.S.C. &G.S . physi c­

al ly by means of st en cils. The values of n are tabulat e d in a st andard 

fo rm, Fig. 1.09-7 , pa ge 97. Ea ch consti t ue nt has an ov er lay wit h holes 

cut out in t he appropr ia t e pl ac es . The averages a re formed fro m th e n~rnbers 

which appe ar when the overlay is in place . I won ' t bothe r to de s cr ib e the 

s ten ci l . You can f in d the st ory in sordi d detail in Schu r ecan (1941) , pp . 

104 e t se q . . Actually, the s te nci l devic e is a good do dg e an d misht li ght­

en you r own data proce s sing chores on occasion . Look into it . 
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In th is life you don't get something for nothing. The princi­

ple of TANSTAFL is universal. While we have reduced reading labor consider ­

ably by using the "Standa rd System, " we have introduced a certain amount of 

er ror into t he av er ages . This arises because the values of n used to form 

them differ, more or less seriously, from the values we wold have used had 

we read the record at the correct intervals. The U.S.C.&G.S. compensates 

for this be extending the constituent to a half-hour overhang at each end 

of the record. The necessity for the half-interval overhang can be shown 

as follows: 

and 

Consider n = a cos[at - a) with tin solar hours. Let 

t 
0 

_ the solar time of the exact constituent hour in question 

Lit - th e solar time span of a constituent hour, 

g., for M1 , l'.it = 1.035 hours. The amount of th e miss may range from 
6t l'.it + -2 to t ..., The mean n over the interval is 

0 0 4 

n = 1 
t + ½bt 

0 

J A cos[at - a]dt 
bt t i" - "1ut 

0 

or, integrating and conv er ting to radians, 

or 

A l 180 
n = - - -- sin[at - a] a lit ,r 

t + 1-:.l'.it 
0 

n = lS~At {s in[at - o + ~a6t] - sinfat - C - ½a6t)} 
nau o o 

Using t~e trigonometric relation for the sum of sines this can be written 



Suppose 

T) = 180 A 
½nalt 

. 96 

cos!at - c)sin[ ½a6t) 
0 

n is t he value n s hou ld have had at t . 
0 0 

n = Acos[at - o ) 
0 0 

Then 

~o~, if the re cor d with ¼hich we a re wor king is very long, it seems reason­

able ~o as slli~e tha t the repeated misre~d values of n will be evenly dis ­

tributed on the inter va l (t -~nt . t +½~t), i.e., the aver age we co mput e 
0 0 

will be a pretty damned good estimate of the value of no n the interval 

around t. With this in mind, fonn the ratio 
0 

= 

n 
or 

(1. 09: 14) 

Acos[at - a.] 
0 

180 A 
- 11- ½a6 t cos[at 0 - a.Jsin[~a~t) 

n 

This ratio is called an augmenting factor. All the material for it you 

know. Using the mean sol ar hourly observations and st encils we get n. 
Therefore 

(1.09:15) n x (the augmenting factor} = n 
0 

The validity of relation (1.09:15) hinges entirely on t he assl.l1Tlption that 

the record is long enough so that the valu es going into our estimate of n 

are evenly distributed over the interval about t . 
0 

For most work the U.S.C.&G.S. has tabul ated a and ~t for each 

constituent. They can be found in Schcr-e~an (1941), page 228. They are 

ind ependent of pha se. 

Another difficulty arises bec ause the tide records with which 

you must work are truncated, i.e., they are of finite, not of infinite, 

duration. For one thing, the record has to be at least as long as one 

cycle of the slowest constituent present. Lopping it off too soon will 

louse you up and some of the long-period stuff is really long-period, e.g., 

19 ~ears. Another gi mmick is t hat i~ yo are try in g to seyarate out con­

stituents of very nearly the same period, yo u have to have a very ve~y long 
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r e co r d t o l et ther.i ap p e ar i n a tr·l y r 1=pr e s en t a tive set of p ha s e re l c.ticr:s. 

Some c cn s t it uen ts al~.ays s e em t o f oul up on this becau s e t~ ey a re sc clo s e 

t at t: e rec o r d s c.re n e ver, re p eat !\'EVER, long enoug-h. For in s t a nce, 

s 2 ,. th e p r incipal solar s e mi-diurnal constituent, and K2 and T2 which ~i f fer 

fr o~ it by l e ss t~an 0.1°/msh. Also, there are K 1 , th e l u~i -s o l a r c i u r nal 

c on stit ~ent, and ? 1 which have sp e e~s of 15. 0411°/ msh an d 14 .958 9 °/ rnsh a nd 

a sp e ed difference of only 0.0822°/ msh. 

The values for s2 and K1 obtain e d by following the routines 

outlin e d above ar e only approximate, constituents with closely associated 

periods being, to some extent, still tangled up in them. we allow for this 

wi th yet another special correction formula. We take, for example, 

s 2 observed s2 equilibrium 
(1.09:16) 

K2 observed K2 equilibrium 
= 

This seems a reasonable assumption; particularly s-ince the speeds are about 

the same. The waves are pretty much alike and what happens to one will 

probably happen to tpe other. For example, if one constituent runs into 

shallow water the ot h er constituent will, inevitably, be running into 

shallow water too and they can be expected to altered proportionally. The 

U.S.C.&G.S. calls these things infering constants. The British use a 

s l ightly different method for infering constants but they come out about 

in the same place as we do. 

Another correction process called eli mination is used b e cause 

no record is ever long enough to cover enough multiples of every constit­

uent period present in a tide to yield a good stati s tical estimate. 

Translation: Some constituents will have too few numbers in the average to 

provide a st2.ble estimate. 

Suppose we consider 

(1.09:17) n = Acos[at - an+ I B.cos [b.t - B.) 
il. 1. l. 

wh ere the first term on the right-hand side re p resents the constituent of 

interest and the summation all the other constit~ents pr e s en t in t h e record. 

I f the series is long enough--which it ne ver is in p ractice--

, B.cos[b.t - S.] = 0 
li i i 
i 
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T:~-:: effec t of t'he no n- ze :::-o r es idue i s th;;.t our estirr.a -::.e is 

n = A'cos[ a t - a') 

i . e ., ou r estima tes A' an d a ' are a bit of f from the true A and a . El imina­

tio ~ giv es a s~all correct i on fact or , 

A A ' x (a corr ec tio n f ac tor) 

a = a ' x (a corr e ction fac tor) 

The se el imin ation fa c tors ar e giv en in Tab le 29 in Schurernan (1 9 41). 

The methods by which suc h tables a re constructed are al way s 

si milar and al ways untidy . Roughly, a gue ss is made about the residuals 

B. , etc .. 
l. 

Thi s gues s is fed in and worked out to get a first co rr ection . 

Thi s gi ves an arn..~en ded gu ess which is f ed back in again. And round and 

round we go . 

The methods discu s sed s o far are for the semidiurn a l and diurn­

al con st itu ent s . They ar e impractical for the long-pe ri od co nsti t uent s 

v:hich have p_e rio ds ra ngin g upward from 14 day s . For the se , hourly values 

of the r ecord a re discarded and mea n daily va lu es used instead. Some of 

the lon g er ones, e. g., th e annual sol ar constituent, use mean monthl y values 

from the tide re cord . With thi s chan ge the meth ods developed ca rr y th ro ug h 

as before. However, if yo u are sometimes in a bind fro m sh ort reco rd s on 

the fast stuff, you ar:e alwa ys in the bind on the slo w constituents. 

If you have not al:?:"ead y done so, be sure to r ea d "Tid al Datum 

Pl ane s , " es pe cial l y Chapters II , IV-VIII, and XI at this point. 

1.10. Tidal Curr ents. 

So fa r , we hav e centered our attention on th e ve r ti ca l component , the tid e , 

to th e exclusion o f t he horizon tal compo:'"le;1ts, t he tioc.l cu rr en t. Ke must 

i: o w tc.ke s tep s t o repair thi s or.iis s ion an d to relate t :-ie tide and the tid a l 

cu rr e:it . 
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In Section 1 . 0 5 we deve l oped an equation for the vertical tide 

p roducir,g fo:!:"ce, ( l. OS: 24) , which was e>:pressed in t e rT:'ts c:: a co rn.rnon coef­

ficient , geodetic coefficients, and long- and shor t- pe riod celestial fac­

tc r.s. J,t t:-:e s a'Tle time , almost as a by - p roduct, v:e ex hibi te d the east a:id 

no ::::-th compone nts of t :1e tide-produci:1g force in exactly the saJne terms, 

equ ati on s (1.05:2 5) and (1.05:26). It should b e clea r without further com­

ment tr.at tidal currents are , therefore, subject to exact ly the s2me miser­

able hal.71lonic analysis as tides and that such things as variation with 

apogee and perigee, declination, and parallax will appear i n tidal cu:r-ren.ts 

just as they d id in tides. 

At the very beginning we mentioned that Gallileo noticed the 

wave - like appearance of the tide and, perhaps, the best way to g e t at the 

relation between the vertical and horizontal motion of the water will be 

through wave theory. Suppose we have a progressive wave of small amplitude 

whose profile is 

(1.10:1) n = AcoS[KX - crtl 

where 2;r/L K - is the wave number 
and 

(1 - 2cr/T is the frequency. 

For a given position, which we may take equal to zero for conve nience, what 

one sees passing the position is 

(1.10:2) n = Acos [crt J 

The horizontal component of the water motion associated with this wave, u , 

is 

(1.10 : 3) 
K Z 

u = Ave COS[KX - crt) 

if the water is deep; h/L > l.z, while for shallow water; h/L < 1/40, it is 

(1.10:4) 
Ao cos[Kx crt] u = -
Kh 

or, with X = 0, 

(1.10:3.l) 
KZ 

cos [ot] (ceep ,,;ater) u = Acre 

and 

(1 . 10 : 4.1) 
AO cos[ct] (shallov.· v.·ater) u = Kh 
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T:,e par~-:112ter h is t:;e CE.?th of th e v.·ater an d z i s rneasu r 1=d along ti,e ver­

tical axi s from an origin at the .r,ean se a su r face and r,e~ative ciowrr.:ard. 

T:·,e tide, co nsidered as a \,ave, is always in sh all ow water. 

?or- example, cc;1sider a semiai~rnal tice v.·i ".:h T = 12 :-iours = 43,200 s e conci.s . 

(l.10 : 5) Lin feet and Tin sec on ds 

The:n the corre sp onding length is 

L = 5(4 3200) 2 = sx432 2 x10~ = Sxl86624Xl0 4 = 10 10 feet 

Tl,e ocean is nowhere dee per than 10 5 feet. Therefore 

h/L f l0 5/10lO = 1/10 5 

which is certainly less than 1/40. 

The amplitude in equations (1.10:4) and (1.10:4.1) is 

AO 
Kh 

which, for a particular water depth and progressive wave with constant K 

and cr, is constant from surface to bottom since nothing i nvolving z enters. 

Remark: In contrast, in equations (1 . 10:3) and (1.10:3.1) fo r deep ~ate r 

there is an exponential decay of the amplitude wi~h depth z. 

From equation (1.10:2) h igh tide occurs at x = 0 when t = 0, 

2r;/o, 4n/cr, .. . , 2nn/o, ... and, from equation (l.10:4.1), u also attains 

its largest positive values at the same t imes . Fort= v./cr, 3n/cr, . .. , 
(2n-l)n/cr, .. . low tide occurs and u attains its largest value in the re ­

verse direction. Thus, for a progressive wave the strength of the current 

coincices with the high and low waters. 

A st anding wave may have the form 

(1.10:6) n = Acos(Kx)sin[crt] 

and the horizontal veloc it y for sh a llow \,ater is given by 

(1.10 : 7) u = Ao sin[Kx]c os( ot) 
Kh 

kgai~, t~ e current is u~~odified by ce ~th a~d fer t 

(See Lamb, Ch. IX . ) 

, /2-:, 3;r /2o, 

(2n -l) -rr/2o, ... and a given x position, ri is either at high or low tide 

w:-iile u = O. The tidal curre nt , u, na s its maximu.-n value:s when n i s at 
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J·,alf-tic e , t = 0, .r/ tJ , . . . , m1/o , ... . Thus, for t :1e p ro sres s ive ,..,,ave tr.e 

s tr er.gt h of t:1e tide cor r es ponds to high and lo·,_, ..._-ater ·"•hil e , for th e st cnd­

i ng wave, the s trength of the tide corresponds to ha l f -tide. Tides occ u~ing 

in nature a re se laom purely progre s sive or pu r ely standing s o that the re­

latio~s exbibi t ed ca n no t be expec te ~ to hold exactly. 

The r e sults f or progre s sive and s tand ing ,,:aves ar e intuiti vely 

app ealing . For a pr ogr e s si ve wav e, Fig. 1. 10-1, in progressing from a 

crest at position A to a crest at position A' the wa ter must rise to a peak 

Fig. 1. 10-1 

at each successive point between A and A'. Under the crest there can be no 

vertical compon~nt of the water motion or the tide would cont i nue to rise . 

The entire motion mus t be horizontal. 

For a stand i ng wave, Fig. 1. 10-2, the water sloshes to one end 

and then back to the other. When we have high water at Bit is clear that 

there can be no flow of water since such a flow would force a further change 

in the water level. At hal f -tide, when the water surface is level, the 

- 0 -- --
Fig. L 10-2 

the curr en t is flowing most strongly t oward .Z\C to dr2. in B dovm to a low at 

D 2nd raise A to a high at C. When t:,e high at C is reached the current 

must again be zero since , if it were not, there would be further change in 

t he v:at er l evel . 

Ti dal currents must be care f ully distinguished =rom currents 

due to other caus e s such as gravity, density, wind, etc .. Tidal and 



ncnt id a l currc~ts almo s t a l~a y s occ ~r ~os ether; th e a ct u al current cbserv ­

e d being the res ult a nt. nowev er, in t :-:e open ocean one or another of the 

k i nds of currents may p rec o ~i n at e . In t~e open oc e an tical curr en ts are 

usually v e ry \-;eak . They are stronger n ea r the coas ts and in constrictions, 

~ - S ·, en t rance s to b ays a nd st raits, ~~ere th ey may really roar. L~ t•s 

~ssi ~ by looking at the t id al c ur re n ts in b ays and rivers. 

In th e entr ance to a bay or in a r iv e r and, in general , \-:here 

the water is constricted, the tidal current is of the reversing rectilinear 

type. The flood current runs up s t:i.·eam for ab o ut six hours follow e d by the 

e bb c ur rent which runs downstream for about the same length of ti me . 

Figure 1. 10-3 sh ows a current curve for the Narrows in New York Harbo r. A 

curve like t hi s i s produced by measuri ng the current velocity every hour , 

p lo tting flood values above the zero velocity line and eb b values below, 

and fairing a curve through the points. The cu rve locks a lot like the 

(/) 

t-

o o---·----------'--------------'-z 
::.:: 

Fig . 1.1 0 -3 

CURRENT CURVE: 

THE NARROWS 

NEW YORK HARBOR 

AUGUST 8-9 1922 

t i dal curve . Maximum velocity of the flood current is called the strength 

c f flood and is analogo us to high water on th e tide curve although it 

doesn't n e cessarily occur at the same time . Maximu,11 velocity of the ebb 

is called th e strength of ebb and c or r esponds to low water. The current 

day , like the tidal da y , is best expres s ed in lunar time. 

T~ eo~etically, t he cu~re~t i n sh &ll ow water s~ould extend un ­

a l te r ed from top to bottom, equations (1 . 10 :4) a nd (1.10:7). Act ually, 

~or a re al fluid, ~hich has viscosity, this can not b e th e case. Tl6al 

currents are the sa~e over much of the cepth b ut near the bottom t~ ey d r op 
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to about 2/3 of the surface value. There are many effects that can o~ sc ~r e 

th is si~p le pi ct u re. Due to crag, th e currents are generally slower near 

the sides of a ch annel t ha n they are in t h e mi cd le . ;..s a rule of th w.,n, 

the average v e locity of the tical current acr o ss a s ec tion will be about 

3/4 t ~e c entral surface ve locity. To show how b ad ly this rul e of t ~ur..b na y 

se rve you, consid er Fig. 1.10-4, p ag e 106. It shows a current profi l e 

taken off Bloody Po i n t, Maryl an d by th e Chesapeake Bay Institute. Here th e 

surface current is ebbing at 0.26 kt. At 10 feet it i s eb bi ng at 0~ 4 3 kt . 

From 35 to 45 feet it is practically slack while below that it is still 

flooding more strongly than the surface layer is ebbing. Current profiles 

like this are characteristic of two-layered estuaries like the Chesapeake 

Bay. 

The effects of nontidal currents on tidal currents can be in­

tuited in a general way. Consider Fig. 1.10-5. Referred to the zero vel­

ocity line, AB, a pure tidal current would be as shown. Str e ngth of ebb 

Fig. 1.10-5 

and flood are equal and so are their durations . Now, suppose a nontidal 

current of velocity CD in th e ebb di rec tion is superimposed. Then the 

strength of ebb is increased by CD while the strength of flood is r ed uc e d 

by the sane amount . The current picture can be ha d by moving the z e ro vel­

ocity line parallel to AB through a distance CD which puts it at EF. The 

tide obviously ebbs longer and stron se r. If the velocity of the superim­

posed nontical current is greater th an the strength of flood, say C?, then 

the ze ro ref er ence line moves to GH an d there are no s la ck waters; the 

current is c on stantly ebbing. 'I'he composi te current ap.;,e a:::-s as a pulsating 

direct current with minimum speed RS and rnaximili~ speed TD. It s houl d 
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ha ::::-cly b e necessary to r:-,ention tha t the directio n of a COi7,posi te current 

·v:ill be in the direction of the ve c '.:o r resultant o f tr:e component c\.:rr ent 

ve ctors. 

Tica l curr ent curves cc~e in the s~~e assorL~ent as tide curv e s. 

;..s e:-:a.--:-,;;:,les, t:-ie Huds on has an ec;:t:al semi-diurnal tic al current cur-, ,e, 

~cbile 3ay a diurnal, and Rich Fassase, Fuget Sound an unec;:ual s emidiurnal . 

Wr.ere there is an inequality the c:.ifference in the tidal curr en t curve is 

usually le s s than the difference in the tide curve. 

As we have pointed out , fer a pure progressive wave the strength 

of the curr ent occurs at t he times of high and low water while for a stand­

ing wave the s tr ength of the current occurs at half - tide. Since neither of 

these cases occur pure in nature, we expect a differ~nce in the times of 

occu r ar.ce, but, whatever relation strength of current and high water have 

at a particular place, the relation is maintained. 

The distance traveled by a floating object during a tidal cycle 

can be determined fr_om tidal current curves . The vertical distance travel­

ed by such an object constrained at a fixed point is, of course, simply the 

range of the tide curve . The horizontal distance covered by a free float­

ing object is not quite so simple . If the tidal current were a step func­

tion, you could multiply the veloc i ty of flood--there ~ould only be one- ­

by the duration and similarly for the ebb: take the oifference to get the 

distance . However, the tidal current is continually changing so that you 

must use the average velocities over the duration to get the distance. 

You can estimate this average in several ways. You can read off along the 

tidal current curve at more or less closely spaced i nte rva l s and use a desk 

calculator. You can planimeter the area between the curve and the zero 

line and then divide by the length of the zero line . Or, if you can kid 

yourself that the curve is pretty close to a cosine curve over a zero to 

zero loop, you can use 
2 

V = 0.637v = V 
n max max 

for the average velocity over the loop. The tidal excur sion can b e conpu~ed 

from t he mean velocity by multiply i~g it by the duraticn. All t h is is very 

approximate. It is based on the ass~ rnption that the otject in ~uestion 
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~a v Es ex 3ct l y ~ i th t he water wh ich s urr ounds it. ~1 ere th i s i s no t t he 

c2s e you h ad be tter sta r t piling on the cor r ect i ons. 

Th e c u rat i o n of sla c k wa ter ne::ec. s brief co :n.-:,e nt. Math e.r..aticcc.l-

1:·,. zero veloci t y occurs only at a point in time so that can't be w:-iat ~e 

~san by slack ~ at e r . Becau s e of t ~e difficulty of mea s uri ng ve ry s_ ow 

c ;;:::-rent s it :'las b ec or.ie t he custor.i to cc r;sic. er any pe riod during whic :1 cur­

rent s a re l e ss th an 0 .1 kt a s s l ack wat e r. Slack ~ater thus b e co mes an 

i nt e rval ab out t he zero velocity crossing. With a limit of 0.1 kt it is 

e asy to co:r.ipute the duration of slack \,·ater for a pure cosine curve. 

Strength 
(kt) 

1 

2 

3 

4 

5 

6 

8 

Duration of Slack 
(min) 

Semidiurnal 

24 

12 

B 

6 

5 

4 

3 

Diurnal 

48 

24 

16 

12 

10 

8 

6 

You should distinguish carefully between the velocity of 

the current which is an actual bodily movement of the water and the rate 

of advanc e (progression) of the tide which is the movement of th e wave-form. 

The progression of th e tide is usually many times faster than the velocity 

of the current. 

In the open sea, where tic.al currents are not restr~ct e a by 

banks, tical currents may flow in any direction and are not usually of the 

reversing type. They change direc tion as well as magnitude con.tinuously 

ano are called rotary currents. Fi gure 1 . 10-6, page 109, shows the current 

fo r 12 ·.ot:rs fr o;:'I 12 midnight to 12 .. oo~, 30 July 1922, at 1antuck e t Shoals 

Lig htship. The current is seen to have rotated once clockwise in a little 

mere than 12 hours. In a crude way, the tips of the vectors have traced 

out an ellips e. Si nce this is a single :ec ord accice , t al su?erirap osea 
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cur re nt s ar e pres en t . If a long rec or d wer e t ak en and t~ e avera ge co~sid ­

er ed i t ~ould be f ound th a t th e e l l ip s e ~as much bet te r a :1d t~ e per ~od 

about 12 ;-,our s 25 min ute s, i.e ., th e c urre n t day £er a r ot c.!.y curr e.:1t, 

li ke th e tidal day , i s 24 hou rs 50 mi nute s . 

Chara cte r i st i cally , a r ot a ry cu rre nt sh o~ s :10 slac k ~a t&r bu~ 

t t e~e a re ~axi ma an d rai~i ma of t he spee d corres po nding to the s emi- ~ ~j or 

and sfuni - ~ i nor ax e s of th e e lli p se . These are re la t ed to each oth er i n 

the Sc..Tne way th a t high and l ow wat er a r e re lated to sl a ck wa t e r in t l,e 

rev ers ing t ide . 

Sin ce th e cur r en t day correspond s to t he t i dal day, it i s con­

ve nient i n de termining th e ave r age hour l y ve lo cit y and d ire c tio n of a 

ro ta ry cu rre n t to use ti mes of high and l ow wate r at s cme nea rb y pla ce 

as a r ef e rence . For exa~ p le , i n Fig . 1. 10-7 the averag e hou r ly val ues of 

curre nt ve lo ci ty a t Nant uck e t Shoa ls Li gh t s hip a re re ferr ed t o the t imes 

of h i gh and ·lo w wate r at Bos ton, Mas sac hu se tt s. In this f i gu r e Hand L 

s t and for h i gh and l ow wat er at Bos t on and t he numbers g ive t he hour s b e­

fo re or a fte r . 

The majo r fe at ure s of a rotary t i dal curren t at a ny p l ac e a re 

speci fi ed by t he major and minor a.xes of t he e ll ips e whi c!°l det e rmi ne th e 

ell ip ti ci ty , the di re ctio n of ro ta tio n , and th e dire ct io n of t he major ax is . 

I n general , tid a l cu r ren ts rot a te c lock wi se in th e nor th ern hemi sphe re an d 

co unt er c lock wise i n th e southern hemi sp her e al tho ugh loc a l hy dr ogr ap hic 

condi ti ons may p r odu ce ex.cept ion s . Rot ar y ti dal curren t s show th e s aTTie 

period i c flu ct uat ion s as r eve rsi ng ti da l cur re nt s and can als o be gr oup ed 

in to s erni diu rn al, d iu r na l, and mi xe d. 

Nonti da l currents can d is t or t rotary curr ent s i n many ~ay s, 

Fi g . l. 10 -8, p ag <:! 111. A s t rong cur re nt ca n move t he "c en ter" ent ir ely 

ou tsi de t he "el li pse " as s hown. 

I s ugge st th at yo u con s ult U. S . C. &G. S. sp . Pub . No . 21 5 and 

S?- Pub . No. 230 , p ag e 16 e t se q . f or furth e r i nfor.na":icn on mec.su re r.ient 

a nd re duc tio n of tical curren t da t a. 

It r emc.i ns on l y to menticn br i e f l y hy dra uli c cur r en t s . The s e 

cur r ents a r e not r eal ly t i dal curre nts . The y are =ou~ c in ncrr ow st r c.i ts 
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Fig. 1.10-8 

connecting t~o bodies of water which have unequal tidal ranges or in which, 

although the tides have the same range, they are out of phase. The currents 

a:?:"e of the reversing type bu t are not simple cosines . They are not direct ­

ly ca'l!sed by the tide producing forces bu t result from the difference in 

head at the ends of the channel--hence "hyd~aulic" currents -- and , consequent­

ly, are more app~opriate ly considered in a fluid ~echani cs course. For the 
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·e locit y of an h yd rau lic cur ren t wte re n (t) and n (t) are the elevations 
A B 

at ~h~ two ends of th e channel we have 

T~ e si sn difficulty is met by usi ng t he abs olu te difference of tle ~~i g~ts 

an ~ ~hen assigning the ~irection afte r the s~u are root is taken. Alt hou;h 

ther e is no natural ebb and flood direction, the tenns are oft e n used . 

They are assigned a rb itrarily . The velo city would follow th is formul a if 

there were no inertia or friction. Actually, the re is usually a tirae lag 

of 10 to 15 minutes in the response . The C includes gravity and ot he r 

t:ii, ,gs t hat adjust tl~e uni ts. A theoretical value may be computed for C 

but in practice C varies enough from the th eo retical to make it an emptri­

cal constant for each hydraulic current. You can fi nd material on hydraul­

i c currents under discussi on s of flo w in open c hannels in most of the 

regular references: Rouse , Venard , Lamb , ~ilne - Thompson, etc . 

For the oceanographer and the seaman hydraulic currents may be 

import an t in narrow s tr ai ts an d behind i sl and s. Exampl es ar e: Mess ina , 

Woods Hole , Cape Cod Canal, and Eellgate . 

This concludes our obligation to tioes as a howling empiri c ism 

in the service of practical people . We are now free to move on to the 

never- n ever land o f tid al dynamic s . 



Chapte r 2 . Tical Dyna~ics . 

2.01. Introduction. 

' 1 ... ..:. - .) 

Tides , as it no· . .; ~tands, is essen;:::.ally an empirical s cie:1ce. The dyn 2...,,ics 

o f t ices , t hat is, the response of t~e sea to t he tide generating forces, 

i s embryonic . The problem is extremely difficult. Briefly i t may be stat­

ed a s : Given an oc ean basin of a specified shape, filled with water . of 

known properties, and a specific tid e - producing force find the tide s in­

duced in the water. Obviously, to solve such a problem for any realistic 

set of conditions is a task to stagger the imagination. 

We must content ourselves with setting up simplified mathematic ­

al models whose solutions · are within ou r powers. From these we can hope 

for some insight i nto the necessary connections among things. In this 

chapter we will make a rapid Cook ' s Tour of some of the more i nter esting 

mathematical models . We will frequently discuss the possibility of apply ­

ing these highly simplified mathematical models to the real ocean . This 

is a useful exercise--particularly if you are an oceanographer and care 

about what goes on in the ocean rather than a mathematician with a primary 

concern with interesting mathematical problems. That the mathematical 

models fail to describe the real ocean very well will be no surprise since 

they have been chosen for their mathematic al tractability rather than for 

their realism . 

2 . 02. Airv's Wave i n a Canal . --- -- ------

There al'.'e two facts about tides which are pretty cefinitely e stablished: 

(1) The tide generating f orces: T!1ese a r e well dete:?::nined and are 

inaccurate only to the extent of the neglected terns in the series 



it is cus t~n ary to si~plify the tit e producing force by makins it a 

si m1 _e cosine . Since he curve cescribing any fo~ce can be sy~thesiz­

ed from sirnpl e harnonics this is a r asonable s im:?lification and it 

te es cut co-.·.7! 0::1 t:-ie work . 

( 2) T}·1e :form of t:"le s ea surface: T:-,e ti de: ha s t:ie: form of a su.,n of 

sr:ial 1-ampli tucie, t1.iry waves, 

fl = l A . cos [ 6. ] 
l. l. 

where it is assumed that A./A. << 1, Fig. 2.02-1 
1 l. 

Fig. 2.02-1 

This has been fairly well established for a record at any single 

point with time and al so for the entire ocean at any given instant 

of time. For shallow water, of course, the component cosine waves 

beco me distorted. For the ocean the maximum known ~~plitude for the 

tide is about 10 meters. At a conservative estimate the correspond­

ing wav e length is roughly A= 10 kilometers. Consequently, in the 

extreme ca se A/ A= 10/10 4 = 10- 3 « l so that the small amplitude 

con di tion is always met and the Airy wave is a valid approximation. 

In tidal dynamics it is essential to distinguish between a 

free oscillation and a forced oscillation. A free oscillation results 

when a stable equilibrium is disturbed by a force which is then removed. 

The system cont inue s to oscillate about its esuilibriu.~ position.with a 

perioc which cepends in no way on the ini tial disturbing force. A forced 

oscillation is produced by the continuous application of a periodic force 

which ceterm~nes the period of oscillation of the sys~em to ~hich it i s 

ap plie d. 

Any system in sta:ble es ilib:::-iu."TI, if cisti..:rbec., has its o·,m 

natural peri od of oscillation. For e>:a::-.ple, a simp le !_:•enci.1_um that is 
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i i t i a l ly d i spl~c ~ · th~ough a s hlall a n9le h as a natura l p ~r io d o f 

(2 . 0 2:1) T = 211/t /g 

Basins of water a ls o have natural p e r i od s . 

For a progressive ~ave in shallow water) >> h. I t s phase 

spee d is 

(2 . 0 2:2) C: 1'gh 

Therefo re , its p €riod is 

(2 . 0 2:3) T = A//g°h 

This is the p eri od of a p r ogre s s ive Ai ry wave in shallow water of depth h. 

It h a s som e t imes been called a natural or free pe _riod but t: '"le us age s e ems 

to me a b it fo r ced . 

As our first model, c on s i der an earth whose o cean consists of 

a n a r row equatorial cana l of d ep th h, Fig. 2.02-2. Suppose that th e re is 

a wave in this canal whose wave length is the earth's circumference, i.e., 

----r E .,..._.....__,_ 
y~,,c,,,--=---

Fig. 2.02-2 

A= 2-rrrE. 

(2 . 02 :4) 

I f 

Then the period is 

then 

I f h == 10 km, then 

T == 2nrE//gh 

g ~ 10 3 cm/sec 2 

T ~ 105 hours 

T:: 33.2 hours 

h = 1 km 

In any case, if t he wa· e i s produc ed by a f orc e with exactly 

t h e same p e riod as the free oscillation you have reso :-ian c e and the wave 

grows higher and hi sher as the energy f ee ds in. 
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I~ii:y cevelope:d a mode l for a forcea proC:r es si·, -= v:ave i:1 a can ­

al li~e that of Fig. 2. 0 2- 2 but circli~s a~y parallel o f latitud e. Cl ea r­

l y , s·Jci1 a moce l has litt le hope c-f any ap plico.ti on since the Antarctic is 

U ·,e . o:-,ly ~nint e rr-.;pted ba nd of v:ater at an y lati t~de. A:,ot :-ier feat\:re o= 

.::-.ir~,,' s ;-:;odel is ;,is neglect of Coriolis =orce so that it cou ld apply o:,ly 

at t~e e~ ~a tor unless ade quate res tr ai ~i ng walls were p res ent . Basically, 

\•,hc:t J.>.iry did was to apply Bernoulli 's theorem to a strea.-n tube using s ome 

assu.-:-,_?tions boi:rowed from Laplace. He neglected friction an d he assu.-:ied 

that any such wave would have complete syr:1rnetry with the tide generat i ng 

force, i.e., you have one or th e other of the situations s:1own in Fig . 

2 . 02 - 3. 

Fig . 2 . 02-3 

The wave is a forced wave moving at the sa~e speed as the gen­

erating f orce. We will symbolize this forced speed by cF. Don 't confuse 

it with the fr ee speed usually symboli zed by c. 

Remark: We get c for speed from our British cousins . It comes from 

"celerity'' which also means speed. 

We consid e r a canal in which the forced wave is traveling from east to west 

with a speed cF . Using the artifice of steady motion, we ta ke a set of 

axes moving fr om-east to west at the speed cF so that the .,ave remains in 

the s~~e position relative to the moving axes at all times. 

Kith an Airy wave in !::hallow water and with t he dimensions we 

are consic e ring, t he vert i cal compon ent of the water pa rtic le motion is 

ne~ligible in conparison with the i,orizo~tal cor.t?onent, u. Uncer the crest 

of the ·,•:ave th e ho:?:izonta l component o :: t:-ie ve locity ha s ~:-·.e same cirecti on 

as the wave profile motion while unc e r the trough i t is c;posite . 



and 
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=e t~ b e the potential of th e ti6e generating force . ~he, ~ich 

u ~ the horizontal component of the orbital velocity 

c~ - the f orced wave velocity 

g - the acceleration due to grav ity 

: .. - t.:;e c ep th of t},e c anal , a ss·c1ned cor.stant 

ri - the surface e l evction of the ,,·ave f orm 

p - the pressure 

p - the density of the water , 

if the motion is irrotational , we may write Be rnou l li's e quation in the . 

form 

(2 . 02 : 5) ½(u - cF) 2 + g(h + n) +} + n ~ a constant 

Of the terms on the left-hand side the first r epre s ent s t he k i n et ic ener gy 

per unit mass , the seco n d , th e p oten t i al energy per unit mass, the thir d 

is the p r essu re term, and the fourth the tide generating potential. 

At the s ea surface p i s atmo s pher i c pre s sure and i s often taken 

as constant s i n ce the variations in atmo s pher ic pressure are a negligible 

p art of t he total pressur e only a short distance beneath th e water s u r fa ce. 

Let us also ~s surne that g, P, and cF are c on s t ants. The canal dept h, h, 

has alre a dy been taken c o nstant. Then collecting all the constant terms 

in (2 . 02:5) and transposing them to the r ight-hand side 

(2.02:6) ½u2 - c Fu + g n + Q = a constant - ½cF 2 - gh - ~ 

The right-hand side of (2 . 02 : 6) is just a noth e r constant so t h a t 

(2.02:7) ½u2 - cu+ gn + n = a n o ther constant 
F 

The volu.-ne flow rate th r ough any two sec ti ons acro s s the c an al 

mus t be equal o r there wi l l be a pi l e -u p of water s omewhere . (Remer.iber 

that the c a na l i s a ri ng . ) Consider the mean section with depth h Gn d 

width W. The n we h a ve 

u being z ero at the mean s ection. This is a version of the equation of 

conti~uity . Doing a bit of jugglin g we g e t 

(2.02:8) 
n 

{h + n) 
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I£ ,;o w ,,e assu."Tlc tha t t: 1e canal is cui te ciee p s o t ha t n << h , e.r;:uat.ion 

( 2. 02 : 8) t el ls us tha t 

( 2. 02 : 9) 

s o tr .at 

(2 . 0 2 : 10 ) 

anci 
(2.02 : 11) 

:: Tl< < 1 
h 

\.l << C 
F 

u2 << CU 
F 

We ca n there:fore under these conch tions neglect ½u2 in co:nparison ,,i -::h cFu 

in eq uation (2. 0 2:7) to get 

(2. 02 :1 2) cFu - gn + Q = a constant 

We are no w r eady to pick up some r esu lts from ou r previous work 

on the tide producing for ces. In those di scussi on s it was show:, that the 

horizonta l component of the tide producing forces, F
8

, could be written in 

terms of the potential as 

(2.02:13) 

or alternatively as 

(2 . 02:1 4) 

where 

and 
0 - the geocentric angle 

n - the equilibrium tide. 

Eliminating FH between (2 . 02:13) and (2.02:14) 

(2 . 02 :1 5) 

Integrating (2.02:15) we have 

(2.02 : 16) Q = - gn + a constan t 

(1. 06: 8) 

P..s pr ev io usly set up, ·when n = 0, !1 = 0 so that the cor:s ta::1t is z er o and 

(2 . 02 :1 7) r. = - gn 

su~st it u ti ng (2.02:17) in th e fo!Til o= 5e r ncu lli's ec ~~ticn given by (2.02:12) 

( 2. 0 2:18) 



(2. 02 : 19 ) 
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=cu + a con s t ant 
? 

W,i:.P.!fl!0G: n i s th e eG_uilib r i urn t i d e. I t i s no t t h e !oc..:-::e t h ir-,g a s :, nor is 

~t t he me an v a lue o f n . Katch your s t ep ! 

:·ov n , 7 , anc u a r e al l pe r io d i c f unct i ons of the geocE'1 tr : c a nr;_e , 6, a nd 

the y a r e all ze r o tos~ther a t ha l f- t i d e f or a pr o gr e s si ve ~av e. The r e fo r e, 

the cons t a n t i s z e r o a nd 

(2.02:20) 

Now, by (2.02:9) 

(2.02:21) 

we saw that u/cF = n/h so that 
cFn 

u ::c - -
h 

an d , su b s t ituting in (2.02:20), 

(2.02:22) 

Solving for n gives 

(2.02:23) 

Since the square of the 

(2.02:24) 

this can be put in the 

(2.02:25} 

g(n - n ) = 

n = 

free 

c2 == 

quite 

n = 

n 
C 2 

1 - _F_ 
gh 

wave speed 

gh 

a t t r active 

n 

1 - (c:]2 

is 

form 

T~ere are thr e e ca s es dep end i ng on the rela t ive values of the 

fr e e and f or c e d sp eeds: 

Case I: 
and 

In other words, a crest in the e~uilibrium tide corre s po ~d s to a trough in 

the f orced wav e. This is call ed an i r.·•e rted t i de . 

Case I I: 
( c / c ) 2 < 1 

F 
a nd 

I n ot h er wor ds, the configuration of the forced wave is t:-ie Sc...'lle a s t h at 



Ccose III : 
and 

R~s onance occurs----------Duck! ! Since (c /c) 2 = (cF 2 )/(st), ash ~, :r 
(c-::-/c) 2 o ar:c n---:--n, i.e., t he .fc ::-_ec -.:av e a;-;;ro c.cr"!es -..:ne EoC!:ui l..:.b:!:..:.u_..i 

ti c.e . 

The value of c:., is c eterm ined by tr,c w?.ve ler,g t h A, in this 
r 

~o te l t l1e length o f the cc.nal , and the period of the tiae ge ner a ting fo rce, 

T· c = A/T. As our c2nal is moved to hig~er r.arallels of latitude it s ' F ~ 

l eng t~ ~ecreases so that cF + 0 as~+ ±90°. This i mplie s that (cF / c) 2 + O 

as well and, from equatio n (2. 02 : 25), that n + n. Actually, this is pretty 

realistic behavior since polar-basin tices corre sp ond very well to e~uilib­

rium tioes . 

Froudrnan has computed some values for 60°S where the Antarctic 

forms the only available ca se of a continuous band of water along a parallel 

of latitude. Since the resonance condition is (cF/c) 2 =land c 2 = gh, we 

can compute the depth of wate r for which resonance should occur for any cF, 

h = c 2/g 
F 

For a Sfu~idiurnal cF and 60°S latit~de, resonant h turns out to be 5440 

meters. The average depth at 60°S latitude is nea rer 4000 meters so that 

conditions ar en 't right for resonance. 

