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The Coulomb deexcitation of muonic hydrogen in collisions with the hydrogen atom has been studied in the
framework of the fully quantum-mechanical close-coupling method for the first time. The calculations of the
l-averaged cross sections of the Coulomb deexcitation are performed for (µp)n and (µd)n atoms in the initial
states with the principal quantum number n = 3–9 and at relative energies E = 0.1–100 eV. The obtained results
for the n and E dependences of the Coulomb deexcitation cross sections drastically differ from the semiclassical
results. An important contribution of the transitions with ∆n > 1 to the total Coulomb deexcitation cross sections
(up to ~37%) is predicted. © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.50.+r, 74.80.Fp
INTRODUCTION

Exotic hydrogen atoms are formed in highly excited
states. The ensuing deexcitation proceeds via many
intermediate states up to nuclear absorption or transi-
tion to the ground state. The collisional processes play
an important role in this cascade. In particular, the elas-
tic scattering and Stark transitions decelerate while the
Coulomb deexcitation (CD) accelerates the exotic
atoms, influencing their quantum numbers and energy
distributions. The CD process has attracted a lot of
attention, especially after “hot” πp atoms with kinetic
energies up to 200 eV were found experimentally [1, 2].
The most plausible explanation of the high-energy
components of the exotic atoms is that part of the tran-
sitions from the states with n ≥ 3 proceeds via the CD.

The theoretical study of the CD process has been
performed up to now by three different approaches. The
first results were obtained by Bracci and Fiorentini [3]
in the two-state semiclassical approach with some addi-
tional approximations (hereinafter referred to as the BF
model). Later, the CD cross sections were calculated
within the advanced adiabatic (AA) approach [4, 5]
(see also references therein) based on the adiabatic hid-
den crossing theory [6], and within the classical-trajec-
tory Monte Carlo (CTMC) method [7]. While the
CTMC and BF results are in fair agreement, the more
elaborated AA approach [4, 5] gives much smaller
cross sections than [3]. On the other hand, the BF and
CTMC approaches cannot be expected to give reliable
results for the CD process in low-n states. Therefore,
the situation in the most interesting region (n = 3–7) is
rather ambiguous, and it is necessary to study the CD
process within the more realistic quantum-mechanical
approach.

¶ The text was submitted by the authors in English.
0021-3640/05/8111- $26.00 0543
In this paper, we study the Coulomb deexcitation of
(µp)n and (µd)n atoms in collisions with H, using the
close-coupling method. To illustrate some gross fea-
tures of the calculated cross sections, we present here
only the l-averaged CD cross sections.

FORMALISM

The close-coupling (CC) method gives a unified
quantum-mechanical treatment of nonreactive scatter-
ing processes

(1)

including elastic scattering (n' = n, l ' = l), Stark transi-
tions (n' = n, l ' ≠ l), and Coulomb deexcitation (n' < n).
Here, a and b are nuclei of hydrogen isotopes (p, d, or
t). In the present consideration, as well as in the previ-
ous studies [3, 7], we restrict ourselves to the “frozen”
electron approximation; i.e., the electron state is fixed
in its ground state during the collision. The CC
approach can be extended in a straightforward manner
to include the target electron excitations.

The total nonrelativistic Hamiltonian of the four
particles (aµ– + be) in the c.m. system is given by

(2)

Here, m and R = Rbe – Raµ are the reduced mass and rel-
ative coordinate of the colliding subsystems, Rbe and
Raµ are the coordinates of the centers of mass of the
atoms, and r = rµ – ra and r = re – rb are their inner
coordinates. The eigenvalues and eigenfunctions of the
inner Hamiltonians hµ and he of the (aµ) and (be) atoms

aµ–( )nl be( )1s aµ–( )n'l' be( )1s++

H
1

2m
-------∆R– hµ r( ) he r( ) V r r R, ,( ).+ + +=
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will be denoted as εn, Φnlm(r), and e1s, ϕ1s(r), respec-
tively. The interaction potential

(3)

includes the pair Coulomb interactions Vαβ between the
particles from two colliding subsystems. The atomic
units (" = e = memb/(me + mb) = 1) will be used through-
out the paper unless otherwise stated.

In the framework of the method, the total wavefunc-
tion of the system with the definite energy E and quan-
tum numbers of the total angular momentum J and M is
presented as

(4)

where the basis states|1s, nl, L : JM〉  are the tensor prod-
uct of the inner atomic wavefunctions |1s〉 , |nlm〉  and the

relative angular momentum function YLΛ( ). The

radial functions of the relative motion (R) satisfy
the coupled second-order differential equations

(5)

where  = 2m(Ecm +  – εn); Ecm and n0 are the
energy of the relative motion and the principal quantum
number in the entrance channel. In order to obtain the
matrix elements of interaction potential (3),

(6)

we average it over the electron coordinate r and, then,
use the multipole expansion. The following integration

over r and  reduces matrix element (6) to a multiple
finite sum.

In the present study, we restrict the basis set to the
open channels only. Then, the boundary conditions at
R  ∞ for the radial functions contain ingoing and
outgoing waves in the entrance channel and outgoing
waves in all the other channels. Coupled differential
equations (5) are solved numerically by the Numerov
method. In fact, we solve the equations with the stand-
ing-wave boundary conditions involving the real and
symmetrical K matrix instead of the S matrix. The cor-
responding T matrix is given by the equation T =
2K/(I – iK), where I is the unit matrix. With the calcu-
lated T matrix, one can obtain the cross sections of all
processes (1). In this paper, we discuss the l-averaged
(n  n') cross sections

(7)

V r r R, ,( ) Vab Vµb Vae Vµe,+ + +=

ΨE
JM r r R, ,( ) R 1– GnlL
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nlL

∑=
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J
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dR2
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2 L L 1+( )
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kn
2 εn0
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σn n'→ E( ) π
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2
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J 2

,
ll'JLL'

∑=
and the total CD cross sections

(8)

RESULTS

The CC approach has been used to obtain the cross
sections for the collisions of the (µ–p)n and (µ–d)n atoms
with H atoms for n = 3–9 at E = 0.1–100 eV. The calcu-
lations of the CD cross sections for the given initial
principal quantum number n were done with two sets of
basis states: (a) the restricted basis including the states
of two neighboring levels with n' = n, n – 1 with all
allowable l' (we refer these results, for brevity, as the
“two-level” approximation) and (b) the extended basis
incorporating all the states with n' ≤ n. Notice that the
CC two-level approximation, in some sense, is similar
to the two-state approximations that were used by pre-
vious authors [3–5].

In both series of calculations, the sums over the val-
ues of J in the cross sections are done until an accuracy
better than 0.1% is reached at all energies. The analysis

of the J dependence of the partial cross sections 
shows that the main part of the CD cross sections comes
from the partial waves with relatively low J as com-
pared with elastic scattering and Stark transitions. The
same result was found in [5]. For example, for n = 3 and
Ecm up to 100 eV, we found for the CD process that

 ≤ 15, whereas, for the elastic scattering,  &

120. For the higher n, the value  increases approx-

imately ~  and the interrelation between  and

 remains similar. This result is correlated with the
relative importance of the different multipole terms of
the interaction potential.

According to our study, the elastic scattering and
Stark transitions can be reasonably described within the
CC method if only the long-range dipole terms in
matrix elements (6) are taken into account. In contrast,
to provide the proper treatment of the CD, all the
allowed multipoles (t ≤ tmax = 2n – 2) have to be
included. For example, the CD cross section σ6 → 5 at
Ecm = 0.1 eV calculated in the “dipole” approximation
is nearly twice as large as that obtained with all the mul-
tipoles included. Such a strong effect of the higher mul-
tipoles on the inelastic transitions is due to the fact that
the main contribution to the inelastic transitions comes
from small distances between colliding objects.

The CD cross sections of the (µp) + H and (µd) + H
collisions in the two-level approximation are shown in
Figs. 1 and 2 together with the results of Bracci and
Fiorentini [3] and Ponomarev and Solov’ev [5], respec-
tively. It is seen from Fig. 1 that our two-level CC
results are in satisfactory agreement with the results of
the BF model [3] for n = 5, 7, 9, especially in the region

σn
CD E( ) σn n'→ E( ).

n' n<
∑=

σnn'
J

Jmax
CD Jmax

el

Jmax
CD

n Jmax
CD

Jmax
el
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Ecm > 1 eV. On the other hand, Fig. 2 shows that our
results for µd are several times greater than the results
obtained within the AA approach [5] for the transition
5  4 and even much greater (almost by two orders
of magnitude) for the transition 3  2. The reason for
this drastic discrepancy is not clear at present.

The results of the calculations with the extended
basis set including all the states with n' ≤ n are shown
in Figs. 3 and 4 and in the table. The comparison of
these results with those obtained in the CC two-level

Fig. 1. The CD cross sections  (a.u.) for (µp)n + H

collisions with n = 3, 5, 7, 9 calculated within the CC two-
level approximation (solid lines) in comparison with the
results of Bracci and Fiorentini [3] (dotted lines).

σn n 1–,
CD

Fig. 3. Energy dependence of the value E (E) for differ-

ent n in the (µp)n + H collisions obtained within the quan-
tum CC approach (the curves without symbols) in compar-
ison with the BF [3] (the curves with triangles and squares)
and CTMC [7] (the curve with crosses) results. The dashed,
solid, dotted–dashed, and dotted curves are for n = 3, 5, 7,
and 9, respectively.

σn
CD
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approximation shows that the effect of the transitions
with ∆n > 1 on the CD cross sections is appreciable for
n ≥ 4. Moreover, the inclusion of the channels with
∆n > 1 leads to a strong suppression of the main ∆n = 1
transitions in comparison with the two-level CC
approximation and, due to this, the total CD cross sec-
tions are also suppressed. For example, for n = 4 and 6,
this suppression is about 1.5–2 and 3 times, respec-
tively. As a result, the influence of the channels with
∆n > 1 leads to an essential change in the E and n

Fig. 2. The cross sections of the Coulomb deexcitation

 (a.u.) for (µd)n + H collisions calculated within the

CC two-level approximation (solid lines) in comparison
with the AA results [5] (dotted lines). The triangles and
closed circles mark the curves for the 5  4 and 3 
2 transitions, respectively.

σn n 1–,
CD

Fig. 4. Dependence of the CD cross sections on the final
principal quantum number n' for the different initial n in the
(µp)n + H collisions at E = 1 eV. The dashed and dotted lines
connect the points obtained in the present paper and in [3],
respectively. The triangles, squares, and circles correspond
to the initial n = 5, 7, and 9.
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The CD cross sections σnn' and  (in a.u.) for (µp)n + H collisions calculated in the quantum-mechanical close-coupling approach

Ecm, eV 0.1 0.2 0.5 1.0 2.0 5.0 7.0 10.0 15.0 20.0

1.035 0.805 0.403 0.210 0.105 0.043 0.032 0.023 0.015 0.012

σ43 0.936 0.704 0.515 0.333 0.189 0.083 0.060 0.043 0.030 0.024
σ42 0.458 0.259 0.121 0.069 0.037 0.016 0.012 0.008 0.006 0.005

1.397 0.965 0.637 0.403 0.226 0.098 0.071 0.052 0.036 0.029

σ54 0.943 0.574 0.306 0.211 0.147 0.070 0.054 0.041 0.031 0.026
σ53 0.219 0.164 0.074 0.042 0.022 0.009 0.007 0.005 0.003 0.003
σ52 0.108 0.082 0.041 0.024 0.013 0.006 0.004 0.003 0.002 0.002

1.270 0.819 0.422 0.277 0.182 0.085 0.065 0.049 0.037 0.031

σ65 1.619 0.856 0.442 0.250 0.136 0.058 0.043 0.032 0.024 0.021
σ64 0.440 0.270 0.178 0.115 0.064 0.028 0.021 0.016 0.012 0.010
σ63 0.070 0.039 0.024 0.013 0.006 0.003 0.002 0.002 0.001 0.001

2.166 1.189 0.661 0.387 0.211 0.090 0.067 0.050 0.038 0.033

σ76 2.005 1.410 0.902 0.488 0.275 0.119 0.088 0.065 0.048 0.040
σ75 0.354 0.279 0.136 0.082 0.054 0.024 0.019 0.014 0.011 0.010
σ74 0.070 0.053 0.026 0.015 0.008 0.004 0.003 0.002 0.002 0.001

2.454 1.762 1.076 0.591 0.340 0.148 0.111 0.083 0.062 0.053

σ87 2.484 1.848 1.322 0.839 0.494 0.221 0.165 0.123 0.091 0.075
σ86 0.396 0.294 0.186 0.128 0.084 0.037 0.028 0.021 0.016 0.013
σ85 0.186 0.128 0.071 0.042 0.023 0.010 0.008 0.006 0.005 0.004
σ84 0.031 0.018 0.010 0.006 0.003 0.001 0.001 0.001 0.001 0.001

3.108 2.297 1.594 1.018 0.605 0.271 0.202 0.151 0.112 0.094

σ98 2.070 1.773 1.319 0.956 0.604 0.287 0.221 0.170 0.131 0.114
σ97 0.608 0.460 0.295 0.192 0.136 0.062 0.048 0.036 0.028 0.024
σ96 0.294 0.191 0.106 0.065 0.037 0.017 0.013 0.010 0.008 0.008
σ95 0.051 0.039 0.021 0.012 0.007 0.003 0.002 0.002 0.001 0.001

3.055 2.486 1.754 1.233 0.789 0.371 0.285 0.220 0.170 0.148

σn
CD

σ3
CD

σ4
CD

σ5
CD

σ6
CD

σ7
CD

σ8
CD

σ9
CD
dependences as compared with the two-level CC calcu-
lation.

Beginning from [3], it is commonly believed that the
CD cross sections at low energies behave like 1/E. In
Fig. 3, we show the total CD cross sections multiplied
by energy, which reveal more explicitly the distinction
from the 1/E behavior. The present CD cross sections
obtained within the extended basis are compared here
with the results of the BF model [3] for n = 3, 5, 7, 9 and
of the CTMC calculations by Jensen and Markushin [7]
for n = 9. As is seen from this figure, the energy depen-
dence of the CC cross sections in the region E > 1 eV,
as a whole, is in qualitative agreement with the BF [3]
and CTMC [7] models. But, at lower energies, the CC
results do not confirm the 1/E energy dependence of the
cross sections, except for the state with n = 3. At E &
1 eV and n > 3, our results show rather a 1/  behavior
of the CD cross sections (a similar behavior can be also
seen in the CTMC results [7] for n = 9).

However, the more detailed insight reveals some
resonancelike structures in the energy behavior of the
CC cross sections at E < 1 eV (which are the most pro-
nounced for n = 5 in Fig. 3). This behavior of the CD
cross sections is due to the shape resonances in the
entrance channel. Similar resonances at the same
energy region have already been noted for the elastic
scattering and Stark transition cross sections obtained
within the one-channel adiabatic approximation [8, 9].

The BF model predicts the power n dependence
nearly to nγ with γ > 2. However, the present consider-
ation does not confirm that the CD cross sections have
such a scale factor depending on n (see Fig. 3 and the
table). Moreover, for n = 4–6, the nonmonotonic behav-

E
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ior of the  as a function of n is seen. A power depen-
dence of the CD cross sections is found in the high-
energy region (E > εn – εn – 1).

The dependence of the partial CD cross sections
σn → n' on the final principal quantum number n' is
shown in Fig. 4 (see also the table). Our results for the
distribution of the CD transitions over the final states n'
are substantially different from the results of other
approaches. The present calculations confirm that ∆n =
1 transitions dominate, in agreement with the previous
results [3, 5, 7]. At the same time, the transitions with
∆n > 1 are strongly enhanced as compared to the results
in [3, 5] and are in satisfactory agreement with CTMC
calculations [7]. The relative contribution of the transi-
tions with ∆n > 1 does not exceed 1% in the AA
approach [5], 10% in the BF model [3], and is about
19% in the CTMC calculations [7] (for n = 9). Our CC
calculations of ∆n > 1 transitions make up a substantial
fraction of the total CD cross sections (16–37%) for
n ≥ 4 and at all the energies under consideration.

CONCLUSIONS

We have studied the main features of the Coulomb
deexcitation of excited (µp) and (µd) atoms in collision
with the hydrogen atom in the framework of the close-
coupling approach. The present quantum-mechanical
treatment of the CD process leads to substantially new
results in comparison with the previous studies; in par-
ticular, these include the following:

(i) the transition 3  2 is strongly enhanced;

(ii) the dominant transitions with ∆n = 1 for n ≥ 4 are
essentially suppressed (about two to three or more
times) for all energies under consideration;

(iii) the fraction of the ∆n > 1 transitions is very
important and reaches up to 37%;

(iv) the n dependence of the CD cross sections is
drastically changed;

σn
CD
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(v) finally, the CD cross sections at E & 1 eV are

suppressed and its behavior is like 1/ .
The gross features of the CD process found here

must take place for other exotic hydrogen atoms.
The obtained results are very important for more

realistic studies of the kinetics and explanation of a
high-energy fraction of exotic hydrogen.1 The more
detailed results will be published elsewhere.

We are grateful to Prof. L.I. Ponomarev for his stim-
ulating interest and fruitful discussions, to the partici-
pants of the seminar in MUCATEX for useful discus-
sions, and to T. Jensen and V. Markushin for sending the
data on the CD cross sections for n = 9. This work was
partially supported by the Russian Foundation for Basic
Research, grant no. 03-02-16616.
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An analysis of the angular distribution of annihilation photons allows us to report the direct experimental obser-
vation of the positronium atom in porous silicon. © 2005 Pleiades Publishing, Inc.

PACS numbers: 71.60.+z
Previous studies of positron annihilation in porous
silicon [1–6] suggested that positronium atoms could
exist in it. However, these works did not give direct
experimental evidence for the formation of positronium
atoms in porous silicon. Here, we report the results of
precision experiments on positron annihilation in
porous silicon. The experimental data allowed us to dis-
tinguish parapositronium annihilation components in
the annihilation spectra.

In our experiments, we used a standard technique
based on the measurement of the angular distribution of
annihilation photons [7–10]. It follows from the
energy–momentum conservation law that, in the 2γ
annihilation of a positron–electron pair at rest, two
γ-ray photons are emitted in opposite directions (at an
angle of 180°) with the equal energies m0c2 =
0.511 MeV. If the pair momentum p is nonzero, the
angles between the γ-ray photons differ from 180° by a
value of θ (in the laboratory frame of reference). The
range of θ angles is very narrow (less than 1°); there-
fore, the deviation of the angle from 180° rather than
the angle itself is designated as the angle of divergence.
The distribution over θ angles is called the angular dis-
tribution of annihilation photons. If the pair momentum
is p ! m0c, the angle θ is determined by the equation

(1)

Thus, the momentum of e+–e– pairs (or electrons, if the
positron momentum is small as compared with the elec-
tron momentum) can be determined by measuring the
coincidence counting rate of γ-ray photons in 2γ anni-
hilation as a function of angle θ (the deviation of the
angle between γ-ray photons from 180°). The expe-
rimental procedure was described in detail elsewhere
[7–10].

The angular resolution of currently available instru-
ments is 0.3 mrad or smaller (with good statistics, 104–

θ p⊥ /m0c.=
0021-3640/05/8111- $26.00 0548
105 pulses per point at a maximum of the f(θ) curve).
This resolution makes it possible to obtain the detailed
structure of correlation curves (e.g., see [7, 9]). Angular
correlation spectra may contain narrow and broad com-
ponents. The narrow component is usually associated
with low-energy parapositronium atoms, and the broad
component is due to the annihilation of free positrons or
orthopositronium on the electrons of the medium. In
the annihilation of completely thermalized parapositro-
nium atoms at room temperature, the deviation of the
angle between two annihilation γ-ray photons from
180° is only θ ≈ 0.5 mrad or θ ≈ 10 mrad for the broad
component. The experimental spectra are adequately
described by the superposition of several Gaussian
functions, and a parabolic component is added in the
case of metals and elemental semiconductors. Each of
the Gaussian functions describes a specific channel of
positron annihilation, and it is characterized by inten-
sity (annihilation probability) and variance, which is
uniquely related to the energy of the annihilating pair.

Porous silicon layers different in porosity and the
chemical surface composition of nanocrystals were
chosen as test materials. Single-crystal silicon doped
with boron with a resistivity of 0.03 Ω cm and the sur-
face orientation 〈111〉  was used as a substrate. Porous
silicon was formed by anodic dissolution in an HF
(48%)–C2H5OH mixture with ratios between the com-
ponents equal to 2 : 1, 1 : 1, and 1 : 3 to obtain layers
with 45, 55, and 70% porosity, respectively. The anodic
treatment was performed at a current density of
10 mA/cm2 at room temperature. In all the samples, the
thickness of a porous layer was 20 µm. A portion of the
samples was treated in an aqueous solution of PdCl2
(0.1 g/l) immediately after formation. This treatment
results in the deposition of palladium as a continuous
film several monolayers in thickness on the surface of
nanocrystals [11].
© 2005 Pleiades Publishing, Inc.
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The angular distributions of annihilation photons of
porous silicon samples (see Figs. 1–3 and the table) are
adequately approximated by a parabola (Ip) and two
Gaussians (Ig1, Ig2) (Fig. 2). At the same time, these
spectra in defect-free silicon crystals (Fig. 1) are repre-
sented by the superposition of a parabola and a Gauss-
ian function. Positron annihilation characterized by the
parabolic component can be explained by the annihila-
tion of positrons in the valence band of silicon [9]. In
turn, the broad Gaussian component Ig2 was due to the
annihilation of positrons and positronium via various
paths in the bulk of the crystal, in the pore volume, and
on the pore surface, whereas the narrow Gaussian com-
ponent Ig1 was due to the annihilation of parapositron-
ium in the pore volume. The FWHM of this component
is on the order of 0.5 mrad, which corresponds to the
kinetic energy of the annihilating positron–electron
pair equal to 0.079 ± 0.012 eV, and the intensity of this
component is on the order of 1.5%. Thus, the total yield
of positronium in porous silicon is as high as 6%. Anal-
ogous conclusions were drawn from an analysis of dif-
ference curves normalized to the unit angular distribu-
tion of annihilation photons in porous and single-crys-
tal silicon samples (Fig. 3). These data are direct
experimental evidence for the existence of slow quasi-
thermalized parapositronium in pores.

