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Alëna Aksënova
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Abstract of the Dissertation

Tool-assisted induction of subregular languages and mappings

by

Alëna Aksënova

Doctor of Philosophy

in

Linguistics

Stony Brook University

2020

The last decade was very fruitful in the field of subregular research. New

classes of subregular languages and mappings were uncovered for modeling

natural language phenomena, and new learning algorithms were developed for

these classes. The subregular approach has been successfully applied to

phonotactics (Heinz, 2010a), rewrite processes in phonology and morphology

(Chandlee, 2014), and even syntactic constraints over tree structures (Graf, 2018b).

However, the rapid pace of the theoretical research has not been matched when it

comes to engineering considerations. Many of the proposed learning algorithms

have not been implemented yet, and as a result, their performance on concrete

data sets is not known.

In my dissertation, I implement and experiment with some of the learners

available for subregular languages and mappings. I test these learners on data

that is modeled after linguistic phenomena such as word-final devoicing and
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various types of harmony systems. The code for these evaluations is available as

part of my Python package SigmaPie " (Aksënova, 2020b).

The findings of my thesis allow linguists and formal language theorists to

assess possible applications of subregular techniques and approaches, in

particular typology, cognitive science, and natural language processing.
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There is a single light of science, and

to brighten it anywhere is to brighten it everywhere.

— Isaac Asimov

v



Contents

List of Figures xi

List of Tables xiv

Acknowledgements xix

1 Introduction 1

1.1 Subregular linguistics and learning . . . . . . . . . . . . . . . . . . . . 2

1.2 Linguistic motivation behind the subregular approach . . . . . . . . . 5

1.3 Main insights and structure of the dissertation . . . . . . . . . . . . . 7

2 Background 11

2.1 Modeling well-formedness conditions . . . . . . . . . . . . . . . . . . 12

2.1.1 Regular nature of natural language patterns . . . . . . . . . . 13

2.1.2 Subregular languages and their linguistic importance . . . . . 17

2.1.3 Local restrictions as SL languages . . . . . . . . . . . . . . . . 21

2.1.4 Long distance restrictions as SP languages . . . . . . . . . . . 28

2.1.5 Long-distant dependencies with blocking as TSL languages . 34

2.1.6 Multiple long-distant dependencies with blocking as MTSL

languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.7 Unattested patterns . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.8 Models of well-formedness conditions: summary . . . . . . . 45

vi



2.2 Modeling transformations . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Formalizing transformations . . . . . . . . . . . . . . . . . . . 46

2.2.2 Subsequential mappings . . . . . . . . . . . . . . . . . . . . . . 50

2.2.3 Left and right subsequential mappings . . . . . . . . . . . . . 54

2.2.4 ISL and OSL mappings . . . . . . . . . . . . . . . . . . . . . . 56

2.2.5 Models of transformations: summary . . . . . . . . . . . . . . 63

2.3 Learning grammars from data . . . . . . . . . . . . . . . . . . . . . . . 63

2.4 Aspects of practical applications . . . . . . . . . . . . . . . . . . . . . 66

3 Learning languages 69

3.1 The experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Experimental pipeline . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2 Natural languages . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.3 Artificial languages . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.4 Target patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Strictly local models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.1 SL learning algorithm . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.2 Successful experiments . . . . . . . . . . . . . . . . . . . . . . 91

3.2.3 Unsuccessful experiments . . . . . . . . . . . . . . . . . . . . . 95

3.2.4 SL experiments: interim summary . . . . . . . . . . . . . . . . 101

3.3 Strictly piecewise models . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.1 SP learning algorithm . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.2 Successful experiments . . . . . . . . . . . . . . . . . . . . . . 103

3.3.3 Unsuccessful experiments . . . . . . . . . . . . . . . . . . . . . 107

3.3.4 SP experiments: interim summary . . . . . . . . . . . . . . . . 110

3.4 Tier-based strictly local models . . . . . . . . . . . . . . . . . . . . . . 111

3.4.1 TSL learning algorithm . . . . . . . . . . . . . . . . . . . . . . 111

3.4.2 Successful experiments . . . . . . . . . . . . . . . . . . . . . . 113

3.4.3 Unsuccessful experiments . . . . . . . . . . . . . . . . . . . . . 119

vii



3.4.4 TSL experiments: interim summary . . . . . . . . . . . . . . . 122

3.5 Multi-tier strictly local models . . . . . . . . . . . . . . . . . . . . . . . 122

3.5.1 MTSL learning algorithm . . . . . . . . . . . . . . . . . . . . . 123

3.5.2 Successful experiments . . . . . . . . . . . . . . . . . . . . . . 126

3.5.3 Unsuccessful experiments . . . . . . . . . . . . . . . . . . . . . 133

3.5.4 MTSL experiments: interim summary . . . . . . . . . . . . . . 133

3.6 Learning languages: summary . . . . . . . . . . . . . . . . . . . . . . 134

4 Learning mappings 141

4.1 The OSTIA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.1.1 The pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.1.2 The successful example . . . . . . . . . . . . . . . . . . . . . . 146

4.1.3 The unsuccessful example . . . . . . . . . . . . . . . . . . . . . 150

4.2 Learning experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2.2 Target patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.2.3 Experiment 1: word-final devoicing . . . . . . . . . . . . . . . 159

4.2.4 Experiment 2: a single vowel harmony without blocking . . . 162

4.2.5 Experiment 3: a single vowel harmony with blocking . . . . . 162

4.2.6 Experiment 4: several vowel harmonies without blocking . . . 165

4.2.7 Experiment 5: several vowel harmonies with blocking . . . . . 166

4.2.8 Experiment 6: vowel and consonant harmonies without

blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.2.9 Experiment 7: vowel and consonant harmonies with blocking 170

4.2.10 Experiment 8: unbounded tone plateauing . . . . . . . . . . . 171

4.2.11 Experiment 9: a “simple” first-last harmony . . . . . . . . . . 172

4.2.12 Experiment 10: a “complex” first-last harmony . . . . . . . . . 174

4.2.13 Summary of the results . . . . . . . . . . . . . . . . . . . . . . 175

4.3 Beyond OSTIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

viii



4.3.1 Specifying OSTIA . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.3.2 Fixing outputs of some input symbols . . . . . . . . . . . . . . 179

4.3.3 Other transduction learners . . . . . . . . . . . . . . . . . . . . 181

4.3.4 Learning groups of transducers . . . . . . . . . . . . . . . . . . 182

4.4 Learning processes: summary . . . . . . . . . . . . . . . . . . . . . . . 185

5 Conclusion and future work 187

5.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.1.1 SigmaPie " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.1.2 Tool-assisted learning experiments: overview . . . . . . . . . 189

5.1.3 Learning well-formedness conditions . . . . . . . . . . . . . . 192

5.1.4 Learning rewrite rules . . . . . . . . . . . . . . . . . . . . . . . 196

5.1.5 Omitted experiments . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.1 Linguistic applications . . . . . . . . . . . . . . . . . . . . . . . 199

5.2.2 Algorithm development and improvement . . . . . . . . . . . 201

5.2.3 Software development . . . . . . . . . . . . . . . . . . . . . . . 203

Bibliography 205

Appendix A Code of SigmaPie 217

A.1 Grammar class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.2 Strictly local class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.3 Strictly piecewise class . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.4 Tier-based strictly local class . . . . . . . . . . . . . . . . . . . . . . . . 237

A.5 Multi-tier strictly local class . . . . . . . . . . . . . . . . . . . . . . . . 246

A.6 FSM class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A.7 FSM family class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

A.8 FST class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

A.9 OSTIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

ix

https://pypi.org/project/SigmaPie/


A.10 Additional functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.11 Package initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Appendix B Unit tests 288

B.1 Unit test for Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

B.2 Unit test for SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

B.3 Unit test for SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

B.4 Unit test for TSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

B.5 Unit test for MTSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

B.6 Unit test for FSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

B.7 Unit test for OSTIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

x



List of Figures

1.1 Flow of chapters of this dissertation: Introduction, Background,

Learning languages, Learning mappings, and Conclusion. . . . . . . 10

2.1 FSA for Russian compounding. . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The extended Chomsky hierarchy from (Jäger and Rogers, 2012). . . 15
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capturing Karajá vowel harmony in ATR. . . . . . . . . . . . . . . . . 36

2.9 Evaluation of strings to:ro:d, to:ru:le:d, to:re:d and to:ru:lO:s by a TSL

grammar capturing Buryat vowel harmony in ATR and rounding. . . 39

2.10 Evaluation of strings zbruz:a, Zbruz:a, smSazaj and zmSazaj by a MTSL

grammar capturing Imdlawn Tashlhiyt sibilant harmony in voicing

and anteriority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 An example of the FST. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.12 Transducer for Buryat vowel harmony. . . . . . . . . . . . . . . . . . . 49

xi



2.13 Subsequential FST for word-final devoicing. . . . . . . . . . . . . . . . 52

2.14 Right subsequential FST for Tuareg regressive sibilant harmony. . . . 56

2.15 Relationship among left subsequential, right subsequential, OSL,

and ISL functions; adapted and simplified from (Chandlee, 2014). . . 57

2.16 ISL application of the rule a→ b/a a to aaaaa. . . . . . . . . . . . . . 60

2.17 OSL application of the rule a→ b/a a to aaaaa. . . . . . . . . . . . . . 62

2.18 Relationship between a language L and a grammar G. . . . . . . . . . 65

3.1 The extracted TSL grammar evaluating strings (Experiment 3) . . . . 117

3.2 Experiment 7: the extracted MTSL grammar evaluating the

ungrammatical strings aabbotoob and aabbaaaap. . . . . . . . . . . . . . 132

4.1 The main steps of OSTIA: build, onward, fold and pushback. . . . . . 143

4.2 Non-onward and onward PTTs that are otherwise equivalent. . . . . 144

4.3 OSTIA pushes back the suffix v. . . . . . . . . . . . . . . . . . . . . . . 145

4.4 FST for word-final devoicing obtained by OSTIA. . . . . . . . . . . . . 161

4.5 FST for a single vowel harmony without blocking obtained by OSTIA.163

4.6 The expected FST for a single vowel harmony with blocking. . . . . . 165

4.7 The expected FST for several vowel harmonies without blocking. . . 166

4.8 FST for vowel and consonant harmonies without blocking obtained

by OSTIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.9 FST for a “simple” first-last harmony obtained by OSTIA. . . . . . . . 174

4.10 Some of the FSTs that can be built from the pair (sim, seen) in the

“unbiased” way; to be contrasted with the following figure. . . . . . . 180

4.11 Some of the FSTs that can be built from the pair (sim, seen) if the

output of the input symbol s is fixed to the output symbol s. . . . . . 181

4.12 Possible guesses of the transition that can be built after observing the

pair (ab, aab). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xii



5.1 Exchange of ideas and innovations among applications of the

subregular approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xiii



List of Tables

2.1 Types of dependencies captured by some of the subregular classes. . 18

2.2 Subregular patterns attested in natural languages and discussed in

sections 2.1.3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 SL-2 grammar for Russian obstruent voicing assimilation and word-

final devoicing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 SP-2 grammar for Tuareg sibilant harmony in voicing and anteriority. 29

2.5 SP-3 grammar for Luganda unbounded tone plateauing. . . . . . . . 32
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Karakaş, thank you for having my back when even I didn’t have it. I will always

remember how we were jumping high at ASOT and Dreamstate, and even higher when

you got into Yale’s Ph.D. program. Good luck, bro. Sophie Moradi, you were always there

for me, helping the sun to shine even when it was getting dark. Hongchen Wu, you are a

wonderful example that one can be caring, hard-working, and goofy at the same time.

Nazila Shafiei, thank you for the constant ability to make people around you feel better, it

is definitely your talent. Thank you, Hossep Dolatian, for finding the best in any situation,

and for your endless willingness to help. Jon Rawski, thank you for always having a fun

xx



story to share. No one knows food and drink places in any city of the world better than

Chikako Takahashi. Unfortunately, I need to start wrapping this section up, but I cannot

do so without mentioning Sagnik Das, Darius Coelho, Ji Yea Kim, Alex Yeung, Andrija

Petrovic, SeoYoung Kim, Ali Salehi, Yaobin Liu, Hyunah Baek, Varya Magomedova,

Chong Zhang, Rob Pasternak, So Young Lee, Veronica Miatto, Russell Tanenbaum, Anya

Melnikova, Grace Wivell, Kalina Kostyszyn, Lei Liu, Mohammad Alobaid, Arghya

Bhattacharya, Ritika Nevatia, Cheryl Condon, Rahaf Bakhtawer, and Aline Teixeira.

Outside of SBU, I was lucky to be surrounded by gems as well. Alex Savina, we got to

know each other even before going to school, and were together ever since then. Marina

Ermolaeva, thank you for being my friend and the best travel buddy I can imagine. We

hitchhiked in Armenia, literally invited troubles in Georgia, and did a lot of reckless

things in Berlin. I enjoyed them all. Nastya Ivanova, ptenz, you are a very special one. We

went together through so much, and I still remember the comfort of your couch that was

to me like home. For fantastic memories or conversations, I am grateful to Masha

Borodavchenko, Julia Trishankova, Nastya Serebryannikova, Amanda Ritchart-Scott, Kyle

Gorman, Kevin McMullin, Adam Jardine, Jane Chandlee, Charles Reiss, Mati Pentus,

Maxime Papillon, Dionysia Saratsli, Ildi Szabó, Felix Keppler, Abhishek De, Kabilan
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Chapter 1

Introduction

The availability of tools greatly impacts the future of ideas. Charles Babbage was

the first to conceptualize the design of a computer in 1837, however, he could not

implement it because the required funding and technologies needed for the

production of his Analytical Engine were not yet available. Only in 1941,

technological progress allowed for the first general-purpose computer named Z3

to be assembled. Furthermore, it was the development of the X-ray

crystallography technique that allowed Rosalind Franklin to take a picture of the

crystallized fibers in 1952 that ultimately led to the discovery of DNA sequencing.

Frequently, the development of tools for a certain scientific area is an essential

catalyst for progress.

In my dissertation, I implement and experiment with some of the algorithms

available for the formal classes of subregular languages and mappings that recently

proved themselves to be extremely useful for modeling natural language

dependencies. Namely, I discuss the results of the automatic extraction of

subregular grammars from data exhibiting various linguistic patterns, such as

word-final devoicing, harmony systems of different types, and others. The code

behind the inference algorithms is available as a part of my package SigmaPie "

(Aksënova, 2020b). This package is open source, implemented in Python 3, and
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available via pip. SigmaPie allows linguists and formal language theorists to

assess possible applications of subregular ideas in the areas of typology, cognitive

linguistics, and natural language processing. This package is flexible and can be

used to explore a variety of research questions. It provides researchers who are

interested in subregular complexity and learning with a sandbox where they can

play with new ideas in a hands-on fashion.

This thesis is meant to be a starting point for scientists who wish to

incorporate SigmaPie into their research. It discusses the theoretical foundations

of subregular linguistics and it shows how SigmaPie can be used to experimentally

test theoretical claims. Both the discussion and the experiments consider only

string representations, rather than autosegmental or tree-based ones. That does

not mean that the subregular view, or its implementation via SigmaPie, cannot be

extended to handle these richer types of structures. Strings provide an accessible

starting point for subregular work, they are not its intended endpoint. Similarly,

SigmaPie is a sandbox rather than a finished product — its active use in research

will greatly shape SigmaPie and push it in whatever direction turns out to be most

fertile and productive.

1.1 Subregular linguistics and learning

Formal tools help to generalize natural language patterns and study them

independently of linguistic theories, therefore allowing researchers to focus on

one of the core questions of linguistics: what is the complexity of natural language?

Although this question is not yet answered, we already know to some extent the

complexity of the restrictions that phonotactics and morphotactics impose on the

surface forms of their objects. We have also come closer closer to understanding

what types of changes are involved in phonological and morphological processes.

Formal language theory provides a perspective on modeling natural language
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dependencies. Under this perspective, a formal language is a possibly infinite set

of words satisfying some set of rules. Subregular languages have weak generative

capacity, and therefore cannot express some types of dependencies, but their

power is enough for phonology and morphology.

The subregular perspective has a goal of identifying weak subclasses of

languages and mappings that are sufficiently powerful for natural language

dependencies. Subregular languages are a good git for phonotactics and

morphotactics, while subregular mappings provide a convenient way to describe

phonological and morphological phenomena. These languages and mappings are

subclasses of finite-state automata and transducers that are sub-divided from

regular languages since the 1970s (McNaughton and Papert, 1971). Although they

are not novel for the field of formal language theory, they made their way to

linguistics much later (Heinz, 2010a, 2011). The subregular approach is a fruitful

and promising research direction, see Section 1.2 and Background for formal

definitions and further information.

However, in natural language processing (NLP), little attention is paid to the

vast body of linguistic research on the types of dependencies that occur in

language. Moreover, it is not even clear how to incorporate this linguistic

knowledge into currently used NLP models. Neural networks, which are widely

employed nowadays in NLP, learn patterns in an uninterpretable fashion; as a

result they do not furnish a way for linguists to look inside those networks and

understand how and what exactly was learned. On the contrary, subregular learning

algorithms (which I will call “subregular learners” from here on) are fully

transparent and interpretable.

Subregular learning algorithms guarantee the interpretability of the way the

grammar was discovered, as well as the interpretability of the grammar per se. In

other words, it is always possible to look inside the algorithm. Observing the behavior

of the algorithm and studying its properties is necessary for understanding which
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configurations in the training data help to discover the pattern. If we are dealing

with natural language data, transparent learning algorithms might help to explore

the way humans learn languages, to the extent that useful parallels can be drawn

between the two. Interestingly, the discussed classes of subregular languages are

learnable just from positive data, without any need for negative data.

In the field of formal languages, theoretical achievements are not always

followed by their practical applications. As a result, a frequent situation arises

where a learning algorithm is proposed in the literature but is not implemented.

Although it is important to prove theorems about the convergence of such

algorithms, it is also important to subject them to empirical testing. As of now, not

a lot of such algorithms are implemented, and even fewer of them are employed

in practice. Sometimes, as Gildea and Jurafsky (1996) show in their paper, the

grammatical inference algorithms need to be modified and linguistically “biased”

to work with raw language data. The last few decades brought us a lot of new

knowledge about the complexity of human language patterns, and the majority of

this knowledge is still waiting to be incorporated into these algorithms.

The SigmaPie package implements subregular learners that efficiently extract

grammars after observing a finite number of well-formed strings of the target

language. This package also implements sample generators, scanners, and some

other tools. The generation of a data sample of the required complexity is needed

during the design of artificial learning experiments. Scanners and re-writers

verify the well-formedness of strings regarding some grammar or modify the

input according to a specified set of rules. Additionally, the toolkit provides

functions such as changing the polarity of the grammar or removing

uninformative elements from the grammar. The subregular perspective is

transparent and interpretable, but so far it lacked tools that help to leverage this

transparency. Such a toolkit would be especially useful to linguists working on

modeling natural language dependencies.
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1.2 Linguistic motivation behind the subregular

approach

What is the minimum generative capacity of the grammar that is capable of

encoding human language-like patterns? In other words, what types of

dependencies must that grammar take into account? Answering these questions

might furnish powerful insights into human cognition. The first step must be

uncovering what types of patterns do human languages exhibit.

To describe and generalize phenomena observed in natural languages, we need

to build their computational or mathematical models. Formal languages provide

a way to do this. Their object can be any structured object formed from a finite

collection of discrete elements, where those objects can be strings, trees, or graphs.

In this thesis, however, I will only focus on string representations.

Subregular modeling provides two perspectives: modeling well-formedness

conditions as languages, and modeling transformations as mappings. A

well-formedness condition can be encoded as a language, or a potentially infinite

collection of strings satisfying that condition. For example, in Russian, voiced

obstruents become voiceless at the end of the word. It results in words such as

lo[b] being excluded from the collection of well-formed Russian strings, whereas

their voiceless counterparts such as lo[p] ‘forehead’ are grammatical. Suppose

that every word has a dedicated marker n at the end of the word. Then the ban

against voiced obstruents at the end of the word can be encoded as a grammar

that rules out all cases where a voiced obstruent is followed by that marker: bn,

gn, dn, etc.

In contrast, a transformation can be formalized as a collection of pairs of strings,

where those strings represent the states “before” and “after” the rule application.

In other words, those pairs demonstrate the underlying representations and the

corresponding surface forms. From this perspective, Russian word-final devoicing
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can be viewed as a collection of pairs, where the final obstruent of the first string

can be either voiced or voiceless, but it is always voiceless in the second one: (lo[b],

lo[p]) ‘forehead’, (lu[g], lu[k]) ‘meadow’, (lu[k], lu[k]) ‘onion’, etc. The corresponding

grammar then looks at every symbol of the underlying representation and rewrites

it as is, unless that symbol is the word-final voiced obstruent: then it is substituted

by its voiceless counterpart. In such a way, subregular models can capture well-

formedness conditions, and encode the mapping of underlying representations to

the corresponding surface forms.

In the domain of string languages, regular languages and mappings provide a

reasonable upper bound for phonology and morphology (Johnson, 1972;

Koskenniemi, 1983; Kaplan and Kay, 1994; Beesley and Kartunnen, 2003). The

class of regular languages, however, can be further subdivided into a nested

hierarchy of weaker subregular languages. Closer research of phonological and

morphological patterns shows that in fact, these patterns do not require the whole

power of regular languages. Several subregular classes express well-formedness

conditions imposed by phonotactics and morphotactics (Heinz et al., 2011;

Aksënova et al., 2016; Heinz, 2018). Subregular — namely, subsequential —

mappings describe a multitude of morphological and phonological processes

(Chandlee, 2017; Chandlee and Heinz, 2018). Subregular grammars found their

applications even in the areas of syntax and semantics. (De Santo et al., 2017; Graf

and Shafiei, 2019; Graf, 2019). In this thesis, I focus on modeling phonological

dependencies of different kinds.

Nowadays, researchers work on many aspects of subregular languages. There

has been significant progress in the understanding of their underlying

mathematical structures (Fu et al., 2011; Heinz and Rogers, 2013). Multiple papers

show how different linguistic phenomena can be accounted for in terms of

subregular models (Heinz et al., 2011; Heinz and Lai, 2013; Chandlee, 2014;

Aksënova et al., 2016; Dolatian and Heinz, 2018; Graf, 2019; Karakaş, 2020). The
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approach was extended to trees and now can express such complicated

dependencies as c-command or case assignment as well (Graf and Shafiei, 2019;

Vu et al., 2019). The works cited above are all very recent. To help accelerate this

currently growing direction of research, I implemented a package that provides

the subregular functionality and explored practical capabilities of those

algorithms.

1.3 Main insights and structure of the dissertation

Different subregular learners capture different types of natural language

dependencies. While these distinct learning algorithms all rest on a sound

theoretical foundation, it is unknown how well the theorems about the

correctness of those learners carry over to real-world performance. This thesis

demonstrates how this open issue can be explored with the help of SigmaPie. I

design multiple artificial learning experiments and score the subregular learners

on datasets exhibiting patterns such as local assimilations, multiple long-distant

harmonies of different types, some typologically unattested patterns, and others.

The datasets range from artificial automatically generated samples to

real-language datasets such as German, Finnish, and Turkish wordlists. While the

artificially generated datasets explore if a pattern is learnable in general, the raw

data shows what issues the learners have when faced with the raw natural

language data. Every target pattern is approached from two perspectives: as a

well-formedness condition on the surface forms, and as a transformational rule

changing values of some elements.

Specific findings I show that indeed, subregular learners perform as

theoretically expected, and extract grammars of the corresponding complexity

from generated datasets. It confirms that they can model different natural

language dependencies, including but not limited to local dependencies, different
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long-distance harmonies, and even segmental patterns. Importantly, some of

these learners were able to perform well on such complex tasks as learning of a

long-distance dependency from raw data.

Relevance for linguistics Subregular languages and mappings indeed model a

wide variety of natural language patterns. Subregular learning algorithms

efficiently learn languages and mappings from positive data. Setting up the

learning pipeline itself is not complicated, and I thoroughly discuss the way I did

it in my thesis. Such SigmaPie-based learning experiments provide a way to test

ideas on artificial and natural language datasets.

While chapters 3 and 4 explore subregular modeling from a practical point of

view, Chapter 2. Background gives a theoretical perspective on subregular

languages and mappings. I discuss the modeling capacities of subregular

grammars and transformations by capturing attested natural language patterns

such as word-final devoicing, unbounded tone plateauing, and several different

types of harmonies. Namely, the reviewed formal classes are strictly local, strictly

piecewise, tier-based strictly local, and multi-tier strictly local languages; and

subsequential transformations. Additionally, in that chapter, I also discuss the

problem of inferring grammars from data, and list the useful properties shared by

the subregular learners.

In Chapter 3. Learning languages, I target modeling well-formedness

conditions. Namely, I employ four subregular language classes that express

generalizations, including local and long-distance processes such as attested and

unattested harmony systems with and without blockers, word-final devoicing,

and even suprasegmental patterns. A training sample is a list of well-formed

strings that does not include words that violate the target generalization. So, for

example, for a target pattern of vowel harmony, the training dataset is a sample of

harmonic words. The conducted experiments confirmed the learning
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expectations for the artificial datasets, showing how different linguistic patterns

are captured by subregular models. However, the performance of the learners on

raw natural language data was worse, and in some cases, a more powerful model

was required to capture a pattern of lower complexity. In that chapter, I also

outline the architectures of the learners originally introduced in (Heinz, 2010b;

Jardine and McMullin, 2017; McMullin et al., 2019).

Chapter 4. Learning mappings is concerned with modeling transformations

changing the underlying representations into the corresponding surface forms.

According to Chandlee (2014), many of phonological and morphological

dependencies belong to the class of subsequential mapping. Thus, I give an

overview of a subsequential learner OSTIA (Oncina et al., 1993; de la Higuera,

2010), and use it to extract generalizations from datasets exhibiting different

linguistic dependencies. In this case, patterns are represented as pairs of strings.

So, for example, if a pair demonstrates a vowel harmony, then the first string

shows the underlying, or underspecified, representation, while the vowels in the

second word are fully specified and harmonic. The learner was able to model a

variety of local and long-distance dependencies but struggled to capture a

blocking effect. Additionally, that chapter discusses other algorithms that learn

mappings and can be employed for similar tasks in the future.

Finally, Chapter 5. Conclusion summarizes the obtained results and proposes

directions for future research. Figure 1.1 gives an overview of the flow of this

thesis, starting from the theory of modeling well-formedness conditions and

transformations, and then followed by a part discussing the applications and the

accomplished learning experiments. The SigmaPie package was used in the

experiments reported in Chapters 3 and 4. Its code is available via Python

package manager pip and is listed in Appendix A. The correctness of the code

was assessed via a series of unit tests, provided in Appendix B.

This dissertation shows how learning experiments can be conducted using
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subregular learners from SigmaPie package and discusses the results of those

experiments. This package contains functionality that allows linguists to model

linguistic phenomena and test those models, manually and automatically.

1. Introduction

2. Background

modeling well-formedness

conditions as languages

modeling transformations

as mappings
learning grammars

3. Learning languages

experimental

setup

learners and

learning results

4. Learning mappings

learners and

learning results

5. Conclusion

theory

application

Figure 1.1: Flow of chapters of this dissertation: Introduction, Background,

Learning languages, Learning mappings, and Conclusion.
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Chapter 2

Background

Linguistic rules capture two types of generalizations: well-formedness

conditions, i.e. the requirements for a word to be well-formed, and

transformations, i.e. the rules of re-computing the given underlying

representation into the corresponding surface form. The former restrict the

word’s form itself, such as “two vowels should never be adjacent to each other”,

while the latter describe the change, such as “insert [j] in-between two adjacent

vowels”. For example, transformations map the Russian word that is

orthographically represented as dlinnosheee ‘long-necked’ into its pronunciation

dlinnosh[ejeje], and the well-formedness conditions ensure that the pronunciation

dlinnosh[eee] is not allowed since it contains two vowels adjacent to each other.

Grammars describe how to build well-formed words from the elements of the

alphabet. A language of the grammar is a potentially infinite collection of all

well-formed strings of that grammar. Thus in a formal sense, it simply refers to a

collection of words, or strings. Transformations are functions from the input

language, i.e. a collection of “underlying representations”, onto the output

language, or a collection of “surface forms”.

In this chapter, I discuss subregular grammars (Section 2.1) and subsequential

functions (Section 2.2) as they seem to be a good fit for natural language

11



dependencies (Heinz, 2011; Heinz et al., 2011; Gainor et al., 2012; Heinz and Lai,

2013; Aksënova et al., 2016; Graf, 2017a; Chandlee and Heinz, 2018, i.a.). In the

two following chapters, I show the results of the automatic extraction of subregular

grammars and subsequential functions given the learning framework defined in

Section 2.3.

2.1 Modeling well-formedness conditions

To model well-formedness conditions means to find a way to discriminate

between well-formed and ill-formed words of a language. In other words, it

implies finding a grammar that only builds well-formed strings, and that can

recognize which strings are ill-formed. For example, given the alphabet of vowels

and consonants, a grammar can prohibit vowel hiatus by penalizing adjacent

vowels.1

Subregular grammars provide an interpretable and succinct way to encode such

rules. These grammars are very weak and restricted, however, they are sufficiently

powerful for natural language. Interestingly, the subregular nature of linguistic

generalizations allows us to explain the absence of some theoretically possible yet

typologically unattested patterns (Gainor et al., 2012); I come back to the issue of

typology in Section 2.1.2. Also, this approach gives insights into human cognition

since there is evidence that only some subregular language classes are learnable

(Lai, 2015). As it follows from the name itself, subregular grammars are a subset

of the regular ones, and therefore let us first establish the regular nature of natural

language patterns.

1Strictly speaking, grammars do not recognize if a string is well-formed, but rather provide a

finite specification of the language. Instead, a recognizer judges the well-formedness of strings.

However, for the sake of simplicity and conciseness, I do not separate these two notions in my

dissertation.
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2.1.1 Regular nature of natural language patterns

Consider a pattern of Russian compounding, where a morpheme -o-2 is located

in-between compounding stems. For example, the stems vod(-a)3 ‘water’ and voz

‘carrier’ can be combined to obtain a complex word vod-o-voz ‘water carrier’. If the

compound is composed of multiple stems, the marker is added in-between every

one of them: vod-o-voz-o-voz ‘carrier of water carriers’.

This pattern can be viewed as a language of well-formed sequences of stems and

compounding affixes. Strings such as stem, stem-o-stem, stem-o-stem-o-stem belong

to the target language, but stem-stem and stem-o do not. This can be rephrased a

rule “a well-formed form cannot start or end with a compounding marker, and

within a word, two markers or two stems should not be adjacent to each other”.

Generalizations like this can be conveniently expressed as finite state automata.

A finite state automaton (FSA) is a type of an abstract machine that is defined

by a finite list of states and the transitions between those states (Lawson, 2003). In

the case of string-based automata, these transitions are annotated with characters.

An automaton reads a string of characters (the input string), and every new

character changes the current state. Some of the states are initial, meaning that

the first character of the input string can be read from those states. Final, or

accepting states are the ones that indicate that the string is accepted. The input

string is accepted by an automaton when the first character of that string can be

read from the initial state, and this string is a path from the initial state to the final

one.

Consider the automaton in Figure 2.1. The numbered circles represent states,

and the arrows are the transitions between those states. States are usually referred

to as q, therefore the states of that machine are q0, q1 and q2. The initial state is

represented with an incoming “start” arc. The state q1 is marked with a double

2This marker is also sometimes realized as -e-.
3-a is a suffix marking nominative case, singular form for some nominal classes.
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circle, meaning that it is final.

1 20start

-o-

stem
stem

Figure 2.1: FSA for Russian compounding.

A language of an FSA is a potentially infinite set of strings, every member of

which can be recognized by that automaton. For example, in Figure 2.1, the only

possible transition from the initial state q0 reads a stem and moves the machine to

q1. The state q1 is the accepting state, and any string that brings the automaton to the

accepting state is well-formed with respect to the rules encoded in the automaton.

A single stem is therefore considered well-formed. A compounding marker -o-

moves the machine from the state q1 to q2. But q2 is not final, so strings cannot

be accepted if they end up in that state: the compounding marker cannot be the

final element of the word. The machine then necessarily returns to the state q1,

therefore accepting stem-o-stem. If more markers and stems follow, it takes the loop

q1 → q2 → q1 again. The complexity of the language recognized by an FSA is not

more than regular.

Regular languages are a specific type of formal languages, which in turn are

(potentially infinite) collections of strings produced according to the rules of some

grammar. Different language classes can be recognized by different automata,

similarly to the way a finite state automaton was used before to encode a regular

language of Russian compounding. These automata can also be referred to as

abstract machines, a more general name for theoretically possible computers

encoding the rules of those languages. These machines, and therefore languages

corresponding to them, can be ordered with respect to the complexity of the

dependencies that they encode. The first version of such a hierarchy was

introduced in Chomsky (1956) and is therefore known as the Chomsky hierarchy.
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Nowadays, we usually use an extended version of the hierarchy that includes

mildly context-sensitive and finite language classes, see Figure 2.2, and Jäger and

Rogers (2012) for a more detailed survey).

recursively enumerable

context-sensitive

mildly context-sensitive

context-free

regular

finite

Figure 2.2: The extended Chomsky hierarchy from (Jäger and Rogers, 2012).

This hierarchy represents nested classes of formal languages aligned with

respect to their expressive complexity. On the very top of the hierarchy, there are

recursively enumerable languages. Those are the languages that can be

physically computed, i.e. realized by a computer in the universe4 (Chomsky,

1956). An example of such a language contains all polynomial equations with

integer coefficients that have a solution in the integers (Goldberg, 2018). Although

such a language exists, there is no method of deterministically predicting if an

equation has such a solution. Below, there are context-sensitive languages that

recognize non-linear5 patterns, such as the language of primes (Hartmanis and

Shank, 1968). There are subclasses of context-sensitive languages which are a

better fit for natural language syntax, such as mildly context-sensitive languages.

They are a good fit for syntactic dependencies as they handle cross-serial
4The current definition is based on the physical Church-Turing thesis (Church, 1936; Turing,

1937b,a).
5The non-linearity refers to the growth of the number of a: every following number is much

larger than the previous. For example, patterns such as a2n, where n is greater than 0, are non-

linear.
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dependencies such as some cases of copying; see (Huybregts, 1984; Joshi, 1985;

Shieber, 1985; Kallmeyer, 2010) discussing syntax, and (Culy, 1985) about a

context-sensitive pattern in morphology. The machine corresponding to

context-free languages uses a stack of a potentially infinite size: in such a way, it

recognizes patterns such as anbn, “have as many a as b” (Hopcroft et al., 2006).

Regular languages are limited to the dependencies that can be recognized by an

FSA (Hopcroft et al., 2006). It is commonly assumed that morphology and

phonology are regular (Johnson, 1972; Kaplan and Kay, 1994; Beesley and

Kartunnen, 2003; Roark and Sproat, 2007), and I will come back to this topic in the

following paragraphs. Finally, at the very bottom of the hierarchy, one can see a

class of finite languages that refer to a finite number of strings. Classes that are

more complex than mildly context-sensitive dependencies are rarely discussed in

connection with natural languages: they are too powerful.

Finite-state models correspond to regular languages, and were introduced in

1940s by McCulloch and Pitts (1943). Chomsky (1956), however, theorized that

this type of modeling does not seem to be suitable for natural languages, although

in the following years his arguments were shown to be inconclusive, and the

question about the regular nature of linguistic dependencies was reopened again.

Also, there was a significant number of applications of finite-state machines to

language-related tasks, such as text search (Thompson, 1968), machine translation

(Oncina et al., 1994; Knight and Al-Onaizan, 1998; Bangalore and Riccardi, 2002),

speech recognition (Caseiro, 2003; Mohri et al., 2002, 2008), semantic parsing

(Jones et al., 2011, 2012), and others. The restrictiveness of finite-state models is

frequently used to balance the robustness of neural networks. For example, a

neural FST-based pronunciation learning model was designed by Bruguier et al.

(2017). Additionally, Roark et al. (2019) use a neural network guided by a regular

grammar to assign pronunciations to words. At the same time, linguists and

computer scientists started to employ regular languages and finite-state models as
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a tool to research the complexities of patterns in human languages, see Hulden

(2014) discussing the main milestones.

The regular nature of phonology was examined several decades ago by

(Johnson, 1972; Kaplan and Kay, 1981, 1994). Importantly, Kaplan and Kay (1994)

show that all SPE-style transformational rules (Chomsky and Halle, 1968), can be

represented as finite-state machines. Since all attested phonological patterns can

be modeled as SPE-style rules, and since SPE-style rules are regular, the

complexity of regular languages is a good upper bound for phonological

dependencies. In the same paper, they also presented a set of modeling tools and

used them to capture patterns such as nasal assimilation and epenthesis.

Koskenniemi (1983), and later Beesley and Kartunnen (2003) show that

finite-state machinery is sufficient for encoding morphological dependencies as

well. Even the non-concatenative morphology can be modeled in such a way

(Kay, 1987; Beesley, 1996; Kiraz, 1996). For more examples of applications of

finite-state methods in linguistics, see (Gildea and Jurafsky, 1996; Roche and

Schabes, 1997; Hetherington, 2001; Jurafsky and Martin, 2009). Although regular

languages are a good fit for linguistic patterns, research shows that the full power

of regular languages is not necessary, and subregular languages that are discussed

further provide a tighter fit for phonology and morphology.

2.1.2 Subregular languages and their linguistic importance

The class of regular languages can be subdivided into a nested hierarchy of

subregular classes — subregular hierarchy. “Parent” classes properly subsume

their “children” classes, and thus the former are more powerful than the latter.

The “sibling” relation implies that the classes are not known to subsume each

other.

Figure 2.3 shows some of the subregular classes, namely the ones that are

crucially important for modeling linguistic dependencies, and therefore
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Regular

SF

IBSP

MTSL

TSL

SP

SL

Figure 2.3: Some of the classes of the subregular hierarchy; the subregular classes

discussed further in this chapter and in Chapter 3 are boxed.

extensively used in this dissertation. Those are strictly local (SL), strictly piecewise

(SP), tier-based strictly local (TSL) and multi-tier strictly local (MTSL) languages.

The crucial difference between these languages is in the types of dependencies

they can capture, see Table 2.1. The combined functionality of those classes covers

local dependencies and long-distance dependencies with or without a blocker.

Language Dependencies it can handle

SL only local dependencies

SP long-distance dependencies without blocking (any number thereof)

TSL long-distance dependencies with blocking

MTSL multiple long-distance dependencies with blocking

Table 2.1: Types of dependencies captured by some of the subregular classes.

Subregular languages are encoded by subregular grammars. These subregular

grammars operate by blocking some types of substrings or subsequences in

well-formed strings of their languages. A substring is a consecutive part of the
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string. For example, ab, aba, and abacd are substrings of the string abacd, whereas

aa and bcd are not, because these symbols are not adjacent in the string abacd.

Subsequences can be seen as a non-consecutive counterpart of substrings. A

string u is a subsequence of w if all elements of u can be found in w, and the order

of those elements is preserved. Continuing the previous example, both aa and bcd

are indeed subsequences of abacd. Importantly, the elements of substrings and

subsequences cannot violate the order in which the elements appeared in the

original string: ca is neither a substring nor a subsequence of the string abacd.

Subregular grammars are always defined for some particular locality, so a 2-local

grammar operates with substrings or subsequences of the length 2. Substrings

and subsequences will be formally defined in the next two subsections (Definition

2.1.1 in Section 2.1.3, and Definition 2.1.4 in Section 2.1.4; see also (Elzinga et al.,

2008; Rogers et al., 2010; Fu et al., 2011, a.o.)).

While positive grammars list all allowed substructures of their languages, the

negative ones list the substructures that must not be encountered in well-formed

strings of their languages. Moreover, for the subregular classes discussed in this

thesis, these grammars are equivalent: for every negative grammar, it is possible

to construct a positive grammar that generates the same language, and vice versa.

The example grammars discussed above are negative grammars, so they

prohibit certain substructures in well-formed strings of their languages. Strictly

local (SL) grammars filter strings that violate some local dependency in the string,

i.e. contain ill-formed substrings (Heinz, 2010b). For example, a language ab, abab,

ababab, etc. contains any possible string of a and b that does not contain the

substrings aa and bb. Tier-based strictly local (TSL) grammars project a

potentially smaller string from the input string by using a tier alphabet. These

grammars evaluate the relatively local dependencies among the elements of the

tier alphabet, whereas all other symbols are “transparent” for the grammar (Heinz

et al., 2011). For example, if the tier contains a and b and the string is bccacbc, the
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tier image of that string is bab. If a TSL constraints are ba or ab, the string bccacbc

will be ruled out, since its tier image contains the illicit bigrams. Multi-tier

strictly local (MTSL) grammars can have more than just a single tier, and,

therefore, multiple tier images are evaluated with respect to multiple local

grammars (De Santo and Graf, 2019). Strictly piecewise (SP) grammars restrict

certain subsequences in well-formed strings of their languages (Rogers et al., 2010;

Heinz, 2010a). For example, if a subsequence xx is prohibited, a string xaaax is

ruled out. In such a way, SL, SP, TSL and MTSL grammars model a wide range of

local and long-distant dependencies (Heinz, 2011; Heinz et al., 2011; Heinz and

Lai, 2013; Aksënova et al., 2016; Chandlee and Heinz, 2018).

There are other subregular classes not listed here such as star free (SF),

interval-based strictly piecewise (IBSP), input-output tier-based strictly local

(IO-TSL) and its subclasses, piecewise testable (PT), etc., but they are out of scope

of this dissertation (Lawson, 2003; Graf, 2018a). Additionally, I will only discuss

grammars working with strings, but this approach is currently extended to other

representations as well (Chandlee et al., 2019; Chandlee and Jardine, 2019).

The classes SL, TSL, MTSL, and SP jointly span a wide-ranging array of

phonological phenomena. SL can handle all phenomena that are locally bounded,

e.g. word-final devoicing or intervocalic voicing. It can also handle phenomena

that are unbounded but proceed in locally bounded steps, for instance some types

of vowel harmony where two harmonic vowels are never separated by more than

two segments. Truly unbounded phenomena, on the other hand, require SP, TSL,

or MTSL. SP can handle multiple long-distance phenomena at the same time, but

only if they do not involve any blocking effects. An example of that is unbounded

tone plateauing, where no low tone may occur within an interval spanned by two

high tones, no matter how far apart those two tones are. For long-distance

phenomena with blocking, one has to use TSL, but TSL is not as capable as SP

when it comes to enforcing multiple long-distance dependencies in parallel. This

20



shortcoming is remedied by TSL’s extension MTSL. Neither TSL nor MTSL can

handle unbounded tone plateauing, though, as will be explained in detail in

Sec. 2.1.5. While, the next few subsections will greatly expand on this overview, it

should already be apparent that these subregular classes do indeed cover a lot of

empirical ground.

The strong subregular hypothesis interprets the large empirical coverage of

these few subclasses as a general indication that natural language phonology and

phonotactics are much more restricted than previously believed — in particular,

the class of regular languages is too generous an upper bound and subregular

classes provide a better fit for phonology (Heinz, 2010a). In line with

phonotactics, Aksënova et al. (2016) shows that subregular languages are a good

fit for morphotactic dependencies. The well-formedness conditions imposed on

languages of generalized and monomorphemic quantifiers are also subregular.

There are likewise applications of subregular grammars to syntax (Graf, 2017c;

De Santo et al., 2017; Vu et al., 2019). These findings suggest that subregularity

play an important role across many distinct language models, thereby bolstering

the strong subregular hypothesis.

In the rest of the chapter, I focus on SL, SP, TSL and MTSL languages and

grammars, and provide linguistically-motivated examples of those. Additionally,

I define these classes mathematically and describe the corresponding classes of

finite-state automata. Later, in chapter 3, I will model those and some other

dependencies, and show how their subregular grammars can be learned from real

data. Table 2.2 summarizes patterns that are discussed further and subregular

classes to which they belong.

2.1.3 Local restrictions as SL languages

The subregular class of strictly local (SL) languages captures local dependencies,

and many restrictions in phonology have a purely local nature (Rogers and Pullum,
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SL SP TSL MTSL

word-final devoicing and obstruent voicing assimilation

Ë é Ë Ë

unbounded tone plateauing

é Ë é é

sibilant harmony in voicing and anteriority, no blockers

é Ë Ë Ë

vowel harmony in ATR, nasalized vowels are blockers

é é Ë Ë

vowel harmony in ATR and rounding, some vowels are blockers for rounding

é é Ë Ë

sibilant harmony in voicing and anteriority, voiceless obstruents are blockers for voicing

é é é Ë

Table 2.2: Subregular patterns attested in natural languages and discussed in

sections 2.1.3-6.

2011). Indeed, most of the patterns of phonological assimilation affect adjacent

segments. In what follows, I exemplify SL languages using several purely local

phenomena, and then formally introduce them using the notion of k-factor and the

property of suffix substitution closure (Rogers et al., 2013).

Intuitive definition

In what follows, the SL languages are demonstrated through two local

phenomena happening in Russian: one of them prohibits voiced obstruents in the

word-final position, and another one enforces adjacent obstruents to agree in

voicing. Additionally, I show the interaction between these two patterns.
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Russian obstruent assimilation and word-final devoicing The examples (1-2)

below show that the consonant of the preposition iz ‘from’ agrees in voicing with

the obstruent of the following word.6

(1) i[z B]erlina ‘from Berlin’

(2) i[s P]ragi ‘from Prague’

Additionally, in Russian, as well as in other languages such as German, there

is a word-final devoicing that prohibits the appearance of a voiced obstruent in

a word-final position (Brockhaus, 1995; Padgett, 2002). For example, lug ‘field’ is

realized as lu[k]. In this case, the same cluster of obstruents might appear voiceless

word-finally, and voiced in other positions of the word, see the pairs of examples

in (3-4) and (5-6).

(3) mo[sk] ‘brain’ ∼ (4) mo[zg]i ‘brains’

(5) dro[st] ‘thrush’ ∼ (6) dro[zd]y ‘thrushes’

These two generalizations can be captured in a strictly local way, namely, by

prohibiting illicit substrings. Assume that the inventory of obstruents is

{z, s, b, p, g, k}, where z, b, and g are voiced, and s, p and k are voiceless. It is never

possible to see two (or more) disagreeing obstruents adjacent to each other, i.e. the

target SL grammar needs to prohibit zs, zp, zk, sz, sb, sg, etc.

To target voiced obstruents at the end of the word, the grammar needs to be able

to differentiate between the word-final and other positions. For this reason, strings

are usually annotated with the markers o and n denoting the beginning and the

end of the string (Rogers and Pullum, 2011). Then, the SL grammar capturing word-

final devoicing needs to rule out zn, gn, and bn.

Figure 2.4 shows how the SL grammar outlined above evaluates the

pronunciations mozg, mozk, mosg and mosk. The string mozg has its obstruents

agree in voicing, but the final obstruent is voiced, and therefore ruled out by the

restriction gn. The final obstruent in mozk is voiceless, but now the cluster

6I do not discuss exceptions to this rule, such as the well-formedness of the cluster [sv].
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o m o s k n o m o z g n

o m o z k n o m o s g n

Figure 2.4: Evaluation of strings mozg, mozk, mosg and mosk by an SL grammar

capturing obstruent cluster assimilation and word-final devoicing.

disagrees and therefore ruled out by zk. In mosg, both violations are present.

Finally, the form mosk contains no violations, and indeed, this is the correct

pronunciation of the corresponding Russian word.

The illicit substrings such as gn and zk are the restrictions defined by the

grammar. A set of restrictions R of a negative grammar lists all substrings that

cannot be found in well-formed strings of the language. An alphabet of the

language, usually denoted as Σ, includes the list of symbols the language uses. In

this case, Σ includes all Russian phonemes. Finally, every grammar defines its

locality, namely, the size of the longest string prohibited by that grammar; it is

usually referred to as k (McNaughton and Papert, 1971; Rogers and Pullum, 2011).

In the case of the SL grammar capturing Russian well-formedness conditions, all

the prohibited strings are of length 2 (k = 2); such substrings are also called

bigrams or 2-factors. The Russian SL grammar is then strictly 2-local, or SL-2. These

three components – the alphabet Σ, the set of restriction R, and the locality

window k – define SL grammars, see Grammar 2.3.

SL grammars disallow the appearance of the banned clusters such as gs or zk,

however, they do not induce the change of the ill-formed segments. The

perspective of changing one form into another is examined in the Section 2.2

discussing modeling transformations. SL models are useful in modeling the

well-formedness conditions arising from word-final devoicing, intervocalic

voicing, consonant cluster assimilation, and other local phenomena. However, SL

models cannot model long-distance dependencies.
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SL grammar Russian obstruent voicing assimilation and word-final devoicing

Σ = {a, b, v, g, d . . . z, s, p, k . . . E, ju, ja}

R = 〈zs, zp, zk, sz, sb, sg . . . zn, gn, bn, dn〉

k = 2

Grammar 2.3: SL-2 grammar for Russian obstruent voicing assimilation and word-

final devoicing.

Tuareg sibilant harmony Long-distance dependency affects segments that can

be located far from each other. For instance, in Tuareg (Berber), sibilants

regressively agree in voicing and anteriority (Hansson, 2010b). In the examples

below, a causative prefix agrees with the sibilant in the root (8-11) but is realized

as s- if no other sibilant is present (7). This is an instance of long-distance

agreement, and therefore it can happen across an arbitrary number of intervening

elements.

(7) s-@lm@d ‘caus-learn’

(8) s-@q:us@t ‘caus-inherit’

(9) z-@nt@z ‘caus-extract’

(10) S-@m:@S@n ‘caus-be.overwhelmed’

(11) Z-@k:uZ@t ‘caus-saw’

SL grammars capture only local generalizations, but, for example, in (9), there

are 4 elements separating the agreeing sibilants. It would imply that the required

locality of the SL grammar is at least 6 to accommodate the two sibilants and

everything in-between them. However, this would not be enough for other cases

since there is no upper bound on the number of the intervening segments

in-between two agreeing sibilants. As a result, the power of SL grammars is not

enough to capture patterns such as Tuareg sibilant harmony.

Playing devil’s advocate, though, one may object that in practice there is such

a thing as a longest word due a variety of reasons, e.g. performance limitations or
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limited morphological productivity. If the longest word has at most n segments,

then no phonological phenomenon can involve more than n segments, making in

SL-n. But there are multiple problems with this position. First of all, it ignores the

widely assumed distinction between competence and performance. Second, it

assumes that phonology is limited to a single phonological word, which isn’t the

case either. At least some phenomena apply across phonological word

boundaries, so it is not enough to assume a fixed upper bound on the length of

phonological words — one has to assume a fixed upper bound on the length of

phonological dependencies. Finally, and most importantly, this position ignores

succinctness. The number of possible n-grams grows exponentially with n:

assuming an inventory of 10 distinct sounds, there are 102 = 100 distinct bigrams,

103 = 1, 000 trigrams, 104 = 10, 000 4-grams, and so on. The size of an SL grammar

explodes as we extend to handle increasingly non-local phenomena. And this also

poses a challenge for learnability because larger SL-grammars require more

evidence to infer from the training data (a space of 100 options is more easily

explored than one of 10, 000 options). So even if long-distance phenomena might

indeed be limited to some fixed upper bound, this bound is so high for natural

languages that an SL grammar simply cannot describe these long-distance

phenomena in a succinct and elegant manner that supports efficient learning.

Formal definition

SL grammars define languages by listing substrings that cannot appear in

well-formed words of those languages. These substrings are often referred to as

k-factors, in order to be distinguished from the more NLP-oriented use of the

term n-gram, that frequently implies the use of probabilistic models (Rogers and

Pullum, 2011; Rogers et al., 2013). Further in this section, I follow De Santo and

Graf (2019) in their algebraic definition of this class.

While Σ, as previously in this section, denotes the alphabet, Σk is a k-long word
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that uses symbols of that alphabet. Σ∗ generalizes Σk, it employs the Kleene star

(Kleene, 1956) to define a word of any length, including length 0, i.e. the empty

string ε. A length of the string w is denoted as |w|.