We could go on to compute the cF appropriate for resonance with 

h = 4000 meters an d, in general, butch equation (2.02 :25 ) hither and yon 

but the model is so totally unrealistic that you have to be a real masochis t 

to co it . 

Lord Kelvin worked out a version of Airy's canal that i s nodified in two 

res?ects. First, he included Coriolis f orc e "·hich is a cistinct i. .r;rove. , en.t 
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o~ Air y an~ , sscond , he use d a free ~a~e ra the r tha ~ a fcrc e d wave ~~~ch is 

rather a se t bac k for tides. The result is still unrealisti c so far as 

a v ail ab l e confisurations on this pla~et go but the inclu sio n of the &arth's 

r o tation brings out a property we oft en see i n th e t ide . 

If v,E:· use : 

u ... e ast---·est ·,eloci ty componen t, - ... ne 

V - the north-south velocity cor.19or,ent, 

w - t he vertical velocity c omponent , positive dow,n,·ard , 

L - the latitude of the canal , 

w - the angular velocity o f the e a rth 's r otation, 

p - the pressure, 
and 

the density, p - water 

then the eq uat i ons o f mot i on , neglecting fri c t i on and Reyn o l d s stresses and 

such, are 

(2.03:1) 

(2 .03: 2 ) 

(2.03:3) 

Du l aP 
D

~ - 2w(s in(L])v - 2w(co s{L])w = - - --=­
- p a x 

~: + 2w(sin( L))u 

Dw 
Dt + 2w(cos(LJ)u 

where D/D t is th e mat e r i a l or St oke s derivative, formally 

(2.03:4) 
D 
Dt 

a a a a 
- + U - + V + W at ax ay az 

If we as sum e th at t he gradients of the velocity c omponent s are 

small in comparis on with the velocities , i.e ., that u, v, and w are s lo~ly 

changing f unctions of position s o that we ma y wri t e for the mater i al ceri­

va t ive in e v ery da s e D/Dt = a;at and, i f we assume that the vertical veloc ­

i ty w is negligibly sma ll, w = 0 , e~uations (2 . 03 : 1 , 2, a~d 3) be c o~e 

(2.03:5) 

(2 . 03 :6) 

(2.0 3: 7) 

Equa t ion (2 . 03 : 7) 

au .!. 3p 
- 2w( si n[L ))v = -at Pax 

?v -- - .!. op "t + 2w(sin[L))u 
o Pay 

1 ao . 
0==---=-+g 

p a z 

i s the hydrostatic equation. 



If now we ::urtr,er a ss;_:_-:ie t:-,at the atmo s j_:;i·,c,ric pressure on t:~e 

-...-a':.e!." 5-,!."fac e i s ccns ta n t, fr ora e-=:uat icn ( 2. 0 3: "i ) \,,e se t 

i 2 . 0 : 2) 

so t: :a t 

( 2 . 0 2: S' ) 

a:-_d 
( 2 .0 3 :1 0 ) 

P = p + qp(n + z) 
atJn -

l _?_E = g en -
p cix ax 
1 clp an - - --- = - g 
p ay ay 

an d , sci::s t ituting in (2.03:5) and (2.03:6), 

(2 . 03 : 11) 

(2.0 3: 1 2 ) 

o 'l 
2t 

cln 2w(s i n[L ))v = - g ax 

~tv + 2w{s in[L])u = - g ~ 
o ay 

To get sp ecific, l et's take our canal i n th e no r th e rn hemis phere 

and le t x be along th e canal wit h th e positive 

sense in t he direc ti on in which th e v,ave i s 

traveling . Let th e y- axis be ac r oss the canal 

with the origin at one s id e and let th e canal 's 

wid t h be b. The Coriolis f orce will de fl ect 

any current to the r ight . On t he boundaries 

l y 

..,.... y = b 

,,,. y=O 
---4,----------,..x 

a t y = 0 and y = b we must ha ve the cr oss-chann e l velocity compon ent v = 0. 

Kelvin made t he assumpti on th a t the canal was so narrow that v = 0 on 

0 ~ y ~ b . 

(2.03:13) 

and 

(2.0 3: 14} 

(2.03:15) 

Wit h t hi s assumption {2.03:11) and (2.03:12) reduce to 

2w(sin[L)}u an 
= - g ay 

The -form of th e equation of con t i nu i ty which 2.pplies he r e is 

It r el at e s the a.mount of wat e r flo"·ing in t o or out of a :.-egion anc. t. e loca l 

ra t e of change of el evation . A sol~ticn of (2 . 0 3: 13 ) a~c (2 . 03:15) s 

(2 . 03:16) u/c = n/h C = /gh 
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u = u co s [(2 n/A)x - (2~/-)t) 
0 

n = n cosf(2 ,./>.)x - (2 TI/T)t] • 
0 

\· .. . a t. we \-:ant from (2.03:13), (2.03:14), and (2.03:16) is a function a l relc: ­

tio,'. ;:,e:b, een r1 and y, i.e., we want to know how t he el e ;ation of th e v:a-::e r 

sur= a ce chan q es a c ro s s th e cha n~el. 

or 

Sol· i ng (2.03:16) for u a~c subst~tuting in (2 . 03 :14), 

2w(sin[L] ) en= 
h 

- 2w ( sin [L) ) c n 
gh 

or, sinc e c = 1/gh, 

(2.03:17) 2w(sin[L)) 
n 

C 

Becc.use we are dealing with a narrcw c an al oriented east-west, we may take 

L = constant . Integrating (2.03 : 17) with resp e ct toy gives 

(2.03:18) ln{n} = - 2w(sin[L)) y + B' 
C 

or 

(1.03:19) = B exp{- 2w(sin[LJ) 
y} n 

C 

For y = 0: n = B - no '\, n at y = 0 

Therefore, 

(2.03:20) n = 110 exp{ -
2w (sin [L)) 

y} 
C 

This is something you see over and over again: exponential de cay. 

The surface displacement n has its largest value in the cross-channel direc­

tion on the right-hand side looking in the direction of the current and it 

falls off exponentially toward the left-hand side. The fall off is govern ­

ed by bw things: the Coriolis force :::-e?resented by 2w ( sin [L)) and t:i.e wave 

speed c. 

Exercise: Run through the effects of changin g la t i t uc e and changing depth 

fo r yourself . 

Looking at a cross-section in the cirection of the "·ave , :Pig . 2 . 03 -1, pa<:e 

124, the "tices" are less on the left . Naturally , ti1is reverses in the 



HIGH WATER 

MEAN 

---- SEA LEVEL - ._ 
......... -- LOW WAT ER 

Fig . 2 . 03 - 1 

So uther n hemi s phere . 

J.lth o ug h t h e a ssump t ions of t he mod e l ar e unre a li s tic , thi s 

c r os s -chan n el featu r e d oe s s e em t o o cc u r in natur e. Mar tin Poll ak found a 

tenden cy t o g r eater tical r an ge s a l on g the Easter n Sh or e o f Ches a pea~e Ba y 

a nd s im ilar o b se r va tion s h3 ve b e en ob t a i ned fo r Long Islan d Sound and f or 

t h e Str aits of Dov e r. Th e y p r ov e n o th in g. Th e re ar e t o o many n e glect e d 

f e a tu re s of t h e r ea l wo rl d. St i ll , t h e c or r esponden c e i s int r igu i n g. 

If one chu g s t hr oug h the r es t o f the s olution , on e gets , f o r 

Ke l vin's ve rs i on of Ai r y 's c a na l, 

( 2. 0 3: 2 1) 21:.isi n [L) y} 2;r 2,r t ] 
T) = n0 exp { - c co s [ T x - , 

and 

(2.03:22) c { 2wsi n [L] } 2,r 2,r ) 
u = n 0 - e xp - v cos[~ x - - t h C • A 1" 

.... hich give the "tic.al" he i gh t a n d t he cu r rent vel o ci t y at a ll po in t s a nd 

ti me s in the canal . 

2 . 04 . Eorizc~tal Cr es t ed Waves an d Rota t i~g Curr e n ts. 

In section 2 . 03 we saw th a t i n a n a rr ow c an a l whe r e v was hel d ze r o i ~ th e 

cross~ anne l fi r ection, th e s ur fa c e o f t he wa t er , n, r e spond e d by tak i n g 
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0:1 an e xpo0e:n t i a l variaticn with y. i·:e got this r e s u lt by solv i ng t: 1e 

e~uations of motion and continuity. Other s o lution s of t he equations 

uncer o t he r a ssumpt i ons will show quite different prcperties . 

Suppose that our ocean i s not r e strict ed to a canal but is 

effec tiv e ly unlimited and ~ , at our wave is lo~g c r ested . !n oth e r worcs , 

th e sec ti on f or any y = a constant is the same as for any other. Khat­

Ever n is, it is certainly not a function o f y. Further let the cirection 

of travel be eas t along th e positive x-axis, Fig. 2.0C -1. 

I 
I 
I 

- -
I ...,. "'- -'- 1Z -- .--

', I -, L,.. ..... 

Fig. 2.04-1 

WARNING: Note-that the coordinate sys tem here is left-handed. 

Since we no longer have a narrow canal the a s sumption that v = 0 

is not attractive. We would rather permit the ve locity to have a y-compon ­

ent . We will retain the small-amplitude a s sumption so that our wave is 

still an Airy wave . 

In section 2.03 the forms we arrived at for the equations of 

motion were 

(2.04:1) 
~u 2w(sin[L))v an (2 . 03:11) at - = - g 

ax 

(2. 04 : 2) 
ov 2w(sin[L))u an 

( 2 .. 03: 12) 
at 

+ = - gay 

on the followi ng assu.inptions : 

(a} Neglect friction. 

(b) Neglect Reynolds stress . 

(c) The velocity gradie nts are s~all eno~sh co~p ared with the 

velocities to pe~-::iit re placemen t o f ~/Dt by o/ot. 
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(d) T~e verti ca l ve loc i ~y cc ~ponen t ~ is ~egligihly s mal l, 

w:: 0 . 

(e) The at._rnosphe ric pre ss i;~e is constan t. 

For lo;1c_;-crested wave s the crbi tal velo ci ty is the same i n any 

y- s s,ctio:1 sir.ce all are icentical. I : ,,:e are to allo· .,, a tra.nsv er se ·, eloc ­

it y c orn:_:,onent, v, as we wish to co , t:he n tha t v will ha\r e to be con s tant 

f or ally values or there will be a pil e- up of wat e r along s ome y-s ec tion 

a nd a consequent di sp ar ity ~~ong the profil e s . There is ze ro accum~lation 

of \s·ater in any vertical sec ti on so that we may again us e the simple form 

of the e quation o f continu it y , 

(2.04:3) u/c = n/h 

Sin ce we have a ssumed a simple Airy wave , th e >:-velocity compon ­

ent, u, is given by 

(2 . 04 : 4) 

where 

an d 
), - t he wave length 

T _ the wave p e riod. 

Solving (2. 04 : 3) for u and s ubs ti tuting i n (2 . 04 : 4) we se t for 

the surface 
u h ~ 

2 0 L 7T 1i n = -- COS[ - .- X - - t) 
C A T 

(2. 04 :5) 

As we have said, n has no vari a tion wit., y so th at an/ay = 0 . Subst ituting 

in the equations of motion, (2 . 03:1) a nd (2 . 04:2), we ge t 

(2.04: 6 ) au 2w(sin[L))v ~ = - g 
at ax 

(2.04:7) 
clv 

2w(sin[L))u 0 + = 
&t 

We want to use (2 . 04:4)-( 2. 04 : 7) to determine v . 

Fr om eq uat ion {2.04:4) 

( 2. 04: 8 ) 

?~ o:n (2 .04: 5 ) 

(2.04:9) 

au 
-= 
at 

2r,u 
0 

T 

. { 2;; 
s in T x - , 

2 11 

u h 
2 0 ii . [2n 

C 
). sin T x 

t) 

2n t) 
T 
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Su ~stituting (2.04:8) and (2.0 4 :9) in (2.04:6) 

o r, sol··ing =or v , 

(2 . 04 : 10 ) V =:: 

2TT 

T 
t) - 2w(sin[L])v = 

2TTU ch o-

o 1 c:h , . [2" 2-;-: t-] O U ( l - - -- - - --- sin- .- x - - _ 
1.:sin [L] T c ), J A T 

211 
t ) 

T 

Solv in g equation (2.04:7) for av / at ar-d subs ti t uting =or u fr om (2. 04 : 4 ), 

(2. 04:11) av 
-= at 

( . 2n 211 · 
-2w sin[LJ)u co s[, x - - t) 

0 A T 

Holding x ccnstant and integrating with respect tot sives 

or 

(2 . 04:12) 

T J 2'IT 21f 2'11' 
v = - 2w(sin[L])u (- -2 ) cos[""" x - - t) (- -)dt + K 

0 7T A T T 

V = 
w(sin[L])u T 2 0 71' ___ 71' _ __ sin [T x 21T 

T t) + K 

Equation s (2.04:10) and (2.04:12) give us two cifferent versions 

of the same thing , namely v. From (2.04:10) there exist some x and t for 

which v = 0 an d f o r these same values, by (2.04:12), v = K. Therefore, K 

must be zero. 

Setting K = 0 in (2.04:12) and equating it with (2.04:10), 

1TUO (1 gh) . 271' 
wsin [L] T - ~ sin [T x 

211' 

T 

or 

(2.04:13) 

t) = 
w(sin[L])u T 

0 

11' 

wsin [L) = ----"--- T n 

Since c =A/Tor A= cT, (2.04:13) can be written 

( 2. 04: 14) 
TI 

w(sin[L))T 
w(sin[L))), 

and , solving for c 2 we get 

(2.04:15) c2 = gh 

1 - (TI/wsin[LJ)2 

2'ii 
sin[T x 

2iT 
T t) 

The quantity n/ wsin[L) i s called th e h a l= - pe~culum day and 

symbolized by T . p 

(2 . 0 4:16) 



It is 2. q uc. .. t ity arises , al ~c st i~evitably , ~hen Cor io lis fcr ~e enters 

a i:,ro::,le:r.i . 

Rc~ark: We co u l d have introduced it i~ se ct ion 2 . 03 ~a d we wante d t o. 

E~uaticn (2.03 : 20) was 

2u.' (si , [I.,j) 
n = n exp{ - - - - ---'---------'--y} 

0 C 

which cou l d hav e been written 

n = n exp{­
o 

2 li 
---y} = 

"'iC 

ws in[L) 

{ 2li } n exp - y 
0 T C 

p 

Re:nark: '!'he name "half-penduluJn day" co:nes from th e Fouc aul t pe:ndul uro 

where it describes the pe ri od re ~u ir ed f or a Foucau lt pendulum to 

re s tore the orienta ti on of its swing . A Foucault pendulum swinging 

above t he North Pol e will mai ntain the plane of i ts swing re la tiv e 

anc e. 

t o th e fixed s tar s . The ea rth turns under it. I f it bega n swi nging 

i n the plane 0° -1 80 ° ·of long i tude , then in 11 hour s 59 minutes i t 

v.ould aga i n be swinging in the same plane relative to th e ear th . At 

the North Po le t he p end ulum day, 2,p, is th e si de re a l day of 23 hours 

58 minutes . As we move away from th e pole , L dec~ease s an d sin[L] 

de cr eases s o th.at the pendulum dc:y in c reases . At the eq ua tor 2T is 
p 

in f ini t e . A Foucaul t pendu lum at the eq uat or does not change its 

orientation with respect to th e ea r th. 

Usin g T , equ a tio n (2.04:15) a ss umes a particulc:rly neat appear­
p 

(2.04 : 17) c2 = 
l 

gh 

· 2 h . h At the equat or L = O, 'p = ce, an a c = s , i .e ., we av e an 

ord i nary gravity wave. The mi nimum value of, occurs fo~ L = 90° ~here 
p 

T = 11 hour s 59 minutes . 
p 

If the waves we co nsi de r h ave periods,< T , esuati on (2. 04 :17) 
p 

yields reasonabl e number s fo r c 2 .:.n th at they a~e positive . For,=, the p 
wave spe ed i s in finite and fo r ,> T we get imagin a ry value s ~or c. 

p 
The mode l se ems to have so:ne s ignifi ca nt feature s f or semi -

diurna l tides at al l l at it ude s bu t for diu r ~al t ide s we nust stay belo~ 30° 
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v.-:riere t:,e ha if-pendulum ca y is l onge r than 24 hour-s . 

Our a naly sis so far has been pr ecicat ed on the as s ~~p ti cn tha t 

th e latitude L was co nst an t. Hence , it is applicab le only if the do:-:-.inant 

cc;;:pcnent is c~ie nted east - west . If t her e is a sub st an tia l north-sout'h 

cc::-:po:1e :-;t, it c oesn 't apply and ,-;e wculc ha ve .:o :-:;a,~s so!:!e furt her ;;-,o~i ::i-

c ati on s. 

Consider the equation fo r v that a ro se fr on i nteg r ati ng e~u a-

tion (2.04:11), i.e., equation (2.04:12), having fi rst intr oduc ed 1/ T f or 
p 

wsin[L)/TT : 

(2 . 04:18) 
( 

T ) . [ 2,r 2TI t) v = u - sin - x -
OT A T 

p 

We want to compare the y-cornponent, v, with the x-component, u. The compar­

is on may be simplified by sel ec ti ng a single convenient x value , say x = 0, 

and car ry ing out the comparison at the si ngl e x- pos iti on . Se tting x = O 

in equations (2.04:4) and (2 . 04:18) ~e have 

(2 . 04:19) 

(2.04:20) 

or , using the 

( 2. 04:20 .1) 

2n u = u cos [- t) 
0 T 

( T). [21T t] v = - u - sin -
0 T T 

p 

cofunction of the complement, 

( 
T ) 2,r 'IT 

V = U - COS [- t + -] 
0 T T 2 

p 

Therefore , u and v ar e TT/2 out of phase. Remerr~ering the or ientation of 

the x- and y-axes originally selected, vis positive ~hen it is to the left 

of u. 

Consider the current vector of which u, given by equation 

(2.04:19), and v, given ei th er by (2.04: 20) or (2.04:20.1), are the compon­

e nts. I'm sure that you will recognize the eq uations as the parametric 

equations of an ellipse. Certainly, when th e ratio of the Feriod to the 

half-pendul~~ day is one they are obvious ly the para~etric eq uat ions of a 

circle . We need to chec k th e dir ec tion o f the r ot ati on . ~h is is most 

easily do ne for the special case where i/T = l. In t~at cas e p 



..... 0 7/4 T/2 37/4 7 '--

u u 0 - u 0 u 
0 0 0 

V 0 -u 0 l! 0 
0 0 

?lotting t~ese ~e get Fig . 2. 04-2. Cl Early , t~e c~rrent vector rotates 

_(. 
I 

11 =4 

Fig. 2.04-2 

clockwise completing a full circle in one period, 

Suppose T/ T = a < 1. Then 
p 

t 0 T/4 7/2 3T/4 

u u 0 -u 0 
0 0 

V 0 -a.u 0 a.u 
0 0 

The plot is the ellipse of Fig. 2.04 - 3. The rotation 

--✓ 1 ::2..!. I 4 

l : ..L 
4 

Fig. 2.04-3 

u 

T 

u 
0 

0 

is still clockwise at 

one cycle per period T but the mag~i tuce now varies to trace out a~ ellipse 

with the major axis in the x-direction. 
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Shoul d we have T/T = 0 , th en v vanishes and the motion re­
p 

cuces to a sim9le ha rmon ic rectilin e ar revers i ng c ~r re nt of ampl itucie u . 
0 

We could c ons i de r the case where Th > 1 for :r.ally but thi s 
p 

\.Jcu ·la give imas in ary values for t:-ie phase speed c as -..:as shown in co:,nsc -

t i on v.·ith eq '-"a:;:i on (2 . 0~ :1 7) . It :;ar c ly s eems \•.'Cr t h while to co so. In 

~act, even T/T = 1 i s st rainino the an alysis a bit since for th at case p J -

e~u ation (2. 0 4: 17 ) call s fo r c = m The circular case is thu s to be con -

sidered as an upper bound to th e ellipses just as the rectilinear mot~ on 

associated with T/T = 0 serves as a lower bound . The major axis is alwais 
p 

l in ed up east-west since our analysis is no good if there is a subst antial 

v . 

The really important feature of this mathematical model is 

that it suggests one way th at a rotary current can be produce d . In the 

Southern hemisphere the rotation turns out to be counterclockwise. This 

comes out at once if we realize that we have been considering north latitude 

as positive in T • ·South latitude will thus be negative and the sign of, p p 
will be reversed . This reverses the sign of v in equations (2.04 : 20) and 

(2.04 :2 0 .1) but not the sign of u in equation (2.04:19). The result is a 

reversed sense of rotation. 

As you know, observations of currents made at lightships do 

show rotation, Fig. 1 . 10-6, page 109, and in the same di rection as that 

indicat e d by this model. However , a rotary current set up by a mechanism 

like th a t suggested by the model would be most likely to occur in a small 

oblong en closed sea where a pro g ressive wave was i ntrocuced by the tide at 

one end and where the width would discourage the development of la rge v. 

The lower Chesa pe ake Bay might be such a place a lt hou gh I don 't know that 

anyone has looked into it. It might be good sport fo r s omeb ody to pull the 

data fr om the CBI Blue Crab cruise where stations were mac e hourly for 

s ev er al weeks down there and do a few calculations to see whether ro tary 

currents do e xist and, if by any ch an ce, t he y are of t he right size ac co rd­

ing to this model . 

An e ntirely differe nt nechani sm that can pr oduce r o tary c urr en t s 

is th e re fr a cti on of waves ar ound an island. Suppo s e v:e r:ad a con fi gurati on 



l i ke t h at:. sno \•,'71 i: 1 Fig . 2 . 04-4 . hs sw .. e ti , at a s imple hc.:?.-::-,onic pro9 ~e ssi ·1e 

wave is r e fracted a rcund the islar,d . On the back si de t he perts cr oss ea ch 

DIR EC TiOflJ OF 

Fig . 2.04-4 

other and are ou t of phas e. The eq uations ar e simi lar to (2 . 04:19) and 

(2 . 04 :2 0) or (2 . 04:20 .l ) but in thi s case the ro ta ti on may be in either 

d ir ec tion dep en ding on th e ampli tudes an d the ph a se sh ift, The only ca se 

~here you fail to get a rotary current oc cu rs when the re fracted parts are 

so bent that the y meet in th e same di re ction, either f oll owing or opposing . 

One seldom finds a good "ellipse" behind an island . The fig ure is usu ally 

wil d ly distorted . 

Yet a third mech anism that can produce rotary current s is pro­

vided by the tid e producin g forces theraselves . These forces have bee n 

shm,'TI to ha ve both a north-south an d an east-west co mponent which, when 

combined , show the same characteristics as ro tary cu rre nts. We can assume 

that the tid a l streams i n the ocean are s et in motio n by the se horizontal 

forces and it seems intuitiv ~ly app ealing t ha t, to a f irst approxim a tion 

at l east, they shoul d reflect the rotary natu re of the 9 ener ~t ing forces . 

There will, of course , be suitable modifications ari sin g fr om va rio us com­

binations of latitude, constituents , etc . so t ha t any obs erv ed ro ta r y 

current is likely to be p re tty compl ex. 

I n deriving the p rop er ties of Ke lvin's wave in a can al an d 

v:a·,es of constant amplitude we ha\ ·e resorted to sone c;.ui t e unreal i sti c 

ass -..:.mp ti ons. In nature ,,·e can e::-:p ect to encou.r:t e r si tu a -::io::1s inte1Tiediate 

to t;;e m. For e:-:~":'lple , we may hav e co nst r aining ,,,,alls but the y may be at 
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a suf ::ici cnt cistc;r ,ce to pe2.Tiit th e ce velo pr:ient o f si zab l e cross- ch ann el 

velocities c.S in lower Che sa pe a~:e Bay. There we r:iisht a ~ticip a te t: :e v f O 

except near th e boundari es and tha t n = f( y) a l though , i n all proba ~i li ty , 

the . function 1,on' t l,e anyt h ing ve r y wi l d . In tl 1es e more complicated ca se s 

.:~e sin:;_:li f i ec ver s ion s of the e~·.;aticns of moti c :. a.nc:. con tinuity v:il l :;o 

lo ::gcr serve t:s . Ke would neec:. r.,·..ich more complet e ver s ior. s. 

2 .05. The Poincare Wave. 

The Poinca ri wave is a generalization of the previous waves that includ e s 

them as sp ecial ca se s . It also in cl ud es a rather r emarkable connect i on 

with inertial cu rr ents . 

We start, as befor e, with th e eq ua ti on s o f continuity and mot ion. 

Instead of the simple form of t he equation of contin u ity, however , we wil l: 

use 

(2 .05:1) 
au clv an 

h(- + -) + - = 0 ex oy clt 

This may be arrive d a t in the usua l way by doi ng book ke ep ing on the volume 

flow rate of wa ter into a prism with s ec t ion dxdy exten din g vertically from 

rt to h . 

The eq ua ti ons of motion will be p ic ke d up from (2 . 03:11) and 

(2 . 03:12) to ge th e r wit h al l the a ssumptions necessary to get th em in th at 

fo rm . In the interest s of nea tn e ss, howeve r , we will i..:se the ha lf- pen dulu..-n 

cav , T , instead o f th e ws i n[L] factor s. The defini tion of T is gi ven b y 
- p p 

eq uation (2. 04 : 16). 

(2 . 05:2) 

(2 . 05:3) 
oV - + ........ 
C\... 

21T 
T 
p 

21T 
T 

p 

V = 

u = 

- c; - ox 

an - c; :iy 
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E~~a ci cns (2 . 0 5 :1)-(2. 05 : 3) supply ~ s ~ith three es uat ions in t~ree unk n o ~ns, 

n , u , and v, ~hi ch is ni ce. 

If o u r solution i s to cover both the Kelvin wav e and tte hori-

zo :·,t2.l v:ave , we mu st all ow for an expo;- iential variation \•:i th y and a ls o 

~~cl~de so~e pa r a~eter t h at will r e ~ cv e t h e exponen tial vari ation so t h at 

:e r so:-:-,e ca ses we c an ge t the hor izon t al cr es t e c. w2.ve . Furthe r, \•,e -.,a:-,t 

tr,e mo tion to b e si .:!lple ha rm oni c . To "fit these st ipu lation s it s ee:r ,s \-:orth 

wh ile to t:::-y for so l u tions of the form 

(2 . 05:4) r 2rr 2-rr 2'IT 
n = n exp1b y} cos[-,- X - t) 

0 I\ T 

(2 . 05 : 5) {2" } 2'iT 27T 
u u exp - y cos[- X - t) 

0 b ), T 

(2.05:6) { 27T } . 2 .. 27T 
t) V = V exp by s1n[T x -

0 T 

where n , u , v are constants to be determined, bis a parar.ieter which is 
0 0 0 

assigned va~ious constant values to produce the assorted cases, and~. T 

are constants specified ahead of t ime for any particular wave. 

If (2.05:4)-(2.05:6) are to be solutio n s of (2.05:1)-(2.05:3), 

then we can use (2.05:4)-(2.05:6) to feed (2.05:1)-(2.05:3) and the equa­

tions must reduce to identities. We will need to compute 

n 3n/3t dTJ/dX 3n/ay 

u au/clt au/ax 

V Ov/dt av/'oy 

From (2.05:4) 
211n an 0 r 2il } . [ 2.r 2;; 

t) 
3t = exp1b y sin T X - 'r T 

an 2nn 
{ 21i } . [ 271 2n 0 t) 

" = ~- exo - v si n - X -
T ox - b ~ ). 

3n 
2.r n 

, 2n 
..,_ 

2i! 0 y} cos [7 t) = exp \ b X -
3y b I\ T 



l 35 

Frc rn (2.0 5 : 5) 

" 
2tt U 

2.i 1 . [ 27T ~u 0 = -- exp{b y_si n-r- X ., .. 
C '- T 

clu 
2r.u 

r 2r. } . ( 2i! 0 - = - -- eye· - V "'l.n - X 
. C >~ ). ~- 4. b - - ). 

From (2 . 05 :6) 

?~ v av - = -at 
_,, 0 27T 211 
-- exp{ -.- v} cos [- x 

T O • A 

dV 
ay 

2ilV 
o { 2il } . 2;r 

b exp by sin[T x 

Substituting in (2.05:1) gives 

(2.05 : 7) 
u 

0 

). 

V 
0 

b 

Substituting in (2.05:2) gives 

( 2 . 05: 8) 
u 

O· 

T T 
p 

Substituting in (2 . 05:3) gives 
u V 

(2.05:9) 0 0 -= -
T T p 

gn 
0 

b 

21T 
T 

-

t] 

2;; 
t) 

T 

2;r t) 
T 

271 t) 
T 

The values of u
0

, v
0

, and n
0 

must satisfy equations (2.05:7)-(2.05:9) 

simultaneously if (2 . 05:4) - (2. 05:6) are to be solutions of (2.05:1)­

(2.05:3). The cons t ant bis to be set at various values and the character­

istics of the solutions explored. 

Equations (2.05:7)-(2.05:9) can be put in slightly more usable 

f orm . From (2.05:8) and (2.05:9) we can find expres sion s for the ratios 

u /en and v /qn . From (2:05:8) 
0 J O O . O 

From (2 . 05 : 9) 

'o 
--=- u 
T 0 

T -u 
T 0 

p 

V 
0 

- V = -
0 

Subtracting and solving for u /e n 0 J 0 
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(2 . 0 5:_0) 

p T 
u --- + -

0 ), '!:) 
= 

s T 
0 .....£ T -

T T 
p 

7.lso , ' c-:-
u -- V = --- ~ 

;;, 
,, 

0 T 0 0 
p 

"'[ CT 

u _}2_ 
V = .=:.....e. n 

0 T 0 '!:) 0 

SuDt =acti ng the first from the second and so lving for v /gn 
0 0 

T 
T 0 

V -+ 
(2 . 05:11) 0 A ::, 

--= 
gn T 

0 ....E T - -
T T 

p 

Eq u ation (~.05:7) may be rewritten 

1 VO 
- --- = 

b gn 
0 

1 
ghT 

Substituting from (2.05:10) and (2.05:11) 
1 1 

,2 T 2 
(2.05:12) 

p 
gh = 1 1 

IT b2 

This can be sho"-n to argree with Kelvin's wave on the condition that the 

y- compon ent of the velocity, v, is zero. Equations (2.03:21) and (2.03:22) 

gave the final results for Kelvin's wave in the form 

{ 2-rr } 2iT 2;; ) n = n0 exp - -- v cos[- x - - t 
T C ~ A T 

p 

i f we use t h e half - pendulum day. 

2;; t) 
T 

Since v = 0 v = 0 and solu t ion (2.05:6) 
I Q 

crop s out . From (2.05:4) and ( 2 . 05 : 5) it i s clear that we w~st re~ate the 

follo~i~g parameters: 



Ke lv in ,, a ve : 

Poin ca re "ave: 

13 7 

- T C 
p 

b 

Since v 
0 

= O, equation (2.05:11) gives 
T 

(2.05:13) 
·T ;:> -+---==o 
A b 

and plugging this in (2.05:12), 

(2.05:14) 
>. 2 
~ =-: ·.gh ,i.e., 

Pluggin g (2.05:13) into (2.05:10), 

(2.05:15) T u = g-T) 
0 A 0 

c 2 = gh 

i.e., -r = 
p 

, l.. e. , 

bT 
;, , 

u 
0 

u 
0 

gives 

gno 
= - -

C 

The bis a fr e e parameter. Let it be assigned the value b = - Tc . Then 
p 

from (2.05:13) c =;,/, ,as it should, and through equation (2.05:14) 

c =A/,= /gh so th at 

T:1i s is pre c isely the correct value for th e Kelvin wave so that, for this 

selection of th e parameter b, the general solution becomes the Kelvin wave. 

We can also show that these solutions proc.uce the horizontal- . 

crest wave as a spe cial case when the parame te r bis set b = =. If this is 

d th · 1 f ' 2lTY} = 1. one, e exponentia ac tor exp\b Equation (2. 05 :12) becomes 

1 l 
~-0 

E = gh 
1 

or IT 

(2.05:16) 
), 2 gh 
:7= 1 - (T/Tp ) 2 

l 

while (2.05:10) be co mes 
u T / A ,/). 

(2.05:16.l) 
0 p 

--= = 
(T/Tp) 2 9n 0 T /T - 1/T 1 -p p 

whi le (2.05:11) be comes 
V ,/;, {T/;,) (T/1 ) 

(2.05:16.2) 
0 p 

--= = 
(1/-r ) 2 gno Tp/T - T /T 1 -p p 

Dividing (2.05:16.2) by (2.05:16.1) gives 
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V 

(2 . 05 :1 7} 
0 T 

-= 
u t 

0 p 

Tr e ratio of n to u can be foun d from equation (2. 05 :16.1). It is 
0 0 

(2 . 05 : 18 ) 
1 , 

(:-z- - ~) 
l T -

p 

mhis agr es with the results for horizontal - crested waves as given in 

se ct ion 2 .04. 
u h 

2iT t] 0 2;r 
(2 . 04 :5) n = ~os[ T x -

t 

2,r 2rr 
t] (2.0 4:4 ) u = uoc os [TX 

T 

T . [ 2ri 2n 
t] (2.04:18) V = u sin T x 

0 T t 
p 

c2 = 
gh 

(2 . 04 : 17) 
l - (T/T ) 2 

p 

The last rela tion is already directly established by ec;u ation (2 . 05:16). 

Th e ratio of the amplitudes of (2.04:4) and (2.04:18) is c orrect by 

e~uation (2.05:17). It remains to show that then /u ratio is correct. 
0 0 

From section 2 . 04 it should be h/c . By equation (2 . 05:18) it is 

0.t/g) (l/T2 - 1/T 2) 
p 

We need t o prove the iden t ity 

h/c 

h/c 

- 0.1/g) {1/1 2 - 1/T 2 ) p 

= (1/g) 0./T) [l - (T/Tp) 2 ) 

c2 = gh 
1 - ( T /T ) l 

p 

~rich i s known t rue from equ atio n (2. 05 :l~). Thu s, fo r b = = , the rela ­

tions among the cons tant s in equations (2 . GS:4) - (2. 05:6) ar e pro perly 

ad ju sted to give horizontal-crested wave s. 



139 

All thi s has be en a matter of tidying up and shewing ag~ee~ en t 

with previou s work . A far more interesting cas e results when the p~~ ~od 

of the ... .-ave co incice s with the pe riod of the half - pendulum day, i.e ., \,he-n 

T = T . We will consider two subcases: Case I, b ~+).and Ca se II , 
p 

b - ), . 

Case I: With b =+).and T = T eq uation (2.05:1 0 ) solv ed for n 
p 0 

g ives 

Substituting, 

(2 . 05:19) 

n = 
0 

u 
0 

g 

T /T - T/T p p 
T /J.. + l/b p 

u 
0 T/T - T/T -----= 

g T/A + T/A 
= 0 

This means that n = 0. We are confronting a "wave" of zero amplitude with 

a "wave length," ). , a nd a "period," T ! 
p 

Dividing (2.05:10) by (2.05:11) we get 

u 
0 

V 
0 

T /). + T/b p 
,/). + l /b 

p 

and, plugging in the valu es of the parameters, 

u 
T/). T/A 0 + 

1 -= 
T/A T/A = 

V + 
so that 

0 

(2.05:20) u = V 
0 0 

This means that the solutions, (2.05:4)-(2.05:6), come out to be 

(2.05:21) n = 0 

(2.05:22) r 2;r } 21T 21T 
t) u = u explT y cos [ T X -

0 T 
p 

27T . [ 2il 21T t] (2.05:23) V = u exp{T y} sin T X -
0 T p 

The ~nholy feature of these equ ation s is that they are the equ ation s for an 

inertial current in a perfectly general form since they are not necessa rily 

uniform over level surfaces! Discussions of i ner tial currents can be found 

in the stanc ard hydrodynamic places, among them Proudman, "Dynamic Ocea:-:o­

graphy," section 48 . This was the kind of cur ren t Sto :n.~el was after when 
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be \•:as f li ngfr,g buoys ov e rboard off Ber muda. You r.ii s r!t chec k up on so::ie 

o f t hat work. 

Ca se II: Wit h b :\ and T T p' ~v.'o rk i ng \.;it h e~uation (2. 05 : 7 ), 

u V n ). n 
0 0 0 0 

T + T = or u + V = 
h , 0 0 T h 

p p 
and ·,:i t h (2. 0 5: 8 ) 

' 
u V gn T gn 

0 0 0 p 0 
= - ).- or u V = 

T T 0 0 A 
p p 

and \•:i th (2.05:9) 

u V gn T Pgno 0 0 0 
= or u - V = T T :\ 0 0 II 

p p 

The first two give us t h e ratios u /n and V /n . The last two are 
0 0 0 0 

icentical . 

u 
l ( ), 

T pg) 
(2.05:24) 

0 
= lTh + -, J. n 2 

0 . . p 
V 

(/h Trg) (2 . 05:25) 0 1 
= -

n·· . 2 
0 p 

Equations (2.05:24) and (2.05 : 25) a r e servicable only in a limited region 

since with b = - A we face an exponential blow ~up in they-d i rection in 

equations (2 . 05:4)-(2.05 : 6) . Only t he Kelv in wave can tolerate a coast 

li ne parallel to the x-axis . In a general way, equatic n (2.05:12) gives 

b 2 as a function of ).2 , 1 2 , and T 2 . Snould the b 2 def i ned by (2.05:12) 
p 

t u rn out to be negative , define a new para meter k 2 such t hat b 2 

The n (2.05:12) becomes 

(2.05 : 26) 
1/, 2 - 1/ T 2 

1/ AL + 1/kL = gh 

- - k2 . 

Si nc e gh i s positive and the deno minator is positive t hi s req uires 

1/ , 2 - 1/T 2 > 0 p 
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or 

or 
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2 ? ~ ~ 

(T - ,-)/(T LT L ) > 0 
p p 

T 2 - 1 2 > 0 
p 

T 2 > ,2 
p 

T > T 
p 

i f both are po sitive which, being per iods , they had be tt er be . 

In this case, replace the solutions (2.05:4 )- (2.05:6) suggested 

originally with 

(2 . 05:27) 
2TI 

y] 
2n 21T 

t] Jj = Jj cos[k cos[T x -
0 T 

(2 . 05:28) 
g,T c,p 271 T . [ 2n ] J 2'IT 2n p 

y] u = no 2 T2 cos[k - sin k y cos[T X -
T - k T 

p 

(2.05:29) 
gTT (~ 2'iT T ) . [ 2;r 211 p p . 2iT 

V = 110 2 ,2 cos rk yJ - sin[- y] s1.n T x 
T - k k T 

p 

That (2 . 05 : 27)-(2.05:29) are solutions of (2.05:1)-(2 . 05:3) may be verified 

directly by substitution. They have the great virtue of beating the expon ­

ential blow-up to which equations {2 . 05:4)-(2 . 05:6) are liable and they can 

tolerate a coast line along a line in any direction. 

(2.05:30) 

or 

(2.05:31) 

27T 
tan[k y) = 

k T 

A T 
p 

This is as far as ~e will go with mathematical models of this 

kind. The next item on the aocket is seiches in lakes anc tiaes in gulfs. 

t] 

t] 
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2 . 06. Seiches jn L~kcs and Tides in Gulfs . 

2 . 06 . 1 . Seiches in a Narrow Lake. 

C~r s~arting point, as usual , is the e~uations cf co nt i nuity and motion. 

Our axes are taY.<2?1, as usual, at 

usual, n is the surface elevation . 