Fig. 1. Angular distributions of annihilation photons in sin-
gle-crystal silicon samples (mirror p-type Si; 〈111〉  orienta-
tion; KDB-10; h = 340 µm): (1) experimental data including
a background and the sum of parabolic and Gaussian com-
ponents and (2) and (3) parabolic and Gaussian components
of the spectrum, respectively. The analyzer channels (chan-
nel interval of 0.2 mrad) and the number of events are plot-
ted on the abscissa and ordinate, respectively.
JETP LETTERS      Vol. 81      No. 11      2005
The experimental results allow us to hope that fur-
ther studies will make it possible to relate the parame-
ters of annihilation spectra to pore size and topology.

We are grateful to Yu.V. Kopaev for stimulating dis-
cussions and helpful remarks.

Fig. 2. Angular distributions of annihilation photons in
porous silicon samples (〈111〉  orientation; KDB-0.03; h =
360–370 µm; HF–C2H5OH, 2 : 1; porosity, 45 ± 3%; two
Gaussians + a parabola) (see table): (1) total spectrum (the
sum of spectra 3–5), (points 2) experimental data, (3) the
first Gaussian component of the spectrum, (4) the parabolic
component of the spectrum, and (5) the second Gaussian
component of the spectrum. The analyzer channels (channel
interval of 0.2 mrad) and the number of events are plotted
on the abscissa and ordinate, respectively.

Fig. 3. Difference curves normalized to the unit angular dis-
tribution of annihilation photons in porous and single-crys-
tal silicon samples. Porous Si; 〈111〉 , KDB-0.03; h = 360–
370 µm; HF–C2H5OH, 2 : 1; and J = 20 mA/cm2. The angle
between annihilation photons and the number of events are
plotted on the abscissa and ordinate, respectively.
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Parameters of the test samples of porous silicon, sample preparation conditions, and characteristics of the angular distributions
of annihilation photons

No. Sample characteristics Ig1 = Sg1/Ssum Ig2 = Sg2/Ssum Ip = Sp/Ssum Note

PR86 Porous Si, 〈111〉 , KDB-0.03
h = 20 µm, HF : C2H5OH = 2 : 1
J = 20 mA/cm2

0.015 ± 0.003 0.493 ± 0.052 0.492 ± 0.044 Porosity ~ 45 ± 3%

PR16 Porous Si, 〈111〉 , KDB-0.03
h = 20 µm, HF : C2H5OH = 1 : 1
J = 10 mA/cm2, t = 2400 s

0.004 ± 0.001 0.504 ± 0.036 0.492 ± 0.031

PR17 Porous Si, 〈111〉 , KDB-0.03
h = 20 µm, HF : C2H5OH = 1 : 1
J = 10 mA/cm2, t = 2400 s

0.006 ± 0.003 0.492 ± 0.045 0.502 ± 0.038 +10 min in PdCl

PR18 Porous Si, 〈111〉 , KDB-0.03
h = 20 µm, HF : C2H5OH = 1 : 3
J = 10 mA/cm2

0.325 ± 0.030 0.675 ± 0.036

PR19 Porous Si, 〈111〉 , KDB-0.03
h = 20 µm, HF : C2H5OH = 1 : 3
J = 10 mA/cm2

0.316 ± 0.031 0.684 ± 0.038 +10 min in PdCl

Note: The thickness of silicon wafers was ≈ 360–370 µm; h is the thickness of a porous silicon layer; 〈111〉  is the crystallographic orien-
tation; KDB-0.03 is the brand of boron-doped silicon wafers of resistivity 0.03 Ω cm; Ig = Sg/Ssum is the intensity of the Gaussian
component and Ip = Sp/Ssum is the intensity of the parabolic component in the angular distributions of annihilation photons (Ssum is
the total area of an experimental angular distribution of annihilation photons, and Sg and Sp are the areas of Gaussian and parabolic
components in this spectrum, respectively); and J is current density.
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The merging of the running coupling constants of the weak, strong, and electromagnetic fields does not require
the unification of these gauge fields at high energy. It can, in fact, be the property of a general fermionic system
in which gauge bosons are not fundamental. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

There are several lessons to be learned from the
example of relativistic quantum fields emerging in con-
densed matter. One of them is that the physical cutoff
can be different for bosons and fermions if the fermions
are more fundamental than the bosons. This occurs in
superfluid 3He–A, where bosons are the collective
modes of the fermionic quantum vacuum and are com-
posite objects made of fermionic degrees of freedom
[1]. The naive counting of fermionic and bosonic con-
tributions to the vacuum polarization suggests that the
antiscreening effect of charged bosons must dominate
over the screening effect of the fermionic vacuum and
that, therefore, the effective SU(2) gauge field emerging
in 3He–A must experience asymptotic freedom [2].
However, this is not what happens in superfluid 3He–A.
Instead, the SU(2) coupling constant shows the same
zero-charge effect as the Abelian U(1) field.1 The rea-
son is the difference in cutoff scales for bosons and fer-
mions. As a result, the contribution of the fermions to
the logarithmically running coupling constant prevails,
in spite of the larger boson content. Actually, the hier-
archy of cutoff scales in 3He–A is such that the asymp-
totic-freedom contribution from the gauge bosons does
not develop and the only contribution to the vacuum
polarization comes from the fermions.

Another important lesson from condensed-matter
physics is that the bare coupling constant is absent for
emergent gauge fields of a fermionic quantum vacuum.
The reason is simply that such gauge bosons cannot
exist as free fields, that is, without having fermions
around to make the quantum vacuum. This implies, in

¶ The text was submitted by the authors in English.
1 The term “zero-charge effect” refers to the long-distance (infra-

red) behavior, whereas “asymptotic freedom” refers to the short-
distance (ultraviolet) behavior.
0021-3640/05/8111- $26.00 0551
particular, that the entire gauge coupling constant
comes from vacuum polarization.

Here, we assume that the Standard Model of ele-
mentary particle physics also has different physical cut-
off scales: the compositeness scale Ec, which provides
the cutoff for the gauge bosons, and the much higher
ultraviolet cutoff EUV for the fermions. Assuming that
all three coupling constants of the Standard Model
come exclusively from vacuum polarization, we will
find that the most natural choice for the compositeness
scale Ec is the Planck scale EPlanck ≈ 1019 GeV (or, pos-
sibly, a scale lower by a factor of about 104), while the
ultraviolet cutoff scale EUV will turn out to be much
larger than the Planck scale.

This second cutoff may be associated with the
energy scale where Lorentz invariance is violated,
EUV ~ ELorentz. It has been claimed [3] that cosmic-ray
observations imply ELorentz > 1021 GeV, assuming the
absence of very small numerical factors in the dis-
persion relations.2 Probably, ELorentz is even larger. This
would mean that the Planck cutoff is highly Lorentz
invariant and that the underlying symmetry of the fun-
damental structure is itself the Lorentz symmetry,
which then protects the Lorentz invariance of the effec-
tive low-energy physics [5].

If ELorentz @ EPlanck, the topological Fermi-point sce-
nario of emergent relativistic quantum fields may be
relevant [1]. Specifically, the integration over fermions
with energy E & EPlanck occurs in the fully relativistic
region, where fermions are still close to the Fermi
points and, therefore, have gauge invariance and gen-
eral covariance. As a result, the induced effective action

2 An explicit calculation of photon propagation in a static back-
ground of randomly positioned wormholes has shown how, in
principle, small numerical factors could appear in the photon dis-
persion relation [4], but this calculation does not apply to fermi-
ons.
© 2005 Pleiades Publishing, Inc.
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for the gauge and gravity fields is automatically invari-
ant.

The small ratio of cutoff parameters,

/ , protects the Lorentz invariance of the
known physical laws. This would be in accordance with
Bjorken’s suggestion [6] that a highly accurate relativ-
istic quantum field theory can only emerge if there is a
small expansion parameter in the theory.

The merging of gauge coupling constants at high
energy is usually associated with Grand Unification of
the weak, strong, and electroweak interactions into a
larger gauge group with a single coupling constant [7,
8]. The two-scale scenario discussed in the present Let-
ter demonstrates that the merging of running couplings
could occur without unification: it could very well be
the natural property of an underlying fermionic vac-
uum.

2. RUNNING COUPLINGS
FROM TWO ENERGY SCALES

Let us assume that the gauge fields of the Standard
Model are not fundamental but induced, so that the
three running coupling constants gi of the gauge group
U(1) × SU(2) × SU(3) only come from vacuum
polarization. In other words, the fine-structure con-

stants αi ≡ /4π, for i = 1, 2, 3, are completely deter-
mined by logarithms and have vanishing inverse bare

values, 1/  = 0.

If gauge bosons are fermion composites, the ultravi-
olet cutoff scale for the vacuum polarization caused by
fermions must be larger than the one caused by gauge
bosons. Let EUV be the cutoff for the fermions and Ec !
EUV be the compositeness scale that provides the cutoff
energy for the gauge bosons. Then, for energies above
the electroweak scale but below the compositeness
scale, one has at one loop (see [8, 9])

(1a)

(1b)

(1c)

for MZ ! E ! Ec ! EUV and using natural units with " =
c = 1. Here, NF is the number of fermion families con-
tributing to the screening (zero-charge) vacuum polar-
ization, whereas the antiscreening (asymptotic-free-
dom) contribution comes from the non-Abelian gauge
bosons.

At the compositeness scale Ec, the weak and strong
inverse couplings, as well as the hypercharge inverse
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2
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coupling with a factor of 3/5, approach the same value:

(2)

Above the compositeness scale, the behavior depends
on the details of the dynamics. If the gauge bosons
break up for E > Ec, the story ends here, at least as far
as the gauge bosons are concerned. If, on the other
hand, the gauge bosons survive but for some reason do
not contribute to the vacuum polarization, the couplings
run together as

(3)

for Ec ! E ! EUV. As discussed in the Introduction, a
similar situation occurs in superfluid 3He–A, with only
fermions contributing to the polarization of the vac-
uum. In this liquid, the running coupling constant of the
effective SU(2) field behaves in exactly the same way as
that of the Abelian U(1) field; that is, it experiences the
same zero-charge effect. Of course, as the couplings αi

from Eq. (3) grow with energy, higher-order contribu-
tions need to be added to the logarithm shown (see [9]).

Let us, first, estimate the compositeness scale Ec.
This can be done in the same way as the standard cal-
culation of the unification scale (see [9]), i.e., only
using the bosonic contributions to the running cou-
plings. One then obtains, for the compositeness energy
scale, the same value as is usually assumed to hold
for Grand Unified Theories (GUTs).3 

Canceling out the fermionic contributions from the
right-hand sides of Eqs. (1a)–(1c), one finds two equa-
tions at the electroweak scale MZ:

(4a)

(4b)

Extracting the combination 1/αQ ≡ 1/α1 + 1/α2 from
these equations, one obtains Eq. (21.5.16) of [9], which
expresses the logarithm in terms of the strong coupling
constant α3 and the fine-structure constant αQ at the
electroweak scale:

(5)

3 The reason is that the right-hand sides of Eqs. (1a)–(1c) can be

written solely in terms of ln( /E2) and  ≡

NF/(3π)ln( / ), with Ec and  taking the role of the unifi-

cation energy EGUT and coupling constant αGUT.
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Taking the numerical values α3(MZ) ≈ 0.120 and
αQ(MZ) ≈ 1/128 at E = MZ ≈ 91.2 GeV [9], this gives the
following estimate:

(6)

The compositeness scale Ec is about 1015 GeV, which is
relatively close to the Planck energy scale EPlanck ≡

 ≈ 1.22 × 1019 GeV.
Let us now estimate the ultraviolet cutoff EUV for the

fermions. From Eqs. (1a) and (1b), the fine-structure
constant αQ at the electroweak scale reads

(7)

Using Eq. (5) to eliminate the compositeness scale Ec,
one obtains

(8)

With the numerical values mentioned above, this gives
the following estimate:

(9)

For NF = 3, one has ln( / ) ≈ 192, so that EUV ≈
1044 GeV @ EPlanck. For NF = 5, the fermion scale is still
larger than the Planck energy by a factor of 108. The
corresponding running coupling constants are shown in
the figure.

We realize, of course, that the renormalization-
group Eqs. (1a)–(1c), with numerical values (6) and (9)
inserted, give a weak mixing angle at E = MZ somewhat
below the experimental value (see also the figure). Spe-
cifically, we find sin2θw ≈ 0.203 instead of the experi-
mental value 0.231 [9]. Alternatively, adding the appro-

priate bare coupling constants 1/  to the right-hand
sides of Eqs. (1a)–(1c) in order to match the three
experimental values at E = MZ, we do not find precisely
merging coupling constants at high energy.

For a genuine Grand Unified Theory, the problem is
serious and has been addressed in different ways; see,
e.g., [10–13] and references therein. But, for a dynamic
scenario as ours, the precise definition of the compos-
iteness scale is rather uncertain. The scale can, in fact,
be slightly different for the various composite gauge
bosons. In other words, the three couplings of our sce-
nario need not merge exactly at one particular energy
(for example, two couplings could merge first and the
third one later).

The simplest way to model these threshold effects is
to replace Ec in Eqs. (1b) and (1c) by Ec2 and Ec3,
respectively, where Ec2 and Ec3 are assumed to be not
more than a few orders of magnitude away from the
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geometric average Ec ≡ . The experimental

values (MZ) then give ln( / ) ≈ 50.5,

ln( / ) ≈ 58.0, and ln( / ) ≈ 557/NF. This
suggests that the range for threshold effects in Ec may
be approximately 1013–1015 GeV (which is also clear
from the figure by making appropriate shifts of the
curves). Note, that, without the grand-unified group,
there is no danger of having too-rapid proton decay.

3. DISCUSSION

Let us end with a few general remarks. Trans-
Planckian cutoff scales have been considered before,
for example, the scale Ecutoff ≈ 1042 GeV in [14] as cor-
responding to an exotic (nonexisting) case. The con-

Ec2Ec3

α i
exp Ec2

2 MZ
2

Ec3
2 MZ

2 EUV
2 MZ

2

Inverse couplings (3/5) ×  (solid curve),  (long-

dashed curve), and  (short-dashed curve), as a function

of x ≡  for different numbers NF of fermion
families. The coupling constants are given by Eqs. (1), (3),
(6), and (9), and run together for E > Ec (overlapping

curves). At the compositeness scale E ~ Ec ≈ 1015 GeV,
there may be threshold effects that somewhat change the
values of the couplings towards lower energies (see text).
The dots show the corresponding experimental values at
E = MZ ≈ 91.2 GeV.

α1
1– α2

1–

α3
1–

E/GeV( )10log
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densed-matter-like scenario discussed in the present
article suggests, however, that this possibility must be
taken seriously.

In this scenario, the merging of the running cou-
plings of weak, strong, and hypercharge fields does not
require a unification of these fields at high energy; it
may simply be the property of a fermionic system in
which gauge bosons are not fundamental. The factor

3/5 for  in Eq. (3) may indicate an underlying con-
tinuous or discrete symmetry between the fermion spe-
cies.

The large separation between the Planckian (or
near-Planckian) compositeness scale Ec and the trans-
Planckian scale EUV may be of importance to consider-
ations of the Standard Model symmetries as emergent
phenomena. In particular, this allows us to discuss
gauge invariance as being an emergent symmetry.

In the topological Fermi-point scenario of emergent
relativistic fields [1], the spectrum of fermionic excita-
tions near the Fermi point is linear: fermions are chiral
and obey the relativistic Weyl equation. In this scenario,
bosonic excitations behave as effective gauge fields
interacting with Weyl fermions. This implies that gauge
invariance automatically emerges in the fermionic sec-
tor close to the Fermi point, i.e., at E ! EUV. The fermi-
ons induce gauge invariance for the effective action of
the composite vector fields. Since the compositeness
cutoff parameter Ec is well below EUV, gauge invariance
in the bosonic sector is valid throughout the composite-
ness scale Ec. Hence, the requirement suggested by
Veltman [15] is fulfilled. Specifically, he concluded
that, if gauge bosons are composite, gauge invariance
should remain valid both in the infrared (E ! Ec) and
ultraviolet (E @ Ec) regions. The high accuracy of
gauge invariance in the bosonic sector is then deter-

mined by the small parameter / , in accordance
with a suggestion by Bjorken [6].

In the Fermi-point scenario, EUV is the scale below
which the spectrum of fermionic excitations near the
Fermi point is linear, i.e., Lorentz invariance induced
by the Fermi point is still obeyed. That is why the
Lorentz-violation scale must be approximately equal to
or larger than EUV. In turn, this implies that Lorentz
invariance is more fundamental than the other physical
laws and that we cannot expect to observe its violation
in the near future.

Applying the two-scale formalism to gravity, one
finds that it gives the wrong value for the gravitational
coupling constant. If EUV is again used as the energy
cutoff for the fermionic contributions to Newton’s con-

stant, one obtains G–1 ~ NF  instead of G–1 ~

NF . It is not clear at the moment how to fix this
problem.

α1
1–

Ec
2

EUV
2

EUV
2

EPlanck
2

We can only speculate that nonlogarithmic (power-
law) divergences must be considered with great care.
For example, the fourth-order divergence, which leads
to a vacuum energy density (cosmological constant Λ)

of order  or , can be cancelled without fine-
tuning, due to the thermodynamic stability of the vac-
uum [16]. The same may hold for the Higgs mass prob-
lem—controlling the quadratically divergent quantum
corrections to the Higgs potential mass term (see, e.g.,
[17]). This cutoff-dependent mass term is simply
absorbed by the vacuum energy density and is zero in
the equilibrium vacuum, again due to thermodynamic
stability [18]. For induced gravity, the cancellation of
the vacuum energy density is demonstrated by a calcu-
lation of Λ on a (3 + 1)-dimensional brane embedded in
AdS5 space: the induced cosmological constant on the
brane vanishes without fine-tuning, thanks to a cancel-
lation of the contributions from (4 + 1)-dimensional
fermionic matter and gravity [19].

There may very well be a general principle from the

underlying physics, which protects against  contri-
butions to G–1 with n > 0. Let us mention, in this
respect, another example of induced Sakharov gravity
in terms of constituent fields, namely [20], which used
such a principle and demonstrated the advantage of two
energy scales. In the scheme of [20], the first (lowest)
energy scale is the mass scale M' of the constituent
fields. With M' ~ EPlanck, this provides a natural cutoff
that determines Newton’s constant, G–1 ~ (M')2 ~

. The much higher cutoff  drops out from the
effective action due to imposed cancellations between
the constituent fields (see also [15], where cancellations
of fermionic and bosonic effects are required). This
scheme only works if Lorentz invariance survives
beyond the Planck scale, again in agreement with the
statement in [15] that the symmetry should remain
valid throughout the cutoff range. The higher cutoff

 of [20] must, therefore, be below the Lorentz-vio-
lation scale.

In conclusion, it is possible that the scenario of
emergent physics, in combination with a hierarchy of
cutoff energy scales, can replace the grand-unification
scenario based on symmetry breaking. This new sce-
nario (with parameters NF and Ec ! EUV) naturally
leads to the merging of gauge coupling constants, with-
out the need to introduce a simple gauge group (and
without having to worry about too-rapid proton decay
or excessive magnetic monopoles left over from the
early universe).