Definition 2.1.1 (k-factors)

A string u is a k-factor, or a substring of a string w iff ∃x, y ∈ Σ∗ such that w = xuy and

|u| = k. The function Fk maps words to the set of k-factors within them:

Fk(w) = {u : u is a k-factor of w if |w| ≥ k, else u = w}

For example, the 2-factors of the word abc are {ab, bc}. Strictly k-local grammars

list the k-factors that cannot be used in the well-formed strings of their languages,

i.e. they can be viewed as collections of illicit k-factors. Markers o 6∈ Σ and n 6∈ Σ

are used in the same way as previously in Section 2.1.3: they are edge markers

marking the beginning and the end of the string.

Definition 2.1.2 (SL languages and grammars)

A language L is strictly k-local (SLk) iff there exists a finite set S ⊆ Fk(ok−1Σ∗nk−1)

such that

L = {w ∈ Σ∗ : Fk(ok−1wnk−1) ∩ S = ∅}.

We call S a strictly k-local grammar, and use L(S) to indicate the language recognized by

S. A language L is strictly local iff it is SLk for some k ∈ N.

Consider a language described by a regular expression (ab)∗. Its language

includes strings such as ε, ab, abab, ababab, etc. A negative SL-2 grammar that

describes this language is S = {ob, an, aa, bb}. Indeed, the well-formed strings of

that language cannot start with b, end with a, and have two a or two b adjacent to

each other. Importantly, a language is strictly k-local if it satisfies k-local suffix

substitution closure (Rogers and Pullum, 2011).

Definition 2.1.3 (Suffix substitution closure)

For any k ≥ 1, a language L satisfies k-local suffix substitution closure iff for all strings

27



u1, v1, u2, v2, for any string x of length k− 1 if both u1 · x · v1 ∈ L and u2 · x · v2 ∈ L, then

u1 · x · v2 ∈ L.

For instance, a language (ab)∗ is SL-2, and it satisfies suffix substitution closure.

Both strings ab and ababab contain the 1-local substring a, and it correctly predicts

that the string abab is also in the language. However, a language a∗ba∗ is not SL.

It is not SL-2 since the closure of the strings aba and baa contains baba, and it is

not in the language. It is not SL-3, because the closure of aaba and baaa contains

the illicit form baaba; and so on. The language a∗ba∗ is not closed under the suffix

substitution, and therefore it is not SL.

Apart from the algebraic perspective, strictly local languages can be

characterized in automata-theoretic terms. Rogers and Pullum (2011) describe SL

languages as those that can be recognized by FSAs scanning a k-symbol window

across the input string, and failing on strings that contain factors prohibited by

the corresponding grammar. In such an SL-k automaton, states represent the

k − 1-local suffix of the input string read immediately before now, and the

transitions from the states encode symbols that can follow. If a transition cannot

be taken, or if the final activated state is not accepting, the input string is rejected.

When a string is well-formed, there is a part through the automaton that starts in

the initial state and ends in the final one.

States of SL-automata encode the previous substring of the input string. So, for

example, in SL-2 automaton the states differentiate depending on the symbol that

was observed

2.1.4 Long distance restrictions as SP languages

While SL grammars can only capture local dependencies, strictly piecewise (SP)

grammars generalize exclusively long-distance patterns: SL grammars prohibit

sequences of adjacent segments within words, while SP grammars do not have the

requirement of adjacency. An SP restriction prohibits a certain order of elements
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(Rogers et al., 2010; Fu et al., 2011). While an SL restriction V V prohibits two

vowels adjacent to each other thus avoiding hiatus, the same SP restriction means

that nowhere in the string can there be a vowel followed by another vowel. The

language of such an SP grammar would only include words with no more than a

single V .

Intuitive definition

In this section, I demonstrate how SP grammars can capture patterns of sibilant

harmony and unbounded tone plateauing. SP grammars encode restrictions on

the order of elements, and thus cannot differentiate between disharmonic stems

and grammatical words exhibiting a blocking effect.

Tuareg sibilant harmony Coming back to the pattern of Tuareg sibilant

harmony exemplified before in (7-11), it can be modeled with an SP grammar by

prohibiting subsequences of disagreeing sibilants. The bigrams sz and SZ are

prohibited because their elements disagree in voicing, Ss and zZ disagree in

anteriority, etc. In total, this grammar contains 12 restrictions R that are listed in

Grammar 2.4.

SP grammar Tuareg sibilant harmony in voicing and anteriority

Σ = {s, Z, z, S, @, d, l, m, t . . . }

R = 〈sz, sS, sZ, zs, Ss, Zs, zS, zZ, Ss, zS, zZ, Sz, Sz, SZ, Sz〉

k = 2

Grammar 2.4: SP-2 grammar for Tuareg sibilant harmony in voicing and anteriority.

Such an SP grammar has an alphabet that includes all Tuareg phonemes, and its

list of restrictions includes all pairs of sibilants disagreeing in voicing or anteriority.

The locality of such grammar is 2. Figure 2.5 shows that there are no violations in
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the word z@nt@z: indeed, no substructure of that string is prohibited. However, the

word z@nt@Z is ruled out because the subsequence zZ is ill-formed.

z @ n t @ z
t

z @ n t @ Z

Figure 2.5: Evaluation of strings z@nt@z and z@nt@Z by an SP grammar capturing

sibilant harmony in voicing and anteriority.

Imdlawn Tashlhiyt sibilant harmony Now, consider a language closely related

to Tuareg, namely, Imdlawn Tashlhiyt (Berber), in which affixal sibilants also

regressively harmonize with the stem in voicing and anteriority (Hansson, 2010b;

McMullin, 2016). The difference is that in Imdlawn Tashlhiyt, the spreading of the

voicing feature can be blocked by any intervening voiceless obstruent. At the

same time, similarly to Tuareg, the anteriority harmony exhibits no blocking

effect. Consider the data from (Elmedlaoui, 1995; Hansson, 2010a) in (12-18),

where the causative prefix s- illustrates the harmonic pattern.

(12) s:-uga ‘caus-evacuate’

(13) s-as:twa ‘caus-settle’

(14) S-fiaSr ‘caus-be.full.of.straw’

(15) z-bruz:a ‘caus-crumble’

(16) Z-m:Zdawl ‘caus-stumble’

(17) s-mXazaj ‘caus-loathe.each.other’

(18) S-quZ:i ‘caus-be.dislocated’

In (12), there are no sibilants in the root, so the prefix is realized as s-. Examples

(13-16) show that as previously, the causative affix agrees with the stem sibilant

in voicing and anteriority. However, the voicing harmony can be blocked, and it is

exemplified in (17) and (18). In (17), the sibilants are both anterior, but X is stopping
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the regressive spreading of [+voice], so the prefix is realized as voiceless. Similarly,

in (18), both sibilants are non-anterior, but the voicing spreading is also blocked,

this time by q.

In Imdlawn Tashlhiyt, voiceless obstruents are blockers for the voicing harmony,

and this prevents SP grammars from being able to model the generalization. The

rules of the harmony are the same as before, therefore all restrictions discussed

earlier in Grammar 2.5 are still valid. However, there is no way to express a blocking

effect in an SP grammar. An SP restriction is a restriction on the precedence of one

segment by another, and therefore the presence of the bigram sz is necessary to rule

out disharmonic words such as saz:twa. But the same restriction will necessarily

rule out grammatical words such as smXazaj: it will simply “miss” the blocker, see

Figure 2.6.

s m X a z a j

Figure 2.6: SP grammar incorrectly rules out Imdlawn Tashlhiyt word smXazaj.

Increasing the size of the substrings to 3 will not solve the problem with the

blocking effect either. An SP grammar that finds the word smXazaj correct will

inevitably accept all subsequences of that word. As a result, it would incorrectly

predict the well-formedness of the word smzaj, where s and z disagree in voicing

without the presence of a blocker.

Unbounded tone plateauing The ability of SP grammars to see substructures

independently of other elements of the string gives them the power to encode

unbounded tone plateauing (UTP), as attested in Luganda (Niger-Congo). In that

language, low tones are realized as high if they are surrounded by high tones

(Hyman and Katamba, 2010). This makes it impossible for a well-formed word in

Luganda to have low tones surrounded by high tones, see the data in (19) cited by
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(Hyman, 2011; Jardine, 2016a). Accented vowels indicate high tones, and other

vowels are low.

(19) bikópo byaa-walúsiimbi → bikópó byáá-wálúsiimbi

‘the cups of Walusimbi’

Using the letters H and L to indicate high and low tones, we can express the

generalization as “never have one or more L in-between two H”. This allows for

strings such as HHL and LLLHHHL, but prohibits ones such as HHLLLHH. Due to

the long-distant nature of SP grammars, a 3-local SP grammar can capture UTP by

ruling out words that contain a subsequence HLH , see Figure 2.7.

L L H H L L
L H H L L L H

Figure 2.7: SP grammar captures the UTP pattern.

SP grammar Luganda unbounded tone plateauing

Σ = {H, L}

R = 〈HLH〉

k = 3

Grammar 2.5: SP-3 grammar for Luganda unbounded tone plateauing.

Strictly piecewise grammars capture one or more long-distance phenomena

that do not exhibit blocking effects. They prohibit subsequences of strings,

therefore ruling out all words that contain the illicit substructure. For example,

the restriction zs means that nowhere in the string, z can be followed by s.

However, blocking effects cannot be captured via an SP grammar, because the

grammar is not sensitive to the presence of the blockers that make the banned

substructure acceptable. A pattern where a substring s . . . z is prohibited, but

s . . . k . . . z is allowed is not SP: ruling out the former one would rule out the latter
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one as well. Blockers do not change the presence of an illicit subsequence. Purely

short-distant restrictions such as the word-final devoicing also cannot be

expressed by an SP grammar: the restriction bn prohibits any string containing b,

because n always follows b in a word annotated with the word-final marker n.

Formal definition

An SP grammar is defined as a list of subsequences prohibited in well-formed

strings of its language. Further, I define the notion of the subsequence and the SP

languages formally following Rogers et al. (2010), and then provide an alternative

definition in automata-theoretic terms.

Definition 2.1.4 (Subsequences)

A string v is a subsequence of w, v v w, if v is an empty string, or if v = σ1σ2 . . . σn, and

there is a collection of substrings x1, . . . , wn ∈ Σ∗, such that those substrings can be placed

between the elements of v thus obtaining w = w0σ1w1 . . . σnwn.

Then all k-long subsequences Pk(w) of a word w ∈ Σ∗ can be computed as

Pk(w) = {v ∈ Σk : v v w}

Similarly, P≤k(w) lists all subsequences of w ∈ Σ∗ of the length up to k.

P≤k(w) = {v ∈ Σ≤k : v v w}

For example, consider a string w = abcd. Then P3(w) = {abc, abd, acd}, and

P≤3(w) = P3(w) ∪ {ε, a, b, c, d, ab, ac, ad, bc, bd, cd}, where ε is the empty string.

Definition 2.1.5 (SP languages and grammars)

A language is SP-k if there exists a set of subsequences S ⊆ Σk such that

L(G) = {w ∈ Σ∗ : P≤k(w) ⊆ P≤k(S)}.
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The exact reason why SP grammars cannot capture the blocking effect is their

closure under subsequence; see (Rogers et al., 2010) for other properties of SP

languages and grammars.

Definition 2.1.6 (Subsequence closure)

Given a word w ∈ L, all strings v that are subsequences of w, v v w, also belong to the

language L.

Alternatively, an SP language can be defined as a deterministic finite automaton

(DFA) of a particular shape. Such a machine is a quintuple M = 〈Q,Σ, q0, δ, F 〉,

where Q is a finite set of states, Σ is the alphabet, q0 is the unique initial state, δ is

the transition function, andF is the set of accepting states. The following properties

are true for the automata recognizing SP languages. All states ofM are accepting,

i.e. F = Q. If q2 is reachable from q1 and if there is no transition reading σ ∈ Σ from

q1, there will be no transition reading σ from q2 (missing edges propagate down).

All cycles are self-edges. If such a machine accepts a string w · v · u : w, v, u ∈ Σ∗,

it necessarily accepts a string w · u. This dependency, however, is not true in the

other direction: if such a DFA accepts w · u, there could be v ∈ Σ∗ such that w · v · u

is not an acceptable input sequence. A DFA with these properties accepts only SP

languages.

2.1.5 Long-distant dependencies with blocking as TSL languages

Earlier, I showed that SL and SP grammars cannot capture long-distance

harmonies with a blocking effect. SL grammars can only express local

generalizations, and SP restrictions target certain subsequences and therefore are

not sensitive to the presence of blockers. Tier-based strictly local (TSL) grammars

capture long-distance dependencies by making them local over the tier (Heinz et al.,

2011).
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Intuitive definition

I demonstrate the capacities of TSL grammars using the examples of vowel

harmony in Karajá (ATR harmony with nasalized blockers) and Buryat (ATR and

rounding harmony without blockers).

Karajá vowel harmony Consider vowel harmony in Karajá (Macro-Jê), where a

tense vowel spreads the advanced tongue root (ATR) feature leftwards. It makes it

impossible to have a lax vowel followed by a tense one. This spreading can be

blocked by intervening nasalized vowels; they are opaque for this harmony

(Ribeiro, 2002).

(20) woku [woku] ‘inside’

(21) dOrE [dOrE] ‘parrot’

(22) buâE [buâE] ‘little, few’

(23) brOrEdı̆ [brorenı̆] ‘cow (lit. deer-similar.to)’

(24) dOrE de [dorede] ‘parrot’s wing’

(25) rakOhOâEkõre [rakOhOâEkõre] ‘He/she didn’t hit it.’

(26) rEb@̃re [rEm@̃re] ‘I caught (it).’

The data in (20-26) exemplifies the rule of harmony and is discussed in more

detail in Ribeiro (2002). Note, that the harmony is reflected in the transcriptions

and not in the orthography of the language. Stems in Karajá can contain tense (20)

or lax (21) vowels, and the lax vowels can only follow the tense ones (22). A tense

vowel starts its harmonic domain and spreads the [+ATR] feature regressively (23-

24). However, nasalized vowels such as õ and @̃ are opaque for this spreading: they

do not enforce the agreement of the vowel thus allowing lax vowels to precede the

nasal ones, even if a tense vowel follows it (25-26).

A TSL grammar is defined for a tier alphabet T that includes all segments that

are relevant for the long-distance dependency. All vowels are relevant for the

harmony, i.e. they are either undergoers (lax vowels), or blockers (nasalized
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vowels), or start the harmonic domain (tense vowels). Therefore in this case, the

tier alphabet contains all vowels, T = {E, o, e, u, O, õ, @̃ , a, . . . }. A tier image of the

string is a representation of that string where only the elements of T are

preserved. For example, the tier image of rakOhOâEkõre is aOOEõe. Finally, the set of

restrictions R is defined for the tier representations of the string. In other words,

the prohibited elements are the substrings that must not be observed in the tier

representations of well-formed words of the language.

To construct the tier grammar for the Karajá vowel harmony, one needs to

prohibit all combinations of a lax vowel followed by a tense one, i.e. Ee, Eo, Oo, Ou,

etc. The presence of the nasalized vowels on the tier allows for sequences such as

E. . . @̃. . . e, where the opaque element blocks spreading of the ATR feature. Indeed,

in such cases, the lax vowel E and the tense e are not tier adjacent because of the

intervening @̃. This makes TSL grammars a good fit for many harmonic patterns,

even if they exhibit blocking effects.

TSL grammar Karajá vowel harmony in ATR

Σ = {E, õ, @̃, o, e, u, O, a, @̃, ã, õ . . . b, â, d, r . . . }

T = {E, õ, @̃, o, e, u, O, a, @̃, ã, õ . . . }

R = 〈Ee, Eo, Oo, Ou, Eu . . . 〉

k = 2

Grammar 2.6: TSL-2 grammar for Karajá vowel harmony in ATR.

o b u â E n

o u E n
harmony

o b E â u n

o E u n
harmony

o r E m @̃ r e n

o E @̃ e n
harmony

Figure 2.8: Evaluation of strings buâE, bEâu and rEb@̃re by a TSL grammar capturing

Karajá vowel harmony in ATR.

See Figure 2.8 for the visualization of how the TSL grammar evaluates strings.
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The word buâE is well-formed, since the tense vowel is not preceded by any lax

vowels, however, bEâu contains the violation Eu and therefore is ruled out. In rEb@̃re,

there is a lax vowel followed by a tense one, but there is a blocker @̃ in-between them,

and its presence on the tier breaks the locality between E and e therefore allowing

such a configuration.

Buryat vowel harmony Now, let us consider a type of vowel harmony in Buryat

(Mongolian) that spreads both ATR and rounding features. All vowels within a

word must agree in ATR. Consecutive non-high vowels agree in rounding unless

there is an intervening high vowel that blocks this assimilation (Poppe, 1960). The

set of transparent items is the same for both agreements: it includes /i/ and all

consonants (van der Hulst and Smith, 1987; Skribnik, 2003; Svantesson et al., 2005).

(27) Or-O:d ‘enter-perf’

(28) Or-U:l-a:d ‘enter-caus-perf’

(29) to:r-o:d ‘wander-perf’

(30) to:r-u:l-e:d ‘wander-caus-perf’

(31) mOrin-O: ‘horse-poss’

(32) o:rin-go: ‘group-poss’

Examples (27-32) illustrate the harmony using causative and perfective suffixes.

The causative suffix -U:l (-u:l) has its vowel specified as high, therefore it agrees

with the stem only in ATR. A non-high vowel of the perfective affix -a:d (-O:d, -e:d,

-o:d) agrees with the preceding segment in ATR and, if that segment is non-high,

in rounding. In (27), the non-high perfective affix agrees with the non-high root

vowel in ATR and rounding: both vowels are lax and rounded. But adding the

high causative affix in-between them, as in (28), results in the blocking of the labial

spreading: the perfective affix no longer agrees with the stem in rounding, because

they are separated from each other by the intervening high vowel. Examples (29-30)

show the same effect for the tense roots, and (31-32) demonstrate the transparency
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of the vowel /i/.

All vowels except /i/ harmonize, and therefore in this case, T = {a, e, O, o, U,

u}. For example, the tier image of to:ru:le:d is oue.7 To create a list of tier

restrictions, we need to understand what sequences of harmonizing vowels need

to be ruled out. First, such a TSL grammar includes all bigrams where vowels

disagree in tense because the tense harmony cannot be blocked by anything. It

rules out 18 tier restrictions of the type [αtense][-αtense], i.e. Oo, oO,Uu, uU, etc.

Then, we enforce the agreement of tier-adjacent non-high vowels by prohibiting

bigrams such as [−high, αround][−high, −αround]. It rules out 8 combinations

such as Oa, aO, eo, and others. Finally, we block rounded vowels from following

high vowel, i.e. [+high][−high, +round]. That results in prohibiting UO, uo, uO,

and Uo. In such a way, we encode Buryat vowel harmony in ATR and rounding

using a TSL grammar in 2.7.

TSL grammar Buryat vowel harmony in ATR and rounding

Σ = {a, b, t, o, O, e, d, l, . . . }

T = {a, e, O, o, U, u}

R = 〈Oo, oO, Uu, uU. . . Oa, aO, eo, oe, ao . . . UO, uo, uO, Uo〉

k = 2

Grammar 2.7: TSL-2 grammar for Buryat vowel harmony in ATR and rounding.

Figure 2.9 shows that the tier images of to:ro:d and to:ru:le:d are oo and oue,

respectively. These tiers are well-formed: both words are tense, and in both cases,

the second vowel inherits its rounding feature from the first non-high vowel,

however, its value cannot be passed from a high vowel to a non-high one. The

word to:re:d is illicit since its tier image oe is prohibited: vowels must agree with

the preceding non-high vowel in rounding. The form to:ru:lO:s is also ruled out,

since its tier ouO contains the prohibited bigram uO, since O cannot inherit its
7The length of vowels is ignored since it is not relevant for the rules of the harmony.
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rounding value from the preceding high vowel u, and they also disagree in ATR.

In such a way, TSL grammar captures a pattern where a certain set of elements

exhibits a long-distance dependency.

o t o: r o: d n

o o o n
harmony

o t o: r e: d n

o o e n
harmony

o t o: r u: l e: d n

o o u e n
harmony

o t o: r u: l O: d n

o o u O n
harmony

Figure 2.9: Evaluation of strings to:ro:d, to:ru:le:d, to:re:d and to:ru:lO:s by a TSL

grammar capturing Buryat vowel harmony in ATR and rounding.

Apart from the long-distant patterns, TSL grammars can easily capture local

dependencies since they are a proper extension of SL languages, as defined in

Secion 2.1.2. If a purely local dependency such as obstruent word-final devoicing

or obstruent cluster voicing assimilation is expressed via a TSL grammar, its tier

alphabet T will be the same as Σ.

As of the patterns discussed above, the Tuareg sibilant harmony in voicing and

anteriority can also be described by a TSL grammar. In this case, the tier includes

all sibilants. However, a similar harmony of Imdlawn Tashlhiyt, where only the

voicing assimilation can be blocked by voiced obstruents, is not TSL. The

anteriority harmony cannot be blocked, and the appearance of the voiced

obstruents on the tier would break the locality relation between the sibilants. The

absence of the voiceless obstruents on the tier, however, makes it impossible to

model the blocking of the voicing harmony. This creates two sets of items

involved in a long-distance dependency: sibilants that are relevant for the

anteriority harmony, and both sibilants and voiceless obstruents that are involved

in the voicing harmony. It would thus require two tiers to capture the Imdlawn

Tashlhiyt pattern; see McMullin (2016) and Aksënova and Deshmukh (2018) for
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the discussion of harmonies in more than a single feature, and tier properties of

those harmonies.

Similarly, it is impossible to express a UTP generalization “no low tones

in-between high tones” using a TSL grammar. Both L and H tones are important

for the pattern, but including them both on the tier would make it impossible to

notice the HLH configuration: the presence of the additional Ls, such as in

HHLLLLLLH, makes the dependency non-local.

To sum up, TSL languages capture long-distance dependencies that can

potentially include blocking or licensing effects. However, several long-distant

assimilations cannot be expressed by a single TSL grammar if they affect different

sets of segments.

Formal definition

TSL languages are a proper extension of the SL ones, but the k-local constraints

are imposed on the tier symbols T ⊆ Σ. De Santo and Graf (2019) define tier-

locality using the notion of the erasing function E, also called the projection function.

Its purpose is to delete all symbols that are not included in the tier alphabet T .

Given some string σ ∈ Σ, the erasing function ET maps σ to itself if σ ∈ T and

to ε otherwise. In such a way, under the erasing function, a tier image of a word

w = σ0 . . . σn is obtained by substituting non-tier elements σ 6∈ T by ε.

Definition 2.1.7 (TSL languages and grammars)

A language L is tier-based strictly k-local (TSL-k) iff there exists a tier T ⊆ Σ and a finite

set S ⊆ Fk(ok−1T ∗nk−1) such that

L = {w ∈ Σ∗ : Fk(ok−1ET (w)nk−1) ∩ S = ∅}

Additionally, S the set of forbidden k-factors on tier T , and 〈T, S〉 is a TSL-k grammar.

De Santo and Graf (2019) show that a language L is TSL iff it is strictly k-local on

tier T for some T ⊆ Σ and k ∈ N. Indeed, SL properties such as suffix substitution
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closure (see the definitions in 2.1.3) can be generalized, as was done by Lambert and

Rogers (2020). For example, a language x∗a∗x∗b∗x∗ is not SL since it is not closed

under suffix substitution. However, if only a and b are included in the tier alphabet,

it becomes TSL-2, with the shape of the tier restricted to a∗b∗.

In their paper, Lambert and Rogers (2020) show how to construct a DFA for a

given TSL grammar. Namely, they start by encoding every allowed TSL-k factor in

its own automaton, uniting all the automata obtained this way, and then adding

loops reading non-tier symbols to every state. In such a way, a TSL-representing

DFA is a DFA expressing the local restrictions on the tier symbols, and looping on

the non-tier ones.

2.1.6 Multiple long-distant dependencies with blocking as MTSL

languages

Multi-tier strictly local (MTSL) grammars are conjunction of several TSL

grammars. A language of an MTSL grammar is the intersection of languages of

multiple TSL grammars (De Santo and Graf, 2019). An MTSL grammar lists k tier

alphabets T1 . . . Tk, and for every tier alphabet Ti, there is a corresponding set of

restrictions Ri. A string is well-formed with respect to a given MTSL grammar if it

is well-formed on every tier.

Intuitive definition

Imdlawn Tashlhiyt sibilant harmony exhibits a blocking effect for only one feature

out of two that are spreading (voicing and anteriority). In this subsection, I show

that this pattern is MTSL.

Imdlawn Tashlhiyt Consider the regressive sibilant harmony in Imdlawn

Tashlhiyt discussed earlier in 2.1.4. Sibilants in that language agree in voicing and

anteriority. For example, in zbruz:a ‘caus-crumble’, both sibilants are voiced and
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anterior, and in sas:twa ‘caus-settle’, they are voiceless and anterior, in SfiaSr

‘caus-be.full.of.straw’, they are voiceless and non-anterior. However, while the

anteriority harmony cannot be blocked by anything, the voicing harmony can be

blocked by intervening voiceless obstruents such as X, k or q, resulting in the

well-formedness of words such as smSazaj ‘caus-loathe.each.other’.

This pattern is not SL, SP or TSL. It is not SL since it involves a long-distance

dependency. An SP grammar cannot capture it, either, because it cannot model

blockers. A TSL grammar is not a good fit either: both sibilants and voiceless

obstruents need to be present on the tier to express the voicing harmony; however,

the presence of non-sibilants on the tier breaks the tier locality required to model

the anteriority assimilation. More than a single tier is required to model this

generalization.

The power of MTSL grammars allows projecting multiple tiers, and this helps

to model the Imdlawn Tashlhiyt pattern. Sibilants and voiceless obstruents are

projected on one tier, let us call it Tvoice, whereas only sibilants are visible on the

second tier Tant. The tier capturing the voicing harmony restricts all combinations

of sibilants disagreeing in voicing (sz, zs, SZ, ZS), and also voiced sibilants followed

by voiceless obstruents (zk, zf , zX, etc.). On the tier of anteriority, the

combinations of sibilants of different anteriority are not allowed (sS, zS, Ss, etc.).

The obtained grammar is summarized in 2.8.

This MTSL grammar correctly models the generalization behind the Imdlawn

Tashlhiyt pattern. Ill-formed strings such as Zbruz:a are illicit because the tier of the

anteriority harmony contains a prohibited bigram Zz. The combinations of sibilants

that agree in voicing are allowed on that tier, and it is the case in well-formed words

such as smSazaj, where S blocks the voicing agreement. Voiced sibilants cannot

precede voiceless obstruents, so forms such as zmSazaj are ruled out on the tier of

voicing by the restriction zS. Figure 2.10 visualizes the discussed examples.

MTSL grammars model several agreements within the same language, even
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MTSL grammar Imdlawn Tashlhiyt sibilant harmony in voicing and anteriority

Σ = {a, b, m, u, g, r, s, z, S, Z, è, k, f, X, q, . . . }

Tant = {s, z, S, Z}

Rant = {sS, zS, Ss, Sz, sZ, zZ, Zs, Zz}

Tvoice = {s, z, S, Z, è, k, f, X, q}

Rvoice = {sz, zs, SZ, ZS, zè, zk, zf, zX, zq, Zè, Zk, Zf, ZX, Zq}

k = 2

Grammar 2.8: MTSL-2 grammar for Imdlawn Tashlhiyt sibilant harmony in voicing

and anteriority.

when they target different sets of segments. Interestingly, those sets are either in

the set-subset relation, or are disjoint, but never only partially overlap. Imdlawn

Tashlhiyt discussed in this section is an example of a harmony where the tier

alphabets are in the set-subset relation. In Bukusu (Bantu), vowels agree in height

along with the assimilation of nasals in height, therefore exemplifying the case of

the disjoint tier alphabets (Odden, 1994; Elmedlaoui, 1995; Hansson, 2010a).

Aksënova and Deshmukh (2018) summarize this restriction and propose its

possible explanation.

Formal definition

The language at the intersection of several TSL grammars can be viewed as a single

grammar projecting multiple tiers, i.e. a multi-TSL, or MTSL grammar (De Santo

and Graf, 2019).

Definition 2.1.8 (MTSL languages)

An n-tier strictly k-local (n-MTSLk) language L is the intersection of n distinct TSL-k

languages (k, n ∈ N).
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o z b r u z: a n

o z z n

o z z n

anteriority

voicing

o Z b r u z: a n

o Z z n

o Z z n

anteriority

voicing

o s m X a z a j n

o s z n

o s X z n

anteriority

voicing

o z m X a z a j n

o z z n

o z X z n

anteriority

voicing

Figure 2.10: Evaluation of strings zbruz:a, Zbruz:a, smSazaj and zmSazaj by a MTSL

grammar capturing Imdlawn Tashlhiyt sibilant harmony in voicing and anteriority.

Since the language of an MTSL grammar is the intersection of several TSL

languages, one can imagine a construction of the corresponding DFA by

intersecting several DFAs representing those TSL languages. According to

Lambert and Rogers (2020), it is possible to create DFAs for any languages

definable by Boolean combinations of SL, SP, and TSL automata. Consequently, it

includes MTSL languages.

2.1.7 Unattested patterns

Interestingly, none of the subregular language classes mentioned above express

such theoretically possible but unattested patterns as first-last harmony, where

the first vowel of the word needs to harmonize with the last one, and some others

(Lai, 2015; Avcu, 2018).

First-last harmony In a prosodic word, the first vocalic segment harmonizes with

the last one.

Majority harmony In a prosodic word, if a majority of vowels are underlyingly

fronted, all vowels acquire the fronting feature; otherwise, they all become back.

Sour grapes harmony In a prosodic word, features A and B are spreading.
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However, if some of the spreadings are blocked, no spreading applies.

While the typological explorations of harmony systems suggest that this is due

to the computational limitations (Heinz and Lai, 2013), there could be other reasons

as well. For example, there is a possibility that such systems cannot evolve naturally

in human languages (Blevins, 2004). More research is needed to understand the

nature of the restrictions on natural language patterns, but the results supporting

the strong subregular hypothesis suggest that all attested patterns in phonology

can be captured by means of subregular languages.

Of course, the accessible typological data is limited, and therefore it is difficult

to verify some of the subregular predictions. However, relying on the available

knowledge is necessary to build the initial conceptions about the system of rules

behind natural languages. Only after the initial assumptions are made, they can be

improved, and, ultimately, lead to discoveries.

2.1.8 Models of well-formedness conditions: summary

Subregular grammars describe well-formedness conditions imposed on words in

natural languages. In this section, I focused on SL, SP, TSL, and MTSL grammars

since they capture a vast majority of phonological patterns. SL grammars capture

only local phenomena, therefore they are a good fit for word-final devoicing and

obstruent cluster voicing assimilation. SP grammars generalize long-distance

dependencies by prohibiting certain orders of elements, thus they are a good fit

for harmonies without blockers and unbounded tone plateauing. Only a certain

subset of elements of the alphabet is projected on a tier by TSL grammars,

therefore they capture a long-distance dependencies locally by ignoring irrelevant

segments. This allows them to model a harmony that can potentially involve

blockers. Finally, MTSL grammars project several tiers, and this helps to represent

several independent yet simultaneous harmonies. Neither of these 4 classes is

powerful enough to encode such theoretically possible yet typologically
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unattested patterns as first-last harmony, as Section 2.1.7 shows. In such a way,

these subregular grammars can capture most of the dependencies imposed by

phonological well-formedness conditions.

Some known natural language patterns, however, require powers of different

subregular language classes. Among them, there is a pattern of Sanskrit

/n/-retroflexion and Yaka harmony triggered by local conditions (Walker, 2000;

McMullin, 2016; Karakaş, 2020). IO-TSL and IBSP subregular language classes can

models those cases (Graf, 2017b, 2018a).

Later, in chapter 3 of this dissertation, I discuss several subregular patterns and

show how the corresponding grammars can be learned from the real data.

2.2 Modeling transformations

The previous section explored modeling of natural language well-formedness

conditions using subregular languages. Here, I discuss formalizing and modeling

transformations, or rewrite rules, that apply to underlying representations and

yield corresponding surface forms. Namely, I demonstrate that subsequential

finite-state transducers can be employed to model transformations, and discuss

their sub-types. Subsequential mappings are a subclass of the rational mappings,

which in turn are a limited kind of regular functions, which entails that

subsequential functions are subregular, too.

2.2.1 Formalizing transformations

Let us start with a concrete example of a rewrite rule in natural language

phonology, and how it can be expressed with finite-state machinery. Earlier in

Section 2.1.5, I discussed Buryat progressive vowel harmony in ATR and

rounding. Vowels agree in these two features, while consonants and /i/ are

transparent. While all harmonizing vowels are undergoers for the ATR
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agreement, high vowels U and u block the spreading of the rounding feature, thus

prohibiting the appearance of O and o. So, for example, all vowels in a word

to:r-u:l-e:d ‘wander-caus-perf’ are tense, and the high vowel u blocks spreading of

the rounding feature. In to:r-o:d ‘wander-perf’, all vowels are low, and therefore

they agree in rounding as well. Values of non-initial vowels only depend on their

height and the value of the previous vowel.

Now, consider this harmony as a set of pairs exemplifying the mapping from the

underlying representations (UR) to the surface forms (SF), see the data in (33-38).

UR → SF

(33) Or-L:d → Or-O:d ‘enter-perf’

(34) Or-H:l-L:d → Or-U:l-a:d ‘enter-caus-perf’

(35) to:r-L:d → to:r-o:d ‘wander-perf’

(36) to:r-H:l-L:d → to:r-u:l-e:d ‘wander-caus-perf’

(37) mOrin-L: → mOrin-O: ‘horse-poss’

(38) o:rin-gL: → o:rin-go: ‘group-poss’

A UR of the initial vowel is fully specified, whereas all non-initial vowels are

only specified for the height, and therefore are denoted as Low or High. To obtain

the SFs, all L and H of the URs need to be substituted starting from the leftmost

one. The rules of this substitution are listed below.

L =



‘O’ if the previous harmonizing vowel is ‘O’

‘a’ if the previous harmonizing vowel is ‘a’ or ‘U’

‘o’ if the previous harmonizing vowel is ‘o’

‘e’ if the previous harmonizing vowel is ‘e’ or ‘u’


H =

‘U’ if the previous harmonizing vowel is ‘O’, ‘a’ or ‘U’

‘u’ if the previous harmonizing vowel is ‘o’, ‘e’ or ‘u’


In order to express this process in formal terms, we can build on the notion of

finite-state automata (FSAs) we encountered in Section 2.1.1. FSAs are defined via
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a finite number of states and transitions between them. Those transitions are

annotated with symbols, and strings are read by following the corresponding

transitions. If such transitions exist and the last portion of the string brings the

machine to the final state, the string is accepted, i.e. considered well-formed with

respect to the rules encoded by the FSA. Otherwise, the string is rejected. In such a

way, an FSA reads a string and evaluates its well-formedness.

The transitions of the FSA have the following shape: qa
b−→ qb. Such a transition

indicates that if the FSA is in state qa and encounters a b, it switches into the state

qb. The core difference of a finite-state transducer (FST) is that it writes an output

string while reading the input string (Schützenberger, 1961). Transitions of the FST

indicate what portion of the input is read, and what is added to the output string,

also called the translation. For example, the transition qa
b:x−→ qb means “to go from qa

to qb, read b and write x”. Consider a simple example of an FST in Figure 2.11. While

FSAs are functions mapping strings to boolean values, FSTs map strings to strings.

0start 1

a : c

b : dd

Figure 2.11: An example of the FST.

A transducer in Figure 2.11 accepts strings that start with a and alternate a and b.

Every time a is read, c is written, and every time b is read, dd is written. It translates

aba as cddc, and abab as cddcdd. Figure 2.11 does not indicate whether a state is final.

This is because I will focus exclusively on rational transducers, in which all states

are final.

We can construct an FST mapping Buryat URs to the corresponding SFs, as

depicted in Figure 2.12. For simplicity, N represents all elements that are not

involved in the harmony – consonants and the transparent vowel /i/. Such a

transducer has 5 states, with q0 being the initial state. Every state has a loop N :N
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on it, which means that the irrelevant symbols for the harmony are left as is and

do not move the machine to another state. The notation N :N is a shorthand for

many different loops of the form x : x, y : y, z : z, etc. where the symbols on the

transitions are irrelevant for the process the FST encodes. If the initial vowel is e or

u, it moves the machine to state q1, and all the following low and high vowels are

rewritten as e and u, respectively. If the initial vowel is o, state q2 is activated, so all

the following low vowels agree in tense and rounding, and therefore are realized

as o. However, reading a high vowel u moves the machine to q1 thus blocking the

rounding spreading. States q3 and q4 similarly encode the rounding harmony for

lax stems. In such a way, the transducer in Figure 2.12 takes a Buryat UR as input

and returns the corresponding SF as output, where the underspecified segments

H and L are rewritten with respect to the rules of the harmony.

0

start

3

4

1

2

N:N

L:a, H:U, N:NL:e, H:u, N:N

L:O, N:NL:o, N:N

a:a, U:U

O:O

e:e, u:u

o:o
H:u H:U

Figure 2.12: Transducer for Buryat vowel harmony.

For example, assume that the word OrLd is given as input. The initial O brings

the machine to the state q4, and r is rewritten as r because of the loop annotated

with N :N . The following L is now specified: the reflexive loop on the state q4
changes its value to O. Finally, d is left without modifications. The FST in 2.12
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rewrites that input form as OrOd and it is indeed the expected output, see the

example (33). Alternatively, consider the UR torHlLd. The initial vowel o brings

the machine to the state q2, meaning that all the consecutive vowels will be tense.

The following underspecified vowel is high, so it is rewritten as u. Reading that

high vowel moves the FST to q1. The spreading of the rounding feature is blocked,

and given that the following vowel is low, it is realized as e. This results in the

translation toruled, and the example (36) confirms it. In such a way, FSTs model

phonological processes that change URs to the corresponding SFs.

2.2.2 Subsequential mappings

As we saw in Section 2.1.1, well-formedness conditions in phonology are

overwhelmingly regular, and the same seems to hold for phonological mappings

(Johnson, 1972; Koskenniemi, 1983; Kaplan and Kay, 1994). A mapping is regular

iff it can be represented by a (not necessarily rational) FST, as we did with Buryat

vowel harmony in Figure 2.12.

Similar to the results discussed in the previous sections, resent research shows

that phonological mappings also do not require the full power of regular

languages. Instead, subsequential mappings, and in particular the very limited

subtypes of input strictly local and output strictly local transformations were

shown to be a good fit for natural language phonological and morphological

processes (Chandlee, 2014; Chandlee and Heinz, 2018); they will be further

discussed in Section 2.2.4. Therefore, here, as well as in Chapter 4, I focus on

subsequential transducers as a formal model of rewrite rules in language.

Note that there is also a closely related class of sequential mappings, and the

terminology in the literature is unfortunately not consistent. Traditionally,

sequential mappings are a subclass of the subsequential mappings. More recently,

it has been argued that this terminology is confusing, and the terms should be

switched: the superclass should be called “sequential” rather than
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“subsequential”, and the subclass should be called “subsequential” instead of

“sequential”. This has made it very difficult to discern which class an author is

referring to with these terms. Following Roche and Schabes (1997) and de la

Higuera (2010), I adopt the modern terminology where the subsequential

mappings are a subclass of the sequential mappings. A sequential FST reads

symbols of the input string one by one. Crucially, for every input symbol, there is

at most one transition outgoing from any state of such FST that reads that symbol.

Apart from inheriting properties of the sequential class, a subsequential machine

also implements a state outputting function that allows for the final portion of the

translation to be generated at the end of the parse, depending on the state in

which the FST stopped after reading the last input symbol. So, for example, the

transducer in Figure 2.12 is sequential, but not subsequential, since the states do

not have the state outputting function implemented. Since all sequential machines

are rational, all of their states are accepting.

In Section 2.1.3, I described the pattern of word-final devoicing in Russian,

where voiced obstruents are realized as voiceless at the end of the word. For

example, lob ‘forehead’ is pronounced as lo[p], and ljod ‘ice’ as ljo[t]. For

simplicity, assume that all voiced obstruents are encoded as B, all voiceless ones

are P , and other segments that are not relevant for the process of word-final

devoicing as N . The main rule of the target transducer is then to re-write all

word-final Bs as P s. Here, I am using a simplified alphabet for the sake of

simplicity of the pattern representation. However, further, in Section 3.4, I will

show that the choice of alphabet has an effect on what constraints are learned

from the data. In such a way, Figure 2.13 shows a subsequential FST for Russian

word-final devoicing. This FST takes advantage of the subsequential property of

having the state outputting function that appends P to the end of the word if the

reading of the input string was completed in the state q1.

Consider how the transducer in Figure 2.13 rewrites the Russian word pedagog
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0 : εstart 1 : P

P:P

N:N

B:ε

N:BN, P:BP

B:B

Figure 2.13: Subsequential FST for word-final devoicing.

‘pedagogue’. This word corresponds to the sequence PNBNBNB according to the

simplified representation outlined above. The FST reads symbols of that sequence

one by one starting from the initial state q0. At first, it reads P and N and outputs

the same symbols. The following B leads to the state q1, and that B is written

together with the following N when the machine moves back to the state q0. It was

delaying the output of B to make sure that only the word-final B is rewritten as P .

Finally, when the FST reads the final B, it outputs P instead by the state output of

q1, because it is the final activated state. The translation of PNBNBNB is PNBNBNP,

that corresponds to correctly rewriting pedagog as pedago[k] since [k] is the voiceless

counterpart of [g].

Chandlee (2014), and later Chandlee and Heinz (2018) show that the majority

of phonological processes can be modeled in similar ways. Chandlee (2017) later

extends these results to morphology and models different types of affixation,

word boundary processes and some types of reduplication. Other patterns that

are shown to be subregular include metathesis, epenthesis, flapping, deletion,

harmonies, and many others (Chandlee, 2014). Even some suprasegmental

processes, such as stress, seem to exhibit subregular properties (Rogers, 2018). For

a survey of vowel harmonies and their computational complexities, see (Gainor

et al., 2012). However, generalizations beyond some processes seem to require

more complexity than subregular mechanisms can provide (Dolatian and Heinz,

2018).
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Similarly, although subsequential mappings fit a large portion of natural

language patterns, there are phonological processes that are not subsequential.

For example, bidirectional feature spreadings cannot be captured by a

subsequential machine because the latter ones can read a string either left-to-right

or right-to-left: it cannot pass the value in both directions. Even though this

pattern intuitively seems to be pretty simple, two runs of a transducer are

required to capture it (Heinz and Lai, 2013). As another example, a transducer

applying the rules of UTP to the underlying tonal representations is not

subsequential either (see Sections 2.1.4 and 4.1.3): for a sequence of low tones to

become high, it needs triggers on both sides. Such mappings, however, are still

regular, namely, they are weakly deterministic and circumambient (Heinz and

Lai, 2013; Jardine, 2016a; Lamont et al., 2019).

Although it is not clear so far if subregularity is indeed a hard upper bound on

the complexity of natural language dependencies, it provides several very

valuable perspectives such as a wide empirical coverage, as well as desirable

learning properties (see Section 2.3). Patterns from as simple as word-final

devoicing (Sections 2.1.3 and 2.2.2) to as compex as the interaction of local and

long-distance dependencies (see Samala pattern in De Santo and Graf (2019)).

While subregular languages describe a variety of typologically attested patterns

and phenomena, they also predict the impossibility of patterns that are, in fact,

unattested. So, for example, subregular languages that seem to be the best fit for

linguistic patterns cannot handle first-last harmony that enforces the agreement of

the first and the last vowels within a word (Heinz and Lai, 2013). Neither can it

account for the sour grapes harmony spreads a harmonizing feature only if a

blocker is not present, see Section 2.1.7 for other examples.

As of the outliers, it is important to know the principal factors that do not allow

them to be captured by subregular means. Importantly, the linguistic analysis also

plays role in the overall computational complexity of the pattern: see, for example,
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a Noon pattern discussed in Moradi et al. (2019) that falls in different complexity

categories when analyzed under different morphological paradigms. Although the

tight upper bound of phonological and morphological dependencies still needs to

be determined, the subregular perspective can be viewed as a beam highlighting

the area of the hierarchy of formal languages that certainly needs attention due to

its interesting properties and predictions.

Playing devil’s advocate, one might argue that the perspective given by the

subregular approach can in the future turn out to be incorrect. Indeed, that can be

the case, however, history shows that the ideas that are not exactly correct but

insightful still can be a valuable trigger of scientific progress. For example, in

physics, there were many atomic models (Dalton’s, Thomson’s, Bohr’s a.o.) that

were insightful, but not always right. Although those theories are now

deprecated, they were important steps towards the discovery of the Schrödinger’s

model in 1926 that is still widely accepted nowadays. Even if the subregular

hypothesis will turn out to be too weak for natural language dependencies,

subregular models provide valuable insights into typology and cognition (Heinz

and Lai, 2013; Luo, 2017), and even human cognitive system (Rogers and Pullum,

2011; Lai, 2015; Avcu, 2018).

2.2.3 Left and right subsequential mappings

Subsequential transducers are a good fit for local and long-distance phonological

processes such as intervocalic voicing, word-final devoicing, assimilations,

harmonies, and many others. In all the examples discussed so far (Buryat vowel

harmony in Section 2.2.1 and Russian word-final devoicing in Section 2.2.2), the

transducer reads the underlying representation left-to-right, correctly capturing

the progressive feature spreading. Such transducers are left subsequential, in

contrast to right subsequential FSTs that read the input string right-to-left.

Whereas a left subsequential transducer captures progressive harmonies, it fails
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to generalize regressive ones. In the latter, the last harmonizing segment contains

the information about the feature value that needs to be spread. For example, in

Tuareg, sibilants regressively assimilate in voicing and anteriority; see Section 2.1.3

for details. The data below repeats the SFs presented in (7-11), together with the

URs, where /S/ represents the underspecified sibilant.

(39) S-@lm@d → s-@lm@d ‘caus-learn’

(40) S-@q:us@ → s-@q:us@t ‘caus-inherit’

(41) S-@nt@z → z-@nt@z ‘caus-extract’

(42) S-@m:@S@n → S-@m:@S@n ‘caus-be.overwhelmed’

(43) S-@k:uZ@t → Z-@k:uZ@t ‘caus-saw’

The right subsequential FST in Figure 2.14 implements the regressive Tuareg

sibilant harmony. For simplicity, N refers to any segment that is not a sibilant.

Every state has a loop reading N and writing the same N , therefore non-sibilants

are not affected by the harmony in any way. Additionally, the loop on the state

q0 rewrites S as s, because an underspecified sibilant is realized as /s/ if there is

no other sibilant to its right. For example, in (39), there is no sibilant in the root,

and therefore the causative prefix is realized as /s/. In other cases (40-43), /S/

agrees with the root sibilant in voicing and anteriority. For example, in (43), the

third segment from the end is Z that moves the FST to the state q4, and all following

underspecified sibilants are rewritten as Z.

Although indeed the majority of harmony processes are either

left-subsequential or right-subsequential, bidirectional harmonies require more

computational power (Heinz and Lai, 2013). For example, in Maasai, a dominant

harmony enforces the spreading of root’s ATR features to both prefixes and

suffixes (Rose and Walker, 2011). Even though for a linguist such a pattern would

not seem complicated, it requires a two-way FST to be represented. The first

left-to-right run of such an FST does not affect the value of the prefix vowels, but

rather spreads the root ATR specification onto the suffixes. Now, when the ATR
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0 : ε start

1 : ε

2 : ε

3 : ε

4 : ε

S:s, N:N
S:s, N:N

S:z, N:N

S:S, N:N

S:Z, N:N

s:s
S:S

z:z
Z:Z

Figure 2.14: Right subsequential FST for Tuareg regressive sibilant harmony.

value is known, the second right-to-left run returns to the beginning of a word,

assigning that value to the prefix vowels. Additionally, the way a pattern is

encoded highly affects its computational complexity. Apart from the string

representations, there are subregular perspectives on autosegmental tiers and

features, and new insights can come from that direction of research as well

(Chandlee et al., 2019; Chandlee and Jardine, 2019).

2.2.4 ISL and OSL mappings

In this section, I look at two different ways transformational rules can be applied

to the underlying representations. Thus, instead of discussing linguistic patterns,

I focus on the manner of the rule application. Although this section is not crucial

for understanding the following chapters, its goal is to provide a reader with an

integral perspective on the subregular modeling of transformational rules and well-

formedness conditions.

For example, consider an SPE-style rule a → b/a a from (Chandlee, 2014).

There are two ways it can be applied. Given the UR aaaaa, the simultaneous

application of this rule to all positions yields the SF abbba. However, if this rule

was applied step-by-step, the obtained SF would be ababa, since the change of the
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second a to b makes the context of the third a incompatible with the one specified

by the transformation. To reflect this difference, Chandlee (2014) introduces

smaller subclasses of subsequential mappings: input strictly local (ISL) and output

strictly local (OSL) ones. The ISL functions encode simultaneous rule application

of strictly local functions, while the OSL ones reflect the iterative one. Figure 2.15

shows the relationship among left/right subsequential, ISL and OSL functions in

a simplified way; see Chandlee et al. (2014, 2015) for proofs and details.

Regular relations

Left subsequential Right subsequential
ISL

OSL

Figure 2.15: Relationship among left subsequential, right subsequential, OSL, and

ISL functions; adapted and simplified from (Chandlee, 2014).

Chandlee et al. (2014) define both ISL and OSL mappings using the notion of

tails. Tails show the dependency between the possible continuations of input

strings, and portions of the output contributed by those continuations. Formally,

tails are defined as tails(x) = {(y, v) : f(x · y) = u · v and u = lcp(f(x ·Σ∗))}, where

f is the function mapping the input strings to the corresponding outputs, · is the

concatenation operator, and lcp is the longest common prefix. For example, the

longest common prefix of abc and abde is ab, since it is the longest prefix shared by

those two strings. A slightly extended notation introduced below changes that

definition to tails( #»x) = {(y, v) : f( #»x · y) = u · v and u = lcp(f( #»x · Σ∗))}.
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Assume that Σ and Γ are (possibly different) alphabets used to represent the

strings before and after application of some rule. Additionally, strings #»x and y

belong to Σ∗, and u and v belong to Γ∗, i.e. these strings consist only of symbols

included in Σ∗ or Γ∗, respectively. A tail of the prefix #»x is a list of all pairs (y, v),

where y is a possible continuation of the input prefix #»x , i.e. #»x · y is the input string.

The corresponding to #»x ·y output string is u ·v, where u is the longest prefix shared

by all outputs corresponding to inputs starting with #»x .

As an example, let us find a list of tails of the input prefix #       »oaa in the mapping

M . Note, that only the input strings are annotated with the edges o and n.

M = (oaan, aa), (oaaan, aba), (oaaaan, abba), (oaaaaan, abbba),

(oaaaaaan, abbbba), (oaaaaaaan, abbbbba) . . .

All input strings of that mapping start with #       »oaa. The longest common prefix of

the corresponding output strings is a: for example, the second symbol is different

in aa and aba. Below, I mark the selected input prefix #       »oaa and the longest common

prefix a.

Mmarked = (
#       »oaan,aa), (

#       »oaaan,aba), (
#       »oaaaan,abba), (

#       »oaaaaan,abbba) . . .

The list of tails of #       »oaa can be computed by removing #       »oaa and a from the input

and output strings of Mmarked, respectively.

tails(
#       »oaa) = (n, a), (an, ba), (aan, bba), (aaan, bbba) . . .

The obtained list of tails implies that after observing #       »oaa, the input

continuation n introduces a to the translation, an contributes ba, and so on.

Further in this subsection, I show how the notion of tails is used to define ISL and

OSL mappings (Chandlee, 2014; Chandlee et al., 2014, 2015).
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Input strictly local mappings

The k-ISL functions encode simultaneous rule application, i.e. when a

transformational rule applied to all positions at the same time. In mapping M , for

example, a is substituted by b if it is surrounded by a in the input string. It creates

pairs such as (aaaaa, abbba): three internal a are changed to b since their context in

the input string is the same as specified by the rule a→ b/a a.