For homogeneous water, constant atmospheric pressure, and no 

friction where the half-pendul~~ cay represents the Coriolis force, the 

w-equation is the hycrostatic equation and 1 if w is negligible, the equa­

tions of motion take the form 

( 2. 06 .1: 1) 
dU 2TT an 
clt 

V := - g 
T Cx 
p 

( 2. 06. 1: 2) 
dV 2n tn 

+ u == - g 
clt T cly 

p 

Since clu/clz and clv/clz do not appear in (2 .06. 1:1) and (2 . 06.1 :2), we can 

conclude that u and v are not functions of z. 

Consider an elongated lake where the currents are pretty much 

in the long direction. Let x be along the axis of the. lake. Let A be the 

area of a vertical cross-section at some point along x and let b be the 

width of the lake at the surface. At any time, t, let n be the mean eleva­

tion across the section and u the x-cornponent of velocity averaged over the 

whole cross-section. By book keeping over the segment of the lake between 

x and x + ox we have 

Au - (A + 67-1) (u + cu) 

Expa nd ing and dividing by ox 

6Au O"Ao"u d = b ...21 
ox dt 

As x ➔ 0, the second term ➔ 0 and 

(2.06.1:3) 
"c AU "n +b.£..._=0 ox at 

== b ex en 
Ct 

is the form of the equation of com:inuity we wa:1t. 
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Si !1ce \,·e ha ve ba!1J,s i n t:-.e · .. ,ay and ar e using av<::rc. ges , v c.v e ~c.<;­

ed over the y - cirection mus t be zEro . Thus , fo r the equ ation s o f moti on , 

(2. 06 . 1:1) an d (2 .~6 :2), we ha ve 

( 2. (16 . 1 : 4) Cu 
- g 

(2. 06 .1:5) 

The gen eral Equ at ion of co ntinui ty fo r an in compre ssi ble fluid is 

(2 . 06 .1:6) au + oX 
oV + dW = O 
ay a z 

Since u and v are indepen den t o f z, this can b e i ntegr ated wi t h respect to 

z from surface to bot to m. 

( 2 . 06 . 1 : 6 . 1) z + w = - E.!l 
at 

since, at z = 0, we take w = - an/at--with a small departure, we take th e 

boundary con di tio n on the mean rather th an on the actu al sur fac e- -and a t 

z = h, w = 0 "& l..1. the bott om is taken l evel, ·we hav~ 

( 2 . 06 . 1 : 7) 

Solving for w betw ee n (2 . 06.1:7) and (2.06 . 1:6.1) give s 

(2. 06 .1: 8) 
z "o"' w = - ( 1 - -) ., 
h ot 

This has been obtained by neglecting ver tical accel er ation and (2 . 06.1:8) 

says, in effect, that t he ve rtical acc el erat ion is small. 

We ne ed to manufacture so:r1e crit er ion fo r th e neglect of vert i­

cal acceleration. The version of th e eq uati on s of motion that we are using 

arose from se tting aw/at, the vertical acceleration, zero in the third 

componen t equation, 

(2. 06 .1: 9) lap . =- - -,-g 
p clx 

s o that ,,·e got the hy c.ro static equ at ion . Fr om (2 . 06 . 1:8) 
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o r 
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1 ao 
- + g 

p 2z 

(1 
__ z) 

= p g + p -3z n 

Integrating t h is over z gi v es 

At the bottom z =hand 

Putting this in nondimensional form a2ll 
p - p hat7 

(2.06.1:10) 
-a h + Tl 1 

= + 
pgT'\ n 2 gll 

The left - hand member and the first member on the righ-hand side constitute 

the hydrostatic equation where aw/at= 0 . The last term on the right-hand 

side is the departure from the hydrostatic e<=:_uation and must be small. 

Therefore, the criterion we re<=:.uire is 

{ 2. 06. l: 11) << l 

Consider an elongated basin oriented east - west for simplicity . 

Ass~~e a periodic motion possible with period ,
1

. At time t = 0 suppose 

that the water is at rest but piled up at t r.e west end and depressed at the 

east. By time t = ,
1

/4 the lake will be level, by t = , 1;2 the high and 

low ar e as will be reversed , at t = 3,
1

/4, level again, and by t = T 1 back 

to the initial configuration. With uniform density, the pressure gradient 

at a ny time will be the same at all points in a vertical line any,,,.,here in 

th e l ake . T1,ere-f o re, the acceleYatio n s a nd the currents a r e also the sa.rne. 

Suppose that the b asin is r e ct a ngular, depth h, widt!, b , both 

cons tan t, and th at t h e ends are at x = 0 and x = 2 , Fig. 6 . 01 . 1-1, pa g e 145. 
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J_---'---"b • 
0 X 

Fig. 2.06.1-1 

Picking up continuity , equation (2.06.1:3), since the cross-section A is 

A= bh 

clbhu ban 0 --+ = 
bX at 

or 
bh au+ b~ == 0 ax at 

or 

(2 . 06.1:12) 

We want solutions for n and u as fu~ctions of x and t which are harmonic 

and which satisfy the boundary conditio n s, u = 0 at x = 0 and u =Oat 

x = i, i.e . , there is to be no velocity component in the x-direction at the 

ends of the basin. 

Having in mind that we have just described the motion as a 

standing wave, it seems worth while to give a bloody go to 

(2 . 06.1:13) • [ iT ] • [ 2'7!' ] u = Csin Ix sin - t 
Tl 

At least, this will fit the boundary conditions. From the first factor 

u == O for x = O and x = t. Further, by the second fact o r, for all x, u = 0 

fort= O and t = Tl znd ·it also fits the initial and periodic conditions . 

Stuff (2.06 . 1:13) back into (2.06 . 1 : 12). 

an nhc [TI 1 . [2rr tJ - - - - , - cos - x sin -dt - t t T 
1 

Integrating with respect tot gives 

n = - .. he cos[¾ x] fsin[ 2" t]dt + a constant 
t N Tl 

The constant may be made zero by putting our origin of coorcinates at the 

mean water level so that we get 



(2. 06 .1:14) 

Notice that this also satisfies the initial and boundary conditions as ~ell 

2S t:1e 

No claim is made for (2. 06.1:13) and (2.06 . 1:14) as the c~ly 

solution. T],ere may be oti1•'.=rs but, at least, this one looks good. Feeding 

(2.06.1:13) and (2.06.1:14) into the e<;:t..1ation of motion, (2 . 06.1:4), 

so that 

or 

( 2 . 06. 1: 15) 

dU 2.rC . (TI ) [2TI +-] ~ot = -- sin - x cos - _ 
Tl 9, Tl 

an 
ax 

TIT 1hc 2 
• r1T 71 

2 9,2 sin,£ x]cos[- t] 
Tl 

27!C . TI 2r. 
sin[,, x)cos[- t] = 

Tl ,., Tl 

T = 1 
MERIAN' S FORJ-11.J"L.~ (VERY IMPORTANT) 

t-'.erian' s formula is very frequently used. It defines the 

natural period of a confined parallelopipedal body of water with a free 

surface. It depends only on the length and depth. 

The coefficient of (2 . 06.1:14) is often ½~itten in the form 

(2.06.1:16) H -

so that, with (2.06.1:15) 

(2.06.1 : 17) 
Tlh H 

C = 2T = 

Picking up our criterion for the neglect of vertical acceleration, (2.06.1:11) 

---= 
gn 

(
' 1 he ,. 211 ) 

g - 20 cos[ i x]cos[- t] I 
,. ,., '1 J 
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"2 h o n 
·2 

gn 
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= - tL 

The!::ef ore , th e r e~uir ement for t r-e valiaity of th e ne9l i:ct of the vsr~.:..cal 

ac ce le~ a tion is t nat h/£ be small, .:...e., t he l ak e ~us t be ~on g c om~a~ed ~ith 

its c.Epth . 

1".=.tur al l akes aren' t :rc,ct a ncul a r but Mer i an ' s formula is often 

used to provide an order of magnituce estimate of their natural per"i ocs in 

~:- ite of the diffi culty in deciding just what £ an d h er e to mean. Some 

examples are: 

Lake Leng th Dept h !•ierian Observed Comment 
Patural Period 
Peri od 

(km) (m) (min) (min) 

Loch Ear n 
10 

Scotland 
60 14 14.5 

Lak e George 
30 5 .5 136 131 

Unusually shallow 
llew s. Wales 

Lake Gen ev a 70 160 59 73.S Seriously out of 
Swi tze rl and rectangular 

Lake Ba ik al 665 680 270 278.4 
Siberia 

When the basin ' is not rectangular the fundamental e qua t ion s are 

( 2. 06. 1: 3) and ( 2. 06. 1: 4) , i.e. , 

au an 
ot = - g dx 

~here A and bare slowly varying functions of x . A possible solution he~e 

is 

(2.06.1:18) Tl = 
27i 

Z(x)cos[-
Tl 

t) 

?-
(2.06.1:19) u = U (>:)sin[.::..:.:. t) 

Tl 
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Z {;,:) c.~d Li{ :-:) 2 r :2 f unctio :1s o f x o :ily cr,d \•:c re~ui:-e fl.{>:) i: (x) 

end s cf th e la ke sinc e we must hav e u = 0 there . 

cu au . 2~ 
1 -;;--x = sin[ - t 

o dx Tl 

3n 
- = 
Cx 

dz 211 
cos (- t) 

dx Tl 

an 2r. . [2;; 
1 3t = - T z S J.n - t 

1 Tl 

Substitutin g in (2 . 06 . 1 : 3) and (2 . 06 . 1 : 4) , remember i ng that 

an d 

o r 

and 

or 

{2 . 06 . 1:20) 

(2 . 06 . 1 :21) 

~A - A dU u-+ 
6X dX 

2 dA dU 
U{x)sin[2 t) - + A -

T
1 

dx dx 
. [21T J Sl.n - t 

Tl 

d Z 2n 
- g - cos[ - t ) 

dx T 

u {x) dA + A au = ~ bZ {x) 
ax dx Tl 

~ {A U (x) } 
ax 

- g 
dZ {x ) 

dx 

= 2
TI bZ(x) 

Tl 

d 
- g cx {z(x ) } 

1 

Solvi ng (2. 06. 1 :21) f or U(x) 

gTl d 
u (x) = - - ~z (x)} 

2ii e x 

and s-....i.,~sti tu t ing in (2.06 . 1 : 20) gi ve s 

2n 
- bZ ( x ) 

'1 

0 



(2. 06. 1:22) Tl2 = a , a } g -.-1A(x) -,- [Z (x)J 
c.x ax 

Equiticn (2. 06 . 1:2 2) gives a means of rnaki 11g a mo~e refined estimate of T1 

in ter~s of the eievation Z, its gradient , the cross-s e cti ona l area , and 

the wic.th of t h e la.1.;.e. A finite difference ec;:ua tio n c ould ::ie use d fer tJ,e 

computation . Usin g (2.06.1:2 2 ), an es ti mate of Tl for Lake Geneva is 

74.45 minutes which is in better accord with the obser ve d 73.5 minutes 

than is the estimate of 59 minutes from Merian's fo!:'TI!ula. 

There is one line across the lake on ~h ich there is no rise or 

fall of the water. Such a line is called a nodal line. The oscillations 

so far discussed have one such line and are called uni~odal seiches. There 

may, however, be two or more nodal lines. In a simple-minded way, suppose 

you partitioned the lake into n sections. By adjusting the spacing of the 

barriers you could get smaller basins each with the sa.~e natural period 

which would, of course, be shorter than Tl since in Merian's formula 9, would 

be reduced. If you started seiches in each compartment so that the eleva­

tion was t h e same on the two sides of each barrier, the elevations would 

always match, because the T's are all equal, and the partitions might just 

as well not be there. Each compartment would have a node. If the motion 

has two nodes it is · called binodal, if three, trinodal, etc .. 

For the uninodal seiche in a rectangular basin described by 

equation (2.06.1:14), the node occurs for that value of x between O and t 

for which the cos[~x/1] factor is zero. For this value, clearly, no time 

varying factor can have any effect. There is just one value o f x, i.e., 

x = 1/2, for ~hich cos[ ~x /1] = 0. 

In general, if the x-dependent cosine factor in (2.06.1:14) is 

replaced by cos[nnx/1), then between x = 0 and x = 1 there are zeros at 

x = (2v - 1)1/2n; v = 1, 2, ... , n. If n = 2, nod~s are located at x = 1/4 

and x = 31/4. Th e period t 2 = (l/2)T 1 . If n = 3, noces occur at x = £/6, 

9./2 and 5 £/ 6 while the period is T3 = (1/3)T 1 , etc., ?iq. 2 . 06 .1- 2, page 150. 

In Loch :::arn the rectangular a::;:iproxLc:ation for the binc-c2.l seiche gives 

T2 7 min ute s. One based on (2.06.1:22) g iv es t 2 = 8 .1 min ·Jte s. The observec 

1 2 = 8.1 minu te s. 
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Fig. 2.06.1-2 

We have been talking about longitudinal seiches but transverse 

seiches are also possible. Near Merges on Lake Geneva the lake is 13 kilo­

meters wide and the mean depth is 170 meters .. Using Meri an' s formula you 

get a uninodal transverse seiche period of Tl= 10.6 minutes. The observed 

transve~se seiche has a period of 10.3 minutes. 

Since the seiche is a standing wave, if Eis its total energy, 

Pits potential energy, and Kits kinetic energy, we hav e from wave theory 

( 2 . 06 . 1 : 2 3) 

and 

(2.06.1:24) 

2 2;r 
P = E cos [- tJ 

Tl 

K = E . 2[2,r t] sin -
Tl 

For an elongated basin of variable section the basic esuat ions are (2.06.1:3) 

and (2.06.1:4). Multiplying the equation of motion by Au and integrating. 

from end to end, x 1 to x 2 , of the lake 

xf2 .£.-11 
J:l.u dx ax 

or, interchanging operations on the left-hand side and integrating by parts 

on the right, re~embering that u(3u/3t) 

a xf 2 2 .:::...J,, Au dx} 
a t l 

X 
1 

(Au) n dx 
dx 

But {Au) 
X 

1 
= O and, feeding in tt1e value of C {ftu) /dx from 

conti~uity equation, 

the 



~gain in t erchangi~ g op er ati ons 

Int eg ra ting wi th re sp ect to t 

x2 
(2.06.1:25) ~ j Au2dx + ½g 

xl 

But 

and 

p = 

2. 51 

X 

j 2
b r/cx} 

xl 

a co ns tant 

th e only thing lacking i n (2.06.1:25) being a factor of p which can be 

pulled out of the constant. Thus, (2. 06 .1:25) is a st atemen t of the con - · 

se rvation of energy. 

Fo r th e special case of a r ect an gu lar b as i n x
1 

= 0, x
2 

= l, u 

and n are to be h a d from (2 . 06.1:13) and (2.06.1:14) u sing (2.06.1:16) in 

(2 . 06 .1:14) . Fro m (2 . 06.1 : 25) 

K = l;;pohl!.c 2si n 2 [2
,r t] 

Tl 

p 2 2 27i t] = lzpgbLH cos [-
Tl 

By (2.06 . 1:17) 

an d the results, (2 . 06.1:23) and (2.C ·6.l:24), are verifiec. 

For Loch Ear n with p = 1 gr ams/c m i = 10 km, b = 1 km, h = 
60 m, and C = 4 cm/ se c we find E = 2 .4x lo 1 5 erg = 67 k\v-h r. 
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2 . 0 6.2 . Cc-oscillatio~s in a !, arrow Gulf. 

1-:e c.:-e ,-.ow goi ng to knock out t11e east e rn en d of our lo ng na rrow lc,:e and 

~ it ch it up t o an ocean to make a sulf o f it, Fig. 2. 06.2-1. Tak e a cross-

I 

A \ B OCEAN 
\ 

Fig. 2.06.2-1 

bel1avior, i.e., we want exactly the same elevations and currents as we had 

before we knocked the end out. Clearly, there must be some sort of oscilla­

tion going on out in the ocean beyond B to maintain what we want. What 

goes on in the ocean is harmonic constituents of the tide so that's what we 

will take. We n2.rne the sloshing in the gulf the tidal co-oscillation. 

Since we are thinking about tidal constituents we can suppose that the 

period, T, is specified. We will assume that the elevations along Bare 

deter.nined by the tide of the open sea and we will ask ourselves how the 

features of the co-oscillation depend on the dimensions of the gulf. 

The first nodal line in the gulf may occur on either side of B, 

Fig. 2.06.2-2. If N is outside AB, then the tide at all points in the gulf 

A 

A 

F ig . 2.C6 .2- 2 
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\•:ill have the s2--:ie phase . If N is !)et"' E:E,n A &.nc B, then N divides tne gulf 

int o two regio~s whose tides are 180° ou t of phase with each ot he r. In 

either case the ratio of the tide r~ :1se at A to the tide ra nge at B i ncr eases 

as N + B. When N is near B the tides at A are co mparatively large. It is 

to this pi1enc;;- ,eno~ that the ter.n resonance refe rs. 

Su;?pose a recta ngu lar sulf of unifo 2.,ri depth h end let AB = L. 

Then the pertinent e<2'_uations are (2. 0 6.1:13), (2 . 06.1:14), (2.06.1:16), a:1d 

(2.06.1:17). For x f L, from Merian ' s formula 

At B, x =Land the elevation at B comes from (2.06 .1:14), 

or, if we define HB as the amplitude at B, i.e., 

(2.06.2:2) 

then 

H = B 

n = 
B· 

1f 
Hcos [I LJ 

21T 
H

8
cos [~ t] 

The tide at any point within the gulf can then be expressed as 

(2. 06. 2: 3) 

1T 
cos rI xJ 

1T 
cos [IL] 

21r ' 
cos [- t) 

T 

For a nodal line in the gulf between A and B we require L > ½.I!.. or, using 

(6.02.2:1), 

(2.06.2:4) 

Clearly, the condition for resonance is 

(2.06.2:5) 

Semi d iurnals in the Bay of Fundy approach resonan ce of this 

kind. At the head of the bay are the largest tic.es in the world. Natural ­

ly, Fundy isn't rec t angular but, taking as rough approxima t ions, T = 12.4 

hr and h =. 75 m equation (2.06.2:1) gets us£= 600 YJn. The le ng th, L, of 

the Bay of Fun dy is about 270 km. T~erefore, L <½£a nd the t i des wi l l be 

simult aneous with t h e strength 3 hours before high and low ~aters . This is 



rou~hly ~~at is observed. 

cos[~ !.,) 
270 = cos[ 60 0 T.) ~ cos[81°] = 0.156 

7h~ra~ore , fro~ (2. 06 .2:2), 

o:r 

When the gulf is not rectangu l ar we do bette r ~ith equa t ~ons 

(2. 06 .l:18)-(2 . G6. l:22) with the condition t hat AU(x) = 0 at t h e head of 

the gu l f. We c2n get b 2.nd A from a c :-iart of the gulf and , unlike t:-ie 

seiche case, we ,,ow know T. This means that we can have at eq_uaticns 

(2.06.1:20) and (2.06.1:21) by practical nurn8rical methods of intesration. 

Starting at the h ead of the bay with any handy value o: Z(x), succe ss ive 

values of Z(x) and U(x) can be calculated down the ba.y . Then Z(x) and U(x) 

can be adjusted to make them agree with the observed values for some x 

and comparisons made between the adjusted computed values and the observed 

values. Fo r this operation we can replace the differential equations, 

2.06.1 : 20) and (2 . 06.1:21), with their finite difference analogs: 

(2. 06. 2: 6) 2~ { } = bZ(x 1) X 2 - X 
T v+ v+ v 

(2 . 06 . 2:7 ) Z(x 2) - Z(x) = 
\I+ \) 

Proudi~an {pages 233-236 ) give s a calculation of this sort for 

the Red Sea. He divides it into 40 sections and works out the values 

section by section for the M2 constituent . You would do well to check this 

over. Th e final upshot of his calculation is: 

Section Station Co-oscillation 
Calculated I O::iserved 

H -y H -y 
(cm) ( 0 ) (cm) ( 0) 

* 1 Sh adwan 25.1 117 25.l ll7 

3 Koseir 24.4 117 21.9 112 

17 
** 

Jicca 4.4 117 7.4 124 

19 Port Sudan 0.2 11 7 0.9 204 
~a !<assa\•:a 25.4 297 .34. 4 227 L ., 

I 3 3 Kc.."'ilaran 30.3 29 7 32.8 303 

* Poin t of forced agreeQent . ** T~ere is a node so~e~here arc~ nd in here. 
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:-i·,e c.gre,<;.":le ::t co u ld b e a lo t wo :?:"se. 

For the Bay of Fun dy tl ,e factor, 6. 4, t ~c.t we go t is o±: t he 

r igh t o r c er of mag ni tude bu t it is an out twice as lc.r ge as it should be . 

Th ~ mea su red tid es at the head o f the bay ar e about 40 feet and those at 

t he rt.au :::, 12 ::eet.,, ·hicn c o;;,es out to 40/12 = 3 . 3 . If you ·Ilse ?rouci.-:-.an's 

va l ues to cor.,9-..ite u a t t !'1e mouth y o u get ab out 11 kn ot s Kni ch is off t y 

an ord e r of magnitu de . All this isn't too surprising since no natura l 

bocy of water is a rectangular gulf. Hhat to take for its length is a 

qu e stion . We have the sa.-ne difficulty, only more so, with so br anched a 

structure as the Che sapeake Bay. There is really no good answer: 

The sam e sort of problem ar _is es in picking a nu.r.tber to represent 

the depth. Bays shoal tO\,·ard their heads and this has an effect on the 

speed of propagation . Martin Pollak once ciphered it out for the Che s a­

peake Bay using h = 36 feet and wound up with the tide moving 70% too fast . 

He then worked back from the known travel time for the Bay and goth= 12 

feet which is pretty_ silly si nce it is le ss t han the average depth of the 

Bay. 

Another source of disagreement between observ,d tid es in the• 

Che sapeake Bay and those comput e d from Mer ian's formula arises from the 

geometry of the Bay . Where sharp constrictions exist, e.g., as at Kent 

Island, the tide usually runs higher in the vicinity of the constriction. 

If one st ar ts a progressive wave moving up the bay and computes 

the potential and kinetic energies for a small sec ti on of the wave length, 

mA << A across the br eadth, b, and over the dep th , h, of the bay, one can 

replace n by n and u by u over the sma ll sec ti on . For the potential energy , 

P, we get 

and for the kinetic energy, K, of the same section ass~~ing frictionl es s 

flow and u uniform from top to bott o~, 

If ~e follow th is element up the bay, i.e., ri de it up , t he P will remain 

co nstant and, in general, to first order P = K. If n is small , we can 
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neg lect co:r:par i son in the kin eti c energy and ~rite 

\, can be removed fro:-:i 
.L. Lnese e~uatio:1s l::y 

' t , = CT 

The the pote nti al energy is 

'J':,erefore , 
n2bh½ = another constant 

or ' ' i.. 
l1 'v b~".ll:l-4 

Doing the sarne thing with the kinetic energy leads to 

This indicates that the dependence of the amplitude and the orbital velocity 

on the breadth is the same but that the orbital velocity is more strongly 

affected by the depth than is the amplitude . 

The same sort · of thing holds for a reflected wave in a bay . At 

the head of a bay the u ' s for the incident and reflected waves neutralize 

each other but the amplitudes add. In the Chesapeake Bay the tides show a 

slight increase north of Annapolis. 

One of the big problems is how to separate the effects of reson­

ance from the effects of a constriction. I know of no way to do this very 

well. In any case, these mathematical models are much too simple. To name 

just one inportant · neglected feature: Eow about friction? Bottom friction 

in a bay would eventually camp out the tide if the bay were long enough. 

Proudman's more elaborate Dethod which he used for the Red Sea 

could be applied to places like the Chescpeake Bey or Long Island Sound-­

if anyone felt like it and had the energy to ~aste. 
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2 . 06 .3. Standing Os ci llations in a Channel. 

We can make a qu ick pr ofit by e>:t end ing seiche s i n a na rrow lak e and tical 

co - oscillations in a narrow gulf to st and ing oscillati on s in a ch an ne l . 

J~st as in t~Je c ase o f the gu lf ~!here ·we had to spe c ify T at t he open e:-10, 

• .-e mus t now s peci fy T at both e:1c.s of the char,ne l. h.s b ef ore , lines o f 

zero range are nodes . Lines of ma>:i:num r a nge are kno\•m as lo ops, Fi g . 

2. 06. 3-1. 

Fi g . 2. 06 .3-1 

With our usu a l channe l wit h para lle l vertical banks and un ifo rm 

depth equations (2.06.1:4) and (2.06.1:13) - (2.06 . 1:17} apply . Four times 

the di sta nc e from a "node to the ne ar es t loo p is cal led a " wave length" a nd 

is u s ually denoted by A s o th a t A = 2i. 

Prom (2. 06 .1:14) th is gi ves 

(2 . 06 . 3 : 1) 
2n 211 

n = H cos[T x]c os[ -;- t] 

since -rhC 
22. 

H = 

and from (2. 06 . 1:13) 

(2. 06.3:2) • [ 271 ) . [ 2'11' 1 u = c si n T x si n T t 

with 
H 
- = 
C 

and 

This is all an al ogous to the re sul ts from th e stu dy of sound in 

close d and open pip e s . 



2 . 06 . 4 . Gsostrop hic Effects . 

~e ~ill now co~s ider briefly, and qual­

ita ~· ,e1 _, t. e geostrophi c effects on a 

~ic a- co-oscill~tion in a na r row sui f. 

Ccnsic'2' r t:1e s itu a ti on c o·,,e r e d by eC:_ua­

tions (2 . 0 6.2:1)-(2.06.2:7) and mea s u r e 

time t from t he instant of hish ...,ater 

a t t he hea d of the gulf. Thi s, of 

course , ...,ill als o be the time of hish 

water as far as the first nodal line . 

At t = 0 ci1e currents will be 

zero . As we have seen, at t = T/4 t.~e 

currents reach their maximum speed to­

wa!."d the sea. 

Let us restrict our attention to 

the northern hemisphere. Owing to the 

geostrophic effects the surfa ce at 

t = T/4 will not be level. It will b e 

high to the right an_d low to the left 

of the current. Between is a line, nn', 

whi ch will be at mean sea l evel. With­

out the geostrophic effect, the whole 

are a would be at mean sea level at 

t = T/4. 

At t = T/2 the first picture is 

reversed . At t = 3T/4 the s econd pic­

tur e is reversed. Finally, at t = T 

the whole cycle starts over again. 

Continuity suggests that to get 

this progression of high and low water 

~e ~il need curr ents at ti me t = 0 

which ;:-,ay be as shown in Fig. 2 . 06 . ~-1. 

A si u.ilar picture holds for time t = • /2 . 

t=O 
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Th: ,;eost :o phi c ef f E.cts of t11es e c-..:::?.:ent s .,i l l rncdi :fy t he el ev a tions - ,.. 
C. .... 

t = 0 2:id t = T /2 but , if the gulf is narr ow, the transv e rse com9one:-,ts 

o f the cu rr e~t s ar e small . 

;r... t the inters e ction, A , of h'N ' an d nn ' the r e v.-i 11 be no change 

in ti:e wa ter j·,ei9ht . 

~~ t = 0 high wate~ c cc u: s alc ~g An. 

;._ t t = T/4 h i,;;h wat e r occu r s alo ng AN. 

At t = T/2 h igh \..;ate r occurs along An ' . 

At t = 3T/4 high water occurs a long AN' . 

At any on e time all the points o f hi gh wat er lie on a line t h rou gh A. This 

line of high wat e r is cal le d a cotidal line and A is called an amphidromic 

point . The reg io n around A is called an amphidromic region . The cotidal 

line ro ta tes about the amphid rom ic point; in the northern hemisphere, 

counterclockwise. 

An amphidromic region of this sort exists in the Adriatic. The 

mean depth of the inner 250 ki lomet ers of the Adriatic is ab out 50 meters . 

For the M2 constituent, by (2 . 06.2:5) for the resonance condition, we get 

~t = \xl2 . 4hr(9.8lm/sec 2x50m)~ = 247 km 

By observation, the amphidromic is located about 240 kilomet er s from Venice. 

Hi gh water at Zara on the e ast coa s t preceeds high water at Venice by a,½out 

2 hours 53 minut e s while high wat er at Viesti on th e west coast lags i t by 

about 4 hours 37 minutes. 

The same situation occ urs in channe ls where an amphidromic 

region is associated with e ac h nodal line. An example occurs in the south ­

ern part of the North Sea. 

Cotidal l ines and amphicromic poi n ts hav e i nte re s ted investiga­

tors for qui t e a w~ile . Whole oc ean s, for example th e Atlc.ntic , have been 

analysed into cotidal lin es and amphidromic regions. If it co uld be done , 

it wculd be ni ce . But no t"v.10 ir.v es tig at ors se em to co:-ne up wi th the s a.'"!'le 

p ict ure. There is r ea lly ver y litt le ca ta ex c ep t along th e co as t s a nd 

every one se en s to be playing it by ear. 

Hc.r ris worked out a t:-Jeory in which he ci vic ed t:p t:: e oc ea n int o 

basins wi th swall over la ps at the ec s .es . Each o= these b c.si ~s v,oulc th en 
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ta~e its c~n na~~r al pe rio2 which ~oul6 si ngle out constitu e nts o f t ~e ti~ e 

~o~ld be re s c~ant , and the ref o re ~ominan t, for that ~asin . At le as t , 

he ~a~a ged to ge t p r etty consistent re s ults , but hi s t~ eo ry, as a pict~ r e 

of re a lity has gr ave defe c ts . The se cti cns ar e arb i trary, no flo ~ can t~~ e 

F la= e b~t~een sect icn s , and Cor iol is f orc e was negl ec ted . 

F:::-oucn a.n a:1d Docciscn ;.:orke 6 c·.;t cotioal lin e s and a:r,;_:friicrc::-,ic 

point s for the North Sea and ci1e Engl is ~ Channel . In th is area ti de ne a.s­

urment s are much mor e numer ous , both for shore stat i ons and for the ope n 

sea frcm lightships and oce anog ra phi c expe ditions . They v:ent through a 

very elaborate reconcil ia tion o f orbi tal velocitie s and tidal he i ghts and 

ti1eir r esul t i s a very reali st ic picture of the reg ion. 

We can get mat hema tica l exp r ession s for an amphi dromic reg ion 

in a ch anne l by us ing the Kelvin wave . Supp ose we hav e a combination of 

two ha rmoni c Kelvin wave s trave l ing in oppo sit e directions. Take the 

origin of co - or di nates at a po int wher e thei r eleva t ions are alw ays equ al 

and cppos'ite. The n 

(2.06.4:1) p{ 2;; } 2;; 2r, 
t ) e xp{ -

2r, } 2tt 211 
n = H ex - v cos[ - X + - H y cos [- X -C ~ A T C >. T 

an d 

t ) 

( 2 . 06 . 4: 2) u C 
. 211 } 2n 

exp{ c y cos [T X + 
2n 

t] C exp{-
2n ) 2;; y co s [T 2,r 

= - - X -
T C 

where H a nd Ca re co nstan ts and th e chann e l is s uffici e ntly rest ric te d in 

latituce so . that T is · appro x ima t ely constant . 
p 

(2. 06 . 4 : 3) 

At high water an/at= o so th a t, fr om (2.0 6 . 4:1) , 

2n } . 211 
exp{7 y s1.n [T x 

211 + t ) 
T 

{ 2,r , . [ 2rr 
exp ·· 7 y J sin T x 

2
" t) = 0 

T 

Equation (2. 06 . 4 : 3) is the equation of a coti da l line at the tim e t. It 

can be rolled over in to a neat er form as follows: 

T 

Using the ang le sum f ormul ae from tr igonorr.etry and then gr ou? ing 

anc f ac tori ng (2.06 . 4:33) t ake s t he =orm 

. I 2-rr ] [ 2ii ( { 2:r 
..,_ 

( 2 . 06 . 4 : 4) t] y } + exp{ -
L 1: 

y}) S1.:1 . -,- X COS - exo -
I-. T - C C 

211 1 . [ 211 t) r 2o y} e):i:..{ -
2,r 

y}) 0 + ccs[T x s1.n - (e) :p-.- - == 
T C C 

t) 
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or 
{2TI y} ex p{-

2TI 
y} e :-,p - -

C C 2 .. ) 2;; t) 
2;r -;-"':T 

= - tan[T x cct [- = tar> [- x) t ,rn [-=- ... + 2r. 2;; . ).. '-
€::•:p{ - '' _,} + e>:p{ - y} T T 

C C 

!r:vo ki, :g the de::.:.:1 itio:1s o f th e hy.:.xrb ol ic f .: .. ction s, (2 . 0 6 . 4:4) i s 

( 2. G6. 4 : 5 ) 
h [ 2 :r l t a n -c- y ?- _ 

-- -- -- == tan [..'.:...'.!.. (t .,. ..:.) ] 
2n T 4 

ta n[ ->.- x) 

Fort= 0 , 1/4 , T/2, 3T/4, ... th e cot idal line s are the axes. 

Near the origin x and y ar e small so that the arg ur.,ents of "t anh " ca.nd "ten" 

on t he lef t side of (2 . 06. 4:5) are s mall and t~e functions may be approxim ­

ate d by their arg uments. This leads to 

Y C 2n T - = - tan [- ( t + -) ) 
X A T 4 

in the vicinity of the origin. But c/>. 

(2. 06. 4 : 6) 
y· - = 
X 

T 
P 2n 

- tan[- (t + 
T T 

= T /Tso that, near the origin, p 

~] 
~ 

Thi s re produ ces the featu re s of the sur face des cribe d at the beginning 

of t his se ction fairly wel l . However, the velo cit ies, be ing thos e of a pair 

of directly op pose d Kelvin wav es, produce a re ctil inea r current rather than 

a rotating cu rrent . 

Pro udr.lan di scu sses the cotidal lin es and amphidromic regions 

fo r the M2 con stitu en t in the Engli s h Chan nel on p ages 256 -2 62 of "Dynamic 

Oce a nograph y." You s hould che ck th is over. 

2.06.5. Co~poun d Seiches . 

. ~s a ::inal move , let us co:i s ider so:.,e case s i:1 'v.·hi ch ·,.:e r(::-:-,ove the r.a1:ro'v: ­

nes s rest riction. If a tr ansv ers e seic he and a longitu ~ ~nal seich e exist 



t c s e t~ ~r , consid ~ra bl e v arie t y is p ossihle dep endi ng en ~te pha s e d i f f e r ­

e ,·c e s a :1•.: oJ1',pl i t uc e c i f fere n ce s of t h e t ,,_·o oscillatio n s. Con si de r t.!'le 

c as e ;,:he r e one seid: e is a t mean l ev e l ":h~n the othe r i s a~ its e :.:t re:n e 

di~ ~lac e ~en t , Fi g. 2. 06 .5-1. The hi g h Kate r tra ve ls aro u n d t h e l ake a nd 

=O r 
CROSS LAKE = 

4 
SEICHE 

N 

H 

!I t = 0 t k ' N' UP AND DOWN 
I =-

4 LAKE SEICHE 

L 

i = 0 t t 
I L T =-

4 80TH TOGETHER 

L 

Fig. 2.06.5-1 

and so does the mean water level line. ¼~~ere the NN' intersect there will 

be an amphidromic point. 

Suppose we had a square of uniform depth hand sides at x = O, 

x = £ , y = 0, y = £ ,Fig. 2.06.5-2. Then t h e two simple seiches can be 

y 
t 1--------, 

0 X 

2. 06.5- 2 



(2 . 06 . 5 : 1) 

( 2 . 06 . 5 : 2) 

( 2 . 06 . 5 : 3) 

( 2. 06 . 5: 4) 

where 

(2.06.5:5) 
and 

(2 . 06.5 :6) 

TJ l = 

ul = 

n2 = 

v2 = 

2.63 

er 2;r 
t] H1cos - x) cos [-

9. T 

. [" ) . [2-;r t) cl s rn I X Sln -
T 

.. 
2ccs [-f 

. . 2TI t) - VJ Sln[ -
- T 

• 7T 2 TT 
c2sin [ I yJ cosf T t] 

The compound seiche is the su.~ of the two . 

Suppose , for i nstance, that H1 = H
2 

= H whil e c
1 

= c
2 

= C. 

Then fo r the compound seiche 

( 2. 06. 5: 7) { iT ] 2;r TI ) . 271 )} n;:: H cos [ i x cos[T t) - cos[i y sinf 7 t 

( 2. 06. 5: 8) u = C sin [~ x ] si n[ 32!. t) 
i T 

(2.06.5:9) v = C sin [~ y]c os[ 271 t] 
£ T 

For h igh water an/?t · c O so th a t, fr om (2.06.5:7) , 

or 

(2 . 0 6.5:10) 

r 271 ·. iT • 2iT 2.r 1T 2;r ) } 
H\ - - co~7 x)s1~- t) - - co~- y]co~- t = 0 

T "- T T £ T 

1T 
cos[ i y) 

7T 
co s[ i x) 

= tan[ 2
.r t) 

T 

This connects up the where and when of high water . 



2 . 06 . 6 . EGic~es in a Ero ad ~ake . 

~c e ff~ cts , th e equations of co n tinuity and motion are 

ov an 
= - g -at ~Y 

Let the sid es of the rectangle be x = 0, x = a, y = 0, y =b and try fo r a 

solution 

(2. 06 . 6: 1) u = A sin[~ mr . 2n 
x]c os[ b y]sin[T a 

mr, . n1r . 2n 
(2.06 .6: 2) V = B cos[- x] sin[ b y) sin[-a T 

The boundary co ncii tions at the coa st s ar e 

u = 0 at x = 0 and x = a 

v = 0 at y = 0 and y = b 

t) 
A, B constants 
m, n integ e rs 

t] 

Cl e arly, whatever else they do or don 't do, (2.06.6:l) an d (2 . 06 . 6:2) meet 

t hes e c onditions . Sub s tituting th em in the e~uations of motion gets you 

= -

2n m1r . n1r 21r 
B cos [ - x] s1.n[ -b y] co s[ - t) 

gT a T 
and i:1t es.ra ting, 

2a ffiiT n 1r "'-
T) = --A cos[- x] cos[-.- y] cos[~ t) 

mgT a o T 

2b r r:i.r OiT 2;; 
t) = B cos - x) cos[- .- v]cos[ -

ng T a 0 • T 

Tr,e se c.!."'e ident ic al in ~orm, vi z., 

( 2 . 0~ . 6 : 3 ) 

v:i th 

(2 . 0 6 . 6:4) 

..,_ 
n = !-l cos[ m;; >:)c o s[ "b-"i v)cos[ .=...:.... t ) 

a " ' 



? eed i ng (2 . 06. 6 :1)-(2. 06 . 6 :3) back to continu i ty ~e ge t 

(2.06.6:5) 2 m- n ( 
? 2J-½ 

T = /gh la2 + b:.: 

:S~uation (2.06.6 : 5) incluces Meri a :, ' s form ula as a spec ia l case -.,.-he n m = l 

an ci n/b << m/a. 

2 . 06 .7 . Seiches Acros s a Uniform Chann e l. 