Moreover, the hierarchy of cutoff energy scales may
be related to the well-known hierarchy problem of the
Standard Model—the absence of a natural explanation
for having MZ ! EGUT or EPlanck (see, e.g., [15, 17]). The
3He–A example mentioned in the Introduction, where
gauge invariance is not fundamental, suggests that the

EUV
4 EPlanck

4

EUV
n

EPlanck
2 EUV'

EUV'
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mass of the weak vector bosons may result not from
spontaneous symmetry breaking but from terms
depending on the ultraviolet cutoff. If we accept this
viewpoint, the typical value of the weak vector boson

mass would be MZ ~ /EUV ! Ec, which would be a
first step towards understanding the Standard Model
hierarchy problem mentioned above (with Ec taking the
place of EGUT). From the numerical estimates given in
Eqs. (6) and (9) and without further threshold effects at
the cutoff energies, the suggested hierarchy would
seem to prefer having more than NF = 3 fermion fami-
lies.
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sian Ministry of Education and Science, through the
Leading Scientific School grant no. 2338.2003.2. This
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Study of the Heavy-Fermion Compound CeRu2Si2 
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In order to directly observe neutron scattering by heavy fermion quasiparticles at low temperatures, a CeRu2Si2
single crystal has been studied by the small-angle neutron scattering method. In the experiment, neutron scat-
tering is observed at T = 0.85 K for momentum transfers q ≤ 0.04 Å–1, which is treated as the orbital component
of magnetic scattering by heavy fermion quasiparticles. It has been found that the application of a magnetic field
H = 1 T leads to both an increase in the observed scattering and its anisotropy with respect to the field direction.
Moreover, measurements in the magnetic field reveal additional scattering for q > 0.04 Å–1, which is well
described by a Lorentzian and is interpreted as neutron magnetic scattering by spin-density fluctuations with a
correlation radius Rc ≈ 30 Å. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.12.Ex, 71.27.+a
As was shown in theoretical works [1–3], the orbital
part of the amplitude of neutron magnetic scattering
contains the term

(1)

which is singular at q  0. Here, r = |γ|e2/mc2 = 5.4 ×
10–13 cm, γ = –1.91 is the neutron magnetic moment
measured in nuclear magnetons, s is the vector com-
posed of the Pauli matrices, q = ki – kf is the neutron
momentum transfer (ki and kf are the neutron momenta
before and after scattering, respectively), and p is the
electron momentum operator. Therefore, small-angle
neutron scattering by conduction electrons is predicted
to occur with the cross section [1–3]

(2)

Here, N is the number of the unit cells per volume V of
a scatterer, n0 is the number of conduction electrons per
unit cell, m* is the effective mass of electrons, Mn is the
neutron mass, pF is the Fermi momentum, ϑ  ! 1 is the
scattering angle, T is the scatterer temperature, and En

is the neutron energy. According to Eq. (2), the scatter-
ing cross section is determined by the factor (m*/Mn)2,
which is on the order of 10–5–10–6 for the standard met-
als and, thereby, neutron–electron scattering is negligi-
bly small. However, for heavy fermion compounds,
m* ≈ 100me [4] and (m*/Mn)2 ~ 10–2. In this case, this
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scattering can be detected. The crossover from one
scattering regime to the other is expected at ϑc ≅  T/2En.
This crossover proceeds because scattering at 2Enϑ  !
T occurs on thermally excited quasiparticles, whereas
thermal excitation is immaterial for 2Enϑ  @ T.

In view of gauge invariance [5], if electrons (mov-
able charge carriers) in a metal are subjected to a uni-
form magnetic field H, Eq. (1) should be rewritten as

(3)

Here, Aq is the Fourier transform of the vector potential

A = [B × r], where B is the magnetic induction inside

the sample. Taking into account the Fourier transform,
we obtain the additional term in Eq. (3) in the form

(4)

In this case, the following term arises in the scatter-
ing cross section:

(5)
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where Σ0 = (3n0r2kiN/2pFϑV)(m*/Mn)2. Moreover,
according to Eq. (4), this scattering is anisotropic, is
strongest for q ⊥  B, and is absent for q || B.

The scattering under consideration is very weak. For
this reason, its observation requires, first, the existence
of heavy fermion quasiparticles with a sufficiently large
effective mass m* ≥ 100me in the scattering system and,
second, the absence of additional sources of both mag-
netic and nuclear scattering in this system at tempera-
tures on the order of 1 K. In this work, small-angle neu-
tron scattering (SANS) experiments were carried out
with a CeRu2Si2 single crystal in order to directly
observe SANS on heavy fermion quasiparticles and to
analyze the magnetic field effect on this scattering.

1. Samples and measurement procedure. The
intermetallic system CeRu2Si2, which has a body-
centered tetragonal ThCr2Si2-type structure with the
lattice constants a = b = 4.197 Å and c = 9.797 Å [6], is a
typical heavy fermion compound with the Kondo tem-
perature TK ≤ 20 K and Sommerfeld constant γ = C/T ≈
350 mJ mol–1 K–2 near T ≈ 1 K [7, 8]. The CeRu2Si2
compound is in a paramagnetic state down to T ≈
20 mK [9]. At the same time, inelastic neutron scatter-
ing experiments on CeRu2Si2 single crystals [6, 10]
have revealed the existence of short-range antiferro-
magnetic correlations with a range of about three lattice
constants at temperatures T ≤ 20 K. A magnetic field
Hm = 7.8 T suppresses these correlations, and the sys-
tem undergoes a metamagnetic transition from the
paramagnetic to the ferromagnetic state [6]. According
to experiments on the de Haas–van Alfvén effect [11,
12], the effective mass of quasiparticles reaches 200me.
The CeRu2Si2 single crystal was grown in a three-arc
furnace using Czochralski’s method [6].

The SANS measurements were performed for two
wavelengths, namely, λ1 = 8.1 Å and λ2 = 10.5 Å, at the
SANS-1 facility (FRG1 reactor, GKSS Research Cen-
tre, Geesthacht, Germany) [13], which operated in a
geometry close to point geometry. The use of three
sample–detector distances SD = 0.7, 1.8, and 4.5 m
made it possible to conduct measurements in the
momentum transfer range 1.1 × 10–2 < q < 2.1 × 10–1 Å–1.
Scattered neutrons were detected by a 2D position-sen-
sitive 3He detector.

The sample was mounted in a cryostat, and mea-
surements were carried out at two temperatures,
namely, T = 0.85 and 293 K. Long-term stabilization of
the sample was better than .0.01 K. The external mag-
netic field H created by a cryomagnet varied from 0 to
1 T. The single crystal was oriented such that the (001)
axis was perpendicular to both the incident neutron
beam and the applied magnetic field H.

The raw spectra for each q interval were corrected to
scattering by both the cryostat and the setup equipment,
as well as to the room background, using the standard
procedure [14]. The measured 2D spectra were reduced
to the absolute scale by normalization to the cross sec-
JETP LETTERS      Vol. 81      No. 11      2005
tion for incoherent neutron scattering by 1 mm of H2O
taking into account the detector efficiency [14].

The low-temperature scattering intensity Is analyzed
in this work was calculated as the excess over nuclear
scattering, which is taken as scattering by the sample at
room temperature, Tr = 293 K:

(6)

Here, R = I(T = 0.85 K, 0)/I(T = 293 K, 0) is the neu-
tron transmission coefficient. The scattering intensity
component induced by the magnetic field was deter-
mined as

(7)

where R1 = I(H = 1T, 0)/I(H = 0, 0).
2. Measurement results. The momentum depen-

dences of the SANS cross section dΣ(q)/dΩ measured
at T = 0.85 K in the absence of magnetic field and in a
magnetic field H = 1 T are shown in Fig. 1 for neutron
wavelengths λ1 = 8.1 Å and λ2 = 10.5 Å. As is seen
in this figure, low-temperature scattering in the absence
of a magnetic field occurs at both λ values for q ≤ q0 ≈
0.04 Å–1. This scattering intensity is very low (about
10–2 cm–1 at q ≈ 0.015 Å–1) but is statistically significant
and increases as q decreases. The scattering cross sec-
tion estimated for q = 0.015 Å–1 by Eq. (2) with the
parameters n0 = 1, (m*/Mn)2 ≈ 0.012, N ≈ 5.85 × 1020,
V = 0.05 cm3, and pF = (3π2n0Na/Vm)1/3 ≈ 0.64 Å–1 (Na =
6.022 × 1023 mol–1 and Vm = 51.7 cm3 mol–1) is equal to

Is q( ) I T q,( ) I T r q,( )R.–=

IH q( ) I H q,( ) I H 0 q,=( )R1,–=

Fig. 1. Momentum transfer dependences of the scattering
cross section dΣ(q)/dΩ measured at T = 0.85 K (diamonds)
in the absence of magnetic field and (circles) in a magnetic
field H = 1 T for neutron wavelengths (closed symbols)
λ1 = 8.1 Å and (open symbols) λ2 = 10.5 Å.
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Fig. 2. Momentum transfer dependences of the cross sec-
tion dΣH(q)/dΩ for scattering induced by the magnetic field
H = 1 T as measured for neutron wavelengths (closed cir-
cles) λ1 = 8.1 Å and (open circles) λ2 = 10.5 Å. The dashed
and solid lines are obtained by formulas (10) and (11),
respectively. Inset: λ dependence of qc.

Fig. 3. Momentum transfer dependences of the scattering
cross section dΣH(q)/dΩ with the momentum transfers
(open circles) parallel and (closed circles) perpendicular to
the magnetic field H = 1 T for λ1 = 8.1 Å.
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dΣ(q)/dΩ ≈ 0.6 × 10–2 and 0.5 × 10–2 cm–1 for λ1 and λ2,
respectively. As is clearly seen (Fig. 1), these estimates
nearly coincide with experimental data for dΣ(q)/dΩ .

The presence of the magnetic field H = 1 T gives rise
to a strong increase in the scattering cross section and
to the appearance of additional scattering for q > q0,
which has a diffuse but pronounced maximum at q ≈
0.067 Å–1.

The momentum dependences of the cross section
dΣH(q)/dΩ for scattering induced by a magnetic field
that are obtained using Eq. (6) for both wavelengths are
shown in Fig. 2 on the log–log scale. As is clearly seen
in this figure for both cases, there are two q ranges
where dΣH(q)/dΩ behaves as q–n with different n values.
The exponent n ≈ 4 and 2 for q ≤ qc1, c2 and q ≥ qc1, c2,
respectively (where qc1 ≈ 0.024 Å–1 and qc2 ≈ 0.032 Å–1

for λ1 and λ2, respectively, are the crossover points from
one scattering regime to the other). The inset in Fig. 2
shows qc versus λ. This dependence is evidently
approximated by the following linear dependence qc(λ)
shown by the solid straight line:

(8)

where k = 2π/λ, En = 81.81/λ2, and ϑc = T/2En. We note
that the sample temperature estimated from this depen-
dence is equal to Tex = 0.95 ± 0.07 K, which nearly coin-
cides with the actual sample temperature T = 0.85 ±
0.01 K.

Such a behavior of the scattering cross section
dΣH(q)/dΩ , along with the En dependence of qc, com-
pletely corresponds to the theoretically predicted prop-
erties of SANS given by Eq. (5) on movable carriers in
the magnetic field. We emphasize that the data pre-
sented in Figs. 1 and 2 are azimuthally averaged in
order to achieve better statistical accuracy. However,
according to Eq. (4), the magnetic-field-induced part of
the cross section for neutron–electron scattering is
expected to depend as sin4α on the angle α between the
magnetic field H and the momentum transfer q.

The momentum dependences of the scattering cross
section dΣH(q)/dΩ with the momentum transfers (open
circles) parallel and (closed circles) perpendicular to
the magnetic field H are shown in Fig. 3 for λ1 = 8.1 Å.
As is clearly seen, for q < qc1, dΣH(q)/dΩ behaves dif-
ferently for neutrons with q perpendicular and parallel
to the magnetic field. In this q range, scattering induced
by the field exhibits a sharp increase for q ⊥  H, whereas
it decreases almost to zero for the case q || H as q
decreases. The observed scattering is almost isotropic
for q > qc1. We note that a similar behavior of
dΣH(q)/dΩ is observed for λ2 = 10.5 Å.

Figure 4 shows the α dependences of the scattering
cross section dΣH(q)/dΩ that are obtained for two dif-
ferent momentum transfers q1 = 0.018 Å–1 < qc and q2 =
0.03 Å–1 > qc. As is seen in this case, the scattering cross

qc 2k ϑ c/2( )sin k T /2En( ) 0.0038Tλ ,≈ ≈=
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section α depends on the angle α only for q < qc,
whereas it remains almost constant for q > qc. It has
been found that the α dependence of α for q1 is well
approximated by the formula

(9)

where C and D are free parameters and Iiso is a constant
that is independent of the angle α and is associated with
isotropic scattering by spin-density fluctuations (see
below).

As was mentioned above, the cross section
dΣH(q)/dΩ behaves differently for q < qc and q > qc. It
has been found that the momentum dependence of
dΣH(q)/dΩ for small q values at both wavelengths is
well reproduced by the expression

(10)

where A1 = (A0 )/En is the scattering amplitude and A0

is a free parameter, which is necessarily proportional to
the magnetic field squared according to Eq. (5). 

We emphasize that these results (q and α depen-
dences of dΣH(q)/dΩ for q < qc) completely agree with
the theoretical assumptions concerning the properties
of neutron–electron scattering in the magnetic field.

The behavior of dΣH(q)/dΩ for large q values is well
described by the Lorentzian

(11)

where κ = 1/Rc is the inverse correlation radius, A2 is a
free parameter, and Iinc is a constant that is independent
of q and is associated with scattering by objects with
sizes smaller than or on the order of the wavelength of
neutrons incident on the sample. As is well known,
Eq. (11) is used to describe magnetic scattering by ther-
modynamic spin-density fluctuations such as critical
fluctuations in ferromagnets above TC [15]. According
to [6, 10], antiferromagnetic correlations are observed
in the paramagnetic compound CeRu2Si2 at tempera-
tures T ≤ 20 K and magnetic fields H < Hm = 7.8 T. The
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average magnetic moment of a paramagnetic system at
H = 0 is M = 〈mi〉  = 0 (where mi = 〈Si〉  is the magnetic
moment of an atom), and scattering by spin-density
fluctuations is absent. The application of the magnetic
field leads to the appearance of a nonzero mean mag-
netic moment in the system and creates the magnetic
contrast ∆ρ = ρm – 〈ρm〉  (where ρm and 〈ρm〉  is the local
and average spin densities of the scattering lengths in
the system) between antiferromagnetic correlations
with 〈mi〉  = 0 (zero “holes”) and the paramagnetic
matrix with M ≠ 0. This behavior means that additional
scattering induced by the field for q > qc can be attrib-
uted to the spin part of the magnetic scattering ampli-
tude.

To obtain the final results, Eqs. (10) and (11) were
convolved with the resolution function of the facility,
which is approximated by a Gaussian. Experimental
data for dΣH(q)/dΩ are processed by the least-square
method in the ranges q ∈  0.015–0.22 and 0.025–0.17 Å–1

for λ1 and λ2, respectively. The processing results are

Fig. 4. Scattering cross section dΣH(q)/dΩ vs. the angle α
between the magnetic field H and momentum transfer q for
(closed circles) q1 = 0.018 Å–1 and (open circles) q2 =

0.03 Å–1. The solid line is the calculation by Eq. (9).

Å–1

Å–1
The lsm fit parameters for the scattering cross section dΣH(q)/dΩ

Wavelength
λ (Å)

Range
q (Å–1)

Scattering law ~q–4 Lorentzian

A1 (×10–8 cm–1) A2 (×10–5 cm–1) Rc = 1/κ (Å) Iinc (×10–2 cm–1)

8.1 0.015–0.023 0.24 ± 0.03 –

0.024–0.22 – 1.66 ± 0.5 31 ± 12 0.167 ± 0.06

10.5 0.025–0.032 1.07 ± 0.18 –

0.034–0.17 – 1.44 ± 0.8 28 ± 12 0.205 ± 0.055
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presented in the table and shown in Fig. 2 by the solid
and dashed lines.

CONCLUSIONS
The SANS experiment with the CeRu2Si2 single

crystal reveals the following properties.
(i) Small-angle neutron scattering occurs at T =

0.85 K and H = 0 for momentum transfers q ≤ 0.04 Å–1

and, according to theoretical predictions [3] and our
estimates of dΣ(q)/dΩ , can be associated with the
orbital part of magnetic scattering by heavy fermion
quasiparticles.

(ii) The application of the magnetic field H = 1 T
leads both to an increase in the observed scattering and
its anisotropy with respect to the field direction.

(iii) Measurements in the magnetic field reveal addi-
tional scattering for q > 0.04 Å–1, which is well
described by a Lorentzian and is interpreted as neutron
magnetic scattering by spin-density fluctuations with a
correlation radius Rc ≈ 30 Å.
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The formation of Bose–Einstein condensate (BEC) structures via electromagnetically induced interactions is
analyzed within a semiclassical approach, wherein an improved interaction potential is obtained. This analysis
shows how the laser-induced forces can lead to self-confinement of the ground state even with a homogeneous
field. It furthermore indicates that the vector character of the field can be crucially important, since it can change
the type of nonlinearity, thus strongly modifying the BEC structures. © 2005 Pleiades Publishing, Inc.

PACS numbers: 03.75.Fi, 34.20.Cf, 34.80.Qb
BACKGROUND

Recently, the nonlinear behavior of Bose–Einstein
condensates (BEC) in laser fields has become a subject
of growing attention (see, e.g., [1–3] and references
therein), inspired both by new perspectives in the study
of BEC in optical lattices and by new possibilities of
having a BEC self-localized in space via laser-induced
interactions when the atoms are released from a trap.
Since most of the experiments on Bose–Einstein con-
densation have been accurately described by the mean-
field method based on the Gross–Pitaevskii equation
(GPE) [4], extensions of this equation are also used for
describing BEC in optical fields. However, so far the
potential energy of the interaction has been modeled as
the single-particle ponderomotive potential in problems
of optical lattices or as a sum of the laser-induced
dipole–dipole interatomic potentials (see, for example,
[3] or [5]).

The purpose of the present work is to provide a gen-
eral approach for describing the laser-induced interac-
tion of Bose–Einstein condensates where the difference
between the local field (the microscopic field acting on
an atom) and the macroscopic field (the field averaged
over a volume containing many atoms) is taken into
account. Of particular interest is the investigation of the
formation of BEC structures created via interactions
where the nature and stability of a Bose condensed state
are influenced by the self-induced dipole–dipole inter-
action forces. This analysis provides us with qualita-
tively new regimes for the formation of condensate
structures. To this purpose, we consider an extension of
the GPE by using a semiclassical approach for describ-
ing the self-induced forces (striction forces) in the

¶ The text was submitted by the authors in English.
0021-3640/05/8111- $26.00 ©0561
laser-condensate interaction. For a large number of
atoms, this description can be significantly simplified
by using the macroscopic electrodynamics approach.
This analysis also shows that the vector character of the
field can be crucially important. For instance, for BEC
structures well-localized within a laser wavelength
along the field, variations of the dielectric permittivity
strongly influence the microscopic field, thus qualita-
tively changing the type of nonlinearity.

SEMICLASSICAL APPROACH

The dipole–dipole interactions of a BEC in laser
fields as well as in static fields have recently been inves-
tigated within the framework of quantum theory [5–8].
For models with different effective interaction poten-
tials, simple cases of density modulations and atomic
beam guiding have been investigated. The full quantum
description is based on the exact Hamiltonian, but, for
the conditions of interest in laser-condensate interac-
tions and for large laser detunings from the atomic res-
onance, a semiclassical model can be derived, wherein
the atoms are described by a Schrödinger equation with
the interaction term given by the self-induced force cal-
culated in the framework of macroscopic electrody-
namics. For a high-frequency field, the averaged
induced force per volume, f, in transparent media can
be obtained as shown in [9] by time averaging of the
corresponding electrostriction force in a static electric
field [10]. For a zero-temperature, dilute BEC in a far-
off-resonant laser field Re[Eexp(–iωt)], we have (see
[9])

(1)f
n

16π
---------∇ E 2∂ε

∂n
------ ,=
 2005 Pleiades Publishing, Inc.
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where n is the condensate atom density and ε is the
dielectric permittivity of the condensate gas. To
describe the striction forces, we have to find a suitable
model for ε. Since we assume a large number of con-
densate particles in a volume λ3 (λ is the laser wave-
length), the dielectric constant can be modeled in the
local-field approach, where, for atomic gases, the dif-
ference between the local field acting on an atom and
the macroscopic field formed by the induced dipoles of
the surrounding particles is taken into account (see, for
example, [11]). This gives

(2)

where α = –d2/"∆ is the atomic polarizability at the
laser frequency, with ∆ = ω – ωa being the detuning
from the nearest atomic resonance frequency ωa, and d
is the dipole matrix element of the resonant transition.
By substituting Eq. (2) into Eq. (1), we obtain the total
force acting on a single atom, F = f/n = –∇ Vd, where the
corresponding potential energy is given by

(3)

For a single particle (n = 0), Eq. (3) describes the pon-
deromotive force in an inhomogeneous laser beam.
However, even in a homogeneous laser field, the force
does not vanish, since it may also be generated by the
presence of density gradients. As is easily seen, in the
low-density limit (or in the weak dipole interaction
limit, 4παn/3 ! 1), the striction force originating from
the induced microscopic dipole–dipole interatomic
forces is an attractive force independent of the sign of
the frequency detuning, i.e., Vd ∝  –α2n. Although, at
first glance, the low-density approximation seems to
describe most of the experiments, the structural dynam-
ics and the subsequent density modulations will, in fact,
depend on the character of the nonlinearity, i.e., on the
sign of the detuning.