Chandlee et al. (2014) define an ISL mapping as follows. If two input strings u1
and u2 share the same k − 1-local suffix, their set of tails is identical as well.

suff k−1(u1) = suff k−1(u2)⇒ tails(u1) = tails(u2)

If the mappingM is indeed ISL, the set of tails is the same for all strings ending

with the same k − 1 local prefix. Let us assume that k = 3, since the rule targets

an item in the context of two other elements. Input strings oaan and oaaan both

have the 2-local suffix an, and that definition states that their sets of tails must be

identical as well. To confirm this, let us compare tails of oaa and oaaa.

tails(
#       »oaa) = (

#       »oaan,aa), (
#       »oaaan,aba), (

#       »oaaaan,abba) . . . =

(n, a), (an, ba), (aan, bba) . . .

tails(
#           »oaaa) = (

#           »oaaan,aba), (
#           »oaaaan,abba), (

#           »oaaaaan,abbba) . . . =

(n, a), (an, ba), (aan, bba) . . .

Their tails are indeed the same, and it confirms that the simultaneous application

of the rule a→ b/a a is an ISL function. The corresponding transducer encodes a 3-

local window reading the input string. Knowledge of the previous 2 input symbols

informs the transducer about the next action regarding the following symbol that

it reads. Figure 2.16 demonstrates these steps.
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Input: o a a a a a n
Output 1: o

Input: o a a a a a n
Output 2: o a

Input: o a a a a a n
Output 3: o a b

Input: o a a a a a n
Output 4: o a b b

Input: o a a a a a n
Output 5: o a b b b

Input: o a a a a a n
Output 6: o a b b b a

Input: o a a a a a n
Output 7: o a b b b a n

Figure 2.16: ISL application of the rule a→ b/a a to aaaaa.

Output strictly local mappings

Now, let us consider the iterative application of the same rule a → b/a a. In this

case, every time the rule is applied, it changes the form that the same rule produced

earlier, and therefore aaaaa is changed to ababa. This type of transformation can be

visualized as a 3-local window moving through the input string and rewriting the

middle item if the contexts match. The steps below show the application of the rule;

the underlined segments are the contexts, and the boxed items show how the target

element was changed. The list of pairs in M ′ shows the corresponding mapping.

o a:a aaaan → oa a:b aaan → oab a:a aan → oaba a:b an → oabab a:a n
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M ′ = (oaan, aa), (oaaan, aba), (oaaaan, abaa), (oaaaaan, ababa),

(oaaaaaan, ababaa), (oaaaaaaan, abababa) . . .

Chandlee et al. (2015) shows that such mappings are k-OSL since the previous

application of this rule affects the following one. Their definition of OSL mappings

is below, where the function f , as previously, maps its argument (input string) to

the corresponding output. For a mapping to be OSL, the following needs to be true:

if two output strings share the same k−1-local suffix, the tails of the corresponding

input strings are the same.

suffk−1(f(u1)) = suffk−1(f(u2))⇒ tails(u1) = tails(u2)

That would imply that in the mapping M ′, tails of #           »oaaa and #                  »oaaaaa are the

same because the translations of oaaan and oaaaaan share the same k − 1-local

suffix ba (those translations are aba and ababa, respectively).

tails(
#           »oaaa) = (

#           »oaaan,aba), (
#           »oaaaan,abaa), (

#           »oaaaaan,ababa) . . . =

(n, ε), (an, a), (aan, ba) . . .

tails(
#                  »oaaaaa) =

(
#                  »oaaaaan,ababa), (

#                  »oaaaaaan,ababaa), (
#                  »oaaaaaaan,abababa) . . . =

(n, ε), (an, a), (aan, ba) . . .

Indeed, since their tails are the same, this shows that the mapping is OSL. The

corresponding transducer encodes a 3-local window that keeps track of the last 2

output symbols. Based on those symbols and the current symbol it decides how
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Input 1: o a a a a a n
Output 1: o

Input 2: o a a a a a n
Output 2: o a

Input 3: o a a a a a n
Output 3: o a b

Input 4: o a a a a a n
Output 4: o a b a

Input 5: o a a a a a n
Output 5: o a b a b

Input 6: o a a a a a n
Output 6: o a b a b a

Input 7: o a a a a a n
Output 7: o a b a b a n

Figure 2.17: OSL application of the rule a→ b/a a to aaaaa.

that current symbol is changed. The iterative rule application is demonstrated in

Figure 2.17.

To sum up, k-ISL and k-OSL mappings encode dependencies affecting k-local

windows. ISL functions apply a rule simultaneously to all the positions of the

input string, whereas the OSL functions apply a rule step-by-step. While in the

former case, the changes are independent from each other, the latter uses

information about the previous change to inform the following one. Chandlee

(2014) argues that linguistic strictly local processes are ISL or OSL, and

demonstrates it using a variety of linguistic examples such as Greek fricative

deletion, English flapping, and others (Joseph and Philippaki-Warburton, 1987).
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2.2.5 Models of transformations: summary

FSTs encode regular mappings that are well-known to be a good fit for natural

language phonology and morphology (Johnson, 1972; Kaplan and Kay, 1994;

Beesley and Kartunnen, 2003). However, a particular class of functions, namely,

subsequential, includes the major part of natural language patterns. Transducers

implementing subsequential mappings read the symbols of the underlying

representations one by one and output the corresponding surface forms. This

allows one to model a wide variety of local and long-distance dependencies such

as word-final devoicing and vowel harmony. For the discussion of predictions and

outcomes of subregular and subsequential modeling, see Section 2.2.2.

It should be noted that some attested phonological processes are not

subsequential. Among them, there are circumambient pattern of unbounded

tonal plateauing and reduplication requiring the power of two-way FSTs (Jardine,

2016a; Dolatian and Heinz, 2018). Those patterns, however, are beyond the scope

of this dissertation.

In Chapter 4, I discuss results of tool-assisted learning experiments targeting

various phonological processes such as tone plateauing, local processes, and

different types of harmony systems with and without blockers.

2.3 Learning grammars from data

Previous sections showed that subregular grammars can model natural language

dependencies. However, all the previously presented grammars were constructed

manually. In this section, I discuss the possibility of building those models

automatically. It not only allows the researchers to avoid the burden of manual

grammar construction, but also gives us insights into the mechanisms helping to

discover those patters.

Grammatical inference is a sub-field of machine learning that is concerned with
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the extraction of grammars from data. As Colin de la Higuera formulates in his

book “Grammatical Inference” (2010), this field lies at the intersection of

linguistics, inductive analysis, and pattern recognition. Linguistics, and

computational linguistics, in particular, brings the core idea of the existence of a

formal grammar, or a set of rules defining a language. Language learning can then be

viewed as a process of discovering a language’s grammar by the learner. The field

of inductive inference aims at a problem of inferring the underlying grammar that

consistently predicts what is grammatical and what is not after observing a set of

elements of the language, where those elements can be strings, trees, or other

structured objects. Finally, pattern recognition describes the best model and its

properties that would explain the data; it analyzes the pattern.

If the task is to model a language, then the goal is to find a grammar that

describes that language. If the grammar is not known a priori, it might be possible

to learn its rules by observing and exploring the language. Grammatical

inference algorithms require a finite sample of data representing the target

language as input, and return a grammar hypothesis as output. Often, such

algorithms need only positive data, or, in other words, a collection of well-formed

structures of the target language. However, some algorithms require negative

data as well — in this case, a list of ill-formed words needs to be available. That

grammar solves a membership problem for that language, or, in other words, it

correctly predicts for any given string if that string belongs to the target language,

see Figure 2.18. If instead a mapping needs to be learned, grammatical inference

algorithms require a sufficient sample of the input-output pairs as input and

construct a transducer that generalizes that mapping.

The learning algorithms for SL, SP, TSL and MTSL languages, and also the

algorithm inferring subsequential mappings, will be discussed in details in

Chapters 3 and 4. These algorithms share several common properties: they all

require only positive data to find the grammar, they are fully interpretable, and
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sample

of L

language L

grammar G

grammatical inference

membership problem

Figure 2.18: Relationship between a language L and a grammar G.

work in polynomial time and data. In what follows, I explain these properties.

Indeed, learning only from the positive data is the desired characteristic, since human

learners do not have access to what is not possible in their languages: a finite

sample of well-formed examples is sufficient for extracting the pattern.

(Chomsky, 1986). Only some of the subregular languages have this property: the

full class of regular languages cannot be learned from positive data. Interpretability

of an algorithm means that both the learning process and the outcome are

transparent: it is possible to trace how the learner came to a certain conclusion,

and explain the obtained results. These learners extract grammars in polynomial

time, so they can be computed in practice. (The running time of polynomial

algorithms is nc, where n is the size of the training sample, and c is some constant

(Sipser, 2013).) Finally, learning in the limit guarantees that after a finite number of

errors, the learner will start making only correct predictions (Gold, 1967).

As a part of my dissertation, I implemented the SigmaPie package " for

working with subregular languages and mappings. It provides learners for SL,

TSL, MTSL, SP languages and subsequential mappings (Aksënova, 2020b). In

Chapter 3, I explore how well those subregular learners extract well-formedness

conditions from artificial automatically generated datasets exhibiting human
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language-like patterns such as one or more harmonies with or without blockers,

word-final devoicing, tone plateauing, and others. The training sample for those

experiments is a collection of words well-formed according to one of those

generalizations. Later in Chapter 4, I explore modeling of processes similar to the

ones listed above. In this case, the training sample contains pairs of underlying

representations and the corresponding surface forms. In such a way, I model

processes and well-formedness conditions using tools implemented as a part of

SigmaPie.

2.4 Aspects of practical applications

There were several successful applications of grammatical inference algorithms in

the previous decades. For example, Alexander Clark won the Tenjinno competition

in 2006 by using a modified version of OSTIA, a subsequential learner discussed

further in Chapter 4 (Oncina et al., 1993; Clark, 2006). Also, Chandlee et al. (2012)

explore the integration of FSA-based grammatical inference techniques into robotic

planning.

However, the subregular learners are structural and not probabilistic, and

therefore frequently, the absence of some particular configuration in the training

sample results in the algorithm failing to learn simple patterns. For instance,

Gildea and Jurafsky (1996) show that a corpus of English pronunciations is not

enough for OSTIA to generalize a rule of English flapping.

Indeed, the results of my Chapters 3 and 4 confirm that local restrictions and

gaps in the natural language data obscure the extraction of some dependencies.

This is why I mostly focused on learning sub-phenomena instead of the complex

interactions of local and long-distance dependencies found in natural language

data. Alternatively, capturing different aspects of the data can be done by

combining forces of different learners (Heinz, 2010a; Heinz and Idsardi, 2013). For

66



example, a language can exhibit tone plateauing (SP) together with a

long-distance harmony with blocking (TSL). To learn this patter, the SP and TSL

learning algorithms can be run in parallel, and the intersection of the obtained

languages yields the target language. However, future research is needed to

understand if transformations can be combined in a way that would preserve

properties such as subsequentiality.

There are other directions of research that could improve the performance of

subregular learners. For example, implementing linguistic notions such as

features can help to see the behavior of elements as groups instead of individual

segments. The initial results on integrating features and natural classes are

available in (Strother-Garcia et al., 2016; Chandlee et al., 2019). Some prior

knowledge about the shape of the data can be encoded into the learners using

methods that help to systematically exclude certain possible configurations from

consideration, as it was shown by Wellman and Henrion (1993). Also, adding

probabilities to the learning algorithms allows abandoning the “black and white”

structural approach incapable of modeling such probabilistic phenomena as

harmony fading or the occurrence of disharmonic words. Heinz and Rogers

(2010); Shibata and Heinz (2019) explore the probabilistic subregular models, and

Heinz and Koirala (2010); Vu et al. (2018) add together features and probabilities.

This chapter is setting the scene for the automatic modeling of

well-formedness conditions and transformational rules using subregular

methods. I introduced the main subclasses of subregular languages and

mappings and showed how different typologically diverse linguistic patterns can

be captured using subregular means. It is also worth noticing that subregular

classes that seem to be the best fit for linguistic dependencies are also efficiently

learnable from positive data. Moreover, the outcomes of those learning

algorithms, as well as the steps of the learning process, are fully interpretable and

67



transparent. While it requires additional research to understand if subregular

languages and mappings provide a tight upper bound on the computational

complexity of natural language dependencies, the subregular approach provides

valuable perspectives on modeling linguistic phenomena, as discussed in

Sections 2.1.2 and 2.2.2. In Chapters 3 and 4, I explore the automatic modeling of

linguistic phenomena using subregular learners.
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Chapter 3

Learning languages

Previously, I showed that different phonological and morphological phenomena

can be modeled as subregular languages. In this chapter, I demonstrate the

automatic extraction of subregular languages from linguistic data. To do so, I

employ four subregular language classes that express generalizations, including

local and long-distance dependencies such as attested and unattested harmony

systems with and without blockers, word-final devoicing, and even

suprasegmental patterns.

Indeed, local patterns can be expressed with strictly local (SL) grammars and

long-distance phenomena with strictly piecewise (SP) grammars. If a

long-distance pattern uses blockers (e.g., opaque vowels in vowel harmony), then

we use tier-based strictly local (TSL) grammars. If the language exhibits multiple

long-distance phenomena, then we may also need multi-tier strictly local (MTSL)

grammars. This perspective on morphotactics and phonotactics also rules out

typologically unattested patterns such as first-last harmony, majority harmony, or

embedded circumfixation.

In what follows, I discuss algorithms which extract SL, SP, TSL and MTSL

grammars from the data. Apart from the training sample, these algorithms

require knowing the class of the target grammar, and the locality window of that
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grammar, i.e. the length of substructures with which it operates. In other words,

we need to know the formal complexity of the target language in order to learn it

efficiently using subregular learning algorithms. Given a sufficient and

representative training sample and proper specifications of the target grammar,

the subregular learners discover the pattern in polynomial time and data.

I start by introducing the datasets that I will use throughout the chapter to

perform the learning experiments. These datasets vary from automatically

generated artificial languages to real wordlists exemplifying attested linguistic

dependencies, such as word-final devoicing in German, vowel harmony in

Turkish, and others. I then use these datasets as training samples for the

subregular learners, discuss the obtained grammars, and automatically evaluate

the predictions of those grammars based on the well-formedness of the strings

they generate. At the end of the chapter, I provide a table that summarizes the

results of the learning experiments.

The exemplified learners work exclusively with string representations. These

algorithms focus on structural properties; they are limited to non-probabilistic

algorithms which evaluate the well-formedness of input strings. As of now, I have

not implemented statistical versions of these algorithms, or algorithms which

work with non-string-based representations.

The subregular learners, scanners and sample generators are available as a

module of my Python package SigmaPie " (Aksënova, 2020b). The code of the

toolkit is provided in Appendix A. It is also available on GitHub, as well as the

code behind the implementations of the further discussed learning experiments �

(Aksënova, 2020d).
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3.1 The experimental setup

I use both artificial and natural languages to explore the performance of the SL,

SP, TSL and MTSL learners. The artificial languages imitate concrete natural

language phenomena. The learning of these artificial languages shows us if the

extraction of those patterns is possible conceptually, whereas the performance of

those algorithms on the natural language datasets shows us what is currently

possible in practice. Due to the transparency and interpretability of the subregular

learners, we can always see the path the learner took to extract the target

grammar. If the learning experiment was unsuccessful, we can always look inside

those algorithms and see what obstructed the convergence.

3.1.1 Experimental pipeline

The experimental pipeline involved 3 steps: learning, generation, and evaluation.

Learning included automatic extraction of subregular grammars from the given

training samples. I then used those extracted grammars to generate samples of

strings. Finally, during the evaluation step, I computed the percentage of the

strings from the automatically generated datasets that are well-formed with

respect to the target grammars.

Regardless of what can be considered a general practice, I am not testing the

performance of the grammars on the held out parts of the training sample. That

approach would not let us to detect the cases in which the learner

“overgeneralized” the pattern. For example, some learning experiments resulted

in the learner incorrectly converging on the empty negative grammar: such a

learner simply assumed that “anything goes”. Trivially, it will score 100% on all

the held-out data. Only by looking at the predictions of the grammar it is possible

to see if the learner generalized the language of the training sample.

The results showing the performance of the subregular models are presented
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in 3.6. Only negative grammars were employed for the experiments due to the

succinctness of their grammars.

3.1.2 Natural languages

The real data used for the experiments comes from German, Finnish and Turkish.

The German dataset is a wordlist for wordgames posted by enz � (Enzenberger,

2019). The Finnish data is taken from a collection of wordlists scraped by

douglasbuzatto � (Buzatto, 2016). The collection of Turkish words was uploaded

by Harrison et al. (2004) as a part of his project The Vowel Harmony Calculator ®.

Due to the non-probabilistic nature of the algorithms, I removed the data items

that violate the target generalizations, such as disharmonic stems. This is

necessary to evaluate the structural properties of the learners. In the future, the

availability of the probabilistic subregular learners will allow to process

disharmonic stems as well.

The target patterns exemplified by natural language datasets involved three

levels of abstraction. The raw representations contained the strings from the

wordlists; it allows us to explore the problems that the learner faces when it is

given realistic data. The masked representation is more abstract and involved

substituting all the symbols in the original data that are not relevant for the target

pattern by a single symbol of choice. It allows the learner to focus on the

generalization since all the “irrelevant” material is masked. It lets us explore if

there is enough information in the simplified strings of the language to notice the

pattern behind the behavior of the dependent elements. For example, if Turkish

vowel harmony was explored under this perspective, all consonants were masked

as x. Finally, the abstract representation represented the pattern with the highest

degree of generality, therefore compelling the learner to discover only the “core”

part of the generalization. This allows us to carefully examine the learning

process: the levels of abstraction help remove the “concreteness” of the natural
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language dependencies and focus on the general properties of the target patterns.

3.1.3 Artificial languages

I used 5 artificial language generators for the experiments in this and the following

chapters. Their code is available on GitHub � (Aksënova, 2020d). In all of these

generators, the number of strings (the default value is 10) and the length of those

strings (the default value is also 10) can be defined a priori.

The Simple Harmony Generator encodes and generates samples

demonstrating long-distance dependencies such as vowel harmony and

consonant harmony. The generator lets us define several harmonic classes, where

a harmonic class is a collection of elements that cannot co-occur within the same

well-formed word of the language. For example, if there are two harmonic classes

A = {a, o} and B = {b, p}, the well-formed words of this language can use at most

1 element of these class, unless a blocker intervenes. These classes A and B define

strings such as apappa, oppooo, bbaab, and so on; but the ones such as abbobb cannot

be produced by this generator. The blockers are defined as {f :a, s:p}, meaning

that the occurrence of f in the string allows only a to be seen after itself. Other

elements of a’s harmonic class are now prohibited, e.g., f blocks any subsequent

o. Additionally, b is prohibited after an s. This generator now produces words

such as ababbsappp and obbofbasaapp. Transparent elements can be expressed as

single-item harmonic classes, such as X = {x}; it lets x be freely inserted in

different parts of any string. Additionally, the minimal and maximal length of

every harmonic class is also parametrized (the default values are min = 1 and

max = 3), as well as the emission probability of every blocker (the default

probability is p(s) = p(f) = 0.2).

The Fake Turkish Generator is much more specialized in comparison to the

generator outlined above. It produces sequences of vowels that are well-formed

with respect to the rules of Turkish vowel harmony, with all the consonants
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simplified to a single symbol. Like that, it produces harmonic sequences such as

öxüüxeei and oaIxxxII. The “choice” of the consonant, as well as the minimal and

maximal lengths of vowel and consonant clusters, can be specified in the

generator. The Turkish dataset cannot be defined by the Simple Harmony

Generator because the same set of segments participates in two types of

harmonies (backness and rounding), and some of the vowels that are undergoers

for the backness harmony serve as blockers for the rounding one.

The Word-Final Devoicing Generator simply produces a set of strings that

follow the rule of the word-final devoicing. For this, we define a list of voiced and

voiceless segments, as well as the alphabet of the language. By default, the voiced

and voiceless segments are {b} and {p} respectively, and the alphabet of the

language is {a, b, p}. For example, this generator produces strings such as apabaa

and abbap, but never the ones such as paab.

The UTP Generator produces strings of low (L) and high (H) tones that are

well-formed concerning the unbounded tonal plateauing (UTP) generalization in

Luganda. This generalization prohibits a low tone from appearing in a string if

surrounded by high tones. For example, it produces strings such as LLHH and

LHHHL, but is incapable of generating the ones such as HHLHH and HLLLH.

The First-Last Harmony Generator generates a language with first-last

harmony. The language enforces agreement between the first and the last

elements within the string. A list of agreeing elements needs to be specified (the

default value is {a, o}), as well as the list of all other elements that can appear in

the well-formed strings of this language ({a, o, x} is the default). Strings such as

axoxoxa and ooaxo are then grammatical, but axaxxo or oaa are not. Importantly,

harmonic systems of this type are unattested in natural languages.1

1First-last harmony can be unattested due to several different reasons. It might be impossible

for such a pattern to naturally occur from language changes, or it can simply be not learnable by

humans. Lai (2015) discusses the differences between the attested and unattested harmony patterns.
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These generators were employed to produce data that was then fed to the SL,

SP, TSL and MTSL learners. The next subsection provides the detailed description

of the datasets used as training samples during the subregular experiments.

3.1.4 Target patterns

The learning experiments in this chapter target typologically widespread linguistic

patterns such as word-final devoicing, tone plateauing and harmonic systems of

different kinds. Here, I explain how I obtained the artificial training samples for

every one of these patterns. For German, Finnish and Turkish natural language

datasets, I also discuss the preprocessing steps that I did to get the data in the shape

appropriate for the experiments.

Pattern 1: word-final devoicing

The phenomenon of word-final devoicing is attested in languages such as Russian

and German. It prohibits underlyingly voiced obstruents from being pronounced

voiced at the end of the word. In German, word-final /b/, /d/, and /g/ are

realized as [p], [t], and [k] (Brockhaus, 1995). For example, the word for ‘children’

is Kinder, but its singular form is pronounced as Kin[t], i.e. the underlyingly

voiced segment is realized as voiceless at the end of the word.

For this experiment, I used a German wordlist � (Enzenberger, 2019), its

masked version, and an abstract representation of this pattern. During the

masking step, all irrelevant segments were simply represented as a, and the

abstract representation of this pattern only included 3 types of elements: voiced

obstruents (b), voiceless obstruents (p), and others (a).

Raw representation This wordlist in its original form contains 685, 618 words

written in German orthography. However, German orthography does not reflect

the process of the word-final devoicing and therefore the preprocessing of this
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corpus was necessary. It included two steps: incorporating the effect of the

word-final devoicing and filtering words that contain non-German symbols.

Firstly, I substituted every occurrence of the word-final /g/, /b/ and /d/ by their

voiceless counterparts /k/, /p/, and /d/, respectively. In total, there were 1, 599

words that end with /b/ (0.2% of the total number of words); 15, 294 words that

end with /d/ (2.2%); and 17, 098 words with a word-final /g/ (2.4%). This step

resulted in words such as Kind being changed to Kint, Rad to Rat, etc. Secondly, I

excluded all strings that use letters that do not belong to the German alphabet,

such as złoty, château, and some others. After those words were excluded, the size

of the German wordlist became 685, 147 words.

1 print(german_wfd)

2 # [’hochjagende ’, ’zugebliebener ’, ’verbricht ’, ’besuchszimmer ’, ’

beschneien ’, ...]

Masked representation The next step was to simplify German wordlist.

Namely, for the phenomenon of the word-final devoicing, segments other than

{b, p, g, k, d, t} are not important, and therefore all of them can be simply masked

as a. The rules of the masking are summarized in Table 3.1. Since none of the

words were deleted during this step, the size of that sample was the same as

before: 685, 147 words.

b, g, d ← b, g, d

p, k, t ← p, k, t

a ← a, ä, c, e, f, h, i, j, l, m, n, o, ö, q, r, s, u, ü, v, w, x, y, z, ß

Table 3.1: German: raw→ masked representation.

1 print(german_wfd_masked)

2 # [’aakaabaaaa ’, ’aakaabaaak ’, ’aakaa ’, ’aakat ’, ’aaa , ...’]

76



Abstract representation Finally, the pattern can be simplified even further to only

three classes of elements: voiced obstruents, voiceless obstruents, and items that

are irrelevant for the word-final devoicing. Let us then refer to these classes as b,

p and a, respectively. The rules of this simplification for the German alphabet are

presented in Table 3.2.

b ← b, g, d

p ← p, k, t

a ← a, ä, c, e, f, h, i, j, l, m, n, o, ö, q, r, s, u, ü, v, w, x, y, z, ß

Table 3.2: German: raw→ abstract representation.

To generate such a pattern, I used the word-final devoicing generator

previously discussed in Section 3.1.3. Like this, I obtained a sample of 1, 000

strings that represent the target pattern abstractly. The length of every word of

this sample is 10 symbols.

1 toy_wfd = generate_wfd(n = 1000)

2 print(toy_wfd)

3 # [’aaabbpbbbp ’, ’pbapbapapa ’, ’apabaappap ’, ’bbbbaabbbp ’, ’

pbbpabppap ’, ...]

Pattern 2: a single vowel harmony without blocking

The next targeted phenomenon was a simple case of a vowel harmony that does not

exhibit a blocking effect. In Finnish, vowels can be sub-divided into 3 categories:

front (ä, ö, y), back (a, o, u) and neutral (e, i). Vowels within a word must agree with

respect to their fronting or backness features, and the initial vowel controls the

spreading (Rose and Walker, 2011). The neutral vowels are transparent regarding

the harmonic process, and therefore they can occur in both types of words. For

example, a word puisto ‘park’ contains back and neutral vowels, whereas ikääntyvien

‘older’ contains front and neutral ones.
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For this experiment, I used a Finnish wordlist � (Buzatto, 2016), its masked

version, and a simplified abstract representation of this pattern. The masked

representation of the Finnish sample included masking all elements transparent

for the harmony as x, and the alphabet of the abstract pattern only included 3

elements: vowels of one harmonic class (a), vowels of another harmonic class (o),

and transparent elements (x).

Raw representation Originally, the Finnish wordlist contained 287, 699 words.

Three preprocessing steps were necessary: removing the words with non-Finnish

letters from the sample, filtering the disharmonic words, and making changes to

the representation of some letters. Firstly, I eliminated words that contain symbols

that are not included in the Finnish alphabet, such as digits and punctuations. I

also removed words such as långsamt ‘slowly’, that are in fact Swedish and

therefore use the Swedish letter å represented as } in this dataset. The behavior of

such words is not clear regarding Finnish vowel harmony. A total of 331 such

words were removed from the dataset (0.1% of all words). Then, I substituted {

and | that stand in this wordlist for ä and ö, respectively, by their more legible

counterparts A and O. Finally, I filtered the disharmonic stems such as etukäteen

‘in advance’ and juhlapäivä ‘holiday’, there were 36, 563 of such words in total

(12, 7%). 250, 805 words remained after the preprocessing steps were completed.

1 print(finnish_harmony)

2 # [’mathilden ’, ’lisAnimen ’, ’macmillanin ’, ’urquhartin ’, ’

ilmeneviksi ’, ...]

Masked representation Next, I created a dataset where every segment

transparent for the Finnish vowel harmony was masked. The vowels {ä, ö, y, a, o,

u} were left intact, whereas the other elements were rewritten as x, see the Table

3.3. The obtained dataset also contains 250, 805 words.

1 print(finnish_harmony_simplified)
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ä, ö, y ← ä, ö, y

a, o, u ← a, o, u

x ← b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, s, t, v, w, x, z

Table 3.3: Finnish: raw→ masked representation.

2 # [’xaxxixxex ’, ’xixAxixex ’, ’xaxxixxaxix ’, ’uxxuxaxxix ’, ’

ixxexexixxi ’, ...]

Abstract representation Lastly, I simplified the pattern even more by generalizing

the harmonic and transparent elements of Finnish to three classes: a for the class

of front vowels, o for the class of back vowels 2 , and x for all other elements that

make this dependency long-distant, see Table 3.4.

a ← ä, ö, y

o ← a, o, u

x ← b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, s, t, v, w, x, z

Table 3.4: Finnish: raw→ abstract representation.

To generate artificial data, I used the harmonic generator discussed in Section

3.1.3. I defined a single harmonic class A = {a, o} with X = {x} representing the

transparent elements. Any word was able to contain x, however, a and o could not

co-occur within the same word. I generated a sample of 1, 000 words that were

well-formed regarding the rules of this simplified vowel harmony.

1 generator = Harmony ({("a", "o"):"A", ("x"):"X"})

2 toy_vhnb = generator.generate_words(n = 1000)

3 print(toy_vhnb)

2a and o are both back vowels, this is just an abstraction to keep the alphabet as simple as

possible.
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4 # [’oxxxooxxxx ’, ’ooxxxooxxo ’, ’aaxxxaaxxx ’, ’oxxxxoxxxo ’, ’

xxxaaxxaxx ’, ...]

Pattern 3: a single vowel harmony with blocking

The previous example concerns the case when there is a single vowel harmony that

does not exhibit a blocking effect. However, blocking is a frequent phenomenon in

harmonic systems. Consider Assamese, where vowels regressively harmonize in

the advanced tongue root (ATR) feature (Mahanta, 2007). In the word pOlOx ‘silt’

all vowels are lax, however, when the tense suffix -uw5 is applied to that stem, all

the vowels become tense: poloxuw5 ‘fertile land’. Nasals, as well as some other

segments, block this long-distance spreading. In zOmOni ‘humorous’, lax vowels

precede the nasal n, whereas the tense one follows it. Unfortunately, I found no

available dataset exhibiting a harmony of this type. However, patterns of this type

are widespread among the languages of the world, so in this experiment, I model

the blocking effect.

Abstract representation In the harmonic system without blockers, there were 3

classes of elements: undergoers expressing one value of the harmonic feature (a),

undergoers expressing the other value (o), and segments irrelevant for the

harmony (x) that are present in the abstract representation just to make the

dependency long-distant. Now, let us model blockers that enforce some particular

value of the harmonic feature further in the string. Continuing the previous

example, let us introduce a blocker f that only allows for a to be seen after itself

thus allowing for well-formed sequences such as ooxoxofxaxa and aaxaxaffaaa.

Strings representing this pattern are automatically produced by the harmonic

generator. Its setup is similar to the one discussed in the previous experiment, but

also includes the definition of the blocker f that prohibits o after itself, i.e. only a

can be seen further in the string. The blocker together with the value that it
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a ← [+α] vowels

o ← [−α] vowels

x ← transparent elements

f ← blockers enforcing [+α] specification

Table 3.5: A harmony in [α] exhibiting blocking effect; abstract representation.

licenses must be provided to the generator as the parameter blocker. In this case,

this parameter is set to {f :a}. I generated 1, 000 strings that follow the target

pattern.

1 generator = Harmony ({("a", "o"):"A", ("x"):"X"}, blockers = {"f":"a"

})

2 toy_vhwb = generator.generate_words(n = 1000)

3 print(toy_vhwb)

4 # [’oxxxooxxxx ’, ’xxooxfaaax ’, ’aaxxxaaxxx ’, ’ofxxafxxaa ’, ’

aafaaaxaaf ’, ...]

Pattern 4: several vowel harmonies without blocking

In some languages, harmonic systems involve the spreading of more than one

feature. For example, in Kirghiz, vowels agree in fronting and rounding (Nanaev,

1950; Kaun, 1995). All vowels within a word can be of 4 types: back and

unrounded (k1z-da ‘girl-loc’), back and rounded (ot-to ‘fire-loc’), fronted and

unrounded (kim-de ‘who-loc’), and fronted and rounded (üj-dö ‘house-loc’).

Modeling this type of harmony involves increasing the inventory of the harmonic

class: now there are 4 options of feature specifications that are available for vowels

within words.

Abstract representation To have an abstract picture of this pattern, let us assume

that we are dealing with the long-distant vowel agreement in features [α] and [β].
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Then it is possible to generalize [−α,−β] vowels as a, [−α,+β] ones as e, [+α,−β]

ones as o, and, finally, [+α,+β] vowels as u. I will again use x as a transparent

element. This abstract harmony will enforce all vowels within the same word to

agree in both features [α] and [β]: as the result, only one element out of the set

{a, e, o, u} can appear in the well-formed words of such language.

a ← [−α,−β] vowels

e ← [−α,+β] vowels

o ← [+α,−β] vowels

u ← [+α,+β] vowels

x ← transparent elements

Table 3.6: A harmony in [α] and [β]; abstract representation.

Such a harmonic pattern can be encoded by extending the harmonic class of

the generator: now, instead of two elements, it includes four. 1, 000 strings of such

language were generated.

1 generator = Harmony ({("a", "o", "e", "u"):"A", ("x"):"X"})

2 toy_mhnb = generator.generate_words(n = 1000)

3 print(toy_mhnb)

4 # [’xuuuxxxuuu ’, ’xxxeeexeee ’, ’xxxaaxxxaa ’, ’xoooxooxox ’, ...]

Pattern 5: several vowel harmonies with blocking

In this experiment, I target another type of a harmonic system spreading several

features, but in this case, it also involves the blocking effect. For example, in Turkish,

vowel harmony enforces vowels to agree in backness and rounding. For backness,

all vowels within a word need to agree in this feature. However for roundness,

only high vowels acquire the rounding value of the previous vowel; therefore, the

non-high vowels are always realized unrounded in the non-initial syllables (Levi,

2001; Krämer, 2003). For example, the word son-lar-Wn ‘end-pl-gen’ exemplifies
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that a non-high vowel from the plural suffix cannot acquire a rounding feature from

the previous vowel, and therefore cannot further transmit it to the following high

vowel. However, in son-un ‘end-gen’, the high vowel is realized rounded because

it is preceded by a rounded vowel. In both words, all vowels agree in backness. In

such a system, non-high vowels have a double nature: they are undergoers for the

backness harmony, however, they are blockers for the rounding one. Thus to test

the performance of subregular models with this complex type of harmonic system,

I will be using the Turkish wordlist ® (Harrison et al., 2004).

I start by preprocessing the Turkish corpus by eliminating the words that

contain non-Turkish characters and filtering the disharmonic stems. Then I

generalize the pattern by masking all the consonants since they are irrelevant for

the harmonic pattern3. Finally, I generate an artificial dataset exhibiting Turkish

harmony.

Raw representation The wordlist that I use contains 23, 501 lexemes. However,

it also required several preprocessing steps. Firstly, I eliminated all words that

used non-Turkish characters and nonce-words, such as bungalow and lx; there

were 890 of such words (3.8% of total words). Secondly, I removed the stems that

violate the rules for backness and rounding harmony (such as koreografi and

kümülatif ). Since Turkish vowel harmony is frequently violated (Pöchtrager,

2010)4, there were 10, 545 such words (44.9%). After those forms were eliminated,

the corpus contained 14, 434 Turkish harmonizing words.

1 print(turkish_harmony)

2 # [’som ’, ’lafazan ’, ’konuk ’, ’kekti ’, ’lafzan ’, ...]

3I ignore the cases when stem-final palatalized λ starts its backness harmony domain
4It is hard to imagine a better name for a paper about Turkish disharmony than Pöchtrager’s

Does Turkish diss harmony?
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Masked representation At the next step, I masked all the symbols that are not

relevant to the Turkish harmony. Namely, all the consonants are transparent, and

therefore were substituted as x, whereas the vowels {a, e, o, ö, u, ü, i, 1} were left

intact, see Table 3.7. The obtained dataset contains 14, 434 words as well.

a, e, o, ö, u, ü, i, 1 ← a, e, o, ö, u, ü, i, 1

x ← ç, ğ, ş, b, c, d, f, g, h, j, k, l, m, n, p, r, s, t, v, y, z

Table 3.7: Turkish: raw→ masked & abstract representations.

1 print(turkish_harmony_simplified)

2 # [’xixxix ’, ’xuxx ’, ’xaaxa ’, ’xexxe ’, ’xaxIx ’, ...]

Abstract representation The vowel inventory of Turkish cannot be further

simplified: all 3 features – backness, rounding, and height – are important for the

choice of the following vowel, and this yields exactly 23 = 8 vowels. However, it is

highly likely that the Turkish data contains “accidental” gaps: some subregular

learners require to observe all symbols of the alphabet adjacent to each other to

make a decision, but this is rarely the case with natural language data.

I implemented a generator of fake Turkish, that imitates Turkish vowel

sequences and uses x as a transparent element. In this way, it is possible to be sure

that given enough data, the learner will always observe all the combinations of

elements that it needs. In this case, 1, 000 strings were not enough since the

alphabet of the artificial language is larger in comparison to the previous cases,

and the generalization is more complex, therefore I used a wordlist of 15, 000 fake

Turkish words.

1 print(toy_mhwb)

2 # [’xxOexxix ’, ’xxUUxUUx ’, ’exxiixee ’, ’iiexxxex ’, ’xuuxxuuu ’, ...]
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Pattern 6: vowel harmony and consonant harmony without blocking

There are also typologically attested cases where there are several independent

harmonies within the same language. For instance, in several Bantu languages

(Kikongo, Kiyaka, Bukusu a.o.), a vowel harmony co-occurs with long-distance

consonant assimilation. As a case study, consider Bukusu, where vowels agree in

height, and /l/ assimilates to /r/ if it is preceded by /r/ within the same word

(Odden, 1994; Hansson, 2010a). This can be demonstrated by a causative affix that

includes both a high vowel and a liquid. As a result, the affix /il/ can be realized

in four different ways: il, ir, el, and er. In teex-el- ‘cook-appl’, the affixal vowel is

low due to the low vowel in the stem, and the liquid surfaces as /l/; the version of

this affix with a high vowel is lim-il- ‘cultivate-appl’. However, if the rhotic liquid

precedes the affix, it is realized with /r/: reeb-er- ‘ask-appl’ and rum-ir-

‘send-appl’. To model this pattern, we need to imitate two harmonies: one affects

vowels, and another one targets the consonants.

Abstract representation The abstract representation of such harmonic pattern

exhibits two harmonic classes, one of them includes vowels {a, o}, and another

one includes consonants {b, p}, see Table 3.8. This language then allows for the

words such as poppooo and aaabba, but not for the ones such as babboo or opobp. As

previously, there are no transparent elements because vowels make the consonant

harmony long-distant, and vise versa.

a ← [−α] vowels

o ← [+α] vowels

b ← [−β] consonants

p ← [+β] consonants

Table 3.8: A harmony in [α] and a harmony in [β]; abstract representation.
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We can encode this pattern by increasing the number of harmonic classes. Now,

the harmonic class A = {a, o} represents vowel harmony, and B = {b, p} depicts

the consonant one. Given these specifications, I generated a sample of 1, 000 words

of such abstract harmonic language.

1 generator = Harmony ({("a", "o"):"A", ("b", "p"):"B"})

2 toy_dhnb = generator.generate_words(n = 1000)

3 print(toy_dhnb)

4 # [’bbbaaabbaa ’, ’bbooboboob ’, ’pppoopppop ’, ’appaaappaa ’, ...]

Pattern 7: vowel harmony and consonant harmony with blocking

We can also imagine a harmony that affects vowels and consonants, and

additionally exhibits a blocking effect. Although such a pattern, to the best of my

knowledge, is unattested, it is a typologically plausible one.

Abstract representation Let us build on the harmonic system discussed before,

and add one modification to it: now, the consonant harmony can be blocked. The

blocker is then represented as t, and it prohibits b to be seen after itself. This blocker

will not affect the simultaneous vowel harmony in any way, see Table 3.9. Words

such as abbabab, abataapap and oobobtoop are well-formed regarding the rules of this

harmony, but ababtab or obbotppaap are not.

a ← [−α] vowels

o ← [+α] vowels

b ← [−β] consonants

p ← [+β] consonants

t ← blocks spreading of [−β]

Table 3.9: A harmony in [α] and a harmony in [β] with blockers; abstract

representation.
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Again, it is possible to employ the harmonic generator to generate this

language. The setup is similar to the one discussed in the previous subsection,

with the blocker {t:p} introduced as well. The generated dataset contains 1, 000

strings of this language.

1 generator = Harmony ({("a", "o"):"A", ("b", "p"):"B"}, blockers = {"t

":"p"})

2 toy_dhwb = generator.generate_words(n = 1000)

3 print(toy_dhwb)

4 # [’pppoootopt ’, ’obbbtpooot ’, ’aabbbaatat ’, ’pppaapappp ’, ’

bbbtpppaap ’, ...]

Pattern 8: unbounded tone plateauing

Next, I will target the phenomenon of unbounded tone plateauing (UTP). This pattern

is observed in some Niger-Congo languages such as Luganda, where all low tones

(L) are realized as high (H) if they are surrounded by high tones. For example, tonal

sequences such as LLHH, HHLLL and LLHL are well-formed, whereas the ones such

as HLLLH are not (Hyman, 2011; Jardine, 2016a). The learner would then need to

induce that after observing a high tone followed by a low tone, the appearance of

another high tone is impossible.

Abstract representation Such a pattern required implementing a separate

generator. The output of that generator is a sample of well-formed sequences of

high and low tones in languages such as Luganda. For the subregular experiment,

I used a wordlist of 1, 000 such sequences.

1 toy_utp = generate_utp_strings(n = 1000)

2 print(toy_utp)

3 # [’HHHHH ’, ’LHHLL ’, ’LHHHH ’, ’LHHHH ’, ’HHHHH ’, ...]
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Pattern 9: first-last harmony

The final challenge for the subregular learners is the one they shall not meet:

learning a language that is neither SL, nor SP, TSL or MTSL. As an example of

one, I will be using the first-last harmony pattern discussed by Lai (2015). The

artificial pattern of the first-last harmony requires that the first element of the

word to agree with the last one, therefore considering words such as aaooxoxoa

and oxoaxo well-formed, and rejecting ones such as oxxoa. This language requires a

generator that handles more complicated dependencies than SL, SP, TSL, and

MTSL grammars can express, and therefore learners for those classes are expected

to fail to generalize patterns such as first-last harmony.

Abstract representation I used another generator to obtain a sample of this

unattested language. Its alphabet included symbols a, o, and x, and the

generalization was simplified to words can either start and end with a, or with o, but

cannot have the initial and final symbols different. A first-last harmony generator

produced a sample of 5, 000 strings that I used to show that subregular learners

indeed cannot capture this pattern.

1 first_last_data = first_last_words(n = 5000)

2 print(first_last_data)

3 # [’axoaaxaxaa ’, ’aaxaaxxxoa ’, ’ooaxaoaooo ’, ’axxoaxaaaa ’, ’

oxaoaxxxao ’, ...]

Expected results

In this section, I discuss the 9 types of patterns that I modeled using automatically

learned subregular grammars. This list exhausts the options for the modeling

possibilities by SP, SL, TSL and MTSL grammars: every one of those phenomena

can be represented by a different combination of those four subregular classes.

For example, word-final devoicing can be modeled by SL, TSL, and MTSL
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Target patterns SP SL TSL MTSL

word-final devoicing é - - -

a single vowel harmony without blocking - é - -

a single vowel harmony with blocking é é - -

several vowel harmonies without blocking - é - -

several vowel harmonies with blocking é é - -

vowel harmony and consonant harmony without blocking - é é -

vowel harmony and consonant harmony with blocking é é é -

unbounded tone plateauing - é é é

first-last harmony é é é é

Table 3.10: The expected results of the language learning experiments.

grammars; a single vowel harmony without blocking can be expressed via SP,

TSL, and MTSL grammars; tone plateauing can only be generalized as SP, first-last

harmony cannot be modeled by either of them, etc. The list of patterns and the

corresponding grammars can be found in Table 3.10.

3.2 Strictly local models

Strictly local grammars express local generalizations by listing substrings that

cannot be present in well-formed words of their languages. In linguistics, they are

employed to model local dependencies such as intervocalic voicing, consonant

cluster assimilation, or others. In this section, I show that the SL inference

algorithm is capable of automatically extracting the pattern of word-final

devoicing from the German dataset. SL grammars cannot handle long-distance

dependencies, and therefore their performance on harmonic datasets is extremely

poor.
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3.2.1 SL learning algorithm

The intuition behind the learning algorithm is that it simply assumes that every

k-gram that was not observed in the training sample is prohibited. The alphabet

of the SL grammar and its locality window need to be defined a priori. As a

pre-processing step, all words of the training sample are annotated with the start-

and end-markers o and n; this allows to distinguish word-initial and word-final

positions from any other position in the string.5 The learner records all k-grams

that are attested in the input data, therefore, constructing the positive SL grammar.

The negative SL grammar then lists all the unattested k-grams. For example, if the

alphabet is {a, b}, the locality of the grammar is 2, and the observed bigrams are

P = {oa, an, ab, ba}, the negative 2-local SL grammar is R = {on,ob, bn, aa, bb}.

The pseudocode of the k-SL learner can be found below. I is the training sample,

i.e. it contains the collection of the well-formed strings of the language. |w| refers

to the length of the word w, w[i] targets the ith character of the string w, and · is a

concatenation operator.

Algorithm 1 Extracts GSLk
from I

G← ∅

for w in I do

w← o ·w ·n

if |w| ≥ k then

for i in k . . . |w| do

G← G ∪ {w[i-k] . . .w[i]}

end for

end if

end for

This algorithm extracts a positive grammar from the data. The equivalent
5Grammars can be represented as 3 sets: a set of n-grams that can occur word-initially, a set of

n-grams that can appear word-internally, and a set of n-grams that can be word-final (Heinz, 2010a).
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negative grammar is then obtained by simply subtracting the set of allowed

k-grams from a list of all possible k-grams that can be built from the grammar’s

alphabet Σ. The positive SL grammar and its equivalent negative SL grammar

recognize the same language: L(NEG GSLk
) = L(Σk ∩ POS GSLk

), where Σk

refers to all k-long strings that can be generated based on the elements of Σ.

3.2.2 Successful experiments

Strictly local grammars are capable of expressing local dependencies, and

therefore the only experiment in which the SL learner performed very well (100%)

was for word-final devoicing. The runners-up were some cases of artificially

generated datasets of simple vowel harmonies (83 ∼ 89%) and tone plateauing

(85%), but these numbers are unsurprising given that the alphabets of those

grammars are very small and the generated strings are usually not very long;

hence, the chance of “guessing” a grammatical word is significant. The decent

performance of the SL grammars on artificial harmonic datasets comes from the

shape of the generated data itself, giving insight into the additional parameters

that need to be controlled for in the subsequent experiments. The performance of

the SL learners is extremely bad (30 ∼ 70%) on more complex cases of harmonic

systems, especially the ones that involve several harmonies.

Experiment 1: word-final devoicing This experiment involved testing the learner

using three types of training samples: artificially generated, masked German, and

raw German data. Since the pattern has a local nature, the performance of the

learner in all of these cases was 100%.

1 sl = SL(polar = "n")

2 sl.data = toy_wfd

3 sl.extract_alphabet ()

4 sl.learn()
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The first line initializes a negative SL grammar sl. The locality of the grammar

is not specified, and therefore by default it is set to 2. Then, the artificial datset for

word-final devoicing toy wfd is passed into the data attribute of the class sl. To

avoid the burden of listing the elements of the alphabet manually, I am using the

function extract alphabet that does it automatically. Finally, the last line invokes

the learning algorithm.

1 print(sl.alphabet)

2 # [’a’, ’b’, ’p ’]

3 print(sl.grammar)

4 # [(’b’, ’<’), (’>’, ’<’)]

The automatically extracted alphabet is Σ = {a, b, p}, and the set of unattested

bigrams is R = {bn,on}. The learner indeed saw that it is impossible to have

a voiced obstruent b in a word-final position. Additionally, it did not observe an

empty string in the training sample, and therefore assumed that it needs to be ruled

out as well.

1 sample = sl1.generate_sample(n = 1000)

2 print(sample)

3 # [’pbpababa ’, ’apaapa ’, ’ap’, ’bbp ’, ’bbbabpbbp ’, ...]

After the grammar was extracted, I generated a sample of well-formed strings

with respect to the rules of the learned grammar using the function

generate sample. The parameter n indicates the number of words that need to be

generated.

1 evaluate_wfd_words(sample)

2 # Percentage of well -formed words: 100%.

Then I used an evaluative function evaluate wfd words to compute the

percentage of words generated by sl that comply with the rule of the word-final

devoicing. Indeed, none of the generated words violated the target pattern.

Notice how it was possible to “look inside” the algorithm and explore the exact

generalizations that it made due to the interpretability of the subregular grammars.
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Pattern word-final devoicing

Type of data artificial data

Example of data aaabbpbbbp, pbapbapapa, apabaappap, bbbbaabbbp, ...

Learned 2-SL grammar bn, on

Generated sample pbpababa, apaapa, ap, bbp, bbbabpbbp, ...

Evaluation evaluate wfd words(sample)

Score 100%

Table 3.11: SL learning of the word-final devoicing; abstract representation.

I used a similar setup for all of the consequent experiments in what follows.

From now on, for a more succinct representation, I will represent the experimental

setup as a table.

Now, let us explore the performance of the SL learner using the masked

German dataset. From the corpus of masked German words, the SL grammar

again extracted the correct rules: none of the voiced obstruents /b/, /d/, and /g/

can appear at the end of the well-formed words. As before, all of the words

generated by this grammar are well-formed.

Pattern word-final devoicing

Type of data masked German data

Example of data aakaabaaaa, aakaabaaak, aakaa, aakat, aaa, ...

Learned 2-SL grammar bn, dn, gn, on

Generated sample btddta, gpttk, batktbtgbktbba, gatdkbgkgdp, ...

Evaluation evaluate wfd words(sample)

Score 100%

Table 3.12: SL learning of the word-final devoicing; masked representation.
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This learner was also able to extract the correct rule from the German dataset.

But in this case, the size of the learned grammar was very large: 109 bigrams. In

other words, 109 bigrams are unattested in the German wordlist. Indeed, among

others, the learner extracted the bigrams representing the word-final devoicing,

namely *bn, *gn, and *kn. Apart from the target grammar, the learner induced

lots of other unattested restrictions such as *cj, *dß, *öä, *üz and so on.

Pattern word-final devoicing

Type of data raw German data

Example of data hochjagende, zugebliebener, verbricht, besuchszimmer, ...

Learned 2-SL grammar bn, cj, cv, cw, cx, ...

Generated sample piüüdkizfhr, nzjbpcböpfbniabga...

Evaluation evaluate wfd words(sample)

Score 100%

Table 3.13: SL learning of the word-final devoicing; raw representation.

We could also explore the dataset generated by the learned grammar. It

includes words such as piüüdkizfhr and nzjbpcböpfbniabga. We can increase the

locality of the grammar, and learn the prohibited trigrams. The 3-SL grammar

generates words such as känckhacix and flaw. Finally, the 4-local grammar

generates words that look more “German”, such as Eipotfeigsucktbohnt and

luxmetie. What is the most important for the current experiment, is that all of the

words generated by this grammar follow the rule of the word-final devoicing. We

can conclude that SL grammars are capable of learning this pattern even when

facing raw data as the training sample.
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3.2.3 Unsuccessful experiments

All conducted experiments show that SL grammars were only able to successfully

extract the pattern of word-final devoicing. In this subsection, I list the results of

the experiments that showed negative results and numerically evaluate the learning

outcomes.

Experiment 2: a single vowel harmony without blocking SL grammars are

only suited to model local dependencies, and therefore the SL learner is not

expected to generalize a long-distant pattern like vowel harmony. Given an

artificial dataset, the grammar indeed learned that vowels a and o cannot be

adjacent to each other locally, so it is never the case in the strings generated by the

extracted grammar. But it does not see a problem with disagreeing vowels at a

distance from each other. Therefore in the output of the generator, we see

ungrammatical strings such as xoxaxxxxaa and oxaa. The performance of the SL

model on this task is 83%, mostly due to the learned local generalization and the

fact that the majority of the generated strings are pretty short.

Pattern one vowel harmony, no blockers

Type of data artificial data

Example of data oxxxooxxxx, ooxxxooxxo, aaxxxaaxxx, oxxxxoxxxo, ...

Learned 2-SL grammar ao, oa, on

Generated sample xoxaxxxxaa, oo, oxaa, x, xo, ...

Evaluation harmonic evaluator(sample, single harmony no blockers)

Score 83%

Table 3.14: SL learning of a single harmony without blockers; abstract

representation.

The grammar performed worse on the masked Finnish corpus, because only

72% of the generated words were grammatical. As before, it succeeded in learning
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the local version of the restriction. However, it could not generalize it thus

predicting the well-formedness of words such as aooooooxäyyöö. An SL grammar

trained on the raw Finnish data performed much worse: only 41% words that

were predicted to be well-formed by this grammar, were, in fact, well-formed. I

omit the table with those results.