The la s t model for consideration in s ect i on 2 . 06 tr ea ts seiches across a 

uniform ch an nel when geostrophic ef fects ar e impo rt ant . F~ee waves are 

taken and we will suppose all cross-sections are eq ual and th a t conditions 

on all o f them are the same. Ta.~e the l a titude constant. Take axes Ox 

cross ch annel an d Oy with 'the channel. Eor continuity we have 

(2.06.7:1) _L (hu) + .£.!l = 0 ax at 

For motion, 

(2.06.7:2) 
cu 2 1T an 
at - V = - g ~x T 

p 

(2.06.7:3) 
av 2'JT 

0 -+ u = at T 
p 

At the sides of the ch anne l 

(2 . 06 . 7 :4 ) hu = 0 

Back a str e tc h we h it these equ ati ons without t he geostr op nic 

t errn s--e~u a ti on s (2.06.1:18), (2 . 06.1 : 19), . .. for the non -r ect angular 

ba s in--and got forms 

211 n = Z(x)co s [- t) 
T 
s 

u = U (:,:) s in ( 2" tJ 
T 

s 



l EG 

~her e T is the Feri od of t ~e ordina r y t~2nsv e rse s eic he a n d Z (x) ant U(x) 
s 

,a:::-e funct io ns cete :...Ttline d up to an cr:Oit~a :...-y fac tor which satisf y 

(2.06.7:5) 

( 2 . 06 . 7 : 6 ) 

d 
~hU(x)) 
ex 

2
" U (x ) = 

i 
s 

2 .. 
= - Z (x) 

T 
s 

.. c. ~ Z(x)j . c:x 

[See (2 . 06.1:2 0 ) and (2 . 06 .1:21) .) 

cc :...-oss th e channe l and hU( x) = 0 at the boundar ies. 

(2.06.7:7) 

Working on this patt er n , le t's try 

u = U(x)sin [ 2ii t) 
T 

keeping the requirements on U(x) expr es sed by (2.06.7:5) and (2 . 05 . 7 :6) but 

letting T be something other than 

are autom ati cally sa tis fied. 

i . 
s 

The boundary con dition s , (2.06.7:4) 

(2 . 06.7:8) 

( 2. 06. 7: 9) 

Feedi _ng (2.06 . 7:7) into (2.06 . 7:l) and (2.06.7:3) we get 

d . 2ii 
--=;--{d hU(>:)]sin[-t) 

X T 

. [ 2.r t) sin -
T 

Using ((2.06 . 7:5) on (2.06 . 7:8) it can be written 

(2 . 06. 7:10) an - 2n Z(x) sin[2ii t) at= T T 
s 

Integrating (2 . 06 . 7 : 9) and (2.06 . 7:10) gets 

( 2 . 06 . 7 : 11) ....!_ Z (x ) 2i! t) n = cos[-
T T s 

( 2. 06.7 :12) l U (x) 
2;r 

t) V = cos[ - ·-
T T p 

There ar e no con stants of int eg rati on her e since th e rnoticn is harmonic. 

(2 . 06.7:13) 

Feeding (2.06.7:7) (2 . 06.7:11), and (2.06.7:12) into (2 . 06 .7:2), 

2
" U (x) 

T 
2 T •• ( ) 

- 1i ---z U X 
T 

p 

T d 
g - ~ z (>:)) 

T OX 
s 

and then work ing on (2 . 0 6.7:1 3 ) wi th (2 . 0 6 . 7:6) gets yo u 

(2. 06 . 7:14) l/1 2 = 1/T 2 + 1/T 2 
s p 
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rrc ~ (2 . 06.7:14) :.. r. ca,1 be s~en 

sions of the channel, we nu st hav e 

T :: T • 
p 

T <tr, Tl. 
s i? nin 

(2 . 0 6.7:14), if e ither, << T or T << Ts' 
S O p 

the 

or 

F~r a ver y wide ch anne l T is very larg e and e~u atio ns (2. 06 .7: 5) 
s 

a nd (2.06.7:6) tell us that U(x) and Z(x) are practi cally independen t of x. 

2 . 07. Response to the Tide- Gener a ting Forces. 

2.07.1. Introduction. 

We have already discussed the equilibrium tide in section 1. 06 and , in sec ­

tion 2.02, developed the forced wave in a canal along a parallel of lati­

tude. The problem of th e response of the sea to the tide-generating force s 

is a most difficult one and we will restrict ourselves to tho se cases in 

which transverse currents may be neglected . We will consider a forced tidal 

wave in a narrow me ridional ocean, the tides in a closed basin , sha llo w­

water constituents, and, because of the math ematical similarity, changes in 

water elevation due to chang ing atmospheric pressure. 

The fundamental equa tions are , as usual, continuity and motion . 

If n is not negligible in comparison wi th h, th en continuity takes the form 

( 2. 07 .1: 1) .£..._[ ( h + n) u) + ~ ( h + n) V ] + oX dy 
= 0 

For an elongated basin continuity, as before, is 

(2 .07 . 1:2) L(Au) + b ~ = 0 ax at 
In the e~uations of motion we must now inclu de a body forc e per uni t ~ass, 

F, with components F , 
X 

F, and 
y 

F. 
z 

The ve:?:"tical com?onent :nay be neglected 
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s i:, ce it s c nly co :1tri ;-;uti on is -::o r:ia:-;e a slight :::o-::i::ication o f the val ue 

o f c;ravi t y . I:1clucing these forces, the: hori z.ontal c or.,ponents o f t:1e e:qua­

tion of ~oti on ar e 

(2 . 0 7 . 1 :3) 

(2 . 07 . 1 : 4 ) 

Du 
!)t 

Dv 
Dt 

2-;;- 1 ;p 
- v=-----+z 
T O ~X X 

p 

2ii 
+ 

T p 

1 dP u =- -- --+ 
p cly 

,:, 

y 

Negl ecting Fz and us in g pa for the atmospheric p res sure th e vertical com ­

ponent o f the e quati on of mot io n be comes the hyd ro static equatio n, 

p = Pa + pg Cn + z) 

from whic h 
ap ao 

~n -a 
+ = pg oX d X ax 

and 
ap ao 

E..11. ~a 
= -- + p g 

" v a Y ay 0~ 

Therefore, {2.07.1:3) a nd (2.07 . 1 : 4) can be "rr i tten 

(2.07.1:5) 
Du 2lT 3n 1 3P a 

V = - g + = ---Dt T ax X p ax .: 
p 

"o 
(2.07.1:6) 

Dv 2ii 2-Il 1 o4 a 
- + u = - g + F ---
Dt T 3y y p ay-

p 

2 . 07.2. A Harrow Ocean :Sound ed by Two Meridia ns . 

Consid e r an ocean of unifo!"ll'l depth, h, bounded by two meridians so clos e 

together tr: at we can make all the approxirr,ations usu a l to ti 1e nec;lect of 

tr a nsver se current s. Let a be th e radi u s of ea rt h a~d c t ne la tit ude; 

¢ > O fo r north lati t ude. Pu t the ~-a~is alo ng the ocea n wit h i ts origin 

at t he e suator so that x = a ~ . Let b be the breadth o f t~e oce a~ at the 
0 



.. .. 

l.G9 

The n b a t latitude ~ 1,;ill be b = b co s {d) and t;,e cr os s-sectio:,al 
0 . 

area, A, will be A= b
0

h cos( ~ ). If u is the northerly curren t, the~ co ~-

tinuity , by equation {2. 07 . 1:2), is 

{2 .07. 2 :1) h a_ s (¢) } .:.. ;-w u cos . cos(¢) 
an 
ot = 0 

It will be convenient , as in th e case of the f or c e d ~ave al ong a 

par a llel of latitude, to express our results as a modification of . the e~uil­

ibr iu m tice . The e quil i briUJ"ll tide is one in which the ac c eleration s relc.­

tive to the earth a re zero. Using n for the eq uilibrilli~ ti de th e h or izo nt al 

components of the equati on of motion are 

(2.07.2:2) 

{2 . 07 . 2 :3) cln 
g - = F ay Y 

so that (2 . 07 . 1:5) and (2.07 . 1:6) can be written 

Du 2,r a 
n)} (2 .0 7.2 :4) -v g{ax<n Dt T 

p 

Dv 21T cl n>} (2 . 07.2:5) -+ - u = - g{-;;-(ri -Dt T oy 
p 

Since v = O and we may neg l ec t geos tro ph ic ef fe cts while 
Du clu = - , equation (2.07 . 2:4) becomes 
Dt clt 

(2 . 07.2:6) 

be written 

(2.07.2:7) 

au g a -- = - ~-(n - n)} 
at a acj> 

The eq u ilib rium ti de f or a sin gl e semid iur na l constituent may 

n = H cos 2 (¢)cos(
2

~ t) 
i 

where H = a cons t ant. 

What ,._.e want is a so l utio n of (2.0 7. 2:l ) and (2.0 7: 2 : 6) of 

the form 

(2.07.2 :8) 
2 211 

n = H{cos 2 ( ¢ ) - -}ccs(- t) 
3 T 
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T:·.e t o ta l '.'Olt:.":le of '.·.'c. te:r in the ccE":an basin rr:u st remain const -

an t an d equation (2 . 0 7. 2 : 8 ) takes c are o f th is all rigjt . Kith tl 12 li~its 

of i ~t eg=ation at ¢ = - ½rr f or t ~e so~th pole a n d¢=+ ~TT at the north po le, 

Now, 

and 

so that 

.;-1: ii 

r ,,;:, cos k J a¢ = 
. 0 . 

-I !Ti" 

, - 1-, :2r1 
r::...., CC$ [- tj 

0 T 

. (2 1r l = no cos - t 
O T 

.J..l -• , ii 

J (c o sL[ ~·] 
- ½.r 

+½n 
J cos 3 r ¢ J a¢ 

- 1::r. 

2Hb cos[ 2 n t] · +½.r 

? 
t )cos[9)d¢, 

0 T 

3 
J cos[¢]d $ 

-½n 

+½rr 
J cos 3 [ ¢ ]c. t 

-½rr 

+¾TT 
½ sin[¢) (cos 2 [ ¢ ) + 2) 

-½n 
+~rr +½r. 
J cos[ ¢ )d¢ = sin[ $ ) = 2 

-½n -½n 
• 2n 

~ 2 2Hb cos[- t) 
• ( TT ) 0 T -::;-nb cos - t - 2 3 ~ 0 T 

= 0 

4 

3 

Consequently, we at least conser ve the water. 

or 

{2.07.2:9) 

Feeding (2.07.2:7) and (2.07.2:8) back to (2.07.2:6) 

at 

2 - 2 . } 2TT } 3) - tt cos l <:i] cos [T t) 

g 27T { = - - cos[- t) (H -
a -r 

- a z 
}i ) cl¢ (cos [ 4>] ) } 

2g(H 
a 

H) cos [ .+.)s i n [ 6) cos [2 TT t] 
'r , T 

Integratin g with respect tot, 

(2.07.2:10) u = ST ( H - H)cos[ o)sin[ 9)sin[ 2 rr t) ~a . T 

No adCi~i v e constant is required since the motion is hc rrnonic int. 

Feeding {2.07.2:8) 2nd {2.07.2:1 0 ) to (2. 0 7.2:l), 

,- "l 
H)cos 2 Io)sin[ ¢]sin[~ " t) J cos [ ¢ ] {cos 2 [c- ] 

= 0 
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e r 

(H - H) {-2 co s[¢]si.n 2 f;,J + cos 3 f¢l} s in[~ " tJ 
I 

2-::H { -J ? 271 
- -- cos~["'] - .::.. cosfcii ) }sin[-t) O 

1" y 3 ' T 

oh1 2 3 ~ 
-=---z-(- 2cos[:]s~n I¢ ) + ccs f'])sinl ~J ~a ' T 

2TI ? 2 2.i T ( cos~[¢] - 3 cos[¢)) sin [Tt] 

H (H H) 
gh T2 (-2sin 2 [ 6] + co s 2 [q;]) = - a" 2'ITL 

(cos 2 [6) 
2 - -) 
3 

3gh , 2 - 2sin 2 [¢) + cos 2 [ $] 
H = (H - H) 

2n 2a 2 3cos 2 [¢] - 2 

(H H) 
3ghT 2 - 2 2cos 2 [$) + cos 2 [$] 

H = - 21r2 a2 3cos - [q,) - 2 

H = (H - H) 
3ghT 2 

2;; 2a 2 

an d 

(2 . 07 . 2 :11) H H 
1 = 
2rr 2a 2 

l - 3ghT 2 

Clearly, the re son ance condition is 

2n2a2 - 1 
3ghTL -

or 

(2.07.2:12) 

v:here ;ra is th e c.istance fro m pole to pol e and >'gh is the fre e-w ave sp eed . 

Therefore, rra/,-~ - is the tim e take:n for a fr ee wave to t~a ve l from pole to 

po l e . On t he oth er hand, na/T is the spee d of the fo rced ~av e which we wil l 

call cF to cist i nguish it fr om c = •'sh. Then i~ a rr.anner sin i lar to that 

us ed for Airy' s ca~al we set 

(.2 . 07 . 2 : 13) l'l = n _ __ J __ _ 

l - ½ (c:r 



ly spaced meridians. The o~ly sea t~a t even r emotGly ~a tches this rr~del 

is ;:'le "'ea. Sea vlhich is , at l€2st, narrow and li e s substa.,tially north-

sout';. ?rouc...7 -.an nas u seo t:7e mace l and n;.1;-;)er ical r;ietj 1oc.s to cal cul a. te the 

~ 2 ;:i~ss in t~e Rec S~a. You ~ill fi~d his disc~ssion on pases 282-285 of 

Section Station M2 Tice 

Calcula.ted Observed 

H y H y 

(cm) ( 0 ) (cm) ( 0 ) 

1 Shadwan 25.1 117 25.1 117 
3 Koseir 24.2 118 21. 9 112 

17 Jidda 4.0 149 7.4 124 
19 Port Sudan 2.0 232 0.9 204 
29 Massawa 24. 8 298 33.4 327 
33 Kamaran 28.4 304 32.8 303 

You should compare these results with the results shewn on page 154 that 

Proucman got by treating the tides in the Red Sea as a tidal co-oscilla­

tion. The order of agreement isn't particularly different. 

2.07.3. Tides in a Closed Basin . 

In a real tide problem the basin and forces are given and one must calcul-

ate the ~ater motion. It is much easier, ho~ever, to specify the water 

motion and then work back to the forces necessary to produce the specifi­

ed oscillation. 

Suppose that we have a rn~tion just like t~e seiches already 

discussea except that its period is T rat~er t~2:1 t~e r.~tural perioo , 1 

given by !·\er ian' s for~ula. Frcm the vary inc; 1,:a t.er l0v•2l i:he acccmpa.:1ying 

accelera~ions can be calculated. In ~he case cf a 
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~he a cc~ leration s are cue e n t ir e ly to the pr es s ur e gra~ ie ~t s resulti~g 

f rc ~ s~ rface ~ratients. I f t h e seic h e is oscillat in g at s c ~e oth e r ? ~r io~, 

the r es ulting accelerations will not be due en tir ely to tte p ressure ~rac ­

ie nt .s ar ,d t he s en erating for c es must make up the differ e :-,ce. h'hen t:-:e 

~a ter s~ rface is l~v e l t h e p res s ure g ra~ ie nts are z e ro so ~~at t he re is ~o 

d if~er e ~ce to be made up by t he gen e rating f orce s. Khen tte s urf ace ele ~a­

t ions r each the i r extreraa the differ e nce to be mace up r e ach e s its sr e at ­

es t value an d, the refore, s o also must the g ener at in g forces. 

If T < T
1

, the ac cel er ations are smal le r tha n those of t~e 

na tur al seic h e so th at the generating for ce s wi ll have to oppose th e 

pre ssu r e gradients. When T = 00 the accelerations ar e zero and th e gen e rat­

ing f orc es ex ac tly balance the pressur e gradients. This is the equilibrium 

case. For Tl< T < 00 , th e gen er ating forces ar e l es s than the pressure 

gradients and for T = Tl they van is h . For T < Tl th e period is less than 

the natural f eriod and th e generating f orce s must help the pressure gr a di ­

en ts t o speed up the accelerations. As T + 0 the g~nerating forces become 

infinit e. 

We may restate all thi s on the basis of g ener ating forces of 

con st an t ampl itude and take up th e var ia ti on on th e di s p lacement of the 

water su rface wh i ch wi~ l now vary with T . When T = o:: the elevation has 

the equilibrium form. When T < T < 00 the oscillatior. is in phase with 
1 . 

the equilibrium form although it s amp li tude is modified. As T decreases 

the amp litude increases and for T = Tl it hits res on an ce and becomes, 

theoretically infinite. Whe n T < Tl the oscillation is 180° out of phase 

wi th the equilibrium form and, as,+ O, the amp li tude al so goes to 0, 

Fig . 2.07.3-1 , pa ge 174 . 

Let's get down t o cases again ,.;i th our us u al rectangular ba ­

si n, length 1, depth h, smal l amplitude, no transverse cu r~ ant s, e tc .. 

Continuity and motion are 

(2 . 07 . 3:1) h 
au 

+ 
an = 0 ax at 

au a 
n ) J (2 . 07 . 3 :2) = - g I-<n -at ax 



H I 
l 
l 
I --- -- -- 1- ----

0 Tl T -

Fig. 2 . 07.3-1 

We want a solution, 

(2.07.3:3) . . [T, J . [2:r J u = C sin -9. x sin - t 
• T 

which has the form, but not the period, of the natural seiche and which 

kills off the boundary conditions, u = 0 at x = 0 and x = t without further 

ado. 

Integrating, 

Firing (2.07.3:3) into (2.07.3:1) and solving for an/at, 

an 
at 

= - hC-:r 1r ] • [ 2 r, J 
£ cos[T x sin~ t 

= hT C r, 2 .. n 2 9, cos[T x]cos[-:;:- t) 

No additive constant is needed since n is harmonic int. 

for dn/3x, 

Feeding (2.07.3:3) and (2.07.3:4) into (2.07.3:2) soJved 

= . !" ) [2-:-; '-,._] s::..n ix ccs 7 
2r: . ,T 2TT 

+ c s1n[ 0 x1cos[- t) 
ST ,. • T 

. [" l [2" l C sin n X ccs - t 
,.., 1 
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. . 
0 :1 1r.t~ ~; !atJ.t~ Q 7j I 

~h e re t he addit i ve cc~s~a n t is zero if 
J', 

J n ex= o 
0 

(2. 07.3: 5 ) 11 = (IH - ~) C cos[-;- x]cos[ 2Trr t ) 
2 £. gT >. 

If we gather up the amplit ude factors and write 

(2 . 07 . 3 : 6} 
1i 2 -rr 

ri = H cos[ 1 x]cos[T t] 

{2.07.3:7) 
lT 2n 

11 = H cos r-.e:-x) cos [- t) 
T 

then 

(2.07 .3: R) 
H hT 21 -

2£. C 9T 

and 

(2 . 07.3:9) 
H h-r 
C 22. 

then the ra tio o f the amp litudes is 

H hT/21', - 2t/g-r 4 r: 2 
- = = 1 -

oh~ 7 H hT/2£. ;; 

Us ing Merian's formula; 

r.1( ,2 - Tl 
2 

(2 . 07.3: 10 ) 
H 

1 - = - l H ' 
or 

{ 2 . 07 . 3 : 11) 
H T 2 

H T...:: 1· 2 
1 

From (2.07.3:8} 

C 2 £<;, T 2.i!. 
H = ghTL 4 ,1:.2 4 £, 2 - T2 h - gh 

or 

(2 . 07.3:12) 
C 7 2 2. 
H = _2 L 

' - Tl h 

.=:n .:. .. s;iec ti on of equ at ion (2 . 07 . 3 : 12.} \d ll co . fi!.-:n the ~-~a .:.':e ti v e r ela ­

tion s described at the beginning of our discussion . In par ~icul a r, dir ect 

tide s occur for T > T1 , reson a nce fo r i = T1 , a nd i n ·e · te d =id es ~or i < 



pol ynodal f o rced cice i n t~e same ~ay we e xtenced the u ni ~0~ al seiche ty 

u sing 

(2. 0 7,3:13) 

i~~eser , ~it~ solu ti ons c f ( 2. 07 . 3 : l) an d (2.07.3: 2 ), 

( 2 . 0 7 . 3 : 14) 
n TI 2TI 

t) :i H c os l- 0-
>:)cos[-

n >., T 

(2. 0 7.3:15) C u = 
n 

. [:,iT ) . [ 2-;T t] s1.n -
0
- x sin -

), 1 

w!,ere the relations between the :S a nd C must be determined. 
n n 

Remark: You might try this for the exercise. 

(2.07.3:16) 

If instead of (2.07.3:5) we have the more general 

2 7i n = f(x) cos[- t] 

' 
then, clearly, since xis define d over a finite interval, 0 to!, f(x) can 

be fanned out in a Fourier series and the solution of (2.07.3:1) and 

(2.07.3:2) wi ll be a sum of terms of the form (2.07.3 : 14) and (2 . 07.3:15). 

A particularly interesting case arises when the tide generat ­

ing forces are uniform over the entire ,basin at any one instant. This 

corresponds, roughly, to the state of affairs for , say , the M2 constituent 

acting on a not so very large lake. 

Ignoring the ends of the basin for the moment, the uniform 

forces oscillating in a definite period correspond to uniform accelerations 

with the same per io d and so to uniform currents over the whole lake with 

the same period . Now we have to f i x up the boundary conditions . Suppose 

we extend the l engt h of the basin and, in the enlarged basin , produce a 

seiche whose accelerations are just right to neutralize the cu rrEnts at the 

places where the ends of our original basin used to be located . The eleva­

tion of the wate r surface will be produced only by the seiche motion . If 

t:-i e tide - ge :-,erating f o rces attai:1 their maximum toward the ea st at t = O, 

then the currents generated by them \,ill reac!1 their r.,axim·...:.:n to1,;:ard the 

east at t = ~ 7 - Then, to counteract t ~is at the ends o f t~e o ld bas in t h e 



se ic he curr e nts have to pick ~o maximum ve lo citie s to t he west - ... 
C '- tin e 

Let a den ote t he l e nst h o f the e nl ars ec basin , de pt h h , a ~c Tl 

the per iod of t he uni nodal seiche . Then , with 2 < a , t ~e t ida l el eva tio n 

sei c:, e \..·ill hav e to be come large t c p :::-ocuce ct.rrent en o-..:~:, to co ·,.intec:::-a ct 

the t ide produ c in g f or ces a nd, a ga i n, r eso nan c e s et s in f or a= 1 . 

Take 

(2 .07. 3 : 1 7) an 241 g = X cos[- t ] ox O T 
X const ant . 

0 

Ignoring the boundary con di tio ns , a solu ti on of (2.07. 3 : 1) and (2.07.3:2) is 

0 
au 2n 

n = '\ ... = X cos [- t] 
0 \.. 0 T 

or, integrating 
T . (21i 

n = 0 u = X sin - t ) 
2-rr 0 T 

Now put t he origin at the cente r of th e bas in so that the bound a ry condi tion 

u = O app l ie s at x = - ½1 an d x = + ~1 . Sol utions for (2 . 07 . 3 : 1) and 

(2.07.3:2) with on/ax= 0, i . e., se iche motion, ar e 

( 2. 07. 3: 19) n = H' sin[!. x)cos[ 211 t ] 
a T 

(2.07 .3:2 0) • I [1T ) , [ 21f ) u = - C cos - x sin - t 
a T 

with 

(2.07.3:21) T = 2a/1/gh H'/ C' = hT/2a 

as in section 2.06 .1. 

To make u given by (2. 07.3:20) neutralize u given by (2.07 .3:1 8) 

at x = ± ½2 we re quire 

T 
X 

2n o 
. ( 2 11 +-) 

Sl.n - -
T 

or 

(2.07 . 2:22) 
d. c• cos[ 2a) = 

TX 
0 

2iT 

+ {- C' [
ii (±~ .t )) . [2;; -t-)} cos - --'-- sin - _ = 0 

a T 

so that the elevation of th e resultant mot io n f ro m (2. 0 7 .3: 18) and (2.07 . 3:19) 

us bg H' = C' (ht/ 2a) from (2 . 0 7 . 3:21) is 
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(2.07.3:23) n = 

2 sin[~ x) 
h, - a 2 ..-

X ---- cos [- tJ 
o cos[~ 9.} T 

2a 

\•::n .1:e u wil l :::,e given l::y 

(2.07.3:24) 

7f • 

U = T X s ir:[.,:;; t} - 'T ) '. 
21i O T 2Ti 0 

cos [- ;,tJ 
~ 

u _!_ X 
2r, 0 [ 

cos[!'.. x}l 2 a . [ TI J 1 - ---_-£- sin - t 
COS[.:'....:..] T 

2a 

The amplitude of n at x =±½tis, from (2.07.3:23), 

(2.07.3:25) H = 
h1 2 ;rQ, 

X tan[~] 
4na o .:a 

The amplitude of n at x = ± ~Q, from (2.07.3:17) is 

so that 

(2.07.3:26) 

·..._ X 2n 
J ~ dx =~Jax cos[- t) 

dX g T 

X 
0 211 n = - x cos[- t) g T 

+ £. 2n n = -
29 

X
0 

cos{T t) 

H = .!_ X 
2g o 

Consequently, from (2.07.3:25) and (2.07.3:26) 

H 

H 

or, using Mer ian's formula, 

. [2-;r sin - t.) 
T 

Tl = 2t/1fgh and , = 2a/•~ 

(2.07.3:27) 
H 2 T ;;!'~ 
=.". = - - tan [-:;-l 
.., 1r Tl ..:..2. 

Resonance occurs for i . E:., for t = l ) a \-.~ i th v == 1 , 2 , . . . . 
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ca lcul a tion s base d on th is mote l fo r the M
2 

constituent in Lak e Baik al. Fer 

Pestscr.a~na ja Bay his result is 
t 

0.82 cos[360° + 164 °) cm 
T 

as asa ~~ s c an obs e~ved value of 
~ 

0 . 48 cosi 360° ~ + 173e) cm 
T 

He su ggests t h~t t he d isc rep a ncy may ar ise because t he model doe s no t take 

into acc oun t the el ast ic yie ld of the "solid" earth to the t ic e-g ene rating 

for ces . 

2.07 .4 .. Shallow-Water Constituents . 

We will conside r th e r ectangula r bas in of sec tion 2.07.3 and show how allow­

a nce may be made for th e dev el opment o f overtides by taking the higher or der 

terms in th e e qu ations in to account. 

Fro m equation (2.07 . 1:1 ) , aft er deleting th e c ros s-ch a nnel 

compon ents and gradients, we hav e for continuity 

(2. 07 .4:l) L [ (h + n) u) + an = o ax at 

Similarly, fr om equation (2 . 07 .1: 5) afte r del e ting, in additio n, th e geo­

str op hic t erm an d re p lacing F - l ( ap ;ax) with g(3n/ex) from t he equilib -
. X O a 

ri um tice , we have fo r motio n 

(2. 07.4: 2) g ~ (n - n) ax 
suppose the solution expande d in powers of some small o rdering parameter. 

( 2. 07 . 4 : 3) 

(2 . 07. 4 : 4) 

n = e:nl + e:2n2 + 

u = e:ul + e:2u2 + 

Sub s t it utin g (2 .07 . 4:3 ) and (2. 07 . 4: 4) in (2.07.4:1) a~f (2 . J7 .4: 2) a nd re ­

taining onl y the ter :-ns t o or der E: c_;ives 
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(2 . 0 7 . 4 : 5) 
" a :-il 

h 
ou

1 
0 = ax ot 

(2 . 07 . 4:6) 
d'-\ 3 nl er, 

g = g 
ct ax 2-x 

T~~s e are t~e e ~~ati on s solved i n sect io n 2. 07.3 . They gave 

( 2 . C7 . 4 : ,} sin [f 2 .. 
u = Cl >: l s:::.n [- t] 

1 ' 
(2.07.4:8} n l = !-1 

" 1 c os rf 2n 
x ] cos [-

T 
t] 

(2.07.4:9} 
TI 2TI 

n H cos [T x]cos[- t] 
T 

where 

( 2. 07. 4 : 10) Cl H 
2£. 

= 
1 hT 

(2. 07 . 3 : 1) 

(2.0 "7.:::2) 

( 2 . 07 . 3 : 3 ) 

(2 . 07.3:7) 

(2.07.3:6) 

(2 . 07.3:9) 

Substituting (2.07.4:3) and (2.07 . 4:4) in (2.07 . 4:1) and (2.07.4:2) and 

equating terms of order c 2 gives the equatio n s for the seconc-crder correc-

tion. 
a u2 3n

2 
( 2 . 07 . 4 : 11) 

a 
h- + -- = ax1n1u1) ax at 

(2.07.4:12) 
dU2 an 2 

au
1 -+ g = - ul at ax ox 

Multiplying (2.07.4:12) by hand taking the par ti al derivative with respect 

to x, then taking the partial with respect tot of (2.07.4:11), and forming 

t he difference we get 

( 2. 07. 4 : 13) 

Substituting in the right-hand side of (2.07.4:13) from (2.07.4:7) and 

(2.07.4:8) gives, wit h the use of (2 . 07.4:10) 

a2n2 a2n2 1(2")2 . n 2n 
atL - gh axL = - H1

2 h-;- cos[2i x) {cos[2~ t ] -

or 

(2.07.4:14) 

2 [2TI t) sin -
T 

Sin ce the driver co nt ains doubles of ~ne ars u~ents o f th e n 1 - sol utio n it 

see~s ~easona ble to t ry a pa rtic u lar s clu tion o f the fc!:m 

(2 . 07 .4:15) n == D coc:. [2.::.. x] + "' cos r2.! x] cos [2
2

-;: t) 
2 2 ~ ~. . ~2 ' t 1 
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F0e~ i~ g (2.0 7. 4 : 15) t o (2 . 07 . 4 : 14 ) tn e l ef t- hand side be c omes 

2 .r 
x] c o s[ 2-7. ) 

T 

Cl ~arly , we r equi re 

and 
D.., ( 4 c h [2.J 2 ) 

L ~ £_ 
. 2 l [2;-;12 
i\ ~ -j L n T 

or 
E2{4(gn(}]2 - ( 2; ]2)} " H 2 - .:>. 1 l ( 2 " r 

2h T 

(2. 0 7.4:17) D2 H 2 
1 

1 1 (£}2 
2h gh , 

and 

(2 . 07.4 : 18) E2 = H 2 3 1 
1 2h 4 - gh(,/ .1:.)2 

Using Merian's formula for the natural pe~iod of the basin , 1 = 2£//gh 

(2.07.4:17) and (2.07.4:18) become 

( 2 . 07 . 4: 19) D2 = 
8/['1]' 
gh T 

and 
3Hl 2 T 2 

(2.07.4:20) E2 
1 

gh TL - Tl 
L 

Thus, the solution in terms of the natural period is 

(2 . 07.4:21) n2 = H
12 

{(~]
2

cos[22!. x) - 3( 2
112 

:-zlcos[27 x)cos[2 2_1T t]} . 
gh T £ -r - Tl J ,.., l 

Expressed in terms of the equilibrilli~ tide, since by (2 . 07.3:11) 

we have 

(2. 07. 4 :23) 

- 1T 2 .. 
n = H cos[£ x ]cos[~ t) 

_ -( ,2 J " 27i n1 - Hl-, .,.,.L--_---.- L cos[ £ x )cos[-:- t) 
- Ll l 

l ) [" TT - - c os .:.--;-( T J 2 
T J. 
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Equa ti on (2. G7.4:23) is t,;,e first overtide e>:_?ressed i:1 tei-:. ,s 

o f t he a.'71]_)lituce o f the e<;uili:::,riu:., tide, !-1, tl ·,e lens .t J, , C:epth, and ::iitural 

p e r iod, t, h, T
1

, of the recta~gu l ar basin, and the period , T, of the t i c:e 

current, u
2

, can 

ty ~eed i ~g n
2 

as gi~en b y (2.07.4:23), along ~ith (2.07.4:7) and ( 2. 0 7.~: 8 ) 

into (2 . 07 . 4:11) and (2 . 07.4 : 12) . 

The next overtide is secured by extending the ordering series, 

( 2. 07. 4: 3) and ( 2 . 07. 4: 4) , to s 3-ter::Tts and equating terms of order t: 3 after 

substitution in (2.07.4 : 1) and (2 . 07 . 4:2) . Successive overtides will con ­

tain the factors 

where \I= 1, 2, 

(H/h) I (H/h) 2 , • •• t 
- \) 

(H/h) , • .. 

In other words , the amplitude dependence of the over -

tides on the basin depth obeys a reciprocal power law. 

2.07 . 5 . A Trave l ing Atmospheric Dist urbance. 

The equat i ons of continu i ty and motion are 

(2.07.5 : 1) h 3u + ~ = 0 
dX dt 

( 2. 07 . 5: 2) 

Let the traveling at..oospheric pressure disturbance be 

(2.07.5:3) n = F(x - Ut) 

where u is a constant ve l ocity and Fis any physica l ly possible function. We 

want a solution of (2 . 07 . 5:1) and (2 . 07.5:2) such that 

(2 . 07.5:4) n = M F(x - Ut) M constant 

Feeding (2.07.5:4) to (2.07.5:1) 

= - ¥ M ~ [? Ix - u~)) 
3x ,1 ot 
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?lm-1, si :ace t:,e a:::-gum~nt o f F is (:--: - :Jt) --~- ~- : not (x , L"t) -- in te s:::-at i,;; :1 

and differenti at ion with respect to eithe r x or t bri ng abou t the sa~ e 

changes in th e function . Therefore, if we integrate ~ith respect to x, 

we ·~ill bet back F, i . e ., 

u u 
M ?(x - ~t) + a constant 

h 

But , if ":e supp o se tl~at thi ng s are at re st whe n th ere i s no pr essu re 

disturbance, in othe r words , that u == 0 when Tl = 0, the cons t ant of integ ­

rat ion is zero so th at 

( 2 . 07. 5 : 5) u 
u = - h M F(x - Ut) 

Feeding (2 .07.5:3, 4, & 5 ) in to (2.07.5:2) 

u2 
h MF' ( x Ut) = - g [M F ' (x - Ut) - F' (x - Ut) ] 

or 

{2 . 07.5 : 6) 
u2 

- - = g (1 - M) 
h 

Con seque ntl y, solvi ng for M, we get 

M = ( 1 -~~]-l 
Therefore, from (2 . 07 . 5:3 & 4), 

c2.07.5:,> n = n (1 -~:J-1 

From (2.07. 5 :7) the el evation o f the surf ace is a constant 

multiple of th e equilibrium el eva tion. Wnen U = 0 , i . e . , when the atmos ­

pheric di stur ban ce ju st sit s there without going any~here , the ele vati on 

is the equilibrium elevati on. When the at mospheric d is turba:-,ce travels 

s l ower tha n the free wave speed, U < ~ , the phase is the s ame as the 

equilibriu.it1 form . but t he ampl itude is great er . W~en U = ,lg°h we have reson ­

ance. ffnen U > ,lgh the wav e is inverted . When U >> •'sh the 2.Tnplitude is 

small. 

I= n con tains the gecst:::-ophic factor exp{ -
c 

y j , ,,::iere c = 
o hT /U, co:nple t e all owance can be made :JY i nse rti ng t:·,e sa::ie facto r in T1 and u . - p 

So far we have be;;n usi:1~ an in fin itely long c2.nal. No· .. :, i:u:;::,pose 

a barrie r at x = 0 where u = 0 fo r all t . For convenience, s hift (2.07.5 : 3 ) to 



(2. 07 . 5 : 3 ) 
V 

n=f (t - :_:.) 
u 

a ~d try fe r s o lutio~s o f ( 2. 07 .5:1 ) a~~ ( 2. 07 . 5 : ~) t~a t ~ill make u = 0 ~ ~e n 

x = O. hS usu a l, try 

Subs tit u ~i~g i n (2 . 0 7.5:1) 

= M f I ( t - ~) 
h U 

an d integrating with r e spe ct to x 

(2 . 0 7 . 5:1 0 ) MU - X u = - ·:- (t - -) 
h - U 

whe re the con stan t of int egra tio n is zero for the same reason as b efore . 

For x 

(2.07. 5:11 ) 

= 0 t~i s says that 

u = MU f(t) = 0 
h 

This can not be true for all t unless f(t) = 0 fo r all t . If tha t we re the 

ca se, n would show no. vari ati on with time and the baby would go out with the 

ba th. 

To c;et away with it witho u t actually che a ting we must su p e rimpose 

another mo tio n with the following characteristics: 

(a) It must 
X 

correspond ton= f(t - U) = 0 . 

{b) At x = 0 it must take on just the right value to offset the value 

of u given by (2.07.5:11) . 

Let 's try a fr e e wave for the additio n al mot io n, say orre with u given by 

(2 . 07.5:12) 
MU 
.J f(t u = - -
h 

wh ere U 2 = gh is t h e s quare of 
C 

- ~) 
u 

C 

the fr ee ~ave s peed. Equation (2 . 07 .5:12) 

~ill c e rta inl y do cur business at x = 0 and the motion can exist in the pres­

e nce of n = 0. 

Th at (2 . 0 7 . 5 : 12) is a so l ution o f (2 . 07. 5 :1) and (2 . 07.5:2) may 

be verified . From {2.07 .5:1) 

= -

o r 

~ T) = - :.'j (_Q__) f I ( t - u); ) "=t . u 
C C 

~) 
u 

C 



or, inte<;rati ng ·.,·i t.h re s}-,ect to t 

(2 . 07 . 5 :13) 

Subs.ti tu ti ng frcm 

u 
1i = - M - f (t u 

C 

(2 . 07 . 5: 1 2) a nd 

155 

- 2:_ ) 
u 

C 

( 2. 0 7 . 5 : 13) in (2 . 0 7 .5: 2) 

MU .:, I (t .2:....) .I. -
h u 

u s [M L1 L f I (t -
X U) - OJ 

C C C 

MU MU - = - g uT h 
C 

or u 2 = gh 
C 

as it shou l d . 

The compl e te so l ution , i. e . , t he traveling disturbance plu s the 

pat ch to make i t behav e at the ba rrier, is 

(2 . 07 . 5:14) Tl= M[f(t - "ij) - UU f( t - ; ) ] 
C C 

(2 . 07. 5 :15) MU [ f { t - ~) - f { t - X u = h U U ) ) 

C 

Inspection of (2.07 . 5 :14 ) sho ws tha t we have two waves travel -

i ng along the canal . One rides with the pres s ure di st urbance at th e speed. 

U t,•hi le the other travels away from the barri er at the fr ee wave spe ed 

u = lgh' 
C 

Remark: Equa ti on (2 .07.5:14) is sometimes r efe rred to as "Lagrange's formula." 

I wish they ' d leav e off this kind of thing. ' Any famous scientist o r 

math ematician has so many different r esul ts named for him th at yo u 

have on e hell of a time find ing ou t which one is be in g re fer red to . 

When the atm osp her ic dis turb anc e tr ave ls away from the barrier at a 

spe ed U < U th e result looks like the first two sketch es in Fig. 2. _07.5 - 1 
C 

when M > 1, page 1 86 . Sin ce M > 1, th er e is a magnified ~ave ke epin g pace 

with the disturbance at speed U and , since U < U, there is an inverted wave 
C 

with Epee d U runn in g out ahead of it. I f U > U and M < 0, with the disturb-c C 

a:1ce traveling a;.;ay from th e barr ie r, you get the res_;_::onse sno\,-n in t: 1e th ird 

pi ctur e in Fig . 2. 07 .5-1 . I t is an i~v e rted wave kee ping pa ce with the d is­

tu:::-1:,ance a nd a ci:?:"ec t wave t ra iling be~ind it. 
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Th is a:1al"si s can be ad2.pte d =o-:: a r.iovins pre:ssu re jU,-::::; sue:, 2..s 

~-cu fin d in a f!:"on ta l pa.ss~g e. T:,e equilibr ii.:m re spon se i s an acj ust.. '71ent 

f r om o .. e l eve l ah ea d of the j ump to a low er le vel behi?-,d it if the ~;.;:np is 

a,, in::re a se . I:-, t:,; e re: gion of th e f ront th ere is a t ravel:. .. s colur:m of v:ctE:r 

1-.->ase vo l ··;ne i s e~u al to th e vol-.:.c--:-,e o f KatEr displacE:c. beh.:.:. c: it , F i g. 2 .C7.5 -2 . 