SELF-CONFINED BEC

We consider a condensate with repulsive interaction
(the s-wave scattering length a > 0). The above result
implies that the dynamics of the BEC atoms in a laser
field can be described by a generalized GPE for the
condensate wavefunction Ψ(r, t) [4]:

(4)

where  is the linear single-particle Schrödinger
Hamiltonian; the wavefunction Ψ is normalized as N =

, with N denoting the total number of atoms, so

ε 1
4παn

1 4π/3( )αn–
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α
4
--- E 2
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-------- = Ĥ0Ψ U0 Ψ 2 α
4
--- E 2

1 4π/3( )α Ψ 2–( )2
---------------------------------------------– Ψ,+

Ĥ0

Ψ 2 rd∫
that the gas density is n = |Ψ|2, U0 = 4π"2a/m, and m is
the atom mass. In Eq. (4), the laser-induced nonlinear-
ity originates from the difference between the macro-
scopic and local fields in a condensate gas and bears a
local character, since, for fixed orientation and separa-
tion of the dipoles, the interaction energy for a large
number of atoms in a physical volume averaged over
the relative positions of the dipoles vanishes (see, e.g.,
[11]). This is consistent with the approach used in [6],
where a phenomenological dipole–dipole interaction is
assumed to be in the form of a contact potential, rather
than with the model used in [3, 5], where the main con-
tribution is due to the long-range interaction. As a first
approximation in the low-density limit, the self-confin-
ing dynamics does not depend on the sign of α and,
when the interparticle interaction is dominated by the
dipole–dipole forces, i.e., for laser intensities such that

(5)

the dynamics may result in a density modulation of the
condensate ground state and even a tendency towards
a subsequent collapselike evolution that usually takes
place only in the presence of attractive s-wave interac-
tions [12, 13]. However, the question of what kind of
structures the condensate will actually realize must be
answered by using exact Eq. (4) and, in fact, the evo-
lution will essentially depend on the sign of the laser
frequency detuning. In order to clarify this question,
we consider the case of a constant (homogeneous)
laser field E = const and restrict our analysis to the
steady-state regime, where we can assume Ψ(r, t) =
ψ(r)exp(−iEt/"). Without an external potential, Eq. (4)
reduces to

(6)

where ∇ 2 is the Laplace operator and E is the ground
state energy of the Bose condensate, which depends
also on the total number of condensate atoms. It is obvi-
ous that, due to the focusing nature of the induced
dipole–dipole interaction nonlinearity, there are contin-
uous families of symmetrical localized solutions of
Eq. (6) for any space dimensionality. However, since
the validity of a model with a constant field, as we will
see below, depends on the orientation of the density
gradients, we will here pay particular attention to 3D
axisymmetrical and 1D cases.

In 1D, Eq. (6) is similar to that which describes par-
ticle motion in the effective potential Ve(ψ) = –U0ψ4 +
(α/2)|E|2ψ2/(1 – (4π/3)αψ2) + 2Eψ2. From this analogy,
all possible condensate distributions can be inferred
from the phase portraits of the system. This is shown in
Fig. 1 for the different parameters for which localized
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solutions exist. The main bifurcation inequality when a
localized BEC can occur is given by Eq. (5). If the laser
intensity exceeds this threshold, self-confined states
can occur for any number of atoms, as seen in Figs. 1a
and 1c, where the separatrix curve passing through zero
corresponds to localized solutions. For weak nonlinear-
ity, the bound state has the shape of the Schrödinger

soliton, ψ(x) .  (where

 = –E – Ec > 0, Ec = α|E|2/4,  = (|E|2/ ) – 1 > 0),

with the total number of atoms N = (2"/ U0)

decreasing with decreasing . In fact, the qualitative
behavior of the localized solutions does not depend on
the sign of α. However, as we will see below, the sign
of α is important for the problem of stability, which
originates from the singularity in the interaction poten-
tial for red frequency detuning (α > 0), where the con-
densate distributions become narrower for an increas-
ing number of atoms, in contrast to the case of blue
detuning (α < 0), where the condensate distributions
become flatter due to the saturation behavior of the non-
linearity.

If the inequality given by Eq. (5) is not fulfilled, self-
bound states of the BEC do not exist for α < 0. How-
ever, for red detuning (α > 0), topologically the same
phase portrait takes place if the number of condensate
atoms exceeds some critical value (see Fig. 1a). This
critical number of atoms corresponds to the case when
the ground energy of the condensate is equal to E = –Ec,
which can be found by direct integration of Eq. (6). In
a case that may be verified experimentally, when laser
intensities are near the threshold level, i.e., 0 < δ = 1 –

(|E|2/ ) ! 1, the ground-state distribution is self-
organized into the form

(7)

where γ = (δ/") . This solution contains a
critical number of atoms, N∗ , which does not depend
on δ:

(8)

In a 3D geometry, N∗  plays the role of the atom surface
density.

It is interesting to note that Eq. (6) not only has
purely localized solutions (ψ  0 at x  ±∞) but
also describes localized solutions on a homogeneous
condensate background, as a dark soliton correspond-
ing to the separatrix curve from the equilibrium point A
to –A (Figs. 1b, 1c, and 1d) and as a hump (compressed)
field in the condensate (closed separatrix around the
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equilibrium point B in Fig. 1b). If the dark soliton in
Fig. 1d can be considered as a generalized version of
the well-known solution also observed experimentally
(see, for instance, in [14]), the others represent new
solutions indicating that new types of collective excita-
tions can be produced in laser-condensate interactions.

The important role of the sign of α is clearly seen
for axisymmetric BEC structures that occur if the total
number of atoms exceeds a critical number, which can
easily be calculated by expanding the potential func-
tion in the low-density limit, where the ground-state
solution is the so-called Townes mode [12, 15]. Equa-
tion (6) admits localized solutions for any sign of the
detuning. However, it is obvious that, for positive α,
such solutions are unstable against collapse. This is in
accordance with the stability criterion of Kolokolov
and Vakhitov [16]. The ground state is unstable when
the total number of atoms is an increasing function of
the energy δN/δE > 0, as seen in Fig. 2a. Otherwise, it
is stable (Fig. 2b) due to the saturation-type nonlinear-
ity. Thus, for α > 0, condensates tend to collapse and
can produce even a condensed-matter state. It should be
noted that one-dimensional states may also be unstable
against collapse due to the singularity in the potential
energy (see, for example, [17]) and, therefore, quasi-1D
condensed-matter structures can also be formed.

Thus, for experimental realization of the predicted
self-confined effects, it is sufficient that the laser inten-
sity exceeds the threshold given by Eq. (5). For 87Rb
and 23Na atoms and linearly polarized light with a fre-

Fig. 1. Phase portrait for Eq. (6) for different regimes when
the self-confinement of the ground state can occur (symmet-
rical with respect to the axis ψ'): (a) α > 0, E < –Ec, for any

number of condensate atoms if |E|2 >  and otherwise for

N > N∗ ; (b) α > 0, E > –Ec and |E|2 < ; (c) α < 0, |E|2 >

; and (d) α < 0, |E|2 < . The dashed line indicates the

singularity point in the potential energy Ve(ψ2).
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quency detuning of 0.95 GHz from the 2S1/2–2P3/2
atomic resonance (irrespective of the sign of the detun-
ing), the threshold intensity is equal to 130 mW/cm2

and 900 mW/cm2, respectively. However, it should be
noted that, below this threshold, the density modulation
can also occur for red detuning (α > 0) only if the total
number of atoms exceeds the critical value N = N∗ S,
where S is the transverse cross section (see Eq. (8)). For
the same parameters, N∗  is equal to 4.7 × 1011 cm–2 and
7 × 1011 cm–2. For example, for S = 10 × 10 µm, N =
4.7 × 105 and 7 × 105 for Rb and Na condensates,
respectively.

Notice that, in the model we have presented, all
absorption processes were neglected, a legitimate
assumption provided that the laser detuning ∆ is so
large compared with the spontaneous emission rate γo

(e.g., for Na γo/2π . 10 MHz) that the imaginary part of
the dielectric permittivity can be considered negligibly
small. In this case, the effect of resonance absorption on
the BEC density modulations is small but will define
the lifetime of these structures. However, even if the
laser detuning was chosen to be large enough, i.e., ∆ @
γo, resonance absorption could come into play due to
photoassociation, which can be an effective mechanism
of excitation of the high-lying vibrational levels of an
excited molecule created from two atoms during a col-
lisional process [18]. However, as was recently experi-
mentally shown in almost-pure condensates, a photoas-
sociation spectrum is quite narrow [19, 20]. At the laser
intensities presented in the above estimates, the photo-
association linewidth would be approximately twice
the atomic linewidth corresponding to the low-intensity
limit, where it is independent of intensity. For higher
intensities, the linewidth is broadened (and also shifted)
linearly with the intensity up to a maximum of 60 MHz
at 1 kW/cm2 for Na. We note that this intensity value is
three orders of magnitude higher than that in our esti-
mates. Thus, our estimates show that, by choosing
appropriate laser detunings, we are able to avoid the
photoassociation absorption or even to use it for effec-

Fig. 2. Dependence of the total number of atoms in the self-
confined BEC structure on the ground-state energy at |E|2 >

 for positive (a) and negative (b) α. All quantities are

dimensionless.

Eth
2

tively creating highly vibrationally excited molecules
by employing the considered BEC density modula-
tions.

ELECTRODYNAMIC EFFECTS AND 3D LIMITS 
OF SMALL-SCALE STRUCTURES

So far, we have considered the problem of BEC
structures in a given laser field. However, in general,
Eq. (4) must be considered self-consistently together
with Maxwell’s equations, which determine the
dynamics of the electromagnetic radiation. The con-
densate density modulations may affect the electro-
magnetic field propagation and, as a consequence, the
self-consistent interaction may exhibit features that dif-
fer from what was predicted in the first part of this
work. Thus, we will concentrate now on the possible
back-effects of BEC density modulations on the elec-
tromagnetic field. In particular, we will show that, if the
density gradient is along the electric field, the corre-
sponding variations in the dielectric permittivity can
strongly influence the microscopic field and may even
change the character of the nonlinear effects.

To gain insight into this effect, we consider the
structural dynamics of a condensate that is well local-
ized within a laser wavelength. In this case, we can use
the following as a governing equation for the field [11]:

(9)

The evolution of condensates in electromagnetic fields
within the framework of Eqs. (2), (4), and (9) may be
referred to as quasi-electrostatic BEC dynamics. First
of all, the characteristic scales of the density modula-
tions can be obtained from the problem of structural
stability of the background state against small perturba-
tions. We assume the background state to be homoge-
neous: Ψ = Ψ0exp(–iE0t/"); E = %0ey; and the relation
between Ψ0, E0, and %0 is given by the algebraic equa-

tion E0 = U0  – α /[4(1 – 4πα /3)2]. The latter
also defines the equilibrium points in Fig. 1. We intro-
duce the electrostatic potential, E = –∇ϕ , which implies
that Eq. (9) becomes ε∇ 2ϕ + (∇ε∇ϕ ) = 0. By lineariz-
ing the basic set of equations for small perturbations,
i.e., writing Ψ = [Ψ0 + u1(r, t) + iv 1(r, t)]exp(–iE0t/"),
ϕ = –%0y + ϕ1(r, t), where u1, v 1, ϕ1 are assumed to be
real functions, we arrive at a set of linear equations. For
solutions of the form u1, v 1, ϕ1 ∝  eΓt – iκr, the growth rate
is given by

(10)
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where κ2 =  +  +  and .
The growth rate reaches its maximum at κy = 0, i.e., for
condensate density modulations extended along the
electric field and well localized in the perpendicular
direction.

The most striking new feature of the self-consistent
interaction between the condensate modulation and the
electromagnetic radiation is that modulations along the
field are strongly suppressed, whereas, in the first part
of this work, fully localized structures were found when
only the condensate dynamics was included. The nature
of such a behavior can be understood by considering a
simplified model that assumes 1D density variations in
a specific geometry. More specifically, we assume the
laser field to be homogeneous (on the scale of the wave-
length) and the density gradients to be along the direc-
tion of the field. Thus, the model equation for the BEC
dynamics is rewritten by coupling it to the governing
equation for the electromagnetic radiation. This model
is built to describe exactly the conditions under which
we have found, from Eq. (10), that no localized BEC
structure along the field direction should be formed.
While the result of Eq. (10) comes from the general
model of Eqs. (4) and (9), we will now focus on a sim-
pler model describing only the 1D case of density mod-
ulations parallel to the field. The aim is to understand
how the nonlinear interaction is modified in this case
and why localized structures are suppressed.

For linearly polarized light, Eq. (9) implies that the
macroscopic field generated inside the condensate is
given by

(11)

where EL = ELex is the laser field. Substituting Eq. (11),
with the dielectric permittivity given by Eq. (2), into
Eq. (3), we arrive at the following governing equation:

(12)

which models the simplified case of density modula-
tions parallel to the laser electric field, so that it differs
from the general model (Eq. (4)) for the simplifying
assumptions between Eq. (11). Equation (12) is thus
intended to shed light on the more general result
obtained from the full model and contained in Eq. (10)
on the effects of density gradients parallel to the vector
electric field. As is easily seen in the low-density limit,

the interaction energy is  . 8πα2 |Ψ|2/3 > 0,
which leads to a defocusing nonlinearity, as for repul-
sive interaction between particles, independently of the
sign of α.
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Thus, Eq. (12) shows the effects of density modula-
tions along the direction of the field. These density
modulations induce variations of the dielectric con-
stant, which then affect the electromagnetic field.

It turns out that this effect is of the same order of
magnitude as that due to the induced dipole–dipole
interaction. In fact, it is strong enough to give rise to a
different type of nonlinearity. Apart from a family of
localized dark soliton-like solutions, which can be
excited as collective excitations, an analysis of the
steady-state solutions of Eq. (12) shows that there are
no localized humplike solutions for the case of density
modulations along the electric field. This means that, in
the general 3D case, along the direction of the laser
field, self-localized states can be generated only over a
length scale comparable to or larger than the laser
wavelength. However, as follows from Eqs. (4) and
(10), in any other direction, the focusing nature of the
nonlinearity can lead to the formation of narrower den-
sity distributions. Consequently, the evolution of a BEC
affected by laser-induced interactions in a linearly
polarized field may result in a self-organized cigar-
shaped bound state extended along the field.

In conclusion, we have presented an analysis of the
density modulations of a BEC produced via laser-
induced forces, and we have shown that, by modifying
easily controllable parameters, such as the laser inten-
sity, frequency detuning and field polarization, different
self-confined condensate structures can be accom-
plished. Furthermore, we have investigated the self-
consistent back-reaction of atom density modulations
on the electromagnetic field and have found that, when
the vector nature of the field is taken into account, spa-
tial localization over a wavelength scale along the elec-
tric field is inhibited, though it is still possible in the
transverse direction.
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A rotating optical beam displaced relative to the rotational axis becomes polychromatic due to the rotational
Doppler effect. The case where the initial beam has the form of a superposition of two Laguerre–Gauss
modes and carries an elementary image in the form of an asymmetric intensity distribution is considered. The
spatial distribution of the monochromatic components in the beam cross section is determined. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 42.15.Dp, 42.25.Fx
The vibrational frequency in a monochromatic opti-
cal beam, e.g., the lowest transverse mode of laser radi-
ation (Gaussian beam), is independent of the spatial
coordinate in the beam cross section. However, if the
beam is set in rotation by means of a deflecting element
(in this case, the beam moves in space over a conical or
cylindrical surface), the optical frequency is split into a
symmetric spectrum due to the rotational Doppler
effect (RDE) [1]. The splitting between the neighboring
spectral components is equal to the rotational frequency
Ω of the deflecting element; in other words, compo-
nents with frequencies ω ± Ω , ±2Ω , ±3Ω , … appear in
the spectrum around the optical frequency ω. The RDE
is associated with the existence of the orbital angular
momentum (OAM) [2] for beams with a helicoidal
wavefront, for which the phase is expressed in terms of
the azimuth angle ϕ as mϕ, where m is an integer
(orbital number) [3]. The OAM per photon has a quan-
tized value m" [4]. In the optical range, the RDE was
detected when a Gaussian beam was transformed into a
beam with an analogous phase dependence on a rotat-
ing spiral zone plate [5]. Since the beam deflected from
the rotational axis can be represented in the form of a
superposition of axial azimuthal harmonics, each of
these harmonics acquires the corresponding frequency
shift as a result of beam rotation.

Azimuthal harmonics are solutions of the scalar
wave equation in the paraxial approximation (e.g., in
the form of the Laguerre–Gauss (LG) modes). A pecu-
liar feature of the RDE spectrum is that its shape is
determined by the radial coordinate measured from the
rotational axis, because each harmonic has its own
radial amplitude distribution, and its contribution to the
spectrum being measured is determined by the radial
position of the measurement point [6].

In this work, we consider the azimuthal dependence
of the RDE spectrum of a rotating displaced beam. The
0021-3640/05/8111- $26.00 0567
beam under study is taken in the form of a superposi-
tion of two LG modes with the initially nonzero OAM
of one of the components. It should be noted that the
RDE spectrum of such a beam (but without displace-
ment from the rotational axis) was measured experi-
mentally in [6].

Beam rotation is shown schematically in Fig. 1. The
beam is displaced parallel to itself when it passes
through an inclined transparent plane-parallel plate.
The rotation of the plate about the axis of the incident
beam leads to the motion of the transmitted beam over
a cylindrical surface. An analogous scheme is shown
for a version with beam reflection in an optical element
that displaces and rotates the beam.

The parallel displacement of the beam (LG mode) in
its constriction can be written in the form of the trans-
formation

(1)

where ELG is the amplitude parameter of the mode, l is
the azimuthal mode index, w0 is the beam dimension in
the waist, and x0 and y0 are the coordinates of the beam
axis displacement. Expanding the exponential term in
polar coordinates (ρ, ϕ), we obtain

(2)
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where δ = (  + )1/2 is the parallel displacement of the
beam, θ is the azimuthal angle of displacement, and Im is
the modified Bessel function of integer order m [7].

To analyze the frequency spectrum of a rotating
beam, we represent it in the form of a superposition of
axial components,

(3)

where each component is an azimuthal harmonic
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Fig. 1. Schemes of optical beam rotation using an optical
element: (a) for parallel displacement without reflection; (b)
for parallel displacement with reflection; and (c) the inten-
sity distribution in the beam cross section for the superposi-

tion of the Gaussian beam and the  mode has the form
of an off-axis dip in which an optical vortex is localized.

LG0
1

(  is the binomial coefficient). Thus, parallel displace-
ment of the beam with orbital number l leads to the
emergence of a superposition of beams with orbital
numbers m. The rotation of an off-axis beam, which is
specified by a continuous variation of the angle θ = Ωt,
produces a frequency shift (m – l)Ω for each mth com-
ponent. It follows from formula (3) that the frequency
shift appears when the photon OAM changes and is
proportional to the difference between the orbital num-
bers of the azimuthal harmonic and the original beam.
The method of decomposing a displaced beam into azi-
muthal harmonics and the results of its application are
described in [1].

If the original beam is a superposition of the lowest

(Gaussian, l = 0) mode and the  mode (l = 1) with
a phase difference ∆Φ between them, the resultant
beam has an asymmetric intensity distribution (Fig. 1c).
Such a beam can serve as an example of an elementary
optical image. As a result of beam displacement, each
mode generates its own spectrum of OAM components
(3), and the corresponding OAM components interfere
in the displaced beam. It is interesting to note that the
OAM of each beam component separately does not
change under the parallel displacement of the beam, but
the resultant OAM of the displaced beam in the case of
the superposition is a function of the phase difference
∆Φ between constituent LG modes as well as of the azi-
muth angle and displacement. This means that the opti-
cal element receives a certain angular momentum from
the beam.

In accordance with formula (3), OAM components
with different orbital numbers acquire the same fre-
quency shift. Superposition of beams with different azi-
muthal dependences of the phase leads to a complex
structure of the distribution of spectral radiation com-
ponents, which depends on both the radial coordinate
and the azimuth angle.

The expression for the monochromatic component
with frequency ω + mΩ has the form

(5)

where the first and second components originate from
the spectrum of the displaced Gaussian beam and the
spectrum of the displaced LG mode, respectively. The
result is a superposition of several beams containing
optical vortices [8]. Figure 2 shows the form of the
intensity distribution for three monochromatic compo-
nents and their phase portraits in the beam cross sec-
tion. The positions of optical vortices are shown by
dark points (intensity zeros); on the phase portraits,
these positions coincide with the points of convergence
of phase contours. The parameters of the calculations
are EG = 0.5, ELG = 1, δ = 0.5w0, and ∆Φ = 0.

In the case of beam displacement with reflection, the
OAM of the beam does not change for the Gaussian

Cl
n

LG0
1

EmΩ ρ ϕ,( ) Am0 ρ δ,( ) im ϕ Ω t–( ) i∆Φ+[ ]exp=

+ A m 1+( )1 ρ δ,( ) i m 1+( )ϕ imΩt–[ ] ,exp
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component, but it is inverted for the LG component.
This behavior is due to the fact that the sign of the
orbital quantum number is reversed as a result of wave
reflection [8]. For zero transverse displacement, the fre-
quency shift is equal to –2lΩ and to –(m + l)Ω for the
OAM component in the case of beam displacement. For
the monochromatic component with the frequency ω –
mΩ , the amplitude distribution acquires the form

(6)

Figure 3 illustrates the calculation of the spectra (inten-
sity of monochromatic components) for various points
relative to the rotational axis of the beam at azimuth
angles 0°, 90°, and 180° and the radial coordinate ρ =
0.5w0. The computation parameters are EG = 1, ELG = 3,
δ = 0.5w0, and ∆Φ = 0.