Pattern one vowel harmony, no blockers

Type of data masked Finnish data

Example of data xaxxixxex, xixäxixex, xaxxixxaxix, uxxuxaxxix, ...

Learned 2-SL grammar äa, äo, äu, öa, öo, ...

Generated sample yxy, yö, uuuux, oaa, aooooooxäyyöö, ...

Evaluation harmonic evaluator(sample, front harmony)

Score 72%

Table 3.15: SL learning of a single harmony without blockers; masked

representation.

Experiment 3: a single vowel harmony with blocking Adding a blocker to the

vowel harmony pattern resulted, as previously, in the learner capturing the local

generalization, but failing to generalize it to the long-distant pattern. The

performance of the model is 89%. But again, this is mostly due to the small size of

the alphabet and the short average length of the generated strings; thus, this

increased the chances of getting a harmonizing word simply by chance.

Experiment 4: several vowel harmonies without blocking Similarly to the cases

before, when challenged with several vowel harmonies without a blocking effect,

the SL learner only captured the local version of the generalization. But in this case,

the performance of the learner is worse than with the previously discussed artificial
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Pattern one vowel harmony with blockers

Type of data artificial data

Example of data oxxxooxxxx, xxooxfaaax, aaxxxaaxxx, ofxxafxxaa, ...

Learned 2-SL grammar ao, fo, oa, on

Generated sample x, fafafxfxa, axooxo, ox, x, ...

Evaluation harmonic evaluator(sample, single harmony with blockers)

Score 89%

Table 3.16: SL learning of a single harmony with blockers; abstract representation.

grammars: indeed, there are now 4 choices of vowels instead of 2, and only one of

them can be chosen and used throughout the word. It is now harder to get the

harmonizing words “by chance”, and therefore such a model has a performance of

only 69%.

Pattern several vowel harmonies, no blockers

Type of data artificial data

Example of data xuuuxxxuuu, xxxeeexeee, xxxaaxxxaa, xoooxooxox, ...

Learned 2-SL grammar ae, ao, ua, ue, uo, ...

Generated sample xaaaa, u, oxuuxeexux, a, aaxxxu, ...

Evaluation harmonic evaluator(sample, double harmony)

Score 69%

Table 3.17: SL learning of several vowel harmonies without blockers; abstract

representation.

Experiment 5: several vowel harmonies with blocking Expectedly, SL

grammars performed even worse when trying to learn a pattern of several

long-distance assimilation among vowels, where some of these assimilations

exhibit blocking effect. The learner predicted the correct backness harmony in
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67% of the words, and the rounding harmony was correct in 70%. However,

overall, only 59% of the words predicted by the grammar were, in fact,

grammatical with respect to the rules of the Turkish harmonic system.

Pattern several vowel harmonies with blockers

Type of data artificial data

Example of data xxöexxix, xxüüxüüx, exxiixee, iiexxxex, xuuxxuuu, ...

Learned 2-SL grammar Iö, Iü, Ie, Ii, Io, ...

Generated sample öxi, oaIxüüee, IaIa, uaIaaax, ü, ...

Evaluation harmonic evaluator(sample, backness and rounding)

Score 59% overall (67% backness only, 70% rounding only)

Table 3.18: SL learning of several harmonies with blockers; abstract representation.

When given a masked Turkish dataset as input, the accuracy of the learner

increased to 70%. In the future, I would be interested in understanding why the

learner performs on masked Turkish words better than on the artificially

generated language. Only 30% of the predicted words were grammatical when

trained on the actual Turkish data.

Experiment 6: vowel harmony and consonant harmony without blocking This

experiment tests the SL learner on data showcasing two harmonies that affect

different sets of segments. The learner is not successful since the elements

participating in one harmony make the other harmony non-local, and vice versa.

As a result, it predicts the generated words correctly only in 64% of the cases.

Experiment 7: vowel harmony and consonant harmony with blocking The

performance of the SL learner on the dataset exhibiting vowel and consonant

harmonies with blocking effect is not different from the one before: only 64% of

the words generated by the grammar are well-formed.

98



Pattern vowel and consonant harmonies, no blockers

Type of data artificial data

Example of data bbbaaabbaa, bbooboboob, pppoopppop, appaaappaa, ...

Learned 2-SL grammar ao, oa, bp, pb, on

Generated sample b, p, ppp, pooobap, obbboboopp, ...

Evaluation harmonic evaluator(sample, double harmony no blockers)

Score 64%

Table 3.19: SL learning of vowel and consonant harmonies without blockers;

abstract representation.

Pattern vowel and consonant harmonies with blockers

Type of data artificial data

Example of data pppoootopt, obbbtpooot, aabbbaatat, pppaapappp, ...

Learned 2-SL grammar ao, oa, bp, pb, tb, on

Generated sample p, oobobbaaattapapot, a, aa, ota, ...

Evaluation harmonic evaluator(sample, double harmony with blockers)

Score 64%

Table 3.20: SL learning of vowel and consonant harmonies with blockers; abstract

representation.

Experiment 8: unbounded tone plateauing The phenomenon of UTP prohibits

the occurrence of low tones in-between high tones. Because this process looks at

minimally 3 segments at any time, I use a window of k = 3. However, it does not

learn this pattern. Indeed, it learns it locally, but as before, it does not induce its

long-distant nature. The performance of the generator is 85%, but it is mostly due

to frequently occurring short words and a small alphabet that contains only two

elements.
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Pattern unbounded tone plateauing

Type of data artificial data

Example of data HHHHH, LHHLL, LHHHH, LHHHH, HHHHH, ...

Learned 3-SL grammar HLH

Generated sample HHHLLH, LLHL, LHLLLH, HL, LHH, ...

Evaluation evaluate utp strings(sample)

Score 85%

Table 3.21: SL learning of unbounded tone plateauing; abstract representation.

Experiment 9: first-last harmony As expected, the SL learner fails to generalize

the pattern of the first-last harmony. Apart from this pattern not being

SL/TSL/MTSL, it involves a long-distance dependency between the beginning

and the end of the word. The sole long-distance nature makes this phenomenon

already impossible to model with SL grammars. The learner only induces that x

cannot be the first or the last symbol in the well-formed strings of that language

because all well-formed strings start and end with either a or o. The performance

of such model is 51%.

Pattern first-last harmony

Type of data artificial data

Example of data axoaaxaxaa, aaxaaxxxoa, ooaxaoaooo, axxoaxaaaa, ...

Learned 2-SL grammar ox, xn

Generated sample oxa, aaaoaxxooaoaoa, ooo, oxxo, oao, a, ooa, ...

Evaluation evaluate first last words(sample)

Score 51%

Table 3.22: SL learning of first-last harmony; abstract representation.
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3.2.4 SL experiments: interim summary

The nature of SL models is to capture local generalizations. As a result, the only

challenge that SL grammars successfully passed was learning word-final devoicing

that can be rephrased as “do not have voiced obstruents /b/, /d/ and /g/ at the

end of the word”. This experiment involved learning the pattern from 3 different

representations of data: artificially generated sample, simplified German data, and

the raw German wordlist. SL succeeded in generalizing this local pattern from all

three representations, scoring 100% on every one of them.

The rest of the experiments included different versions of long-distant

harmonies or other non-local patterns such as unbounded tone plateauing, and

unattested pattern of the first-last harmony. Needless to say, the SL learner is not

suited for those types of patterns, and therefore its average score was relatively

low. Section 3.6 shows the chart of the performance of SL models in comparison

to the results obtained by other subregular learners.

3.3 Strictly piecewise models

The previous section shows that SL grammars are not capable of modeling

long-distance dependencies such as tone plateauing and vowel harmonies of

different types. SP grammars, on the contrary, are not able to model local

generalizations. They prohibit subsequences and not substrings: if a bigram ab is

prohibited, it means that a cannot be followed by b anywhere further in the string.

For example, an SL language prohibiting ab will rule out a word baaabb but will

consider acccb grammatical. However, an SP language with the same bigram

listed in its grammar will rule out both words: in both of them, a is followed by b.

Therefore, in linguistics, SP models are used to model long-distance dependencies

that do not exhibit a blocking effect, such as some cases of harmonies and

unbounded tone plateauing.
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3.3.1 SP learning algorithm

The intuition behind the SP learner is similar to the one behind the SL induction

algorithm. But instead of recording all the attested substrings, the SP learner

memorizes all the subsequences that were observed in the training sample. In

such a way, it constructs a hypothesis of a positive grammar describing the input

data. If a negative grammar needs to be constructed instead, it generates all

possible k-local subsequences based on the given alphabet and then removes from

that set the ones that were attested in the training data. Read more about such

learners in (Heinz, 2010a).

The pseudocode of the k-SP learner is given below. It iteratively expands a set

of k-long subsequences P based on the word w contained in the training sample.

Algorithm 2 Extracts GSPk
from w

Require: |w| ≥ k

P ← {w[0] . . . w[k − 1]}

C ← ∅

for s in {w[k] . . . w[|w|]} do

for p in P do

for i in {0 . . . k − 1} do

sq ← {p[0] . . . p[i− 1]} ∪ {p[i+ 1] . . . p[|p|]} ∪ {s}

C ← C ∪ {sq}

end for

end for

P ← P ∪ C

C ← ∅

end for

return P
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3.3.2 Successful experiments

The experiments in which the SP learner performed exceptionally well were the

ones that included long-distance dependencies that cannot be blocked by

anything. Those were some of the harmonic systems and the pattern of

unbounded tone plateauing. However, in cases where the dependency was local

or a blocking effect was involved, the learner failed to capture the pattern. As a

result, the SP learner did not model the patterns of the word-final devoicing, and

even the simplest cases of harmonic systems that included a blocker.

Experiment 2: a single vowel harmony without blocking The SP learner

performed extremely well when challenged with the task of learning a single

vowel harmony pattern without a blocker. For this experiment, I used 3 different

datasets: automatically generated words imitating the harmonic pattern, masked

Finnish words, and the raw Finnish data. On all these datasets, the output of the

SP models consisted exclusively of well-formed words therefore scoring 100%.

When faced with the abstract representation of the pattern, the SP learner

extracted the grammar {ao, oa} that can be interpreted as after a occurred in the

string, o cannot be seen, and vice versa. This is exactly the correct generalization, and

therefore the output of the generator contained only well-formed words: axxaax,

xooxoo, and so on. The accuracy of such a model is 100%.

Not much changed when the learner was challenged with the masked Finnish

dataset: it observed that front vowels are never followed by back vowels in

Finnish words and vice versa. As a consequence, it extracted all the combinations

of the type [αfront][−αfront]: äa, äo, äu, and others. Even with the larger vowel

vocabulary, the performance of such a learner was still 100%.

Finally, even when the learner was given raw Finnish data, it saw the same

pattern of fronting harmony. Apart from the rules of the harmony it also

extracted the irrelevant subsequences that were never observed in the training
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Pattern one vowel harmony, no blockers

Type of data artificial data

Example of data oxxxooxxxx, ooxxxooxxo, aaxxxaaxxx, oxxxxoxxxo, ...

Learned 2-SP grammar ao, oa

Generated sample axxaax, aa, oo, ooxxxox, ooxxxo, xooxoo, ’xaxa, ...

Evaluation harmonic evaluator(sample, single harmony no blockers)

Score 100%

Table 3.23: SP learning of a single harmony without blockers; abstract

representation.

Pattern one vowel harmony, no blockers

Type of data masked Finnish data

Example of data xaxxixxex, xixäxixex, xaxxixxaxix, uxxuxaxxix, ...

Learned 2-SP grammar äa, äo, äu, öa, öo, öu, ...

Generated sample ua, xouuaxu, ooa, axu, äyxxä, a, ää ...

Evaluation harmonic evaluator(sample, front harmony)

Score 100%

Table 3.24: SP learning of a single harmony without blockers; masked

representation.

sample such as äw or wq. All of the words generated with the obtained grammar

were grammatical regarding the rules of Finnish vowel harmony.

Experiment 4: several vowel harmonies without blocking The SP leaner

correctly constructed a grammar for an artificial language where vowels

harmonize for two features, therefore creating 4 choices of vowels: [−α,−β],

[−α,+β], [+α,−β], and [+α,+β]. The obtained SP grammar that represents this

patter is au, ae, ao, ua, etc. 100% of the words generated by the learner are
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Pattern one vowel harmony, no blockers

Type of data raw Finnish data

Example of data mathilden, lisänimen, macmillanin, urquhartin, ...

Learned 2-SP grammar äq, äu, äw, öa, öo, vq, ...

Generated sample cykqäkpjprpbhftä, yesxöven, hägvgs, dtvza, ...

Evaluation harmonic evaluator(sample, front harmony)

Score 100%

Table 3.25: SP learning of a single harmony without blockers; raw representation.

harmonic and well-formed.

Pattern several vowel harmonies, no blockers

Type of data artificial data

Example of data xuuuxxxuuu, xxxeeexeee, xxxaaxxxaa, xoooxooxox, ...

Learned 2-SP grammar ae, ao, ua, ue, uo, ...

Generated sample ’a’, ’ooxooo’, ’ooo’, ’oxoxoo’, ’exexee’, ...

Evaluation harmonic evaluator(sample, double harmony)

Score 100%

Table 3.26: SP learning of several vowel harmonies without blockers; abstract

representation.

Experiment 6: several vowel harmonies without blocking The learner also

successfully learned the pattern involving two independent spreadings, such as

consonant harmony for [α] and vowel harmony for [β]. It inferred the exactly

correct rules: don’t have consonants disagree (pb, bp) and don’t have vowels

disagree (ao, oa). Again, the performance of the learner is 100%.
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Pattern vowel and consonant harmonies, no blockers

Type of data artificial data

Example of data bbbaaabbaa, bbooboboob, pppoopppop, appaaappaa, ...

Learned 2-SP grammar ao, oa, bp, pb, on

Generated sample pp, bobbbb, pppapp, ppa, ...

Evaluation harmonic evaluator(sample, double harmony no blockers)

Score 100%

Table 3.27: SP learning of vowel and consonant harmonies without blockers;

abstract representation.

Experiment 8: unbounded tone plateauing The learner also succeeded in

learning the UTP pattern. Notice, that this requires examining three elements,

since the low tones (L) are prohibited if they are in-between two high tones (H). SP

generalization HLH exactly describes this pattern and correctly rules out strings

such as HHHLLLLHH that contain the illicit subsequence.

Pattern unbounded tone plateauing

Type of data artificial data

Example of data HHHHH, LHHLL, LHHHH, LHHHH, HHHHH, ...

Learned 3-SP grammar HLH, onn, oon, ...

Generated sample HHHLL, LLL, LHHH, HH, LLLHHLLL ...

Evaluation evaluate utp strings(sample)

Score 100%

Table 3.28: SP learning of unbounded tone plateauing; abstract representation.
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3.3.3 Unsuccessful experiments

SP models failed to learn other patterns such as word-final devoicing and all cases

of harmonies with a blocking effect. Strictly local generalizations, as well as the

notion of a blocker, cannot be expressed in a strictly piecewise way. Also, as

expected, the algorithm failed to learn first-last harmony.

Experiment 1: word-final devoicing The phenomenon of word-final devoicing

cannot be expressed via SP grammars. More generally, the core notion of word-

initial and word-final markers is not relevant for SP. For example, prohibiting the

subsequence bn would rule out any word in which b is present since if the words

are annotated with the end markers, then any word containing b contains bn as

a subsequence. The extracted grammar is empty, and given that the grammar is

negative, it translates to the generalization anything goes. The learner fails to acquire

the pattern and produces well-formed strings only in 68% of the cases.

Pattern word-final devoicing

Type of data artificial data

Example of data aaabbpbbbp, pbapbapapa, apabaappap, bbbbaabbbp, ...

Learned 2-SP grammar ∅

Generated sample bapaaab, bpbpababa, pppabbpbba, bpaaap, pb, ...

Evaluation evaluate wfd words(sample)

Score 68%

Table 3.29: SP learning of the word-final devoicing; abstract representation.

Experiment 3: a single vowel harmony with blocking Strictly piecewise

constraints target subsequences at any distance from each other within a word.

Therefore, if an SP grammar prohibits oa, it will simply miss a blocker that could

license such configurations. Under the perspective of such an SP grammar, both
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strings ooxoxaa and xxooxfaaax contain oa, and therefore need to be ruled out.

However, if given a dataset of harmony with a blocker that includes words such as

xxooxfaaax, the learner assumes that the sequence oa is observed and, in fact,

possible. Since ao is not prohibited, words such as ooaa are generated by the

learned grammar. SP grammars, therefore, cannot express blockers, so the

performance of the learner on this artificial dataset is 84%.

Pattern one vowel harmony with blockers

Type of data artificial data

Example of data oxxxooxxxx, xxooxfaaax, aaxxxaaxxx, ofxxafxxaa, ...

Learned 2-SP grammar ao, fo

Generated sample fafa, oa, x, ooaa, aafxxfxaxafxffffaxfax ...

Evaluation harmonic evaluator(sample, single harmony with blockers)

Score 84%

Table 3.30: SP learning of a single harmony with blockers; abstract representation.

Experiment 5: several vowel harmonies with blocking As shown before, SP

grammars cannot model a blocking effect. Therefore they do not perform well

even on the artificial dataset exhibiting Turkish harmony, where non-high vowels

serve as blockers for the rounding harmony. The fronting harmony cannot be

blocked by anything, and therefore fronting harmony can in fact be modeled in a

strictly piecewise way. However, the violations of the rounding harmony cause

the accuracy of the predictions of the grammar to not be higher than 76%.

Since the SP learner fails on the artificial dataset, its performance is also far from

ideal on the masked and raw Turkish data. Interestingly, however, it performed

the best (89%) on the raw Turkish data, while scoring 76% percent on the masked

corpus. This case is similar to German, where the SP model performed badly on

the artificial and masked corpora (68% and 58%, correspondingly), but was able to

achieve the accuracy of 89% on the raw data.
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Pattern several vowel harmonies with blockers

Type of data artificial data

Example of data xxöexxix, xxüüxüüx, exxiixee, iiexxxex, xuuxxuuu, ...

Learned 2-SP grammar Iö, Iü, Ie, Ii, Io, ...

Generated sample ux, e, axI, ixxxix, uax, oxI, aI, ...

Evaluation harmonic evaluator(sample, backness and rounding)

Score 76% overall (100% backness only, 76% rounding only)

Table 3.31: SP learning of several harmonies with blockers; abstract representation.

Experiment 7: vowel harmony and consonant harmony with blocking This

dataset included blockers as well, therefore making it impossible to model the

target generalization using an SP grammar. This double harmonic pattern

included two types of assimilations: vowel and consonantal. The vowel harmony

cannot be blocked by anything, and therefore SP grammars model it well.

However, the consonant harmony included a blocker. Thus, the SP grammar

cannot model the consonant harmony since it predicts such ungrammatical

strings as bptottpptttp. The overall accuracy of the model is 83%.

Pattern vowel and consonant harmonies with blockers

Type of data artificial data

Example of data pppoootopt, obbbtpooot, aabbbaatat, pppaapappp, ...

Learned 2-SP grammar ao, oa, pb, tb

Generated sample bptottpptttp, ppp, obtp, o, bttoop, babpapp, ...

Evaluation harmonic evaluator(sample, double harmony with blockers)

Score 83%

Table 3.32: SP learning of vowel and consonant harmonies with blockers; abstract

representation.
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Experiment 9: first-last harmony SP grammars cannot capture the pattern of

first-last harmony. The learner extracts an empty grammar, so it allows for any

sequence of x, a and o: clearly, it does not enforce the first and the last vowels to

match. In fact, as the German final devoicing experiments show, SP grammars

cannot distinguish between word-internal and word-final/initial positions. Only

32% of the strings predicted by the learned grammar were grammatical with

respect to the rules of the first-last harmony.

Pattern first-last harmony

Type of data artificial data

Example of data axoaaxaxaa, aaxaaxxxoa, ooaxaoaooo, axxoaxaaaa, ...

Learned 2-SP grammar ∅

Generated sample oxa, aaaoaxxooaoaoa, ooo, oxxo, oao, a, ooa, ...

Evaluation evaluate first last words(sample)

Score 32%

Table 3.33: SP learning of first-last harmony; abstract representation.

3.3.4 SP experiments: interim summary

The nature of strictly piecewise grammars allows them to capture long-distant

generalizations. The SP learner thus performs incredibly well (100%) on

challenges such as single and multiple long-distance harmonies without blockers,

and also on the pattern of unbounded tone plateauing.

However, the effect of blocking cannot be expressed in an SP way since as soon

as the learner observes the disagreeing elements across the blocker, it assumes that

those elements can disagree in general. Both word-final devoicing and first-last

harmony patterns rely on the notion of being word-initial or word-final, and they

cannot be represented with a SP perspective: an SP constraint xnwould simply rule

110



out all strings where x is present. The long-distant nature of the SP generalizations

makes it impossible for them to capture local generalizations.

3.4 Tier-based strictly local models

Previous sections discussed strictly local and strictly piecewise languages. The

first ones were only able to model local dependencies, whereas the latter ones only

expressed the long-distance ones, without the ability to be sensitive to intervening

material. As a result, none of these two classes were able to handle long-distance

harmonies with blockers. The subregular class of tier-based strictly local

grammars has a way of representing long-distance constrains locally. TSL

grammars project some characters of a string on a tier therefore making elements

from that set local, and ignoring the elements that are not included in that set. For

example, a grammar with tier symbols a and b and the restriction ab rules out

words such as accccbb: its tier image is abb, and it is ill-formed since it contains the

prohibited substring ab. In this way, we get another perspective on modeling

long-distance dependencies.

3.4.1 TSL learning algorithm

To learn a TSL grammar, simply extracting factors from the data is not sufficient.

The goal is to uncover the tier alphabet, or a set of elements exhibiting a

long-distance dependency. Currently, the most powerful learner for the TSL class

is kTSLIA designed by Jardine and McMullin (2017).6 Intuitively, it initially

assumes that every symbol of the alphabet (Σ) is also a member of a tier alphabet

(T ), and then looks for evidence if it can remove that symbol from T . For an item

to be removed from T , it needs to satisfy two conditions. First, it can be freely

removed from anywhere; and second, it needs to be able to be inserted

6Its earlier versions were presented in (Jardine, 2016b) and (Jardine and Heinz, 2016).
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everywhere. This algorithm is interpretable, and learns the k-TSL class of

languages in polynomial time and data for any value of k.

Algorithm 3 Extracts GTSLk
from I

Require: a finite input sample I ∈ Σ∗, a positive integer k

L← ngram(I, k − 1)

N ← ngram(I, k)

M ← ngram(I, k + 1)

T ← Σ

for x in T do

if ∀uv ∈ L, uxv ∈ N and ∀uxv ∈M,uv ∈ N then

T ← T ∩ {x}

end if

end for

R← T k ∩ {tier(s) : s ∈ I}

return T , R

The pseudocode of this algorithm uses two auxiliary functions – ngrams and

tier, where ngrams(I, k) extracts all k-local substrings from the given set of

strings I , and tier(s) creates a tier representation of a string s. So, for example, if

the string is s = cacbcca and the tier is T = {a, b}, tier(s) evaluates to aba. Σk

stands for all k-grams that can be build using the elements of Σ. This algorithm

starts by assuming that every member of Σ needs to be included in T . Then for

every symbol x, it explores all (k-1)-grams of the observed data sample and tries

to insert x in all positions of those (k-1)-grams: like this, it yields a set of k-grams,

let us call it A. It also explores all (k+1)-grams containing x and removes x from

those therefore yielding another set of k-grams, let’s call it B. If the sets A and B

are subsets of k-grams found in the input sample, the symbol x is removed from

the tier alphabet because its behavior is not crucial for the target language. Finally,

it constructs a list of restricted bigrams R by collecting n-grams that were not
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observed in tier images of the training sample.

3.4.2 Successful experiments

TSL grammars can learn patterns in which a set of items exhibits some local or

long-distant dependency. However, when several different long-distant

dependencies are affecting different sets of elements, such as the independent

vowel and consonant harmonies, the power of TSL grammars is not enough.

Experiment 1: word-final devoicing TSL grammars are a superset of the SL ones,

and therefore it is following from the subregular hierarchy itself that TSL grammars

can express patterns that are expressible using the SL ones. I represent tiers as

tuples of the form (a, b, p)T followed by a list of restrictions that are imposed on

that tier.

Pattern word-final devoicing

Type of data artificial data

Example of data aaabbpbbbp, pbapbapapa, apabaappap, bbbbaabbbp, ...

Learned 2-TSL grammar (a, b, p)T : bn, on

Generated sample bppaapbaabp, aabbbabbp, abbpaba, a, babpp ...

Evaluation evaluate wfd words(sample)

Score 100%

Table 3.34: TSL learning of the word-final devoicing; abstract representation.

The performance of the TSL learner remained 100% on the dataset of masked

and raw German data as well, therefore I am only presenting the results of the latter

experiment. In these cases, the TSL learner learned the tier that is the same as the

alphabet of the language, thus simply learning the SL grammar.
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Pattern word-final devoicing

Type of data raw German data

Example of data hochjagende, zugebliebener, verbricht, besuchszimmer, ...

Learned 2-TSL grammar (a, b, c, d, e, f, ...)T : bn, cj, cv, cw, cx, ...

Generated sample mlqftorjoiäxäzmölnmt, nlca, uoüßmakoöräzum...

Evaluation evaluate wfd words(sample)

Score 100%

Table 3.35: TSL learning of the word-final devoicing; raw representation.

Experiment 2: a single vowel harmony without blocking The TSL learner

extracted a grammar describing a single harmony pattern without blocking from

two datasets: the masked version of Finnish harmony, and the abstract

representation of Finnish. On both representations, it performed superbly: 100%.

The abstract representation is based on an artificial language dataset. When

this is given as the input, the learner extracted the tier T = {a, o}. Notice, that it

correctly excluded x from the tier. Based on the set of unigrams of the data

{a, o, x,o,n}, it constructed a list of bigrams {xa, ax, ox, xo, xx,ox, xn}, and all

these bigrams appeared in the input sample. Then, it tried to remove x from all

observed 3-grams, and again, the obtained list of bigrams was found in the input

data. Therefore, x was considered not a tier element. This TSL grammar rules out

ungrammatical strings such as axaxxxxxoo, since the tier image of that string is

aaoo: the bigram that is seen on the tier image.

The learner also extracted the TSL grammar from masked Finnish data: it also

conjectured that x is not a tier element. On a tier of all vowels, that grammar

prohibited all combinations of vowels that disagree in backness.

However, it failed to learn the rule of the Finnish vowel harmony from a raw

data: only 42% of the words that that grammar generated, were, in fact, well-formed

regarding the rules of Finnish vowel harmony. The majority of the Finnish letters,
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Pattern one vowel harmony, no blockers

Type of data artificial data

Example of data oxxxooxxxx, ooxxxooxxo, aaxxxaaxxx, oxxxxoxxxo, ...

Learned 2-TSL grammar (a, o)T : ao, oa, on

Generated sample xaxxxaxx, xxoxxxoxxx, xxaxax, xxoxx, xxxoxxox, ...

Evaluation harmonic evaluator(sample, single harmony no blockers)

Score 100%

Table 3.36: TSL learning of a single harmony without blockers; abstract

representation.

Pattern one vowel harmony, no blockers

Type of data masked Finnish data

Example of data xaxxixxex, xixäxixex, xaxxixxaxix, uxxuxaxxix, ...

Learned 2-TSL grammar (a, o, u, ä, ö, y)T : äa, äo, äu, öa, öo, ...

Generated sample xxyyäxxyxxyxäxx, öxöäxxyxx, yäxxyxxxyxxäxöxxäxxxä, ...

Evaluation harmonic evaluator(sample, front harmony)

Score 100%

Table 3.37: TSL learning of a single harmony without blockers; masked

representation.

for the exception of l and n, were unable to be freely inserted into any n− 1-gram,

or deleted from any n + 1-gram of the data, and therefore they were not excluded

from the tier alphabet.

Experiment 3: a single vowel harmony with blocking Among the learners

discussed so far, the TSL learner was the only one that was able to learn the rules

of a single vowel harmony with blocking effect. In doing so, it achieved the

accuracy of 100%. The learned grammar correctly excluded x from the tier, and

noticed that the blocker f is crucial for this language. It prohibited disagreeing

115



Pattern one vowel harmony, no blockers

Type of data raw Finnish data

Example of data mathilden, lisänimen, macmillanin, urquhartin, ...

Learned 2-TSL grammar (a, b, c, d, e, f, g, ...)T : äq, äu, äw, öa, öo, ...

Generated sample nololdlnölllyn, tlnynlpll, leldznnleln ...

Evaluation harmonic evaluator(sample, front harmony)

Score 42%

Table 3.38: TSL learning of a single harmony without blockers; raw representation.

vowels adjacent on the tier; and if a blocker intervenes, the following vowel must

not be o. Thus this grammar correctly rules out words such as ooxxfxxo and

ooxxxxa since tiers of these strings contain the prohibited bigrams fo and oa,

correspondingly, see Figure 3.1.

Pattern one vowel harmony with blockers

Type of data artificial data

Example of data oxxxooxxxx, xxooxfaaax, aaxxxaaxxx, ofxxafxxaa, ...

Learned 2-TSL grammar (a, f, o)T : ao, fo, oa

Generated sample xxoxfx, xxa, xxxoxxoxfxxaxaxfx, xxaxaxxx, ...

Evaluation harmonic evaluator(sample, single harmony with blockers)

Score 100%

Table 3.39: TSL learning of a single harmony with blockers; abstract representation.

Experiment 4: several vowel harmonies without blocking The learner induced

that the “consonant” x is not relevant for the vowel harmony system, and it also

learned that on the tier of vowels, no disagreeing vowels can appear next to each

other. This learning outcome is therefore similar to the one of the second

experiment, but with 4 harmonic classes inferred instead of 2. This TSL grammar
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o o o x x f x x o n

o o o f o n
*ooxxfxxo

o o o x x x x a n

o o o a n
*ooxxxxa

Figure 3.1: The extracted TSL grammar evaluating strings (Experiment 3)

only generates words that are well-formed with respect to the rules of the vowel

harmony thus scoring 100% accuracy.

Pattern several vowel harmonies, no blockers

Type of data artificial data

Example of data xuuuxxxuuu, xxxeeexeee, xxxaaxxxaa, xoooxooxox, ...

Learned 2-TSL grammar (a, e, o, u)T : ae, ao, ua, ue, uo, ...

Generated sample xxxaxaxaxax, xexxxexx, xxuxx, oxoxxox, ...

Evaluation harmonic evaluator(sample, double harmony)

Score 100%

Table 3.40: TSL learning of several vowel harmonies without blockers; abstract

representation.

Experiment 5: several vowel harmonies with blocking The TSL learner

correctly built a model for a Turkish-style harmonic system. One tier is, indeed,

able to capture both spreadings at the same time. Given the tier consisting of all

the vowels, the backness harmony can be expressed by a set of constraints of the

type [αfront][−αfront] (üu, uü, ae, ea, üa, ...), and the rounding harmony that is

blocked by non-high vowels is generalized as restrictions of the shape

[αround][−high,+round] (oo, uo, eo, ...) and [αround][−αround, +high] (öi, oI, au,

...). The performance of such model is 100%.

This result is theoretically expected since, in this pattern, there are two vowel
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Pattern several vowel harmonies with blockers

Type of data artificial data

Example of data xxöexxix, xxüüxüüx, exxiixee, iiexxxex, xuuxxuuu, ...

Learned 2-TSL grammar (I, ö, ü, a, e, i, o, u)T : Iö, Iü, Ie, Ii, Io, ...

Generated sample xxöxxexx, xIxxx, axIxxx, xaxxaxx, ...

Evaluation harmonic evaluator(sample, backness and rounding)

Score 100% overall (100% backness only, 100% rounding only)

Table 3.41: TSL learning of several harmonies with blockers; abstract

representation.

harmonies happening at the same and affecting the same set of segments. If we

take two TSL grammars G1 and G2 that have the same tier alphabet but different

sets of prohibited n-grams, taking a union of the prohibited n-grams would yield

us another TSL grammar G3. Importantly, G3 generates a language that is the

intersection of the languages of G1 and G2. To re-iterate this in more linguistic

terms, two harmonies can fit on the same tier if the same sets of elements are involved in

them.

However, the learner did not perform well on the masked Turkish data. It failed

to remove x from the tier since it did not observe öü and ou adjacent to each other,

even though they are well-formed regarding the harmonic rules. Its hypothesis,

therefore, was not different from the one postulated by the SL grammar, and the

accuracy of the model is 67%.

The artificial dataset freely allowed vowel hiatus. Harmonic vowels could be

adjancent, such as in xxouxx. However, Turkish has gaps in what pairs of harmonic

vowels can be adjacent in vowel hiatus. Consequently, the performance of the TSL

learner on the raw Turkish data was even worse, namely, 30%.
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Pattern several vowel harmonies with blockers

Type of data masked Turkish data

Example of data xixxix, xuxx, xaaxa, xexxe, xaxIx, ...

Learned 2-TSL grammar (I, ö, ü, a, e, i, o, u, x)T : Iö, Iü, Ie, Ii, Io, ...

Generated sample uuxüüx, ü, Iaaxeix, xIIIIxüe, ...

Evaluation harmonic evaluator(sample, backness and rounding)

Score 67% overall (74% backness only, 74% rounding only)

Table 3.42: TSL learning of several harmonies with blockers; masked

representation.

3.4.3 Unsuccessful experiments

TSL grammars can model patterns when a single set of elements is involved in a

long-distance dependency. However, if there is more than one long-distant

process affecting different sets of elements, such as independent vowel and

consonant harmonies, one tier is not enough.

Experiment 6: vowel harmony and consonant harmony without blocking It is

impossible to model independent vowel and consonant harmonies using TSL

grammars. Vowels and consonants are involved in different long-distant

phenomena, and therefore neither of them can be removed from the tier.

However, the presence of consonants does not allow us to represent vowels in a

tier-based local fashion, and vice versa. Therefore, neither vowel nor consonant

harmony can be enforced: only 74% of the words generated by such grammar are

well-formed. This model is the same as its SL counterpart.

Experiment 7: vowel harmony and consonant harmony with blocking Since

TSL grammars failed to model the previous pattern with the independent vowel

and consonant harmonies, they also fail to learn a similar pattern with a blocking
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Pattern vowel and consonant harmonies, no blockers

Type of data artificial data

Example of data bbbaaabbaa, bbooboboob, pppoopppop, appaaappaa, ...

Learned 2-TSL grammar (a, b, o, p)T : ao, oa, bp, pb

Generated sample apapoopop, oppoobbboopppob, abab, baaaap, ...

Evaluation harmonic evaluator(sample, double harmony no blockers)

Score 74%

Table 3.43: TSL learning of vowel and consonant harmonies w/o blockers; abstract

representation.

effect. Thus the performance of the TSL grammar, in this case, is again similar to

its SL counterpart: 69%.

Pattern vowel and consonant harmonies with blockers

Type of data artificial data

Example of data pppoootopt, obbbtpooot, aabbbaatat, pppaapappp, ...

Learned 2-TSL grammar (a, b, o, p, t)T : ao, oa, bp, pb, tb

Generated sample ptopaba, btoptttpt, a, pppa, ob, ...

Evaluation harmonic evaluator(sample, double harmony with blockers)

Score 69%

Table 3.44: TSL learning of vowel and consonant harmonies with blockers; abstract

representation.

Experiment 8: unbounded tone plateauing There is no choice of a tier alphabet

that would allow a TSL grammar to capture the no H...L...H generalization. If H

and L are both present on the tier, such TSL grammar behaves like the SL one.

Otherwise either H or L needs to be omitted from the tier, but both of them are

crucially important for the generalization. Hence the pattern of UTP is neither SL

120



nor TSL. The learned grammar performs with the accuracy of 90% exclusively due

to a small alphabet and the majority of the generated strings being short.

Pattern unbounded tone plateauing

Type of data artificial data

Example of data HHHHH, LHHLL, LHHHH, LHHHH, HHHHH, ...

Learned 3-TSL grammar (H, L)T : HLH

Generated sample HHHLLH, HLL, HHLLHHLLLHLLLLLHHL, LLLLH, ...

Evaluation evaluate utp strings(sample)

Score 90%

Table 3.45: TSL learning of unbounded tone plateauing; abstract representation.

Experiment 9: first-last harmony As expected, the TSL learner cannot learn the

unattested pattern of the first-last harmony. In fact, the obtained grammar is the

same as the one proposed by the SL learner, and therefore it makes exactly the same

types of mistakes.

Pattern first-last harmony

Type of data artificial data

Example of data axoaaxaxaa, aaxaaxxxoa, ooaxaoaooo, axxoaxaaaa, ...

Learned 2-TSL grammar (a, o, x)T : ox, xn

Generated sample aaoxaxxoxao, aaxaooxa, axooaao, oxxo, ...

Evaluation evaluate first last words(sample)

Score 50%

Table 3.46: TSL learning of first-last harmony; abstract representation.
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3.4.4 TSL experiments: interim summary

A TSL learner, if given a representative sample of data, extracts a tier alphabet that

represents a set of elements involved in a long-distance dependency. If every item

of that set is also involved in another dependency, it can capture such cases as well,

as it did in case of the abstract pattern of Turkish harmony. Overall, TSL learner

succeeded in building a grammar for every pattern that exhibited either a local

dependency or a long-distance dependency among a single set of elements if given

a representative sample.

However, if there is more than a single set of items involved in different long-

distance dependencies, this cannot be modeled by TSL grammars. Therefore TSL

learner failed on a challenge that included learning separate vowel and consonant

harmonies: for those cases, one tier is not enough.

3.5 Multi-tier strictly local models

Previous two sections explore two different perspectives on modeling

long-distance dependencies. Strictly piecewise grammars prohibit subsequences

elements of which can be arbitrarily far from each other. SP models thus handle

cases of multiple long-distance dependencies; however, none of them can include

blockers. Also, SP models can only model long-distance dependencies: they

cannot handle locally bounded patterns. TSL grammars can encode local patterns

and also blocking effects; however, they are limited to a single set of items involved

in a long-distance dependency. Hence they cannot encode such cases as

independent vowel and consonant harmonies within the same language. In this

section, I explore the performance of multi-tier strictly local (MTSL) models:

namely, models that employ several TSL grammars at the same time.
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3.5.1 MTSL learning algorithm

The subregular class of MTSL grammars is a proper extension of TSL. However,

the kTSLIA algorithm introduced earlier cannot be simply extended from a single

tier to multiple ones since its initial assumption is that all members of Σ belong to a

tier alphabet: it implicitly assumes the existence of just a single tier.

Together with Kevin McMullin and Aniello De Santo, we developed the MTSL

learning algorithm MTSL2IA (McMullin et al., 2019). While there are several

approaches to learning SL, SP, and TSL languages, MTSL2IA is the first published

algorithm that tackles the problem of extracting MTSL grammars. It relies on the

assumption that we can first detect all the prohibited k-grams, and then learn a

tier for every one of them . Thus, we learn a tier for every negative bigram of the

MTSL grammar. Currently, this algorithm only works with 2-local restrictions,

and the work of extending it to k is ongoing.

Crucially, the MTSL2IA algorithm relies on the notion of a path denoted as

〈ρ1, X, ρ2〉. It can be thought of as a subsequence (ρ1 . . . ρ2) accompanied by a set

of symbols X that occurred in-between ρ1 and ρ2 in the training sample. For

example, the following paths can be extracted from a string abac: 〈a, {}, b〉,

〈a, {b}, a〉, 〈a, {b, a}, c〉, 〈b, {}, a〉, 〈b, {a}, c〉, and 〈b, {}, c〉.

Intuitively, this algorithm works as follows. At first, it detects a list of bigrams

B that is unattested in the training sample I . Then it loops over all elements of B,

and for every bigram ρ1ρ2 ∈ B, it assumes that the tier for that bigram is Σ.

Afterwards it collects a set of all paths of the form 〈ρ1, X, ρ2〉, and finds all

symbols σ ∈ Σ that can be removed from X so that the newly obtained path

〈ρ1, X \ {σ}, ρ2〉 is still attested in the list of paths of I . It then removes such σ

from a tier associated with ρ1ρ2. After all members of B were processed, the

algorithm outputs a grammar G that is a collection of all unattested bigrams with

the tiers corresponding to those bigrams; see the pseudocode above. Similarly to

the learners discussed in the previous subsections, MTSL2IA learns the grammar
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Algorithm 4 Extracts GMTSL2 from I

Require: a finite input sample I ∈ Σ∗

B ← Σ2 ∩ ngram(I, 2)

i← 1

for ρ1ρ2 ∈ B do

Ri ← ρ1ρ2

Ti ← Σ

for σ ∈ Σ ∩ {ρ1, ρ2} do

if ∀〈ρ1, X, ρ2〉 ∈ path(I) s.t. σ ∈ X, 〈ρ1, X − {σ}, ρ2〉 ∈ path(I) then

Ti ← Ti − {σ}

end if

end for

Gi ← 〈 Ti, Ri〉

i← i+ 1

end for

G← G1 ∧G2 . . . G|B|−1 ∧G|B|
return G

from a positive sample in polynomial time and data (McMullin et al., 2019).

Example Imagine having a dataset that exhibits long-distance sibilant

assimilation between S and s unless blocked by f. Additionally, it also has vowel

harmony affecting a and o. This dataset includes the following strings: saasa, SaSaa,

sooos, oSoSo, Sofos, Safas, sofoS, safaS, sfS, sfS, and so on. Of course, strings violating the

rules of sibilant (such as SaaSas or soSooa) or vowel (aSoo, sosoa) harmony are not

included in the training sample. As soon as the sample is given as input to the

learner, the learner notices the absence of bigrams sS, Ss, ao and oa. When it

explores the bigram sS, one of the paths to consider is 〈s, {a}, S〉. However, 〈s, {}, S〉

is also a valid path, so a is not a tier element for the bigram sS, and neither is o.
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When the unattested bigram ao is explored, the learner does not detect any paths

that would involve the symbols {s, S, f}. The condition of the if-statement is then

trivially satisfied, and therefore s, S and f are removed from the tier of that bigram.

A concise representation of the grammar that the learner induced is the following:

• G1 = 〈T1 = {a, o}, R1 = {ao, oa}〉;

• G2 = 〈T2 = {s, S, f}, R2 = {Ss, sS}〉.

However, the tier-per-bigram assumption comes with a caveat. It results in the

algorithm failing to capture patterns where the same bigram is present on several

different tiers. For example, consider an MTSL grammar where the bigram xx is

prohibited on two tiers: T1 = {x, a} and T2 = {x, b}. Instead, the MTSL2IA learner

would converge on the incorrect tier T = {x, a, b}. Tier configurations that cannot

be learned by this learner is a sub-case of a general case when two tier alphabets

have a non-empty intersection that does not overlap with either of the alphabets.

Interestingly, we show in Aksënova and Deshmukh (2018) that in natural

languages, if two agreements require two different tiers, those tiers never overlap

unless one of them is properly contained within the other one. Therefore if

applied to phonological data, this learner could be more efficient in comparison to

the learner that would also explore the typologically unattested class of tier

configurations.

As noted previously, this algorithm learns 2-local MTSL grammars, but we are

currently working on extending it to arbitrary k. Intuitively, this can be done by

extending the notion of a path. Its shape could be generalized as

〈ρ1, X1, ρ2, X2, . . . ρn−1, Xn−1, ρn〉, where ρ1ρ2 . . . ρn is a k-long sequence, and Xi is

the set of symbols that occurred in-between ρi and ρi+1 in the training sample.

The condition of the if-statement needs to also be adjusted to accommodate for

longer paths; but otherwise, the logic of the algorithm stays the same.
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3.5.2 Successful experiments

In this subsection, I show that MTSL grammars can be used to successfully model

all of the discussed types of local and long-distant dependencies. Even when

challenged with the raw data of German, Finnish, and Turkish, the MTSL learner

extracts the corresponding MTSL grammars with the impressive accuracies of

100%, 100%, and 95%, correspondingly. The patterns of unbounded tone

plateauing and the first-last harmony are not MTSL in their nature, and therefore

cannot be learned using the MTSL inference algorithm.

Experiment 1: word-final devoicing Since MTSL grammars are a proper

superclass of TSL grammars, and, consequently, of the SL ones, the MTSL

learning algorithm acquires the pattern of word-final devoicing. The performance

of the MTSL model on the raw German dataset is 100%, as well as on the other

representations of that pattern.

Pattern word-final devoicing

Type of data raw German data

Example of data hochjagende, zugebliebener, verbricht, besuchszimmer, ...

Learned 2-MTSL grammar too large: 294 tiers!

Generated sample mugoftkuhämpo, kisizkkokgüp, rkümsübtal...

Evaluation evaluate wfd words(sample)

Score 100%

Table 3.47: MTSL learning of the word-final devoicing; raw representation.

Experiment 2: a single vowel harmony without blocking Similarly, the MTSL

learner extracted the grammar representing a single vowel harmony pattern

without a blocking effect. The learner induced a single tier containing symbols a

and o. The grammar for this tier was the same one as in the TSL version of this
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experiment: ao, oa. 100% of the words generated by the obtained grammar were

well-formed. The success of the MTSL learner on this and further experiments

where the TSL learner performed well follows from the fact that the class of MTSL

languages subsumes TSL languages.

Pattern one vowel harmony, no blockers

Type of data artificial data

Example of data oxxxooxxxx, ooxxxooxxo, aaxxxaaxxx, oxxxxoxxxo, ...

Learned 2-MTSL grammar (a, o)T : ao, oa

Generated sample xxoox, xxaxaxa, axaaax, xooox, ...

Evaluation harmonic evaluator(sample, single harmony no blockers)

Score 100%

Table 3.48: MTSL learning of a single harmony without blockers; abstract

representation.

The MTSL inference algorithm also successfully learned the generalization from

raw and masked Finnish datasets. Indeed, 100% of the words generated by the

grammar, such as rjegovnj or läyömppl, are harmonic. Although the grammar is

transparent and fully interpretable, it postulates 266 tiers. An open question is to

explain how exactly increasing the number of tiers helped the learner to tackle this

challenge.

Experiment 3: a single vowel harmony with blocking Again, the success of the

MTSL learner in this experiment follows from the fact that TSL grammars are a

proper subset of the MTSL ones. However, what is surprising is that the MTSL

inference algorithm did not converge on a single tier: instead, it postulated 3

different tiers.

The learner discovered 3 unattested bigrams: ao, fo, and oa. However, in none

of the data points a was ever followed by o, so there were no paths of the type

〈a,X, o〉: trivially, elements f and x were considered irrelevant for this restriction.
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Pattern one vowel harmony, no blockers

Type of data raw Finnish data

Example of data mathilden, lisänimen, macmillanin, urquhartin, ...

Learned 2-MTSL grammar too large: 266 tiers!

Generated sample rjegovnj, läyömppl, axiflt, silöäämydv, ...

Evaluation harmonic evaluator(sample, front harmony)

Score 100%

Table 3.49: MTSL learning of a single harmony without blockers; raw

representation.

Similarly, a was excluded from a tier induced for the restriction fo because f is

never followed by o. But when considering the unattested bigram oa, paths such as

〈o, {f}, a〉 and 〈o, {f, x}, a〉were found in the data, while the ones such as 〈o, {}, a〉

were not. A symbol x was hence removed from the tier of the bigram oa, but the

blocker f was not. In such a way, MTSL learner constructs 3 different tiers, but the

language of the obtained grammar is equivalent to the one of the TSL grammar

{oa, ao, fo}with the tier T = {a, o, f}.

Pattern one vowel harmony with blockers

Type of data artificial data

Example of data oxxxooxxxx, xxooxfaaax, aaxxxaaxxx, ofxxafxxaa, ...

Learned 2-MTSL grammar (a, o)T : ao; (f, o)T : fo; (a, f, o)T : oa.

Generated sample oxffxax, faaaxffa, ofxaaf, fa, ooooof, ...

Evaluation harmonic evaluator(sample, single harmony with blockers)

Score 100%

Table 3.50: MTSL learning of a single harmony with blockers; abstract

representation.
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Experiment 4: several vowel harmonies without blocking This experiment

was successful since the MTSL learner extracted the grammar for the pattern of

several vowel harmonies without a blocking effect. However, similarly to the

previous example, the resulting grammar was not the same as the one extracted

by the TSL learner. The MTSL algorithm constructed a separate tier for every pair

of the potentially disagreeing elements, while correctly noticing that the

transparent element x is irrelevant for the generalization.

Pattern several vowel harmonies, no blockers

Type of data artificial data

Example of data xuuuxxxuuu, xxxeeexeee, xxxaaxxxaa, xoooxooxox, ...

Learned 2-MTSL grammar (u, o)T : uo, ou; (a, u)T : au, ua; (o, e)T : eo, oe; etc.

Generated sample xuxuuuxu, xoox, aaa, exexxe ...

Evaluation harmonic evaluator(sample, double harmony)

Score 100%

Table 3.51: MTSL learning of several vowel harmonies without blockers; abstract

representation.

Experiment 5: several vowel harmonies with blocking The MTSL induction

algorithm found a way to model several vowel harmonies with a blocking effect.

Also, similarly to the examples discussed above, more than a single tier was

inferred. All of the words generated by the extracted MTSL grammar were

well-formed regarding the rules of Turkish harmony.

Some of the configurations that the MTSL learner was looking for were

missing in the masked and raw representations of the Turkish data, and therefore

the accuracies of those models were slightly worse than ideal: both of them scored

95%. As of the MTSL grammar inferred from the raw data, it relies on 266 tiers,

and the way it is able to perform so well is worth further investigation.
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Pattern several vowel harmonies with blockers

Type of data artificial data

Example of data xxöexxix, xxüüxüüx, exxiixee, iiexxxex, xuuxxuuu, ...

Learned 2-MTSL grammar (ü, e, i)T : üi; (ü, e)T : eü; (I, ö)T : Iö, öI; etc.

Generated sample Ixxaaaa, üexi, üxeexe, öüüüe, öüexe, ...

Evaluation harmonic evaluator(sample, backness and rounding)

Score 100% overall (100% backness only, 100% rounding only)

Table 3.52: MTSL learning of several harmonies with blockers; abstract

representation.

Pattern several vowel harmonies with blockers

Type of data raw Turkish data

Example of data som, lafazan, konuk, kekti, lafzan, ...

Learned 2-MTSL grammar too large: 266 tiers!

Generated sample apnIcIrIsaa, telçitçeeriden, mbezkdenic, ...

Evaluation harmonic evaluator(sample, backness and rounding)

Score 95% overall (100% backness only, 95% rounding only)

Table 3.53: MTSL learning of several harmonies with blockers; raw representation.

Experiment 6: vowel harmony and consonant harmony without blocking The

pattern of independent vowel and consonant harmonies can be captured using

two tiers: one for vowels, and another one for consonants. The tier of vowels

prohibits oa and ao, and the tier of consonants rules out pb and bp. To evaluate the

well-formedness of a word, both of its tiers need to be inspected individually. For

example, consider a word ababbabb. Tts consonant tier contains bbbbb, and the

vowel tier is aaa: both of them are well-formed. However, words such as ababbbob

are not grammatical: even though the consonant tier does not contain violations,

the vowel tier is aao, and it violates the rules of the vowel harmony. The language
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of this MTSL grammar is the intersection of two TSL grammars, one per every

harmony. The accuracy of this model is 100%.

Pattern vowel and consonant harmonies, no blockers

Type of data artificial data

Example of data bbbaaabbaa, bbooboboob, pppoopppop, appaaappaa, ...

Learned 2-MTSL grammar (a, o)T : ao, oa; (b, p)T : pb, bp.

Generated sample oapapaaa, obbb, babbba, poop, ...

Evaluation harmonic evaluator(sample, double harmony no blockers)

Score 100%

Table 3.54: MTSL learning of vowel and consonant harmonies w/o blockers;

abstract representation.

Experiment 7: vowel harmony and consonant harmony with blocking MTSL

learner performs 100% accurate on the pattern with vowel and consonant

harmonies even if they include blockers, and it is the only subregular model

among the discussed ones that is able to do so. In this case, the learner extracts 4

tiers, and a total of 5 prohibited bigrams. The choice of the tiers can be explained

in the same way it was done for the third experiment. On the tier of vowels, the

grammar prohibits their disagreeing combinations ao and oa. The

consonant-related restrictions are located across 3 different tiers due to the

inference steps of the algorithm, but these restrictions, in fact, can be expressed on

a single tier containing p, b, and t. Figure 3.2 shows the MTSL evaluation of strings

aabbotoob and aabbaaaap using a simplified yet equivalent MTSL grammar

containing only 2 tiers: one for vowels, and another for consonants.
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Pattern vowel and consonant harmonies with blockers

Type of data artificial data

Example of data pppoootopt, obbbtpooot, aabbbaatat, pppaapappp, ...