DI S TURBA t✓ C E 
0 -- - - - -- - - _j-

----- ""tr 
X 

0 
-J~, __ v_c _ 

____ RESPONSE 

X -er < 0--c i----------------

0 ___ · --- --rl-v ___ x RE SPO NS E 

"Cr> Vc 

Fig . 2 . 07 . 5-2 

Let H be th e decre as e in the eguilibrium heig ht n. Then the 

h eig ht of the wave which t ravels with th e sp eed U is 
u 2H 

C 
- MH = - U 2 - u2 

C 

fro m (2 . 07.5:9) and (2. 07 . S :7) and the he ig ht of the Kave ~h ich travels with 

the spee d U 
C 

i s 

u -- 1''H u . 
C 

UU H 
C 

= u z - u2 
C 

from (2 . 07 . 5:13) and (2.07.5:7). The superposition of t he t\,O give s 
U H 

C 

u + u 
C 

:f bis t he Kid~h of t he can al pe rpend ic ular t o t ~e ci-::ect:.c:. of tr a vel a nds 

is t:!",e dis tanc e :ram the ba rri er t-::aYeled by tr.e ·,-:a ·e of sp~e c U, t hen tr. e 

tis tan ce traveled by the wav e of u is 
C 

(U s/ U ) . 
C 

If U~ > U, t:-:en 



~~aveling column i s [ (U /U) 
C 

- l]s lo~g and ~he ~ater vo lu me is 

s::H 
+ u 

7 i~is ·is ee;_u a l t o .__;;e volume of .... a .... "=r cis:-laced beh ir ,a tn e c o l ur.m . 

_, ... .'.3 

'-•' -

u 2 H u 
_ _ c __ r l - uc ] sb = 
uL - u Ll 

C 

u 2 
C 

sbH + U) u<u 
C 

I:: U < U, 
C 

an d is also esu a l to the volume of t~e displac ed ~ater beh ind the co l~mn . 

Surges c ause d by f=or.t a l pass ages ar e net un common. Pro cma n 

i;iv es an ex2..:-nple of one th at hit s·.1ssex, "Dy. a:nic Oceanogra9hy," page 300 . 

A nu."!lber of th e m th a t hav e been ra ther disasterous to Chi cago have b ee n 

an alysed in t he literature. Try the Transactions of the American Geophysi­

cal Union. 

2.08 . I:1ternal Sei ch es , Tides, and Wave s . 

2. 08 . 1. In tro ductio n. 

So far we have bee n d iscu ssing situations \,he!:'e th e maximum vertical v aria ­

tio n in th e wat e r moti on occured at the '1-:ater sur face and where th e currents 

.,er e su b stantially th e s ame from top to bot torn. ;,..nother situ ati on is 

po ssib le . In it the maximu,,1 vertical moti on occu rs so:ne ... ·h ere betw e en s ur -

fa ce and bo t tom and alo ng any one vertical th ere are large changes of 

current in both size and di rect ion . ~~is c ase can occur only in the pres ence 

of large vertical dens i ty grad ient s such a s t hos e ir,cicatea by sharp therm o­

cl ines or haloclines . Nhen oscillatio n s of t his scr t a~e rcresent tr. e re ~ill 

be a ... .-ave -li ke tm c.ula tion of the t'.-2r , ocline and hc.loc lin e . What t his can 

60 to you r ideas about the s truct~re of th e ocean te duced fr om cl as s ~=3l 

!la:-isen bot tle r:,eas ur emen ts taken at ci.::ferent i me s and pl .::ces I le ave to 
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In our de tai led work we -.-:ill siw.plify thi :-i9s by co nsidering 

a t•.-.ro layere d sy stem havirig homoge :1eous v,.~ate r of di ff ere!!t Censi tic- s in e:cch 

lay e r so that there will be a su rface of dis co ntinuity of ten si ty ra ther 

ttan· a laye r of ra pid c han~e . Fri ct io n will be neg le cte d and , ¥h enev£r sec -

st~ c ~~ic e ffe cts ai e conside re d , l a titu de wi ll be ta ken u~ i:or m. 

The direc t effe ct o f t ~e tide-generating : o rc es i s stil l ora in­

ar y tides on the surface bu t we will s ee tha t i n some ca ses they may profuce 

i nterna l tides as wel l. 

2. 08. 2. The Equ ati on s for ~ T\..•o - Layered System. 

For our two -la yer ed sy ste m suppose an upper lay er with density , p , dep th , h, 

lying on top of a lower laye r of density, p ', and dep t h, h' . The cepth of the 

wat e r fr om surf a ce to bottom is then h + h' . Hhe n a dis tu rba nce fr om the 

l evel po sit ion occurs, us e n as the sur face dis pla cement a nd n' as the cis­

placement of the surface of discontin u ity . Take th e Oxy-pl an e in the mean 

surface wi th Oz vertical an d let z denote cepth bel ow the mean surface while 

z' den ot es depth below the mean discontinuity sur fa ce . u, v will be the cur­

rent co mpon ent s in the upper la ye r and u', v' the current ccmponent s in the 

low e r lay er . n is the tid e -generating pot ential a nd pa the atmosphe ri c 

pressure . 

Continuity for th e upper layer v.'ill be the sa.:ne as u s ua l ex cept 

that the di s placement must b e taken rel ati ve to th e cisco~tinuity s urfa ce , 

i.e., instead of n we use n - 11' . 

(2 . 0 8.2:l U) 
a 
~(hu) 
o x 

" 0 
+ -;::;-(11 - Tl ' ) = 0 

c t 

For t~ e lower layer the r e i s no moci=ication so th at 

(2. 08 .2:lL) " ,::_ (h'u') + ax 
" g_( h'v') 
oY 



(2. 0 8.2 : 2U) 
:: u 2,r 

- -v 
Ct T 

p 

( 2. C-8 . ::?: 3 t.') 
av 
~ .... 
C '--

+ 
2;; 

u 
T p 

a~d for t~e lower layer 

(2 . 08 . 2: 2L ) 
3u' 2iT 
at t 

p 

(2.08.2:3L) 
Cv' 211 -- + at T 

p 

= 

v' 

u' = 

! ?p - c:n 
P ex ox 

1 ;)p' --p 1 ax 

l 3?' 
.., 1 
fJ 3y 

;';Q 

oX 

an 
ay 

where p and p' are pressures in the upper and lower layers . 

On t h e neglect of the vertical velocities and accelerations, the 

t h ird member of the equation of motion trio produces the hydrostatic equation 

so that v:e have 

(2.08.2:4U) 

(2 . 08.2:4L) 

Substitution of 

(2 . 08.2:SU) 

(2.08.2:6U) 

(2 . 08 . 2:SL) 

(2.08.2:6L) 

p ~ p + pg(n + z) 
a 

P' =Pa+ pg(n + h - n') + p 'g( n' + z') 

(2.08 . 2:4U&L) in (2.08 . 2:2U)-(2.08 . 3L) gives 

au 2n l!l 2Q 1 
eP • a 

-v g -- -
3t T dX ax p ax 

p 

av 2iT 3n 3$1 1 
ap 

a 
+ u = .. g - - ---at T 3y 3y p cly-

p 

au' 2;r __Q_ an 
g ( 1 

__Q_J 0:) I v ' - g - -
""' 1" p' oX PI cX 0 '-- p 

Ov' 211 __Q_ c n 
g (1 ....e.._ J 3" ' u' --+ = - g - - -" .... T p' <!y p 1 cly C '-- p 

:rn 1 
cD . a - ---ax p ' dX 

an 1 
cP - a - - - --ay (!; ' cly 

or, if \•;e take pa uniform and invoke the equilibrium f o:::m t:.rough n = - gn, 

3u 2TI " 
( 2 . 08 . 2 : 7 ~J) V = - g ;x ( '1 - n) 

dt T 
p 

8·v 21T " 
{2.08.2:SU) - + u = - g .:._( '7 - n ) ot T 2y 

p 
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C·u' 2r ;) Cn 
g [ 1 r, r··' ~ i) ( 2 . 08 . 2 : 7 i, ) v' ~ - , I I" -- - - - - + g at T ':l ~ t cX o 1 

... Cx ex " p 

Ov' 2iT 0 a ri g (, f' " ri (2 . 08 . 2 :8L ) -- + u' = - g - - ~.:.l_ g ....... 
0 ' oy l • p I cy 2y 0 L. T 

p 

If , i.:1s t e2.c , i n (2 .·08. 2: SU) - (2. 08 . 2: ISL) 1,·,,, n e slect t :-ie .: ice - s en e rc.ti r,g f o rc e s 

con~tant -

e quations (2.O8.2:SU) and (2.O8.2:6U) again pass over into (2.O8.2:7U) and 

(2.08.2: BU) b u t (2.08.2:SL) and (2.08.2:6L) become 

(2.08.2:9L) 

(2.O8.2:lOL) 

au1 

clt 

clt 

2iT 
T 
p 

v' 

211 
+ u' 

T p 

= _ g ~ cln _ 
() I CX 

_e_]3n' + 
() I dX 

p cln [ -g---gl 
p I dY 

...e....] en' + L cln 
p I cly g p I cly 

The final bit of business is to get a criterion for the neglect 

of the vertical acceleration. For the upper layer the criterion is the same 

as that given by equation (2.06.1:11) , 

(2.08.2 : llU) 

The lower layer requires a bit of modification. For it the hydrostatic equa ­

tion arose from the neglect of cw ' /.3t in 

so that, as before, 

and 

or in t egrating 

cw' 
clt 

w ' 

do' 
clz' 

.!_ clp' 
p' dZ' + g 

- (1 -£]~ 
h' clt 

( , 1 z']2 32n• p' =pa +pg(n+h-ri') + o 'g( :1' +z') + p'lz -
2

h7" ct ~ 

Comp aring t h is wi t h (2.O8.2:4L) we see that, as b e fore, the ~ast term is tne 

dep ar tur e from the h y drostatic c a se so that wh at we r e q uir e at z' = h ' is t h at 

½o ' h' (3 2n'/ 2t 2 ) 
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so t~at our c~it e rion fo r t~e lo~er layer will be 

a2 n ' 
h' 

(2.C 18 . 2:llL) 
p ' 

p I - 0 sn' 
<< l 

2.08.3. Internal Seiches in a Narrow Lake. 

Consider a long narrow lake with two layers of water. If the upper layer 

\•,'ere drawn off, an ordinary · seiche would be possible in the lower layer and 

it is useful to use it as a reference. 

formula. 

Its period will be the Tl of Merian 's 

Now suppose that a free uninodal oscillation is possible with 

both layers in place; one of s·.1ch a nature that the oscillation of the free 

surface is very small compared with that of the discontinuity surface. It 

will have some peri od Ti v.'hich is not necessarily the same as T 1 . Continuity 

in the lower layer will be as before \•:i th Ti replacing , 1 . To compensate 

for the movement of water in the lo~er layer without much change in the sur­

face elevation, the volume of water moved in the upper layer \•,ill have to be 

about equal to the volume moved in the lower but it must move in the opposite 

direction. One can expect that the currents in the two la yers will be in­

versely proportional to the depths of the layers, more or less, and opposite-

ly cirectec, Fig. 2.08.3-1, page 193. Since the currents are always opposite 

in the two layers so also are the accelerations and, consequently, the hori-

zontal pressure gradients as well. 

s~ rfaces are cpposite in sign. 

It follows that the ~levations of t~e two 

In a~ ordinary seiche ~ater of d e nsity p' displaces ai~. Ir, an 

internal seiche it displaces ~ater o~ dens:ty p. At any po int in t~e lc~er 

laye~ the changes in pressure fue to the two layers ~ill be o~po eite in sign . 



""<-. - ~---=~~~~0--.-...,.;·--:::::· ;:;;;:::=::::"::t' 
~~ --- -~ II 43 

-- -- --- --- --'. . . 

t=-1 
2. 

Fig. 2.08.3-1 

The pressure graaients in the lower la y er have the So..TTie direction as those of 

the orcinary seiche so that changes cue to the raotion of the discontinuity 

surface must preponderate over those cue to the free surface. This confirms 

our assertion that the raotion of the free surface must be relatively small. 

It also follows that the ~orizontal pressure gradients in the lower layer are 

reduced from those in the ordinary seiche. This means that the accelerations 

are smaller and that 'i must be much qreater than , 1 . 

Consider the usual rectangular basin of length, .£., constant depth 

h and h' , basin ends at x = 0 and x = .£. ,,_,here \,e have t 'he boundary conditions 

u = 0 and u' = O; n = O; v ~= 0, v' = 0. 

(2 . 08.3:lU) 

(2 . 08 .3:lL) 

Continuity from (2.08.2:lU&L) is 

3u d 
h + ::-(n - 11') 

2x d t 

?u I 

h' -- + 
tx 

= 0 
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Fr c~ (2. 0 8 . 2:5C &L) the e~uations of notic~, after ne9lecti~g 

bo ~y a nd s eostrc p hic forces, are 

(2. !J8 .3:2Tj) 

( 2. 0S . .3: 2L ) at = 
0 1 dX 

r o ) ; r, ' 
- C 1 - - J--

- ~ 0 
1 

c X 

As us ual, ~e try for a so luti on 

(2.08.3:3) . [TT ) . [2TT ) u = c sin 7 x sin - t 
i., t 

where C is a con stant speed. Equation (2.08.3:3) certainly takes care of 

the bouncary conditions at x = 0 and x = £. 

Feeding (2.08.3:3) into (2.08.3:2U) 

3n 2TT . [TT 21T - = - - c sin n x)cos[-, t) oX gt ;:., 

which, on integration, gives 

(2.08.3:4) 
2£ TT 2TT n = - C cos[- xJcos[- t) 
g-r £, t 

No additive constant is necessary. 

S?bstituting (2.08.3:3) in (2.08.3:l U) gives 

a 
-(n-n')= at 

nh [TT ) . [2n ) C cos n X sin~ t 
Q, );., l 

which, on integration, gives 

h-r " 2TT n - n' = - C cos[- x)cos[- t] 
2f, £ T 

substituting from (2.08.3:4) and solving for n ' gives 

(2.08.3:5) n' = (!! -~;) C cos[i x)cos[~TT t) 

which is the elevation of the interface corresponding to the free surface 

elevation, (2. 08 . 3: 4). 

be feeding 

To co;:nplete our analysis we need to find u' -.:hich can be done 

( 2. 08. 3 : 5) into ( 2. 08. 3: lL) 

cl u ' = .. 2..J .i.&._ - b_] C 
ax h' ls1" t 

to get 

TT . 2TT ) cos l-;;-x] sin [- .: 
,:, T 

Integration ~ i th respect to x then gives 

(2.08.3:6) u' = J:) 4 £
2 

- hi C sin [+ x ] sin[
2

" t] 
h'lgT"" J ,. T 
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If · .. :e c.efine 

(2 . 0 8 .3: 7) g 4 9, 2 2£ 2£ H 29.. 
-

g hr' 
= = 

gr hT C h -•. L 

er 
C 

1 2£ 
5 :11 H 

v:h«:re 

(2 . 08 .3: 8) 
2£ 

C H - 9T 

Hi s thus a con st ant length- -we can sather up our solutions in t he form 

(2. 08 .3:9) 

( 2 . 08 . 3 : 10) 

(2. 08 .3:11) 

since 

and 

( 2 . 08 . 3 : 12) 

sin ce 

1T 27T 
n = H cos[~ x)c os[ - t] 

x. T 

1 2R.. 
H • [ ii ) • [ 21T t] u = sin Ix s in 1 B h, 

n' (1 .!_) 1T 2 1i 
t) = - H cos[£ x)cos[7 8 

(_?.!. - hT) C = (1 - gh122] 2R.. C - (1 - .!_) H 
9T 2.Q. 4£ gT - 8 

l 2i u' = (1 - -) - - H 
8 h'T 

. [,r l . [2 ,r l si n I x sin 1 t 

gh T
2

) 4 t
2 

1 C 
~ g,2 h' 
1 4.t 2 l 1 2R.. 

= (l - 8)? h' 8 hT H 

= 1) 4x.
2 

l 2R.. H 
(1 - 8 ghT 2 8 h I T 

6 may be expressed as a fun ct ion of h , h', p , and p ' by sub­

stituting (2 . 08 .3:9), (2. 08 . 3:11), and (2. 08 .3: 12 ) in t~ e only fund~~ent al 

eq~ a tion as yet u nus ed , (2. 08.3:2L). The mak in gs are 

3u' __ (l _ 1) 4n9.. •. . (,r l [2" l - ---,. n sin -;; x cos -T t at s h • T"' ,., 

,r . (To ) [ 27! ) I H sin T x cos 1 t 

" l 2
';i l Cl ear ly , the factor ;;H sin[T x cos[T t co~~on to all divide cu t 



But by (2 .08.3: 7 ) 

so thc.t 

or 

( 2. 03. 3: 13) 

l L ,£. 0 l p 
(1 - -) -- - = - q - ( - - ) - c(l - - ) [- ( 

::.. h' i:L · p • t - p ' 

h s2 h 
B s - = -

h' h' 

h e2 (1 + __b__) B + -
h ' h' 

1 
0 

+ -
p' 

(1 
p - -) 

p' 
= 0 

1 
+ e 

Equat ion (2.08. 2:1 31 is someti mes called Stok es ' Equation. 

or 

(2.08.3:14) 

Solving for 8 we get the roots 

(1 
h 

+ 117) 
8 = 

± y(l + ..!2.., 2 -
h' 

2 
h 

' I n 

[Ii (1 + ~) 2 
h 

4 J?_(l 
h' 

~(l 
h 

___e_, 
p' 

1 1 - -)-] 5 f., 

Cal l the root with the pos itiv e sign 8 and the on e with the negative sign 
0 

B. , 
1 

. ' h' ½ + ~,2 - -(1 - ..£...)) 
h h p I 

~(1 
h 

" In actu al cases, p and p ' are nea rly equal so that 1 - ...Lis very small . 
p ' 

\•,e will aooroxi ate S by_ neqlectir:g the (1 -
- - 0 -

2,) -: actor entirely and S. by 
p 1 

C 
ret a ining onl y linear terms in (1 - p'). 

( 2 . 09 . 3 : 15 ) 
h ' 

+ 
h 

Remark : You can see that if we used t~e 

are using for e. , 
0 

we v;ould c_:;e:t 

We get 

sa:-:-ie a poro :d .. znation for S . -:r"~ t we 
- 1 

the ~at h e r u~intsre~ting ~es,lt 5 . = 0. 
l 
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Expan di ~g the br ac k e t by th e bin omi al t heo rem 

ti 1e: fo l l c win s t er::-,s b ei n g cro pp ed si nce t:1E.y 2.re st: 2.cra -::.ic e r h i gh e.r ii; 

(1 - 2. ) . S~~:- i::in g and s ~bs titut ~ns 
p 

( 2 . 08 . 3 : 1 6) 

From 

h' p 
Q. = (1 - -) 
~ i p' h + h' 

(2 . 08 . 3:15), a nd to the same order of approximation , it . 

f o llows f r om (2. 08 .3:7) and (2.08.3:9)-(2.08.3:12) that 

(2.08 . 3:17) 

(2.08 . 3:18) 

(2 . 08.3:19) 

2t 
T = 

/g (h + 

21.'._ = h' 
n h + 

u' 
-= 1 
u 

h' 

h') 

Equations (2.08.3:17) - (2.08.3:19) are the relations for an ordinary seiche . 

A p arent ly , the presence of a density stratificat i on does not prevent, or . 

seriously alter, the possibil i ty of the development o f an ordinary se i che . 

Co~res p onding to (2.08.3:16), and to the sa me order of approxi­

ma tion, (2.08.3:7) and (2 . 08.3:9)-(2.08 . 3:12) give 

(2.08.3:20) 

n ' /n = 1 - 1/S = (S - 1)/S . Therefore n/n' = 8/(S - 1) = f(5) and, using 

.'ia clc.u:::-in' s expa ns ion, 

f ( 8) = 8/ (S 

Hig h er order terms 

so th a t 

( 2. 08 . 3: 2 1) 

- 1) 

will yield 

n' - = - l 
8. 

l. 
17 

f(O) 

(1 

= 

= 0 f 1 (5) = - 1/(5 - 1)2 ; f I (0) 

- p/p')2 etc .. There:ore 17/n' = - s. 
l. 

::, ' 
- C 

= - 1 . 



u ' / u = : (;~/1 1 1 ) ( l - 1/S) ('.1/h ') (:S - l) = g(S ), c.r.c '-'sing !-~2.clc::urin 's ex-

g ( 2) = (h/h' ) ( 8 - l) g( O) = - h/h ' g' ( f.) ( h/h' ) ( 1 - l) = 0 

(2. ( 8 . .? : 22) 
·..1 1 

u 

Es~aticns (2. 08 .3:17)-(2.08.3:22) given t he features o f the interi1al seiche. 

We can rework our criterion, (2. 08.2:1 4 L), for the neglect of 

vertical acceleration by using (2.08.3:11) and (2.08.3:16). 

an' 2n( ll = - -1 H 
at T B 

a2n, 4-2 ll 3t7 = - ,, (1 -7 B 

p' h' a2 n'/clt 2 

p' - p g n' 

and, using 8. to approximate for 8, 
J. 

= 

= 

= 

= 

TT ] . [2TI t) cos ri x sin -
T 

TT 21i 
H cos[£ x]cos[- t] 

T 

p' ~· (-4TI2 ] -Ty p' - p 

p' hh 1 112 4 £, 2 

p' - p x,L glnL 

p' hh' ;; 2 
8 p I - p .2,L 

p'_./ hh'n 2 

~ 1/- p Q, £ 

h' Ti 2hh' 
h + h' £, 2 

In the rectaDgular case this is the quantity that 

h' 
h + h' 

must be made 

s~all. Equation (2.08.3:20) plays the s~~e role for an internal seiche that 

Merian's formula plays for an ordinary seiche. Prou~~an applies it to Loch 

Earn and gets T. = 18 hours as against an observed value of 15.2 rours. 
l. 



2 . CS . 4 . Int e rnal Seic~es ~cro s s a Unifor~ Cha~nel . 

In se c ti on 2. 06.7 ~e di s cussed free osci ll ations a crc ss a channel ~i t h geo ­

s~ ro thic effects . This discussion ~ill now be exten~et to a two-laye~ s vs -

( 2 . 08 . 4 : l U) 

( 2. 08 . 4: lL) 

( 2 . 08 . 4 : 2U) 

(2. 08 . 4 : 3U) 

( 2. 08 . 4: 2L) 

(2 . 08 . 4: 3L) 

(2. 08 . 4:4 U) 

( 2 . 08. 4 : 4 L) 

For 

For 

co nti nuity 

au cl n I ) h + clt (n - = ax 

h' 3u ' an · 
0 + = ax ;Jt 

motion 

211 
T 

p 
-an 

V = - g dX 

au ' 
at 

211 
T 

p 
u = 0 

2iT I - v 
T 

p 

av I 2iT --+ u'=O 
clt T 

p 

0 

Try f or solutions 

u = C sin ff x]s in{
2
1
,r t) 

u' = C' s in[ f x)sin[~;r t) 

~here c and C' ar e constant s peecs . Th e boundary conditions are u = 0 an d 

u' =oat x = O and x = 2. Fr om (2 . 08 .4: 3U) a nd (2 . 08 . 4 : 3L) 

or 

(2. 08 . 4 : 5U) 

av• 
3t 

= 

V = 

= 

T 

T 
p 

2To C . [" ) . [2-:T ) 
7 

sin t x sin-:;- t 
p 

2;r 

T 
p 

C' . [" ) . [2;; t) sin I x sin -:;-

- 21T 
C si n If x] ccs[7 t] 



( 2. C2 . 4: SL) v' = C , . [ , : J [ 2 .r ... l s:..n r. ::-: cos - ._ 
~ l T 

p 

With (2.08 . 4:4L) in (2 . 03 .4:lL) 

::: - h I ot 
.. Ti 2TI 
, C ' ccs [-;- x] s in L- tJ 
,., ~ T 

!nte9ra t in g with re s2e ct tot 

(2 . C8.4:6L) 
h'T n' = -- C' 
2£. 

Ti 2 TT 
cos[~ x]cos[- t) 

,._ T 

l~o additive consta,,t required. 

With (2.08.4:4U) and (2.08.4:6L) in (2.08.4:lU) 

~ h' _:!!:. C' Ti • 2 .. 
h _:!!:. C = - ccs[T x)sin[ 1 t) -

3t £, £. 

~(h'C ' = 
£ 

[ 1T ) • 2;r hC)cos - x sin[-
x, T 

t) 

Integrating wi th respect tot 

(2.08.4:6U) 

or, if we define 

(2.08.4:7U) 

(2.08.4:7L) 

then 

(2.08.4:BU) 

( 2. 08. 4: SL) 

T (h . TI ] [2" J n ~ n C + n'C')cos[ 2 x cos 7 t 

H - 2-_(hC + h'C') 
2.Q. 

H' - T h'C' n 

Ti 211 
n = H cos[ 2 x]cosl~ t] 

;r 2,r 
n' = H' cos[- x]cos[- · t) 

9. T 

[ 7[ ) • [ 21T cos£ x sin 7 t) 

Using (2. 08.4:4), (2.08 . 4:5), and. (2.08,4:8) in (2.08.4:2) 

211 . 11 ) [2TI ] 2-:n . TI 2n 11 • TI 2rr 
C sin[7 x cos -- t - -::-z C sin[-;;- x)cos[- t] = g - H sin[-,;- x)cosl-:-, t) 

T .l T T -'- T X. ,._ 

27T ' -c 
T 

or 

and 

p 
. TI 2Ti 2nT 

sin[T x)cos[ 1 t) - TPL ~• 

0 'lT • [ 7r ) [ L"T 
= g p' £ H sin£ x cos 1 

2C 
T 

2C' 
7 

2,C' 
- -:-T = 

l 
0 

. ,. l 211 ) sin[-;- x cos [- t 
x., T 

t] + g(l - .£_)2!._ H' 
0 ' f:, 

2. ..£_ 
s. p ' 

. TI 2ii 
sJ.n [-;;-x] cos [- t] 

,c T 



Solv i ng for C and C ' in (2.08 . 4:7) 

a nd s,1;:::s t i tu ting 

for the first and 

C ' = 2 9, •• I 
Th I :1 

~ C' = 
h 

2 {:, •• , 
L:-1 n = 

.3_ 2_9.(H - H') - .2l.._ 2 9,(ii - H') = 2. H 
T 1n T L ,h · .t • 

p 

4 J:. 1 (H _ H,) _ 4t 1 (H .. , ) s_ H h-:;:-z h,L -11 =.Q,. 
p 

4
.Q,

2
(_1;,. - -l_) (H - H') = H 

gh TL T L 
p 

2 2.Q, , 2T 2£ , 2-[-L H + (1 --- H =--z ~ H = -T Th ' T T 9., p' 
p 

.E_) 
p' 

4£ 2 1 _1_) H' [_e_ H _e_) -(-=-z- - = + (1 - H,) 
gh' T T L p' p ' p 

for the second. 

(2.08 . 4:9) 

gives 

and 

or 

( 2 . 08. 4 : 10) 

and 

( 2 . 08. 4 : 11) 

(2. 0 8 .4:1 2) 

together ,;i th 

( 2 . 08 . 4 : 1 3) 

Defining 

8 = 4.Q,2 1 -l_) 
gh (-;:r - T L 

p 

B(H - H') = H 

h 
8 - H' = 

h' 
_e_ H 
p' 

+ (1 - _e_) H 
p' 

(1 - S)H + SH' = 0 

_e_ H + (1 - _e_ - 5 h )H ' = 0 
p ' p I h' 

Consequently, we have from (2.08.4:10) 

S - 1 1 
H' = --- H = (1 - ~)H B ,., 

C = 2£ [H - (1 -
Th 

HI) 



2Ci2 

c._nd 

(2. 08 . 4:1.;) 

'.SO that o •-,.- sol u tions r..ay be -,..-ritten with directly corr,parc.~l~ am::_)lit'"ces. 

' 2"7 n = :-:c os . [-;;- x)cos[ - · t) 
,., 7 

(2 . G8 . 4:1G U) 
l 2£ 

u = - -
S hT 

. [TI ) . (2 -;r ) H sin n X sin - t 
,;, T 

(2.08 . 4:l7U) 
1 2 9.. . [ -rr ) 2-;r 

v = S ~ H sin T x cos[~ t) 
p 

( 2 . 08 . 4 : l 5I.,) 
j .2~ 

n' = (1 - 6)r. cos[f :,;)cos t-:;- t ] 

(2.08. 4 :16 L) 

u' = (1 - l )~ H sin[f x ]s i n[
2

h t] 
$ h' T ,._, L 

( 2. 08 . 4 : 1 7L) 

v' = (1 - l) 2 t H 
6 h'T 

p 

;. 2;; 
sin[,,- x]cos[- t) 

,;, T 

Ccr.i92red wit h (2.08.3:9)-(2 . 08.3:12) n, n', u, and u' are seen 

to be forr.ially identical. However, the 8 used here dif fers from the B i n 

sect i on 2 . 08 .3 by a term in T • p 
From (2.08.4:9) 

H B 
= 

H' - 8 

while from (2.08.4:10) 

= - (1 - ~ 
H' p ' 
H 

so that 

8 ..£.._ (1 8 l ( 1 
p h 

= - - h') p I p ' 

or 

( 2.0 8.4:18) _b__ g2 - {l + _b__) 8 + (1 - ...2_) = 0 
h' h' p ' 

which is Stokes' Equ ation again. 

Let T be the period of the transverse seiche, ordinary or inter-
s 

nal, withou t geostrop hic effects as in section 2.08 .3. Then fron that section 

4£ 2 l 
gh 0 

s 
6 = 

Since the two possib le vc.lues of S are the s2.."lle in this section as in 2. 08. 3 

being roo ts of the same e~uc.tion thrcu~h (2.08.4:9) we have 

or 
l/rs 2 = l/r 2 - l/T~

2 

( 2 . 0 8 . 4 : l 9) 



i·:'":;-2n, a s of te :1 :1a:;,pe~s , 's >> T 1-:e r:a·,;e , = -; 
p p 

In this cas -e 

g eos trop hic ef fect s domin a te th e p eri o d of int e rnal s eich es . 

Prou cma n cit e s o~ ser vati on s of an i~t ern~ l s eic~ e in t h e ~a~ ~e -

s at "-'lit :: c.n a ::r;:lituc e of ::1.s C :.t a nd a pe r ioo c f 14. 3 :-,cur~ . T for t ::i s 
.? 

2.08 . 5 . Internal Waves wi th Horiz ont al Crests. 

The analysis of section 2.08 . 4 als o a ppl ies to standing waves of length, A, 

with hor izo nta l crests . F rom (2.08.4:9), if A= 2i, 

A 2 = h ( 1 - _1~) - 1 
g t7 T L B 

p 
(2 . 08 .5:1) 

and, fo r internal wav es wi th S = 8. , 
l. 

(2 . 08. 5 :2) A.2 = (1 - ...e_)( l 
l. p ' ?" 

_ 1_,-l g hh' 
T L h + h' 

p_ 

Th er efor e, fo r real values of A. we requ ire T < T If the waves are of 
l. p 

tida l p eriod, (2. 08.5 : 2) tel ls us tha t th e wave l ength, A., is smal l conpa r-
1. 

ed with ordinary tida l oscillations . 

Now consider pr ogr essi ve wav es. The fund cmenta l equations ar e 

still (2 . 06.4:1) - (2 . 08.4:3) but the solutions we try fo r, i n stead o f 

(2.08.4:4), will be 

(2 . 0 8 . 5:3U) 

(2 . 08.5 :3L ) 

X t 
u = c cos[2 ~ (- - - ) ) 

), T 

X t 
u ' = C ' cos[2 i! (- - -)] 

), T 

Th e n e t r esult of pre cis ely t he sam e att ack wil l be 

( 2. 0 8 . 5 : 4 U) (2 . 06 .5:4 L) 

n = H co s[ 2TT(i - ¼)) n ' = H' cos [2 ;; (~ - ~) ] 
" T 

( 2. 08 . 5 :S U) ( 2. 08 . 5 : SL) 
'! 

V = - C v' = C ' si;-, [ 2 :- (~ 
7 t 

p 



(2 . "8 . 5 : E ) 

Si,,c e u = ,./ , , (2 . 08 . ~ : 19) 

u2 
), 2 ~2 ), 2 

= = + ?" T 
,,. --z T 

uz = ;J 2 
s 

s .? 

tells '....S t:.at 

,,•b~r e U i s the s .:.::-ced of f •ropagation of ,..,c. ·"'s , ei t: .er ord i n2ry o r in tc:=n al, 
s 

wh ere the re a~ e no ge ost rophic e ffect s . From (2.08 .5: 6) it is clear ~~a t 

U > ),j, ah.;2.ys . 
p 

It se ems th at geo s trophic effects may do~inat e the spe ed of pro-

p agation of int ern al waves . Fr om (2.08.5 : 1) 

or 

Whe n 

>, 2 

7 

u2 

B = 

u 2 
0 

= u2 

= 
1 

8 
0 

2 
= gh(l 2-._.) - I B 

T L. 
p 

gh 
B - (TL./T L) 

p 

1 
h ' 

= + 
h 

which is the re s ult we got before for sur f ace wave s. 

When 

I f h/h' i s s mall, i.e., if the surface layer is sha l low , t hen 

u. 
l. 

.:.s 

u. 
l. 

r1 - ( p/ o ')] = ...:... __ __,;,--.--...,..;;.- gh 
[l - (T-/T .!) ] 

p 

~ene rall y n uch s mal ler than U bu t, 
0 

; .: _ ... T = 'o' 



2. 08 . 6 . Internal Kelvin Wave s . 

I~ we drop the transve rse currents a n d retai n t he geostro~hic effects, ~e 

can tro2uce the Kelvin wave. Th e e~uations of co n t inuity ar e 

( 2 . 0 8 . 6 : l U) 

( 2. 08 . 6: lL ) 

The 

(2.08.6:2U) 

(2.08.6:3U) 

( 2. 08. 6: 2L) 

( 2 . 08. 6: 3L) 

h 
oU 0 

+ a(n ..,.. n ') ex 

., ' an• h'~ + = 0 oX at 

equations of motion are 

au = - g l!l 
at ax 

271 ~ u = g 
-r oY p 

clu' _e_ .£2l - g 
3t p' ox - g(l 

P 8 l"\ I - - ) -
p' ax 

2iT 
u' P 011 o cln' 

= - g p' cly - g(l - p7) oY -r p 

We start out in the plane y = 0 looking for a solution 

(2.08 . 6:3 ) n = ·F (x - ut ) 

where U is a constant speed whose value is to be determined. By the usual 

rock hockey, 

(2.08.6 : 5) 

and by defining 

2 
B = ~ 

gh 

we again wind up with Stokes ' 

(2.0B . 6:6U) 
2 71 

n = exp{- y }F(x - Ut ) 
C 

(2 . 08.6 : 7U) 

Equation controlling Band 

(2 . 08.6:6L) 
1 2TI 

n ' = (1 - -)e xo' - y}F (x - Ut) 5 - ' C 

u = l Q e xo{- £2!. y}F(x - Ut) 
B h - C 

l U 2n 
u' = (1 - f) -. -, ex p{ - y} F(x - Ut) 

~ n C 

and, correspo ndin g to the two solutions of Stokes' Equation, ~ and S . , 
0 J. 

(2 . 08 . 6:8) u 2 
0 

= g(h + h') 

(2. 0 8.6:9) U. 2 = (1 - _£_) g:1:1' 
J. ~ • h + n· 



2 0 6 

U c o rres p onds to the ordinary s u rface wave . U. corres2oncs 
0 l 

to t he i nt 1c:c·:-,al ·,:c.ve a:-,d, clearly, from a co mparison of ee:uations (2. 0 2.6 : 8) 

anc (2 . 02 . 6:9), is much smaller than U . Since c = U, this means tr.at c is 
0 p 

Duch·s~al l er for U. t~an it is for U . Conse~u e ntly, t~e cross-chan~el 
l 0 

c:~:e.}·:se f c ::: c;;1 i:·. t 0-rncl Kelvin \•:ave is r:-n . .:c:r') :-:1ore nark e d -:.1-.an it is fo:"' a:1 

o rd i~ ary surfa=e Kelvin wave. 

2.08.7. A Submarine Barrier. 

Consider a two-layer system with a thin barrier at x = 0 extending from the 

bottom to the i~terface. This is a simplified model of a sill. Take the 

usual rectangular channel kind of thing with v and geostrophic effects in­

cluded. The equations are still (2.08.4:1)-(2.08.4:3) but the barrier adds 

the boundary condition u' = 0 at x = 0. 

From the results of sections 2.08.4 and 2.08.5 the ordinary 

v:ave corresponding to 6
0 

with 

/\2 1 s - ·-(- + 
gh TL 

gives 

(2.08.7:lU) 

(2 .08.7:2 U) 

u = 
1 

B 
0 

). 
0 

hT 

(2.08.7:3U) 
). 

0 

X 
H cos [ 21T (-, -

0 A 
0 

V = 1 
E, 

0 
hT 

D 

ii sin [ 27i (-)x 
0 ' 

0 

~) 
T L 

p 

(2.08.7:lL) 

1 X t n ' = (1 - -)H cos[2n(- - -)) 
6 o A T 

0 0 

(2.08.7:2L) 
). 

1 0 X 
u' = (1 - -)-- H cos[2n(-p, h'T o A 

(2.08.7:3L) 

v' = (1 -

0 0 

). 
l> __ o_ 
e. h', 

0 p 

. X 
H sin[2-r-(-, -

o /, 
0 



T:--!e i nte::r nc.l ,,,~ave co :rrespondi ;1g to 5 . is 
l 

(2. 08 . 7:4U) (2.08 . 7:4L) 

. [ ~ ( X ,1 = d.cos "'", 
J.. A • 

.l. 

, (1 l)'" r~(x ~ = _ - 0 n.cos ~ ~ -,-
- · . J.. I, • 

l. .l. 

(~. 08 . 7 : SU) ( 2. 08. 7 : SL) 

u = 
1 hi x 

- - H.ccsI2 -rr(;-B. hT .l. " · 
.l. .l. 

1 \ X 
u' = (1 - -;:;-)-. -, - H.cos(2o(, 

~ - n T J. " · 
.l. .l. 

(2.08 . 7:6U) ( 2. 08. 7 : 6L) 

V = 1 Ai 
v ' = (1 - -8 ):-;-::- H.sin[2n(: 

, n • J.. A. 
l. p l 

We have the values of H and H. at our disposal. Let H /H. 
0 l. 0 J. 

be such that 

(2.08.7:7) (1 - _!__) A H + (1 - l )A H = 0 
B o o ~ i i 

0 l. 

and superpose the wave, (2.08 . 7:1)-(2.08.7:3) on the wave (2.08 . 7:4)­

(2.08 . 7:6) with the same Tin each case. On the plane x = 0 the combination 

gives 

(2.08.7:BU) 

21T n = (H + H.)cos[- t] 
0 l. T 

(2 . 08.7:9U) 

1 
[

A H 
0 0 

u = hT T + 
\. H.] 2 l. l. TI 
-- cos[- t] 

6 . T 
J. 

( 2 . 08 . 7 : 1 OU) 

V = 
__ l_[;'o 

8
0 ·+ 

hr P. 
P "'o 

A. H · ] 2 11 ·r" 1 - - sin - t 
S. T 

J. 

( 2 . 08. 7: BL) 

1 1 21T n' = [(1 - -)H + (1 - -)H.]cos[- t] 
S O S. l T 

0 l. 