The physical meaning of the appearance of the RDE
spectrum is that the angular momentum is transferred
from the beam to the optical element when the OAM of
the optical beam changes. As a result of rotation of the
element, work is done and energy exchange takes place

E mΩ– ρ ϕ,( ) Am0 ρ δ,( ) im ϕ Ω t–( ) i∆Φ+[ ]exp=

+ A m 1–( )1 ρ δ,( ) i m 1–( )ϕ imΩt–[ ] .exp

Fig. 2. Contour lines show the intensity distribution in sev-
eral monochromatic components with frequencies (a) ω –
Ω; (b) ω; and (c) ω + Ω . Intensity zeros are shown by points.
The corresponding phase portraits of the beams show the
presence of (d) two opposite optical vortices, (e) a single
off-axis optical vortex, and (f) two optical vortices of the
same sign with a saddle point between them. The step
between phase contours is π/8. Transverse dimensions on
the axes are given in units of the waist parameter w0.
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between the OAM component and the element, which
changes the frequency of the component. The beam
becomes polychromatic with a specific spatial distribu-
tion of monochromatic components. Our results also
attribute the observed rotation of the image upon reflec-
tion to beats of the monochromatic components of the
beam. In the case of beam rotation without reflection,
the pattern of the original beam with an off-axis inten-
sity dip is displaced parallel to itself, while the rotation
of the element in the case of reflection leads to the rota-
tion of the pattern of transverse distribution in the beam
with doubled angular velocity.

We also note that the spatial dependence obtained
for the rotating beam spectrum is applicable to prob-
lems of the transmission and reception of information
based on OAM coding [9].

Fig. 3. RDE spectra calculated for various points of obser-
vation with the radial coordinate ρ = 0.5w0 and ϕ = (a) 0,
(b) π/2, and (c) π.
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The possibility of generating an attosecond x-ray pulse in a thin solid-density plasma layer irradiated by a fem-
tosecond laser pulse of ultrarelativistic intensity has been demonstrated in numerical simulation. Changes in the
plasma layer parameters during the light pulse result in the generation of a wide, partly continuous radiation
spectrum in the layer. The separation of limited parts in the reflected or transmitted light spectrum makes it pos-
sible to obtain isolated short electromagnetic pulses with an intensity reaching 1% of the exciting light intensity.
© 2005 Pleiades Publishing, Inc.

PACS numbers: 42.65.Ky, 52.38.Ph
The generation of attosecond pulses (10–18–10–15 s)
(APa) of electromagnetic radiation is one of the topical
problems of laser physics and nonlinear optics at the
beginning of this century [1]. Attosecond pulses are not
only of fundamental interest but also of considerable
applied interest, in particular for various x-ray tech-
niques (x-ray diffraction, spectroscopy, and micros-
copy) with subfemtosecond time resolution [2]. So far,
the methods of obtaining APs based on the generation
of coherent short-wavelength radiation upon atom ion-
ization and subsequent recombination in intense laser
beams have been theoretically analyzed and experi-
mentally realized [3]. Unfortunately, the generation
efficiency of atomic short-wavelength radiation is very
low even under phase-matching conditions. In view of
the creation of laser systems generating fields with
intensity up to 1022 W/cm2 [4], another way to obtain a
wide coherent spectrum (and, thereby, a short pulse)—
nonlinear interaction of a superstrong light field with a
dense plasma [5]—that provides high efficiency of non-
linear optical transformation becomes particularly
promising. The possibility of generating a train of
attosecond pulses upon the reflection of ultraintense
light from a supercritical plasma with a sharp density
profile has been demonstrated in [6] using a 1D parti-
cle-in-cell (PIC) simulation. Selecting a certain number
of high harmonics (above the 300th) in the simulation,
Gordienko et al. [7] obtained trains of zeptosecond
pulses. The problem of obtaining single APs was not
discussed in [6, 7]. Formation of a single field splash, a
videopulse, with a duration of less than a femtosecond
was revealed in [8], where the reflection of a strongly
focused light beam from a sharp boundary of a plasma
0021-3640/05/8111- $26.00 0571
with a density higher than a critical value by a factor of
1.5 was simulated.

The sharp density profile assumed in [7, 8] is practi-
cally unfeasible when the density is rather low (N =
30Nc [7] and 1.5Nc [8], where Nc is the critical density).
At the same time, when plasma density increases, the
laser intensity required to generate attosecond pulses
upon reflection from a massive solid target grows
sharply. As is shown in this work, the above difficulty
can be overcome using a freely suspended thin film.
The numerical results presented below show that a sin-
gle attosecond x-ray pulse can be efficiently generated
by the interaction of an ultrashort laser pulse (τFWHM =
7 fs) of ultrarelativistic intensity (I∝  = 1021 W/cm2) with
a thin (40–100 nm) plasma layer of solid density (N ≈
1023–1024 cm–3).

The numerical investigation is carried out with a
one-dimensional collisionless PIC model, which is
capable of describing the interaction of a flat plasma
layer with an intense laser beam of large diameter. The
plasma layer is assumed to be initially ionized, with the
ionization degree not changing during the simulation;
the ion mass-to-charge ratio, which is the same for all
ions, is 3762 times higher than that of an electron. The
plasma has a sharp boundary and initial density N =
(250–300)N. At λ ≈ 0.7 µm, it roughly corresponds to
the electron density in light metals, including the con-
tribution of inner shells. The light pulse is linearly
polarized and has a Gaussian time envelope I(z, t) =
I0exp(–t2/ ), and the pulse duration at half maximum

τFWHM = 2 τe is equal to 2.5 field periods (about
7 fs for λ = 0.8 µm).

τe
2

2ln
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The reliability of the results obtained with the PIC
method depends strongly on the choice of time and
space steps, the number of particles in a cell, and initial
conditions, particularly at high deformations of the
electron and ion plasma components. Moreover, in
order to adequately interpret the results of a PIC simu-
lation, it is necessary to eliminate the effects of mesh-
related and numerical errors. An appropriate choice of
time step is important not only for resolving as many
high frequencies as possible but also for accurately
describing ultrafast field changes upon interaction with
the plasma, which provide the capability to generate
APs. If the time step is insufficiently small, the field
jump can be too sharp. In our computations, the time
and space steps are ∆t = 1.25 × 10–51/ω0, where ω0 is
the laser field frequency, and ∆z = 2.5 × 10–3λ/2π,
respectively. If the step increases noticeably, the results
become step-dependent. Initially, 30 particles of each
kind are in each mesh cell.

The results of simulations carried out for the given
plasma layer density and thickness depend qualitatively
on the intensity of the exciting light. For a quantitative
intensity description, it is convenient to use a critical
intensity Ic defined as follows:

where l is the layer thickness, λ is the light wavelength,
N is the plasma density, and Irel = c/8π(mcω/e)2 ≈ 1.37 ×
1018[λ(µm)]–2 W/cm2 is the intensity of linearly polar-
ized light with the “relativistic” field amplitude Ea =
mcω/e. At the intensity I = Ic, the light pressure ampli-
tude Plight = (1 + R)2I/c (where the reflectivity is R ≈ 1)
equals the maximum plasma layer counterpressure
Rlayer = 2π(enl)2, the surface density of a force acting on
the plates of a flat capacitor with charge density enl. It

Ic Irel
πl
λ
----- N

Nc
------ 

  ,=

Fig. 1. Spatial distribution of particle density in units of the
critical density Nc: (solid curve) electron density, (dashed
curve) ion density, and (dotted curve) electron density at the
end of the laser pulse.
is natural to expect that, at intensities close to or above
the critical value, the plasma layer will already be
destroyed during the first field half-period, while, at
intensities much lower than the critical value, a layer
can last without noticeable deformation during many
field periods. The following properties are observed in
the calculations. Up to intensities I ≈ 0.25Ic, the elec-
tron and ion plasma components, although they are
strongly deformed in comparison with the initial state,
remain in the form of relatively compact structures dur-
ing the light pulse. The maximum density of both com-
ponents in this case can noticeably (by almost an order
of magnitude) exceed the initial values. Figure 1 shows
the (solid curve) electron and (shading under the
dashed curve) ion density distributions at a time close
to the field node at the pulse center (initial layer density
and thickness are 300Nc and λ/10, respectively). It is
seen in Fig. 1 that the shift of the electron component
with respect to the ion component not quite adiabati-
cally follows the field change, i.e., oscillations of the
light pressure. The centroid of the layer, or, more pre-
cisely, the centroid of the ion component, moves along
the light beam direction with the velocity V ≈
2 /cρl, where ρ is the initial plasma mass density

(the reflectivity remains close to unity). It is important
that this velocity is relatively high and rises monotoni-
cally. The destruction of the plasma layer begins, as a
rule, at approximately half of the critical intensity. By
the end of the pulse, the electrons “scatter” along the
light beam axis, mainly in the direction of the light
propagation, as shown in Fig. 1 (dotted curve). The ion
component is also strongly deformed, and the transmis-
sion of light increases strongly. Thus, the plasma layer
parameters (thickness, density, and velocity) change
continuously during the whole light pulse.

The plasma response to the field is of a resonance
character: the nonlinear interaction of the incident light
with a medium is most efficient at frequencies close to
the natural frequencies of the medium. In this sense, the
film acts as a resonator, with the spectrum of natural
frequencies changing as the laser pulse interacts with it.
It is important that these changes are aperiodic. There-
fore, the spectral properties, as well as the intensity of
reflected and transmitted light (in fact, radiation gener-
ated in the layer) are also aperiodic. Thus, it is possible
to obtain isolated short electromagnetic pulses by cut-
ting out limited parts of the reflected or transmitted
spectrum.

If the film thickness and incident light parameters
are appropriately chosen, it is possible to efficiently
transfer incident radiation energy to the higher-fre-
quency part of the spectrum. Numerical simulation
allowed us to find at least three modes at which an iso-
lated subfemtosecond pulse can be obtained. A single
AP can be obtained in reflected light when the film is
destroyed at the maximum incident intensity, i.e., at I ≥
Ic. At l = λ/20 and N = 250Nc, the critical intensity is

I td∫
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about ~1500Irel, and it is possible to obtain a single AP
at a laser pulse intensity in the interval ≈(1.1–1.5)Ic.
Figure 2a shows the time dependence of the reflected
field strength at l = λ/20, N = 250Nc, and I = 1700Irel

(dashed curve) before and (solid curve) after filtration.
The reflected light spectrum is shown in Fig. 2b, where

Fig. 2. (a) Time dependence (ω0t is in dimensionless units)
of the field strength of (dashed curve) reflected light (in
units of the relativistic amplitude Ea = mcω/e at l = λ/20,
N = 250Nc, and I = 1700Irel) and (solid curve) after filtration
(in units of Ea/4). (b) Reflected light spectrum, where filtra-
tion region is framed. (c) Time dependence of the field
strength squared after filtration; the inset shows the attosec-
ond-pulse field in a larger scale.
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the filtration region (30–78)ω0 is marked by a frame.
Harmonics with integer numbers up to approximately
the 50th harmonic are resolved in the spectrum, their
frequencies are shifted to the left from the exact values,
and the spectrum in the region of high frequencies
becomes close to a continuous spectrum (the harmonics
broaden). Figure 2c shows the field strength squared
after filtration as a function of time. A 40-as pulse with
an intensity I = 16.5Irel (1% of the exciting light inten-
sity) and an intensity contrast of about nine is clearly
seen. The field of this pulse is shown in a larger scale in
the inset. By increasing the laser pulse intensity to I =
1900Irel, it is possible to obtain an AP with even higher
contrast and intensity. Figure 3 shows the field strength
squared after filtration, [inset (b)] the reflected light
spectrum, and [inset (a)] the selected AP field (intensity
I = 39Irel; intensity contrast about 23). The spectrum of
such a pulse is continuous without a significant contri-
bution from discrete integer harmonics. The presence
of discrete harmonics in the selected part of the spec-
trum results in a lower pulse contrast.

An AP can be obtained in transmitted light as well,
although with lower efficiency than in reflected light, in
at least two cases: at intensities, first, far from the criti-
cal value, I < Ic/10, and, second, near the destruction
threshold, I ≤ Ic. In the latter case, the laser pulse front
hardly passes through the film, while radiation penetra-
tion at the pulse maximum is quite good. Figure 4
shows the transmitted field strength squared after filtra-
tion, [inset (b)] the transmitted light spectrum, where
the filtration region (20–50)ω0 is marked by a frame,

Fig. 3. Time dependence of the field strength squared after
filtration; [inset (a)] the selected attosecond-pulse field; and
[inset (b)] the reflected light spectrum at incident light
intensity I = 1900Irel, layer density 250Nc, and thickness
λ/20; the filtration region is framed.
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and [inset (a)] the field of the selected AP with an inten-
sity contrast of about six for incident light intensity I =
1500Irel, layer density ~250Nc, and thickness λ/20. The
number of well-resolved integer harmonics in the trans-
mitted spectrum is small, and a considerable part of the
energy is contained in the continuous spectrum.

At intensities far from the film destruction thresh-
old, an AP containing higher harmonics as compared to
the previous cases can be selected in transmitted light.
The transmitted light spectrum at the incident intensity
I = 600Irel, layer density 300Nc, and thickness λ/10 is
shown in Fig. 5a. Integer harmonics are hardly pro-
nounced against the continuous spectrum background.
Selecting the spectral region (100–120)ω0, we obtain
the pulse shown in Fig. 5b (the inset shows the field
after filtration on a smaller scale). This pulse duration is
about 100 as, and the intensity contrast is about six.
Selecting other parts of the same spectrum, other APs
can be obtained, which are shifted along the time axis
and differ in their duration and contrast. It appears pos-
sible to simultaneously select two APs with different
frequencies shifted in time with respect to each other.

Thus, the numerical investigation of light interac-
tion with a solid-density plasma layer demonstrates the
possibility of obtaining a single attosecond x-ray pulse
in a freely suspended thin film irradiated by an ultrarel-
ativistic ultrashort laser pulse. Changes in the plasma
layer parameters during the light pulse result in a non-
stationary character of the plasma oscillation spectrum
and in the formation of a wide radiation spectrum gen-
erated in the layer. The selection of separate parts of the
spectrum using a bandpass filter allows one to obtain
intense isolated subfemtosecond electromagnetic
pulses. By varying the laser intensity and the thickness
and density of the film, one can efficiently generate sin-

Fig. 4. Time dependence of the transmitted field squared
after filtration; [inset (b)] the transmitted spectrum, where
the filtration region (20–50)ω0 is framed; and [inset (a)] the
selected attosecond-pulse field at incident light intensity I =
1500Irel, layer density 250Nc, and thickness λ/20.
gle APs of various spectral distributions, including
pulses with frequencies several hundred times higher
than the incident laser frequency.

The calculations were carried out on the computer
cluster at the International Laser Center of Moscow State
University. This work was supported by the Russian
Foundation for Basic Research, project no. 05-02-17627.
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A noticeable increase in the charge and energy of ions accelerated from a solid tungsten target irradiated by a
femtosecond laser pulse with an intensity higher than 1016 W/cm2 has been found when the target surface is
precleaned by a nanosecond laser pulse with an energy density of 3 J/cm2. Tungsten ions with charges up to
+29 and energies up to 1 MeV were detected in this case, while the charge and energy of tungsten ions from a
target with an uncleaned surface do not exceed +3 and 12 keV, respectively. © 2005 Pleiades Publishing, Inc.

PACS numbers: 52.38.Kd, 52.50.Jm
At present, the formation of ion beams in the inter-
action of ultrashort laser pulses with dense targets is
attracting considerable attention. Understanding of the
mechanisms of fast ion acceleration, as well as optimi-
zation of ion beam parameters, is particularly important
for the application of fast ion beams in various fields of
fundamental and applied science [1, 2]. According to
research [3–6], protons, which are always present in an
adsorbed steam and oil-vapor layer on the target sur-
face, are predominantly accelerated at the plasma–vac-
uum interface. The removal of this layer from the sur-
face provides for the acceleration of ions of the main
target material to high energies [5–7]. It is shown in this
work that not only average energy per unit ion charge
but also maximum charge of accelerated ions increase
noticeably when a precleaned target surface is irradi-
ated by 1016-W/cm2 femtosecond laser radiation. Tung-
sten ions with the energy up to 1 MeV and charge up to
+29 were detected from a tungsten target.

The experimental setup is shown schematically in
Fig. 1. The P-polarized radiation of the femtosecond
laser system (λ = 616 nm, E = 0.5 mJ, τ = 200 fs) [8]
was focused by an objective onto the target surface at an
angle of 45° up to intensity of I ~ 2 × 1016 W/cm2. The
prepulse energy density did not exceed 0.3 J/cm2, and
the duration of the prepulse was about 40 ps. The target
was placed in a vacuum chamber and shifted after each
laser pulse. The residual gas pressure in the chamber
was 10–5 Torr. The radiation of a pulsed XeCl excimer
laser (λ = 308 nm, E = 10 mJ, τ = 30 ns) that entered the
chamber through the second input window was used for
target cleaning. A lens focused it in a 500-µm spot in
the same target area as the femtosecond pulse. The
energy density W ~ 3 J/cm2 of the cleaning pulse and
0021-3640/05/8111- $26.00 0575
the time interval between the cleaning pulse and the
femtosecond pulse ∆τ = 100 µs were selected based on
our experimental results [6].

Ion currents were detected perpendicularly to the
target surface using an electrostatic mass spectrometer
placed in a separate detection chamber (see Fig. 1). The
angular acceptance was 8 × 10–4 sr. The mass spectrom-
eter parameters and operation principle are described in
more detail in [9]. Along with the ion plasma current,
the x-ray yield was measured using a two-channel ana-
lyzer based on a photomultiplier tube with a NaJ scin-
tillator and a set of Al and Be spectral filters. This
method allows one to estimate the average energy of
hot electrons in each laser shot [9, 10]. According to the
results of x-ray plasma diagnostics, the average energy

Fig. 1. Experimental setup: (1) femtosecond laser beam,
(2) nanosecond laser beam, (3) target, (4) electrostatic mass
spectrometer, (5) microchannel plate, (6) aperture, (7) x-ray
detectors, and (8) x-ray filters.
© 2005 Pleiades Publishing, Inc.
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of hot electrons is Ee = 6 ± 2 keV for the case of forma-
tion of a laser plasma on both precleaned and uncleaned
target surfaces. No significant difference was found in
the absolute yield of hard x-rays from the plasma. Thus,
pulsed laser cleaning did not affect hot electron forma-
tion at the plasma–vacuum interface.

Typical signals recorded by the ion spectrometer
from a tungsten target are shown in Figs. 2a and 2b. The
signal was obtained for an ion energy of 1800 eV per

Fig. 2. Ion plasma currents from the [(a), (c), and (e)]
cleaned and [(b), (d), and (f)] uncleaned tungsten targets for
various ion energies per unit charge: (a) and (b) 1.8 keV,
(c) and (d) 10.1 keV, and (e) and (f) 28 keV.
unit charge. In the absence of pulsed laser cleaning, the
ion current comprises predominantly hydrogen, car-
bon, and oxygen ions. The maximum ion charge
reaches +6 for carbon (fully ionized atom; the ioniza-
tion potential of the last K-shell electron is equal to
490 eV), +6 for oxygen (a helium-like ion the ioniza-
tion potential of the lithium-like ion is equal to 138 eV),
and only +3 for tungsten (ionization potential is 24 eV),
where the total number of electrons is 74. The observed
ion charge distribution is undoubtedly determined not
only by ionization in the dense plasma but also by
recombination during plasma expansion and flight of
ions to the detector. The latter process depends strongly
on ion velocity: as the velocity increases, the recombi-
nation rate decreases because the electron density of the
plasma through which the ion moves decreases [11].
Thus, the initial tungsten ion charge immediately after
the action of a femtosecond laser pulse is considerably
higher than the detected charge.

In the case of the cleaned target (Fig. 2a), tungsten
ions with a wide charge spectrum from +1 to +7 (the
ionization potential of W7+ is about 60 eV) dominate in
the ion current. A weak signal corresponding to protons
and carbon ions is also present. The ion current from
the uncleaned initial target consists mainly of hydro-
gen, carbon, and oxygen ions, and tungsten ions have
charges +1 and +2. When the energy per unit charge of
detected ions increases to 10 keV (Figs. 2c and 2d),
tungsten ions with charges from +1 to +3, as well as
protons and carbon ions, were observed from the initial
target, while mainly tungsten ions with a wide charge
spectrum from +1 to +26 were detected for the cleaned
target.

A further increase in the energy of detected ions
(Figs. 2e and 2f) did not result in noticeable change in
the parameters of the ion current from the uncleaned
target, while high-energy tungsten ions with an average
charge of +22 were detected from the cleaned target.
The maximum charge of tungsten ions in our experi-
ments reached +29 (the ionization potential of the W28+

ion is higher than 700 eV) for the maximum ion energy
980 keV. Moreover, oxygen ions with a charge of +8
(ionization potential is 870 eV) were also observed.
The energy spectra of some tungsten ions from the
cleaned target are shown in Fig. 3. Analysis shows that
the energy spectrum of tungsten ions with charges Z >
18 is well approximated by an exponential function of

the form , where α is independent of the ion charge
Z and α–1 ≈ 11.2 ± 2 keV. The independence of α from
the ion charge shows that recombination of fast tung-
sten ions during their flight to the detector is negligible
and that the recorded charge spectrum depicts the
charge spectrum of tungsten ions at the very moment of
their acceleration in the hot dense plasma.