Learned 2-MTSL grammar (b, p, t)T : bp; (a, o)T : ao, oa; (b, p)T : pb; (b, t)T : tb.

Generated sample obtppoppo, totoo, ap, ooptpp, abtatat, ...

Evaluation harmonic evaluator(sample, double harmony with blockers)

Score 100%

Table 3.55: MTSL learning of vowel and consonant harmonies with blockers;

abstract representation.

o a a b b o t o o b n

o a a o o o n

o b b t b n
*aabbotoob

o a a b b a a a a p n

o a a a a a a n

o b b p n
*aabbaaaap

Figure 3.2: Experiment 7: the extracted MTSL grammar evaluating the

ungrammatical strings aabbotoob and aabbaaaap.

3.5.3 Unsuccessful experiments

I was not able to test the performance of the MTSL learner on the UTP pattern

since this learner currently exists only for 2-local dependencies, and UTP requires

postulating a 3-local restriction. However, this pattern is not MTSL expressible

since there is no tier or a combination of tiers that would be able to express that

generalization. Hence the only unsuccessful experiment that I present in this

subsection is the expected inability of MTSL grammars to express the first-last

harmony.
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Experiment 9: first-last harmony MTSL grammars cannot encode the pattern of

the first-last harmony. The MTSL learner extracts exactly the same grammar as TSL

and SL learners: it only notices that the “non-agreeing” item x cannot occur string-

initially and string-finally. It fails to generalize that the string-initial and string-final

symbols need to match, and therefore the accuracy of this model is 50%.

Pattern first-last harmony

Type of data artificial data

Example of data axoaaxaxaa, aaxaaxxxoa, ooaxaoaooo, axxoaxaaaa, ...

Learned 2-MTSL grammar (a, o, x)T : ox, xn

Generated sample ooaaa, aaoa, ooooaxxa, oaaaxao, ...

Evaluation evaluate first last words(sample)

Score 50%

Table 3.56: MTSL learning of first-last harmony; abstract representation.

3.5.4 MTSL experiments: interim summary

The MTSL learner successfully extracted MTSL grammars corresponding to all

types of harmonic systems present in the list of the experiments, performing

equally well on cases with or without the blocking effect. While being able to

capture long-distance dependencies, it also performed extremely well on the local

pattern of word-final devoicing. Importantly, apart from learning the patterns

from the artificially generated datasets, it also was able to generalize the rules

from the raw data, scoring 100% on German and Finnish, and 95% on Turkish

datasets. The experiment using the non-MTSL pattern of unbounded tone

plateauing is not discussed due to the unavailability of the 3-local MTSL learner at

the current moment. Finally, as expected, the first-last harmony is not learnable by

either of the discussed subregular learners.
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However, as explained before in Section 3.5.1, there is a type of MTSL

grammars that the current learner cannot induce due to its tier-per-bigram

assumption. Namely, it cannot learn an MTSL grammar where one bigram

belongs to two different tiers. Interestingly, according to Aksënova and

Deshmukh (2018), languages with multiple harmonies typologically lack this type

of tier configuration. Therefore this learner could be more efficient for

language-related tasks then the one that would investigate typologically

unattested possibilities.

3.6 Learning languages: summary

In this chapter, I discussed possibilities of modeling natural language patterns

using subregular methods. Namely, I explored the performance of strictly

piecewise (SP), strictly local (SL), tier-based strictly local (TLS), and multi-tier

strictly local (MTSL) learning algorithms using different datasets exhibiting

natural language dependencies. The experiments ranged from ones that were

using artificially generated samples imitating linguistic patterns, to extracting

grammars from raw language data. Artificial language learning shows if the

modeling of those generalizations is possible conceptually, whereas using raw data

shows what is possible in practice.

The conducted learning experiments confirmed the learning expectations for

the artificial datasets, showing how different linguistic patterns are captured by

subregular models. However, the performance of the learners on raw natural

language data was worse, and in some cases, a more powerful model was

required to capture a pattern of lower complexity.

The experiments targeted following patterns: word-final devoicing, a single

vowel harmony pattern with/without a blocking effect, several vowel harmonies

with/without a blocking effect, independent vowel and consonant harmonies
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with/without blocking effect, and the unbounded tone plateauing. Additionally, I

also challenged the learners with a typologically unattested pattern of first-last

harmony. Every one among these 9 patterns can be theoretically modeled using

different set of subregular classes. Namely, word-final devoicing can be captured

by SL, TSL, and MTSL grammars; several vowel harmonies with blocking are

expressible by TSL and MTSL grammars, and the unbounded tone plateauing can

only be encoded using a SP grammar. Finally, none of the subregular languages

should be able to capture the first-last harmony since it is not SL, SP, TSL, or

MTSL. In 3.57, I repeat the table with the expected results of the language

learning experiments that was previously shown in Table 3.10.

Every experiment included 4 steps: data colleciton or generation, subregular

learning, sample generation using the constructed grammar, and model

evaluation. At first, I prepared the training samples. They range from the

automatically generated artificial languages, to simplified (masked)

Target patterns SP SL TSL MTSL

word-final devoicing é - - -

a single vowel harmony without blocking - é - -

a single vowel harmony with blocking é é - -

several vowel harmonies without blocking - é - -

several vowel harmonies with blocking é é - -

vowel harmony and consonant harmony without blocking - é é -

vowel harmony and consonant harmony with blocking é é é -

unbounded tone plateauing - é é é

first-last harmony é é é é

Table 3.57: The expected results of the language learning experiments; repeated as

in Section 3.1.4.
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representations of the natural language data, to wordlists of German, Finnish and

Turkish. During the learning step, a grammar was obtained by the inference

algorithm based on the provided training data. Then I generated a large set of

strings that are grammatical according to the extracted grammar. Finally, I

computed the number of strings of the generated sample that are well-formed

according to the target generalization thus numerically evaluating the

performance of the model. Table 3.58 summarizes how the automatically

extracted subregular grammars performed on those experiments.

There are several implications of this work. I show that every artificial

language learning experiment that was predicted to be successful given some

particular subregular model was, in fact, successful. It confirms that the

implemented algorithms are indeed implemented correctly, and therefore can be

reliably used in future. Also, the MTSL learner performed extremely well on raw

language data: it learned German word-final devoicing and Finnish harmonic

system from a raw data with an accuracy of 100%, and scored 95% on a challenge

of learning Turkish harmony. However, a TSL learner was not able to learn a TSL

pattern from a realistic data due to the expectations of the algorithm.

However, any non-perfect score implies that the pattern was not acquired.

Indeed, due to the non-probabilistic nature of the learners, results below 100%

indicate the presence of ill-formed words generated by the learned grammar,

showing that the learner did not converge. The learned grammars can do

mistakes due to overgeneration or overfitting, and further research is needed to

develop metrics similar to the precision and recall that would highlight these

problems. The current metric only shows the overall performance of the model,

without focusing on the issues of overgeneration and overfitting.

For example, the SP learner scores 89% on the German dataset. Given that the

exemplified phenomenon of the word-final devoicing is not SP, this result is quite

surprising. Transparency of the subregular learners allowed to look inside the
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algorithm and see the reason behind this surprisingly good performance. It

showed that the learner is overgenerating: indeed, it observed voiced obstruents

indirectly followed by the word-final marker, and thus assumed that such

configuration is grammatical. If we limited our attention to only generated strings

that end in an obstruent, it would become clear that the learned grammar

generates voiced final obstruents as frequently as the voiceless ones. The accuracy

scores can be misleading without the analysis of the errors, and the transparency

of the subregular grammars allows us to see the performance of the grammars

behind-the-scenes.

The experiments also confirmed that SP grammars do not differentiate between

long-distance and local dependencies, and therefore after observing a word such as

oaban it assumed that all its subsequences are also grammatical. Indeed, it results

in allowing words such as oabn that violate the rule. The score is relatively high

only due to a low probability for a word to end with a voiced obstruent: among 30

German segments, only 5 of them are voiced obstruents. This type of problem is

caused by the overgeneration that arises in some of the learning experiments.

Another issue – overfitting – emerges when the model represents the training

data but fails to generalize beyond it. Although further research is needed, the

results suggest that it is indeed the case with the MTSL grammars capturing

phenomena such as Turkish vowel harmony. Theoretically, we know that this

pattern, as well as the pattern of Finnish harmony, is TSL, i.e. requires just a single

tier. However, the learned MTSL grammar extracts 266 tiers instead. This shows

that the marvelous performance of the MTSL grammars is not due to a deep

understanding of the pattern, but rather because of the memorized configurations

of tiers observed during the training.

Although both Finnish and Turkish harmony is TSL, the TSL learner failed to

extract the corresponding grammar. This is due to a problem of combinatorial

explosion: the TSL algorithm assumes that missing combinations always convey
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meaningful information about which sounds do or do not matter for the

dependency. As a result, these algorithms are misled by accidental gaps in the

data. Improving the subregular learning algorithms can help to overcome this

issue.

Both the experimental pipeline and the learning algorithms can be greatly

improved by introduction of linguistic notions such as natural classes and

features, see Section 2.4. It can help to learn harmonies more efficiently: instead of

considering segments individually, the feature-based representation helps to

detect the common behavior of segments bearing a particular feature.

Alternatively, a greater accuracy can be achieved by combining the learners

together, as suggested in Heinz (2010a); Heinz and Idsardi (2013).

This line of research needs to be further investigated, as many questions are

yet to be answered. These models need to be challenged with more data exhibiting

different linguistic dependencies. In case of a successful learning outcome, we need

to understand how exactly the learner came to the convergence. Otherwise, we need

to know what exactly prevented the learner from discovering the pattern. Also, there

are other subregular classes, such as IO-TSL and IBSP, that are important for natural

language modeling: learning algorithms for those classes need to be implemented

and explored as well.

This chapter, however, is only concerned with modeling the well-formedness

conditions. In the next chapter, I discuss ways to model processes that apply to

strings, and transform them according to some set of rules. Namely, similarly to

this chapter, I will focus on the ways to infer those rules automatically. Since

subregular grammars are interpretable, and subregular learning algorithms are

fully transparent, this type of research can in a long run give us larger insights in

understanding how human language works.
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Data SP SL TSL MTSL

Experiment 1: word-final devoicing

Theoretical expectations é - - -

Artificial (1,000) 68% 100% 100% 100%

German simplified (658,147) 58% 100% 100% 100%

German (658,147) 89% 100% 100% 100%

Experiment 2: a single vowel harmony without blocking

Theoretical expectations - é - -

Artificial (1,000) 100% 83% 100% 100%

Finnish simplified (250,805) 100% 72% 100% 100%

Finnish (250,805) 100% 41% 42% 100%

Experiment 3: a single vowel harmony with blocking

Theoretical expectations é é - -

Artificial (1,000) 84% 89% 100% 100%

Experiment 4: several vowel harmonies without blocking

Theoretical expectations - é - -

Artificial (1,000) 100% 69% 100% 100%

Experiment 5: several vowel harmonies with blocking

Theoretical expectations é é - -

Artificial (15,000) 76% 59% 100% 100%

Turkish simplified (14,434) 76% 70% 67% 95%

Turkish (14,434) 89% 30% 30% 95%

Experiment 6: vowel harmony and consonant harmony without blocking

Theoretical expectations - é é -

Artificial (1,000) 100% 64% 74% 100%

Experiment 7: vowel harmony and consonant harmony with blocking

Theoretical expectations é é é -

Artificial (1,000) 83% 64% 69% 100%

Experiment 8: unbounded tone plateauing

Theoretical expectations - é é é

Artificial (1,000) 100% 85% 90% NaN

Experiment 9: first-last harmony

Theoretical expectations é é é é

Artificial (5,000) 32% 51% 50% 50%

Table 3.58: The expected vs. the actual results of the subregular language learning

experiments; the experiment 8 cannot be conducted using MTSL learner because it

is currently not available for k > 2; all other learners are used with k = 2.
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Chapter 4

Learning mappings

Finite-state transducers are a convenient way to represent natural language

processes: they rewrite strings according to the rules they encode. Koskenniemi

(1983) and Kiraz (1996), among the first ones, show that concatenative and

non-concatenative morphological processes can be modeled using FSTs.

Chandlee (2014) in her dissertation shows that subregular functions are a good fit

for phonology, and later extends the results to also include morphology

(Chandlee, 2017). Heinz and Lai (2013) argue that subsequentiality is crucially

important for long-distant phonological processes such as different types of

harmonies. Subsequential transducers encode subsequential transformations:

they read the input string symbol-by-symbol and output the translation, or a

modified representation of that string. Thus, automatically extracting

subsequential transducers from data allows to computationally model natural

language processes. The learning algorithms analyze the provided pairs of

underlying representations (UR) and surface forms (SF), therefore inducing the

changes applied to the URs.

In his chapter, I explore the automatic extraction of linguistic patterns using a

well-known transduction learning algorithm OSTIA (Oncina et al., 1993).

Previously, Gildea and Jurafsky (1996) showed that a corpus of English
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pronunciations was not enough for OSTIA to generalize the rule of English

flapping. However, they further proceeded to test modified versions of the

algorithm on the same corpus yielding improved accuracy. My aim here is to

explore what generalizations are possible to model, and which ones cannot be

extracted given the current version of the learner. The focus of the chapter is thus

understanding what types of patterns OSTIA can learn from samples of

automatically generated data.

4.1 The OSTIA algorithm

The name OSTIA stands for Onward Subsequential Transducer Inference

Algorithm. Discussed in Oncina et al. (1993) and de la Higuera (2010), this

algorithm infers subsequential functions mapping input strings to output strings

from a finite sample of such input-output pairs. It identifies any subsequential

function in the limit. In other words, given a finite sample of pairs of strings

before and after the application of some rule, it extracts a subsequential

transducer representing that rule. The property of the identification in the limit

means that the learner would need a finite number of such pairs to induce the

target machine. Below I discuss the main steps of this algorithm in Section 4.1.1,

and then present a walk-through of examples in Sections 4.1.2 and 4.1.3, one

successful and one unsuccessful.

4.1.1 The pipeline

This algorithm requires a sample of input-output pairs of strings for training, and

returns a finite-state subsequential transducer as the output. The algorithm

consists of two main parts: creating a representation of data as an onward prefix

tree transducer (PTT), thus structuring the input data, and merging the states of the

PTT, therefore, formulating the hypothesis about the underlying rule. The
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structuring step includes building a PTT for the input sample and making that

PTT onward. Folding sub-trees into one another results in pairs of states being

merged into a single state. For the pseudocode of the algorithm, refer to Oncina

et al. (1993) and de la Higuera (2010). The implementation of OSTIA which I used

to obtain the results is a part of the SigmaPie package � (Aksënova, 2020c), and

the discussion of that implementation is available on GitHub � (Aksënova, 2019).

The main steps are presented in Figure 4.1.

Sample BUILD ONWARD FOLD PUSHBACK Transducer
structure merge

ostia

Figure 4.1: The main steps of OSTIA: build, onward, fold and pushback.

BUILD The first step is to represent the input data using a transducer-like data

structure. For this purpose, we can build a prefix-tree transducer that reads input

strings of the training sample symbol-by-symbol, with the common prefixes of

those strings stored in the states. The initial state qε of such a PTT refers to the

only common prefix of all the input strings: ε. The names of the later states refer

to the common prefix those strings are sharing: the states accessible from the state

qε correspond to different first symbols of the input strings. So, for example, a

state qaba reads a prefix aba by passing through the following states: qε, qa, qab, and

qaba. State outputs are set to the translations of the input strings that end up in

that state. For example, given the input pair (ab, 01), we save 01 in the state output

of the state qab.

If the state output is not known, it is marked as ⊥, or unknown. The unknown

state output has two properties: absorbency and neutrality. It is absorbent since its

concatenation with any other string returns the same “unknown” output ⊥. It is

neutral because the longest common prefix of any set of stringsW and⊥ is the same
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as the one of W by itself, i.e. ⊥ is transparent for this operation. In such a way, the

training sample provided to OSTIA is represented as a PTT.

ONWARD The outputs of the PTT are then modified to be onward: such a PTT

outputs translations as early as possible. During this step, common prefixes of

state outputs are pushed closer to the initial state. For example, assume that the

intermediate state of the PTT is the one as pictured in Figure 4.2 on the left side,

with the onward version of that PTT on the right side. In the input PPT, the state

output of the state qa is 1, and the translations on all edges coming out of qa
(qa

a:10−−→ qaa and qa
b:11−−→ qab) also contain 1 as their prefix. Therefore, this prefix can

be removed from the state output and transitions, and be introduced in the

transducer earlier, namely, on the transition incoming into the state qa. Onwarding

starts from the leaves of the PTT (the nodes that do not have any outcoming arcs),

and percolates to the initial state qε.

ε : εstart a:1

aa:ε

ab:ε

a:ε
a:10

b:11 ε : εstart a:ε

aa:ε

ab:ε

a:1
a:0

b:1

Figure 4.2: Non-onward and onward PTTs that are otherwise equivalent.

FOLD Then, we try to merge every pair of states of the PTT. If (a) the state

outputs of q and q′ are the same or are ⊥, (b) all the incoming branches of q′ can be

redirected to q, and (c) all outgoing branches from q′ are consistent with the

outgoing branches of q, states q and q′ are merged. Consistency implies either

having matching outgoing branches, a possibility to add a missing branch, or, if

required, being able to successfully delay a part of the output during the pushback
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step. Folding one state into another decreases the size of the transducer, and

shows that the learner generalized the pattern.

PUSHBACK The pushback operation checks if a part of the output can be delayed

and therefore removed from some transitions. If pushing back a portion of the

output is possible, states q and q′ considered during the previous merge step are

combined, otherwise, their merge is rejected. For example, consider the FST on the

left side in figure 4.3. Reading a from the state qε yields the translation uv. However,

as the machine on the right shows, the translation’s suffix v can be delayed to the

state output of qa and all the transitions outgoing from qa. It could let the state qe
be merged with some other state in the FST. After the pushback, OSTIA returns to

the merging step and checks if there are other pairs of states that could be merged.

When no such pairs remain, OSTIA outputs the FST. In some sense, pushback is the

operation opposite to onward since it delays the outputs, but the resulting FST is

always onward.

ε : εstart a:ε

aa:ε

ab:ε

a:uv
a:ε

b:ε ε : εstart a:v

aa:ε

ab:ε

a:u
a:v

b:v

Figure 4.3: OSTIA pushes back the suffix v.

In such a way, OSTIA constructs a subsequential FST that generalizes the

mapping from the input strings into their output representations. Note, that as

well as the subregular learning algorithms discussed earlier in Chapter 3, OSTIA

requires a sample of only positive data.1 The next subsection presents the

inference steps of this algorithm given a concrete example. Although there are
1The algorithmic complexity of OSTIA isO(n3(m+ | Σ |) + nm | Σ |), where n is the sum of the
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several versions of OSTIA in the literature, the version I use here mostly follows

de la Higuera (2010); this exact version is implemented in SigmaPie

4.1.2 The successful example

Here, I discuss a slightly modified example of the OSTIA inference steps

originally presented in de la Higuera (2010). The task is to learn the following

mapping: word-final a is rewritten as 1, non-word-final a corresponds to 0, and b

is always translated as 1. Notice, that this pattern can be viewed as a

generalization of a linguistically-motivated process of word-final devoicing since

it involves a segment changing its value to the opposite at the end of the word.

The training sample that I use in this example is enlarged in comparison to the

one presented by de la Higuera (2010): it provides all the necessary pairs that

guarantee the extraction of the pattern.

Sample = [(b, 1), (a, 1), (aa, 01), (ab, 01), (aba, 011), (aaa, 001)]

Step I. At first, OSTIA constructs a PTT representing the input sample. This PTT

reads the left sides of the training sample one symbol at a time. For every string w

of the input pair (w, o), there exists a state qw with the state output o. All transitions

of this PTT output an empty string. If there is a state qw′ that does not correspond

to any input string of the training sample, its state output is ⊥. For example, there

is no empty string in the given sample, so the state output of qε is ⊥.

input string lengths, m is the length of the longest output string, and Σ is the input alphabet (de la

Higuera, 2010).
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ε :⊥start

a:1

b:1

aa:01 aaa:001

ab:01 aba:011

a:ε

b:ε

a:ε

b:ε

a:ε

a:ε

Step II. Then, this PTT is onwarded. For example, consider the state qaaa with the

state output 001. We can replace it by ε, and instead move 001 to the incoming arc

therefore obtaining a transition qaa
a:001−−→ qaaa. The longest common prefix of the

modified transition and the state output of qaa is the longest common prefix of 01

and 001, and that 0 can be moved to the output of the arc qa
a:0−→ qaa. Other leaves

of the FST are processed similarly. After this step, the input sample is represented

as an onward PTT.

ε :⊥start

a:1

b:ε

aa:1 aaa:ε

ab:ε aba:ε

a:ε

b:1

a:0

b:01

a:01

a:1

Step III. Next, we start the process of generalizing the obtained PTT by trying

to merge pairs of its states. States are colored in two colors: red and blue. Red

states cannot be eliminated from the FST: they are crucial and therefore cannot be

folded into any other state. At first, only the initial state qε is colored red. All states

that can be reached in one step from the red states are colored blue. The status of

blue states is unclear: either they will be folded into some red states, or they will

eventually be re-colored red. After a state was colored red, its immediate children
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are automatically added to the list of blue states. In our example, two states are

colored blue – qa and qb – since they can be reached from qε in one step.

ε :⊥start

a:1

b:ε

aa:1 aaa:ε

ab:ε aba:ε

a:ε

b:1

a:0

b:01

a:01

a:1

Step IV. Then, the algorithm considers pairs where one state is red and another

one is blue and tries to fold the blue state into the red one. Let us then fold the

state qb into qε. At first, we check if the state outputs of qb and qε are compatible.

They are ⊥ and ε, and therefore could be merged: they are not different due to the

transparency of⊥, so we assign ε to the state output of qε. The transition coming to

the state qb is re-directed into the state qε thus yielding a loop on that state. There is

no other sub-tree rooted in qb, so folding qb into qε can be finalized, and qb is removed

from the FST.

ε : εstart a:1

aa:1 aaa:ε

ab:ε aba:ε

a:ε

b:1
a:0

b:01

a:01

a:1

Step V. After the state qb is eliminated, qa is the only blue state left. We therefore

consider merging qa into qε. However, these two states have different state outputs,

and therefore it is impossible. As the result, qa is re-colored red, and qaa and qab

accessible in one step from qa are colored blue.
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ε : εstart a:1

aa:1 aaa:ε

ab:ε aba:ε

a:ε

b:1
a:0

b:01

a:01

a:1

Step VI. We then try to merge qε and qaa, but it is not possible since they have

different state outputs. States qa and qaa could be merged because they have the

same state output: 1. The outgoing arcs reading a from these two states are

different: one outputs 0, and another outputs 01. However, the difference is the

suffix 1 that can be pushed further to the state output of qaaa, therefore making

those two transitions identical. The arrow incoming to qaa is then re-directed to qa,

and qaa is eliminated from the list of states.

ε : εstart a:1

aaa:1

ab:ε aba:ε

a:ε

b:1 a:0

b:01
a:1

Step VII. The state qab is then folded into qε. The incoming arrow is re-directed

to qε, and 1 is pushed back to state state output of qaba. Since qab was merged with

another state, it is eliminated from the machine. This leaves no other blue states in

the machine, and it signifies that OSTIA completed the inference.

ε : εstart a:1

aaa:1

aba:1

a:ε
b:1 a:0

b:01
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Step VIII. All blue states are now eliminated from the machine. However, the

states that were never colored are still present. In SigmaPie, the last step included in

the OSTIA algorithm is the elimination of the unaccessible states from the machine.

After those steps are completed, we obtain the FST visualized below.

ε : εstart a:1

b:1
a:ε

b:01

a:0

4.1.3 The unsuccessful example

Now, consider a pattern of unbounded tone plateauing (UTP). In a pattern like that,

a sequence of low tones is converted to high if surrounded by high tones. For

example, inputs HLH and HLLLH are mapped to the outputs HHH and HHHHH,

correspondingly. When a low tone L follows a high tone, it might be written as

either L or H depending on the presence of another H anywhere further in the

input. In other words, it requires an unbounded lookahead.

Patterns requiring lookahead, such as UTP, are called unbounded circumambient

processes since the triggers are located on both sides of the undergoer, and they can

be arbitrary far from it. Unbounded circumambient processes are not subsequential

(Jardine, 2016a), and therefore it is expected that OSTIA is unable to capture UTP.

I show that OSTIA fails to learn UTP with the following sample.

Sample = [(HHH, HHH), (HHL, HHL), (HL, HL), (HLH, HHH), (HLL, HLL),

(HLLH, HHHH)]

Step I. At first, consider a PTT corresponding to the given training sample S.
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ε :⊥start H:⊥

HH:⊥

HHH:HHH

HHL:HHL

HL:HL

HLH:HHH

HLL:HLL HLLH:HLLH

H:ε

H:ε

L:ε

H:ε

L:ε

H:ε

L:ε
H:ε

Step II. Then, as previously, let us push the state outputs from the leaf nodes

closer to the initial state qε. The resulting PTT is onward.

ε :⊥start H:⊥

HH:⊥

HHH:ε

HHL:ε

HL:L

HLH:ε

HLL:LL HLLH:ε

H:H
H:H

L:ε

H:H

L:L

H:HH

L:ε
H:HHH

Step III. Next, we prepare to start folding states and sub-trees of the PTT into

each other by coloring the states in red and blue. As previously, the initial state qε
is colored red, and the state qH available from qε in one step is colored blue.
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ε :⊥start H:⊥

HH:⊥

HHH:ε

HHL:ε

HL:L

HLH:ε

HLL:LL HLLH:ε

H:H
H:H

L:ε

H:H

L:L

H:HH

L:ε
H:HHH

Step IV. The algorithm attempts to merge the blue state into the red state.

However, it is not possible to fold the sub-tree of qH into qε. It would cause the

arrow qHH
L:L−→ qHHL to be changed to qε

L:L−→ qHHL. It means that states qHHL and

qHL need to be merged since both of them would be available from qε by reading

L, but it is not possible because the state outputs of qHHL and qHL are different: ε

and L, correspondingly. Therefore the merge is rejected, and qH is colored red. Its

daughter nodes qHH and qHL are now blue.

ε :⊥start H:⊥

HH:⊥

HHH:ε

HHL:ε

HL:L

HLH:ε

HLL:LL HLLH:ε

H:H
H:H

L:ε

H:H

L:L

H:HH

L:ε
H:HHH

Step V. The state qHH can be merged with qε. Indeed, the outgoing arcs reading

and writingH are present in both of these states, and the outgoing arc from qHH to
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qHHL is now re-directed and originates from qε. All the incoming arcs into the state

qHH are re-directed to target qε. It created two outgoing from the state qε arrows

readingH : qε
H:H−−→ qH and qε

H:H−−→ qHHH , so qHHH needed to be folded into qH . Their

state outputs are compatible since they are ⊥ and ε, therefore, the output of the

state qH was rewritten to ε.

ε :⊥start H:ε

HHL:ε

HL:L

HLH:ε

HLL:LL HLLH:ε

H:H

H:ε

L:ε
L:L H:HH

L:ε
H:HHH

Step VI. The state qHL can be merged with neither qε nor qH because the arrows

reading L bring the machine to states with different state outputs. While the state

output of qHLL is LL, qHL and qHHL output L and ε, correspondingly. Therefore qHL

is colored red, and its children qHLH and qHLL are now blue. Additionally, qHHL is

also blue because it originates from the red state qε.

ε :⊥start H:ε

HHL:ε

HL:L

HLH:ε

HLL:LL HLLH:ε

H:H

H:ε

L:ε
L:L H:HH

L:ε
H:HHH

Step VII. The state qHLH is merged with qε, and the only arrow incoming in qHLH

from qHL is now targeting qε. Since the state output of qHLH was ε and the one of qε
was unknown, it is now re-defined as ε.
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ε : εstart H:ε

HHL:ε

HL:L HLL:LL HLLH:ε

H:H

H:ε

L:ε
L:L

H:HH

L:ε H:HHH

Step VIII. The state qHLL cannot be merged with any red state. Its state output

differs from those of all the red states. The state qHLL is thus colored red, and its

daughter state qHLLH is blue.

ε : εstart H:ε

HHL:ε

HL:L HLL:LL HLLH:ε

H:H

H:ε

L:ε
L:L

H:HH

L:ε H:HHH

Step IX. The state qHLLH is then merged with qε, and the arrow incoming in it from

the state qHLL is re-directed. At this moment it is already clear that the algorithm

failed to learn the UTP pattern. The learner memorized that one or two L need

to be substituted by H if they are followed by H , but did not generalize it to an

unbounded number of Ls.
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ε : εstart H:ε

HHL:ε

HL:L HLL:LL

H:H

H:ε

L:ε
L:L

H:HH

L:ε

H:HHH

Step X. Finally, the only remaining state qHHL is merged with qε, therefore,

creating a loop that reads and writes L on that state. There are no other remaining

blue states, and therefore the learner outputs the FST.

ε : εstart H:ε HL:L HLL:LL

H:H

H:ε

L:ε

L:L

H:HH

L:ε

H:HHH

As one can see, this transducer does not represent the UTP pattern. For

example, it would re-write an input string HLHLH as HHHLH by passing through

the following states: qε
H:H−−→ qH

L:ε−→ qHL
H:HH−−−→ qε

L:L−→ qε
H:H−−→ qH . Indeed, UTP

cannot be expressed using a subsequential function: it requires an unbounded

lookahead (Jardine, 2016a).

4.2 Learning experiments

Here, I discuss the learning experiments that I used to explore the capacities of the

OSTIA algorithm. Interestingly, OSTIA performed extremely well (100%) on one

or more harmonies without blockers. However, the blocking effect showed itself as
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a challenge for the learner: the accuracy was falling drastically with the increasing

length of the evaluated strings.

In this chapter, in contrast to the previous one, the learner extracts the “rewrite

rules” instead of acquiring well-formedness conditions. Namely, the learner is

given a pair of strings imitating the underlying representation (UR) and the

surface form (SF), and its goal is to learn how to map one into another. This allows

us to explore the capacities of OSTIA when challenged with natural language-like

patterns discussed in the previous chapter: single and double harmonic systems

with or without blockers, and others. The code behind the experiments is

available on GitHub � (Aksënova, 2020d).

Note, however, the critical importance of the concrete implementation for the

results of OSTIA. For example, the condition activating pushback is slightly

different in various OSTIA’s pseudocodes. Oncina et al. (1993) in the original

formulation of OSTIA execute the pushback step depending on the output of qa
transitions being a prefix of the corresponding qb transitions. The core

architecture of their learner, however, is a bit different from the one described in

this section since their learner necessarily annotates the data with the

end-markers and uses this information for the inference steps. de la Higuera

(2010) executes the pushback and folds the states qa and qb if all outgoing

transitions from those states carry the same output. As one can see, in this case,

the pushback step would not be useful: if the outputs of the transitions are

identical, there is no disagreeing affix to be pushed further in the FST. In the

errata for his book, de la Higuera (2011) changes that condition to depend on the

color of the states accessible from qb. The OSTIA version implemented and used

in this chapter has its core architecture following de la Higuera (2010), but the

condition is in line with Oncina et al. (1993). There is a multitude of different

versions of pseudocodes, and, therefore, even more versions of the possible

implementations. Thus the results obtained in this chapter are specific to the
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concrete interpretation of the fold and pushback conditions and need to be tested

with different perspectives as well.

4.2.1 Experimental setup

As before, the experiments include 3 main steps: data generation, learning, and model

evaluation.

At first, the training pairs were generated. For example, assume that we are

trying to learn a single vowel harmony without blockers, where vowels are

A = {a, o}, and the only consonant is x that is making this harmony long-distant.

The training sample will then contain pairs such as (xoxxAxAxxxA, xoxxoxoxxxo)

and (axAxAxxA, axaxaxxa), where A refers to an underspecified harmonizing

vowel. The left side of every pair contains the “underlying representation”, where

only the value of the first vowel is established, and all the consecutive vowels are

hidden and represented as the name of their harmonic set, in this case, A. The

right side contains the “surface forms”, where all the vowels harmonize with each

other. Such training pairs were then fed to OSTIA that outputted an FST

representing the pattern.

To evaluate the performance of the obtained FST, following Gildea and Jurafsky

(1996), I generated another set of pairs that are used as a testing sample. I provided

the left-hand sides of those pairs to the FST as input and observed if the output

strings were the same as the right-hand sides of the testing sample.

I used two types of testing samples: one includes strings of the same length as

the ones that were used for training, and the second one contains strings that are

twice longer than the latter. The test sets containing a longer strings helped me to

explore how well OSTIA generalized the target pattern beyond memorization of

the concrete shapes found in the training sample.
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4.2.2 Target patterns

Among the patterns that I targeted while exploring the capacities of the learner,

there were some local patterns such as word-final devoicing, different types of long-

distance harmonies, and some circumambient and unattested patterns. Below I

explain the parameters that I considered when choosing the learning experiments,

see the summary in figure 4.1.

Long-distance The difference between local and long-distance processes is one

of the very important distinctions for phonology. In the first case, the process is

locally bounded, whereas, in the second one, it involves a potentially unbounded

amount of the intervening material. As I show in chapter 3, this difference is crucial

for strictly local models. They can evaluate local dependencies, but cannot capture

long-distant ones. As an example of a purely local process, I use the phenomenon

of word-final devoicing.

Includes blockers The blocking effect is widely discussed in the phonological

literature. Harmony systems with and without blockers cannot always be modeled

in the same way. For example, in chapter 3, I show that strictly piecewise models can

express multiple well-formedness conditions, but they cannot capture even simple

cases of blocking effects. In the sample of explored datasets, 3 out of the 7 employed

harmonies involve blockers.

Multiple processes A model cannot always handle multiple processes at the

same time. For example, a single tier-based strictly local grammar can express a

vowel or a consonant harmony, but it cannot capture both of them at the same

time. There are a total of 4 harmonies that involve several harmonic spreadings,

and 2 of them exhibit a blocking effect.
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Different undergoers Some models can express several spreadings at once if all

the harmonizing features are spread among the same sets of elements. For example,

the only case when a tier-based strictly local grammar can capture the agreement in

two features is when both features are affecting vowels. Therefore, 2 of the explored

datasets present this type of a harmonic system, with and without a blocking effect.

Unbounded lookahead In Subsection 4.1.3, I showed that processes that require

an unbounded lookahead are not subsequential, and therefore cannot be learned

by OSTIA. Therefore, I use 2 automatically generated datasets that exhibit

circumambient patterns, and show that they cannot be learned by a subsequential

learner.

Typologically attested Finally, I explore both typologically attested and

unattested patterns. All types of harmonic processes are indeed attested in

natural languages, as well as the unbounded tone plateauing. As an example of a

typologically unattested pattern, I use the first-last harmony enforcing the

agreement among the initial and the final vowels. Two datasets are exhibiting the

first-last harmony: one of them includes an unbounded lookahead, and the other

one does not.

4.2.3 Experiment 1: word-final devoicing

The rule of word-final devoicing prohibits underlyingly voiced obstruents from

being voiced at the end of the word. So, for example, in German, word-final /b/,

/d/, and /g/ are realized as [p], [t], and [k] (Brockhaus, 1995). While the word

for ‘children’ is Kinder, its singular form is Kin[t], i.e. the underlyingly voiced

segment is voiceless at the end of the word.

Encoding As previously in Chapter 3, I used 3 elements to encode this pattern: b

corresponding to voiced obstruents, p to their voiceless counterparts, and a
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long-

distant

includes

blockers

multiple

processes

different

undergoers

unbounded

lookahead

typologically

attested

word-final devoicing
é é é é é Ë

a single vowel harmony without blocking
Ë é é é é Ë

a single vowel harmony with blocking
Ë Ë é é é Ë

several vowel harmonies without blocking
Ë é Ë é é Ë

several vowel harmonies with blocking
Ë Ë Ë é é Ë

vowel harmony and consonant harmony without blocking
Ë é Ë Ë é Ë

vowel harmony and consonant harmony with blocking
Ë Ë Ë Ë é Ë

unbounded tone plateauing
Ë é é é Ë Ë

simple first-last harmony
Ë é é é é é

complex first-last harmony
Ë é é é Ë é

Table 4.1: Parameters of the explored natural language patterns.

standing for any other sound. Like this, I generated pairs such as (apab, apap), (aba,

aba) and (app, app), where every b of the first word of the pair is rewritten as p in

the second one.

Results I produced 1, 500 pairs exhibiting word-final devoicing and used them to

build an FST using OSTIA. The obtained FST performed excellently on both testing

samples. The first testing sample contained strings 1 to 5 characters long, similar to

the training sample. The second testing sample contained longer strings, namely 5

to 10 characters. The perfect score of the FST on both tests signifies that it correctly
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acquired the pattern.

Pattern: word-final devoicing

Training sample (info): 1500 pairs, 1 to 5 characters long

Testing sample 1 (info): 1000 pairs, 1 to 5 characters long

Testing 1, accuracy: 100%

Testing 1, predictions: (’apaap’, ’apaap’), (’bpaab’, ’bpaap’), (’abppp’, ’abppp’), ...

Testing sample 2 (info): 1000 pairs, 5 to 10 characters long

Testing 2, accuracy: 100%

Testing 2, predictions: (’pappbab’, ’pappbap’), (’aapppbapbb’, ’aapppbapbp’), ...

Number of states: 2

Number of transitions: 5

Table 4.2: Results of OSTIA learning word-final devoicing.

The FST outputted by OSTIA is fully interpretable. It has 2 states and 5

transitions in-between them. In such a machine, the first state corresponds to the

state of not observing b, and the second state to keeping b in memory. If a or p

follow the memorized b, that b is outputted together with a or p. If another b

follows a b, only one b is written. If b is a final character of the input sequence, p is

written instead by the state output of qb. The obtained machine exactly

corresponds to the target generalization, see Figure 4.4.

ε : εstart b:p

p:p

a:a

b:ε

a:ba, p:bp

b:b

Figure 4.4: FST for word-final devoicing obtained by OSTIA.
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4.2.4 Experiment 2: a single vowel harmony without blocking

The next challenge for OSTIA is to learn a pattern of a single vowel harmony

without blocking. For example, in Finnish, vowels harmonize in fronting. Let us

generalize a harmonic system where a single feature is spread without the

possibility of being blocked.

Encoding Such a pattern can be generalized to a system where among vowelsA =

{a, o}, either o or a can occur in a surface representation, but not both. We can then

refer to the underspecified vowel of the underlying representation asA. In order to

make the spreading long-distant, x encodes the transparent element. This encoding

defines pairs such as (axAxxAAxx, axaxxaaxx) and (xxoxxAxAxx, xxoxxoxoxx).

Results OSTIA induces the FST that correctly generalizes the pattern, therefore,

scoring 100% on both testing samples. The inferred FST has 4 states and 14

transitions in-between them. It is depicted in Figure 4.5: note, that this machine is

not minimal, i.e. there are states that do not express any information significant

for the rule of harmony. For example, qx and qxx only keep track of one or two x.

After a was observed and written in the translation, the machine moves to the

state qa and any A from the input side is written as a on the output side. Instead,

observing o keeps the FST in the initial state qe, and any following A is then

re-written as o. Such an FST, although not minimal, correctly captures the

intended harmonic system.

4.2.5 Experiment 3: a single vowel harmony with blocking

While the previous experiment explores the performance of OSTIA on a dataset

exhibiting no blocking effect, this one adds it to the picture. In this case, while

vowels within a word need to agree with respect to a certain feature, a blocker

stops the spreading and only allows for its particular value after itself.
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Pattern: a single vowel harmony without blocking

Training sample (info): 5000 pairs, 1 to 10 characters long

Testing sample 1 (info): 1000 pairs, 1 to 10 characters long

Testing 1, accuracy: 100%

Testing 1, predictions: (’oAxxxAxxx’, ’ooxxxoxxx’), (’xxaAxxAAxA’, ’xxaaxxaaxa’), ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 100%

Testing 2, predictions: (’oAxAAxxAAxxxAxAAxA’, ’ooxooxxooxxxoxooxo’), ...

Number of states: 4

Number of transitions: 14

Table 4.3: Results of OSTIA learning a single vowel harmony without blocking.

ε : εstart

x:ε

xx:ε

a:ε

o:o A:o

A:o, x:x, o:o

a:a a:a

x:x

A:o o:o, x:x

a:a

A:a, x:x

Figure 4.5: FST for a single vowel harmony without blocking obtained by OSTIA.

Encoding This pattern can be encoded as earlier, by using a class of vowels A =

{a, o}, but now only a can be observed after the blocker f . As before, x stands for a

transparent element. This defines pairs such as (oxAA, oxoo), (xaxxAxxA, xaxxaxxa)

and (xoxxAxfxxAx, xoxxoxfxxax).
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Results In this case, the performance of the learner was not perfect. Namely, if

faced with a testing sample where the length of the words is 1 to 10 characters, it

performs with the accuracy of 99.2%. While mostly predicting the correct forms,

for example, it rewrites the underlying form oxAxAA as oxoxooxf, incorrectly adding

two extra characters to the end of the word. The accuracy falls when the length of

the testing sample is increased to 15-20 characters: it only predicts 91.2% of the

correct transformations.

Pattern: a single vowel harmony with blocking

Training sample (info): 5000 pairs, 1 to 10 characters long

Testing sample 1 (info): 1000 pairs, 1 to 10 characters long

Testing 1, accuracy: 99.2%

Testing 1, predictions: (’oxAxAA’, ’oxoxooxf’), (’xfxxaxAAx’, ’xfxxaxaaxx’), ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 91.2%

Testing 2, predictions: (’xxxoxfAxxxffxAxxx’, ’xxxoxfxxaaxxxffxaxxx’), ...

Number of states: 74

Number of transitions: 247

Table 4.4: Results of OSTIA learning a single vowel harmony with blocking.

The obtained machine is not correct since some of the surface forms that it

predicts are wrong. However, the machine encoding the target generalization can

be represented as a simple FST with 3 states, see Figure 4.6 for the expected result.

It raises a question of what obstructed the inference of that machine, and why it

happened in any consecutive experiment targeting a harmonic system involving a

blocking effect. I leave this issue aside for now, and come back to it further in the

very end of Section 4.2.13.
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ε : εstart

a:ε

o:ε

x:x

A:a, f:f, x:x

A:o, x:x

a:a

o:o
f:f

Figure 4.6: The expected FST for a single vowel harmony with blocking.

4.2.6 Experiment 4: several vowel harmonies without blocking

While the previous two experiments modeled spreadings of a single feature, this

experiment targets the agreement in several features. For example, in Kyrgyz,

vowels agree in backness and rounding. Abstractly, these features can be referred

to as [α] and [β]. Thus all possible stems can be of 4 different types [−α,−β],

[−α,+β], [+α,−β], and [+α,+β].

Encoding Now, let us assume that the class of vowels includes 4 elements A =

{a, e, o, u}. Every one of these options encodes a possible type of vowel in a well-

formed surface form. As previously, x is a transparent element. Such encoding

defines pairs (xxoxxAAxAx, xxoxxooxox) and (xxxaxAxxx, xxxaxaxxx), among others.

Results Although the inferred machine is large (37 states and 90 transitions), it

performs perfectly on both testing samples. In both cases, none of the forms

predicted by the FST were disharmonic.

Interestingly, the learned machine has 37 states, whereas smaller versions can

easily be constructed, see Figure 4.7. It requires additional investigation to

understand the conditions that were not satisfied during OSTIA execution,
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Pattern: several vowel harmonies without blocking

Training sample (info): 5000 pairs, 1 to 10 characters long

Testing sample 1 (info): 1000 pairs, 1 to 10 characters long

Testing 1, accuracy: 100%

Testing 1, predictions: (’xxoxxAAxAx’, ’xxoxxooxox’), (’xxxexAxxA’, ’xxxexexxe’), ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 100%

Testing 2, predictions: (’xxoAxxxAAxxAxxxAAx’, ’xxooxxxooxxoxxxoox’), ...

Number of states: 37

Number of transitions: 90

Table 4.5: Results of OSTIA learning several vowel harmonies without blocking.

therefore, yielding the machine with a greater number of states than possible.

ε : εstart

o:ε

u:ε

e:ε

a:a, A:a, x:x A:o, x:x

A:u, x:x

A:e, x:x

o:o
u:u
e:e

Figure 4.7: The expected FST for several vowel harmonies without blocking.

4.2.7 Experiment 5: several vowel harmonies with blocking

The next task included learning Turkish vowel harmony. It enforces vowels to agree

in backness and rounding. While all vowels within a word agree in backness, only

high vowels acquire the rounding value of a previous vowel. For example, the

word son-lar-Wn ‘end-pl-gen’ exemplifies that a non-high vowel from the plural

suffix cannot acquire a rounding feature from the previous vowel, and therefore
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cannot transmit it to the following high vowel. However, in son-un ‘end-gen’, the

high vowel is realized rounded because it is preceded by a rounded vowel. In both

words, all vowels agree in backness. In such a system, non-high vowels have a

double nature: they are undergoers for the backness harmony, however, behave as

blockers for the rounding one.

Encoding In the abstract representation of this pattern, it is impossible to use

fewer vowels than already employed by Turkish. This harmony depends on 3

features (backness, rounding, and height), and therefore the minimum amount of

vowels to encode it is 23 = 8. Now, there are two classes of underspecified vowels

in the URs of the strings: high (H) and low (L). The training pairs look like

(uxHxLxxLLxxHxxL, uxuxaxxaaxxWxxa): the initial underspecified vowel is high,

and therefore it agrees in rounding with a previous back rounded vowel,

becoming u. The next underspecified vowel is low and therefore is realized as

unrounded a. After several other low vowels, another high one follows, but it is

not rounded (W) since it follows a non-round vowel. Similarly to the earlier

experiments, x is transparent and makes this harmony long-distant. The rules

below summarize how exactly the underspecified segments H and L are realized

in the SFs.

L =

‘a’ if the previous vowel is ‘o’, ‘u’, ‘a’ or ‘W’

‘e’ if the previous vowel is ‘ö’, ‘ü’, ‘e’ or ‘i’



H =



‘O’ if the previous vowel is ‘a’ or ‘W’

‘a’ if the previous vowel is ‘e’ or ‘i’

‘o’ if the previous vowel is ‘o’ or ‘u’

‘e’ if the previous vowel is ‘ö’ or ‘ü’


Results Given the data sample of 5, 000 words 1 to 10 characters long, OSTIA

did not learn this harmonic pattern completely. When evaluated using the test
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Pattern: several vowel harmonies with blocking

Training sample (info): 5000 pairs, 1 to 10 characters long

Testing sample 1 (info): 1000 pairs, 1 to 10 characters long

Testing 1, accuracy: 97.9%

Testing 1, predictions: (’exLxHxL’, ’exexixe’), (’xüxxLxHxxL’, ’xüxxexüxxe’), ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 87%

Testing 2, predictions: (’uxHxLxxLLxxHxxL’, ’uxuxaxxaaxxuxxa’), ...

Number of states: 107

Number of transitions: 318

Table 4.6: Results of OSTIA learning several vowel harmonies with blocking.

data of the same length as the one in the training sample, 97.9% of the predicted

surface forms were as expected. On a test sample with longer words, the accuracy

decreased to 87%. Such a model consistently makes incorrect predictions such as

(uxHxLxxLLxxHxxL, uxuxaxxaaxxuxxa), where a rounded high vowel u occurs

after a non-rounded low vowel a, instead of the expected high vowel W.

Interestingly, the performance of the algorithm did not increase significantly with

the increased size of the training sample.

4.2.8 Experiment 6: vowel and consonant harmonies without

blocking

Now, let us consider two simultaneous yet independent harmonies. A frequent case

is when there are two classes of harmonizing elements: consonants and vowels.

Such a pattern is attested in several Bantu languages (Kikongo, Kiyaka, Bukusu

a.o.).
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Encoding Let us assume that vowels agree in [α], and consonants agree in [β].

Such system would need at least 2 vowels and 2 consonants: A = {a, o} and B =

{b, p}. Note that a special transparent element is not necessary since the presence of

vowels makes the consonant harmony long-distant, and vise versa. This encoding

defines pairs such as (aApBAA, aappaa) and (boABBABA, boobbobo), where in URs,

every non-initial value of consonants and vowels is hidden under the name of the

corresponding harmonic set.

Results The learner easily inferred the simultaneous vowel and consonant

harmonies and scored 100% on both tests. The FST has 4 states and 16 transitions

in-between them. Notice, that so far, the performance of OSTIA is 100% in every

case when harmony does not include the blocking effect since it also performed

extremely well on a single or double vowel harmonic systems earlier.

Pattern: vowel and consonant harmonies without blocking

Training sample (info): 5000 pairs, 1 to 10 characters long

Testing sample 1 (info): 1000 pairs, 1 to 10 characters long

Testing 1, accuracy: 100%

Testing 1, predictions: (’oApBAA’, ’ooppoo’), (’boABBABA’, ’boobbobo’), ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 100%

Testing 2, predictions: (’opBAABAABBAABBAA’, ’oppoopooppooppoo’), ...

Number of states: 4

Number of transitions: 16

Table 4.7: Results of OSTIA learning vowel and consonant harmonies without

blocking.

The inferred FST is visualized in Figure 4.8. It has 4 states, and every state

corresponds to a type of vowel and consonant in a stem. In particular, qε
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corresponds to stems where the vowel and consonant values are a and p; qo
corresponds to o and p; qb to a and b; and, finally, qob encodes stems with o and b.

ε : εstart ob:ε

o:ε

b:ε

a:a, A:a

p:p, B:p

A:o, B:p, p:p

A:a, B:b, a:a

A:o

B:b

o:o

b:b

b:b

o:o

Figure 4.8: FST for vowel and consonant harmonies without blocking obtained by

OSTIA.

4.2.9 Experiment 7: vowel and consonant harmonies with

blocking

Let us add a blocking effect to the pattern from the previous experiment. Earlier we

saw that OSTIA performs extremely well on data exhibiting a harmonic system that

does not involve blockers. However, adding a blocking effect in all cases resulted

in the obtained FST not scoring 100% on either of the training datasets.

Encoding Let us use the encoding as in the previous experiment, where a stem is

able to “pick” one vowel from the setA = {a, o} and one consonant fromB = {b, p}.

Additionally, I will introduce a blocker t, after which b cannot occur, and needs to be

realized as p instead. Along with all pairs that are well-formed for the same pattern
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without the blocker, it also introduces pairs such as (abABAtAABAB, ababataapap),

where B is rewritten as b before the blocker since it inherited its value from the

initial consonant b, however, B is realized as p after the blocker t.

Results The performance of OSTIA on this dataset is far from perfect. While it

scores 96.4% on the testing sample that includes strings of the same length as the

training ones, the accuracy falls to 77.4% when the length of the test words is

doubled. It goes along with the previous results showing that OSTIA fails to

generalize a blocking effect.

Pattern: vowel and consonant harmonies with blocking

Training sample (info): 5000 pairs, 1 to 10 characters long

Testing sample 1 (info): 1000 pairs, 1 to 10 characters long

Testing 1, accuracy: 96.4%

Testing 1, predictions: (’aApABB’, ’aapapp’), (’pBtaA’, ’pptaa’), (’tpaBBAtAt’, ’tpappatattppa’), ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 77.4%

Testing 2, predictions: (’pBaBABBABttttABABBAB’, ’ppapappapttttopoppop’), ...

Number of states: 101

Number of transitions: 406

Table 4.8: Results of OSTIA learning vowel and consonant harmonies with

blocking.

4.2.10 Experiment 8: unbounded tone plateauing

Now, consider a circumambient pattern of unbounded tone plateauing (UTP). This

pattern is observed in some Niger-Congo languages such as Luganda, where all

low tones (L) are realized as high (H) if they are surrounded by high tones. As

Section 4.1.3 shows, that pattern is not learnable by OSTIA since circumambient

dependencies require an unbounded lookahead, and therefore cannot be expressed
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as subsequential transducers (Jardine, 2016a).