(2 . 08.7 : 9L) 

u' = 0 

(2.08.7:lOL) 

v' = 0 

This suggests that an ordinary tide \•:av e ;:2.ssi;;g over a sill of 

the right height rnay give r i se to an in te rnal tide wave since the condition 

c. t tr ,e sill can not oe satisf i ed \•:i tho u t both. The two · • .-avs s coc:ld have 

been ~ace to progress in O?posite c i rectio~s . 



Co~si ~e r a forced tide ~ave with conditions uniform transverse to the pro-

pagation ~irection . 

(2 . 08 . 8 :l U) 

( 2 . 08 . 8 : l L) 

2u 
h + 2x 

a 
-( r1 at n ' l = o 

h I au' + 0 n I = 0 
2x at 

Motion is 

{2.08.8:2U) 

(2.08.8:3U) 

(2.08.8:2L) 

(2.08.8:3L) 

Let 

(2.08.8:4) 

clu 
clt 

21T a 
V = - 9 -~-{:-) - n) 

T oX 
p 

dV 2;; 
+ 0 

clt 

au' 
at 
av• 
--+ at 

T 
u 

p 
271 
T 

p 
2n 
T p 

= 

v' 

u' = 0 

H, A, and T given. 

The form of equations (2.08.8:1)-(2.08.8:3) suggests that we try for 

(2 .08 .8:SU) (2.08.8:SL) 

[ (X !_) ) n = H cos 2rr, -
/\ 1" 

(2.08.8:6U) 
X t 

u = C cos[2rr(i - ~)) 

(2.08.8:7U) 

V = 
1" 

T 
p 

C sin [2-:r (I 

where H, H', C, and C' are consta n ts. 

n' = H' cos[2TT(I - ¼)) 
( 2. 08 . 8: 6L) 

u' = C' cos[2TT(~ - !)) 
), T 

(2. 08. 8: 7L) 

v ' = 
T 

T 
p 

Substituting (2. 08.8:5)-(2.08.8:7) into (2.08.8:1)-

(2 . 08 .8:4) you ultimately wind up with 

(2. 08 .6: 8) 
h 

C !rn tl I ) = -
).. T 

(2. 08 .5:9) 
h' 

C' 
1 ~· = 

>- T 



( 2 . 0 8 . 8 : i O) 

( 2 . 08 . 8 : 11) 

- l C -
- ' ~ , C = -"- (rl - H ) 
T /.. ) ) , 

i? 

(1 - _e__)H' 
p ' 

i-i] 

.St, ::-s~ itu': i ng (2 . 08 :8:8) e nd (2.08.8 : 9) in to (2. 08.8:l G) 2.nd (2 . 08 . 8 : E) c ,,d 

using 

one gets 

(2 . 08.8:i2) (1 - B)H + BH' = H 

(2.08.8 : 13) _£_ H (1 ..E__ B 
h 

+ - - - )H' = H p' p' h' 

Solving (2.08.8:12) and (2.08.8:13) for the ratios H/H and H'/H 

(2.08.8:14) 
H !11 ..E__ - 8(1 

h 
H - - + h7")] 

I::. p' 

(2.08.8:15) 
H-• !(l 0 

B) -= - - -R I::. p' 
where 

(2 . 08.8:16) !::. = .E_( 8 - S ) ( S - 5.) 
h ' o i 

and B and B. are the roots of Stokes' Equation . 
0 ). 

Equations (2.08.8:14 )- (2.08.8:16) show that two kinds of reson -

ance are possible: 

(a) S ➔ 60 ~ ordinary surface waves. 

(b} B ➔ 8 . ~ internal waves . 
J.. 

The ratios of the elevations , n'/n, and the velocities, u'/u , 

are interesting. From (2 . 08 . 8:5 , 6, 8 , 9 & 14 - 16) we get 

(2.08 . 8:17) 

0 g 1 - - -
n' p' 

= 
h n _E.___ 3(1 1 - - + h7) p' 

(2.08.8:18) 
u' 1 " - = 1 - -(1 - _t:'._) 
u 8 p' 

Co~pare (2. 08 .8:17 & 18) with the sa ~e relat ions de ri vab l e ~ro~ e~uations 

(2.08 . 4 :15-17). ?or 8 = S or S = :? . t h e tv.10 sets cgree . 
0 l 



'1 ' "' h I 

n h + h' 

an d ~n cr~inary fcrced ~ave is produc e d. 

n ' /7 ~ill b e large. 

T then 
p 

u' 
Co'. 1 

u 

If it is nearly e~ual to ~ - . , 
1. 

This indicates the possibility of d irect generation of forced 

i:)ternal waves with a period of nearly the h2lf-pendulu.'11 day. In sect.ion 

2 . 08.5 we saw that the propagation speed of internal ~aves may be nearly 

This is often the magnitude of the speed of the tide-generating 

potential. 

2.08.9. Forced Internal Tides in a Closed Basin. 

Consicer a narrow rectangular closed basin bou~ded at x = 0 and x = i ­

Neglect v and the geostrophic effect. 

( 2 .08 . 9:lU) 

( 2. 08. 9: lL) 

( 2. (,8 . 9: 2U) 

(2.08.9:2L) 

(2.08.9:3U) 

Continuity is 

n') = o 

au, on' 
h ' - - + = 0 ox at 

Motion is 

dU a 
n) - = - g -(n -

clt 8x 

~u' ...e_ en g(l .E__) C' :-i' = - g - -
~ t. p' ax p I dX 

Try for a solution in the form 

(2. 08 .9:3L) 

cos[~ x] cos [32:. t] 
.>'. T 

+ g o:-i 
Cx 



21:1. 

( 2 . CJ8. 9 ; 4 U) ( 2 . 0 8 . 9 : 4 L) 
• 7'; . 2rr 

u = C sin[t z J sin[7 t] , , . [" l . [ 2-:: • u = C s i n ix sin 7 tJ 

·, . .-!, ~ :::e ::, H', C, 2.::-1d C' are ccnstants. 

1-:ith (2.08.9:1-4) we need for the e~llil.:.briu..,i e l evatio!l 

(2. GB . 9:5) 

produce s 

(2. 08 .9:6) 

(2. 08 .9:7) 

Defining 

(2.08.9:8) 

leads to 

(2.08.9:9) 

( 2 . 08 . 9 : 10) 

where 

(2.08.9:11) 

Suppo se th a t H and T a.re given. Ti;e usu2..l feecfoack ulti::iatcly 

4 2, 2 
H' = gh' TL 

B -

H 
= rr 

H' 
H = 

4 t 2 

ghT 

l[l 
t:. 

lei 
t:. 

-

-

_£_ H + (l - .E__,)H' 
p' p H 

p 
6(1 h - + h7) l p' 

_Q_ 
13) -p I 

Formally, (2. 08. 9: 9-11) are the same as (2. 08. 8: 12-14). The 

S used there can be identified with the S used here if A~ 2£ and T ➔ ro 
p 

The formalism continues into 

1 
p - B -

(2.08.9:12) (2.08.8:17) Tl ' p' 
= 

_£_ ~) Tl 1 - - 13(1 + 
p' h' 

u' 
1 l(l 2--) = - -

u s p' 

Again, resonance is possible either for ordinary sur~ace waves or 

for internal oscillations. As before, w~en 5 is not small 

.2..'.._ = h' 
n h + h' 

u ' ::: 1 



2 1 2 

~his ca s e is of fre~ ~ e~t 

occ~ r ~ nce in smal l basins so that cne may e x pect ~orce t i~ternal ti~ ~s cf 

;agated c ut i~to the se a as free inter~al ~ aves . 

2 . 08 .10 . Internal Respo::se to a Traveli:-ig At:-nos~ he ric Pressu:?::e 

Dis t urbance . 

Neglect geo~trophic ef fe cts and v . 

( 2 . 08 . 10: 1 U) 

( 2 . 08 • 1 0 : 1 L) 

(2 . 08 . 10 : 2U) 

(2.08.10 : 2L) 

(2.08 . 10:3) 

Continuity is 

h 
"ou 

~u' + c,n' 
h' -

0
- = 0 
3x at 

Motion is 

dU 
dt 

clu ' 
at 

a 
= - g -(n 

clx 

o an =-o - - -
., p ' clx 

0 

p 3n ' 
g(l - -)- + 

p' dX 

Suppose the equi l ibriu..,i form given by 

n=F(x-Ut) 

_..2_ l.:l g 
p ' clx 

~h ere Fis any physically possible function wh ile u is t~e speed of rropaga­

t ion of the pressure disturbance. 

Try £or the solution 

(2 . 08.10 : 4U) (2 . 08. 1 0:4L) 

Tl = !'-1 F ( X - lit) n' = M' F( x - Ut) 

where Mand M' are constants to be ~eterrnined . 



or 

The re f ore, 

F e:ecing (2 . 08 .10:4) to (2 . 08 . 10:1) 

~u 
ax 

au' 

~u ~ •u 
F ' ( >: - 1.J-:) - -·- F ' ( >: - Ut) h h . 

( !1 

u = M' F ' (x - Ut) ex h ' 

( 2. 08 . 10: SU) 

u = (M I• I ) u ~ ( 
- ' l - .t X -

h 

(2 . 08.10 : SL) 

Ut) I I• I u ~ ( . ) u = •, h' i: X - U-: 

with no addit ive co nstants if we take u = u' = 0 when n = 0 , i. e. , at re s t . 

Fee ding (2. 08 .10:3- 5 ) to (2.08.10:2) an d r educ ing gives 
2 

- (M - MI ) .!?--= - gM + g 
n 

which , on def in ing 

{ 2 • 08 . 10 : 6 ) 

bo ils down to 

(2 . 08 . 10:7) 

( 2. 08 . 10: 8) 

- M' ~~ = - g : , M - g (1 - :, ) M' + g : , 

u2 
8 - gh 

(1 - S) M + SM' = 1 

_e__ M. + ( 1 - ..2.... - S ...b._)M' = _e__ 
p I p I h' p I 

Equation s (2 . 08 .1 0: 7 & 8) are similar t o the equ ati ons f or H/H 

and H'/H in secti on s 2.08.8 & 9. Their solu tion is 

(2 . 08 . 10 : 9) M = .!. r1 - ..£.... - S(_Q_ + ...b._)) 
!::, p' p I h ' 

( 2 . 08 . l O : 1 0) M' 
1 s ..£.... = {j p ' 

where 

( 2 . 08 . 1 0 : 11 ) !':. = hh1 (8 - S )( S - 8 .) 
0 l. 

Asain, t he t,,~ kinds of res onanc e a re j_)Oss ible . The ratios in 

the t wo l aye rs are 

( 2 . 08 . l O : 12 ) n 1 
p ' h ¼n p ' 

+ - - + - - ) 
n ' f) h ' (' 

(2 . 08 .10:1 3) 
u a ' .!. ( 1 

r: I h ' - = + -;::-)- . u' p s ,-, n 



214 

\-~~ 1E. n - i s ne t s::-.all 

17 1 
h u 

"' + "' 
:") I h ' u ' 

(S Ge s ection 2. 07.5.) 

(2. 03.10:12 & 13) it follows that 

p ' 
- 1 

S = ...,P _ _ _ 
h 

1 + . ' n 

u 
u ' = 

1 

h' 
h 

This value of Sis very approximately esual to Bi . Thus, it seems that the 

passage of a front could set off an internal wave in stratified water even 

though no distu:!'."bance appeared on the surface . 

Proue.man, "Dynamic Oceanography," page 359 discusses a possible 

case observed by the METEOR. Pages 364-367 give a discussion of observations 

of i nterna l tides. You should take a look at it. 



2 . 0 1 . I ~tro c ucticn . 

U? to n_w we have cons~ s tently neglecte d th e eff ec ts of f ri ctio n on c ur 

o~c~ll ~tio~ s. T­
- L. is ~)leasc.nt to ne~ lect fr ict io n sinc e it .. ake s suc h a :-:ie;::s 

of th e e~ua tio 11s. Howev er , shallow wat er will r eq uire some co nsi de rat ion of 

fri cti on if we a re to derive re al istic models. 

We ·,.,ill assume wat e r of unifo!."m c.en s i ty and co nsta nt atmospher­

ic pre ss u re. To make things s impl er, l et all t he motion s be parallel to o:.e 

vertical plane an d let th ere be no wind so that what fri ction the re is is 

entir ely with the bottom . In reality, most of the geo s tro phi c ef fe cts ~ill 

be ba lanced out by transverse surface gradients but we will ig nor e them. 

Let p be the water density and let th e x- axi s be tak e n in th e 

direction of ~he curr ent, u. 

friction per unit area. 

F will re pre se nt the force of the internal 
z 

The appropriate form of the equation of motion may be deduced 

on th e following ar gument. Tak e an e l ement of length ox a nd widt h b betwee·n 

depths z an d z + oz, Fig. 3.01-1. Doing our book keeping on this el ement 

z 

Fig . 3.01-1 

the force components parallel to the x-axis 

the pressure force: - b 

t he tide-gen er ating force: ·:b 

the ... ...... . ::::r1c-.2on fo rce: - b 

b 

X 

are 

oz pg 

~x 6z 

ox F 
z 

c3x (F 
2 

on 

pg 

+ 

0 '!') 
?x 

c.: z) 

(upper face) 

00\v er fc.ce) 



er 

cu 
b C:x6zp c.t 

h3x(F 
z 

Cu 
r5x6zp = 

clt 
on c,zpg on + 5xozpg 
clx 

c.xoF 
z 

or 

or 

(3.01:1) 

Let 

and take the mean 

(3.01:2) 

;)u c n ~ 1 
cF 

z 
= - g + g - ---

clt OX cX p oz 

au cl 1 
clF 

z 
= - g -(n n) ---

6t dX p oz 
[u) be the mean value of u from the surface to the depth 

1:. J 
z 

(u) - u dz 
z 0 

of .(3 . 01:1) from the surface, 0, to depth z. 

z z" 
1 J oU dz= 1 
z 

O 
at z J 

cl 1 Z 1 clF 
{- g -(n - n)}dz + f {- - -2}az 

oX Z p oz 
0 

dz} 

F 
cl a - z 
at[u) = - g ~(n - n) - pz 

0 

z n) }l:. f dz 
z 0 

z 
1 1 f dF 
p z O z 

z, 

When the upper limit of integration is z = h, then F becomes z 
Fb, the bottom friction, and we will use [u) ~ u for this particular nean. 

It has b e en observed that, to a good approximation, bottom 

friction is prop orti o na l to the square of the bottom current and directed 

opposite to it. We can express this by writing 

Rerr.a rk : Note t},is trick with the aosolute v alue sign \•.':,ich, in effect, sq:ua !'es 

ub but doe s not destroy its sign. 

We can :-nake an equa tion of this in t h e us ~al l:y i nc ludi ng a co~stant of 

propo r tiona lity and writ ing 
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(3. 01 :3) 

If t he re is no ~patial gradient in t~e tide- pro~ ucing force, 2n/2x = O and 

i,o !nG,an mass-acceleration from top to ::>ottom, 2u/at = 0, t:, e n we can ,,.--rit-:; 

( 3. 0 1: ?) a s 
-;:, 

0 
3 T) -b 

- g ax p h 

or, usi n g (3 . 0 1:3) and rearranging, 

cln j ub) ub 
(3.01:4) - = - k 

dX gh 

Before developing and applying the more general forms, equations 

(3.01:1) ana (3 . 01:2), we will go into a use of (3.01:4) in the Irish Sea. 

The initial work was done by G. I. Taylor with later contributions by Proud­

man, Doodson, and Corkan. 

Remark: If you would like to have the pleasure of reading a really well 

written scientific paper for a change, you should take the time 

to go through "Tidal friction in the Irish Sea" by G. I. Taylor . 

3.02. G. I. Taylor's Analysis of the Tide in the Irish Sea. 

Taylor was started on this study ,,·hen he found so:ne previous work based on 

a mathematical mod0l using laminar flow and which suggested q u ite low energy 

dissipation rates . His own ~ractical experi e nce as a yachts man, as well as 

consideraticns based on Reynolds number, made him feel that the flow must be 

turbulent and that any model based on laminar flow must be ir.adequate. 

As a first step it was considered that the me chan is m for the 

di ssipation of energy from a tidal curr ent must be analog o us to that in the 

flo w of a river over its bed or to that in the flow of air over the ground. 

3y this analogy we write at once 

( 3 . 02: 1) 
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F _ the s kin friction ~er square centineter. 

o _ the ~ e nsity of the fl u id . 

. ,,, _ ti1 e velo city of t r,e :L.,io.. 

:ace over which the fluid flews. 

7 h is is all very we ll but it won't ~o us much s oo d unless we can find some 

nu:nbers for K. 

If we turn to flow in ri v ers we :ind Bazin's formula p~e tty 

well established. It says 

(3.02:2) 

,-,;here 
r _ the hydraulic radius of the channel, i.e., the ratio 

cress-sectional area 
wetted part of perimeter 

s - the slope of the river bed. 

-y _ a constant depending on the nature of the bottom. 

To connect (3.02:l) with (3.02:2) we must equate the resistance acting up­

st!:"eam to the component of the fluid weight acting downstream which gives 

Fx (wetted part of perimeter)= spgx(cross-secticnal area) 

so that 

where 

Kpv2 

pg 
rs 

K = 7;69 ( 1 - Y/ i~) 2 

g = 9.61 m/sec 2 

In the Irish Sea the ~epth is about SO meters. 

f i • e • I 

In a very 

breed stream the ciepth is, effectively, the hydrai..:lic radius. The:::-efore, 

use 

The value of y depe ncs c~ t ~e octto~ rous~ ness. Eazin's values 

are y = O. 85 ::or clean stoney or smoot:r, earth botto:ns and y = 1. 7 for un­

EVen or ~eecy bottoms. These give, re~pectively, 

(3.02:3.1) 
:< = 0. 00 16 

and 
(3.02:3.2) 

K = .'). 001 8 



:. 19 

You see that large chc. :-:r,?'i"!S in bottom rous:'"l:.ess r.1a:-:e vEry 

slisht ch a nc;es in the amoun t of fr iction on the bottom . From es_u& tio, . 

(3 . 02 :2) it is obvious t~at this results from the sreat ~e;~h of the sea . 

=~ o r e.e r ~er ~o tt c~ roughness to h ave ~uch of a n effect ~n 5lowi~g u; a 

5 -;:re a.-:i, the str ec..-n has to be snallc·.-.- . It se ems that the sizg of the ~re -

jectio11s ~hich ~ake uµ the bottom roushness have to be s o~e ap~r ec i~ble 

fraction of r if they are to be fe lt by the stream as a v:hole . Fer our 

purposes t his is important since it permit s us to make a reasonable stab 

at t he f ric tio n in the Irish Sea wi t:1out know ing in any c:etail Khat tr-,e 

bottom i s like. Also, our estimate will be, if an ythin g, an unc. e rE:sti::-.ato: 

s ince the friction will be larger in shoal areas ov er banks a nd she lves 

where the depth is sma ll enough for roughness to be i nportant . 

We've made some mil ag e out of ' t he analogy with flow in riv ers . 

Now let ' s see what can be had from the analogy with air flow over the 

gr ound. Acc o rding to t he pr inci p le of d ynami c s i milarity th e fl ow pa tter ns 

in sea an d air will be the same if the scales of roughness are the sa~e and 

if 

(3.02:4) 
V 

w 

V 
a 

where v, ~, a nd pa re sp ee d, vi scos ity, and density a nd t he subscripts 

a and w ident ify air and wate r. From the tables for viscosity and density 

equation (3 . 0 2:4) giv es 

V /V = 1/11 
w a 

Measurements ov er gra ss on Salisbury Plain wi th wind speeds ran ging from 

6 to 30 mph fi t 

F = 0.002p V z 
a a 

By c ynam ic similarity we exp ect the sa.~e r elation to hole fo r water noving 

a t speeds of (1/ll)x6 to (l/ll) x30 m~):, , i.e. fro m abou t 0 . 5 kno t"s to 3 kno ts; 

which is the kind of speed one has for the tide in the !ri£~ Sea. 

Of course, for this to be va lid t~e roughness of the bo t tom 

in the Irish Se a has to look to the ~ater about t~e ~ay gra£s l ocks to t:-ie 

But this needn't worry us . We've alr eady shewn t hat the ~ric ti on 

is not ve r y sen s itive to the ro ugt nes s . So -- let 's take 



( 3 . '.)2 : 5) 

for(3 . G2:l) and be done with it. 

so~den and Fair ba irn (1952) r:.easured tur~ulence associa~ed with 

0 . :,0 25 . It ce rtainly looks as t~ough G. I. Tayler, in 19 19, ~ere in tje 

ric._;;)t ball park . 

Re.r.2.rk : Incicentl y , in r:-,y opin ion, one of the stigr.iata cf a real geo9hysic­

ist or o cea:1osra;>her i s that, in most cases, he can intuit his v:ay 

into t he right ball park before any decent data are available. 

Sverdrup had this ability to a marked degree a nd so has Pritchard. 

The rate of dissipation of energy by friction is t h e friction 

multiplied by the relative velocity of the surfaces between which the fric-

tion acts. If we use (3.02:5) for the friction on t he bottom, then the 

amount of energy dis$ipated per square centimeter per second will be given 

by 

(3.02:6) w = 0.002pv 2 lvl 

Since the currents i:1 the Irish Sea vary in both time and 

spac e wr,at we need here is an estir:.ate of the average over the whole sea 

and ov e r a tical cycle. Let V be th e maximum t ieal velocity and, as an 

approximation, take v sinusoidal. 

2-;r 
V = V cos [T t ] v cos[ot] 

where T = 12 hours 25 minutes is the semidiurnal tidal period. This gives 

(3 . 0 2:7) 

The mean of l cos 3 [ct] I over Tis 
4 
3.r. 

If we can figure out ~ hat 

would be reas on able for V, the maxim;;.m ti d al current averaged over t h e v:hole 

Irish Se a, we'd be in . It could be gotten fro~ tidal cu rrent measu re ~e:1t s 

but G. I. Taylor, being jus t as ,,urr,a;1 as the r e st of us, ·not e s that sor::e -
~. 

body has alr e ady p u blished a rne2.n fo:::- 'J,:, 
-l.. 

Th is gives (VL ) -C: c. : 
...... ....-..... ' viz ., \i·~ = 5 k t 2 -

at spring ove r tne Irish 

use this fo r the 

~ean v --~ h ich it isn't--~e probably ~on ' t be too far cut o~ line a~d, in 



t.i o ;;al Gffect . 

p = 1.03 a 
_:, 

c:n ~ I V = 2 ~25 kt= 114 -1 cm s ec , ano 
4 tcosj ktJ I == ., e~uction (3 .0 2:7) s.:.ve s us 

.J • 

If inst e ad of K = 0 . 00 2 ~e use the sma ller va lue K = 0 . 00 16 

we st ill get 

( 3 . 02 :8.2) 

Thi s is a hair r aiser . You will have noticed that al l along 

G. I. Tayl or ha s b een ca ref ul to ke ep this an underestimate . The best p re­

vious estimate , the on e tha t got Ta ylo r thinking about this, was Street's 

at 

Our smaller ·estimate is 150 ti mes bisger. 

Al l th is is p retty unsettling a nd it would be nice if we co u ld 

find a noth er, in de pend ent, way of estim at ing the enersy dissipation . If we 

c an , and if it confirms the gen e ral s ize of our first estimate , th en we c an 

feel a lit tle be tt e r abo ut sug gesting that everybody ac ce?t our estimate in 

pref erence to ot he rs . This is exactly what Taylor did. 

His program is s impl e er.ou s h . Taylor s ays : 

"Inste a d of trying to meas ure the rate o f dissipation at every point 

of the Ir is h Sea, I have calculated the rat e at -~ich energy enters 

the Ir is h Sea through the North a nd South Chan ne l s. To this must be 

added the rate a t wh ic h wo rk is done by lun ar att r action on t he 

wa ters of t he Iri s h Sea. The s~m of t hese will give the ra te at 

,hi ch the en er gy of that sea is i!"'lcreasing plus tne rat e of 6i ssip a­

tion of energy . When the average values of t hese expr es~ io ns are 

tak en curing a c ompl ete ti da l Fe r iod it i s evi ce~ t th at, si nce the 

e:-ie rgy of t:-ie Iri sh Sea aces no t incre a se or decrease co r,tirn .:a lly , 

tr-e a vera ge ra te of dissipa.:io::1 ::,y tic: al cu :rrent s can :be fou !"'ld. " 

By t ;;e usual so rt o: ;:;::ic:-: ~~eep ing Tay l or :i. cs fo r th e c .. nou . . t 

o: ene rgy cr ossing a ver ti cal cyli ~tri cal con tr ol sur fac e, 5 , i n tirne , dt , 



(3 . 0 2: 9 ) s in[e)c.6 + • ? nv·-

~he integ rals to ~e tak e n arou~~ .6, 

6 _ ~he intersectio~ of the cylinder, S, with the water sur face. 

n - the he isi-,t of the ti d e ax ve :nc.:rn s e a level . 

and p and g are as usual. 

AssUJ'"!)ing n small com_;_:;ared with h, as it certainly is in the 

Irish Sea where ~ne mean spring rise is about 6 feet as against a mea~ h of 

about 40 fat homs , and noting that v must be roughly the size of cn/h where 

c is the speed of the tide wave in water of depth h, (c = 1tgh) we see that 

the second intes~al is much smaller than the firs t and we take 

(3 .02: 10) pgdt J hnv sin [S]d.6 

as a suffi ci ent approximation. 

For energy to be conserved {3.02:10) must be equal to the sum 

of the increase in kinetic energy of the sea enclosed by .6, the ener<:y dis­

sipated by friction, and the work done by the moon; all during the time dt. 

Taking the mean over a tida l period th e first of these must be 

zero and we can write 

(3 .0 2:11) 

where 

w..;w =<pgfhrwsin[S ) d.6> 
rn 'r 

W - the rr.ean rate at ,-:hich E:nersy is dissipated by the tidal 

fricti on withi n .6. 

w 
m - the ave rage rat e at which work is doP.e by the moon ' s 

attr action on t:";e :?:"egio:1 e nclcsEd !:)y -~. 
To apply (3 .02: 11) to the Irisr: Sea we need a f ew nu.-nbers . 

Taylor got the!":"1 from published l>.crr?iral ty sources. T:-ie principa l fea ture of 

the tide is a lunar semid iu rnal cor.stituent ~ith a perio c T = 12 r.r 25 min. 

· To a s'.lfficie:it a;-?ro>:::.rnation we ca n :::-e:::ires -211t t:-ie i-,e ig:,t of the tide a':::>ove 

!"nean sea lev e l ::,y a sinusoid , 

(3 . 02:12) 



H = 2A is tr.e tidal r a nge . 

T - the tid al period : 12 hr 25 min~ cr = 
2 7i 

_ -25 
lL-

60 

t - the ti me me a sured f~ om the ti~ e of t~ e moon 's pass age o ~ 

t 1 - th e ti me of high wat er at fu ll and chan ge , i. e ., it is 

th e "est anl ishn1e r,t" of t , e p lac e unaer di scu ssio n. 

To eva luate (3 .02:11) we must know t he he ights of the ti ~e 

across a sect ior. . Fortunately, since th e Irish Sea , Fig . 3 . 02-1, p age 22 4 

i s op en only at the two end s , integration around◊ is sim ply in te grction 

across the ends . 

That st ill leaves us up aga inst it as by far the gr e ater par t 

of the tide records have bee n made al ong the co ast s . 

Re~ark: By th e ~ay, if making bricks without straw and silk pur se s out of 

sows' ea rs isn' t to your tas te, per hap s you ' d better go in to some­

thing oth e r th an geophysics. 

To make the cheese more binding, th e tid al ranges are not th e sa me on the 

two sid es of the channel, Table 3.02-1. 

Table 3.02-1. Ti d al Ranges in the . Ir ish Sea. 

Welsh Sid e 
Place Spring 

Eeardsey Island 

St . Tuoi-:ell Road 

Port Dynll ay n 

Llandcwyn Island 

Holyhead 

Range 
(ft) 

15 

14 

12.25 

14. 5 

16 

Iris h Side 
Plac e Spring 

Ark.low 

Courtown 

Ark.low Bank 

i<.ilmichael Point 

Range 
( ft) 

4 

3.75 

4.25 

4. 34 

The ~ues tio n i s: ~hat is the s ~ap e o ~ tt e ~ater s rface acros s 

tl ,e Sou th Cha nnel f rom A t o E? To get a n an swe:r- we ::.·ing i n the geo £t::.·o_;:hic 

~o~ ce . The c rre nt through the So •t ~ Cha~ . el i s suts~ a ~~ ·a _ly rectiii~es r 
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su ffi ci ent to balance t he seost~o~ hic f or ce; one created by a li ne ar tilt 

cf t he sea surface . T½is irr,1)lies ?".':7:arl:> ur:iform curre. t across Sout:'1 

Chan~el . ~rem ~hi s, knowin g the ti~e ra-ges at the en~s c~ the sec ~ ic~ , ~e 

=re geostrophic force :s 2w~v sin($ ] ~n d the c ro ss- s tr ea ~ grac­

ien t ju st ne ce ssa ry to balance it is 

2wpv sin [¢] 
pg 

= 
2uN sin[ $ ) 

g 

The mea sured maximum speed at sp rings ac r oss section AB, beth ebb and flood, 

is 3.2 kt= 162 cm sec- 1 . hith w = 0 . 000073 , $ = 52°, and g = 981 cm s ec- 2 

the slope comes out to be l.9xlo - 5 radians. The distance from A to Bis 

48 NM= 288,000 f t. Consequently, the difference in l eve l between Eeardsey 

Island and Arklow at the time of maximum current shocld be about 5 .7 feet. 

The maximum current in these pa rt s occurs substantially at 

hi gh water and low ... ater so that the difference in ranse, on th.:.s argu.r.ient, 

so uld be about 2x5.7 = 11.4 ft. From Table 3.02-1, page 223 you can see 

tha t the measured value is 11 feet which is not bad. Per haps we can get 

away with a linear slQpe of the sea surface between A and B. 

Remark: Taylor says, rather wistfully, that it would be nice if someone 

would actually measure this someday. 

The next order of business is the sp eed of the tidal cu~rents. 

If you have been wondering why G. I. Taylor chose the line AB, the a nswer 

is easy: There ar e a few measurements there at the positions s 1 , s 2 , s 3 , 

and s4 , Table 3.02 -2. 

Table 3. 0 2-2. Results of Hea surements along AE . 

Statio:1 Maximu.rn Direction J>:aximurn Direction 
Flood ( OT) E):)b ( OT) 

(kt) (kt) 

3 .6 032 3 . 6 2 6 

3.2 035 3 . 3 212 

3.2 02 5 3 . 0 208 

3.0 016 2.3 19 6 



T~e me an speea is 3 .2 kt , t~e mean flooc. firectio~s is C2 7cT and th~ ~ean 

ebb dir e ction is ~ □6°T . 7he ~i re ctio~s are v~ry n~arly op?csed and , fo r 

convenie:-.ce , ·,.:e Ki ll assu.r:1e t :·1at t :iey a~·e exactly so. 

The r e ar e no measu r ements a~a i lable at th e stations, S., for 
J. 

int e r::-.ec.iats <'tc s es of t he tice . T:--,e points nea :!:"Est to t:-,e line AB a~ ·,,:h ic:1 

Carnarvc~ ~a y ligl~t - ships , Tab le 3 . 02 -3 a~d Fig . 3.0 2 -2, ~ag e 227 . 

Table 3.02~3. Direction a~d SFeE d of the .Ti dal streams at Three 

Light-Ships at Various Stages of t he Ti de. 

Eours North P..rklow South Arklow 
from Light-Ship Light -S hip 

ffi·1 at Direction Speed Direction Speed 
Dover 

-5 

-4 

-3 

-2 

-1 

0 

l 

2 

3 

4 

5 

6 

You can see that 

(3.02:13) 

( OT) (kt) ( OT ) 

043 1. 7 043 

043 3.5 043 

043 3.7 043 

043 3.2 043 

043 2.2 043 

043 0.7 054 

223 1. 2 112 

223 3.2 223 

223 4.0 223 

223 3.5 223 

223 2.0 223 

223 0.7 223 

v = v cos[o(t + t )] 
0 

(kt) 

1.0 

2.5 

3.2 

3.0 

2.0 

1.0 

1.5 

2.7 

3.5 

3.2 

2.5 

1. 2 

I Carnarvon Bay 
Lis h t-Ship 

Direction Speed 
( OT) (kt) 

021 ---
021 1. 2 

021 2.0 

02 1 2. 2 

021 2.0 

021 1.0 

slack ---
201 1. 2 

201 2.0 

201 2 .0 

201 1.7 

201 1.0 

won't be too bad i f we use V = 3.2 kt fro::n the AB section arid ... 
'- = 8 hr 20 min 

0 

to a d jus ~ t h e ti me to t~e Dover reference point . 

\·le still ha·,·e 11 to go . To ::-esin Kith, ,"-.3 is !?racti call y a 

co-ti~al li~e , Tabl e 3 . 0 2-4, f age 227 . T~ere~ore , ta~e t he time of ~igh 



o---N. Ark.low 

x---S. Ark.low 

+---Carnorvon 

· 22 7 

SPEED (kt) 

4 

-2 

- 4 Referred to 
HW at Dover 

Fig. 3.02-2. Speed of the Tidal Stream at Three Light-Ships in 

the South Channel of the Irish Sea. 

Table 3.02-4. Times of High Water on the Welsh and Irish Sides of 

th e South Channel of the Iri sh Sea. 

Place · Time of h'W 

Iri sh Arklow Bank Sh 24m 
Sid e J>.rklow Bh 25m 

K1lmichael Point Sh 25m Where ..-.B comes ash ore 

Courtown 7h 55m 4 mi south of Kilmichael 'D"-- \.,. 

i·Je lsh St. Tudwell 's Rd . Sh 02m 
Si de 

? ear dsey Island 7h 55m 



~ater ev ery~ her e al ong AS as 8 ho~rs 10 minut es after hi gh ~ate r at ~ove r. 

tte wa te r surface slo pe s across the channel, A must v ary . Let the c roe s ­

c:·.a:-i:-1el ax.:.s l:e y a nd , invo~:ing the S!'."adient alr ecc y c:er iv ed and t he ass c::np-

(3 . 0 2:14) 
2wv si:1 [ c] 

.l\ =i!\ - s y 

where Al is half the tid e range _ ... mid-ch a nnel ; explicitly here, C. '-

.!_(15 + ,l 

Al = . ) = 4 .75 fe et 
2 2 

Further, if .6 is the distance mea s ~red from the mid-channel poin t L of line 

AB, 

(3.02:15) y = .6 sin[ 6] 

All of this gets us the average rat e at which energy enters the 

Irish Sea across the section AB, 

B 
(3.02:16) w == <pg J hnv sin [6] d.6>T AB 

A 

Substituting (3.02:13, 14, & 15) in (3.02 : 16) 

B 
J 2wv sin[m] 

WAB = <cg h(A 1 - 9 · .6 sin[S))cos[o(t + t 1 )] V cos[o(t + 
A 

Only the two cosine terms contain t so that, aver agin g them first over T we 

get 

Thus, after taking everything which is substantially constant on the section 

AB outsi de the integral sign, we co me down to 

w = ~pgV sin[ 8 )cos[ o(t 1 AB 

B 

t )) f h(A 1 o A 

2t,N sin[¢) 
-- --..:.-'--'- ~ sin[6))d¢ 

g 

If we mea sure the depth across the section, the integral can be eval uated . 

Actually, it isn 't necessary, the depth bei ng con sta nt at 37 fatho~s along AB 

t o a su :ficie. t cegree . Th e result ~s 

(3.02:17) 

~he~e [ is t ~e e~gth of AS . 



Consequently, 

(3.02:18) 
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T:~e ro ste r of numer ical val ..1es to us e 

s = 981 cm se-c - 2 

,... ,., = 1. 03 g cm- 3 

V = 3.2 kt = 163 cm sec-i 

:; = 60° ,-::, 
r- li es 08 6°7'. The c ur~e:r:t 

T = 12. 40 hr 

tl = 8 hr 10 min 
'\, (tl t ) 

t 8 hr 20 min 
0 = 

0 

i1 = 37 fa tho ms = 6800 cm 

A
1 

= 4.75 ft= 145 cm 

£ = 50 NM= 9 . lx106 cm 

W = 6 .4x 10 17 erg s sec - 1 
AB 

= 10 

is: 

se ts 02 6c 7 . 

min 

The same razzle-d az zle can be used for the energy coming into 

the Irish se·a th rough the North Channel ac ros s a section RC from Red Bay to 

the Mull of Cantire, Fig. 3.02-1, pag e 224. Fortuna tely, it isn't nec es sary 

si nce almost no energy comes through. 

Remark: G. I. Taylor says it' s obvious. Maybe it is--to him! 

There is a strong tidal current through the North Channel. It runs in from 

5 to 11 hours and out from 11 to 5 hours. The neck between the Mull of 

Cantire and the Irish coast is a loop in a stationary oscillation. The 

times of high water are : a t the Mull of Cantire, 10 hr 5 8 min , and at Red 

Bay , 10 hr 55 min, i.e., RC is a co - tidal line. It was cho se n for just 

that reason. The tidal streams change direction at t he ti~e of high water, 

Dover. That puts th em 87° out of phase wi th the local high \,ater and low 

water. They lack only 12 minute s of being exactly 90° out of phase . The 

maxi mum current speed is about 4 kt and there is ~uite a s~a ll tide r an ge. 

Red Bay and the Mull of Cantire both show ab ou t 4 fe et. T:"1e geostroohic 

tilt coesn ' t s!-1cw up because, when th e current is run nin q full st rength, 

which i s the ti~e the raaximu.~ ti lt should occ~r, t he ~at=r is a~ its mean 

lev el. ~t high ~ater and l ow water t~ e cu rr en t is slack ~~ich rules cut a 

ge ost ro phic eff e ct . 



h' = PS RC 

c(t
0 

- t
1

) = 87 ° 

V = 4 kt= 200 cm sec - 1 

RCxcos[8 ) = 1 1 NM= 2x 10 6 cm 

h = 6 5 fathoms = 10 4 cm 

Cc~ sequently, we have 

(3.02:1 9 ) 

From (3 . 0 2: 18 & 19) 

W = 6.2 x10 15 er g s s ec- 1 
RC 

w 
RC 

w AB 

There for e, we ne g l ect WRC in compar iso n with WAB. 

t he r.iea n depth . 

The remainin g bi t o f busines s is to a ssess the amoun t of wor k 

done by th e moon 's a ttra cti on on th e Ir ish Sea bet ween AB and RC. The moon' s 

attr actio n ca n b e ex pres sed as a pot ent ial func tion, r.. If a n elem e nt of 

volume fi xed with re spect t o the ea rth contains wa ter at a ll times durin g 

a l una r cay, t he n no ne t work wi ll be done since pot enti als a r e co nser vative. 

However , i f the vol ume element contains wat er on l y part o f t he ti me , ne t 

~o rk is poss ible . 

?ak e a co lumn o f water l centi mete r squ a re ext end ing f ro ~ sur­

fac e to bo t tom . Then the work done en i t is 

m = f pnan 
lun ar 
c a y 

The €ner gy c c:n.,iunica ted by the moon in a l unar c a y is 

EM= 
.l 

J J n c:-
Irish Sea 

Jl.3- R.C 

where do i s an are a eleme nt . 