The charge spectrum of tungsten ions from the
cleaned target is shown in Fig. 4. Two groups of ions
with average charges +5 and +22 are clearly visible (see
also Fig. 2c). The presence of the two groups of ions is

e
αε i–
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attributed to efficient generation of hot electrons and,
therefore, to a non-Maxwellian character of the elec-
tron energy distribution in the plasma [12]. The esti-
mate obtained for the parameter α agrees well with the
energy of hot electrons that is estimated above using the
hard x-ray yield from the plasma (see above): the mean
energy of a three-dimensional electron distribution Ee

relates to the average energy of one-dimensional ion
motion as Ee ≈ 0.5α [7]. It should be noted that the
charge and energy spectra of tungsten ions from the ini-
tial target are determined only by the equilibrium ther-
mal part of the electron energy distribution, while hot
electrons accelerate hydrogen, carbon, and oxygen ions
from the target surface layer [7].

Thus, cleaning the target surface leads to an increase
in the energy of the ions of the dominant target material
due to, first, the efficient acceleration of these ions by
the hot electron component and, second, an increase in
the ionization multiplicity. The latter effect may be
attributed to the inhomogeneity of the spatial tempera-
ture distribution of plasma thermal electrons during a
femtosecond laser pulse. Thus, the 1D hydrodynamic
simulations of the interaction of the femtosecond laser
pulse with a plasma [13] show that the temperature at
the plasma–vacuum interface in the maximum of the
heating 200-fs pulse with intensity 1016 W/cm2 is twice
as high as the temperature at a depth of 40 nm and
reaches 200 eV for an electron density of 1023 cm–3. The
average ionization multiplicity in the surface layer,
where the ion concentration is one-fifth; of the solid-
state value, reaches 20–22 at the laser pulse maximum.
Note that the effect of hot electrons on the plasma
charge distribution is insignificant [14] due to their high
average energy and low concentration. Since hot elec-
trons accelerate ions near the interface, some ions of the
main target material are ionized to high charge values

Fig. 3. Energy spectra of tungsten ions from the cleaned
target.
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only on the cleaned target surface and, then, are effi-
ciently accelerated by hot electrons.

The maximum charge of tungsten ions (+29)
observed in the experiment is noticeably higher than
the numerically predicted value (the charge distribution
width in the dense plasma does not exceed ±2). The
explanation of the observed effect of deep ionization of
atoms on the cleaned surface may be associated with
nonthermal ionization mechanisms. In particular, at
much higher laser intensities (above 1018 W/cm2), the
anomalous ionization of ions accelerated from the rear
target surface was observed in [15], where this effect
was attributed to ionization by an accelerating ambipo-
lar field. This ionization can also be observed in our

experiments. Indeed, the accelerating field strength 
in the plasma with two electron components can be esti-
mated as follows [16]:

where nth (Tth) and nh (Th) are the concentrations (tem-
peratures) of thermal and hot electrons, respectively.
Under our experimental conditions (nth ≈ 5 × 1023 cm–3,
Tth ≈ 300 eV, nh ≈ 5 × 1020 cm–3, Th ≈ 4000 eV [9]), this

expression yields an  estimate of 2 × 1010 V/cm. Due
to the mechanism of above-threshold ionization [17],
such a field can ionize ions with an ionization potential
of up to 600 eV (the average ionization multiplicity of
the plasma is z = 15), which corresponds to an ion
charge of up to +26 for the tungsten atom. A more
detailed discussion of this mechanism is beyond the
scope of this paper and requires more detailed numeri-
cal simulations, as well as additional experimental
investigations.

This work was supported by the Russian Foundation
for Basic Research, project no. 04-02-16341, and the

Ẽ
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Fig. 4. Charge distribution of tungsten ions from the
cleaned target.
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Phase Transitions and Optical Properties 
in 〈001〉  (1 – x)PbZn1/3Nb2/3O3 – xPbTiO3 Single Crystals
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The effect of a constant electric field (0 < E < 5 kV/cm) on the optical properties of PbZn1/3Nb2/3O3 – xPbTiO3
(PZN–xPT) crystals with x = 7 and 9% has been analyzed. It has been shown that, at temperatures close to the
temperature of the transition from the rhombohedral [R(X)] phase to the tetragonal (T) phase, two induced
phase transitions are observed in the electric field, which are associated with the appearance of new intermedi-
ate phases Ma and Mc [R(X)–Ma–Mc–T]. Correlation between these two transitions and the PbTiO3 content x
has been found. The E–T phase diagrams have been obtained. The Mc phase in PZN–9PT crystals is found to
remain the ground state after the removal of the electric field, whereas the Mc phase in PZN–7PT crystals is
metastable and is transformed into the Ma phase after the removal of the electric field. © 2005 Pleiades Pub-
lishing, Inc.

PACS numbers: 77.80.Bh, 78.20.Ci
Solid solutions PbZn1/3Nb2/3O3 (PZN) containing
several percent PbTiO3 (PZN–xPT) are relaxor ferro-
electrics with a very high piezoelectric response that is
an order of magnitude higher than the value in the stan-
dard piezoelectric ceramic of the type Pb(ZrTi)O3
(PZT). They have cubic symmetry (C) at high tempera-
tures and undergo a smooth phase transition as temper-
ature decreases. Materials in the ferroelectric region in
dependence on the structure have either rhombohedral
(R) or tetragonal (T) symmetry, which are separated by
the morphotropic phase boundary at x ~ 9–10%, similar
to the well-known piezoelectric PZT system.

Surprisingly high values of electromechanical cou-
pling and mechanical stresses were observed in rhom-
bohedral crystals close to morphotropic phase bound-
ary. These crystals were polarized along the [001]
direction [1], although the polar axis in them coincides
with the [111] direction [2]. The origin of an extremely
high piezoelectricity of these materials and the effect of
the electric field on the behavior of the polarization
were studied theoretically and experimentally in many
works. The polarization-rotation mechanism proposed
in [3] explains the huge values of the electromechanical
response in PZN–xPT. According to this model, the
application of the field along the [001] direction in
rhombohedral PZN–xPT crystals induces the rotation
of the polarization vector in the (110) plane from the
rhombohedral phase to the tetragonal one through the
intermediate third monoclinic (M) phase. As was
pointed out in [4], this transition is irreversible. The
exact symmetry of this intermediate phase in com-
pounds with various x values is under discussion. This
0021-3640/05/8111- $26.00 0579
symmetry depends on the path of the rotation of the
polarization vector in the transition from the R phase to
the T phase. Phase transitions induced by the electric
field were analyzed for PZN–4.5PT and PZN–8PT
crystals [5–7] by neutron and x-ray methods. In the
PZN–4.5PT crystals that are far from the morphotropic
phase boundary, the polarization vector was shown to
rotate directly from the [111] direction to the [001]
direction through the monoclinic Ma phase. At the same
time, in the PZN–8PT compounds that are closer to the
morphotropic phase boundary, the polarization vector
first rotates in the R–Ma–T direction and, then, stepwise
changes to a new path in the plane that contains the
orthorhombic and tetragonal polar axes (i.e., R–Ma–
Mc–T) [4, 5, 8]. Although the existence of low-symmet-
ric monoclinic phases in a ferroelectric system with
perovskite structure near the morphotropic phase
boundary is unusual, Vanderbilt and Cohen [9] suc-
ceeded in explaining it within the framework of the
Devonshire theory for strongly anharmonic crystals for
which high-order terms are important. Their work
made it possible to plot a new phase diagram for ferro-
electric perovskites, which includes three different
monoclinic phases Ma, Mb, and Mc, where the polariza-

tion vector lies in the pseudocubic  plane, {100}
plane, and {010} plane, respectively. For both crystals,
the tetragonal phase was observed only in high electric
fields ~10–20 kV/cm. As the electric field decreases,
the polarization vector rotates from the tetragonal [001]
direction to the orthorhombic direction through the Mc

phase and the initial rhombohedral state does not arise

110{ }
© 2005 Pleiades Publishing, Inc.
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even after the removal of the field (T–Mc). The E–T
phase diagram plotted for PZN–8PT crystals in [10] on
the basis of complicated neutron-diffraction measure-
ments corroborated the conclusions made in [6, 7].
Moreover, the authors of [10] found that the system
cooled even in the absence of field (ZFC) transits to a
certain unidentified phase R(X) rather than to the R
phase, as was thought previously. The existence of this
new R(X) phase was corroborated in more recent works
[11, 12].

Although induced phase transitions in the PZN–xPT
system, as well as the origin of extremely high piezo-
electricity at the morphotropic phase boundary, were
investigated in numerous neutron and x-ray studies,
there is no common opinion not only on the symmetry
of intermediate phases arising in the field but also on
their number. For complete understanding of the behav-
ior observed in electric fields, a larger number of crys-
tals with various x values, as well as various investiga-
tion methods including optical methods, are necessary.
Data on the optical properties of these compounds are
almost absent except for our work [13] and works [14,
15] devoted to the domain structure. At the same time,
optical investigations, namely, measurements of optical
transmission and small-angle light scattering [13],
could provide additional information on the physical
properties of these substances, because these methods
are more sensitive compared to, e.g., dielectric meth-
ods, particularly for studying changes in inhomogene-
ity sizes in phase transitions.

In this paper, we present the results of an investiga-
tion of the optical transmission of PZN–9PT and PZN–
7PT crystals, which are near the morphotropic phase
boundary, in a temperature range of 273–500 K for var-
ious regimes of the application of a constant electric
field 0 < E < 5 kV/cm. The PZN–9PT and PZN–7PT
crystals were grown by the modified Bridgman method

Fig. 1. Electric field dependences of the optical transmis-
sion I for the PZN–9PT crystals as measured at a tempera-
ture of (1) 289, (2) 320, (3) 332, and (4) 346 K.
in a 50 mol % PbO melt [16] and had rhombohedral
symmetry at room temperature, and their maximum
sizes reached 30 mm in diameter and 28 mm in length.
The crystals were cut perpendicularly to the [001]
direction into several parts 1–1.5-mm thick. The elec-
tric field was applied in the [001] direction, and light
was propagated in the [100] direction. The Curie tem-
perature is Tc ~ 443–453 K for PZN–9PT, the tempera-
ture of the morphotropic phase transition between R(X)
and T phases is Ttr ~ 333–343 K, and Tc ~ 452 K and
Ttr ~ 393 K for PZN–7PT. To reveal the electric field
effect on the sequence of the phase transitions, we car-
ried out two runs of measurements. First, the tempera-
ture dependence of the optical transmission was studied
when cooling a crystal in various electric fields (FC).
Second, the optical transmission was analyzed in the
R(X) phase at fixed temperatures near Ttr as the electric
field increases. To this end, the crystal before each mea-
surement was heated above Tc, then was cooled to the
RT that lies in the ferroelectric phase (ZFC), and finally
was heated to the measurement temperature (ZFH).
The temperature was stabilized and an electric field
with various amplitudes was applied. A He–Ne laser
was used for optical measurements.

Figure 1 shows the electric field dependences of the
optical transmission I measured in cycle 2 in the ferro-
electric phase at certain temperatures near Ttr for the
PZN–9PT crystals. The evolution of I in the electric
field that is associated with induced phase transitions is
clearly seen in the figure. We emphasize that variations
in I are not caused by the appearance of the tetragonal
phase, because the measurements were carried out on
sufficiently thick samples and the tetragonal phase aris-
ing in high electric fields could not be reached before
the failure of the sample. In low electric fields, optical
transmission is almost constant for all temperatures
(lines 1–4). Then, at a certain threshold field, a sharp
decrease in the transmission is observed, which is
attributed to the induced phase transition to another
(likely Ma) phase. Since the symmetry of the arising
phases cannot be determined in our optical measure-
ments, we will use the notation of phases proposed in
[5, 8]. The closer the temperature of measurement to
the temperature Ttr of morphotropic phase transition,
the lower the field at which this phase is induced
(Fig. 1, lines 1–3). A decrease in the transmission in the
process of the transition to the monoclinic phase Ma
indicates that the scattering of light in this phase is
higher than the scattering in the rhombohedral phase
R(X). This relation implies that the size of scatterers
(domains or polar regions) increases in the Ma phase,
because scattering depends on the ratio of the particle
size to the light wavelength. With a further increase in
the field, another induced phase transition to a new
(likely Mc) phase is observed. The farther the measure-
ment temperature from Ttr, the wider the region of the
existence of the Ma phase (lines 2 and 3). At tempera-
tures far from Ttr (line 1), we did not observe the induc-
JETP LETTERS      Vol. 81      No. 11      2005
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tion of the Mc phase in the electric fields under investi-
gation. The transmission in the Mc phase is much
higher than in the phases Ma and R(X). This relation
indicates that the domains in the Mc phase are smaller.
A stepwise increase in the optical transmission with
variations in the field that accompanies the induction of
the Mc phase (lines 2, 3) apparently occurs due to the
inhomogeneity of the phase. At measurement tempera-
tures near Ttr, the region of the existence of the Ma
phase collapses and the crystal transforms from the
rhombohedral phase immediately to the Mc phase (lines
3 and 4). In this transition, a sharp peak is observed in
optical transmission. The existence of this peak corrob-
orates both the percolation origin of the field-induced
transition from the R(X) phase to the monoclinic phase
and the appearance of a large-scale structure (these
transition and structure were found in our work [13]). If
the phase transition is of the percolation type, the mean
size of the new-phase clusters at the percolation thresh-
old tends to the sample size, a large-scale structure
arises, and the phase transition is necessarily accompa-
nied by the appearance of an anomalously narrow peak
of the small-angle light scattering intensity and, there-
fore, by the minimum of optical transmission [17].

According to the dashed lines on curves 1, 3, and 4,
the Ma and Mc phases induced by the field in the PZN–
9PT crystals remain stable after the removal of the
field; i.e., the crystal remains in the monoclinic phase
even after the removal of the field. Ohwada et al. [10]
reported that the Ma phase remained stable at room
temperature for more than two weeks after the removal
of the field.

Similar dependences were obtained for the PZN–
7PT crystals. Similarly to the PZN–9PT crystals, two
induced phase transitions are observed in the electric
fields under investigation. A substantial feature of the
PZN–7PT crystal is the instability of the Mc phase after
the removal of the electric field and the transition of the
system to the Ma phase. It is remarkable that the Mc
phase is not observed in the electric field (R–Ma–T) in
the PZN–4.5PT crystals that are farther from the mor-
photropic phase boundary than the PZN–7PT crystals.
At the same time, the Mc phase (R–Ma–Mc–T) in the
PZN–8PT crystals [5, 6] and PZN–7PT crystals (this
work) remains stable after the removal of the field. Our
measurements of the optical transmission of the PZN–
7PT crystals show that these crystals belong to the
boundary of compositions for which the appearance of
the second monoclinic mode in low electric fields is
possible, but only the Ma phase remains stable.

Using the temperature dependences of the optical
transmission that were obtained in different electric
fields in two measurement runs (FC regime and the
regime of Fig. 1), we plot the E–T phase diagrams for
the (Fig. 2) PZN–9PT and (Fig. 3) PZN–7PT crystals.
As is seen, the phase diagrams are almost identical for
both crystals. Figures 2a and 3a show the results
JETP LETTERS      Vol. 81      No. 11      2005
obtained in the FC process. As the electric field
increases, the C–T and T–Mc phase boundaries in both
crystals are shifted towards higher and lower tempera-
tures, respectively. This indicates that the tetragonal
phase is stable at high electric fields in both crystals. As
is seen in Figs. 2a and 3a, the Ma phase does not appear
in the FC regime. It was shown in [10] that this phase
does not appear in the FC regime in the PZN−8PT crys-
tals in extremely low electric fields ~0.5 kV/cm.

Figures 2b and 3b summarize the results for the
optical transmission that were obtained with an
increase in the electric field at the given temperatures
after ZFC. At high temperatures, the C phase reversibly
transforms to the tetragonal phase and the phase bound-
ary behaves similar to the behavior seen in Figs. 2a and
3a. At low temperatures, the R(X) phase irreversibly
transforms to the Ma phase, which transforms to the Mc

phase in higher fields. We note that the phases R(X) and
Ma become stable as temperature decreases, and the
region of the existence of the Ma phase in the PZN–7PT

Fig. 2. E–T phase diagram for the PZN–9PT crystal as
obtained from optical measurements (a) in the FC regime
and (b) with an increase in the electric field after ZFC. The
arrows show the direction of the applied electric field. The
points correspond to the transition temperatures and fields
determined for each particular measurement. The dashed
line corresponds to the phase boundary between the Mc and
T phases.
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crystals is wider than that in the PZN–9PT crystals. As
the temperature approaches Ttr, the region of the exist-
ence of the Ma phase collapses and the crystal trans-
forms from the R(X) phase immediately to the Mc
phase. We point to the difference in the behavior of two
crystals. When the Mc phase arises in the PZN–9PT
crystal, the R(X) and Ma phases are not recovered in it
for a long time and the Mc–T phase transition occurs
only in higher fields. At the same time, the Mc phase in
the PZN–7PT crystals is unstable after the removal of
the field, which is corroborated by the existence of the
almost vertical Ma–Mc phase boundary shown in Fig. 3b.
The dashed lines in Figs. 2b and 3b are the expected
phase boundary between the Mc and T phases (similar
to that shown in [10] for the PZN–8PT composition).

Thus, the E–T phase diagrams are plotted for the
PZN–9PT and PZN–7PT compositions. Correlation
between induced phase transitions in these crystals and
the PbTiO3 content x has been found. The Mc phase in

Fig. 3. Same as in Fig. 2, but for the PZN–7PT crystal.
PZN–9PT crystals appears to remain the ground state
after the removal of the electric field, whereas the Mc
phase in PZN–7PT crystals is metastable and trans-
forms to the Ma phase after the removal of the electric
field. It has been shown that the irreversible R(X)–Mc
phase transition is possible only for compositions with
x > 7%.

This work was supported by the Russian Foundation
for Basic Research (project no. 05-02-17835) and by
the Chinese Academy of Sciences and the Shanghai
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Anisotropy of the Upper Critical Field in MgB2: 
The Two-Band Ginzburg–Landau Theory¶ 
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The temperature dependence of the anisotropy parameter of the upper critical field (T) = (T)/ (T)

is calculated using the two-band Ginzburg–Landau theory for layered superconductors. It is shown that the
anisotropy parameter γ(T) increases with decreasing temperature. The results of the calculations are in agree-
ment with experimental data for single crystals of MgB2 and with other calculations. © 2005 Pleiades Publish-
ing, Inc.

PACS numbers: 74.20.De

γHc2
Hc2
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INTRODUCTION

Three years ago, superconductivity in magnesium
diboride (MgB2) was discovered at a critical tempera-
ture, namely, Tc = 39 K, that is the highest critical tem-
perature for a simply binary compound [1]. The origin
of superconductivity in this compound can be
explained in the framework of the ordinary e–ph mech-
anism. The material shows a pronounced isotope effect
[2]. Measurements of the nuclear spin–lattice relax-
ation rate also indicate that MgB2 is phonon-mediated
superconductor [3]. The unusual superconductivity in
this compound is related to two distinct energy gaps
associated with different parts of the Fermi surface. The
larger gap (∆σ = 7 meV) originates from holelike carri-
ers residing on two cylindrical Fermi surface sheets,
derived from σ bonding of the pxy boron orbital
(σ-band). The smaller gap (∆π = 2 meV) originates
from the two 3D sheets of electrons and holes derived
from π bonding of the pz orbitals (π-band) [4–6].

In MgB2, the crystal structure as well as the elec-
tronic and phononic band structure are all far from iso-
tropic [7]. This should lead to anisotropic supercon-
ducting state properties. The corresponding electron
transport is very anisotropic (ρc/ρab = 3.5 [8]): the
plasma frequency for the σ band along the c (or z) axis
is much smaller than that in the ab (xy) direction [9]. In
a clean material, the layered structure dictates a strong

anisotropy of the upper magnetic critical field  @

. Their ratio at low temperatures reaches about six,

while  is as low as 2–3 T [10]. On the other hand,
for a dirty material, the anisotropy is decreased, but the

¶ The text was submitted by the author in English.

Hc2
||

Hc2
⊥

Hc2
⊥

0021-3640/05/8111- $26.00 0583
magnitudes of both  and  are strongly increased
[11].

A pronounced temperature dependence of the
anisotropy parameter γH of the upper critical field was
calculated based on the microscopic two-band (TB)
model [12–15]. It is well known that Ginzburg–Landau
(GL) theory remains a powerful instrument for the
study of the magnetic phase diagrams of superconduc-
tors. Isotropic GL theory with two s-wave order param-
eters was used for the calculation of Hc2 [16], Hc1 [17],
and other superconducting state parameters [18] and
achieved good agreement for bulk MgB2 samples. In
this study, we first present calculations of the anisot-
ropy parameter γ of the upper critical field using TB GL
theory for layered superconductors. It is shown that, in
contrast to SB layered superconductors, TB supercon-
ductors reveal temperature-dependent anisotropy of the
upper critical field.