Encoding This process involves low tones (L) changing their value to high (H) if

they are surrounded by high tones. To encode this pattern, we can simply create

pairs where the underlying stretches of Ls are realized as H in the surface forms

if surrounded by high tones, such as (LHHLHH, LHHHHH). In all other cases, the

underlying and the surface representations match.

Pattern: unbounded tone plateauing

Training sample (info): 5000 pairs, 1 to 10 characters long

Testing sample 1 (info): 1000 pairs, 1 to 10 characters long

Testing 1, accuracy: 100%

Testing 1, predictions: (’HHHHL’, ’HHHHL’), (’LLLHL’, ’LLLHL’), (’LHHLHH’, ’LHHHHH’), ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 94.9%

Testing 2, predictions: (’HLLLLLLLLHHLHHH’, ’HLLLLLLLLHHHHHH’), ...

Number of states: 32

Number of transitions: 64

Table 4.9: Results of OSTIA learning UTP.

Results The obtained FST performs extremely well on the test set where the

length of the words is the same as in the training sample. However, the accuracy

falls to 94.9% when the length of the test words is doubled. This suggests that

instead of capturing the pattern, the resulting machine simply memorized long

substrings of tones that can be observed in the input. Indeed, UTP cannot be

captured as a subsequential machine.

4.2.11 Experiment 9: a “simple” first-last harmony

Now, let us consider learning a typologically unattested pattern such as first-last

harmony (Lai, 2015). This pattern enforces agreement among the first and the last
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vowels, while nothing else needs to agree. First, let us consider a case when vowels

are always the first and last elements of the word.

Encoding The encoding involves vowels a and o, and a transparent element x.

In this representation of the pattern, words always start and end with a vowel,

therefore the sample pairs look as follows: (oaoxaa, oaoxao), (axooxa, axooxa), etc. If

a final vowel of the underlying representation disagrees with the initial vowel, it is

rewritten to match the initial vowel.

Results Such a pattern is easily induced by OSTIA. The obtained model scores

100% on both test datasets. The FST is pretty small and therefore interpretable: it

has only 5 states and 14 transitions.

Pattern: a “simple” first-last harmony

Training sample (info): 5000 pairs, 1 to 6 characters long

Testing sample 1 (info): 1000 pairs, 1 to 6 characters long

Testing 1, accuracy: 100%

Testing 1, predictions: (’oaoxaa’, ’oaoxao’), (’axooxa’, ’axooxa’), (’oo’, ’oo’), ...

Testing sample 2 (info): 1000 pairs, 10 to 15 characters long

Testing 2, accuracy: 100%

Testing 2, predictions: (’aoaxoaaoaaaoxaa’, ’aoaxoaaoaaaoxaa’), ...

Number of states: 5

Number of transitions: 14

Table 4.10: Results of OSTIA learning a “simple” first-last harmony.

This FST is visualized below. After starting to process the input string in qε, it

moves to either qa or qo depending on the first vowel that it reads. States qo and

qao handle strings that start and end with o; similarly, the agreement within words

that start with a is enforced by states qa and qoa. Note the similarity of these two

172



branches with the way the word-final devoicing was encoded earlier in FST 4.4.

While the disagreeing vowel is deleted from the transitions incoming to the states

qoa and qao, that vowel is returned if it is not final. If that vowel was, in fact, the last

element of the input word, the other, “agreeing” vowel is written instead by the

corresponding state output.

ε : εstart

o:ε

a:ε

oa:o

ao:a

o:o, x:x

a:a, x:x

a:a

o:oa:a

o:o
a:ε

o:ao, x:ax

o:ε

a:oa, x:ox

Figure 4.9: FST for a “simple” first-last harmony obtained by OSTIA.

4.2.12 Experiment 10: a “complex” first-last harmony

The previous experiment targeted a pattern of the first-last harmony, where all

words started and ended with a vowel. Indeed, OSTIA learned that pattern with

the accuracy of 100%. Now, let us challenge the learner with a more complicated

version of this rule: in this case, words are also able to start and end with a

transparent element, however, the first vowel of the word still agrees with the final

vowel.

Encoding The training sample, apart from including everything possible for the

previous experiment, also includes pairs where the forms have a sequence of initial

or final x. So, for example, pairs such as (xxoxoaooaxx, xxoxoaoooxx) and (axxoxoxxx,

axxoxaxxx) are added to the training sample. Now, not all input-output pairs begin
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and end with a vowel.

Results The performance of OSTIA is not perfect on either of the tests. The score

is 98.6% on the test set that includes strings of the same length as the training

sample, while it falls to 28.1% on a test set that includes longer words. While

OSTIA learned the previous version of this pattern, it failed to generalize a more

complicated one. Indeed, this result is expected since this case of first-last

harmony requires an unbounded lookahead: there can be an unbounded amount

of intervening material between the final vowel and the end of the word. Patterns

like this are not subsequential.

Pattern: “complex” first-last harmony

Training sample (info): 5000 pairs, 1 to 12 characters long

Testing sample 1 (info): 1000 pairs, 10 to 29 characters long

Testing 1, accuracy: 98.6%

Testing 1, predictions: (’oxaxooxx’, ’oxaxoooxxaxx’), (’xxaoxxaaxx’, ’xxaoxxaxaxx’). ...

Testing sample 2 (info): 1000 pairs, 15 to 20 characters long

Testing 2, accuracy: 28.1%

Testing 2, predictions: (’ooxaxoxooaxxxxxx’, ’ooxaxoxooxx’), ...

Number of states: 79

Number of transitions: 235

Table 4.11: Results of OSTIA learning a “complex” first-last harmony.

4.2.13 Summary of the results

Here, I explored automatic extraction of different types of harmonic or other

assimilation processes, both attested and non-attested in natural languages. These

patterns were word-final devoicing, single and several vowel harmonies with and

without blocking, independent vowel and consonant harmonies, unbounded tone
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plateauing, and different kinds of first-last harmony. I discuss how to learn the

mappings representing the listed above phenomena automatically, namely, using

the OSTIA algorithm. The training sample then consists of pairs of examples,

where the first element of the pair stands for the underlying representation, and

the second element is the corresponding surface form. Given such automatically

generated sets of examples, I explored if OSTIA is capable of extracting the

generalized rule from it. The code of the experiments is available on GitHub �

(Aksënova, 2020d).

As the first step, I generated the training data using the extension of the

codebase explained in Section 3.1.3. Then, I provided those pairs as a training

sample to OSTIA. To test the performance of the learned FST, I generated another

set of pairs and provided the left sides of those pairs as input to that FST. The

accuracy of the learned model is the percentage of times the FST outputted the

same surface form as the right-hand side of the generated test pair. I tested the

obtained model on two types of test samples: in the first test sample, the strings

are of the same length as in the training sample, and in the second one, they are

approximately twice as long. The first test sample evaluates the “baseline”

performance of the learned models, while the second one uses longer strings to

see how well the pattern was generalized.

Table 4.12 provides a summary of the results discussed in this section. The

first column describes the results of testing on the same-length testsets, while the

second one summarizes the performance of the models on the strings that are

approximately twice longer. Out of 10 experiments, OSTIA generalized 5 patterns

extremely well, so its performance is 100% on both test sets. These experiments

were word-final devoicing, single and several vowel harmonies, independent

vowel and consonant harmony, and a “simple” version of the first-last harmony.

Interestingly, none of the successful experiments included a pattern with a

blocking effect. In fact, on the datasets with blocking, OSTIA performed
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Experiments | wtrain | = | wtest | | wtrain | = 2× | wtest |

E1: word-final devoicing 100% 100%

E2: a single vowel harmony without blocking 100% 100%

E3: a single vowel harmony with blocking 99.2% 91.2%

E4: several vowel harmonies without blocking 100% 100%

E5: several vowel harmonies with blocking 97.9% 87%

E6: vowel and consonant harmonies without blocking 100% 100%

E7: vowel and consonant harmonies with blocking 96.4% 77.4%

E8: unbounded tone plateauing 100% 94.9%

E9: “simple” first-last harmony 100% 100%

E10: “complex” first-last harmony 98.6% 28.1%

Table 4.12: Results of the learning experiments using OSTIA.

significantly worse, scoring 91.2%, 87%, and 77.4% during the evaluations that

used longer words. Unbounded circumambient processes are not subsequential

(Jardine, 2016a), so OSTIA expectedly did not learn UTP. Finally, the “complex”

version of first-last harmony is also beyond the capacities of this learner because it

requires an unbounded lookahead: only 28.1% of the predicted transformations

are indeed correct.

The current implementation of OSTIA cannot capture the blocking effect, as

the experiments 3, 5 and 7 show. Theoretically, this can be caused by 3 different

reasons: the inability of the algorithm to learn the blocking effect, the absence of

the crucially important data points, and the inability of the current

implementation of the algorithm to learn the blocking effect. The algorithm

behind OSTIA is proven to be correct by Oncina et al. (1993). The average error

was not decreasing with the increased number of the training examples, and that

shows that the problem is not rooted in the absence of some pairs of examples. It

only leaves one source of the issue, namely, the concrete implementation of the

algorithm. Indeed, as I discuss in the beginning of Section 4.2, different
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pseudocodes of OSTIA have different conditions behind the activation of the

pushback module. In future work, re-implementing OSTIA with different

versions of that condition is necessary to find the concrete implementation that

can learn the full class of subsequential functions in practice2.

4.3 Beyond OSTIA

So far, I presented OSTIA as the only way to learn mappings. Alternatively, one

might want to either specify OSTIA given some concrete assumptions or to use

other transduction learners. OSTIA learns total functions, i.e. functions that are

defined for all possible values of their input. However, natural language input to

output mappings are not total: not all inputs can be mapped to their output

counterparts because some forms simply do not exist. This results in the learner

never having a chance to satisfy a certain condition, and therefore it might not

converge on the target FST. Learners can be redefined with respect to the natural

language restrictions in ways that use negative data, require a deterministic

finite-state acceptor (DFA) corresponding to the input or output, or define

different types of locality. In this section, I discuss available extensions of OSTIA

(OSTIA-D/R, OSTIA-N), other learning algorithms (SOSFIA, ISLFLA, OSLFIA),

and propose some ideas for further learners. To the best of my knowledge, the

performance of other transduction learners on different datasets was not explored

as of now, and it would be an interesting project to be carried out in future.

2For example, one can attempt the pushback and fold of the states qa and ab if the outputs of

the transitions with the same input symbol originating in those states have a non-empty common

prefix. Preliminary results show that OSTIA implementing this condition is capable of learning the

blocking effect; however, it does not perform well on local processes.
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4.3.1 Specifying OSTIA

Earlier in this chapter, I discussed the main version of the OSTIA algorithm: it

builds a prefix tree using the input sides of the training sample, and then folds

some states one into another, therefore generalizing the pattern. However, the FST

extraction can be greatly simplified by providing some extra information about the

shape of the input or output strings, as it is done in OSTIA-D, OSTIA-R, and OSTIA-

DR, or by giving a sample of negative strings, as in OSTIA-N.

A transducer encodes a mapping. But in some cases, this mapping is not

defined for any input string, but rather for a subset of the possible strings. If the

constraints on the input are available a priori, one might use a form of OSTIA that

encodes Domain knowledge, or OSTIA-D (Oncina and Varó, 1996). It takes as

input not only the training sample but also the DFA describing the language of the

input strings. If that information is available for the output strings of the intended

mapping, then the Range is defined a priori. OSTIA-R requires a DFA describing

the output language (Castellanos et al., 1998). Consequently, OSTIA-DR takes

advantage of both domain and range DFAs (Oncina and Varó, 1996).

As another type of prior knowledge, OSTIA-N uses the Negative data (Oncina

and Varó, 1996). Such a learner is given a set of well-formed pairs, as well as a

set of input strings that should not be translated by the learned machine. While

merging the states, OSTIA-N checks that none of the prohibited inputs obtained a

translation.

4.3.2 Fixing outputs of some input symbols

We might have information about some of the outputs. Namely, the outputs of

some input symbols can be fixed thus accelerating the convergence if the learner

explores all possible options. For example, assume observing a pair (sim, seen) in

the training sample. Based on exclusively this pair, we can construct a total of 35
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prefix tree-shaped FSTs with different output values of input symbols s, i and m,

see some of the machines in 4.10. Some of these FSTs output the translation seen as

soon as they read s, some of them distribute the string among different transitions,

some of them only have this string as the state output of qsim, and so on.

ε : εstart s:ε si:ε sim:ε
s:seen i:ε m:ε

ε : εstart s:ε si:ε sim:ε
s:s i:ee m:n

ε : εstart s:ε si:ε sim:n
s:seen i:se m:e

ε : εstart s:ε si:ε sim:ε
s:ε i:ε m:seen

Figure 4.10: Some of the FSTs that can be built from the pair (sim, seen) in the

“unbiased” way; to be contrasted with the following figure.

However, if it is known in advance that some of the outputs can be fixed, the

number of such 4-state FSTs processing (sim, seen) decreases significantly. For

example, if the output of the input symbol s is fixed to s, only 10 machines are

possible. In all of them, a transition qε
s:s−→ qs is fixed to only read and output s.

The number of possible machines then decreases to 10, see Figure 4.11.

Instead, if we fix the output of the symbol i to ee, there will be only 2 possible

machines that employ 4 states. The output of swould be s in both cases, but the way

of obtaining n in the translation will differ: in one case, its source is the transition

qsi
m:n−−→ qsim, and in another case, it is the state output of qsim that yields n.

See the implementation of OSTIA with the possibility of fixing outputs of

some input symbols on GitHub � (Aksënova, 2020e). However, this solution is

179

https://github.com/alenaks/OSTIA/blob/master/ostia_biased_outputs.ipynb


ε : εstart s:ε si:ε sim:ε
s:s i:ee m:n

ε : εstart s:ε si:ε sim:en
s:s i:ε m:e

Figure 4.11: Some of the FSTs that can be built from the pair (sim, seen) if the output

of the input symbol s is fixed to the output symbol s.

not applicable if there are processes happening across the “fixed” symbol. If a

metathesis occurs across some segment the output of which is fixed, extraction of

this pattern becomes tricky. For example, in an Austronesian language Hawu,

some vowels undergo metathesis across a consonant (Blust, 2012). In this case,

fixing the output of that consonant will make it more complicated for the learner

to discover the pattern.

4.3.3 Other transduction learners

In this chapter, I only discussed the learning results obtained by conducting toy

learning experiments using OSTIA. However, there are several other subsequential

learners available in the literature. One of them presents a different from OSTIA

approach to the induction of subsequential transducers from the set of training

pairs, and the other two rely on the particular assumptions about the shape of the

dependencies encoded in the mapping.

Structured Onward Subsequential Function Inference Algorithm (SOSFIA)

proposed by Jardine et al. (2014) assumes the existence of the k-local DFA that helps

to navigate through the input sides of the training pairs. The learner then induces

a subsequential function that reads the input strings one-by-one and outputs their

translations. The obtained FST is onward, i.e. at any step, the biggest known part
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of the output string is produced.

ISLFLA and OSLFIA encode assumptions about the sources of dependencies.

Input Strictly Local Function Learning Algorithm (ISLFLA) assumes that the

translations only depend on the input string, i.e. there is enough information in

the input itself to construct the translation (Chandlee et al., 2014). Output Strictly

Local Function Inference Algorithm (OSLFIA), on the contrary, considers both

the input string and the currently known output prefix as sources of the

information for the prediction of the next output symbol (Chandlee et al., 2015).

See chapter 2 for the examples of input/output local functions. Both learners

require some integer k to be known a priori, and their first step is a constriction of

k-local DFA accepting input or output strings.

An enlarged set of experiments needs to be used when exploring SOSFIA,

ISLFLA and OSLFIA. The expected result is that SOSFIA will learn all

subsequential mappings (word final devoicing, all types of harmonies, and the

“simple” case of vowel harmony). However, OSLFIA and ISLFLA cannot learn

processes where a potentially unbounded number of segments can intervene

in-between two agreeing elements, because such processes are neither ISL nor

OSL (Chandlee et al., 2015). It would imply that those two learners only capture

the word-final devoicing, and fail on all other experiments, see Figure 4.13.

Extending the list of the experiment by different local dependencies, such as

metathesis, epenthesis, and deletion, would allow one to explore the practical

capabilities of those learning algorithms better.

4.3.4 Learning groups of transducers

Currently, the transduction learners proposed in the literature have a goal of

constructing a working generalized transducer based on the finite data sample.

Different algorithms perform different strategies of pattern recognition. However,

all of them have an assumption that the input sample is sufficiently representative.
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Experiments SOSFIA OSLFIA ISLFLA

E1: word-final devoicing -* -* -*

E2: a single vowel harmony without blocking -* é* é*

E3: a single vowel harmony with blocking -* é* é*

E4: several vowel harmonies without blocking -* é* é*

E5: several vowel harmonies with blocking -* é* é*

E6: vowel and consonant harmonies without blocking -* é* é*

E7: vowel and consonant harmonies with blocking -* é* é*

E8: unbounded tone plateauing é* é* é*

E9: “simple” first-last harmony -* é* é*

E10: “complex” first-last harmony é* é* é*

Table 4.13: Predicted results (marked as *) of the learning experiments using

SOSFIA, OSLFIA and ISLFLA learning algorithms.

This is a very strong requirement: a fully representative data sample is not always

available. For this reason, it is possible to think of an algorithm that instead of

extracting a single machine, builds a class of machines that behave equally with

respect to the training sample but are non-equivalent otherwise.

For example, consider a learning algorithm for a group of equivalent yet not

identical input local FSTs. Such FSTs only rely on the information available in the

input to predict the output. A learner could start by taking an input k-local

subsequential transducer template with unfilled outputs of the transitions. Then

the transducer reads the input strings and saves all substrings of the

corresponding translation string in the outputs of the transitions taken to read the

input string. If the transition was taken before, the algorithm intersects the set of

substrings of the current translation with the set of saved candidates, therefore,

leaving only the candidates that are consistent throughout the whole training

sample. After the training data is processed, the algorithm builds a set of
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transducers based on the obtained guesses for every transition.

For example, when the pair (ab, aab) is provided as the input to the learner, two

out of many guesses about the target FST would be either (1) outputting ab if we

read b after an a, or (2) a is translated to aa, and b stays intact, see Figure 4.12.

However, as soon as the training pair (a, aa) is encountered, the first machine from

Figure 4.12 is rejected, leaving the second machine as the applicable candidate.

(1) q0start qa qb
a : a b : ab

(2) q0start qa qb
a : aa b : b

Figure 4.12: Possible guesses of the transition that can be built after observing the

pair (ab, aab).

Similarly to OSTIA-D and SOSFIA, such a learner needs to know a priori the

DFA corresponding to the input side of the language. Therefore, assume that we

have the input k-local DFA pre-initialized. Every transition q of that DFA

corresponds to the set Ωq, and that set is empty upon the initialization. Then, we

read one pair from the training sample. If Ωq of that transition is empty, we fill

every state activated while reading the input string with all the substrings of the

right side of the training pair. If Ωq is not empty, we intersect all substrings of the

newly encountered output string with the guesses that those transitions contain.

After the whole training sample is processed, we can build all possible

transducers based on the remaining guesses in Ω of the transitions. Finally, we can

run the input sides of the training pairs through the transducers again to validate

that it predicts only correct outputs.

At the moment, the algorithm is implemented � (Aksënova, 2020a), but it has

not been extensively tested or optimized yet. Further work on this algorithm

includes elaborate presentation of the pseudocode, evaluating its time complexity,

improving the implementation, and testing its performance on language data, as
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well as presenting the proof of its correctness.

4.4 Learning processes: summary

In this chapter, I discussed the automatic extraction of subsequential finite-state

transducers from a sample of input-output pairs. Namely, I summarized the main

steps of the OSTIA algorithm, presented two walk-through examples,

demonstrated the results of the learning experiments, and proposed ways to go

beyond OSTIA’s performance.

The learning experiments targeted extraction of natural language-like patterns.

The training samples exhibited in simplified ways such typologically attested

processes as word-final devoicing, one or multiple harmonies with and without

blocking effect, and unbounded tone plateauing. Additionally, OSTIA was

presented with a dataset exemplifying the unattested pattern of first-last harmony.

Although the expected results of the learning experiments were mostly

confirmed, there were some surprises. Indeed, OSTIA successfully learned the

generalization behind word-final devoicing, all harmonies without a blocking

effect, and a “simple” version of first-last harmony. Also, expectedly, the

generalizations behind tone plateauing and the “complex” version of first-last

harmony remained unlearned since they involve an unbounded lookahead, so

these patterns are not subsequential. However, if the target pattern exhibited a

blocking effect, it significantly decreased the accuracy of OSTIA. Throughout the

chapter, I described and sometimes visualized the obtained FSTs, but more

research is needed to explain the learning outcomes of some of the experiments.

Several questions remain unanswered. Firstly, it is unclear what makes it

impossible for OSTIA to learn even a simple case of harmony with a blocking

effect. Interpreting the algorithmic steps and learning outcomes can help to

explain such behavior. Second, it is also important to test OSTIA on non-length
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preserving processes and other phonological phenomena such as epenthesis,

deletion, and metathesis. Finally, there are learners such as ISLFLA and OSLFIA

that induce input and output-local functions (Chandlee et al., 2014, 2015), and

their performance on natural language patterns needs to be evaluated as well.

In this chapter, I discussed automatic learning subsequential transformations

that capture processes that change underlying representations into the

corresponding surface forms. This allows encoding various phonological and

morphological processes, such as harmony, word-final devoicing, and others. The

well-formedness conditions imposed by phonotactics and morphotactics on

shapes of the allowed words can be captured by subregular languages, that can

also be learned from data, as Chapter 3 shows. The results of these two chapters

are preliminary, however, this meant to be a starting point for using tools such as

SigmaPie to experimentally test theoretical claims. This helps us to explore the

ways to create computational models of language, and, in turn, it can give us

insights into how languages work.
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Chapter 5

Conclusion and future work

The last decade was very fruitful in the field of subregular research. New classes

of subregular languages and mappings were uncovered for modeling natural

language phenomena, and new learning algorithms were developed for these

classes. The subregular approach has been successfully applied to phonotactics

(Heinz, 2010a), rewrite processes in phonology and morphology (Chandlee,

2014), and even syntactic constraints over tree structures (Graf, 2018b). However,

the rapid pace of the theoretical research has not been matched when it comes to

engineering considerations. Many of the proposed learning algorithms have not

been implemented, and as a result, their performance on concrete data sets was

not known.

My thesis is a first step towards closing this gap. The development of my toolkit

SigmaPie has made it possible to evaluate subregular proposals over data sets of

various degrees of abstractness. The results in Chapters 3 and 4 show that this is a

worthwile enterprise that yields new results that are relevant to computational and

theoretical linguists. Issues that may be negligible in theory become much more

relevant when dealing with real-world data. For instance, phonological features

and natural classes are immaterial for claims about subregular complexity, nor do

they affect learning under the idealized assumptions that are commonly made in
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the grammatical inference literature. But when learning with realistic data, the

inability to generalize across phonologically related sounds can cause the learner

to fail unexpectedly, as was the case with the TSL learner 3.4. This is a powerful

demonstration of the importance of features and natural classes, two concepts for

which linguists were advocating for decades.

That said, the work reported in this thesis is a starting point. SigmaPie and the

experimental modeling approach I developed in this thesis could be taken in

numerous directions to improve the balance between theory and practice in the

subregular field. In the last few pages of this thesis, I revisit the findings of the

previous chapters, assess their implications for computational and theoretical

linguistics, and outline potential future work. The latter might be the most

important aspect of this thesis: SigmaPie provides a sandbox for tool-assisted

subregular research, and there are many different things that can be done in this

sandbox. My thesis presented one particular use of SigmaPie, but in order to

unlock its full potential, the subregular community must keep adding new

functionality to it and keep using it to probe the practical ramifications of its

theorems and algorithms.

5.1 Summary of the results

My dissertation brings a two-sided approach to the problem of the theory-practice

misbalance in subregular research. First, I designed the Python package SigmaPie

", which includes different subregular learners, scanners, sample generators, and

some other functions that support subregular research (Aksënova, 2020b). Building

on this package, I then explored the performance of several subregular learning

algorithms on datasets that are modeled after widespread linguistic patterns such

as word-final devoicing, harmonies of different types, and tone plateauing, among

others.
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5.1.1 SigmaPie "

The package SigmaPie mostly focuses on subregular languages and grammars, but

also includes an implementation of OSTIA, a learner for subsequential

transducers (Oncina et al., 1993; de la Higuera, 2010). The functionality of the

package includes various functions that can be used to simplify the practical work

with subregular languages. Learners extract subregular grammars from the

provided dataset. Scanners evaluate the well-formedness of data items with

respect to the given grammar. Sample generators produces a dataset of the required

size that follows the given grammar. Polarity switchers convert the grammars from

positive to negative, and the other way around. Finally, FSM constructors build a

finite state machine based on the given grammar. The implemented learning

algorithms for strictly piecewise, strictly local, tier-based strictly local, and

multi-tier strictly local languages are proposed in (Heinz, 2010b; Jardine and

McMullin, 2017; McMullin et al., 2019). All of these aspects of SigmaPie played a

key role in the design of the experiments for this thesis.

SigmaPie is implemented in Python 3, and uses the copyleft open-source GNU

General Public License v3.0. It is available on PyPI and in pip. SigmaPie is an

ongoing project and, by design, cannot be feature-complete as long as new

subregular research keeps being published. Researchers who modify or extend

the code for their own projects are highly encouraged to create a pull request in

the GitHub repository so that their code can be incorporated into future releases.

5.1.2 Tool-assisted learning experiments: overview

Building on the functionality provided by SigmaPie, this dissertation also

presented several learning experiments in Chapters 3 and 4. I used several

wordlists from natural languages (Finnish, German, Turkish), and I also

constructed artificial datasets exhibiting different linguistic patterns, e.g.
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word-final devoicing. I then used SigmaPie to test whether subregular learning

algorithms can extract suitable grammars from these datasets. The experiments

conducted were of two types: the first type probed the learning of

well-formedness conditions, while the second one explored generalizing the rules

of rewrite processes.

The experiments on well-formedness conditions all follow the same

procedure. The input consists of lists of words that obey a specific

well-formedness condition. For example, if the condition to be tested is vowel

harmony, then the training data includes only forms where all vowels agreed in

the relevant harmony feature. Alternatively, in the case of the word-final

obstruent devoicing, the dataset only includes words that do not end in a voiced

obstruent. One of SigmaPie’s learning algorithms is then used to infer a grammar

from the dataset. This grammar is then fed into SigmaPie’s sample generator to

produce a set of strings that are well-formed according to the learned grammar.

Finally, one of SigmaPie’s scanner implementations is used to determine how

many of these strings are well-formed with respect to the original grammar. This

generate-and-test paradigm is repeated multiple times to calculate an average

accuracy score for the learner.

The learning of rewrite rules by the OSTIA algorithm follows a similar paradigm

but changes some technical details. Each training sample now consists of pairs of

strings, which encode the underlying representation (UR) and the corresponding

surface form (SF) that is produced by some rewrite rule. As a toy example, assume

that the inventory of vowels only contains a and o, and that we have a progressive

vowel harmony process that requires all vowels to agree in rounding. Valid SFs

then include either only o vowels or only a vowels. The corresponding URs have all

the non-initial vowels hidden (for example, represented as A), and only the initial

vowel is specified as a or o to trigger the agreement. In such a way, these pairs

encode the URs that contain the underspecified elements, and the SFs where those
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elements are specified.

Note that the training data can exhibit various degrees of abstractness.

Consider the case of word-final obstruent devoicing in German, analyzed as a

well-formedness condition rather than a rewrite rule. A realistic dataset would be

a finite list of attested German words. A highly abstracted representation, on the

other hand, would replace each German word with a string of as and bs such that

a represents a voiced obstruent and b any sound that is not a voiced obstruent.

One important insight of the experiments conducted in Chapter 3 is that the

performance of a learning algorithm is not always uniform across these different

levels of abstractness. That is because a more abstract representation allows for

fewer combinatorial possibilities — with k symbols, there are kn distinct n-grams,

so the larger the value of k, the more n-grams there are. The larger the space of

combinatorial options, the more likely it is that the training data will miss a

combination. Some subregular learners can easily get led astray by missing

combinations, e.g. the TSL learner, and as a result these learners fail to learn some

phenomena over realistic data even if they succeed with the highly abstracted

data sample. Intuitively, this shows the importance of phonological features and

natural classes, which allow the learner to generalize from observed combinations

of sounds to other combinations that are missing in the data set.

The results of the learning experiments are summarized in Figure 5.1.

According to de la Higuera (2010), the task of grammatical inference algorithms is

to constantly predict the next correct element. Therefore, an algorithm has not

fully learned a pattern as long as it is still making errors, no matter how negligible

or rare those errors are. A single mistake means that the algorithm has failed to

learn, and successful learning means perfect learning without any mistakes. For

this reason, Figure 5.1 provides an abridged overview of the full results that were

summarized in Figures 3.58 and 4.12. In this abridged format, a success (-)

indicates that the learner achieved an accuracy of 100%, and anything less than
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that is represented as a failure (é).

Experiments
Well-formedness Transformations

SP SL TSL MTSL OSTIA

E1: word-final devoicing é - - - -

E1: learning from raw German data é - - -

E2: a single vowel harmony without blocking - é - - -

E2: learning from raw Finnish data - é é -

E3: a single vowel harmony with blocking é é - - é

E4: several vowel harmonies without blocking - é - - -

E5: several vowel harmonies with blocking é é - - é

E5: learning from raw Turkish data é é é é

E6: vowel and consonant harmonies without blocking - é é - -

E7: vowel and consonant harmonies with blocking é é é - é

E8: unbounded tone plateauing - é é é

E9: “simple” first-last harmony é é é é -

E10: “complex” first-last harmony é

Table 5.1: Learning results that were experimentally obtained in this dissertation.

Black cells indicate that the experiments were not conducted due to the reasons

discussed in Section 5.1.5.

While these results largely mirror the theoretical expectations, they do not tell

the full story. The experiments for well-formedness conditions as well as the

experiments for rewrite rules reveal subtle nuances of the subregular learning

approach that deserve closer attention.

5.1.3 Learning well-formedness conditions

The learning of well-formedness conditions focused on four important subregular

classes: strictly piecewise (SP), strictly local (SL), tier-based strictly local (TSL), and

multi-tier strictly local (MTSL) languages.
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SP grammars encode long-distance dependencies that prohibit certain

substructures, while the distance between the elements of that substructure, as

well as the type of intervening material, plays no role (Heinz and Rogers, 2010;

Heinz, 2010b). As a result, SP grammars are ideally suited to long-distance

patterns as long as they do not involve blocking. This is reflected in the training

data. The SP model achieved an accuracy of 100% on all harmonies that do not

exhibit a blocking effect, including the pattern of Finnish harmony learned from

raw Finnish data, and even unbounded tone plateauing, which is challenge for

other classes such as TSL and MTSL. But the SP learner failed consistently on

local processes such as word-final devoicing, and on long-distance processes that

involve blocking. Overall, then, the SP learning results are in line with the

theoretical expectations.

At the same time, though, the SP learner performed unexpectedly well on some

processes it should have failed on. Most notably, it achieved an accuracy of 89%

on word-final devoicing. But this should not be construed as a surprising ability

of SP grammars to handle local processes over realistic data samples. Thanks to

the transparent nature of subregular grammars and learners, we could inspect the

learned grammar and see that it does not enforce any kind of word-final devoicing.

The high accuracy score is an artefact that arises from the fact that it is very unlikely

for a randomly generated string to have any obstruent at the end. If we limited our

attention to only strings that end in an obstruent, the performance of the learned SP

grammar would be abysmal. We see, then, that accuracy scores can be misleading

when considered in a vacuum, and the linguistic transparency of the subregular

approach allows us to reliably identify cases where the quantitative results do not

match the qualitative facts.

The other classes SL, TSL, and MTSL also provide some interesting insights.

SL models only local phenomena and cannot handle long-distance dependencies.

This is reflected by learning results, where the SL learner succeeded only on
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word-final devoicing, but did so uniformly on all data sets, whether they were

realistic or highly abstracted. With SL learning, the previously mentioned issues

of combinatorial explosion and data sparsity are much less relevant, at least as

long as the n-grams are short.

A TSL grammar captures a single long-distance dependency (Heinz et al.,

2011; Jardine and McMullin, 2017). In contrast to SP, it can handle blocking effects,

but it fails on some long-distance phenomena such as unbounded tone

plateauing. Moreover, if different agreements affect different sets of elements,

such as in the case of independent vowel and consonant harmonies, one needs

several tiers. This marks the step from TSL to MTSL. Again the learning results

largely match theoretical expectations (De Santo and Graf, 2019; McMullin et al.,

2019), with two notable exceptions. The first one is the failure of the TSL

algorithm to learn some phenomena over realistic data sets even though the

algorithm succeeds over the abstracted dataset. As explained earlier, this is a

problem of combinatorial explosion: the TSL algorithm assumes that missing

combinations always convey meaningful information about which sounds do or

do not matter for the dependency, and as a result it is easily led astray by

accidental gaps in the data. The second unexpected result pertains to the MTSL

learner. This algorithm sometimes produced unnaturally large grammars with

hundreds of tiers while a standard linguistic analysis would only posit a handful

of tiers. It is only because of the transparency of subregular methods that this

shortcoming could even be noticed — if the learners and grammars were opaque

to human inspection, MTSL would seem to turn in a stellar performance across

the board. By looking under the hood, we see that the quantitative performance

conceals some qualitative shortcomings, the cause of which will have to be left to

future research.

Finally, none of the learners captured the unattested pattern of first-last

harmony. This is again in line with the theoretical predictions as first-last
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harmony does not fit into any of the classes SP, SL, TSL, or MTSL. In sum, the

finding of the learning experiments for well-formedness conditions can be

summarized in the form of three key insights:

1. Theoretical predictions borne out

When trained on abstracted, artificially generated data, the subregular

learners performed exactly as predicted by the theoretical work on

subregular learning.

2. Learning failure on realistic data

When trained on realistic data, subregular learners can fail in unexpected

ways. This is because realistic data uses a richer alphabet that causes data

sparcity and a combinatorial explosion. In addition, realistic data will

contain accidental gaps that a subregular learner could misinterpret as a

part of the phenomenon. Natural classes and representations built on

phonological features may mitigate this issue.

3. Understanding requires transparency

There are several cases where the quantitative performance of a learning

algorithm paints an incomplete picture at best. The SP learner performs

surprisingly well for word-final devoicing in German even though the

learned grammar does not enforce any constraints on obstruents. The MTSL

learner sometimes achieves a perfect accuracy score of 100% but does so

with a very complex grammar that does not reflect the linguistic naturalness

of the relevant phenomena. Since subregular grammars and learners can be

easily inspected by humans, these issues do not escape notice and can be

explored further in future work.
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5.1.4 Learning rewrite rules

For the learning of rewrite rules I chose to focus on the OSTIA inference algorithm

for subsequential mappings (Oncina et al., 1993; de la Higuera, 2010). This choice

was made because many phonological and morphological processed discussed in

Section 2.2.2 are subsequential in nature.

As with the learning of well-formedness condition, the results of the learning

experiments largely match the theoretical predictions but also hold some surprises.

OSTIA succeeded on the local process of word-final devoicing, as well as harmonies

that do not exhibit a blocking effect. Additionally, it also learned a simple version

of first-last harmony where the two harmonic elements must be adjacent to the left

and right word edge, respectively. It failed on the more complex version of first-

last harmony where the harmonic elements must be the first and last symbol of a

specific type, but can occur anywhere in the word (for instance, this kind of first-

last harmony might target the first and last vowel, but the vowel is not necessarily

the first or the last sound in the word). It also failed on the process of unbounded

tone plateauing. These learning successes as well as the learning failure on the

more complex version of first-last harmony and unbounded tone plateauing are

expected.

A major surprise, on the other hand, was the failure of OSTIA to learn

harmony systems that include a blocking effect. Such processes are subsequential,

yet they were not generalized correctly by OSTIA. In Section 4.2.13 I suggest that

this might be rooted in the choice of OSTIA’s “pushback” condition: several

versions of it are proposed in the literature (Oncina et al., 1993; de la Higuera,

2010, 2011), and the one implemented in SigmaPie may not handle blocking effects

correctly. Further work is needed to accurately pinpoint the reason for the

unexpected behavior of SigmaPie’s implementation of OSTIA. In particular, other

versions of OSTIA should be implemented, and quite generally SigmaPie needs a

wider variety of transduction learners.
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5.1.5 Omitted experiments

Some experiments were omitted for technical reasons or because they would not be

insightful. In the learning of well-formedness conditions, there was no reason to

test the learner’s performance on the complex first-last harmony since they already

performed very poorly on the simple version of the harmony. Unbounded tone

plateauing was not tested for MTSL because the existing learner is limited to MTSL

with bigrams (2-MTSL) whereas tone plateauing would require at least trigrams.

If the experiment were to be carried out with a 3-MTSL learner, the learner should

still fail because tone plateauing is not an MTSL phenomenon.

Finally, OSTIA was not tested on realistic data from German, Finnish, or Turkish.

The large alphabet of these data sets would induce a very large memory load during

the learning process. It would be interesting to test in future work if OSTIA fails

on realistic data sets for word-final devoicing or vowel harmony without a blocker,

both of which it learned correctly from the abstract data set.

Quite generally, the results in this thesis should be taken as just a first step.

My goal was to demonstrate how artificial learning experiments can be set up and

evaluated with the help of SigmaPie. The obtained results are preliminary and far

from exhaustive. Further research could extend this approach to other subregular

learners and experimental datasets for a more comprehensive picture.

Although I only explored the very tip of an iceberg, some of the results came

out to be significant. For example, I was able to show that some patterns that are

theoretically TSL cannot be learned from natural language data using a TSL learner

(see Turkish harmony in Section 3.4.3), and that this problem does not arise with SP

patterns (see Finnish harmony in Section 3.3.2). This project is just the beginning,

and it opens up plenty of directions of future work and highlights the importance

of further research regarding the applications of subregular models.
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5.2 Future directions

This dissertation is aimed towards supporting the balance between theory and

applications within the subregular approach. It cannot be complete as long as

there are new advancements in the field or ideas for their applications. The

balance, however, can be maintained by following the cycle of invention,

development, and implementation. In this case, the implemented subregular

tools, such as SigmaPie, can be applied to accomplish concrete language learning

or generating task, as I exemplify in Chapters 3 and 4. The outcomes of those

applications inform the subregular theory and provoke the development of

improved algorithms and models.

Subregular languages seem to be a good fit for natural language dependencies,

and there are plenty of promising ideas and algorithms currently available in

subregular literature. However, a large number of those algorithms are not

implemented, and this slows the development of the applications of subregular

models. Implementing those algorithms provides tools to linguists working on

the subregular nature of human language patterns. Insights from the side of

linguistics guide the development of new algorithms and the improvement of the

old ones.

linguistic

applications

algorithm development

and improvement

software

development

Figure 5.1: Exchange of ideas and innovations among applications of the

subregular approach.
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5.2.1 Linguistic applications

The availability of subregular tools allows making progress in linguistic

applications of subregular proposals. So, for instance, one could evaluate

subregular proposals in a tool-assisted way, using the encoded or automatically

learned subregular models. Subregular learning experiments, in turn, can yield

important theoretical results, and highlight the improvements that can be made to

the subregular algorithms or software.

Evaluating the subregular proposals One of the applications of the subregular

tools is to test ideas that are available in the literature, therefore evaluating the

existent subregular proposals. So, for example, if a TSL model is proposed for a

certain phenomenon, tools allow to automatically test if the TSL hypothesis is

indeed consistent with the data. Alternatively, if literature claims that some

phenomenon is subsequential, it is important to verify that current

implementations of the learners are indeed capable of discovering that pattern. In

such a way, implemented learners and scanners allow to verify claims made in the

literature, and at the same time see the further improvements that can be made.

Not learning the impossible If an upper bound is proposed on the complexity of

linguistic patterns, it is important to understand if there are any exceptions to the

rule. One of the ways to do so is to attempt learning those unattested patterns using

the available subregular models, Additionally, it is also important to research why

the unattested patterns are impossible: due to the non-learnable nature of those

patterns, as Lai (2015) suggests, or because of the unlikelihood of such a system

evolving (Blevins, 2004). Knowing what patterns are not possible and why helps

to get closer to understanding the core nature of linguistic dependencies, and it,

in turn, helps us to form requirements for learning algorithms extracting natural

language patterns.
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Learning experiments from data Finally, it is crucially important to know if the

proposed subregular learners are capable of learning the target patterns of the

corresponding complexity from data. The data can be of different degrees of

abstractness, ranging from the artificially generated sample with the minimal

possible alphabet to raw natural language data. Different types of linguistic

phenomena need to be targeted so that we can better understand which classes

and learners should be used in which case. In my thesis, I only evaluated the

behavior of learners using datasets exhibiting local dependencies, harmonies with

or without blocking, and some other patterns. Other possible target phenomena

include epenthesis, deletion, metathesis, different types of dissimilations, and a

variety of suprasegmental patterns. Additionally, learning from data allows to

explore the performance of the subregular learners under circumstances such as

the increased size of the alphabet, the sparsity of the natural language data, or the

small/large size of the training sample. Conducting such learning experiments

helps not only to evaluate the practical aspects of theoretical advancements but

also to assess the performance of subregular learners on real data.

Critically evaluating linguistic ideas and new findings helps to detect the

improvements that need to be implemented in the subregular learning algorithms

and models. So, for example, linguists were for decades advocating for the

importance of features and natural classes. In turn, subregular algorithms would

greatly benefit from a way to represent data in a less sparse way, therefore

simplifying the learning. In such a way, insights from linguistics help to highlight

which algorithms need to be developed in the future, and how to improve the

existent learners.
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5.2.2 Algorithm development and improvement

Linguistics and applications to language patterns help to see the potential

improvements of the subregular learning paradigm. Typological work uncovers

new types of dependencies and that, in turn, inspires the definition of new

subregular language classes and the corresponding learners. Old learners can be

improved as well, for example, by adding linguistic features, probabilities, or

combining powers of several learners.

Designing new algorithms Apart from the discussed SL, SP, TSL, and MTSL

subregular languages, there are other subregular classes that capture

long-distance linguistic dependencies in other ways. Among them, there is an

extension of TSL languages with the tier projection function that is sensitive to the

local context (input-TSL, or ITSL), and several other classes such as MITSL, OTSL,

IOTSL, and IBSP (Graf, 2017b; De Santo and Graf, 2019). Additionally, one could

extend the 2-MTSL learner from 2 to k, or make sure that the learner always

induces the minimal number of tiers. Other ideas for the design of the learning

algorithms are listed in section 4.3 and could be explored as well. Additionally,

the topic of adding more “naturalness” to the learning algorithms needs to be

further explored, such as learning the feature systems of the language or finding a

way to encode linguistic notions such as natural classes.

Implementing linguistic notions As mentioned in the previous subsection, the

subregular learners could greatly benefit from implementing linguistic notions

such as features or natural classes. It would allow seeing the behavior of elements

of the alphabet as groups sharing some feature, instead of the current independent

treatment of every segment. Potentially, this could improve the performance of

the subregular learners on natural language data. The first steps towards

incorporating features and natural classes into subregular models are taken by
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Strother-Garcia et al. (2016) and Chandlee et al. (2019), and show promising

results. In the future, this line of research needs to be expanded as well.

Implementing probabilities Another way to improve the performance of the

subregular algorithms is to add probabilities to the models. Probabilistic

modeling would allow to recognize harmony patterns even when the

disharmonic words are present. Some theoretical research is already done in this

direction by Heinz and Rogers (2010) and Shibata and Heinz (2019). Also,

probabilistic modeling can be combined with the feature-based and natural

class-based approaches (Heinz and Koirala, 2010; Vu et al., 2018).

Combining the learners Sometimes, a target language is at the intersection of

different string-based subregular languages. For example, it can exhibit tone

plateauing (SP) together with a long-distance harmony with blocking (TSL). To

learn this patter, the SP and TSL learning algorithms can be run in parallel, and

the intersection of the obtained languages yields the target language (Heinz,

2010a; Heinz and Idsardi, 2013). In case of learning complex rewrite rules, further

research is required since it is not clear if transformations can be combined in a

way that would preserve properties such as subsequentiality.1

The availability of new ideas and algorithms in the literature gives a way of

implementing them in practice. Researchers can access the needed tools without

the need to implement them from scratch if toolkits such as SigmaPie are available

and up-to-date. Since the subregular languages and learners are closely

interconnected and rely on the same basis of assumptions, the modularity of such

a toolkit allows integrating new classes and learners easily. This is an essential

1Although this is an open question, research groups at Stony Brook University, University of

Ottawa, and UC San Diego are currently working on it.

201



step for keeping a mutually beneficial exchange between the theory and the

practice.

5.2.3 Software development

Some algorithms are proposed in the literature but are not yet available in the form

of tools or software. Bridging this gap helps to fast-forward the applications of

the subregular models in linguistics, which, in turn, discovers the possible ways to

improve those subregular algorithms.

Implementation of algorithms Some of the subregular learning algorithms are

not yet implemented and therefore their practical applications are not explored.

Among them, there are the learning algorithms ISLFLA and OSLFIA which

extract two subclasses of subsequential mappings that are especially useful for

local phonological processes (Chandlee et al., 2014, 2015). A learner for the class

of Output 2-TSL functions is available in (Burness and McMullin, 2019) and needs

to be implemented as well. Chandlee et al. (2019) also proposes a transduction

learner for feature-based representations learning long-distance dependencies.

Software correctness To confirm the correctness of software, it is important to

not rely on a single implementation. For every subregular algorithm, there need

to be several different independent implementations. Also, some algorithms, such

as OSTIA, are presented in the literature using several different pseudocodes

implementing the same idea, and all those versions need to be implemented as

well. Additionally, the speed of the original implementations could be increased

as well, by decreasing the big O complexity of the algorithm or by implementing

memory-efficient techniques such as caching.

Implementing the subregular learners and other functionality like scanners or

sample generators helps to provide tools to linguistics, which, in its turn, can yield
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new results, or confirm old results using the newly available learners or models.

Also, the availability of the tools makes subregular projects easier to be approached

by a beginner’s level linguists, such as undergraduate researchers.

During the last decade, the field of subregular research grew in its popularity,

with theoretical advancements showing that it could be used for modeling

different phonological, morphological, and even syntactic patterns. SigmaPie " is

the first toolkit directed towards the development of subregular tools. It allows

evaluating subregular proposals over data sets of various degree of abstractness.

In my dissertation, I showed that SigmaPie can be used to yield new results the are

relevant for theoretical and computational linguistics. These results, in turn, can

bring insights into understanding the nature of human language.
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Gerhard Jäger and James Rogers. 2012. Formal language theory: Refining the Chomsky hierarchy.

Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598):1956–1970.

Adam Jardine. 2016a. Computationally, tone is different. Phonology, 33(2):247–283.

Adam Jardine. 2016b. Learning tiers for long-distance phonotactics. In Proceedings of the 6th

Conference on Generative Approaches to Language Acquisition North America (GALANA 2015), pages

60–72, Somerville, MA. Cascadilla Proceedings Project.
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Sedigheh Moradi, Alëna Aksënova, and Thomas Graf. 2019. The computational cost of

generalizations: An example from micromorphology. In Proceedings of the Society for Computation

in Linguistics, volume 2, pages 367–368, New York, NY.

Kemelbek Nanaev. 1950. Uchebnik kirgizskogo yazika. Kirgizgosizdat, Frunze.

David Odden. 1994. Adjacency parameters in phonology. Language, 70(2):289–330.
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José Oncina and Miguel A. Varó. 1996. Using domain information during the learning of a

subsequential transducer. In Lecture Notes in Computer Science – Lecture Notes in Artificial

Intelligence, pages 313–325.

Jaye Padgett. 2002. Russian voicing assimilation, final devoicing, and the problem of [v] (or, the

mouse that squeaked)*. Manuscript.
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Appendix A

Code of SigmaPie

This appendix lists the full Python code for the package SigmaPie that was used in

the experiments reported in Chapters 3 and 4. However, note, that future versions

may yield different results. The most recent version of SigmaPie can be installed via

pip and is also available on GitHub:

https://pypi.org/project/SigmaPie/

The Github repository also contains additional documentation on how to use

SigmaPie. The code of the experiments themselves is available on GitHub as well:

https://github.com/alenaks/subregular-experiments

A.1 Grammar class

1 """A module with the definition of the grammar class. Copyright (C)

2019 Alena

2 Aksenova.

3

4 This program is free software; you can redistribute it and/or modify

it
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5 under the terms of the GNU General Public License as published by

the

6 Free Software Foundation; either version 3 of the License , or (at

your

7 option) any later version.

8 """

9

10 from itertools import product

11 from sigmapie.helper import *

12

13

14 class L(object):

15 """A general class for grammars and languages.

16

17 Implements methods that

18 are applicable to all grammars in this package.

19 Attributes:

20 alphabet (list): alphabet used in the language;

21 grammar (list): the list of substructures;

22 k (int): locality window;

23 data (list): input data;

24 edges (list): start - and end -symbols for the grammar;

25 polar ("p" or "n"): polarity of the grammar.

26 """

27

28 def __init__(

29 self , alphabet=None , grammar=None , k=2, data=None , edges=[">

", "<"], polar="p"

30 ):

31 """ Initializes the L object."""

32 if polar not in ["p", "n"]:

33 raise ValueError(

34 "The value of polarity should be either "

35 "positive (’p ’) or negative (’n ’)."
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36 )

37 self.__polarity = polar

38 self.alphabet = alphabet

39 self.grammar = [] if grammar is None else grammar

40 self.k = k

41 self.data = [] if data is None else data

42 self.edges = edges

43

44 def extract_alphabet(self):

45 """ Extracts alphabet from the given data or grammar and

saves it into

46 the ’alphabet ’ attribute.

47

48 CAUTION: if not all symbols were used in the data or grammar

,

49 the result is not correct: update manually.

50 """

51 if self.alphabet is None:

52 self.alphabet = []

53 symbols = set(self.alphabet)

54 if self.data:

55 for item in self.data:

56 symbols.update ({j for j in item})

57 if self.grammar:

58 for item in self.grammar:

59 symbols.update ({j for j in item})

60 symbols = symbols - set(self.edges)

61 self.alphabet = sorted(list(symbols))

62

63 def well_formed_ngram(self , ngram):

64 """ Tells if the given ngram is well -formed. An ngram is ill -

formed if:

65

66 * there is something in-between two start - or end -symbols
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67 (’>a>’), or

68 * something is before start symbol or after the end symbol

69 (’a>’), or

70 * the ngram consists only of start - or end -symbols.

71 Otherwise it is well -formed.

72 Arguments:

73 ngram (str): The ngram that needs to be evaluated.

74 Returns:

75 bool: well -formedness of the ngram.

76 """

77 start , end = [], []

78 for i in range(len(ngram)):

79 if ngram[i] == self.edges [0]:

80 start.append(i)

81 elif ngram[i] == self.edges [1]:

82 end.append(i)

83

84 start_len , end_len = len(start), len(end)

85 if any([ start_len == len(ngram), end_len == len(ngram)]):

86 return False

87

88 if start_len > 0:

89 if ngram [0] != self.edges [0]:

90 return False

91 if start_len > 1:

92 for i in range(1, start_len):

93 if start[i] - start[i - 1] != 1:

94 return False

95

96 if end_len > 0:

97 if ngram [-1] != self.edges [1]:

98 return False

99 if end_len > 1:

100 for i in range(1, end_len):
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101 if end[i] - end[i - 1] != 1:

102 return False

103

104 return True

105

106 def generate_all_ngrams(self , symbols , k):

107 """ Generates all possible ngrams of the length k based on

the given

108 alphabet.

109

110 Arguments:

111 alphabet (list): alphabet;

112 k (int): locality window (length of ngram).

113 Returns:

114 list: generated ngrams.

115 """

116 symb = symbols [:]

117 if not ((self.edges [0] in symb) or (self.edges [1] in symb)):

118 symb += self.edges

119

120 combinations = product(symb , repeat=k)

121 ngrams = []

122 for ngram in combinations:

123 if self.well_formed_ngram(ngram) and (ngram not in

ngrams):

124 ngrams.append(ngram)

125

126 return ngrams

127

128 def opposite_polarity(self , symbols):

129 """ Returns the grammar opposite to the one given.