I:1 C:.a; "i:e r 1 , e wor::ed cut Q c'..nc e x_r;:;!"esse d ::. t in t.erm s c: 
la..:ituc e and hour a:1gle . Taking t: ,e sir.ip l est sort of c:.?.::-!:O):ir.1atic n f o r a 

comi na nt eerniciurna l tid e , and taki ng (d/e)3cas2[D) = 1, ~e get 

m = 
3~ ~ 2 

UocAr coe 4 [6] sin [111 ] 2 · ~ · .,,o 

The numerical val ues to use are: 

U = 5. 58 2xlo- 8 for the moon 

p 1.03 g - :i cm .., 

g 981 cm s e c- 2 

r == 6 .4 x 10 8 cm 

These give 

Thus, the me an rate at which wor k is done by the moon's att ract ion per 

sq uare ce ntimeter of the Ir is h Sea is 

w = 
M length of the 

lunar day (sec) 

x <A sin 2 [w )> . 
o ove r t he Irish Sea 

::rom ,.,.3 to RC 

The mean value of H for the Ir is h Sea is about 14 feet or 420 c e ntimeters·. 

Take A = 210 cm. Th e a ve rage time of h igh "ate r is about 1 .5 hour s befor e 

the moon's meridian tran s it. Take~ = 22.5°. This giv es a rough approxi-
o 

mation of 150 cm f or <A sin 2 [~ )> a nd 
0 

(3.02:20) 

Rema rk : 

W = - 110 ergs cm- 2 sec- 1 
M 

Don't be panicked , as I ~as th e fi rst time I sa w it , by th e minu s 

sign. Since high wat er in the Irish Sea comes shor tly before 

meridian tr a nsit of the moon , the ti des in the Irish Sea do wo rk 

on the moo n ra t h e r t han the moon doing work on the tid e ; hence 

the :ni nus sign. 

Th e area of the Ir ish Sea included betw ee n t he sections AB and 

~C is a.bo ut 11 ,6 00 M or 3.9x1 0 14 cw 

we have 

Using t :-ie estL .a.~e f~ o:n (3. 02 : 18) 

.,.. .. _nJ..s-, 



( 2 . 02:21 ) 1640 - 110 = 15 30 erg s c~- 2 sec - 1 

?~i s i~~epen~ e n~ es ti~ at~agr e es ~~ ite well with ou~ ~revious est i~ ates, 

104 0 a nd 13 00 e rgs cm- 2 sec-J, and no t at all ~ell with Str ee t 's estim ate 

o~e to u se. ~hat can we g~t ou t of it ? We ll , for c~e thing , the l a rg e 

amount s of ti~ a l energy sopp e d up in th e Iri sh Sea coul d make us wo~de r 

how much of t he tid e wave is ab sor bed and how muc h is reflected back out 

aga in . The very :::act t::at you ca.n find r egion s -....•riere high v:ate r and the 

str ength of the curr en t are sub stant ial ly in ph ase sugg ests th a.t r.ot much 

ene rgy is reflected out aga in . In othe r words , the cbs erv e d facts mat ch 

the p rogressive wa ve . If l ots of t he wa ve were ref lec ted, one would e x -

pect a standing wave with the stre ngth of the curr ent TI/2 out o f phase 

with high and low water. Of course, any observed tida l cu rve will be a 

ta ngle of the incoming and the ref lecte d waves . When you get them un ­

tan gled what loo ks like a ver y co mplex tic ~l situa t io ::1 in the South 

Channel turns ou t to be remarkably simple . 

~n a gen er al way, the Irish Sea act s lik e a resonator with two 

open end s whic h are " loops " with sma ll ti de ra nge and maximum curr ents . 

I::1 the r.iiddle, near the Isle of 1-:an, Fig . 3.02 - 1, pa<:e 224 the ra nges are 

la rge an d the curren ts are small . If the analogy with a loop in a s tation ­

ar y osc illa tion is any good at all, it will be worth~hile to analyse the 

motion into two opposed ~av es . 

Consider the notio n in the Sou th Chann el to be e ntirely 

rectilinear reversing and work al ong the axis in the center of t he channe l . 

Suppose we assum e two waves an d write 

(3 . 02:22) n = a cos[ot - Kx) - b cos[ct + Kx) 

entering 1,;ave re:: lect ed \s·ave 

x posit ive into th e Iri sh Sea. Let c be th e speed of a long wave i n shal­

lov: \,·a t:.e~ of ce~ t h h , i.e . , c = ,·9:1. 'i'i1e ;roblem is to ce ter;:i ir,e a a;id 

b so tha t th ey ~ake n tra ck t~e observe c tide and t~en use (3 . 0 2 : 22) to 

explain th e various cha ra ct eristic ~eatur es o f the tid e in Scuth Chan~el . 
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T~s ci 6 a l ccrrent corr eEpon~ing to (3. 02 : 22) is 

(3.02:23) v = a/g/h cos [ot - n:) + :J/g/h cos [ot - ,: x] 

T::1; rnax i r:.um of v occurs at x = 0 w;ien t = O a nd is 

( 3 . 0 2 : 24) . V = (a + b) /g/h 

.!:.l so , at >: 0 the phases of th e current a n d the height o f t~e wat e r sur -

f ace are the same . 

At x = 0, t = 0 n(O, 0) = a - b. Thus the tide range is 

2(a - b). At point Lon the AB-section, taken as x = 0, we know t h e 

half-range, the depth, h , and the maximum velocity, V, so that we al s o 

know a and b. 

a - b = 145 cm 

a + b = v/h/g = 163/6800/981 = 430 cm 

Solving, 
a= 287 cm 

b = 143 cm 

a/b = 2.0 

Conclusion: At springs the tice wave is cut almost in half during its 

passage into and out of the Irish Sea and the energy is, therefore, re­

duced to one quarter. 

This conclusion seems to have a sound basis in theory as ex­

hibited but, at the time G. I. Taylor made this argument, the generally 

accepted idea was that friction had very little effect on tidal regimes. 

To combat this entrenched idea Taylor again tried for some confirmation 

of his result. One argument is based on the movement of co-tidal lines 

in the South Channel. 

Since for progressive waves co-tidal lines dra~n for success­

ive instants of time mark successive position of t h e crest and re9resent 

wave velocity, there is a tendency to interpret co-tidal lines in this 

way for all waves. You can't do it. In the case of t¥o s~perposed pro-

gressive waves mov ing in opposite directions, f o r exa ~ple , th e co -t idal 

line moves in the direction of the v:ave of greater a:;-,_;:li tu ::e but at a 

differen t s_peed . 



Surpcse we ~ri te the ti ce given ~Y E~uation (3 . 0 2:22) as 

(3 . 02 : 25 ) 

h'1-~1:::re 

(3 . 0 2:2E) 

(3 . 02 : 27 ) 

D = A cos[~(t - t )] 
X 

a - b 
c ct [o tx) =a+ b cc t[K x] 

Th e s yrnbc l t represents the time it takes a co - tidal line to move .a dist­
x 

ance x from t h e place where the ph ases of current and tide are the same. 

Equation (3 . 02:27) r~lates t and x . The velocity of the 
X 

co-tidal line, V, from (3.02:27), is 
C 

(3 . 02:28) V 
C 

ex 
dt 

X 

= C 
cotL[KX) - 1 

- 1 
(a + b) 
a - b 

For x = 0 where the amplitudes are opposed and the tidal currents concur, we 

have 
v· = 

C 

which is smaller than the wave speed, c. 

It would be nice if there were enough data to permit us to 

follow the co-tidal line . in the vicinity of the Arklow-Beardsey section 

but there aren't . Krilin.mel's co-tidal lines show a crowding near A3 which 

is what you would expect from equation (3.02:28); at least since V is a 
C 

minimum near x = 0. However, there are two sections of the channel where 

we can nail do wn single co-tidal lines pretty firmly. Between them we 

can, at least, get a mean speed for the co-tidal line and compare it with 

our theory. 

On AB you can argue yourself into a co-tidal line at 8 hr 10 min 

without much effort . We will take this as x = 0. Th e other sect ion runs 

from the vicinity of 'Iuskar Rock to "'amsey Sounci, TS on Fig . 3.02-1, page 

224. There the co-tidal line is present at 6 hr 15 min. We can use 

equation (3.02:2 8 ) and t he se data to est i mate ratio of a to b again. 

Th e distance between midpoints o f the co-tidal li~es, ~L, is 

about 43 NM so t ha t x = - 43 NM. The ms an de ft h between~ a~d L is around 

45 fat ~o~ s so t h at c will b e about 56 With T the i:-ericc of ~he 



s 0:-:iiciurnal tic:e 

2,.d 
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cot[Kx) = cot[ - 22.3°) = - 2.44 

t = 6 h r 15 min - 8 hr 10 ~in= - 1. 92 hr 
X 

cct[ ot) = co t( - 56 °) = - 0 .67 
X 

and, stuffing (3.02:28), 

a - b cot[Kx) 
a + b cot (ot ) 

X 

or, getting the ratio of a to b 

2 .44 
= 

0.67 

a 
- = 
b 

2.44 + 0.67 = 1.8 
2.44 - 0.67 

which is amazingly close to the value of 2.0 based on quite different 

data. Note that this second method involves only measureme nts of de P.th 

a nd time. No data on currents or tidal ranges are used. 

From here on Taylor, in his pa per , go es on to clear out a 

few more things like the change in direction of the co-tidal line between 

A3 and TS an d the effect that the shape of the coast has on the times of 

high water along the coast . We won't follow him further . Perhaps you 

should give yourself the pleasure of reading Taylor's paper . 

3 . 03. Munk and Macdonald 's Oceanic Tidal Dissi~ation . 

Day a fter day the moon and the sun co work on the ea :::-th 's oceans yet the 

tid es neither grow nor diminish. All this energy rnust go somewhere. But 

where? That question need s an answer. One possibility is that the energy 

of the tide •,;hich must be dissipated acts to slow t:;e ea:::-c:h' s rotation 

a nd inc re ase the length of the day . 

T~e material in this se ctio n is t aken di :::-ectly ~rcrn ~u~k a~ d 

,-:acdonald' s "The Rotation of the Ear th ." This is a boc:i.- that you , as 



geo p~y sicis~s , can no t afford to nesl~ ~t; p r i ncipally tecau s e it i s E~ch 

~:1 e,xci::llc:-.t e::-:arcp le o f ·.::-,at -::-,e p ra ctice c f i;:eo_c:-iy s ics, as d i sti:-. c c :ro:n 

p :.,ysics , is . 

7:-?e cata b~t":ieri ng !·\ur,~ ar:a !•:acco r.ald are the irr e c;ula"!:"i tie s 

i:1 tte :rcca~ i on o f t~e e ar~ h ~hie~ :c~e i~ t wo vari e ~ies : 

( l) the wobble , and 

(2) the chan ge s in the rate c f rotat ion , i.e . , in the leng t ~ of the 

day , ab brev iated l. o. d .. 

T::e ast:::-o;-iome rs consider t hese irr egula rit ies a ;:iig pai n and have s.:.~p ly 

le gislate d variations in the l.o . d . o ut of astronomy ~Y r edefin i ng tim e 

in terms o f the len gth of the year rathe r than in terms of the len gth of 

t he cay. This i s fine for astronomers but it has become c leare r and clear­

er t hat these rotational irre gul ari tie s have a c lose con:1ection with ev e nts 

on eart h a nc , thus , offe r a ~ean s of st udy ing larg e sc ale geoph ys ical 

pheno:nen a. 

Howev er~ lik e a ny tr ul y ge ophy sica l pro blem , the diversity of 

fi e lds o f knowledge that must be ::-roug:-it into pl ay is h ai r ra ising. It 

touc hes eve-::y br anch of geo physi cs. One needs to know ai:>out winds and ai r 

masses, about atmo spher ic, ocean ic, an d ea rth tides, an d about mot ion in 

the earth ' s fluid core . In each case, what one ne eds to know are in tegrat­

ed, i .e . , averag ed, quantities over the ent ire globe . This is the weak ­

ness of this method of attack; and als o it s st rengt h . "In pri ncipl e " we 

get the integrals by su.imling over data ta ken at properly spaced observa ­

tio n s tations a t su ffi ciently rapid rates and over long enough t imes . 

Act ually , of cou r se, the re aren' t enoug h station s. The y ar en 't prcperly 

spac ed . And, the data are not taken at the pro?er rate s or for sufficient 

lengths of time. Th is is true now. \l""ERY PROBAELY IT WILL ALWAYS BE TRUE . 

Remark: Gentler:ien , thi s is the f ield in v:hi ch you as p i re to work so bear 

th is fa ct in min d. The men who have go ne befo re you we re ~ell 

aware o f the in ad equacy of t~e ~a ta and they ~itn ' t re ct ify the 

sit u atio n to a~y gr eat exte~t . You aren't s o i~s to either . 

Your real prob lem i s l e ar ning how to live with inad e qu a te tat a a nd 

still get sc rnething useful, a nd pe r h ap s interesting, done in the 

r,e xt 40 y ears . 
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Since ~unk and Macdonald ne ed so rnany to ol s they have to sive 

-.::,e basic infor:1'\ation. Thi s makes t:1eir book an excelle:1t so·urce f or a 

lot of -.:~ings not necessar ily lim it ed to the rotation of the e a rth . They 

give yo u chc.pters and appendices en : 

( l) T:1e cyn~"7lic equations in a form suf ficiently se ne:ral to i::-,;?ose 

no r es tric-.:ions on c efc r :nation. 

(2 ) The st re s s-s tr a in relations . 

(3) The t echnique of reducing stress-strain relations to dimension ­

les s terms by the us e of Love numbers. 

(4) A lu cid exposition of perturbation methods. 

(5) A discussion of power S?ectra with particular a tt ention to 

hand ling the sp ectrum of both wobble and rotat i on 

Remark: You won't find th is anywhere else in the lite r ature on spectra . 

(6) A development o f the "oce an function" which expresses the loca­

tion a nd boundaries of the world's oce an s as an expans ion in 

spheric al ha rmonic s. They also give th e "continentality 

function." 

-- [ 10 C(o yeans ) = C(B, A) 
where there is water 

where there is land 

-- [ 10 C(continents) = C(6, A) 
wher e th ere is wat er 

where th er e is land 

where S = co-latitude and A= ea st longi tu de . 

These parts of "The Rotation of the Earth" are worth reading for themselves. 

The irregularities of th e ea rth ' s ro tation can conveniently be 

separated by pe riod, Fig . 3.03-1, page 238. For those wit h t ime scales o f 

a year or le ss the evidence on the wobble co mes largely from the observa ­

tion~ of the International Latitude Service and for the \'ariability of the 

l.o.c. fro.:i compar is ons o f clock t.:.::ie ·"·ith a st ro nomic time. Tr,e annua l 

,-:o::ible is l.;;:::-gely due to se asonal s:, ifts in the ai r r::ass , that in tr.e 1. o . d . 

::o ,,i nd s. T:-,e shorter period te:::-:ns in the l.o.a. a:r-e c ue to shol"t ?e ri oc 

te!.--ms in earth tides. The Chanc le r , . .-o~~le is a 14- mon -.:n Via.riation 



01\TA SOURCE WOBBLE 

INTERNATIONAL LATITUDE SERVICE FOSSIL MAGNETIS: •/i 

CHAN OLER 
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CLOCKS AND ASTRONOMIC TIME 

SEMI- ANNUAL 
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Pf1O0A8LE CAUSE 
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SEA-LEVEL 
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F.i<"J. 3. OJ-1. The Spectrum of Rotation . The " wobble components (top) and th e " lcnyth of the day " 

components (bottom) arc schematically arranged according to the ir tim e scoles in years . 

Ver tic al lines indicate discretie frequencies. Shaded portions indi .catc a continuous or 

noisy $[)ectrum . Pri nciple so 1rceR of the observations arc shown ab ov ,~ ,rnd pi-csum nbl <~ 

geophysical causes beneath each sketch. [from Munk and Mucdonalcl () qc;o )) 



sove r ne d ty t~e e ll ip tic ity a nd rigidity of the ear t h . 

th e wc::.t-le is se :.er at ed by r andom i:n::_:-ulses of unknown cr i sin a rid d2.:-:-.j:~ d 

by so:ne unknov:n i ::iper f ections from e la sticity, or by sor:-,e other rr,-22.::s." 

~n a sse r tion ~o conjure wi th! 

E'"or .:'.-1e long e :?:" pe::-iocs, evicer,ce cones rr.ai n ly from moderr, 

o~serva ~i on s c: occul ta tion s an d :ro m records of an ci ent eclipses . 

Very large irr es ular variat i ons in the l . o . d . with a tim e sc ale around 

a de ca de may be du e to ele ct romagnet ic coupling of the e a rth 's mantle to 

a tu rb ul en t f luid core. The century sc a le stu ff may be du e to ch an ses in 

th e ear th's rn~ment of inertia . And s o on , and on . Fig . 3 . 03 -1, p ag e 238, 

which ,.._.as li ft e d from Munk and l•\acdonald, s ummari ze s the whole si tua t ion 

as they see i t . 

Munk and Madon ald say, "Chang es over t he last few thousand 

ye ar s are p red ominantly th e r es ult of tidal frictio n, bu t her e ag ain 

ch a nges in i nert ia (presumably associated wi t h a variable se a-l eve l ) must 

p lay an import an t part ." You see that they have t o worry a bout tidal 

di ssi pat ion . It 's a ll ve_ry well to estimate the value for the Iri sh Sea-­

if all you ar e think in g about i s th e Ir ish Sea . But, if you a re consider­

in g the Eart h-Moon- Sun a~ a closed system , e nergy blotted up in on e par t 

of the s ystem ha s go~ t o show up as a chan ge i n some oth er pa rt o f it. 

And as a gre at deal of ene rgy does get dumped in to th e tid es , and as it 

co es get d iss ipa ted, and to assess the ef fe ct of th is p roce s s on the 

e art h ' s rotation, the when, where, an d how of t his di ss i pation bec omes 

very important . Le t's follow Munk and Macdonald thro ug h t he ir an alysis 

o f oceanic tides . 

The flux of ti dal e ner gy in the oc ea ns c an ~e represented 

qu it e si mply . ~uppos e RM and Rs rep re sen t the mean rate s pe r unit surf ac e 

a rea a t whi ch th e moon ' s and th e sun ' s gr avita ti ona l attractions do wor k 

on t he water . The usual assumption is t hat within th e volume of the 

oc eans there is little or no di s sipation; s~~stantially all of it takin g 

pl ac e en the b:,un dar i es, i . e., on th e bottom . But, o\·er ::-,:,st of the 

oc ean the bottc~ curr en ts are ve r y ~eak and tjere i s ~e g l~ gi~ le 6i ss i;a ­

tion. Cons e quently, t he dissip a tion ~ust be concentrated in t~e fe~ 

sh all ow seas . 



I f ~@ l et R be th e flu x across a unit vertica l s~ r f ac6 i n the 
a 

e :-.t1:ance s to t;', ':! shallow seas end ?b ::,.,, t:-:e \,·o.::k c o,, e by tical curr ~:-its 

en the sea bo t t c ~ (uni t s : erg s crn- 2 s ec - 1) , then s ch s ~ati c a lly che f l e w 

Fi g . 3. 03 -2 

You ha ve t h ree ways to ar riv e a t t he ene r gy dis s i p ati on : 

( 3. 03: 1.1) 

(3 . 0 3 : 1 . 2) 

( 3. 03 :1.3) 

.aE 
dt 

dE 
dt 

dE 
dt 

= 

= 

= 

Al l thr e e ha ve bee n use d. 

f (RM + R5)dt 
To t a l Sea 

Surfac e 

f R dL 
a 

Entranc e s to 
Sha llo w Se as 

l R, at 
.::> 

Ar ea of 
Sha llow Seas 

Le t t h e obse rv ed var ia tion o f t he M
2

-t i de abo ut mea n sea -l eve l 

b e appr oxi mated by the s in uso id, 

T:-:en , 1,:i th ri,., t:-ie pot en ti a l fu n ctic n for tr.e moor. , 

(3 . 03 : 2 . 1) 

Si ~i lar l y fo r the s 2- ti de 



(3 . 0 3 :2.2) 

· .. .-]·Jere the b ' s are ampl it ude factors, 

2:; 2 ;i 2ri 27' 
= bl ' = 0.9C8 = 

r::, ' 12.~2 "l crs 12 
.·;J 

K is the qe ~eral lunar coef f icie nt, ·'M -

3 c:,.1 [rE] 3 
2 E d rE = 53 .7 cm 

M 

For ~ you can us e equatio n (3 .02: 6) fr om th e Taylor discussion. 

(3.03.3) 

wher e 
u = u cos[ot) 

0 
and < I cos 3 r ot J I> = 

4 

an d you can use y = 0 .0 02 and be pretty safe, G. I . Taylor (19 19 ); Bowden 

and Fai rb air n (1952). 

If we can now produce an expression for the f lux of ene rgy by 

ti dal currents, R , we will hav e al l th e making s fo r equ at ion s (3.03:1. i ) .. 
a 

With u(t) a nd ~p (t) for the ti d al velocity and pr essure depar-

tu re, the flux o f energy across a vertical face of unit ar ea normal to u 

is 6pu . For a oro gres siv e wave 

A is the sur face amplitude and Ei s the wave energy per unit ar ea . For 

s hall o w water, i. e., tid e waves, Vis the gr oup velocity so al l we ' ve 

said he r e i s that the e nerg y flu x is the energy times th e group velocit y. 

If all the ~ave energy crossing the ent ra nce to a shallow sea 

were ab so rbed , th en th i s would be it . Unf or tun a tely , ~ of it is re ­

flected . I f all were re fle ct ed , there would be a stancing wav e and no = --
dissipation. The case li e s somewhere between "p rogressive " and " standing " 

but is usually ~ound to be cl ose r to s tand ing . 

To treat partial re fle ction s et 

6p = pgA co s[2 t) and 
V.?!. 

u = h sin[2{::-~ + ¢)) 



r,l,as e speed , c = \,r:::::C._ 
.,.J, is ~~c~p ~elocity so t~a t 

We can cons i de r that the inc iden t ~ave carries carr ies Ee ergs sec-l crn - 1 

sain to the bay is and v.'e can .fo::.ill equation 

sin[2◊) = 1 - r 2 . Perfec t reflection corresponds tor= 1 an d 2+ = 0 while 

perfect absorption corresponds tor= O and 2¢ = ½rr. 

Let S be t~e surface ar ea of the bay . Then t he avera~e cis-

sipation is 

R 
a 

= ½(l~pgc) J A 2 s in (2¢] ex 
across the 
entrances 

In most cases yo u can use th e shallow-•,,ater approximation, c = lgh, so that 

all you need to know to make thi s work is the tidal amplitude and the rela ­

tive phas e of height a:,d cur ren t ac:::-oss the entr an ces . 

Remark: Again, revert to section 3.02 and G. I . Taylor (1919). 

If, because of friction and the earth's rotat ion c = ,"sh isn ' t good enough , 

you can still ~e t by with a knowledge of th e rn;;,:ni tuces and phases of both 

height and curren t . 

We have gone along \,;i th the assum pti on t hat dis sipa tion on the 

deep-sea bot tom was ne gligible but we had better make some argument for it. 

The phas e speeds we are concerned with are rough ly c = O(oa) = sx101; cm sec- 1 

and th e B-Ti1plitud e s like A = 25 cm. Therefore, u = cA/h = 3 cm sec- 1 at 

most. Swallow (1Sl55) using his neutrally buoyant float fi nds tida l compon­

ents of the order of 1 cm sec- 1 . This ~oald make R around O. OD2 ergs cm- 2 
a~ o 

sec - 1 a:-id - d;::: 10 16 e:!:gs sec - 1 which is completely negligible in com:?ari-

son v.0i t:, the "observed" dissipation--meanin<; "the - en ergy - ir,corne-you-have­

to-g et-rid -o f-if -you -are n' t - going - to-accu...'n ulate -ene rgy; " that amounts to 

abo~t 3x10 19 erg s se c - 1 . 

With the mak ings in ~and let's get to it . Cc~tinental s~el ves 

with oce an depths le ss than 200 met e rs ccver abou t S.~% c~ the eart ~ • s 



s~ r::a ce , ab ou t 2. Sxlo 17 cm . lf ~e cis si pated a ll the tica l ene rgy on ~~e 

s :,e lv es , it woul c. cor.ie t o an a ver age of 114 erg s crn- 2 se c- 1 • If ,-:~ es_i.;a.te 

t:'l is ;:ith 0 . 00 2o< l u 3 1>, we come cov:n to somet hing like :;a cm sec -1 er 

a bou t 0 .75 ).-:t for the average curr en t r equi r ed ov er th e sne lv es . T;;e c :;­

s.::rved c urr e:1ts a·re ro uc;:-,ly of t he r ig }1t orcE:r. 3·ut con' t jump yet . 

i·le ' ve ;:)een through Ta ylo r (19 19) a:id ::o.:n d t ~at hi s res ul '=.s 

look pre tty go od . A second l oo k show s that th e nume ri cal v alu e ceriv e d by 

Taylor fo r t he Ir ish Sea alo ne ac counts fo r about 2% o f the total r e~u ired 

dissi ~~t ion . That ' s pretty big. Per ha ps the s hall ow sea s p l ay a speci al 

rol e. 

Once G. I. Taylor had br oken t he ice it d idn't ta ke any longer 

than usual for everybody else to get into t he swim. J ef frey s (1920) ex ­

te nded the es timate to al l ocea ns pr odu cing l. lx 10 19 ergs se c- 1 which was 

80% of what he neede d to get according to his interpre ta tion of the ast ro­

nomical requirements. 

Remark: But only 34% of what he needed acc or ding to Munk an d Macdona ld. 

Heiskanen (1920) also did the same thing basec on substant ial ly 

th e s ame da ta and, as re vis ed by Lambert (192 8 ), got l.9 xlo 19 erg s se c - 1; 

Both o f these estimates depend heavily on the bottom friction argument, 

eq uat ion ( 3. 03 : 1. 3 ) . Hei ska nen (and Lambe rt) al so ha d a go at th e work 

done by the moon and sun, equation (3 . 03 :1.1) . There was a slight fou l up 

sin ce Heiskanen adde d where sho uld n 't have according to La!"lbert . But, 

asice from tha t, the problem was cons i dered closed. 

Remark: Munk and Macdona ld hav e taken a can op ener to it. 

Table 3 . 03-1, page 244 gives a su mmary of Je ffre ys ' and 

Sei skanen 's re sul ts af ter two ad just.T'flents nave been made: 

(1) !•~ul tiplication by 
3
~ to get r.iean cissipatio n over a tidal cycle 

in line with equation (3 . 03 : 3) . 

(2) A r edu ctio n by a fac ~or of 0 . 51 [J ef ~reys (195~}, pag e 230 ) t o 

allow for the fa ct that spring ti des l,cv e r.a>: i ::rc1,-:i velocities. 

~eiskanen ove rlo oke d t h is corre c tion so that ~i s pub lis~ e c 

values are a~ut double what they sho uld be. 



7·2.;::ile 3. 0 3-1 . E~ergy Dissi~ation in Units of 

Ir .: s h Se a 

North .Sea 

Oth er Seas 

J:l.siatic Waters 

Yellow Sea 

Malacca Strait 

Other seas 

North A.-nerican Waters 

Northwest ~assage 

Bay of Fundy* 

Other Seas 

South F_'l'lerican Waters 

Austra lian Waters 

African Waters 

J:l.rctic Waters 

Be ring Sea 

Total:Spring Tide 

Total x 0 .51 

.Jef f reys 

0 . 0 6 

0 . 11 

0 . 0 7 

0.24 

0.11 

0.11 

0.01 

0.23 

0.16 

0.04 

0. 20 

1.50 

2.17 

1.1 

1 q 
10 · ~ erss 

0 . 84 

0 . 23 

0.16 

0.43 

0.18 

0.73 

0.91 

0.04 

o. 30 

0.34 

0. 40 

0.34 

0.08 

0.13 

3.60 

1. 9 

* The lc.rgest kn own tides 2.re in the Bay of Fur ,dy but tr:e dis­

sipation t he re i s relatively small . A new calculatio n by Mc­

Lellan (1958) gives o.021x10 19 ergs sec - 1 by t he flux me~ho~ , 

0 . 002p< lu 3 [> ), as compared to Je:freys' O.C·4 E:.,,c P.e.:.skanens' 

0. OS . [from Munk and Macdo~ald (19 60 ) 



Now- - h ow does this stack up? One-third to one-half of Ee is­

kanen' s total dissipati ,--n occurs al o;~g the o,:::e n c o astlines of c o nti:-. e :-,ts. 

J effr e ys doesn't even consider t h is as a possibility . Munk and Mac~0 nald 

think t hat Eeiskan e n i s generally t o o large . As an ex~~ p le th e y cite t~e 

r -2sion :r am t r:e ;,,outh of th e Gulf o f Califor:-, i a t o Va r;c ouv E:r Island -_,,;; ere 

Ee iskanen ass u~e d a tide current of 1.5 kt . MeasuremE:nts of the total 

c ur re n t [Sh ep ard, Rev elle, · and Dietz (1939)] are rarely hig he r than 0 .5 kt . 

Systematic measurement off Los Angeles [Stevenson, Tibby , and Gorsline 

(1956); San Di e go Geologic Diving Consultants (1956} ] showed maxima of 

0 .1 and 0.25 kt during springs in 100 feet of water. In general, you can 

rule out velocities above 0 .5 kt on the open California coast. 

As an example of a place where Heiskanen seems to be on, con­

sider Patagonia. The shelf is about 500 km wide and about 2000 k~ long. 

The tidal amplitudes decrease from 12 feet at 50° South to 1 foot at 

37° South. "For mula (3.03:4) suggests that a :;-r,axi;num •Jelocity of 10 2 cm sec- 1 

over the shelf might not be too far out. Measurements taken by the Argentine 

Hydrographic Service show .velocities varying from 2.5 kt in the Falkland 

Passage to l kt off the Rio de la Plata which is in good agreement. The 

corresponding dissipation is about 0.2xlo 19 ergs sec - l which matches 

Heiskane n. 

Another estimate ·by the flux method supplied to Munk and · 'i•\ac-

donald by Redfield considers the tide as a v.,ave that enters from the ;>.nt­

arctic between Falkland and Staten Islands and which is attenuated as it 

rolls north over the shelf. With A= 1.5 rn, h = 50 m, and an entrance of 

500 k..'11 one gets l:;pgA 2 /gh x 500 "' 10 18 ergs sec - l which is of the same 

order of magnitude . 

What . about the Bering Sea? It has by far the largest estimate 

entered in Table 3.03-1. In the eastern Bering there is a large shoal area 

roughly 1000 km x 1000 ~'11 with ce?t!;S generally less than 60 meters . 30th 

Heiskanen anc Jeffreys agree t r ,at t!'":is s:,elf is of _?c.rc..;7lO·c1:1t importance as 

a sink for tidal energy. In fact, the who le proble~ g e ts real local along 

ab c ut l1e re. 'I'h ree-quart e rs of t he global dissipation o cc-c1rs in this o n e 

relatively srr.all region according to Jeffreys. 



~c t ua lly , che whole ~ni~g hin~es o n what ; ou elect to use :'o r 

·u en t: ,e s'.,elf . 
0 

Says Je:::freys, " ... it is stat ed that t:,e m;:x imur:1 :::-ate 

c:' ~ater, ~te:re cle ar of the pa sse s be twe en t he hleucian Islands, is usual-

l:.r"·a::.,'..)ut 2½ \r; ots ,•:hen the c:eF tn is less th an 100 :'a1::, o:::-,s." Bot h .3ef::reys 

t :-,e ?ricilof Jeffr eys tak es u = 2~ kt an d ~eis ~a~en uses u = 2 
0 0 

knots. 

The U.S . C. &-G .S . Coast Pilot for Alaska a;-id "Curr ent Tables, 

Pacific Ocean" aren 't very usefu l here but at least nothing they pict~e 

re qui res a great sloshi ng aoout of \•:at er on the Bering sh elf. Forty years 

are vorbei and sti ll there aren ' t any decent measurernents. The ic ebre aker 

NORTP.WIND [U. S.H.O . (1 95 8)) drifted around up there 2.nd found no strong 

tidal currents over tl1e northern part of the shelf east of St. Lawrence 

Island. In the Bering Strait there is a northward curr en t of about 1 }ciot 

but the superposed ti ca l oscillation is only about\ knot. To the so uth 

there have been numerous oceanogra ph ic a ncho r stations but no current 

measurements. 

Rema!'."k: 

However, there was nev er any eviden c"e of the kind o f st=ain you get on an 

anc ho r line if a 2-knot current is running. The NAUTILUS during its jour­

ney to th e north pole encoun te red none of the discrepancies in navigation 

that would be expe ct ed if a 2-knot cur re nt were present . In short, even 

th ough there ar e no meas urem ent s , 2 knots looks exc essive and Munk and 

l•!acconald think 1 knct, as an absolute !:>lithering upper limit, is the most 

that should be allowed . 

Si nce the depenc.ence on u is in cube, the reduction in u f rom 
0 0 

2 to 1 bring s the dissipation do~~ by an orde r of mag nitude and the Bering 

Sea i sn't anything special at all. 

The "data" fo r this a:::-gu:nent aren't ex actly the high ~uality 

kind cf thing one li kes to have . For tuna te ly, one can se~ at the dissipa-

tion !::Y the ac-_·ec-:ion methoc., e':::uation (3 . 03 : 1 . 2) , t~i s also i~ticates 

t~at Hei sk anen's and J ef freys' esti ~ates a:re ~igh by an ore.er of ~afnitu~e. 



er:1.:-:iost boundc:.ry of the Beri ng shelf, high v:ater and ma>:ir;-1t: ... -n no rt];,- ,.::_::.:d Cl.:r­

rE;-,t occur at cbou'.: the same ti;ne ;..1hich corresponds to a ;rogressive ·,:ave 

tr~veling north onto t ~e shelf. Deduction: where it must be j ust about all 

Semidiurnal amplitudes are about 25 cm at the Aleutians and 

decrease northward, Bristol Eay exc ep ted. 

Item: There is no possibility of a large stan~ing wave with nodes 

at the southern boundary of the shelf. 

Numbers: Set c = •~, h = 60m, A= 25 cm. 

This gives us an RS of 
a 

1000 .km dE 
dt 

= R S 
a 

= ½pgc J A 2dx = 0.8xlo 17 ergs sec- 1 

0 

or only about 1% of the Munk and Macdonald reduced estimate. 

The formula used for c iwplies that u = cA/h = 20 cm sec- 1 = 
0 

0.4 kt; way low from the u used by Heiskanen or Jeffreys. Even if you 
0 

assu.-ne that the whole Bering Sea rises synchronously, the rec;_uired inflow, 

neglecting island obstructions, can hardly be more than u
0 

= (oMAL2)/{hL} 

where L is the surface area and h the depth just north of the Aleutians. 

With L = 1000 km this ' gives u = 60 cm sec- 1 and - <iE/dt = 2.4xlol 7 ergs 
0 

We have one more shot in the locker. We can estimate - dE/dt 

from the work done by the moon and sun. Grab yourself some co-tidal charts 

and read off the amplitudes, A(A, 6), and phases, ¢(A, 6). ), is the east 

longitude and 6 is the co-latituce. Get Ras a function of A and 6 from 

equations (3.03:2.i) and get t he dissipation by integrating over all the 

oceans accordinq to (3.03:l.l). 

This program has its difficulties. There are larg~ variabilities 

in p~ase associated with arnphidromic points and positive and negative con­

tributions to - dE/dt are not very ~i dely separated. Even worse, t h e data 

en ~hich the co-tidal charts are based are pretty vague over wide expa~ses 

of t~e open sea. Heiskanen had a crack at it with co- ti dal charts ~ublished 



by von Ste r necK i n 1920 . Grove s a;;a i·'.unk ( 19SS ) cic. a ccup l e mor e la;,s 

u si ~g Di e tric h 's (19 44 ) c ompilat io n bas ed on abo u t t ~~ee times as ma~y 

tide statio~s a s van Sterneck ha d. T~e re wasn't much i ~?rovernen t, really. 

The big l1ole is in the Sout hern Oc e an a n d Dietri ch c.id n 't h a ve stations 

!,:aybe t i,e I GY c.ata and the I nc.ian Oc ec.n catc. \•:ill b ring in so'.":le 

·,.,o!'.'th·"',hil e i n formation if a nyo ne ever g-ets arou nd to doi n g sorne­

t hi ng \-:i th it. 

Th e results are shown in Table 3.03-2. J\.11 l'~unk aJ:d !-'.;;.cdor,ald will s2y 

Table 3.03-2. Work Done by the Tidal Forces of the Moon and Sun 

Ocea:. 

Pacific 

on the Oceans. 

Heiskanen I 
Lu nar Semi 

3.8 

-2.- 5 

Semi 

2.8 

-1. 9 

Lunar 

Diur 

0.6 

-0.0 

Total 1.3 0.9 0.6 ----------- ---------
Atlantic 1.8 2.1 0.1 

-1. 2 -1.1 -0.1 

Total 

3.4 

-1. 9 

1.5 

2.2 

-1. 2 

;:!;~:= = = =_t: = = f ~t:= =_:::--~~! 
- o. 2 - - T -o-: 6 - - o. 1 -- - a. 7 

------+--
1 2.5 o., I 

Total 

Total 2.1 3.2 

Solar 

Semi I Diur 

0.7 

-0.5 

0.9 

-0.0 

Total 

0.9 

-0.5 

~·otal 

4.3 

-2. 4 
------------------:~:--~:! --;:-t-;:-

-0.2 -0.0 -0.2 I -1.2 

, ~tt\H =~t:e::t 
0. 2 1 0.1 I- - 0:-3- I 1. 0 

o.7 I o.3 I 1.0 I 4.2 

[from Munk and .•1acconal d ( 196 0) ) 

is II that the totals may be far smaller than we obtained, or twice as 

large." 

Ren~rk : Ey this ti me it is a matter for co~gr at ulaticn that the totals 

for ea ch ocean are, at l e ast, pos itive, i . e., no ocean is actual­

ly accing energy to the t ide . 

Fo r the lunar terms (Ast~ ono~i cal I~put) 



For trie s o l ar terms 

t o e :-:r,e ct. II 

(As tr ono~ i cal Input) 

0 .6 x10 19 e r~s s ec- 1 

They ne x t ca lcu lat e t he q- l o f t he oc ea ns. q- i i s th e sp e c if ic 

di ss ipa tion fu ~ction defined by 

It is the dimensionless measure of th e ra te at which energy is dissipat ed 

in a vibrating sy st em . 

is the en ergy dis si pat ed ov er a co mplet e cycl e and Eis the peak energy 

stored in th e sys te m during a cycle . You 'll find q-l particul ar ly useful 

in di s cussions of ob s ervational dat a since it doe s not depend on the de­

tails of the mechanism which cau s es the di s sipation . 

As id e from local res o nanc es, the to tal energy con tained in the 

oc ean tid e at any moment ca n't be dif fer en t fro m th e total en ergy contain­

ed in the equilib ri um t ide by more th an g- l_ The en er gy of the lun ar 

equilibrium tid e is 

pg f [nqM] 2 dI: = pg K 2b 2 .!_ 2na 2 
_ M M 2 

1T 

J (~s in 2 [6)) 2 s in( S]d6 = Bx10 23 ergs . 
0 

Sinc e the ea rth isn' t en tir ely covered by wa te r, use sx10 23 e rg s . 

From astronomical data one has 

2.7x10 19 
- -- - - ----- = 
(l. 4Xl 0- 4 ) (S xlo 2 3 ) 2. 6 = 2 .4 

f o r the relative d issi pa tio n pe r cycle. What this says is that o nce ev ery 

24/2 . 4 = 10 hour s all o f th e tidal e~er q y is dissi pated! 