BASIC EQUATIONS

The free-energy functional for TB layered super-
conductors can be written as [16–19]

(1)

with

(2)

Hc2
⊥ Hc2

||

F Ψ1n Ψ2n,[ ] d2r F1n F1n 2n, F2n+ +(∫
n

∑=

+ F1n 1 n 1+( ), F2n 2 n 1+( ), H2/8π+ + ),

Fin
"

2

4mi

-------- ∇ 2d
2πiA
Φ0

------------– 
  Ψin

2

=

+ α i n, T( )Ψi n,
2 βi n,

2
--------Ψi n,

4 ,+
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(3)

(4)

where we choose x, y, and z lying along the a, b, and c
crystallographic axes, respectively. Here, mi denotes
the effective mass of the carriers in the plane belonging
to band i (i = 1; 2). Fin is the free energy of separate
bands in the plane. The coefficient α is given as αin =
γi(T – Tci), which depends on temperature linearly; γ is
the proportionality constant, while the coefficient βin is
independent of temperature. H is the external magnetic
field and H = curlA. The quantities ε and ε1 describe the
interband interaction of two order parameters and their
gradients, respectively. Due to the identical character of
planes, we can write αin = αi, βin = βi, and d is the dis-
tance between planes.

The choice of the vector potential A as A = (0, Hx,
0) corresponds to the perpendicular component of the

F1n 2n, ε Ψ1 n, Ψ2 n,* c.c.+( )=

+ ε1 ∇ 2d
2πiA
Φ0

------------+ 
  Ψ1 n,* ∇ 2d

2πiA
Φ0

------------– 
  Ψ2 n, c.c.+ 

  ,

Fin i n 1+( ),
"

2

4mi
cd2

--------------- Ψin Ψi n 1±( ), i
2πdAz

Φ0
----------------– 

 exp–
2

,=
magnetic field H = (0, 0, H). In this case, the GL equa-
tions for TB layered superconductors can be reduced to

(5)

(6)

where  = "c/2eH is the so-called magnetic length.

Calculating  in a manner similar to [18] leads to

(7)

where the effective coherent length ξeff of TB supercon-
ductors is given by the expression

"
2

4m1
--------- d2

dx2
-------- x2

ls
4

-----–
 
 
 

Ψ1 α1 T( )Ψ1+–

+ εΨ2 ε1
d2

dx2
-------- x2

ls
4

-----–
 
 
 

Ψ2+ 0,=

"
2

4m2
--------- d2

dx2
-------- x2

ls
4

-----–
 
 
 

Ψ2 α2 T( )Ψ2+–

+ εΨ1 ε1
d2

dx2
-------- x2

ls
4

-----–
 
 
 

Ψ1+ 0,=

ls
2

Hc2
⊥

Hc2
⊥ T( ) Φ0/2πξ⊥

2 ,=
(8)
ξ⊥

2 "
2

4
----- m1α1 T( ) m2α2 T( ) 8εε1m1m2/"2+ +( )–[=

+ m1α1 T( ) m2α2 T( ) 8εε1m1m2/"2+ +( )2
4m1m2 α1 T( )α2 T( ) ε2–( )– ]

1–

.

At small values for the upper critical field (T), the
following is true:

(9)

For the calculation , we choose H = (0, H, 0) and
A = (0, 0, –Hx). Then, the GL equations for TB super-
conductors are reduced to the following form:

(10)

(11)

Hc2
⊥
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⊥ T( ) "c
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α1 T( )α2 T( ) ε2–( )
"

2

4
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α1 T( )
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α2 T( )
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--------------

8εε1

"
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-----------+ +

-----------------------------------------------------------------.–=
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||
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4m1
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dx2
------------– α1Ψ1 εΨ2 ε1
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dx2
------------+ + +

+ 2
"

2

4m1
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--------------- 1 2πdHx
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-----------------cos– 
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dx2
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dx2
------------+ + +

+ 2
"

2

4m2
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-----------------cos– 
  Ψ2 0,=
By elimination, we can get equations for Ψ1 and Ψ2
from (10) and (11), which turn out to be identical (see
[18]):

(12)

By neglecting high derivatives of the order parameter
(d4Ψ1/dx4) and small terms, we can obtain the Mathieu

"
2

4m1
--------- "

2

4m2
---------

d4Ψ1

dx4
------------ "

2

4m2
---------α1

"
2

4m1
---------α2+ 

  d2Ψ1

dx2
------------–

+ α1α2Ψ1 1 2πHx
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× 2
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4m1
cd2

--------------- "
2
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dx2
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

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4m2
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2
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=  ε2 2εε1
d2

dx2
-------- ε1

2 d4
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  Ψ1.
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equation for the calculation of the upper critical field

:

(13)

At a small magnetic field H ! Φ0/2πd2 and after expan-
sion of cosines in Eq. (13), we can get a final expression
for the anisotropy parameter of the upper critical field:

(14)

Hc2
||
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2

4m2
---------α1

"
2

4m1
---------α2 2εε1+ + 
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2
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---------------------------------------------------------------------------------

1/2

.
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At a high magnetic field H > Φ0/2πd2, the upper critical

field  can be defined from the lowest eigenvalue of
the Mathieu equation [20] and is given by the following
expression:

Hc2
||

Temperature dependence of the anisotropy parameter .

The solid line is the TB GL theory for layered superconduc-
tors; the open symbols are experimental data from [21].
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-------------------------------------------------------------------------------------------------------------------------------------------------------------.=
It means that

(16)

where T* is given by the following expression:

RESULT AND DISCUSSION

In the figure, we plot the anisotropy parameter γ ver-
sus the reduced temperature T/Tc. Experimental results
from Lyard [21] are denoted by the closed symbols.
The open points denote the results of calculations from
the TB layered GL theory presented above. Here, we
used the following parameters: Tc1 = 20 K, Tc2 = 10 K,
ε2 = 3/8, x = 3, η = –0.16. The same parameters were
also used in [16–18] to determine the temperature
dependence of SC state parameters in the framework of
isotropic TB GL theory. The anisotropy mass parame-

ters for single crystals m2/  = 1.3 and m1/  = 0.03
are the same as in [22]. As shown in [16–18], isotropic

Hc2
||  a 

1

T T*–( )1/2
---------------------------,

T* Tc
"

2

4m1
cd2γ1

--------------------
"

2

4m2
cd2γ2

--------------------.––=

m2
c m1

c

GL theory gives a good description of the temperature
dependences of measurable parameters of bulk samples
of MgB2. As follows from Eq. (14), the influence of the
π (weak) band is effectively “switched off” and the
anisotropy parameter is mainly defined by the σ
(strong) band. As a consequence, at a small magnetic
field, there is good agreement with experimental data
on the investigation of anisotropy of the upper critical
field. Increasing γ with decreasing temperature was
observed experimentally by many groups [7, 10, 23,
24]. Thus, there is a consensus with regard to the under-
standing of the temperature behavior of γ.

At a high magnetic field,  goes to infinity as (T –
T*)1/2. This means that the orbital depairing effect of a
magnetic field parallel to the layers does not destroy the
superconductivity. This corresponds to the case where
the cores of the vortices fit between the SC layers and
the external magnetic field has no effects on the super-
conductivity. In fact, other magnetic mechanisms will

limit the divergence. The divergence of  at T* will
be removed by taking into account spin-orbit scattering
[25] and the paramagnetic effect [26, 27]. Similar
anisotropy of the upper critical field was observed for

Hc2
||

Hc2
||
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the other possible class of TB superconductors—non-
magnetic borocarbides Y(Lu)Ni2B2C [28, 29].

Here, it is necessary to remark that similar two-band
GL equations were recently discussed in [30]. How-
ever, in the equations presented in [30], terms similar to
the intergradient interaction in Eqs. (5), (6) and (10),
(11) are absent. As shown in [16–18], a maximal posi-
tive curvature of the upper critical field of bulk samples
can be achieved by inclusion of an intergradient inter-
action. In the case of no intergradients of order param-
eters η = 0, the curvature reaches a maximum at the
point of 0.5Tc. Intergradient interaction shifts this max-
imum to a region close to the critical temperature. Such
behavior is in good agreement with experimental data
for bulk samples. As we can see from Eq. (14), in the
case of anisotropic GL equations, intergradient terms
also play a crucial role in the temperature dependence
of the anisotropy parameter .

Another version of the GL approximation was pre-
sented in [31]. This approach corresponds to an effective
SB GL theory. In the framework of the theory [31], the
ratio of order parameters is temperature- and field-inde-
pendent; i.e., it is constant. This means that two-band GL
theory is equivalent to the effective single-band approxi-
mation. In contrast to [31], in our consideration the ratio
of order parameters is temperature- and field-dependent
[16–18] (see also Eqs. (5), (6) and (10), (11)).

As shown by Bulaevskii [32] in the case of SB lay-
ered superconductors, the upper critical field is defined
by the following expressions:  = Φ0/2πξ⊥ ξ|| and

 = Φ0/2π . Note that, in this case, the anisotropy
parameter  is temperature-independent. As stated
in the beginning, all coefficients α and β in the GL
model are field-independent. Other generalizations of
the considered model are related to the introduction of
the field-dependent parameters α and β. The possible
inclusion of field-dependent coefficients in the frame-
work of TB GL is the subject of future investigations.

CONCLUSIONS

In summary, we have shown that experimental data
on the anisotropy parameter (T) for MgB2 can be
described in the framework of TB layered GL theory at
temperatures close to Tc, in contrast to SB layered
superconductors, where the anisotropy parameter is
temperature-independent. The presence of two order
parameters with different dimensionalities plays a sig-
nificant role in determining the temperature depen-
dence of the anisotropy parameter (T).
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Using experiments on the injection of minority carriers from n- and p-type silicon, the contribution of electrons
and holes to the conductivity of ZrO2 in the Si/ZrO2/Al structure is determined. It is found that electrons and holes
make a contribution to the conductivity of ZrO2, so that ZrO2 exhibits two-band conductivity. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 77.22.Jp, 77.55.+f, 77.84.Bw
Scaling silicon metal–insulator–semiconductor
(MIS) devices is accompanied by a decrease in the
channel length and in the thickness of the gate dielec-
tric. Thermal silicon dioxide has been used as a gate
dielectric for 40 years. A decrease in the SiO2 thickness
to 10–15 Å is accompanied by an unacceptably high
leakage current. The main approach to decreasing the
leakage current through the gate dielectric consists in
the replacement of silicon dioxide by so-called alterna-
tive dielectrics (dielectrics with a high dielectric con-
stant, i.e., high-k dielectrics). The use of alternative
dielectrics allows the physical dielectric thickness to be
increased and, in this way, the tunnel current to be sup-
pressed [1, 2]. Zirconium dioxide is one of the most
promising alternative dielectrics. ZrO2 has a high
dielectric constant (ε = 25), a wide band gap Eg =
5.5 eV, high barriers at the Si/ZrO2 interface, and high
thermodynamic stability of the interface with silicon
[3]. In addition, the difference in the lattice constants of
Si and ZrO2 does not exceed 2.1% [4]. The latter cir-
cumstance opens the possibility of synthesizing ZrO2
on Si by molecular beam epitaxy.

In the general case, the contribution to the conduc-
tivity of a dielectric is made by electrons and holes [5–
7]. The detection of the sign of charge carriers in semi-
conductors is carried out using either the Hall effect or
the thermal emf. In dielectrics, these methods are inap-
plicable because of the negligibly small concentration
of mobile carriers. The goal of this work is to determine
the contribution of electrons and holes to the conductiv-
ity of dielectric ZrO2 films synthesized by molecular
beam epitaxy in a Si/ZrO2/Al MIS structure.

We studied Si/ZrO2/Al structures with n- and p-type
silicon(100) with a resistivity of ≈10 Ω cm. The
0021-3640/05/8111- $26.00 0587
Si/ZrO2 structures were obtained in an ultrahigh-vac-
uum setup Katun’-V by molecular beam epitaxy. High-
temperature thermal heating was performed in the setup
with the aim of obtaining an atomically clean Si sur-
face. To obtain a ZrO2 vapor, an electron-beam evapo-
rator was used with the electron beam current I =
250 mA, the voltage U = 6 kV, and magnetic sweep of
the electron beam. The target temperature reached
2800–3200°C. The target was single-crystal ZrO2.

Perfect single-crystal ZrO2 films (according to elec-
tron diffraction data) were obtained on the atomically
clean Si surface at substrate temperatures from 400 to
800°C. According to ellipsometric measurements, the
ZrO2 film thickness was in the range 110–300 Å. The
measurements of current–voltage and capacity–voltage
(100-kHz frequency) characteristics were performed at
room temperature. Illumination was performed using a
tungsten lamp.

The current–voltage characteristics of the p-
Si/ZrO2/Al structure are presented in Fig. 1. The char-
acteristics were obtained at two polarities of the voltage
across the metal: in the enhancement mode (a negative
potential at Al) and in the depletion mode (a positive
potential at Al). In the depletion mode with a positive
potential at Al, the saturation of the current is observed
in the dark and the current relatively weakly depends on
the voltage. The current increases upon switching illu-
mination. The saturation of the current in the depletion
mode is related to the injection of minority charge car-
riers from silicon into the dielectric. In the case of a
negative potential at the metal in the enhancement
mode, the current increases exponentially with increas-
ing potential. Illumination does not affect the current.
© 2005 Pleiades Publishing, Inc.
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In this case, virtually all of the applied voltage drops
across the dielectric.

The energy diagram of the Si/ZrO2/Al structure
according to the data of photoemission measurements
[8] is presented for p- and n-type silicon in Figs. 2a–2f.
Figures 2a and 2d show the energy diagram in the flat-
band mode without an applied voltage. The ZrO2 band-
gap width is 5.4 eV, and the barrier for electrons at the
Si/ZrO2 interface is 2.0 eV. The energy diagrams of the
p-Si/ZrO2/Al and n-Si/ZrO2/Al structures are presented
in Fig. 2 for a positive potential on the metal (Figs. 2b,
2e) and for a negative potential on the metal (Figs. 2c,
2f).

In the depletion mode in the p-Si/ZrO2/Al structure,
the applied voltage is divided between the dielectric
and the nonequilibrium depletion layer (Fig. 2b). This
circumstance is caused by the fact that the injection cur-
rent of minority carriers (electrons) is comparable with
their generation rate in silicon. Illumination leads to an
increase in the generation rate of minority carriers, to
narrowing of the thickness of the depleted layer, to a
decrease in the voltage drop across the depletion layer,
to an increase in the voltage drop across the dielectric,
and, hence, to an increase in the dielectric conductivity.
Thus, the behavior of the current–voltage characteris-
tics in the depletion mode indicate that the injection of
electrons from silicon makes the main contribution to

Fig. 1. Current–voltage characteristics of the p-Si/ZrO2/Al
structure obtained (solid lines) in the depletion and
enhancement modes and (points) in the depletion mode
with illumination.

(Å)
the ZrO2 conductivity at a positive potential at alumi-
num. The flux of holes from the dielectric to silicon is
negligibly small as compared to the opposite flux of
electrons from silicon to the dielectric. In the case of a
negative potential at the metal in the enhancement
mode (Fig. 2c), the entire applied voltage drops across
the dielectric. It is natural to suggest that the conductiv-
ity of the dielectric in this case is also due to electrons
injected from aluminum, because the barriers for elec-
trons at the Si/ZrO2 and Al/ZrO2 interfaces are close in
height (Figs. 2a, 2d).

A similar behavior of the current–voltage character-
istics is observed in the n-Si/ZrO2/Al structure (Fig. 3).
In the case of a positive potential at the metal in the
enhancement mode, the entire applied voltage drops
across the dielectric (Fig. 2e). It is natural to suggest
that charge transfer in the dielectric in this case, as well
as in the p-Si/ZrO2/Al structure, is due to electrons
injected from silicon (Fig. 2e). In the depletion mode
with a negative potential at the metal, the saturation of
the current–voltage characteristics is observed (Fig. 3).
Illumination leads to an increase in the current level.
This means that the nonequilibrium depletion layer is
developed by virtue of the injection of holes from sili-
con into the dielectric (Fig. 2f). Thus, the current to n-
Si at the Si/ZrO2 interface is transferred by holes
injected from silicon into the dielectric.

It is natural to suggest that charge transfer in the
dielectric in the p-Si/ZrO2/Al structure at a negative

Fig. 2. Energy diagrams of [(a), (b), and (c)] p-Si/ZrO2/Al
and [(d), (e), and (f)] n-Si/ZrO2/Al structures [(a) and (d)]
with no applied voltage, [(b) and (e)] in the depletion mode,
and [(c) and (f)] in the enhancement mode.
JETP LETTERS      Vol. 81      No. 11      2005
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potential at the metal is also performed by holes
injected from silicon (Fig. 2c). In the general case, elec-
trons are injected into the dielectric from a negatively
biased electrode and holes are injected into the dielec-
tric from a positively biased electrode. The experiment
indicates that ZrO2 has traps [9, 10]. A two-band model
of electron and hole current passage in the Si/ZrO2/Al
structure is presented in Fig. 4 for two polarities of the

Fig. 3. Same as in Fig. 1, but for the n-Si/ZrO2/Al structure.

Fig. 4. Schematic diagram of current passage in the
Si/ZrO2/Al structure for (a) positive and (b) negative poten-
tials on the metal. It is assumed that the generation rate of
minority carriers in the depletion mode exceeds the rate of
their injection into the dielectric.

(Å)
JETP LETTERS      Vol. 81      No. 11      2005
potential at the metal. According to this model, ZrO2
contains electron and hole traps, which serve as recom-
bination centers. Consider current passage in more
detail for positive polarity of the potential at the metal
(Fig. 4a). Electrons are injected from silicon into ZrO2
and are captured in the traps. Some of electrons are ion-
ized from the traps by the Frenkel mechanism or by the
multiphonon mechanism [7, 10]. Next, conduction-
band electrons recombine with holes captured in the
traps in the vicinity of the anode (metal). Holes from
the positively biased metal are injected into the valence
band of the dielectric, are captured in the traps, and
recombine with free electrons. Some of hole traps are
ionized, and the free holes move toward the silicon and
recombine with localized electrons. The above model
explains the development of a nonequilibrium deple-
tion layer in n-type and p-type silicon due to the injec-
tion of minority carriers into the dielectric. A similar
pattern is observed for a negative potential at the metal
(Fig. 4). The model suggested above is similar to the
model of current passage in silicon nitride [6, 7, 11].

This work was supported by the Siberian Division
of the Russian Academy of Sciences, integration
project no. 116.
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It is found that the spin-flop transition in EuMnO3 manganite induced by a magnetic field H parallel to the b axis
is accompanied not only by a magnetization jump and magnetostriction anomalies but also by the appearance
of electric polarization in the vicinity of the transition field Hcr ~ 200 kOe. This phenomenon can be associated
with the occurrence of magnetically inhomogeneous (modulated) states in the vicinity of Hcr. In these states,
the system loses the center of symmetry, which allows for the appearance of the polarization. The formation of
such states in a magnetic field is caused by the general tendency of the occurrence of magnetically inhomoge-
neous (incommensurate) structures in the RMnO3 series due to the frustration of exchange interactions with
decreasing ionic radius of the rare-earth ion R starting with R = Eu. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.80.+q
INTRODUCTION

Rare-earth manganites RMnO3 having an orthor-
hombic distorted perovskite structure for R from La to
Dy (space group Pbnm) are base compounds for obtain-
ing materials with colossal magnetoresistance by
means of their doping with Ca or Sr. Recently, new
interesting properties have been revealed in some
RMnO3 manganites. These properties are associated
with the appearance of electric polarization in these
manganites in the region of the existence of modulated
spin structures [1, 2] arising due to the frustration of
exchange interactions as the ionic radius of the rare-
earth ion R decreases. It was found [1–6] that a spatially
modulated incommensurate magnetic structure forms
for R = Eu, Gd, Tb, and Dy below the Neél point. As the
temperature further decreases, this structure transforms
either into a conventional canted antiferromagnetic
structure of the AYFZ type (Eu, Gd) [2–6] or into a com-
mensurate modulated structure at T = Tlock (Tb, Dy) [1–
4]. The appearance of electric polarization and of a
magnetoelectric effect, whose mechanisms were
related to the modulation of the crystal structure
induced by the magnetoelastic interaction, was
observed in TbMnO3 and DyMnO3 upon transition
from the incommensurate structure to the commensu-
rate modulated structure at Tlock ~ 20 K [1, 2]. The tem-
perature dependence of the dielectric constant in these
manganites exhibited anomalies at Tlock, which mani-
fested a strong anisotropy depending on the electric
field orientation. Anomalies in the dielectric constant
0021-3640/05/8111- $26.00 0590
were also observed for single crystals of GdMnO3 [2, 7,
8] and EuMnO3 [2] in the vicinity of the transition tem-
perature TCA from the incommensurate modulated
structure to the antiferromagnetic canted state. In this
case, a spontaneous electric polarization in GdMnO3
was not observed in [2], but it was observed in [7]. We
have showed recently [8] that a magnetic field H || b
(Hcr ~ 40 kOe) applied to GdMnO3 gives rise to a
change in the electric polarization ∆P along the a and b
crystal axes and that the sign of ∆P depends on the sign
of the electric field in which the crystal is cooled. As for
EuMnO3, the existence of electric polarization and
magnetoelectric interactions has not been detected for
this manganite [2]. Nevertheless, it has been of interest
to perform a comprehensive study of a EuMnO3 single
crystal in strong magnetic fields by analogy with
GdMnO3 [8] with the aim of revealing a possible ten-
dency towards the occurrence of magnetoelectric inter-
actions in this crystal.