130

131 Arguments:

132 symbols (list): alphabet.
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133 Returns:

134 list: ngrams of the opposite polarity.

135 """

136 all_ngrams = self.generate_all_ngrams(symbols , self.k)

137 opposite = [i for i in all_ngrams if i not in self.grammar]

138

139 return opposite

140

141 def check_polarity(self):

142 """ Returns the polarity of the grammar ("p" or "n")."""

143 if self.__polarity == "p":

144 return "p"

145 return "n"

146

147 def change_polarity(self , new_polarity=None):

148 """ Changes the polarity of the grammar.

149

150 Warning: it does not rewrite the grammar!

151 """

152 if new_polarity is not None:

153 if new_polarity not in ["p", "n"]:

154 raise ValueError(

155 "The value of polarity should be either "

156 "positive (’p ’) or negative (’n ’)."

157 )

158 self.__polarity = new_polarity

159 else:

160 if self.__polarity == "p":

161 self.__polarity = "n"

162 elif self.__polarity == "n":

163 self.__polarity = "p"

A.2 Strictly local class
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1 """A class of Strictly Local Grammars. Copyright (C) 2019 Alena

Aksenova.

2

3 This program is free software; you can redistribute it and/or modify

it

4 under the terms of the GNU General Public License as published by

the

5 Free Software Foundation; either version 3 of the License , or (at

your

6 option) any later version.

7 """

8

9 from random import choice

10 from sigmapie.helper import *

11 from sigmapie.fsm import *

12 from sigmapie.grammar import *

13

14

15 class SL(L):

16 """A class for strictly local grammars and languages.

17

18 Attributes:

19 alphabet (list): alphabet used in the language;

20 grammar (list): collection of ngrams;

21 k (int): locality window;

22 data (list): input data;

23 edges (list): start - and end -symbols for the grammar;

24 polar ("p" or "n"): polarity of the grammar;

25 fsm (FSM): corresponding finite state machine.

26 """

27

28 def __init__(

29 self , alphabet=None , grammar=None , k=2, data=None , edges=[">

", "<"], polar="p"
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30 ):

31 """ Initializes the SL object."""

32 super ().__init__(alphabet , grammar , k, data , edges , polar)

33 self.fsm = FSM(initial=self.edges[0], final=self.edges [1])

34

35 def learn(self):

36 """ Extracts SL grammar from the given data."""

37 self.grammar = self.ngramize_data ()

38 if self.check_polarity () == "n":

39 self.grammar = self.opposite_polarity(self.alphabet)

40

41 def annotate_string(self , string):

42 """ Annotates the string with the start and end symbols.

43

44 Arguments:

45 string (str): a string that needs to be annotated.

46 Returns:

47 str: annotated version of the string.

48 """

49 return ">" * (self.k - 1) + string.strip() + "<" * (self.k -

1)

50

51 def ngramize_data(self):

52 """ Creates set of n-grams based on the given data.

53

54 Returns:

55 list: collection of ngrams in the data.

56 """

57 if not self.data:

58 raise ValueError("The data is not provided.")

59

60 ngrams = []

61 for s in self.data:

62 item = self.annotate_string(s)
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63 ngrams.extend(self.ngramize_item(item))

64

65 return list(set(ngrams))

66

67 def ngramize_item(self , item):

68 """ This function n-gramizes a given string.

69

70 Arguments:

71 item (str): a string that needs to be ngramized.

72 Returns:

73 list: list of ngrams from the item.

74 """

75 ng = []

76 for i in range(len(item) - (self.k - 1)):

77 ng.append(tuple(item[i : (i + self.k)]))

78

79 return list(set(ng))

80

81 def fsmize(self):

82 """ Builds FSM corresponding to the given grammar and saves

it in the

83 fsm attribute."""

84 if not self.grammar:

85 raise (IndexError("The grammar must not be empty."))

86 if not self.alphabet:

87 raise ValueError(

88 "The alphabet is not provided. " "Use ‘grammar.

extract_alphabet () ‘."

89 )

90

91 if self.check_polarity () == "p":

92 self.fsm.sl_to_fsm(self.grammar)

93 else:

94 opposite = self.opposite_polarity(self.alphabet)
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95 self.fsm.sl_to_fsm(opposite)

96

97 def scan(self , string):

98 """ Checks if the given string is well -formed with respect to

the given

99 grammar.

100

101 Arguments:

102 string (str): the string that needs to be evaluated.

103 Returns:

104 bool: well -formedness value of a string.

105 """

106 if not self.fsm.transitions:

107 self.fsmize ()

108

109 string = self.annotate_string(string)

110 return self.fsm.scan_sl(string)

111

112 def generate_sample(self , n=10, repeat=True , safe=True):

113 """ Generates a data sample of the required size , with or

without

114 repetitions depending on ‘repeat ‘ value.

115

116 Arguments:

117 n (int): the number of examples to be generated;

118 repeat (bool): allows (rep=True) or prohibits (rep=False

)

119 repetitions within the list of generated items;

120 safe (bool): automatically breaks out of infinite loops ,

121 for example , when the grammar cannot generate the

122 required number of data items , and the repetitions

123 are set to False.

124 Returns:

125 list: generated data sample.
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126 """

127 if not self.alphabet:

128 raise ValueError("Alphabet cannot be empty.")

129 if not self.fsm.transitions:

130 self.fsmize ()

131

132 statemap = self.state_map ()

133 if not any([len(statemap[x]) for x in statemap ]):

134 raise (

135 ValueError(

136 "There are ngrams in the grammar that are"

137 " not leading anywhere. Clean the grammar "

138 " or run ‘grammar.clean_grammar () ‘."

139 )

140 )

141

142 data = [self.generate_item(statemap) for i in range(n)]

143

144 if not repeat:

145 data = set(data)

146 useless_loops = 0

147 prev_len = len(data)

148

149 while len(data) < n:

150 data.add(self.generate_item(statemap))

151

152 if prev_len == len(data):

153 useless_loops += 1

154 else:

155 useless_loops = 0

156

157 if safe and useless_loops > 500:

158 print(

159 "The grammar cannot produce the requested "
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160 "number of strings. Check the grammar , "

161 "reduce the number , or allow repetitions."

162 )

163 break

164

165 return list(data)

166

167 def generate_item(self , statemap):

168 """ Generates a well -formed string with respect to the given

grammar.

169

170 Arguments:

171 statemap (dict): a dictionary of possible transitions in

the

172 corresponding fsm; constructed inside

generate_sample.

173 Returns:

174 str: a well -formed string.

175 """

176 word = self.edges [0] * (self.k - 1)

177 while word[-1] != self.edges [1]:

178 word += choice(statemap[word[-(self.k - 1) :]])

179 return word[(self.k - 1) : -1]

180

181 def state_map(self):

182 """

183 Generates a dictionary of possible transitions in the FSM.

184 Returns:

185 dict: the dictionary of the form

186 {"keys ":[ list of possible next symbols]}, where

187 keys are (k-1)-long strings.

188 """

189 local_alphabet = self.alphabet [:] + self.edges [:]

190 poss = product(local_alphabet , repeat =(self.k - 1))
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191

192 smap = {}

193 for i in poss:

194 for j in self.fsm.transitions:

195 if j[0] == i:

196 before = "".join(i)

197 if before in smap:

198 smap[before] += j[1]

199 else:

200 smap[before] = [j[1]]

201 return smap

202

203 def switch_polarity(self):

204 """ Changes polarity of the grammar , and changes the grammar

to the

205 opposite one."""

206 if not self.alphabet:

207 raise ValueError("Alphabet cannot be empty.")

208

209 self.grammar = self.opposite_polarity(self.alphabet)

210 self.change_polarity ()

211

212 def clean_grammar(self):

213 """ Removes useless ngrams from the grammar.

214

215 If negative , it just removes duplicates. If positive , it

detects

216 bigrams to which one cannot get from the initial symbol

and

217 from which one cannot get to the final symbol , and

removes

218 them.

219 """

220 if not self.fsm.transitions:
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221 self.fsmize ()

222

223 if self.check_polarity () == "n":

224 self.grammar = list(set(self.grammar))

225 else:

226 self.fsm.trim_fsm ()

227 self.grammar = [j[0] + (j[1],) for j in self.fsm.

transitions]

A.3 Strictly piecewise class

1 """A class of Strictly Piecewise Grammars. Copyright (C) 2019 Alena

Aksenova.

2

3 This program is free software; you can redistribute it and/or modify

it

4 under the terms of the GNU General Public License as published by

the

5 Free Software Foundation; either version 3 of the License , or (at

your

6 option) any later version.

7 """

8

9 from random import choice

10 from itertools import product

11

12 from sigmapie.grammar import *

13 from sigmapie.fsm import *

14 from sigmapie.fsm_family import *

15 from sigmapie.helper import *

16

17

18 class SP(L):

19 """A class for strictly piecewise grammars and languages.
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20

21 Attributes:

22 alphabet (list): alphabet used in the language;

23 grammar (list): collection of ngrams;

24 k (int): locality window;

25 data (list): input data;

26 polar ("p" or "n"): polarity of the grammar;

27 fsm (FSM): corresponding finite state machine.

28 """

29

30 def __init__(self , alphabet=None , grammar=None , k=2, data=None ,

polar="p"):

31 """ Initializes the SP object."""

32 super ().__init__(alphabet , grammar , k, data , polar=polar)

33 self.fsm = FSMFamily ()

34

35 def subsequences(self , string):

36 """ Extracts k-long subsequences out of the given word.

37

38 Arguments:

39 string (str): a string that needs to be processed.

40 Returns:

41 list: a list of subsequences out of the string.

42 """

43 if len(string) < self.k:

44 return []

45

46 start = list(string [: self.k])

47 result = [start]

48

49 previous_state = [start]

50 current_state = []

51

52 for s in string[self.k :]:
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53 for p in previous_state:

54 for i in range(self.k):

55 new = p[:i] + p[i + 1 :] + [s]

56 if new not in current_state:

57 current_state.append(new)

58 result.extend(current_state)

59 previous_state = current_state [:]

60 current_state = []

61

62 return list(set([ tuple(i) for i in result ]))

63

64 def learn(self):

65 """ Extracts k-long subsequences from the training data.

66

67 Results:

68 self.grammar is updated.

69 """

70 if not self.data:

71 raise ValueError("The data must be provided.")

72 if not self.alphabet:

73 raise ValueError(

74 "The alphabet must be provided. To "

75 "extract the alphabet automatically , "

76 "run ‘grammar.extract_alphabet () ‘."

77 )

78

79 self.grammar = []

80 for i in self.data:

81 for j in self.subsequences(i):

82 if j not in self.grammar:

83 self.grammar.append(j)

84

85 if self.check_polarity () == "n":

86 self.grammar = self.opposite_polarity ()
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87

88 def opposite_polarity(self):

89 """ Returns the grammar opposite to the current one."""

90 all_ngrams = product(self.alphabet , repeat=self.k)

91 return [i for i in all_ngrams if i not in self.grammar]

92

93 def fsmize(self):

94 """ Creates FSM family for the given SP grammar by passing

every

95 encountered subsequence through the corresponding automaton.

"""

96 if not self.grammar:

97 self.learn()

98

99 if self.check_polarity () == "p":

100 data_subseq = self.grammar [:]

101 else:

102 data_subseq = self.opposite_polarity ()

103

104 # create a family of templates in fsm attribute

105 seq = product(self.alphabet , repeat=self.k - 1)

106 for path in seq:

107 f = FSM(initial=None , final=None)

108 f.sp_build_template(path , self.alphabet , self.k)

109 self.fsm.family.append(f)

110

111 # run the input/grammar through the fsm family

112 for f in self.fsm.family:

113 for r in data_subseq:

114 f.sp_fill_template(r)

115

116 # clean the untouched transitions

117 for f in self.fsm.family:

118 f.sp_clean_template ()
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119

120 def scan(self , string):

121 """ Tells if the input string is well -formed.

122

123 Arguments:

124 string (str): string to be scanned.

125 Returns:

126 bool: True is well -formed , otherwise False.

127 """

128 subseq = self.subsequences(string)

129 found_in_G = [(s in self.grammar) for s in subseq]

130

131 if self.check_polarity == "p":

132 return all(found_in_G)

133 else:

134 return not any(found_in_G)

135

136 def generate_item(self):

137 """ Generates a well -formed string.

138

139 Returns:

140 str: the generated string.

141 """

142 if not self.alphabet:

143 raise ValueError("The alphabet must be provided.")

144

145 string = ""

146 while True:

147 options = []

148 for i in self.alphabet:

149 if self.scan(string + i):

150 options.append(i)

151

152 add = choice(options + ["EOS"])
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153 if add == "EOS":

154 return string

155 else:

156 string += add

157

158 def generate_sample(self , n=10, repeat=False , safe=True):

159 """ Generates data sample of desired length.

160

161 Arguments:

162 n (int): the number of examples to be generated ,

163 the default value is 10;

164 repeat (bool): allow (rep=True) or prohibit (rep=False)

165 repetitions , the default value is False;

166 safe (bool): automatically break out of infinite loops ,

167 for example , when the grammar cannot generate the

168 required number of data items , and the repetitions

169 are set to False.

170 Returns:

171 list: a list of generated examples.

172 """

173 sample = [self.generate_item () for i in range(n)]

174

175 if not repeat:

176 useless_loops = 0

177 sample = set(sample)

178 prev_len = len(sample)

179

180 while len(list(set(sample))) < n:

181 sample.add(self.generate_item ())

182 if prev_len == len(sample):

183 useless_loops += 1

184 else:

185 useless_loops = 0

186
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187 if safe and useless_loops > 100:

188 print(

189 "The grammar cannot produce the requested

number" " of strings."

190 )

191 break

192

193 return list(sample)

194

195 def switch_polarity(self , new_polarity=None):

196 """ Changes the polarity of the grammar.

197

198 Arguments:

199 new_polarity ("p" or "n"): the new value of the polarity

.

200 """

201 old_value = self.check_polarity ()

202 self.change_polarity(new_polarity)

203 new_value = self.check_polarity ()

204

205 if old_value != new_value:

206 self.grammar = self.opposite_polarity ()

207

208 def clean_grammar(self):

209 """ Removes useless ngrams from the grammar.

210

211 If negative , it just removes duplicates. If positive , it

detects

212 bigrams to which one cannot get from the initial symbol

and

213 from which one cannot get to the final symbol , and

removes

214 them.

215 """
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216 self.grammar = list(set(self.grammar))

A.4 Tier-based strictly local class

1 """A class of Tier -based Strictly Local Grammars. Copyright (C) 2019

Alena

2 Aksenova.

3

4 This program is free software; you can redistribute it and/or modify

it

5 under the terms of the GNU General Public License as published by

the

6 Free Software Foundation; either version 3 of the License , or (at

your

7 option) any later version.

8 """

9

10 from random import choice , randint

11 from sigmapie.sl_class import *

12

13

14 class TSL(SL):

15 """A class for tier -based strictly local grammars and languages.

16

17 Attributes:

18 alphabet (list): alphabet used in the language;

19 grammar (list): the list of substructures;

20 k (int): locality window;

21 data (list): input data;

22 edges (list): start - and end -symbols for the grammar;

23 polar ("p" or "n"): polarity of the grammar;

24 fsm (FSM): finite state machine that corresponds to the

grammar;

25 tier (list): list of tier symbols.
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26 """

27

28 def __init__(

29 self ,

30 alphabet=None ,

31 grammar=None ,

32 k=2,

33 data=None ,

34 edges =[">", "<"],

35 polar="p",

36 tier=None ,

37 ):

38 """ Initializes the TSL object."""

39 super ().__init__(alphabet , grammar , k, data , edges , polar)

40 self.tier = tier

41 self.fsm = FSM(initial=self.edges[0], final=self.edges [1])

42

43 def learn(self):

44 """ Learns tier and finds attested (if positive) or

unattested (if

45 negative) ngrams of the tier images of the data."""

46 if not self.alphabet:

47 raise ValueError("Alphabet cannot be empty.")

48 if not self.data:

49 raise ValueError("Data needs to be provided.")

50

51 self.learn_tier ()

52 tier_sequences = [self.tier_image(i) for i in self.data]

53 self.grammar = TSL(k=self.k, data=tier_sequences).

ngramize_data ()

54

55 if self.check_polarity () == "n":

56 self.grammar = self.opposite_polarity(self.tier)

57
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58 def learn_tier(self):

59 """ This function determines which of the symbols used in the

language

60 are tier symbols , algorithm by Jardine & McMullin (2017).

61

62 Updates tier attribute.

63 """

64 self.tier = self.alphabet [:]

65 ngrams = self.ngramize_data ()

66

67 ngrams_less = TSL(data=self.data , k=(self.k - 1)).

ngramize_data ()

68 ngrams_more = TSL(data=self.data , k=(self.k + 1)).

ngramize_data ()

69

70 for symbol in self.alphabet:

71 if self.test_insert(symbol , ngrams , ngrams_less) and

self.test_remove(

72 symbol , ngrams , ngrams_more

73 ):

74 self.tier.remove(symbol)

75

76 def test_insert(self , symbol , ngrams , ngrams_less):

77 """ Tier presense test #1.

78

79 For every (n-1)-gram (’x’,’y’,’z’),

80 there must be n-grams of the type (’x’,’S’,’y’,’z ’) and

81 (’x’,’y’,’S’,’z’).

82 Arguments:

83 symbol (str): the symbol that is currently being tested;

84 ngrams (list): the list of n-gramized input;

85 ngrams_less (list): the list of (n-1)-gramized input.

86 Returns:

87 bool: True if a symbol passed the test , otherwise False.
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88 """

89 extension = []

90 for small in ngrams_less:

91 for i in range(len(small) + 1):

92 new = small[:i] + (symbol ,) + small[i:]

93 if self.well_formed_ngram(new):

94 extension.append(new)

95

96 # needs to be here: otherwise no local WF/WE processes

97 edgecase1 = tuple(self.edges [0] * (self.k - 1) + symbol)

98 edgecase2 = tuple(symbol + self.edges [1] * (self.k - 1))

99 extension.extend ([edgecase1 , edgecase2 ])

100

101 return set(extension).issubset(set(ngrams))

102

103 def test_remove(self , symbol , ngrams , ngrams_more):

104 """ Tier presense test #2.

105

106 For every (n+1)-gram of the type

107 (’x’,’S’,’y’), there must be an n-gram of the type (’x’, ’y

’).

108 Arguments:

109 symbol (str): the symbol that is currently being tested;

110 ngrams (list): the list of n-gramized input;

111 ngrams_more (list): the list of (n+1)-gramized input.

112 Returns:

113 bool: True if a symbol passed the test , otherwise False.

114 """

115 extension = []

116 for big in ngrams_more:

117 if symbol in big:

118 for i in range(len(big)):

119 if big[i] == symbol:

120 new = big[:i] + big[i + 1 :]
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121 if self.well_formed_ngram(new):

122 extension.append(new)

123

124 return set(extension).issubset(set(ngrams))

125

126 def tier_image(self , string):

127 """ Function that returns a tier image of the input string.

128

129 Arguments:

130 string (str): string that needs to be processed.

131 Returns:

132 str: tier image of the input string.

133 """

134 return "".join(i for i in string if i in self.tier)

135

136 def fsmize(self):

137 """ Builds FSM corresponding to the given grammar and saves

in it the

138 fsm attribute."""

139 if not self.grammar:

140 raise (IndexError("The grammar must not be empty."))

141 if not self.tier:

142 raise ValueError(

143 "The tier is not extracted or empty. "

144 "Switch to SL or use ‘grammar.learn () ‘."

145 )

146

147 if self.check_polarity () == "p":

148 self.fsm.sl_to_fsm(self.grammar)

149 else:

150 opposite = self.opposite_polarity(self.tier)

151 self.fsm.sl_to_fsm(opposite)

152

153 def switch_polarity(self):
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154 """ Changes polarity of the grammar , and rewrites grammar to

the

155 opposite one."""

156 if not self.tier:

157 raise ValueError(

158 "Either the language is SL, or the tier "

159 "is not extracted , use ‘grammar.learn () ‘."

160 )

161

162 self.grammar = self.opposite_polarity(self.tier)

163 self.change_polarity ()

164

165 def generate_sample(self , n=10, repeat=True , safe=True):

166 """ Generates n well -formed strings , with or without

repetitions.

167

168 Arguments:

169 n (int): the number of examples to be generated;

170 repeat (bool): allow (rep=True) or prohibit (rep=False)

171 repetitions of the same data items;

172 safe (bool): automatically break out of infinite loops ,

173 for example , when the grammar cannot generate the

174 required number of data items , and the repetitions

175 are set to False.

176 Returns:

177 list: generated data sample.

178 """

179 if not self.alphabet:

180 raise ValueError("Alphabet cannot be empty.")

181 if not self.tier:

182 raise ValueError(

183 "Either the language is SL, or the tier "

184 "is not extracted , use ‘grammar.learn () ‘."

185 )
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186

187 if len(self.alphabet) == len(self.tier):

188 sl = SL(polar=self.check_polarity ())

189 sl.alphabet = self.alphabet

190 sl.grammar = self.grammar

191 sl.k = self.k

192 sl.edges = self.edges

193 sl.fsmize ()

194 return sl.generate_sample(n, repeat , safe)

195

196 if not self.fsm.transitions:

197 self.fsmize ()

198

199 statemap = self.state_map ()

200 data = [self.generate_item () for i in range(n)]

201

202 if not repeat:

203 data = set(data)

204 useless_loops = 0

205 prev_len = len(data)

206 while len(data) < n:

207 data.add(self.generate_item ())

208 if prev_len == len(data):

209 useless_loops += 1

210 else:

211 useless_loops = 0

212

213 if safe and useless_loops > 100:

214 print(

215 "The grammar cannot produce the requested

number" " of strings."

216 )

217 break

218
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219 return list(data)

220

221 def generate_item(self):

222 """ Generates a well -formed sequence of symbols.

223

224 Returns:

225 str: a well -formed string.

226 """

227 if not self.fsm.transitions:

228 self.fsmize ()

229

230 statemap = self.state_map ()

231 if not any([len(statemap[x]) for x in statemap ]):

232 raise (

233 ValueError(

234 "There are ngrams in the grammar that are"

235 " not leading anywhere. Clean the grammar "

236 " or run ‘grammar.clean_grammar () ‘."

237 )

238 )

239

240 tier_seq = self.annotate_string(super ().generate_item(

statemap))

241 ind = [x for x in range(len(tier_seq)) if tier_seq[x] not in

self.edges]

242 if not ind:

243 tier_items = []

244 else:

245 tier_items = list(tier_seq[ind[0] : (ind[-1] + 1)])

246

247 free_symb = list(set(self.alphabet).difference(set(self.tier

)))

248

249 new_string = self.edges [0] * (self.k - 1)
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250 for i in range(self.k + 1):

251 if randint(0, 1) and free_symb:

252 new_string += choice(free_symb)

253

254 if not tier_items:

255 return "".join([i for i in new_string if i not in self.

edges ])

256

257 for item in tier_items:

258 new_string += item

259 for i in range(self.k + 1):

260 if randint(0, 1) and free_symb:

261 new_string += choice(free_symb)

262

263 return "".join([i for i in new_string if i not in self.edges

])

264

265 def state_map(self):

266 """

267 Generates a dictionary of possible transitions in the FSM.

268 Returns:

269 dict: the dictionary of the form

270 {"keys ":[ list of possible next symbols]}, where

271 keys are (k-1)-long strings.

272 """

273 if self.fsm is None:

274 self.fsmize ()

275

276 local_alphabet = self.tier [:] + self.edges [:]

277 poss = product(local_alphabet , repeat =(self.k - 1))

278

279 smap = {}

280 for i in poss:

281 for j in self.fsm.transitions:
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282 if j[0] == i:

283 before = "".join(i)

284 if before in smap:

285 smap[before] += j[1]

286 else:

287 smap[before] = [j[1]]

288 return smap

289

290 def scan(self , string):

291 """ Checks if the given string is well -formed with respect to

the given

292 grammar.

293

294 Arguments:

295 string (str): the string that needs to be evaluated.

296 Returns:

297 bool: well -formedness value of a string.

298 """

299 tier_img = self.annotate_string(self.tier_image(string))

300 matches = [(n in self.grammar) for n in self.ngramize_item(

tier_img)]

301

302 if self.check_polarity () == "p":

303 return all(matches)

304 else:

305 return not any(matches)

A.5 Multi-tier strictly local class

1 """A class of Multiple Tier -based Strictly Local Grammars. Copyright

(C) 2019

2 Alena Aksenova.

3

4 This program is free software; you can redistribute it and/or modify
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it

5 under the terms of the GNU General Public License as published by

the

6 Free Software Foundation; either version 3 of the License , or (at

your

7 option) any later version.

8 """

9

10 from copy import deepcopy

11 from random import choice , randint

12 from itertools import product

13 from sigmapie.tsl_class import *

14 from sigmapie.fsm_family import *

15

16

17 class MTSL(TSL):

18 """A class for tier -based strictly local grammars and languages.

19

20 Attributes:

21 alphabet (list): alphabet used in the language;

22 grammar (list): the list of substructures;

23 k (int): locality window;

24 data (list): input data;

25 edges (list): start - and end -symbols for the grammar;

26 polar ("p" or "n"): polarity of the grammar;

27 fsm (FSMFamily): a list of finite state machines that

28 corresponds to the grammar;

29 tier (list): list of tuples , where every tuple lists

elements

30 of some tier.

31 Learning for k > 2 is not implemented: requires more theoretical

work.

32 """

33

246



34 def __init__(

35 self , alphabet=None , grammar=None , k=2, data=None , edges=[">

", "<"], polar="p"

36 ):

37 """ Initializes the TSL object."""

38 super ().__init__(alphabet , grammar , k, data , edges , polar)

39 self.fsm = FSMFamily ()

40 if self.k != 2:

41 raise NotImplementedError(

42 "The learner for k-MTSL languages is " "still being

designed."

43 )

44 self.tier = None

45

46 def learn(self):

47 """

48 Learns 2-local MTSL grammar for a given sample. The

algorithm

49 currently works only for k=2 and is based on MTSL2IA

designed

50 by McMullin , Aksenova and De Santo (2019). We are currently

51 working on lifting the locality of the grammar to arbitrary

k.

52 Results:

53 self.grammar is updated with a grammar of the following

shape:

54 {( tier_1):[ bigrams_for_tier_1],

55 ...

56 (tier_n):[ bigrams_for_tier_n ]}

57 """

58 if not self.data:

59 raise ValueError("Data needs to be provided.")

60 if not self.alphabet:

61 raise ValueError(
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62 "The alphabet is empty. Provide data or "

63 "run ‘grammar.extract_alphabet ‘."

64 )

65

66 possible = set(self.generate_all_ngrams(self.alphabet , self.

k))

67 attested = set()

68 for d in self.data:

69 bigrams = self.ngramize_item(self.annotate_string(d))

70 attested.update(set(bigrams))

71 unattested = list(possible.difference(attested))

72

73 paths = self.all_paths(self.data)

74 grammar = []

75

76 for bgr in unattested:

77 tier = self.alphabet [:]

78

79 for s in self.alphabet:

80 rmv = True

81

82 # condition 1

83 if s in bgr:

84 rmv = False

85 continue

86

87 # condition 2

88 relevant_paths = []

89 for p in paths:

90 if (p[0] == bgr [0]) and (p[-1] == bgr[-1]) and (

s in p[1]):

91 relevant_paths.append(p)

92 for rp in relevant_paths:

93 new = [rp[0], set(i for i in rp[1] if i != s),
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rp[2]]

94 if new not in paths:

95 rmv = False

96 break

97

98 # remove from the tier if passed both conditions

99 if rmv:

100 tier.remove(s)

101

102 grammar.append ((tier , bgr))

103 gathered = self.gather_grammars(grammar)

104

105 self.grammar = gathered

106 self.tier = [i for i in self.grammar]

107

108 if self.check_polarity () == "p":

109 self.grammar = self.opposite_polarity ()

110

111 def scan(self , string):

112 """ Scan string with respect to a given MTSL grammar.

113

114 Arguments:

115 string (str): a string that needs to be scanned.

116 Returns:

117 bool: well -formedness of the string.

118 """

119 tier_evals = []

120

121 for tier in self.grammar:

122 t = tier

123 g = self.grammar[tier]

124

125 delete_non_tier = "".join([i for i in string if i in t])

126 tier_image = self.annotate_string(delete_non_tier)
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127 ngrams = self.ngramize_item (( tier_image))

128

129 this_tier = [(ngr in g) for ngr in ngrams]

130

131 if self.check_polarity () == "p":

132 tier_evals.append(all(this_tier))

133 else:

134 tier_evals.append(not any(this_tier))

135

136 return all(tier_evals)

137

138 def gather_grammars(self , grammar):

139 """ Gathers grammars with the same tier together.

140

141 Arguments:

142 grammar (list): a representation of the learned grammar

143 where there is a one -to-one mapping between tiers

144 and bigrams.

145 Returns:

146 dict: a dictionary where keys are tiers and values are

147 the restrictions imposed on those tiers.

148 """

149 G = {}

150 for i in grammar:

151 if tuple(i[0]) in G:

152 G[tuple(i[0])] += [i[1]]

153 else:

154 G[tuple(i[0])] = [i[1]]

155 return G

156

157 def path(self , string):

158 """ Collects a list of paths from a string.

159

160 A path is a
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161 triplet <a, X, b>, where ‘a‘ is a symbol , ‘b‘ is a symbol

162 that follows ‘a‘ in ‘string ‘, and ‘X‘ is a set of symbols

163 in -between ‘a‘ and ‘b‘.

164 Arguments:

165 string (str): a string paths of which need to be found.

166 Returns:

167 list: list of paths of ‘string ‘.

168 """

169 string = self.annotate_string(string)

170 paths = []

171

172 for i in range(len(string) - 1):

173 for j in range(i + 1, len(string)):

174 path = [string[i]]

175 path.append(set(k for k in string [(i + 1) : j]))

176 path.append(string[j])

177

178 if path not in paths:

179 paths.append(path)

180

181 return paths

182

183 def all_paths(self , dataset):

184 """ Finds all paths that are present in a list of strings.

185

186 Arguments:

187 dataset (list): a list of strings.

188 Returns:

189 list: a list of paths present in ‘dataset ‘.

190 """

191 paths = []

192 for item in dataset:

193 for p in self.path(item):

194 if p not in paths:
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195 paths.append(p)

196

197 return paths

198

199 def opposite_polarity(self):

200 """ Generates a grammar of the opposite polarity.

201

202 Returns:

203 dict: a dictionary containing the opposite ngram lists

204 for every tier of the grammar.

205 """

206 if not self.grammar:

207 raise ValueError(

208 "Grammar needs to be provided. It can also "

209 "be learned using ‘grammar.learn () ‘."

210 )

211 opposite = {}

212 for i in self.grammar:

213 possib = self.generate_all_ngrams(list(i), self.k)

214 opposite[i] = [j for j in possib if j not in self.

grammar[i]]

215

216 return opposite

217

218 def switch_polarity(self):

219 """ Changes polarity of the grammar , and rewrites grammar to

the

220 opposite one."""

221 self.grammar = self.opposite_polarity ()

222 self.change_polarity ()

223

224 def map_restrictions_to_fsms(self):

225 """ Maps restrictions to FSMs: based on the grammar , it

creates a list
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226 of lists , where every sub -list has the following shape:

227

228 [tier_n , restrictions_n , fsm_n ]. Such sub -list is

constructed

229 for every single tier of the current MTSL grammar.

230 Returns:

231 [list , list , FSM]

232 list: a list of current tier’s symbols;

233 list: a list of current tier’s restrictions;

234 FSM: a FSM corresponding to the current tier.

235 """

236 if not self.grammar:

237 raise (IndexError("The grammar must not be empty."))

238

239 restr_to_fsm = []

240

241 for alpha , ngrams in self.grammar.items():

242 polarity = self.check_polarity ()

243 tsl = TSL(

244 self.alphabet ,

245 self.grammar ,

246 self.k,

247 self.data ,

248 self.edges ,

249 polar=polarity ,

250 )

251 if not tsl.alphabet:

252 tsl.extract_alphabet ()

253 tsl.tier = list(alpha)

254 tsl.grammar = list(ngrams)

255 tsl.fsmize ()

256 restr_to_fsm.append ([tsl.tier[:], tsl.grammar [:], tsl.

fsm])

257
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258 return restr_to_fsm

259

260 def fsmize(self):

261 """ Builds FSM family corresponding to the given grammar and

saves in it

262 the fsm attribute."""

263 restr_to_fsm = self.map_restrictions_to_fsms ()

264 self.fsm.family = [i[2] for i in restr_to_fsm]

265

266 def generate_sample(self , n=10, repeat=True , safe=True):

267 """ Generates a data sample of the required size , with or

without

268 repetitions depending on ‘repeat ‘ value.

269

270 Arguments:

271 n (int): the number of examples to be generated;

272 repeat (bool): allows (rep=True) or prohibits (rep=False

)

273 repetitions within the list of generated items;

274 safe (bool): automatically breaks out of infinite loops ,

275 for example , when the grammar cannot generate the

276 required number of data items , and the repetitions

277 are set to False.

278 Returns:

279 list: generated data sample.

280 """

281 if not self.alphabet:

282 raise ValueError("Alphabet cannot be empty.")

283 if not self.fsm.family:

284 self.fsmize ()

285

286 tier_smap = self.tier_state_maps ()

287 if not any([len(tier_smap[x]) for x in tier_smap ]):

288 raise (
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289 ValueError(

290 "There are ngrams in the grammar that are"

291 " not leading anywhere. Clean the grammar "

292 " or run ‘grammar.clean_grammar () ‘."

293 )

294 )

295

296 data = [self.generate_item(tier_smap) for i in range(n)]

297

298 if not repeat:

299 data = set(data)

300 useless_loops = 0

301 prev_len = len(data)

302

303 while len(data) < n:

304 data.add(self.generate_item(tier_smap))

305

306 if prev_len == len(data):

307 useless_loops += 1

308 else:

309 useless_loops = 0

310

311 if safe and useless_loops > 500:

312 print(

313 "The grammar cannot produce the requested "

314 "number of strings. Check the grammar , "

315 "reduce the number , or allow repetitions."

316 )

317 break

318

319 return list(data)

320

321 def tier_image(self , string):

322 """
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323 Creates tier images of a string with respect to the

different

324 tiers listed in the grammar.

325 Returns:

326 dict: a dictionary of the following shape:

327 { (tier_1):" string_image_given_tier_1",

328 ...,

329 (tier_n):" string_image_given_tier_n"

330 }

331 """

332 tiers = {}

333 for i in self.grammar:

334 curr_tier = ""

335 for s in string:

336 if s in self.edges or s in i:

337 curr_tier += s

338 tiers[i] = curr_tier

339 return tiers

340

341 def generate_item(self , tier_smap):

342 """ Generates a well -formed string with respect to the given

grammar.

343

344 Returns:

345 str: a well -formed string.

346 """

347 word = self.edges [0] * (self.k - 1)

348 main_smap = self.general_state_map(tier_smap)

349 tier_images = self.tier_image(word)

350

351 while word[-1] != self.edges [1]:

352 maybe = choice(main_smap[word[-(self.k - 1) :]])

353 good = True

354 for tier in tier_smap:
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355 if maybe in tier:

356 old_image = tier_images[tier]

357 if maybe not in tier_smap[tier][ old_image[-(self

.k - 1) :]]:

358 good = False

359 if good:

360 word += maybe

361 tier_images = self.tier_image(word)

362

363 newword = word[(self.k - 1) : -1]

364 if self.scan(newword):

365 return newword

366 else:

367 return self.generate_item(tier_smap)

368

369 def tier_state_maps(self):

370 """

371 Generates a dictionary of transitions within the FSMs

372 that correspond to the tier grammars.

373 Returns:

374 dict: the dictionary of the form

375 {

376 (tier_1):{" keys ":[ list of next symbols]},

377 (tier_2):{" keys ":[ list of next symbols]},

378 ...

379 (tier_n):{" keys ":[ list of next symbols]},

380 }, where keys are (k-1)-long tier representations.

381 Warning: the list of next symbols is tier -specific ,

382 so this estimates the rough options: refer to

383 generate_item for the filtering of wrongly

384 generated items.

385 """

386 restr_to_fsm = self.map_restrictions_to_fsms ()

387 tier_smaps = {}
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388

389 for curr_tier in restr_to_fsm:

390 sl = SL()

391 sl.change_polarity(self.check_polarity ())

392 sl.edges = self.edges

393 sl.k = self.k

394 sl.alphabet = curr_tier [0]

395 sl.grammar = curr_tier [1]

396 sl.fsm = curr_tier [2]

397 tier_smaps[tuple(sl.alphabet)] = sl.state_map ()

398

399 return tier_smaps

400

401 def general_state_map(self , smaps):

402 """

403 Generates a dictionary of transitions within all

404 FSMs of the FSM family.

405 Returns:

406 dict: the dictionary of the form

407 {"keys ":[ list of next symbols]}, where

408 keys are (k-1)-long strings.

409 Warning: the list of next symbols is tier -specific ,

410 so this estimates the rough options: refer to

411 generate_item for the filtering of wrongly

412 generated items.

413 """

414 local_smaps = deepcopy(smaps)

415

416 for tier in local_smaps:

417 non_tier = [i for i in self.alphabet if i not in tier]

418 for entry in local_smaps[tier]:

419 local_smaps[tier][entry ]. extend(non_tier)

420

421 local_smaps = list(local_smaps.values ())
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422 main_smap = deepcopy(local_smaps [0])

423

424 for other in local_smaps [1:]:

425 for entry in other:

426

427 if entry not in main_smap:

428 main_smap[entry] = other[entry]

429 else:

430 inter = [i for i in main_smap[entry] if i in

other[entry ]]

431 main_smap[entry] = inter

432

433 free_ones = []

434 for i in self.alphabet:

435 for j in self.grammar:

436 if i in j:

437 break

438 free_ones.append(i)

439

440 ext_alphabet = deepcopy(self.alphabet) + [self.edges [1]]

441 for x in free_ones:

442 main_smap[x] = ext_alphabet

443

444 return main_smap

445

446 def clean_grammar(self):

447 """ Removes useless ngrams from the grammar.

448

449 If negative , it just removes duplicates. If positive , it

detects

450 ngrams to which one cannot get from the initial symbol

and

451 from which one cannot get to the final symbol , and

removes
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452 them.

453 """

454 for tier in self.grammar:

455 sl = SL()

456 sl.change_polarity(self.check_polarity ())

457 sl.edges = self.edges

458 sl.alphabet = list(tier)

459 sl.k = self.k

460 sl.grammar = self.grammar[tier]

461 sl.fsmize ()

462 sl.clean_grammar ()

463 self.grammar[tier] = deepcopy(sl.grammar)

A.6 FSM class

1 """A class of Finite State Machines. Copyright (C) 2019 Alena

Aksenova.

2

3 This program is free software; you can redistribute it and/or modify

it

4 under the terms of the GNU General Public License as published by

the

5 Free Software Foundation; either version 3 of the License , or (at

your

6 option) any later version.

7 """

8

9

10 class FSM(object):

11 """ This class implements Finite State Machine.

12

13 Attributes:

14 initial (str): initial symbol;

15 final (str): final symbol;
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16 transitions (list): triples of the form [prev_state ,

17 transition , next_state ].

18 """

19

20 def __init__(self , initial , final , transitions=None):

21 if transitions == None:

22 self.transitions = []

23 else:

24 self.transitions = transitions

25

26 self.initial = initial

27 self.final = final

28

29 def sl_to_fsm(self , grammar):

30 """ Creates FSM transitions based on the SL grammar.

31

32 Arguments:

33 grammar (list): SL ngrams.

34 """

35 if not grammar:

36 raise ValueError("The grammar must not be empty.")

37 self.transitions = [(i[:-1], i[-1], i[1:]) for i in grammar]

38

39 def scan_sl(self , string):

40 """ Scans a given string using the learned SL grammar.

41

42 Arguments:

43 string (str): a string that needs to be scanned.

44 Returns:

45 bool: well -formedness value of the string.

46 """

47 if string [0] != self.initial or string [-1] != self.final:

48 raise ValueError("The string is not annotated with " "

the delimeters.")
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49 if not self.transitions:

50 raise ValueError(

51 "The transitions are empty. Extract the"

52 " transitions using grammar.fsmize ()."

53 )

54

55 k = len(self.transitions [0][0]) + 1

56 for i in range(k - 1, len(string)):

57 move_to_next = []

58 for j in self.transitions:

59 can_read = string [(i - k + 1) : (i + 1)] == "".join(

j[0]) + j[1]

60 move_to_next.append(can_read)

61

62 if not any(move_to_next):

63 return False

64

65 return True

66

67 def trim_fsm(self):

68 """ This function trims useless transitions.

69

70 1. Finds the initial state and collects the set of states to

which one

71 can come from that node and the nodes connected to it.

72 2. Changes direction of the transitions and runs algorithm

again to

73 detect states from which one cannot get to the final

state.

74 As the result , self.transitions only contains useful

transitions.

75 """

76 if not self.transitions:

77 raise ValueError("Transtitions of the automaton must" "
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not be emtpy.")

78 can_start = self.accessible_states(self.initial)

79 self.transitions = [(i[2], i[1], i[0]) for i in can_start]

80 mirrored = self.accessible_states(self.final)

81 self.transitions = [(i[2], i[1], i[0]) for i in mirrored]

82

83 def accessible_states(self , marker):

84 """ Finds accessible states.

85

86 Arguments:

87 marker (str): initial or final state.

88 Returns:

89 list: list of transitions that can be made from

90 the given initial or final state.

91 """

92 updated = self.transitions [:]

93

94 # find initial/final transitions

95 reachable = []

96 for i in self.transitions:

97 if i[0][0] == i[0][ -1] == marker:

98 reachable.append(i)

99 updated.remove(i)

100

101 # to keep copies that can be modified while looping

102 mod_updated = updated [:]

103 mod_reachable = []

104 first_time = True

105

106 # find transitions that can be reached

107 while mod_reachable != [] or first_time:

108 mod_reachable = []

109 first_time = False

110 for p in updated:
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111 for s in reachable:

112 if p[0] == s[2]:

113 mod_reachable.append(p)

114 mod_updated.remove(p)

115 updated = mod_updated [:]

116 reachable.extend(mod_reachable)

117

118 return reachable

119

120 def sp_build_template(self , path , alphabet , k):

121 """ Generates a template for the given k-SP path.

122

123 Arguments:

124 path (str): the sequence for which the template is

generated;

125 alphabet (list): list of all symbols of the grammar;

126 k (int): window size of the grammar.

127 """

128

129 # creating the "sceleton" of the FSM

130 for i in range(k - 1):

131 # boolean shows whether the transition was accessed

132 self.transitions.append ([i, path[i], i + 1, False])

133

134 # adding non -final loops

135 newtrans = []

136 for t in self.transitions:

137 for s in alphabet:

138 if s != t[1]:

139 newtrans.append ([t[0], s, t[0], False ])

140

141 # adding final loops

142 for s in alphabet:

143 newtrans.append(
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144 [self.transitions [-1][2], s, self.transitions

[-1][2], False]

145 )

146

147 self.transitions += newtrans

148

149 def sp_fill_template(self , sequence):

150 """ Runs the imput sequence through the SP automaton and

marks

151 transitions if they were taken.

152

153 Cleans

154 transitions that were not taken afterwards.

155 Arguments:

156 sequence (str): sequence of symbols that needs to be

157 passed through the automaton.

158 """

159 state = 0

160 for s in sequence:

161 for t in self.transitions:

162 if (t[0] == state) and (t[1] == s):

163 state = t[2]

164 t[3] = True

165 break

166

167 def sp_clean_template(self):

168 """ Removes transitions that were not accessed."""

169 self.transitions = [i[:3] for i in self.transitions if i[3]

== True]

170

171 def scan_sp(self , string):

172 """ Runs the given sequence through the automaton.

173

174 Arguments:
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175 string (str): string to run through the automaton.

176 Returns:

177 bool: True if input can be accepted by the automaton ,

178 otherwise False.

179 """

180 state = 0

181 for s in string:

182 change = False

183 for t in self.transitions:

184 if (t[0] == state) and (t[1] == s):

185 state = t[2]

186 change = True

187 break

188

189 if not change:

190 return False

191

192 return True

A.7 FSM family class

1 """A class of Families of Finite State Machines. Copyright (C) 2019

Alena

2 Aksenova.

3

4 This program is free software; you can redistribute it and/or modify

it

5 under the terms of the GNU General Public License as published by

the

6 Free Software Foundation; either version 3 of the License , or (at

your

7 option) any later version.

8 """

9
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10 from sigmapie.fsm import *

11

12

13 class FSMFamily(object):

14 """

15 This class encodes Family of Finite State Machines. Used for

16 a simple encoding of FSMs corresponding to SP languages.

17 Attributes:

18 transitions(list): triples of the form

19 [prev_state , transition , next_state ].

20 """

21

22 def __init__(self , family=None):

23 """ Initializes the FSMFamily object."""

24 if family is None:

25 self.family = []

26 else:

27 self.family = family

28

29 def run_all_fsm(self , string):

30 """ Tells whether the given string is accepted by all the

automata of

31 the family.

32

33 Arguments:

34 string (str): the input string.

35 Returns:

36 bool: True if the string is accepted by all the

37 fsms , otherwise False.

38 """

39 return all([f.scan_sp(string) for f in self.family ])

A.8 FST class
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1 """A class defining the Finite State Transducer. Copyright (C) 2019

Alena

2 Aksenova.

3

4 This program is free software; you can redistribute it and/or modify

it

5 under the terms of the GNU General Public License as published by

the

6 Free Software Foundation; either version 3 of the License , or (at

your

7 option) any later version.

8 """

9

10 from copy import deepcopy

11

12

13 class FST:

14 """A class representing finite state transducers.

15

16 Attributes:

17 Q (list): a list of states;

18 Sigma (list): a list of symbols of the input alphabet;

19 Gamma (list): a list of symbols of the output alphabet;

20 qe (str): name of the unique initial state;

21 E (list): a list of transitions;

22 stout (dict): a collection of state outputs.

23 """

24

25 def __init__(self , Sigma=None , Gamma=None):

26 """ Initializes the FST object."""

27 self.Q = None

28 self.Sigma = Sigma

29 self.Gamma = Gamma

30 self.qe = ""
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31 self.E = None

32 self.stout = None

33

34 def rewrite(self , w):

35 """ Rewrites the given string with respect to the rules

represented in

36 the current FST.

37

38 Arguments:

39 w (str): a string that needs to be rewritten.

40 Outputs:

41 str: the translation of the input string.

42 """

43 if self.Q == None:

44 raise ValueError("The transducer needs to be constructed

.")

45

46 # move through the transducer and write the output

47 result = ""

48 current_state = ""

49 moved = False

50 for i in range(len(w)):

51 for tr in self.E:

52 if tr[0] == current_state and tr[1] == w[i]:

53 result += tr[2]

54 current_state , moved = tr[3], True

55 break

56 if moved == False:

57 raise ValueError(

58 "This string cannot be read by the current

transducer."

59 )

60

61 # add the final state output
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62 if self.stout[current_state] != "*":

63 result += self.stout[current_state]

64

65 return result

66

67 def copy_fst(self):

68 """ Produces a deep copy of the current FST.

69

70 Returns:

71 T (FST): a copy of the current FST.

72 """

73 T = FST()

74 T.Q = deepcopy(self.Q)

75 T.Sigma = deepcopy(self.Sigma)

76 T.Gamma = deepcopy(self.Gamma)

77 T.E = deepcopy(self.E)

78 T.stout = deepcopy(self.stout)

79

80 return T

A.9 OSTIA

1 """An implementation of the learning algorithm OSTIA. Copyright (C)

2019 Alena

2 Aksenova.

3

4 This program is free software; you can redistribute it and/or modify

it

5 under the terms of the GNU General Public License as published by

the

6 Free Software Foundation; either version 3 of the License , or (at

your

7 option) any later version.

8 """
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9

10 from sigmapie.fst_object import *

11 from sigmapie.helper import *

12

13

14 def ostia(S, Sigma , Gamma):

15 """ This function implements OSTIA (Onward Subsequential

Transduction

16 Inference Algorithm).

17

18 Arguments:

19 S (list): a list of pairs (o, t), where ‘o‘ is the original

20 string , and ‘t‘ is its translation;

21 Sigma (list): the input alphabet;

22 Gamma (list): the output alphabet.

23 Returns:

24 FST: a transducer defining the mapping.

25 """

26 # create a template of the onward PTT

27 T = build_ptt(S, Sigma , Gamma)

28 T = onward_ptt(T, "", "")[0]

29

30 # color the nodes

31 red = [""]

32 blue = [tr[3] for tr in T.E if tr[0] == "" and len(tr[1]) == 1]

33

34 # choose a blue state

35 while len(blue) != 0:

36 blue_state = blue [0]

37

38 # if exists state that we can merge with , do it

39 exists = False

40 for red_state in red:

41
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42 # if you already merged that blue state with something ,

stop

43 if exists == True:

44 break

45

46 # try to merge these two states

47 if ostia_merge(T, red_state , blue_state):

48 T = ostia_merge(T, red_state , blue_state)

49 exists = True

50

51 # if it is not possible , color that blue state red

52 if not exists:

53 red.append(blue_state)

54

55 # if possible , remove the folded state from the list of

states

56 else:

57 T.Q.remove(blue_state)

58 del T.stout[blue_state]

59

60 # add in blue list other states accessible from the red ones

that are not red

61 blue = []

62 for tr in T.E:

63 if tr[0] in red and tr[3] not in red:

64 blue.append(tr[3])

65

66 # clean the transducer from non -reachable states

67 T = ostia_clean(T)

68 T.E = [tuple(i) for i in T.E]

69

70 return T

71

72
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73 def build_ptt(S, Sigma , Gamma):

74 """ Builds a prefix tree transducer based on the data sample.

75

76 Arguments:

77 S (list): a list of pairs (o, t), where ‘o‘ is the original

78 string , and ‘t‘ is its translation;

79 Sigma (list): the input alphabet;

80 Gamma (list): the output alphabet.

81 """

82

83 # build a template for the transducer

84 T = FST(Sigma , Gamma)

85

86 # fill in the states of the transducer

87 T.Q = []

88 for i in S:

89 for j in prefix(i[0]):

90 if j not in T.Q:

91 T.Q.append(j)

92

93 # fill in the empty transitions

94 T.E = []

95 for i in T.Q:

96 if len(i) >= 1:

97 T.E.append ([i[:-1], i[-1], "", i])

98

99 # fill in state outputs

100 T.stout = {}

101 for i in T.Q:

102 for j in S:

103 if i == j[0]:

104 T.stout[i] = j[1]

105 if i not in T.stout:

106 T.stout[i] = "*"
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107

108 return T

109

110

111 def onward_ptt(T, q, u):

112 """ Function recursively pushing the common parts of strings

towards the

113 initial state therefore making the machine onward.

114

115 Arguments:

116 T (FST): a transducer that is being modified;

117 q (str): a state that is being processes;

118 u (str): a current part of the string to be moved.

119 Returns:

120 (FST , str , str)

121 FST: the updated transducer;

122 str: a new state;

123 u: a new string to be moved.

124 """

125 # proceed as deep as possible

126 for tr in T.E:

127 if tr[0] == q:

128 T, qx , w = onward_ptt(T, tr[3], tr[1])

129 if tr[2] != "*":

130 tr[2] += w

131

132 # find lcp of all ways of leaving state 1 or stopping in it

133 t = [tr[2] for tr in T.E if tr[0] == q]

134 f = lcp(T.stout[q], *t)

135

136 # remove from the prefix unless it’s the initial state

137 if f != "" and q != "":

138 for tr in T.E:

139 if tr[0] == q:
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140 tr[2] = remove_from_prefix(tr[2], f)

141 T.stout[q] = remove_from_prefix(T.stout[q], f)

142

143 return T, q, f

144

145

146 def ostia_outputs(w1 , w2):

147 """ Function implementing a special comparison operation:

148

149 it returns a string if two strings are the same and if

150 another string is unknown , and False otherwise.

151 Arguments:

152 w1 (str): the first string;

153 w2 (str): the second string.

154 Returns:

155 bool | if strings are not the same;

156 str | otherwise.