If we take Jeffreys' est ima te f or th e diss ip ation on the Sering 

s ea s helf, o .s 1x1 .s x10 19 = 0 . 77x1 0 19 ergs sec- 1 , t hen o nc e e very 18 ~ou rs 



250 

~11 cf the c.l c-:,a l ti c al 1:=;-ier~ :J !':l'JS t fi nd i ts \.:?..y int o t :-,e Serine; ~-:.a . T:1e 

r at e of e;-ie:gy ci ss ipat ion derived by Jeff reys for the Bering Sea is re­

~arkable enoush by itself . The conc entra ti on of so much ener~y in cn e area 

is ·e ven mere r c~arkable to the poi nt cf being ent irely incredible . 

in a 1958 fc.J :,t:r . 

Su;_:.pose the oc ean tice cap1=roximates the equiliorium co:-.figura­

tion; which, of cour se , it doesn't. Then the maxi:m.:m dissipation =.,·ould 

occur ~ith 2¢ = ~n in equa tion (3.03 :1 . 2). One gets 11. 2x10 19 er gs sec- 1 

which is a bit more than the 2.7 x10 19 ergs sec- 1 re~uired by as tr c~cmical 

considerations . If you sti ck with th e equilibrium configuration b..it put 

a phase lag of 2¢ = 14° on it, th en you pro duce exactly the required dis ­

sipation. It beg ins to look as though we should not hav e assumed tha t the 

dissipation wi t hin the bulk of the ocean is negligible . 

A little independent ev iden ce would be useful. A related 

problem is that of 'tsunamis . Tsun a.-nis, like that foll owing the Karr,tschatka 

earthquake of 4 November 19 52 , r eleas e energy into t he Pacific of the same 

order as the. tide . The waves are long and th eir bottom curr en ts shoul d be 

compara ble to tho se for the tides. As it turns ou t, most of the energy of 

a tsuna'Tli is dissipated in one cay although t he act i vity ca n :remain above 

background for a week or so . hs far as this goes , it doesn 't conflict 

with the rate of tidal dissipation. 

Well- - where co we sta nd? Astronomical observations call for 

a tid al dissipation of 3x10 19 er gs se c- 1 . Tabl e 3 . 03-2 sho ws that there 

is no s~eat in getting this much enersy into the ocean . So far as the how 

and \.:here of the di ssip ati on goes , \•:e are st ari ng a ciler:-:.>na right in the 

eyeball . If >h.:nk and :✓.acconalc are ri ght about t:.,e Beri r,g Sea, 

Remark: I, perso nall y , thi nk th ey are. 

then the dissi pation in the sh al low seas is , at ~ost, 10 19 erg s sec- 1 • And 

how do ~e get ric of the other 2x10! 9 ergs sec-!? Of co~rse , M~~k an d 

Macconalc ~a! hav e overlooked r esions of concen tratec d issi pa~ io~ t~t , on 

prin ci p le, con ce ntrated di ssipation has a sort of s~y bl ~~ oin k cclor to 



r eal ly i:e ed is so:r,e 9 :::c-ce ss 

that produces di s s i pat ion more ev e nly. Munk a nd Macd c~ald s ugse s t , as t~ e 

on ly noti on t ~at has hi t th em, that perh aps t he bulk o f t j e di s sip at ic ~ is 

as soc i2. te c 1,-:i th i nter nc.l (barocli::- .i c) t i des. :ST :'!;ea s".lre::1ents , •,,·here e·.,e!:' 

~a; ;~n , r evea l f l ~c tu at ions i n the isot herms ~hich ~av e t idal fre ~~e~cie s. 

Ty;;ic 2.l :-12- a:..plitu des a:r-e arou nd 10 :.,1::ter s 1-;hi ch is one o r t wo orcers of 

magn i tu ce l ar c;e r t han tr ,e equ i l ib ri u...1 tide . \~or kin g t he ot her way is tr-,e 

densi ty difference o f around 10- 3 tines th at at the surfac e so t ha t the 

work done by the moon and the su n on interna l ti des is pr etty sma ll. 

We hav e no satisfactor y theory o f internal tides . For fre e 

internal ~av e s, neglecting th e ear th ' s rotation, you have phase speeds of 

rou gh ly 20 km hr- 1 in the open sea. For comparison, t he spe ed of th e 

equ i l i ~rium tidal bulg e is ar ound 1500 km hr - 1 • It's a pr e tty imp re ss ive 

mi smatch . Defant (1 95 0) sugg es t ed that it co uld be reconc il ed by al low ­

ing for the .ef fect of ro tat ion on th e phase velocity and that th e re su lt­

ing cou pl ing could lead to a large i nte rnal res ponse to the tide-senerat -

.. ing forc e s . Rec en t obs erva t ions by Ried (19 56) make t his look unl ik ely 

as a way out. Rie d me asured s imul t aneously at two poin ts 100 kilometers 

apart and found no obvious phas e relations . I f t he internal tid es we re 

du e to th e t i de- gener ati ng f orc es, then t he phases at the t wo st at ions 

should have been virtually identical . 

Chip Cox (in a personal or "be er - hall " cormnunication to Munk) 

sug ge sts th a t in regions o f var ia bl e dep t h the in t ern al (ba roc li ni c) a nd 

ex ter nal (barotropic) modes are no t in dependent a nd that a flux of energy 

must take plac e f ro m eac h mode to all th e others . More sp ecific a lly, the 

cegree of coup l ing depends on the exten t to which a spectru.-n of th e se a­

bottom t opog ra ph~' contains "power" at th e l ocal ....-ave l eng th of the tides. 

The re sul ts o f Rie d ( 195 6) a re cons is te nt wi th the hy po the s is th a t intern­

al tides a re senerated a ll al ong th e coa s t line with t~e degre~ of con­

version dep en ding on l oc al botto~ t op og rap hy . Cox es t i~a tes that the 

conversion from su rf ac e to internal moce s may amount to 5 ergs cm- 2 sec- 1 

f o r the l\or t h P,tla;.tic de e9 waters . T:1ere rn2y also !:-e a~ p::.-ecia!:>l e 

re con ve rs ion to surf ac e modes so t~at ~er haps 5 Ergs c~- 2 ~~c - 1 is sane 
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s c ~ of a n u ;pe r lim i t . At tr:is :::ate you wculd :':ave a s l oba l c o :we::::sion 

, a 1 1 . sx1 0 · ~ er gs sec - . 

At least none of th i s is inconsistent with ~he notio n t~at the 

e ~erg y o f sur f a c e tid e s i s conve r ted to internal wave ·mo ti o n a nd t~en cis ­

If th is is so, t~en our a;;ea l 

~o t s u~a~i s i s no t e xactly perti nen t as it stands . ?er i,a r:;s one o f ~-ou 

oc: ,; ht to try to do somethi ng abcut ti de s in your m· .'11 r e s0arch . The 

d isser tation that Dr. E . J . Katz wr ote at The Hopkins dealing with ·t ~e 

spectra of bottom to p ogra pn y and his (1 962) and (1963) papers sho u ld have 

some relevance. 

3. 04 . Redfield's Re-f l eeted Wave with Damping . 

Redfield (19~0) created a model along the same lines as the incident wave/ 

reflected wave of both Taylor and Munk and Macdonald. It differs in sub-

jecting the waves to frictional damping and looking for the details of the 

motion . He begins by pointing out that, in most natural cases, the princi-

pal disagreements with the standing wave t idal co-oscillation model are: 

(1) High water does not occur simultaneously so that the wave can 

not be strictly standing. 

( 2) The no dal "line'' is usually present only as a region of rela-

tively small tidal range. 

These discrepancies can be taken into acco u nt by consider i ng th~ tide as 

a surn of an incident and a reflected \,ave if the wave is subject to f ric­

tional c.~.i.ping . 

The pro;:,lem , then, is to cete:r rnine r:s-:.erically the pro;erties 

cf the prima ry a !id reflec te d waves in sue:; a way as to :::o r c e ag:reement 

cal valu e s to the geometry of t he ba y . 



Recfield says of his paper : 
11

3 y e;-:p~ess ing the relations:1ip of t:1e several 2..s!=e ct s of a :!:Efle:c-:.-

ea weave :.n a for n in which -:he wave pe ::: iod is ta: :en as t!"le unit of 

ti:11e and cistance is given in te!..:is of the .?:"elated pahse ch a nges , 

it is p c ss~b l e to e lim ina t e tte pu r ely ~eos r a;~ica l ci~ensions a~c 

-..o obtain a wJ1olly geni::::al ce sc ription of th e ~i ce • .. ;hich may be 

us ed to indicate how a ny give channel di st or ts the behavior of the 

wave as it adv a nces. 

"In the case of irregular cnannels, in order to justify th e 

a?plication s of r elations decucec for uniform channels, in which 

the change in ph a se of the prirnary and reflected waves and their 

damping is pro p ortional to the di st ance tr av eled an d in which the 

velocity o f the waves is constant, it is necessary to make the 

following assumptions: 

1. That the e ff ec t of irregularities in cross se ct ion i s to 

alter the velocity of the prirnary and reflected waves , i. e ., to dis­

tort the ge ogr ap hical distribution of phase differences . 

2. That damping is proportional to the phase change in the 

wav es rather than to t he distance traveled. 

3 . That .the damping coefficient, a s d ef ined is constant 

along the length of th e channel." 

Let's follow Redfield through and se e what he ' s up to and how 

it comes out. We begin by taking a narrow bay vihich rules out v and we 

al so ignore geostrophic terms. Our origin of coordinates is taken at the 

head of the bay at tha t po in t which may be con s idered the reflecting 

point. The \-;ater motion will be re ctilin ear reversing. 

If no dam9in g were present, we could write 

n
1 

~ A cos[ot - KX) 

f or the primary wave and 

A cos[c:;t + -ex) 

:for t he re f lect ed wa,,,::e wher e o = 2i:/, and K =- 2;r/). . TJ'iei r su.:1 i s a s tand­

i;;g ,-:ave if the c r.a nnel is uniform . r.m,'E:Ver , if \,e as s·..i,-:-,e e:>:pc nentia l 

Cc..,-nping we ::,us~ \•:rit e instea d 



( 3 . C4 : 1) 

( 3 .. 0 4 : 2) n = A ex p{u x } cos [ot + Kx] 
2 

A ~ th e ampli tu de o f each wave a t th e refl ec ting b~ r­

rier, x = 0 

o - the chang e in ph a se pe r uni t ti me 

t - t he time meas~re d from high wa t er at the bar rie r 

when t = 0 

K - the change in ph a se pe r uni t di stan ce with x 

measured from the ba rr ier 

µ - th e da.mpin g coe ffici en t. 

To ge t gener a lity , use the wave perio d 2~ as a uni t of time so that o t then 

expre s ses the phase chan ge curi ng th e la ps e of tim e meas ured fro m h ig h 

water at the barrier . Denote the tru e angle for high wat er at a ny point 

along th e chann e l by otH. Similarly, ot
5 

"ill be th e local time an g le o f 

slack water telative to high water at the barrier . 

For no nu nifo rm cha nn els, the velocity c hange s and K c an not 

be a con s tant. Eowever, we can use Kx as th e phas e diffe ren ce re l ativ e 

to the barr ie r du e to po siti on . Thus , x re pr esen ts the part of a cycl e 

complete:d by the v:ave in pas si ng be tw een any point a rid the bar rier . 

3. 04 . 1 . The Ti me of Hig h 1·:ate r at Any Point . 

The elevation at any ti me a nd place is given by n = n
1 

+ n2 or , 

( 3 . 04 . l: 1) n = A(ex p{ - ~x } cos[ct - Kx ] + e xp {px } cos[ ot + Kx)) 

His~ wat e r means 3n/at = O, 

A( - ex?{- ~x } c s in[~t - KX ) - exp{~x} c sin[c t + ~xl) = 0 , 

(3 . 0 4 . 1 :2.1 ) exp {- ~x } s in[ ct - ~x ] 



or 

( 3 . o.,; . l : 2 . 2 ) 

or 

or 

Therefo:?:"e, 

( 3. 04 .1: 3) 

sin[ot) ----= 
cos[ ot] 

+ cos[ct)sin[ ~xJ ) ~ 0 

+ (e xp{µx} - ex p {- µx})cos[ct)sin[Kx) = 0 

exp{~x} - exp{ - µx} sin[Kx) 
exp{ ~x} + exp{- µx} ccs [Kx] 

tan[ot] = - t anh[~ x)tan [Kx] 

Equation (3.04.1:3) gives the time o f high ~ater at any poin t alon g the 

bay , x, and ·for an y damping coefficient , µ , Fig. 3 . 04.1-1. 
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~o Fi nd che Relati~e 

Use tl1e :-,eis :,t cf high wat e r at t he ~arrier a s a refere nce. 3y t :.e s~;-;-,e 

(3 . 04 . 2 : l) n = 2A( c os[ct]ccs[KX)cosh[ ~x] - si n[ c t ) sin[ ·x ] sinh[;xJ) 

From ( 3 . 04 . 1 : 3) ,.:e have 

There:fo re, 

sin f ot .. ) = 
ti 

tanh[J.Jx]tan[Kx] 

1 

(1 + tanh 2 [µx]tan 2 [ Kx ])½ 

Therefore , s ubs tit u~i ng in (2.04.2:1) gives 

tonh ( fL x) ton(KX ~ 

n = 2A cos[Kx)cosh[µx) + tanh[µx)tan[Kx) s in[Kx]sinh[µx) 

{l·+ tanh 2 [µx) tan 2 [Kx])½ (1 + tann 2 [~x)tan2IKx]) ~ 

which reduces to 

At the barrier ~here x = O, n = 2A. 
0 

herefor e, 

( 3. 04. 2: 2) = (½(cos[2i<x] + cosh [ 2)..lx) ) ) ., 

<;i es t:-ie ratio of the height of hic_;h ,ater at a ny place , x, for any c.a.r:ip-

ing coefficient , J..1, to the height of high water at the re:flectin g tarrier, 

Fig. 3 . 04.2 - 1, pag e 257 . 

3.04.3 . ..... o ? inc the T:. .. e of Sle e .· i•:at e r or ... ,, ... :- ... 

Point . 

Appeali~g to ~ave theory ~e ha,e !o r the current 



'257 

2.0 

1.8 I 1.5 
Ir C, 
i..:J ,, 
I-
<t .::t. 
~ 1..::; 
::. 
~ t"'-

.. ~,,~ 

::c ,, 
I- t.2 ~ 
<t 
(/) 

z 
0 1.0 
I- ~ ,,' ' <t 
> ~ ~,, '\ ... w 
..J .8 -'/ w 
LI. ;: 0 
0 .6 
I-
<t 
a:: 

o0 40° 80° 120° 160° 
K x, PHASE DIFFERENCE RELATIV E TO POINT OF REFL EC TION 

Fig. 3. 04 .2-1. Height of High Water as a Function of x andµ. 

[f rom Redfie ld (1950)) 

(3. 04 .3:1) 

( 3 . 04 . 2: 2) 

where 
h _ the water depth 

~ _ tan- 1 (U/K) is t he phase di f fere nc e between the time 

of high water and the ma~:i:n'-"""il cuY::en t fo r a ::-re-
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For x = 0 , u = 0 fo r 2.1 1 t ar,d it is ah:ays " sl 2:.ck 1,·atEc:::-" a.s it s noul c be 

t he reflect.in~ b arr ie r. For any other point , x, s 1ack 

( 3. 04 . 3: 3 ) 

c cs [ct -
·_x 

¢·) - e 

tan[ot + ¢ ] = ta :-i:.-,.[l1x) 
tan [ i<x) 

If a t deno te s t h e time of slack water, s 

(3.04.3:4) ot = tan-1(tanh[~x)) - ¢ 
S tan[ Kx] 

ccs L:t 

at 

+ ¢·) = 0 

Eq~ati on (3.04.3:4) relates t he time of s la ck water to the pha se differ­

enr::e cue to position along the c h annel for any da.':lping coefficient, 

Fig. 3.04.3-1. The maximum current will preceed or follow slack water by 

one-quarter of t h e period, 90 ° or n/ 4. 
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3 . 04 . 4 . 

of h i,;:-i \,·&.te r, t .. e elevaticn o :: :-:ish \,ater , t he ti :::ie of £lack wate r, anc. 

and reflect ed ~aves we al s o need in ~or rnati on on t~e ~:stri~ut ion of 

phase cifferences and on th e campin g . Fig. 3 . 04 . 4-1 c ros s breeds e ~ua -

tio n s (3 . 04 . l : 3) and (3 . 04 .2: 2) , i .e., Figs. 3. 04.1-1 a nd 3 . 04.2-1. 
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~ny clutch of cata giving elevat:o:-:s a~d times o f hi g:1 ~a ~er can be plot-

is po ss i :Jle. 

- .&.: ~ 
C. ..:.. ..:. \.. 

If one is possible , t:-,2:1 "c.he p lot ca n :::.e =a :-:;;ed ov e r to 



~ave in the c hannel . 3y c hanging the sign yo u p ick up t ~e reflec t e d ~ave. 

In the sarae wa y , esuations (3 . 04.1:3) a n6 (3 . 04 .3:4), i .e., 

F ~~s . 3 . b4 .l-l and 3 . 04.3-1, c an be cr o5sb r e d to g ive ?ig. 3 . 04 . 4 - 2 . 
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Red field h as used t hi s model on long Island Sou nd and on the 

3ay of Fundy with good success. The canping coefficient,µ, turned out 

to be about 1. He also gave a whirl to the Juan ce F-uca-Georgia St~aits 

system ~ith eq u al success but found in this case th at~ had to be so~e­

what greater than 1. 



. 20 1 

= I ::.LIO".;Rh P HY 

Asso cia ~i on D'O cia nog raphi e Phys i sue 

(19 39) 5ibliog r a~hy on Tides and Certain Kindred ~att ers. 

?itth Instalment . ?c:b } ication Scie ,,ti fisue :,o . 6 , ,..... 
J.!:e 

Un ~versity, Li verpoo l 5 . 20 ~P -

(1955) Ei bliog r aphy on Tides, 1665-1939. Pub licati on Scientifisue 

No. 1 5 , Geof ys isk In st itu tt , Berge n , Nor v e ge . 6 3 pp . 

(1957) Bibl io gr aph y on Tid es , 1940-1954. Publi cat io n Sc i en ti fi~ ue 

No. 17, Geofysiska Institutet , ~teborg, Su ed e . 63 p p. 

Bowden , K. F . and L . A. Fairbur n 

(19 52 ·) Fur the r o bse rv ati ons of t he tur bule nt fl uc tuatio n s in a 

t i dal curren t. Ph i l . Tra ns . Roy . Soc . A 244(883)335 - 356 . 

Chur c hill , R . V . 

(19 41) Fo ur i e r Seri es and Bound a ry Va lue Pr oblem s. Mc Graw -H il l 

Book Co ., I nc . , Ne w Yor k . 20 6 pp . 

Dar by shir e, J . 

(1962 ) !-h c rose i sms . in The Se a , Vol. 1 , M. N. Hill, (Ed . ) . 

In ters ci ence Publi s hers , New York . P.1?· 7 0 0-7 1'9 . 

Darwin , G. H. 

(1898) The Tides and Ki ndred Phenomen a in the Solar Syst em . 

De::'ant, A. 

Jo h n Murr ay , Lo nd on . Reprinted in 1 9 62 by W. H. Fr eer.i an 

a nd Co ., San F~ancisco . 378 pp . 

(19 5 0) On the o rigi n of int e~ nal tide wa~es in t~e open sea . 

Jo u:?:". !l;ar. Res . ~, :o- 111 . 



(19 58) Eb b and Flow, the Tides of Eart h, ~ir, and ~at e r . 

.:-.n:1 i'l.YX ::-, The Ur,.:. ver si ty c f :-iic h i<:an ?::-e s s . 121 ~~. 

( lSG l ) ?:-.:-•si ca l O::.:Ea:-iog:::-a?hY, \ 'o l. II. ?er<_:a:nc:--, Pre ss , Ne,, \'o !:J.::. 

pr-,. 109 - 570 

Dietr i ch , G. 

( 194 4) Die Gezei ten des 1-:el tme er es as geo<:r ap hisch e Ersc he i:rnn 9. 

Z. Ges . 2rd kunde . 

(1963) General Ocean ogr ap hy, an Introduct ion. Interscience 

Publish e rs, New Yor k . pp . 39 4-4 56 . . 

Dood son, A. T. a nd H. D. Warburg 

(194 1) Admiralty Ma nua l of Tid es. Her Maje sty's Stati onery Of f ice , 

Londo n. 270 pp . 

Dronke rs, J. J . 

(1964) Tida l Computation s in Rivers and Coa st al Waters . North ­

Hol lan d Publishin g Co ., Amsterdam. 518 pp . 

Groen , P . and G. w. Grove s 

(1962) Surg es . i n The Se a , Vol. 1 , M. N. Hill (Ed.). 

Interscience Pu~l i shers, New York. pp 764 -8 01. 

1-iansen, W. 

(1 962 ) Tid es . in The Sea , Vol. 1 , M. N. Hill (Ed . ) . 

Inte r scien ce Publish ers , l~ew York. pp. 76 4- SOl. 

Harris, R. A. 

(!69 7) ~a nual of ?i~ e s, Pa~~ I . ~ .S . C. &G. S . Re ~., ~~ ? - B, 

U.S. Gov 't ?rinting Cff i ce, Washinst on, ~ - :. 



(1297) ~an ual of Tides, Part II. U.S.C. &G.S. Rep., App. 9, 

U. S. Gov't Printing Office , Washington , D . C. 

~aiual of Ti des, U.S.C. &G. S. 7 , U . S . Gov'~ 

Printing Office , Was h i ~gton, D. C. 

(19 04) Manual of Tides, I VB. U.S . C.&G.S. Rep., App. 5, U.S. Gov't 

Printing Office, 1-:as:riington, D. C. 

Heiskanen, W. 

(1921) Uber den Einfluss der Gezeiten auf der sakulare Ac celera­

tion des ~ondes. Ann. Acad . Sci. Fennicae A,~, p. 1. 

Jeffreys, H; 

(1920) Tical friction in shallow seas. Phil. Trans . Roy. Soc. A 

221, p. 239. 

(1952) The Earth. Cambridge University Press , London. 

Katz , E • . J. 

(1962) Shallow gravity waves over a random bottom. Ph.D. disserta­

tion, The Johns Hopkins University. 75 pp. 

(1962) Initial wave scattering by an inhomogeneous medium and 

its application to shallow water waves. Jour . Geophys. 

Res. 67(12)4713-4719. 

(1963) A statistical model of the oceans' variable depth. 

Deep-Sea Res. 10 , 11 - 16. 



La? 0nc. , E. C. a~c C. S . Cox 

( 1 96 2) I nter nal wav e s . i n ~~e Sea, Vol . l, ~- N. Hi ll (Ed . ) . 

I nte rsci e nce ?~bli sh e rs NEw Yor k . FP · 731-763 . 

(19 28 ) T~e impor tan ce fr om a g~ophysi cal po in t of view o f a 

knowledge of t he tides in the op e n s e a. Eull. 11, S~c . 

d' Oceano ., Con seil I n ternational c.e Recherches , Unicn 

Geocesique et Geo? hysique I nternationales, 52 . 

!'-,armer, H. A. 

(1951) 'I'ic.al Datum Planes . U. S.C.&G.S . Sp . Pub. No. 135. U.S. 

C-ov't Printing Off i ce, l·Jashington , D. C. 142 pp . 

Munk, W. H. 

(1962) Long ocean waves. in The Sea , Vol. 1, M. N. Hill (Ed.). 

Interscience Publishers, New York. pp. 647-663 . 

-------- and G. J . F. Macdona ld 

(1960) The Rotation of the Earth, a Geophysical Discussion . 

Cambridge Univers i ty Press, London . 323 pp. 

Pillsbury, G. E. 

(1956) Tidal Hydraulics. Corps of Enginee r s, U.S. Army . U.S. 

Gov't Printing Office, Washi ngton, D. D. 247 pp. 

Proue.man, J. 

(1954) Dynamical Oceanograp hy. J ohn Wiley & Sons, New York. 

pp . 219-368. 

?<e c.field, A . C . 

?ap . Phys . Oceanogr. ~et., ¼oo c.s Ho le Oce a~ og r . Inst., 

Vc l . XI, :~c . 4 . 



2 65 

:=;.ied, J. 

(1956 ) Observations of internal ti~es in October lSS O. 

Ti:,ms . l'"""T\. Geophys. U:-;ion 37, p. 278 . 

?-<.o ssi tc:~, J . R. 

(1902) LG:-,g-tern vari2-tions in sea-level . in T:-ie Vol. 1, 

M. N. Hill (Ed . ) . 

l?l?· 590-610 . 

Intcrscience Publishers, ~ew York. 

Schureman, P. 

(1941) Manual of Eannonic Analysis and Prediction of Tides . 

U.S . C.&G . S. Sp . Pub . No . 98 . 317 pp . 

(1949) Ti ce and Current Glossary . U.S.C.&G.S . Sp. Pub. No. 228 . 

U.S . Gov ' t Printi ng Office , Wash i ngton, D. C. 40 pp . 

Shepard, F. , R. Revelle, and R. Dietz 

(1939) Ocean-ootto~ curren t s off the California coast. 

Science 89 , p . 488 . 

Ster n eck, R. v . 

(1920) Die Gezeiten der Ozeane . Sits-Ber. Akad . Wiss. (Ila) 

129 , pp. 131 - 150. 

Stevenson, R., R. Ti bby, and D. Gorsline 

(1956) The oceanography of Santa Monica 3ay , California. 

Street, !=1.. 0 . 

Repor t to Hyperion E1:gineers, Inc . by Geology Department 

Unive r sity of Cal i fo r n i a . 

(1917) Dissipation of energy in tides. ?roe. ~oy . Soc. A 93 , p . 3~9 



(1919) T ::_cal frictic n in t:ie I ri sl1 Sec . ?hil . Tra:,s . Roy. Soc . ·"' 

220 , pp . l - 33 . 

l1. S . C . [. G . S. 

(1 950) ~a~ual of ~ i ce ObsErvations . u . s . c . &G. S . Sp . F~b . No . 19 6 . 

U.S . Gov 't P r i nti ng Of fic e , l·Jas ]1ingt•:m , D. C. 92 pp . 

(1950) Manua l of Current Obse rvatio ns . U.S.C. &G. S. Sp . Pub. 

No . 215. U.S. Gov't Printing Office, Was hing ton, D. D. 

87 pp. 

(1 9 52) !•'.anual of Harmonic Constant Reductions. U.S.C.&G.S. Sp. 

Pub . No 260. U. S. Gov't Printing Office, Washington, D. C. 

74 P.?• 



A . 

a cc eler a tion , ve it ic al, 

in a two-lay e red sy stem 

age of th e se~idiurna l tide 

amphicr omic poi nt 

am?h i drom ic reg ion, 

.-., ..... 
• ~ •- I 

in a chann e l, mathematical e xpre ss ion fo r 

analem.rna 

aphelion 

apog ee 

"as tres fi cti f" 

astronomical t i de (See: equilib rium tid e) 

atmospli er ic dis turb a nce, moving, 

int ern al res pon se to 

surf ac e response to 

attraction, on a poin t of earth 

augment i ng f ac tor 

azimuth 

B 

Baz in ' s formula fo r frictional effect in riv er flow 

bot tom ro ugh nes s constant 

C 

calender , 

Gregorian 

Julia n 

Cla ira ut ' s for~ula 

143, 144 

19 1, 19 2 

8 

l c; O · 
- _, J 

15 9 

160, 161 

29 

22, 27 

31 

55 

212 - 214 . 

182 - 188 

18 

98 

44 

218 

218 

30 

3 0 

17 



cons titu e nt , 

larser lu~ar elliptic semidiurnal 

lu na:?:" ceclinational, 

diurnal 

s emidiurnal 

lunar fortnig~tly 

lunar mo!1thly 

luni-solar ceclinationa l, 

diu:?:"nal 

semidiurnal 

principal lu nar semidiurnal 

pr in cipa l solar, 

elliptic semidiurnal 

semi diurnal 

smaller lu nar elli pti c se rnidiurnal 

solar , 

an nua l 

semi -a nnual 

so lar declinatio~al diurnal 

77 

77 

17 

~, 
..) - I ::2 

68 

72 

70 

75 

75 

75 

71 

68 

71 

71 

68 

75 

75 

75 

72 

72 , 75 

70 , 71 

68 

75 

75 

72 

68 



,269 

C (co; ~';:.in u ed ) 

cons ti t u ent (cont i nued) 

N2 G2 

·2N r..q . 2 c _ 

0 1 ,2 

? l 7 5 

Ql 72 

S 75 
a 

S 7 5 sa 
s

2 
71 

T2 71 

A
2 

69 

µ2 69 

v
2 

69 

constituents, 

comparison of sizes 

harmonic 

with nearly equal speed numbers 

continuity, form of equation for a narrow channel 

coordinates, celestial, 

related to terrestrial coordinates 

co-tidal lines 

current day, for a rotary tidal current 

currents, rotating, 

D 

behind an island 

tidal 

day, 

le n gt h of 

:-:iea n sola r 

s id e Ye al 

solar 

76, 77 

66 - 78 

72, 73 

122 

24, 25 

45 - 48 

159 

108 - 110 

129 - 133 

131, 132 

108 - ll0 

28 

5, 28 

29 

~-o 
L. · ' 

28 

28, ~o 
-" ✓ 



:::i (c or. -ci n u ec) 

cEccli:-iation, 

variation in lunar 

Ci.Sta n ce, 

n o 

tra~ersed ty a f l oat durir.g a tical cycle 

diuri~al, 

ineq·uali ties 

F. 

ebb 

ebb current 

ebb ing tic:e (See: ebb) 

eccentricity, 

lunar orbital 

solar orbital 

ecliptic 

e limination 

el lipsoid of revolution 

ellipticity 

energy, tidal, dissipation of, three ways to fir.d 

epoch 

equation of time 

equatorial radius 

eq uilibr ium surface, used as a reference 

equilibrium tide, 

as a reference 

magnitude of 

underlying assumptions 

variations in , with lunar declination 

equinox, 

autu:::nal 

1S, 16, 

25 

32 

22 

1 0 7 

7 

7 

5 

6 

21 

31 

31 

24 

99 

15 

21 

240 

76 

29 

15 

117-119 

56 - 66 

169 

61, 62 

56 , 57 

63 

2-4 

24 



E (c o :,tinu ec. ) 

c ~u i ~c x e s, prec es sion of 

aq u i ~oc ti a l poin ts 

eqti i no c t ial s yzy gies 

;: 

fall (.See ; ei::b } 

falling tide (Se e; ebb) 

. ~ ·-, L. I .... 

26 

24 

8 

flood S · 

flood current 6 

flooding tide (See : flood) 

force, 

centrifugal 

Coriolis, 

repr e sented by the half-pendulum day 

rotation rate for 

forced wave, 

internal , 

in a closed basin 

with horizontal crests 

surface, 

from a moving atmospheric disturbance 

in a closed basin, 

applied to Lake Baikal 

shallo w- water constituents 

in a nar r ow canal along a p arallel of latitude, 

ap p l ied to the Antarctic a l ong 60°S 

in a nar r ow ocean bounded by two meridians, 

ap p li e d to t he Rea Sea 

forced waves, eq uations for 

19 , 20 

127, 128 

28 

210- 212 

208 - 210 

182 - 188 

172, 173 

179 

179-182 

113 - 120 

1 20 

168 - 172 

172 

16 7 , 168 



(co :·. t.i nueci ) 

forces , 

ter restrial, pe rma nen t 

c --::r;,~-:-,cn cocfi icien t 

citirnal ter;:i s 

eq uations fo r, in c.p.!_:,roximate fo::.-m for application 

geod etic coefficient 

long-per i od terms 

response to 

semidiurnal terms 

free wave in a narrow canal along a parallel, 

on a nonrotating earth 

on a rotating earth 

f riction , equation for 

frictio nal dissipation, of tidal en ergy in t he ocean 

frictional e~fect, 

from Bazin's formula for river flow 

on tides in the Irish Sea 

G 

srav i tation, 

for a solid sphere 

general law of 

gravitational tide 

gravity 

H 

half-pencul'UJT'i cay 

h alf-t ic e lev el 

(See: equil i briu~ tide) 

17 

1 , 34 - 55 

52 

so - 52 

50 

52 

52 

so 
167 - 188 

50 

120 - 124 

120-124 

215 - 217 

235 - 252 

218 

217 - 235 

10, 15 

15 

10 

16 

127, 128 

6 

8 



E (c o;-:tinued) 

CCiil;_JOU!)d 

·c c~E ':an ts 

~~itis h hcmira lty method 

st eps in t:1e "iceal" method 

U .S.C.&G.S. method 

Eelrnert's fo rmula 

hi gh tide (See: high water) 

high water, 

mark 

slack 

higher high water 

hi sn er low h'at er 

hour circle 

hydraulic cu rrents 

I 

inclinatio n, 

earth's axis to orbital plane 

·2 7 3 

moon ' s orbi ta l plane to earth's orbital plane 

inertial currents, as a solution to Poincar~'s wave 

infering constants 

internal K~lvin waves 

internal tides in a closed basin 

internal waves with horizontal crests 

K 

67 

7c 

53 

93 - 9 5 

53, 85 - 100 

17 

5 

8 

5 

7 

7 

25 

110 - 112 

23 

31 

139, 140 

99 

205, 206 

210 - 212 

203, 204 

Kelvin's wave in a narrow can al along a parallel of latitude 124-133, 136 

Ker-:pler 's law 22, 23 

k:. :-.stic t:;eo:::-y o= tides (Se e : e<=c·'"il i:::>::.·iU;-n tide) 



L 

latituce, cel es tial 

c r,l e::;tial 

lunar, equation for 

loops 

low water 

lo· .. , v:a ter slack 

lower high water 

lower low water 

low tic.e 

luni-solar 

(See: low water) 

M 

mean, 

daily level 

monthly level 

sea level 

yearly level 

Merian's fornula, 

applications of 

mixed tides 

month, 

ano:-nalistic 

lunar 

POdical 

siCe!"eal 

sy:-iocical 

t1-ODic al 

~oticr., com?on ent equctions c::, ::o!.~ :~i ct io:1less f l ·..::.c c::d a 
rctating earth 

8 

25 

22 

27 

25 

54, 69 

157 

5 

5 

7 

7 

71 

6 

6 

6 

6 

146 

147 

7 

33 

27 

32, 33 

32 

32 

32 

121 



(See : neap tide) 

114, llS, HG 

8, 

:,0-; :i.e ct cf a l l C•c:"l esti2.l boc:ies e ):C<=?t. the s u n 2.,.d 7:1cc:1 :er tice 20, 21 

2.scending 

descending 

noce factor 

nodes, lunar, 

regression of 

0 

opposition 

orbit, lunar 

oscillation , 

forced 

free 

(See also: forced wave, tide) 

(See a l so: free wave) 

overtides , 

functional oependence on depth of heights of successive 

p 

parallax, 

lunar 

solar 

pe:c-igee 

peri:1elion 

phases, lunar 

Pc.:.ncare ,.._,ave, 

adjustments for a coastline 

pclar r2.Cius 

76, 

32, 

30, 

22, 

33, 

32 

32 

77 

32 

32 

34 

31 

114 . 

114 

Bl 

182 

19 

19 

19 

31 

27 

34 

133 - 141 

140 - 141 



P (conti r:·.:12d) 

o : grav it y 

o = t~e tiCe se ~erati ng forc e s 

Q 

quadrature 

R 

ranges, tidal, extre~e 

57 - 60 

57 

8, 33 I 

60 

8 

9 

records, truncated, difficulties with, for long - periods 

relative motion, 

98 - 100 

earth - moon 

earth-moon - sun , 

geoceritric view 

heliocentric view 

earth-sun, 

geocentric view 

heliocentri c view 

resonance, selective 

revolution 

right ascension 

rise (See: flood) 

rising tide 

rotation 

s 

(See : flood) 

sa::i_;:,ling rates 

seiches, 

across a uniform channel 

in a broad la~ ·.e 

30 I 31 

30, 32 

32 

31 

22 - 24 

22, ? ~ ~:, 

65, 66 

21 

25 

21 

93 

3 , H2-151, l6 1-167, 192 - 203 

165 - 167 

16:'.. - 163 



::e icr.es, (co:-iti nue c.) 

i:1 a :;arrow lake 

•i:1 a narrow rectangular basin 

across a un i form ch a nn e l 

i n a n2.r row lake 

polynodal 

transverse 

uninocal 

energy of 

semidiurnal 

. L I I 

shallow-water constitue n ts in a closed basin 

shallow - wa ter tides, 

amplitude relat i ons 

for progressive waves 

for standing waves 

sidereal 

sill, mathematical model of 

slack 

slack water, duration of 

solar tide 

solstice, 

su mmer 

winter 

solstices 

s pee d number 

spheriod, 

Clark 

of revol~t ion, International 

sprin g tide 

spring s (See : sp ri ng t ide) 

1 42 - lSl 

144 - 147 

i 92 - 20 ::, 

199 - - "< L.v ... 

1S2 - 198 

149 , 150 

149 

149 

150, 151 

6 

179 - 182 

78 - 84 

8 3 

81, 82 

82 

28 

206, 207 

5 

108 

8 

24 

24 

24 

66 

16 

16 

8, 33 



( co:-itinue c:) 

co~ ?ensation fo r 

·=c~ ~ea ding tid e r eco rds 

str en gth, 

of ebb 

of flood 

syn od ic pe riod 

syzygy 

T 

tidal co- oscillation , 

ap plications 

computed for the·Red Sea 

ge ostrophic eff ects on 

in a narrqw gulf 

in a narrow non -re ctangular 

in a narrow 

re son ance 

ti da l current 

rectangula r 

ti da l current curve , 

cl ass if icati on of 

tidal curren ts, 

fo r a pro gr essiv e wav e 

for a standing Kave 

i n con s trict ed waters 

in the op en se a, 

re= er enc e s yste~ =or 

gulf 

gulf 

rot a ry with a super inp osed curr e:-,c:. 

s ~pe rim posec e n a cur ~e~t 

';;7 , 96 

95 - 0'"' ~o 

1 :. 7 

196, 20 2 

104 

104 

86 , 87 

8 

152 - 161 

154, 155 

154 

15 8 - 1 61 

1 52 - 156 

153, 154 

1 52, 153 

153 

l 

104 - 106 

107 

100 - 112 

100-102 

102 / 103 

103 - 105 

1 08 - 110 

110 

110 

lOS - l07 



T (cor,-t.ir,uec) 

t i da l c ur ve 

ti C.c.l C:yna.rnics 

tidal rcnge 

( :: -2e : ts un amis ) 

tide , 

definition of 

o.irect 

earth 

i n ternal, 

from a submarine barrier 

inverted 

meteorological 

observations of 

prediction of 

tide range, unequal across a channel 

tides (See also: forced ~aves) 

two fairly well established facts aoout 

time, civil 

transit, 

lower 

upper 

tsunamis 

two-layered system, equations for 

u 

uni versal gravitational constant 

5 

2, 113 - 2 14 

5 

1 

116, 119 

3 

208 - 212 

206, 207 

116, 119 

3 

2 

2 

123, 124 

113, 114 

29 

28 

28 

3 

189 - 192 

15 



-~~i ction al ly ~a n;e d a nd re f le c~ e~ in a na r row gul f 

: 24 - 131, 

wc.ter response , in t er, . .:a.l, t o a rnov .:.ng rJ~0ssu r e d is t.·..lr:::a nc e 

y 

ye ar, 

z 

ano:-:ialistic 

s id e real 

tropi c al 

zodiac 
lllllll~lll~l~~ll~~iri11~[l~~ij[1l~ll~lll~IIIIII 

3 1794 030435011 

DATE DUE 

78 - 2 0 

- -~ L ~' _ .. - 26 0 

1 27 , 1 28 

2 C3 - 207 

2:C8 - 2 14 

27 - 3 0 

3 0 

3 0 

29, 30 

26, 27 




	tides, steiches, and long waves
	tides, steiches, and long waves-1