157 """

158 if w1 == "*":

159 return w2

160 elif w2 == "*":

161 return w1

162 elif w1 == w2:

163 return w2

164 else:

165 return False

166

167

168 def ostia_pushback(T_orig , q1 , q2 , a):

169 """Re -distributes lcp of two states further in the FST.

170

171 Arguments:

172 T_orig (FST): a transducer;

173 q1 (str): the first state;
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174 q2 (str): the second state;

175 a (str): the lcp of q1 and q2.

176 Returns:

177 FST: an updated transducer.

178 """

179 # to avoid rewriting the original transducer

180 T = T_orig.copy_fst ()

181

182 # states where you get if follow a

183 q1_goes_to = None

184 q2_goes_to = None

185

186 # what is being written from this state

187 from_q1 , from_2 = None , None

188 for tr in T.E:

189 if tr[0] == q1 and tr[1] == a:

190 from_q1 = tr[2]

191 q1_goes_to = tr[3]

192 if tr[0] == q2 and tr[1] == a:

193 from_q2 = tr[2]

194 q2_goes_to = tr[3]

195 if from_q1 == None or from_q2 == None:

196 raise ValueError("One of the states cannot be found.")

197

198 # find the part after longest common prefix

199 u = lcp(from_q1 , from_q2)

200 remains_q1 = from_q1[len(u) :]

201 remains_q2 = from_q2[len(u) :]

202

203 # assign lcp as current output

204 for tr in T.E:

205 if tr[0] in [q1 , q2] and tr[1] == a:

206 tr[2] = u

207
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208 # find what the next state writes given any other choice

209 # and append the common part in it

210 for tr in T.E:

211 if tr[0] == q1_goes_to:

212 tr[2] = remains_q1 + tr[2]

213 if tr[0] == q2_goes_to:

214 tr[2] = remains_q2 + tr[2]

215

216 # append common part to the next state ’s state output

217 if T.stout[q1_goes_to] != "*":

218 T.stout[q1_goes_to] = remains_q1 + T.stout[q1_goes_to]

219 if T.stout[q2_goes_to] != "*":

220 T.stout[q2_goes_to] = remains_q2 + T.stout[q2_goes_to]

221

222 return T

223

224

225 def ostia_merge(T_orig , q1 , q2):

226 """Re -directs all branches of q2 into q1.

227

228 Arguments:

229 T_orig (FST): a transducer;

230 q1 (str): the first state;

231 q2 (str): the second state.

232 Returns:

233 FST: an updated transducer.

234 """

235 # to avoid rewriting the original transducer

236 T = T_orig.copy_fst ()

237

238 # save which transition was changed to revert in case cannot

merge the states

239 changed = None

240 for tr in T.E:
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241 if tr[3] == q2:

242 changed = tr[:]

243 tr[3] = q1

244

245 # save the state output of the q1 originally

246 changed_stout = T.stout[q1]

247

248 # check if we can merge the states

249 can_do = ostia_fold(T, q1 , q2)

250

251 # if cannot , revert the change

252 if can_do == False:

253 for tr in T.E:

254 if tr[0] == changed [0] and tr[1] == changed [1] and tr[2]

== changed [2]:

255 tr[3] = changed [3]

256 T.stout[q1] = changed_stout

257 return False

258

259 # if can , do it

260 else:

261 return can_do

262

263

264 def ostia_fold(T_orig , q1 , q2):

265 """ Recursively folds subtrees of q2 into q1.

266

267 Arguments:

268 T_orig (FST): a transducer;

269 q1 (str): the first state;

270 q2 (str): the second state.

271 Returns:

272 FST: an updated transducer.

273 """
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274 # to avoid rewriting the original transducer

275 T = T_orig.copy_fst ()

276

277 # compare the state outputs

278 w = ostia_outputs(T.stout[q1], T.stout[q2])

279 if w == False:

280 return False

281

282 # rewrite * in case it’s the output of q1

283 T.stout[q1] = w

284

285 # look at every possible subtree of q_2

286 for a in T.Sigma:

287 add_new = False

288

289 for tr_2 in T.E:

290 if tr_2 [0] == q2 and tr_2 [1] == a:

291

292 # if the edge exists from q1

293 edge_defined = False

294 for tr_1 in T.E:

295 if tr_1 [0] == q1 and tr_1 [1] == a:

296 edge_defined = True

297

298 # fail if inconsistent with output of q2

299 if tr_1 [2] not in prefix(tr_2 [2]):

300 return False

301

302 # move the mismatched suffix of q1 and q2

further

303 T = ostia_pushback(T, q1, q2, a)

304 T = ostia_fold(T, tr_1[3], tr_2 [3])

305 if T == False:

306 return False

279



307

308 # if the edge doesn ’t exist from q1 yet , add it

309 if not edge_defined:

310 add_new = [q1 , a, tr_2[2], tr_2 [3]]

311

312 # if the new transition was constructed , add it to the list

of transitions

313 if add_new:

314 T.E.append(add_new)

315

316 return T

317

318

319 def ostia_clean(T_orig):

320 """ Removes the disconnected branches from the transducer that

appear due to

321 the step folding the sub -trees.

322

323 Arguments:

324 T_orig (FST): a transducer.

325 Returns:

326 FST: an updated transducer.

327 """

328 # to avoid rewriting the original transducer

329 T = T_orig.copy_fst ()

330

331 # determine which states are reachable , i.e. accessible from the

initial state

332 reachable_states = [""]

333 add = []

334 change_made = True

335 while change_made == True:

336 change_made = False

337 for st in reachable_states:
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338 for tr in T.E:

339 if tr[0] == st and tr[3] not in reachable_states and

tr[3] not in add:

340 add.append(tr[3])

341 change_made = True

342

343 # break out of the loop if after checking the list once

again , no states were added

344 if change_made == False:

345 break

346 else:

347 reachable_states.extend(add)

348 add = []

349

350 # clean the list of transitions

351 new_E = []

352 for tr in T.E:

353 if tr[0] in reachable_states and tr[3] in reachable_states:

354 new_E.append(tr)

355 T.E = new_E

356

357 # clean the dictionary of state outputs

358 new_stout = {}

359 for i in T.stout:

360 if i in reachable_states:

361 new_stout[i] = T.stout[i]

362 T.stout = new_stout

363

364 # clean the list of states

365 new_Q = [i for i in T.Q if i in reachable_states]

366 T.Q = new_Q

367

368 return T

281



A.10 Additional functions

1 """ Module with general helper functions for the subregular package.

Copyright

2 (C) 2019 Alena Aksenova.

3

4 This program is free software; you can redistribute it and/or modify

it

5 under the terms of the GNU General Public License as published by

the

6 Free Software Foundation; either version 3 of the License , or (at

your

7 option) any later version.

8 """

9

10

11 def alphabetize(data):

12 """ Detects symbols used in the input data.

13

14 Arguments:

15 data (list): Input data.

16 Returns:

17 list: Symbols used in these examples.

18 """

19 alphabet = set()

20 for item in data:

21 alphabet.update ({i for i in item})

22 return sorted(list(alphabet))

23

24

25 def get_gram_info(ngrams):

26 """ Returns the alphabet and window size of the grammar.

27

28 Arguments:
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29 ngrams (list): list of ngrams.

30 Returns:

31 (list , int)

32 list: alphabet;

33 int: locality window.

34 """

35 alphabet = list(set([i for i in "".join(ngrams) if i not in [">"

, "<"]]))

36 k = max(len(i) for i in ngrams)

37 return alphabet , k

38

39

40 def prefix(w):

41 """ Returns a list of prefixes of a given string.

42

43 Arguments:

44 w (str): a string prefixes of which need to be extracted.

45 Returns:

46 list: a list of prefixes of the given string.

47 """

48 return [w[:i] for i in range(len(w) + 1)]

49

50

51 def lcp(* string):

52 """

53 Finds the longest common prefix of an unbounded number of

strings.

54 Arguments:

55 *string (str): one or more strings;

56 Returns:

57 str: a longest common prefix of the input strings.

58 """

59 w = list(set(i for i in string if i != "*"))

60 if not w:
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61 raise IndexError("At least one non -unknown string needs to

be provided.")

62

63 result = ""

64 n = min([len(x) for x in w])

65 for i in range(n):

66 if len(set(x[i] for x in w)) == 1:

67 result += w[0][i]

68 else:

69 break

70

71 return result

72

73

74 def remove_from_prefix(w, pref):

75 """ Removes a substring from the prefix position of another

string.

76

77 Arguments:

78 w (str): a string that needs to be modified;

79 pref (str): a prefix that needs to be removed from the

string.

80 Returns:

81 str: the modified string.

82 """

83 if w.startswith(pref):

84 return w[len(pref) :]

85 elif w == "*":

86 return w

87

88 raise ValueError(pref + " is not a prefix of " + w)

A.11 Package initialization

284



1 """

2 SigmaPie: a toolkit for subregular grammars and languages.

3 Copyright (C) 2019 Alena Aksenova

4

5 This program is free software; you can redistribute it and/or

modify

6 it under the terms of the GNU General Public License as published

by

7 the Free Software Foundation; either version 3 of the License , or

8 (at your option) any later version.

9 """

10

11 from sigmapie.sl_class import *

12 from sigmapie.tsl_class import *

13 from sigmapie.mtsl_class import *

14 from sigmapie.sp_class import *

15 from sigmapie.ostia import *

16

17 print(

18 "\nYou successfully loaded SigmaPie. \n\n"

19 "Formal language classes and grammars available :\n"

20 "\t* strictly piecewise: SP(alphabet , grammar , k, data , polar);\

n"

21 "\t* strictly local: SL(alphabet , grammar , k, data , edges , polar

);\n"

22 "\t* tier -based strictly local: TSL(alphabet , grammar , k, data ,

edges ,"

23 " polar , tier);\n"

24 "\t* multiple tier -based strictly local: MTSL(alphabet , grammar ,

k, "

25 "data , edges , polar).\n\n"

26 "Alternatively , you can initialize a transducer: "

27 "FST(states , sigma , gamma , initial , transitions , stout).\n"

28 "Learning algorithm :\n"
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29 "\tOSTIA: ostia(sample , sigma , gamma)."

30 )
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Appendix B

Unit tests

B.1 Unit test for Grammar

1 #!/bin/python3

2

3 """A module with the unittests for the grammar module. Copyright (C)

2019 Alena

4 Aksenova.

5

6 This program is free software; you can redistribute it and/or modify

it

7 under the terms of the GNU General Public License as published by

the

8 Free Software Foundation; either version 3 of the License , or (at

your

9 option) any later version.

10 """

11

12 import sys , os

13

14 sys.path.insert(0, os.path.join(os.path.abspath(".."), ""))

15
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16 import unittest

17 from grammar import L

18

19

20 class TestGeneralLanguages(unittest.TestCase):

21 """ Tests for the L class."""

22

23 def test_good_ngram_standard_edges(self):

24 """ Checks if ill -formed ngrams are correctly recognized , and

that the

25 well -formed ones are not blocked.

26

27 Tests standard edge -markers.

28 """

29 l = L()

30 self.assertTrue(l.well_formed_ngram (("a", "b", "a")))

31 self.assertTrue(l.well_formed_ngram ((">", "a", "b")))

32 self.assertTrue(l.well_formed_ngram ((">", "a", "<")))

33 self.assertTrue(l.well_formed_ngram ((">", "<")))

34 self.assertTrue(l.well_formed_ngram (("b", "<")))

35 self.assertTrue(l.well_formed_ngram (("a", "a", "a", "a", "a"

)))

36

37 self.assertFalse(l.well_formed_ngram (("a", ">")))

38 self.assertFalse(l.well_formed_ngram (("?", "d", "<", ">")))

39 self.assertFalse(l.well_formed_ngram (("a", ">", "a")))

40 self.assertFalse(l.well_formed_ngram ((">", ">")))

41 self.assertFalse(l.well_formed_ngram (("<")))

42

43 def test_good_ngram_non_standard_edges(self):

44 """ Checks if ill -formed ngrams are correctly recognized , and

that the

45 well -formed ones are not blocked.

46
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47 Tests user -provided edge markers.

48 """

49 l = L()

50 l.edges = ["$", "#"]

51 self.assertTrue(l.well_formed_ngram (("$", "a", "b")))

52 self.assertTrue(l.well_formed_ngram (("$", "a", "#")))

53 self.assertTrue(l.well_formed_ngram (("$", "#")))

54 self.assertTrue(l.well_formed_ngram (("b", "#")))

55

56 self.assertFalse(l.well_formed_ngram (("a", "$")))

57 self.assertFalse(l.well_formed_ngram (("$", "d", "#", "$")))

58 self.assertFalse(l.well_formed_ngram (("a", "$", "a")))

59 self.assertFalse(l.well_formed_ngram (("$", "$")))

60 self.assertFalse(l.well_formed_ngram (("#")))

61

62 def test_ngram_gen(self):

63 """ Checks if ngram generation method produces the expected

results."""

64 l = L(alphabet =["a", "b"])

65 ngrams = l.generate_all_ngrams(l.alphabet , l.k)

66

67 ng = {

68 (">", "<"),

69 (">", "a"),

70 ("a", "<"),

71 (">", "b"),

72 ("b", "<"),

73 ("a", "a"),

74 ("b", "b"),

75 ("b", "a"),

76 ("a", "b"),

77 }

78 self.assertTrue(set(ngrams) == ng)

79
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80 def test_switch_same_alpha(self):

81 """ Checks if the generated grammar is correct when all

alphabet symbols

82 are used in the grammar , also checks that polarity was

changed."""

83 g = [(">", "a"), ("b", "<"), ("a", "b"), ("b", "a")]

84 l = L(grammar=g)

85 l.extract_alphabet ()

86

87 old_polarity = l.check_polarity ()

88

89 g_opp = {(">", "<"), ("a", "<"), (">", "b"), ("b", "b"), ("a

", "a")}

90 self.assertTrue(set(l.opposite_polarity(l.alphabet)) ==

g_opp)

91 self.assertFalse(old_polarity == l.check_polarity)

92

93 def test_switch_different_alpha(self):

94 """ Checks if the generated grammar is correct when not all

alphabet

95 symbols are used in the grammar; also checks that polarity

was

96 changed."""

97 g = [(">", "b"), ("b", "<"), (">", "<")]

98 l = L(grammar=g)

99 l.alphabet = ["a", "b"]

100

101 old_polarity = l.check_polarity ()

102

103 g_opp = {(">", "a"), ("a", "<"), ("a", "a"), ("b", "a"), ("a

", "b"), ("b", "b")}

104 self.assertTrue(set(l.opposite_polarity(l.alphabet)) ==

g_opp)

105 self.assertFalse(old_polarity == l.check_polarity)
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106

107 def test_change_polarity(self):

108 """ Tests the correctness of change_polarity."""

109 a = L(polar="n")

110 a.change_polarity(new_polarity="n")

111 self.assertTrue(a.check_polarity () == "n")

112 a.change_polarity ()

113 self.assertFalse(a.check_polarity () == "n")

114

115 b = L()

116 old_polarity = b.check_polarity ()

117 b.change_polarity ()

118 self.assertTrue(b.check_polarity () != old_polarity)

119

120

121 if __name__ == "__main__":

122 unittest.main()

B.2 Unit test for SL

1 #!/bin/python3

2

3 """A module with the unittests for the SL module. Copyright (C) 2019

Alena

4 Aksenova.

5

6 This program is free software; you can redistribute it and/or modify

it

7 under the terms of the GNU General Public License as published by

the

8 Free Software Foundation; either version 3 of the License , or (at

your

9 option) any later version.

10 """
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11

12 import unittest

13 from sl_class import *

14

15

16 class TestSLLanguages(unittest.TestCase):

17 """ Tests for the SL class."""

18

19 def test_scan_pos(self):

20 """ Checks if well -formed strings are detected correctly

given the

21 provided positive grammar."""

22 slp = SL()

23 slp.grammar = [(">", "a"), ("b", "a"), ("a", "b"), ("b", "<"

)]

24 slp.alphabet = ["a", "b"]

25 self.assertTrue(slp.scan("abab"))

26 self.assertTrue(slp.scan("ab"))

27 self.assertTrue(slp.scan("ababababab"))

28 self.assertFalse(slp.scan("abb"))

29 self.assertFalse(slp.scan("a"))

30 self.assertFalse(slp.scan(""))

31

32 def test_scan_neg(self):

33 """ Checks if well -formed strings are detected correctly

given the

34 provided negative grammar."""

35 sln = SL(polar="n")

36 sln.grammar = [("b", "a"), ("a", "b")]

37 sln.alphabet = ["a", "b"]

38 self.assertFalse(sln.scan("abab"))

39 self.assertFalse(sln.scan("ab"))

40 self.assertFalse(sln.scan("ababababab"))

41 self.assertTrue(sln.scan("bbbb"))
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42 self.assertTrue(sln.scan("aaaaa"))

43 self.assertTrue(sln.scan(""))

44

45 def test_ngramize_2(self):

46 """ Checks if ngramize () correctly constructs bigrams."""

47 sl = SL()

48 sl.data = ["aaa", "bbb"]

49 ngrams = set(sl.ngramize_data ())

50 goal = {(">", "b"), (">", "a"), ("a", "a"), ("b", "b"), ("a"

, "<"), ("b", "<")}

51 self.assertTrue(ngrams == goal)

52

53 def test_ngramize_3(self):

54 """ Check if ngramize () correctly constructs trigrams."""

55 sl = SL()

56 sl.k = 3

57 sl.data = ["aaa", "bbb"]

58 ngrams = set(sl.ngramize_data ())

59 goal = {

60 (">", "a", "a"),

61 (">", "b", "b"),

62 ("b", "b", "<"),

63 ("b", "<", "<"),

64 ("a", "<", "<"),

65 (">", ">", "a"),

66 ("a", "a", "a"),

67 ("a", "a", "<"),

68 (">", ">", "b"),

69 ("b", "b", "b"),

70 }

71 self.assertTrue(ngrams == goal)

72

73 def test_learn(self):

74 """ Checks if positive and negative grammars are learned
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correctly."""

75 data = ["abab", "ababab"]

76 gpos = {(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")}

77 gneg = {(">", "<"), ("a", "<"), (">", "b"), ("b", "b"), ("a"

, "a")}

78

79 a = SL(data=data , alphabet =["a", "b"])

80 a.learn()

81 self.assertTrue(set(a.grammar) == gpos)

82

83 a.change_polarity ()

84 a.learn()

85 self.assertTrue(set(a.grammar) == gneg)

86

87 def test_fsmize_pos(self):

88 """ Checks if the transitions of the fsm corresponding to the

positive

89 grammar are constructed correctly."""

90 sl = SL(polar="p")

91 sl.alphabet = ["a", "b"]

92 sl.grammar = [(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")

]

93 sl.fsmize ()

94

95 f = FSM(initial=">", final="<")

96 f.sl_to_fsm ([(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")

])

97

98 self.assertTrue(set(sl.fsm.transitions) == set(f.transitions

))

99

100 def test_fsmize_neg(self):

101 """ Checks if the transitions of the fsm corresponding to the

negative
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102 grammar are constructed correctly."""

103 sl = SL()

104 sl.change_polarity("n")

105 sl.alphabet = ["a", "b"]

106 sl.grammar = [(">", "<"), ("a", "<"), (">", "b"), ("b", "b")

, ("a", "a")]

107 sl.fsmize ()

108

109 f = FSM(initial=">", final="<")

110 f.sl_to_fsm ([(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")

])

111

112 self.assertTrue(set(sl.fsm.transitions) == set(f.transitions

))

113

114 def test_generate_sample(self):

115 """ Checks if all generated data points are actually well -

formed with

116 respect to the given grammar , and that the number of

generated data

117 points is correct."""

118 sl = SL()

119 sl.alphabet = ["a", "b"]

120 sl.grammar = [(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")

]

121 sl.fsmize ()

122

123 sample = sl.generate_sample(n=10)

124 self.assertTrue(all([sl.scan(i) for i in sample ]))

125 self.assertTrue(len(sample) == 10)

126

127 def test_switch_polarity(self):

128 """ Makes sure that switch_polarity actually switches the

grammar to the
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129 opposite , and that switching it again will result in the

original

130 grammar."""

131 gpos = {(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")}

132 gneg = {(">", "<"), ("a", "<"), (">", "b"), ("b", "b"), ("a"

, "a")}

133 sl = SL(polar="n")

134 sl.alphabet = ["a", "b"]

135 sl.grammar = list(gneg)

136

137 sl.switch_polarity ()

138 self.assertTrue(set(sl.grammar) == gpos)

139 self.assertTrue(sl.check_polarity () == "p")

140

141 sl.switch_polarity ()

142 self.assertTrue(set(sl.grammar) == gneg)

143 self.assertTrue(sl.check_polarity () == "n")

144

145 def test_clean_grammar_2_pos(self):

146 """ Tests if clean_grammar correctly cleans 2-local positive

SL

147 grammar."""

148 goal = {(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")}

149 s = SL()

150 s.grammar = [

151 (">", "a"),

152 ("b", "a"),

153 ("a", "b"),

154 ("b", "<"),

155 (">", "g"),

156 ("f", "<"),

157 ("t", "t"),

158 ]

159 s.extract_alphabet ()
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160 s.clean_grammar ()

161 self.assertTrue(set(s.grammar) == goal)

162

163 def test_clean_grammar_2_neg(self):

164 """ Tests if clean_grammar correctly cleans 2-local negative

SL

165 grammar."""

166 goal = {(">", "<"), ("a", "<"), (">", "b"), ("b", "b"), ("a"

, "a")}

167 a = SL(polar="n")

168 a.alphabet = ["a", "b"]

169 a.grammar = [

170 (">", "<"),

171 ("a", "<"),

172 (">", "b"),

173 ("b", "b"),

174 ("a", "a"),

175 (">", "<"),

176 ("b", "b"),

177 ]

178 a.clean_grammar ()

179 self.assertTrue(set(a.grammar) == goal)

180

181 def test_clean_grammar_3_pos(self):

182 """ Tests if clean_grammar correctly cleans 2-local positive

SL

183 grammar."""

184 goal = {

185 (">", "a", "a"),

186 (">", "b", "b"),

187 ("b", "b", "<"),

188 ("b", "<", "<"),

189 ("a", "<", "<"),

190 (">", ">", "a"),
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191 ("a", "a", "a"),

192 ("a", "a", "<"),

193 (">", ">", "b"),

194 ("b", "b", "b"),

195 }

196 s = SL()

197 s.grammar = [

198 (">", "a", "a"),

199 (">", "b", "b"),

200 ("b", "b", "<"),

201 ("b", "<", "<"),

202 ("a", "<", "<"),

203 (">", ">", "a"),

204 ("a", "a", "a"),

205 ("a", "a", "<"),

206 (">", ">", "b"),

207 ("b", "b", "b"),

208 (">", ">", "f"),

209 ("b", "d", "c"),

210 ]

211 s.extract_alphabet ()

212 s.clean_grammar ()

213 self.assertTrue(set(s.grammar) == goal)

214

215

216 if __name__ == "__main__":

217 unittest.main()

B.3 Unit test for SP

1 #!/bin/python3

2

3 """A module with the unittests for the SP module. Copyright (C) 2019

Alena
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4 Aksenova.

5

6 This program is free software; you can redistribute it and/or modify

it

7 under the terms of the GNU General Public License as published by

the

8 Free Software Foundation; either version 3 of the License , or (at

your

9 option) any later version.

10 """

11

12 import unittest

13 from sp_class import *

14

15

16 class TestSPLanguages(unittest.TestCase):

17 """ Tests for the SP class."""

18

19 def test_subsequences_2(self):

20 """ Tests extraction of 2-subsequences."""

21 str1 = "abab"

22 ssq1 = {("a", "a"), ("a", "b"), ("b", "a"), ("b", "b")}

23 str2 = "a"

24 ssq2 = set()

25 str3 = "abcde"

26 ssq3 = {

27 tuple(i)

28 for i in ["ab", "ac", "ad", "ae", "bc", "bd", "be", "cd"

, "ce", "de"]

29 }

30 sp = SP()

31 self.assertTrue(set(sp.subsequences(str1)) == ssq1)

32 self.assertTrue(set(sp.subsequences(str2)) == ssq2)

33 self.assertTrue(set(sp.subsequences(str3)) == ssq3)
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34

35 def test_subsequences_3(self):

36 """ Tests extraction of 3-subsequences."""

37 str1 = "abab"

38 ssq1 = {tuple(i) for i in ["aba", "abb", "bab", "aab"]}

39 str2 = "abcde"

40 ssq2 = {

41 tuple(i)

42 for i in [

43 "abc",

44 "abd",

45 "abe",

46 "acd",

47 "ace",

48 "ade",

49 "bcd",

50 "bce",

51 "bde",

52 "cde",

53 ]

54 }

55 sp = SP(k=3)

56 self.assertTrue(set(sp.subsequences(str1)) == ssq1)

57 self.assertTrue(set(sp.subsequences(str2)) == ssq2)

58

59 def test_learn_pos(self):

60 """ Tests learning of the positive grammar."""

61 data = ["abab", "abcde"]

62 goal = {

63 tuple(i)

64 for i in [

65 "aba",

66 "abb",

67 "bab",
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68 "aab",

69 "abc",

70 "abd",

71 "abe",

72 "acd",

73 "ace",

74 "ade",

75 "bcd",

76 "bce",

77 "bde",

78 "cde",

79 ]

80 }

81 sp = SP(k=3)

82 sp.data = data

83 sp.alphabet = ["a", "b", "c", "d", "e"]

84 sp.learn()

85 self.assertTrue(set(sp.grammar) == goal)

86

87 def test_learn_neg(self):

88 """ Tests learning of the negative grammar."""

89 data = ["aaaaabbbb", "abbbb", "aaab"]

90 goal = {tuple("ba")}

91 sp = SP(polar="n")

92 sp.data = data

93 sp.alphabet = ["b", "a"]

94 sp.learn()

95 self.assertTrue(set(sp.grammar) == goal)

96

97 def test_change_polarity(self):

98 """ Tests change_polarity function."""

99 sp1 = SP(polar="p")

100 sp1.change_polarity ()

101 self.assertTrue(sp1.check_polarity () == "n")
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102

103 sp2 = SP()

104 sp2.change_polarity("p")

105 sp2.change_polarity ()

106 self.assertTrue(sp2.check_polarity () == "n")

107

108 sp3 = SP(polar="n")

109 sp3.change_polarity ()

110 self.assertTrue(sp3.check_polarity () == "p")

111

112 sp4 = SP()

113 sp4.change_polarity("n")

114 sp4.change_polarity ()

115 self.assertTrue(sp4.check_polarity () == "p")

116

117 sp5 = SP()

118 sp5.change_polarity("p")

119 self.assertTrue(sp5.check_polarity () == "p")

120

121 def test_scan_neg(self):

122 """ Tests if automata correctly recognize illicit

substructures."""

123 sp = SP(polar="n")

124 sp.grammar = [tuple("aba")]

125 sp.k = 3

126 sp.extract_alphabet ()

127 sp.fsmize ()

128

129 self.assertTrue(sp.scan("aaaa"))

130 self.assertTrue(sp.scan("aaabbbbbb"))

131 self.assertTrue(sp.scan("baaaaaaabbbbb"))

132 self.assertTrue(sp.scan("a"))

133 self.assertTrue(sp.scan("b"))

134
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135 self.assertFalse(sp.scan("aaaabaabbbba"))

136 self.assertFalse(sp.scan("abababba"))

137 self.assertFalse(sp.scan("abbbbabbaababab"))

138

139 def test_generate_item(self):

140 """ Tests string generation."""

141 sp = SP(polar="n")

142 sp.grammar = [tuple("aba")]

143 sp.k = 3

144 sp.extract_alphabet ()

145 sp.fsmize ()

146

147 for i in range (30):

148 self.assertTrue(sp.scan(sp.generate_item ()))

149

150 def test_generate_sample_pos(self):

151 """ Tests sample generation when the grammar is positive."""

152 sp = SP()

153 sp.grammar = [tuple(i) for i in ["ab", "ba", "bb"]]

154 sp.extract_alphabet ()

155 sp.fsmize ()

156

157 a = sp.generate_sample(n=10)

158 self.assertTrue(len(a) == 10)

159

160 def test_generate_sample_neg(self):

161 """ Tests sample generation when the grammar is negative."""

162 sp = SP(polar="n")

163 sp.grammar = [tuple("aba")]

164 sp.k = 3

165 sp.extract_alphabet ()

166 sp.fsmize ()

167

168 a = sp.generate_sample(n=15, repeat=False)
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169 self.assertTrue(len(set(a)) == 15)

170

171

172 if __name__ == "__main__":

173 unittest.main()

B.4 Unit test for TSL

1 #!/bin/python3

2

3 """A module with the unittests for the TSL module. Copyright (C)

2019 Alena

4 Aksenova.

5

6 This program is free software; you can redistribute it and/or modify

it

7 under the terms of the GNU General Public License as published by

the

8 Free Software Foundation; either version 3 of the License , or (at

your

9 option) any later version.

10 """

11

12 import unittest

13 from tsl_class import *

14

15

16 class TestTSLLanguages(unittest.TestCase):

17 """ Tests for the TSL class."""

18

19 def test_tier_learning(self):

20 """ Tests the tier learning function."""

21 a = TSL()

22 a.data = ["aaaab", "abaaaa", "b"]
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23 a.alphabet = ["a", "b"]

24 a.learn_tier ()

25 self.assertTrue(a.tier == ["b"])

26

27 b = TSL()

28 b.data = ["ccaccaccbc", "acbbaababc", "ababbab"]

29 b.alphabet = ["a", "b", "c"]

30 b.learn_tier ()

31 self.assertTrue(set(b.tier) == {"a", "b"})

32

33 def test_tier_learning_raised_issue(self):

34 """ Checks a specific case related to GitHub issue #6."""

35 tsl = TSL()

36 tsl.data = [

37 "aa", "ab", "ax", "ay",

38 "ba", "bb", "bx", "by",

39 "xa", "xb", "xx",

40 "ya", "yb", "yx", "yy"

41 ]

42 tsl.alphabet = ["a", "b", "x", "y"]

43 tsl.learn_tier ()

44 self.assertTrue(set(tsl.tier) == {"x", "y"})

45

46 def test_tier_image(self):

47 """ Tests the erasing function."""

48 a = TSL()

49 a.tier = ["a"]

50 self.assertTrue(a.tier_image("cvamda") == "aa")

51

52 def test_learn_pos(self):

53 """ Tests learning of the positive TSL grammar."""

54 a = TSL()

55 a.data = [

56 "o",
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57 "oko",

58 "a",

59 "aka",

60 "oo",

61 "aa",

62 "kak",

63 "kok",

64 "kk",

65 "kkakka",

66 "akk",

67 "kkokko",

68 "okk",

69 ]

70 a.extract_alphabet ()

71 a.learn()

72 goal = {

73 (">", "<"),

74 (">", "a"),

75 ("a", "a"),

76 (">", "o"),

77 ("o", "o"),

78 ("a", "<"),

79 ("o", "<"),

80 }

81 self.assertTrue(set(a.grammar) == goal)

82 self.assertTrue(set(a.tier) == {"a", "o"})

83

84 def test_learn_neg(self):

85 """ Tests learning of the negative TSL grammar."""

86 a = TSL(polar="n")

87 a.data = [

88 "o",

89 "oko",

90 "a",
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91 "aka",

92 "oo",

93 "aa",

94 "kak",

95 "kok",

96 "kk",

97 "kkakka",

98 "akk",

99 "kkokko",

100 "okk",

101 ]

102 a.extract_alphabet ()

103 a.learn()

104 goal = {("a", "o"), ("o", "a")}

105 self.assertTrue(set(a.grammar) == goal)

106 self.assertTrue(set(a.tier) == {"a", "o"})

107

108 def test_scan_pos(self):

109 """ Tests recognition of strings."""

110 a = TSL(polar="p")

111 a.data = [

112 "o",

113 "oko",

114 "a",

115 "aka",

116 "oo",

117 "aa",

118 "kak",

119 "kok",

120 "kk",

121 "kkakka",

122 "akk",

123 "kkokko",

124 "okk",
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125 ]

126 a.extract_alphabet ()

127 a.learn()

128 self.assertTrue(a.scan("akkaka"))

129 self.assertTrue(a.scan("kkk"))

130 self.assertTrue(a.scan("okoko"))

131 self.assertTrue(a.scan("ookokkk"))

132 self.assertFalse(a.scan("okoak"))

133 self.assertFalse(a.scan("okakok"))

134 self.assertFalse(a.scan("kakokak"))

135

136 def test_scan_neg(self):

137 """ Tests recognition of strings."""

138 a = TSL(polar="n")

139 a.data = [

140 "o",

141 "oko",

142 "a",

143 "aka",

144 "oo",

145 "aa",

146 "kak",

147 "kok",

148 "kk",

149 "kkakka",

150 "akk",

151 "kkokko",

152 "okk",

153 ]

154 a.extract_alphabet ()

155 a.learn()

156 self.assertTrue(a.scan("akkaka"))

157 self.assertTrue(a.scan("kkk"))

158 self.assertTrue(a.scan("okoko"))
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159 self.assertTrue(a.scan("ookokkk"))

160 self.assertFalse(a.scan("okoak"))

161 self.assertFalse(a.scan("okakok"))

162 self.assertFalse(a.scan("kakokak"))

163

164 def test_generate_item_pos(self):

165 """ Tests that the generated items are grammatical."""

166 a = TSL(polar="p")

167 a.data = [

168 "o",

169 "oko",

170 "a",

171 "aka",

172 "oo",

173 "aa",

174 "kak",

175 "kok",

176 "kk",

177 "kkakka",

178 "akk",

179 "kkokko",

180 "okk",

181 ]

182 a.extract_alphabet ()

183 a.learn()

184 gen_items = [a.generate_item () for i in range (15)]

185 for i in gen_items:

186 self.assertTrue(a.scan(i))

187

188 def test_generate_item_neg(self):

189 """ Tests that the generated items are grammatical."""

190 a = TSL(polar="n")

191 a.data = [

192 "o",
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193 "oko",

194 "a",

195 "aka",

196 "oo",

197 "aa",

198 "kak",

199 "kok",

200 "kk",

201 "kkakka",

202 "akk",

203 "kkokko",

204 "okk",

205 ]

206 a.extract_alphabet ()

207 a.learn()

208 gen_items = [a.generate_item () for i in range (15)]

209 for i in gen_items:

210 self.assertTrue(a.scan(i))

211

212 def test_change_polarity_pos_to_neg(self):

213 """ Checks that the polarity switching works."""

214 a = TSL(polar="p")

215 a.grammar = [

216 (">", "o"),

217 ("a", "<"),

218 ("a", "a"),

219 ("o", "o"),

220 ("o", "<"),

221 (">", "a"),

222 (">", "<"),

223 ]

224 a.tier = ["a", "o"]

225 a.switch_polarity ()

226 self.assertTrue(set(a.grammar) == {("a", "o"), ("o", "a")})
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227 self.assertTrue(a.check_polarity () == "n")

228

229 b = TSL(polar="p")

230 b.data = ["aaaab", "abaaaa", "b"]

231 b.extract_alphabet ()

232 b.learn()

233 b.switch_polarity ()

234 self.assertTrue(set(b.grammar) == {("b", "b"), (">", "<")})

235 self.assertTrue(b.check_polarity () == "n")

236

237 def test_change_polarity_neg_to_pos(self):

238 """ Checks that the polarity switching works."""

239 a = TSL(polar="n")

240 expected = {

241 (">", "o"),

242 ("a", "<"),

243 ("a", "a"),

244 ("o", "o"),

245 ("o", "<"),

246 (">", "a"),

247 (">", "<"),

248 }

249 a.grammar = [("a", "o"), ("o", "a")]

250 a.tier = ["a", "o"]

251 a.switch_polarity ()

252 self.assertTrue(set(a.grammar) == expected)

253 self.assertTrue(a.check_polarity () == "p")

254

255 b = TSL(polar="n")

256 b.data = ["aaaab", "abaaaa", "b"]

257 b.extract_alphabet ()

258 b.learn()

259 b.switch_polarity ()

260 self.assertTrue(set(b.grammar) == {(">", "b"), ("b", "<")})
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261 self.assertTrue(b.check_polarity () == "p")

262

263 def test_polarity_raised_issue(self):

264 """ Checks a specific case from the GitHub issue."""

265 a = TSL(polar="p")

266 a.grammar = [(">", "a"), ("a", "b"), ("b", "<"), ("b", "a")]

267 a.tier = ["a", "b"]

268 a.switch_polarity ()

269 expected = {("a", "a"), ("a", "<"), ("b", "b"), (">", "b"),

(">", "<")}

270 self.assertTrue(set(a.grammar) == expected)

271 self.assertTrue(a.check_polarity () == "n")

272

273 def test_generate_sample(self):

274 a = TSL(polar="p")

275 a.grammar = [(">", "a"), ("a", "b"), ("b", "<"), ("b", "a")]

276 a.tier = ["a", "b"]

277 a.alphabet = ["a", "b", "c"]

278

279 sample = a.generate_sample(n=10, repeat=False)

280 for i in sample:

281 self.assertTrue(a.scan(i))

282

283

284 if __name__ == "__main__":

285 unittest.main()

B.5 Unit test for MTSL

1 #!/bin/python3

2

3 """A module with the unit tests for the MTSL module. Copyright (C)

2019 Alena

4 Aksenova.
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5

6 This program is free software; you can redistribute it and/or modify

it

7 under the terms of the GNU General Public License as published by

the

8 Free Software Foundation; either version 3 of the License , or (at

your

9 option) any later version.

10 """

11

12 import unittest

13 import unittest.mock

14 from mtsl_class import *

15

16

17 class TestMTSLLanguages(unittest.TestCase):

18 """ Tests for the MTSL class."""

19

20 def test_grammar_learning_neg(self):

21 """ Tests the learner."""

22 a = MTSL(polar="n")

23 VC = [

24 "aabbaabb",

25 "abab",

26 "aabbab",

27 "abaabb",

28 "aabaab",

29 "abbabb",

30 "ooppoopp",

31 "opop",

32 "ooppop",

33 "opoopp",

34 "oopoop",

35 "oppopp",
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36 "aappaapp",

37 "apap",

38 "aappap",

39 "apaapp",

40 "aapaap",

41 "appapp",

42 "oobboobb",

43 "obob",

44 "oobbob",

45 "oboobb",

46 "ooboob",

47 "obbobb",

48 "aabb",

49 "ab",

50 "aab",

51 "abb",

52 "oopp",

53 "op",

54 "oop",

55 "opp",

56 "oobb",

57 "ob",

58 "oob",

59 "obb",

60 "aapp",

61 "ap",

62 "aap",

63 "app",

64 "aaa",

65 "ooo",

66 "bbb",

67 "ppp",

68 "a",

69 "o",
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70 "b",

71 "p",

72 "",

73 ]

74 expected = {

75 ("a", "o"): [("a", "o"), ("o", "a")],

76 ("b", "p"): [("b", "p"), ("p", "b")],

77 }

78 a.data = VC[:]

79 a.extract_alphabet ()

80 a.learn()

81

82 correct = True

83 for i in a.grammar:

84 if not (i in expected and set(a.grammar[i]) == set(

expected[i])):

85 correct = False

86 if len(a.grammar) != len(expected):

87 correct = False

88

89 self.assertTrue(correct)

90

91 def test_grammar_learning_pos(self):

92 """ Tests the learner."""

93 b = MTSL(polar="p")

94 VC = [

95 "aabbaabb",

96 "abab",

97 "aabbab",

98 "abaabb",

99 "aabaab",

100 "abbabb",

101 "ooppoopp",

102 "opop",
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103 "ooppop",

104 "opoopp",

105 "oopoop",

106 "oppopp",

107 "aappaapp",

108 "apap",

109 "aappap",

110 "apaapp",

111 "aapaap",

112 "appapp",

113 "oobboobb",

114 "obob",

115 "oobbob",

116 "oboobb",

117 "ooboob",

118 "obbobb",

119 "aabb",

120 "ab",

121 "aab",

122 "abb",

123 "oopp",

124 "op",

125 "oop",

126 "opp",

127 "oobb",

128 "ob",

129 "oob",

130 "obb",

131 "aapp",

132 "ap",

133 "aap",

134 "app",

135 "aaa",

136 "ooo",
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137 "bbb",

138 "ppp",

139 "a",

140 "o",

141 "b",

142 "p",

143 "",

144 ]

145 expected2 = {

146 ("a", "o"): [

147 (">", "a"),

148 ("a", "<"),

149 ("a", "a"),

150 (">", "o"),

151 ("o", "o"),

152 ("o", "<"),

153 (">", "<"),

154 ],

155 ("b", "p"): [

156 (">", "b"),

157 ("b", "b"),

158 ("b", "<"),

159 (">", "p"),

160 ("p", "p"),

161 ("p", "<"),

162 (">", "<"),

163 ],

164 }

165

166 b.data = VC[:]

167 b.extract_alphabet ()

168 b.learn()

169

170 correct = True
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171 for i in b.grammar:

172 if not (i in expected2 and set(b.grammar[i]) == set(

expected2[i])):

173 correct = False

174 if len(b.grammar) != len(expected2):

175 correct = False

176

177 self.assertTrue(correct)

178

179 @unittest.mock.patch(

180 # Artificially enforce a particular case of list(set())’s

naturally -

181 # occurring non -determinism with respect to ordering:

182 # make it ascending if odd number of elements , descending if

even.

183

184 # While impractical , this re-implementation of list(set())

is perfectly

185 # legal. It could be discarded , but that way , the test

becomes

186 # non -deterministic and reveals the bug only in some 10% of

runs.

187

188 "mtsl_class.list",

189 new=lambda x: sorted(x, reverse=len(x) % 2 == 0) \

190 if type(x) == set else list(x)

191 )

192 def test_grammar_learning_raised_issue(self):

193 """ Checks a specific case related to GitHub issue #6."""

194 mtsl = MTSL(k=2, polar="n")

195 mtsl.data = ["axb", "ayxb", "azxb", "azxyb"]

196 mtsl.extract_alphabet ()

197 mtsl.learn()

198 self.assertTrue(all ({* tier} == {"a", "b", "x"} for tier ,
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restrict \

199 in mtsl.grammar.items() if ("a", "b") in

restrict))

200

201 def test_convert_pos_to_neg(self):

202 """ Tests conversion of a positive grammar to a negative one.

"""

203 z = MTSL(polar="p")

204 z.grammar = {

205 ("a", "o"): [

206 (">", "a"),

207 ("a", "<"),

208 ("a", "a"),

209 (">", "o"),

210 ("o", "o"),

211 ("o", "<"),

212 (">", "<"),

213 ],

214 ("b", "p"): [

215 (">", "b"),

216 ("b", "b"),

217 ("b", "<"),

218 (">", "p"),

219 ("p", "p"),

220 ("p", "<"),

221 (">", "<"),

222 ],

223 }

224 z.switch_polarity ()

225 expected = {

226 ("a", "o"): [("a", "o"), ("o", "a")],

227 ("b", "p"): [("b", "p"), ("p", "b")],

228 }

229 self.assertTrue(z.grammar == expected)
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230

231 def test_scan_pos(self):

232 """ Tests scanning using a positive grammar."""

233 c = MTSL(polar="p")

234 c.grammar = {

235 ("a", "o"): [

236 (">", "a"),

237 ("a", "<"),

238 ("a", "a"),

239 (">", "o"),

240 ("o", "o"),

241 ("o", "<"),

242 (">", "<"),

243 ],

244 ("b", "p"): [

245 (">", "b"),

246 ("b", "b"),

247 ("b", "<"),

248 (">", "p"),

249 ("p", "p"),

250 ("p", "<"),

251 (">", "<"),

252 ],

253 }

254 for s in ["apapappa", "ppp", "appap", "popo", "bbbooo"]:

255 self.assertTrue(c.scan(s))

256 for s in ["aoap", "popa", "pbapop", "pabp", "popoa"]:

257 self.assertFalse(c.scan(s))

258

259 def test_scan_neg(self):

260 """ Tests scanning using a positive grammar."""

261 d = MTSL(polar="n")

262 d.grammar = {

263 ("a", "o"): [("a", "o"), ("o", "a")],
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264 ("b", "p"): [("b", "p"), ("p", "b")],

265 }

266 for s in ["apapappa", "ppp", "appap", "popo", "bbbooo"]:

267 self.assertTrue(d.scan(s))

268 for s in ["aoap", "popa", "pbapop", "pabp", "popoa"]:

269 self.assertFalse(d.scan(s))

270

271

272 if __name__ == "__main__":

273 unittest.main()

B.6 Unit test for FSA

1 #!/bin/python3

2

3 """A module with the unittests for the fsm module. Copyright (C)

2019 Alena

4 Aksenova.

5

6 This program is free software; you can redistribute it and/or modify

it

7 under the terms of the GNU General Public License as published by

the

8 Free Software Foundation; either version 3 of the License , or (at

your

9 option) any later version.

10 """

11

12 import unittest

13 from fsm import FSM

14

15

16 class TestFSM(unittest.TestCase):

17 """ Tests for the FSM class."""
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18

19 def test_sl_to_fsm_2(self):

20 """ Checks if a 2-SL grammar translates to FSM correctly."""

21 f = FSM(initial=">", final="<")

22 grammar = [(">", "a"), ("b", "a"), ("a", "b"), ("b", "<")]

23 f.sl_to_fsm(grammar)

24

25 tr = {

26 ((">" ,), "a", ("a",)),

27 (("b" ,), "a", ("a",)),

28 (("a" ,), "b", ("b",)),

29 (("b" ,), "<", ("<",)),

30 }

31 self.assertTrue(set(f.transitions) == tr)

32

33 def test_sl_to_fsm_3(self):

34 """ Checks if a 3-SL grammar translates to FSM correctly."""

35 f = FSM(initial=">", final="<")

36 grammar = [

37 (">", "a", "b"),

38 ("a", "b", "a"),

39 ("b", "a", "b"),

40 ("a", "b", "<"),

41 (">", ">", "a"),

42 ("b", "<", "<"),

43 ]

44 f.sl_to_fsm(grammar)

45

46 tr = {

47 ((">", "a"), "b", ("a", "b")),

48 (("a", "b"), "a", ("b", "a")),

49 (("b", "a"), "b", ("a", "b")),

50 (("a", "b"), "<", ("b", "<")),

51 ((">", ">"), "a", (">", "a")),
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52 (("b", "<"), "<", ("<", "<")),

53 }

54 self.assertTrue(set(f.transitions) == tr)

55

56 def test_scan_sl_2(self):

57 """ Checks if a FSM for 2-SL grammar can correctly recognize

strings."""

58 f = FSM(initial=">", final="<")

59 f.transitions = [

60 ((">" ,), "a", ("a",)),

61 (("b" ,), "a", ("a",)),

62 (("a" ,), "b", ("b",)),

63 (("b" ,), "<", ("<",)),

64 ]

65

66 self.assertTrue(f.scan_sl(">abab <"))

67 self.assertTrue(f.scan_sl(">ab <"))

68 self.assertTrue(f.scan_sl(">abababab <"))

69

70 self.assertFalse(f.scan_sl("><"))

71 self.assertFalse(f.scan_sl(">a<"))

72 self.assertFalse(f.scan_sl(">ba <"))

73 self.assertFalse(f.scan_sl(">ababbab <"))

74

75 def test_scan_sl_3(self):

76 """ Checks if a FSM for 3-SL grammar can correctly recognize

strings."""

77 f = FSM(initial=">", final="<")

78 f.transitions = [

79 ((">", "a"), "b", ("a", "b")),

80 (("a", "b"), "a", ("b", "a")),

81 (("b", "a"), "b", ("a", "b")),

82 (("a", "b"), "<", ("b", "<")),

83 ((">", ">"), "a", (">", "a")),
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84 (("b", "<"), "<", ("<", "<")),

85 ]

86

87 self.assertTrue(f.scan_sl(">>abab <<"))

88 self.assertTrue(f.scan_sl(">ab <"))

89 self.assertTrue(f.scan_sl(">>abababab <<"))

90

91 self.assertFalse(f.scan_sl(">><<"))

92 self.assertFalse(f.scan_sl(">>a<<"))

93 self.assertFalse(f.scan_sl(">>ba <<"))

94 self.assertFalse(f.scan_sl(">>ababbab <<"))

95

96 def test_trim_fsm_2(self):

97 f = FSM(initial=">", final="<")

98 f.transitions = [

99 ((">" ,), "a", ("a",)),

100 (("b" ,), "a", ("a",)),

101 (("a" ,), "b", ("b",)),

102 (("b" ,), "<", ("<",)),

103 ((">" ,), "c", ("c",)),

104 (("d" ,), "<", ("<",)),

105 ]

106 goal = {

107 ((">" ,), "a", ("a",)),

108 (("b" ,), "a", ("a",)),

109 (("a" ,), "b", ("b",)),

110 (("b" ,), "<", ("<",)),

111 }

112 f.trim_fsm ()

113 self.assertTrue(set(f.transitions) == goal)

114

115 def test_trim_fsm_3(self):

116 f = FSM(initial=">", final="<")

117 f.transitions = [
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118 ((">", "a"), "b", ("a", "b")),

119 (("a", "b"), "a", ("b", "a")),

120 (("b", "a"), "b", ("a", "b")),

121 (("a", "b"), "<", ("b", "<")),

122 ((">", ">"), "a", (">", "a")),

123 (("b", "<"), "<", ("<", "<")),

124 ((">", "b"), "j", ("b", "j")),

125 ((">", ">"), "j", (">", "j")),

126 (("j", "k"), "o", ("k", "o")),

127 ]

128 goal = {

129 ((">", "a"), "b", ("a", "b")),

130 (("a", "b"), "a", ("b", "a")),

131 (("b", "a"), "b", ("a", "b")),

132 (("a", "b"), "<", ("b", "<")),

133 ((">", ">"), "a", (">", "a")),

134 (("b", "<"), "<", ("<", "<")),

135 }

136 f.trim_fsm ()

137 self.assertTrue(set(f.transitions) == goal)

138

139

140 if __name__ == "__main__":

141 unittest.main()

B.7 Unit test for OSTIA

1 #!/bin/python3

2

3 """A module with the unittests for the fsm module. Copyright (C)

2020 Alena

4 Aksenova.

5

6 This program is free software; you can redistribute it and/or modify
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it

7 under the terms of the GNU General Public License as published by

the

8 Free Software Foundation; either version 3 of the License , or (at

your

9 option) any later version.

10 """

11

12 import unittest

13 from ostia import ostia

14

15

16 class TestOSTIA(unittest.TestCase):

17 """ Tests for the OSTIA learner.

18

19 Warning: updated versions of the learner might require updating

20 the unittests.

21 """

22

23 def test_ostia_success(self):

24 """ Checks if OSTIA can learn a rule rewriting "a" as "1" if

"a" is

25 final and as "0" otherwise , and always mapping "b" to "1".

"""

26 S = [

27 ("a", "1"),

28 ("b", "1"),

29 ("aa", "01"),

30 ("ab", "01"),

31 ("aba", "011"),

32 ("aaa", "001"),

33 ]

34 t = ostia(S, ["a", "b"], ["0", "1"])

35

326



36 transitions = {

37 ("", "a", "", "a"),

38 ("", "b", "1", ""),

39 ("a", "a", "0", "a"),

40 ("a", "b", "01", ""),

41 }

42 stout = {"": "", "a": "1"}

43

44 self.assertTrue(set(t.E) == transitions)

45 self.assertTrue(stout == t.stout)

46

47 def test_ostia_fail(self):

48 """ Checks that OTSIA cannot learn an unbounded tone

plateauing."""

49 S = [

50 ("HHH", "HHH"),

51 ("HHL", "HHL"),

52 ("HLH", "HHH"),

53 ("HLL", "HLL"),

54 ("HLLH", "HHHH"),

55 ("HL", "HL"),

56 ]

57 t = ostia(S, ["H", "L"], ["H", "L"])

58

59 transitions = {

60 ("", "H", "H", "H"),

61 ("H", "H", "H", ""),

62 ("H", "L", "", "HL"),

63 ("HL", "H", "HH", ""),

64 ("HL", "L", "", "HLL"),

65 ("HLL", "H", "HHH", ""),

66 ("", "L", "L", ""),

67 }

68 stout = {"": "", "H": "", "HL": "L", "HLL": "LL"}
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69

70 self.assertTrue(set(t.E) == transitions)

71 self.assertTrue(stout == t.stout)

72

73

74 if __name__ == "__main__":

75 unittest.main()
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