According to [6], an incommensurate modulated
antiferromagnetic structure arises in EuMnO3 below
TN ~ 50 K; this structure transforms at a temperature
TCA ~ 43 K into a canted antiferromagnetic state with a
transverse, weakly ferromagnetic moment along the c
axis of the rhombohedral crystal (AYFZ).

It was also of interest to compare the properties of
EuMnO3 and SmMnO3. In the latter case, a homoge-
neous magnetic structure AYFZ was observed at all tem-
peratures T < TN = 60 K.
© 2005 Pleiades Publishing, Inc.
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EXPERIMENTAL RESULTS AND DISCUSSION

Single crystals EuMnO3 and SmMnO3 were grown
by zone melting with optical heat. X-ray powder dif-
fraction analysis showed that the crystals are homoge-
neous and possess an orthorhombic crystal structure of
the Pbnm type. The orientation of the crystals was
determined by an x-ray diffraction method.

The ac magnetic susceptibility was measured at a
frequency of ~240 Hz with an amplitude of an alternate
magnetic field on the order of several fractions of an
oersted in the temperature range 4.2–60 K. A weak
peak at TN = 50 K and a sharp peak at TCA = 43 K were
observed in the temperature dependence of the
EuMnO3 susceptibility along the c axis (Fig. 1) upon
transition to the weakly ferromagnetic state AYFZ from
the incommensurate modulated antiferromagnetic
structure.

Measurements of the temperature dependence of the
dielectric constant were also performed at a frequency
of 1 MHz using the method described in [8]. A weak
step was observed in the susceptibility at E || [110]
(between the a and b axes) at the transition temperature
TCA, whereas no anomaly was observed along the c axis
(Fig. 2), in agreement with the data reported in [1].

Studies of the magnetic, magnetoelectric, and mag-
netoelastic properties of EuMnO3 single crystals were
performed in the temperature range 4.2–50 K in pulsed
magnetic fields up to 250 kOe.

When measuring the magnetization along the b axis
in a strong magnetic field (Hcr ~ 200 kOe) H || b, we
observed a magnetization jump of ~6 emu/g evidently
associated with the spin-flop reorientation phase transi-
tion AYFZ  AZFY (Fig. 3). The threshold field of the
spin-reorientation transition Hcr ~ 200 kOe agrees with
the estimate of this field obtained from the antiferromag-
netic resonance frequencies, which have approximately
the same value as in SmMnO3 (νAFMR ≈ 20 cm–1) [6].
Jumps in the field dependence of the longitudinal mag-

Fig. 1. Temperature dependences of the ac susceptibility in
a EuMnO3 single crystal along the main crystallographic
directions.

c axis
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netostriction along the a, b, and c axes were also
observed at the same value of the magnetic field Hcr ~
200 kOe applied along the b crystal axis. As is evident
in Fig. 4, which presents the dependences of the longi-
tudinal magnetostriction on the magnetic field along
the b axis that arose upon the reorientation transition
AYFZ  AZFY, the magnetostriction deformations
exhibited a strong field hysteresis.

It was found that field-induced spin reorientation led
to the appearance of electric polarization along the a, b,

Fig. 2. Temperature dependences of the dielectric constant
of a EuMnO3 single crystal measured at a frequency of
1 MHz along the [001] and [110] crystallographic direc-
tions.

Fig. 3. Magnetization curves along the b axis in a EuMnO3
single crystal at various temperatures (the origin of the ordi-
nate axis for curves at T = 12, 23, 30, and 45 K is shifted
down by 7, 10, 15, and 22.5 emu/g, respectively).

c axis
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and c crystal axes in the vicinity of Hcr ~ 200 kOe. This
polarization reached a maximum value along the a
crystal axis (Fig. 5) and vanished above TCA ~ 40 K. An
unusual increase in the value of the electric polarization
was observed in the dependence Pb(Hb) in the tempera-
ture range 27–40 K. A strong field hysteresis was
observed in the dependence of the electric polarization
Pa, b, c(Hb); as the field decreased, the magnitude of
anomalies substantially increased and were much more
pronounced than in the case of increasing field. Though
the magnetic field–induced electric polarization was
small (~1–10 µC/m2), its appearance is of crucial
importance in understanding the nature of the magneto-
electric interactions in RMnO3.

The appearance of electric polarization in the region
of the spin-flop transition in EuMnO3 can be associated
with the occurrence of magnetically inhomogeneous
(modulated) states in which the system loses its center
of symmetry, which allows for the appearance of polar-
ization [9]. Since a spontaneous incommensurate mod-
ulated structure occurs in EuMnO3 in the temperature
range 43–50 K, the tendency for its formation is also
evidently revealed in the magnetic field in the region of
the spin-flop transition. The fact that the polarization
differs from zero only in the region of the spin-flop
transition reflects the fact of the existence of a spin-
modulated state, which disappears upon the transition
to the homogeneous canted state AZFY when the field
becomes H > Hcr. It is possible that the occurrence of
such a spin-modulated state can be considered a mani-

Fig. 4. Field dependences of the longitudinal magnetostric-
tion of a EuMnO3 single crystal at H || b. The origin for var-
ious curves is shifted along the ordinate axis.
festation of the instability of the antiferromagnetic lay-
ered structure of the A type, when the ferromagnetic
layer with a magnetization opposite to the external field
breaks down into a greater number of sublattices.

Considering that the field-induced reorientation
transition in EuMnO3 favors the manifestation of mag-
netically inhomogeneous (modulated) states and the
related magnetoelectric interactions, it will be of inter-
est to elucidate the possibility of an analogous effect in
the case of spin reorientation in RMnO3 crystals with
other rare-earth ions, for example, the nearest
SmMnO3, in which ordering already gives rise to a
homogeneous canted antiferromagnetic structure. Our
measurements showed that a SmMnO3 single crystal at
H || b exhibited anomalies in magnetostriction deforma-
tions in the field Hcr ~ 200 kOe associated with the
induced spin-flop transition (Fig. 6); however, no elec-
tric polarization was manifested in this case. This indi-
cates that the magnetic structure of SmMnO3 is homo-
geneous at all temperatures below TN, and, as distinct
from EuMnO3, the tendency for the formation of a
modulated magnetic structure in a magnetic field is
already completely suppressed here.

CONCLUSIONS

Thus, the studies performed in this work showed
that the spin-flop transition in EuMnO3 in a magnetic
field H || b is accompanied by the appearance of electric
polarization in the vicinity of the transition field. This

Fig. 5. Field dependences of the polarization of a EuMnO3
single crystal along the a axis at H || b. The origin for various
curves is shifted along the ordinate axis.
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effect can be explained by the instability of a homoge-
neous canted structure and by the induction of magnet-
ically inhomogeneous (modulated) states in the vicinity
of Hcr. In this case, the system loses its center of sym-
metry, and the appearance of electric polarization
becomes possible. The development of such an instabil-
ity of homogeneous states in a magnetic field is related
to the general tendency for magnetically inhomoge-
neous (incommensurate) structures to occur in the
RMnO3 series due to the frustration of exchange inter-
actions with decreasing ionic radius of the rare-earth
ion R, starting with R = Eu. For the preceding rare-earth
ion R = Sm of the RMnO3 series, the above effect has
not been observed.

Fig. 6. Dependences of the magnetostriction along the
b axis and the polarization along the a axis on the magnetic
field H || b in a SmMnO3 single crystal.
JETP LETTERS      Vol. 81      No. 11      2005
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On Differential Equation on Four-Point Correlation Function
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The properties of completely degenerate fields in the conformal Toda field theory are studied. It is shown that
a generic four-point correlation function that contains only one such field does not satisfy an ordinary differen-
tial equation, in contrast to the Liouville field theory. Some additional assumptions for other fields are required.
Under these assumptions, we write such a differential equation and solve it explicitly. We use the fusion prop-
erties of the operator algebra to derive a special set of three-point correlation functions. The result agrees with
the semiclassical calculations. © 2005 Pleiades Publishing, Inc.

PACS numbers: 11.25.Hf
There are several motivations to study the conformal
Toda field theory. This theory has a nontrivial geomet-
ric formulation [1] and, hence, plays a significant role
in the quantization of noncritical strings with extended
symmetry [2]. It also provides an example of a theory
with higher spin symmetry and, hence, has its own
interest. The algebra of generators of this symmetry
(W algebra) is closely related to a rather general class of
integrable systems. It can be derived by quantization of
the second Hamiltonian structure of the generalized
KdV-type equations associated with Lie algebras [3, 4].
This symmetry manifests itself in rational conformal
field theories (CFT), which describe the critical behav-
ior of many interesting statistical systems, such as, for
example, Zn Ising models (parafermionic CFT [5]), tri-
critical Ising and Z3 Potts models, Ashkin–Teller mod-
els, etc. Though it has been known for many years and
has been applied to many interesting problems in con-
temporary mathematics and physics, the W symmetry
is still rather mysterious and needs further detailed
study. The conformal Toda field theory with a real cou-
pling constant is irrational CFT, which has a simple
Lagrangian formulation and possesses this symmetry.
In this Letter, we find a special set of three-point corre-
lation functions of the exponential fields in this theory,
but the general formula is not known to us at present.

The action of the conformal Toda field theory has
the form

(1)

¶ The text was submitted by the authors in English.

! d2x
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0021-3640/05/8111- $26.00 0594
where ek are the simple roots of Lie algebra & and
(ek, ϕ) denotes the scalar product of the roots with the
r component scalar field ϕ = (ϕ1, …, ϕr). We consider
the case & = sl(n), r = n – 1. The conserved holomor-
phic W currents Wj, which form a closed W algebra in
this case, have spins j = 2, …, n and can be expressed in
terms of ϕ by the relation1 

(2)

where q = b + 1/b and hk are the weights of the first fun-
damental representation π1 of sl(n) with the highest
weight ω1: h1 = ω1, hk = ω1 – e1 – … – ek – 1. In particu-
lar, W0 = 1, W1 = 0, and

is the stress-energy tensor. Here, Q = (b + 1/b)ρ, with ρ
being the Weyl vector (half of the sum of all positive
roots). The primary fields of the W algebra are exponen-
tial fields:

The main term of the operator product expansion
(OPE) of these fields with the currents Wk(z) defines the
quantum numbers to w(k)(α) as

(3)

1 This relation is known in, the theory of integrable equations, as a
Miura transformation [3].
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They are known explicitly and are symmetric under the
action of the Weyl group 0 of the Lie algebra sl(n) [6]

(4)

In particular,

is the conformal dimension of the field Vα. Equation (4)
means that the fields connected via the action of the
Weyl group 0 should coincide up to a multiplicative
constant

(5)

The reflection amplitude Rs(α) was found recently in
[7]. Completely degenerate fields that contain n – 1 null
vectors in their Verma moduli are parameterized by two
highest weights Ω1 and Ω2 of the Lie algebra sl(n) and
correspond to α = –bΩ1 – Ω2/b [6]. In particular, it fol-
lows from the definition of the fields Wj(z) (Eq. (2))
that, in the classical case (q  1/b), the field 
satisfies the differential equation of the order n [6]

(6)

One can expect that, in the quantum case, holomorphic
Eq. (6) should still make sense. It was done for the sl(2)
Toda or the Liouville field theory in [8]. The precise
statement is the following: all four-point correlation
functions that contain at least one degenerate field sat-
isfy an ordinary differential equation. In particular, the
correlation function with the degenerate field V–mb/2 sat-
isfies the ordinary differential equation of order m + 1.
The solution to this equation, which gives a four-point
correlation function with one degenerate field V–mb/2,

can be written in terms of the functions (z)
defined in [9, 10],2 

where

and

2 Here, we use the common Liouville normalization ∆(a) = a(2Q – a)
and 2Q = b + 1/b.
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We will show below that, in the general sl(n) case, such
a statement is not valid and that additional restrictions
on αi should be imposed.

Let us assume now that n is general and consider a
four-point correlation function

(8)

Here, (zk) are some general primary fields, and we

have omitted their  dependence for simplicity. Let
such a function satisfy the nth-order differential equa-
tion

(9)

Then, it should have the following set of canonical
solutions:

(10)

where the numbers  = ∆(αk – bhj) – ∆(αk) – ∆(–bω1)
are known from the OPE [6]

Here,  are the structure constants of the opera-
tor algebra, and … means the contribution of the
descendant fields. Using (10), one obtains the main
asymptotic of

with

On the other hand, Ψ(z) should satisfy the projective
Ward identities. This means that its z dependence is
very special:

(11)

Equations (9) and (11) are compatible if
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In the case under consideration (all αi are general), we
find that

Unfortunately, (12) is satisfied only for n = 2. And this
is the reason why the differential equation in the Liou-
ville field theory exists.

One can notice that this difficulty is solved if we
suppose that α3 = κωn – 1. Then, only two fields appear
in the OPE3 

Now, p3 = (n – 1)b2 and p1, p2 remain unchanged. It

compensates the balance in the sum  and (12) is
satisfied. In this case, one can write down the differen-
tial equation explicitly. Namely, we define a new func-
tion

(13)

where G(x, ) satisfies the generalized Pochgammer
hypergeometric equation

(14)

with

and

Of course, the same equation is valid if we change
x  . The simultaneous single-valued solution to
both equations is unique up to a multiplicative constant
and has a simple integral representation:

(15)

where tn = 1 and

Now let us explore (15) to obtain the three-point
correlation function of the primary fields

(16)

3 It follows from the explicit formula for  (20).

pk
1
2
---n n 1–( )b2, k 1 2 3., ,= =

C bω1– α,
α bhk–

V bω1– Vκωn 1–
Vκωn 1– bh1–[ ] Vκωn 1– bhn–[ ] .+=

pk∑

V bω1– x( )Vα1
0( )Vα2

∞( )Vκωn 1–
1( )〈 〉

=  x
2b α1 h1,( )

1 x–
2

bκ
n

------

G x x,( ),

x

x x∂ A1+( )… x∂ An+( )[
– x∂ B1 1–+( )… x∂ Bn 1– 1–+( )x∂ ]G x x,( ) 0,=

Ak
bκ
n

------
n 1–

n
-----------b2– b α1 Q h1,–( ) b α2 Q hk,–( )+ +=

Bk 1 b α1 Q h1 hk 1+–,–( ).+=

x

G x x,( ) d2ti ti
2ci ti ti 1+–

2di t1 x– 2g,
i 1=

n 1–

∏∫=

ci Ai Bi, di– Bi Ai 1+ 1, g–– A1.–= = =

C α1 α2 α3, ,( ) z12
2γ12 z13

2γ13 z23
2γ23=

× Vα1
z1 z1,( )Vα2

z2 z2,( )Vα3
z3 z3,( )〈 〉 ,
where γij can be found in [8]. We can rewrite (13) using
s-channel OPE decomposition,

(17)

with Ψj = (1 – x)bκ/nGj(x). The functions Gj(x)
are expressed in terms of generalized hypergeometric
functions of the type (n, n – 1) [11]

as

The ratio of the coefficients before |Ψj(x)|2 in (17) can
be found from integral representation (15) explicitly in
terms of the γ functions γ(x) = Γ(x)/Γ(1 – x):

(18)

Here, we have set B0 = Bn = 1. The structure constants

 admit the free-field representation [12]

(19)

The expectation value in (19) is taken using the Wick
rules in the theory of a free massless scalar field. This

V bω1– x( )Vα1
0( )Vα2

∞( )Vκωn 1–
1( )〈 〉

=  C bω1– α1,
α1 bh j–

C α1 bh j– α2 κωn 1–, ,( ) Ψ j x( ) 2,
j 1=

n

∑

x
b α1 h1,( )

F
A1…An

B1…Bn 1–

x
 
 
 

1
A1…An

B1…Bn 1–
------------------------x+=

+
A1 A1 1+( )…An An 1+( )

B1 B1 1+( )…Bn 1– Bn 1– 1+( )
----------------------------------------------------------------------x2

2
----- …,+

G1 x( ) F
A1…An

B1…Bn 1–

x
 
 
 

,=

G2 x( ) x
1 B1–

F
1 B1– A1…1 B1 An+–+

2 B1…1– B1 Bn 1–+–
x

 
 
 

,=

………………………
………………………

Gn x( ) = x
1 Bn 1––

F
1 Bn 1–– A1…1 Bn 1– An+–+

1 Bn 1–– B1…2 Bn 1––+
x

 
 
 

.

C bω1– α1,
α1 bh1–

C α1 bh1– α2 κωn 1–, ,( )

C bω1– α1,
α1 bhk–

C α1 bhk– α2 κωn 1–, ,( )
---------------------------------------------------------------------------

=  
γ A j( )γ Bk 1– A j–( )
γ B j( )γ Bk 1– B j–( )
---------------------------------------------.

j 1=

n

∏

C bω1– α1,
α1 bhk–

C bω1– α1,
α1 bhk–

µ–( )k 1–=

× V bω1– 0( )Vα1
1( )V2Q α1– bhk+ ∞( ) Vbei

zi( )d2zi

i 1=

k 1–

∏
0

.∫
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integral can be calculated explicitly:

(20)

Equation (18) together with (20) give us the set of func-
tional relations for the three-point function C(α1, α2,
κωn – 1). There is another, “dual” set of equations with b
replaced by 1/b. One can readily solve them:

(21)

Here, ϒ(x) is the entire self-dual function defined in
[13], which satisfies the relations

with the normalization condition ϒ(1/2(b + 1/b)) = 1,
and

Such a function has a semiclassical limit [14]:

(22)

In the numerator of (21), the product goes over all pos-
itive roots of the sl(n) and, in (2Q – , ρ), the sum
includes α1, α2, and κωn – 1.

We propose (21) as an exact three-point function in
conformal Toda field theory. Of course, the same is true
if we consider α3 = κω1. The answer would be the same
as (21), but one should use the weights of the funda-
mental representation πn – 1 instead of π1.

Several simple checks of (21) can be made. In par-
ticular, the reflection with respect to the Weyl group 0,
α1  Q + s(α1 – Q) : s ∈  0, gives the reflection
amplitude

with

(23)

C bω1– α1,
α1 bhk– πµ

γ b2–( )
----------------– 

  k 1–
=

×
γ b α1 Q hi hk–,–( )( )

γ 1 b2 b α1 Q– hi hk–,( )+ +( )
-----------------------------------------------------------------------.

i 1=

k 1–

∏

C α1 α2 κωn 1–, ,( ) πµγ b2( )b2 2b
2–[ ]

2Q Σα i ρ,–( )
b

----------------------------------

=

×

ϒ0( )n 1– ϒ κ( ) ϒ Q α1– e,( )( )ϒ Q α2– e,( )( )
e 0>
∏

ϒ κ
n
--- α1 Q hi,–( ) α2 Q h j,–( )+ + 

 
ij

∏
---------------------------------------------------------------------------------------------------------------.

ϒ x b+( ) γ bx( )b1 2bx– ϒ x( ),=

ϒ x 1/b+( ) γ x/b( )b2x/b 1– ϒ x( )=

ϒ0
dϒ x( )

dx
---------------

x 0=

.=

ϒ by( )
ϒ0b1 y–

Γ y( )
---------------- as b 0.

α i∑

C Q s α1 Q–( )+ α2 κωn 1–, ,( )
=  Rs α1( )C α1 α2 κωn 1–, ,( ),

Rs α( ) As α( )/A α( ),=
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where

Result (23) was obtained previously in [7].
If the parameters in (21) satisfy the screening condi-

tion

with some nonnegative integer numbers li, (21) should
have a multiple pole of order n – 1, with the residue
being expressed in terms of a free field integral [15].
Such an integral was calculated for the Liouville case in
[9, 10]. The general sl(n) case was done recently [16],
and the result agrees with (21).

It is interesting to consider the semiclassical limit
b  0. In this limit in the Hamiltonian picture, asso-
ciated with radial quantization, we take into account
only the zero-mode dynamics (minisuperspace
approach) [17, 18]. In this approximation, the state cre-
ated by the operator  corresponds to the wave-
function

where x is a zero mode of field ϕ. The function ΨP(x)
(the sl(n) Whittaker function) satisfies the Scrödinger
equation

(24)

and, in the region (ei, x) < 0 (the Weyl chamber), pos-
sesses the asymptotic

where the sum runs over all elements of the Weyl group
0 besides those that are identical, and the coefficients
Ss(P) are known exactly [19].4 The minisuperspace
approximation is valid if Pj/b are fixed. If we take κ =
ibs and Pi = ibpi, then the semiclassical limit of the
three-point correlation function should be given by the
integral

(25)

4 Note also that Ss(P) can be obtained from the reflection amplitude
Rs(Q + iP) in the semiclassical limit b  0.

A α( ) πµγ b2( )( )
α Q ρ,–( )

b
-------------------------

=

× Γ 1 b α Q e,–( )–( )Γ 1 α Q e,–( )/b–( ).
e 0>
∏

α1 α2 κωn 1– b liei

i 1=

n 1–

∑+ + + 2Q=

VQ iP j+

VQ iP j+ ΨP j
x( ),

∇ x
2

– 8πµ e
b eix( )

i 1=

n 1–

∑+
 
 
 

ΨP x( ) P2ΨP x( ),=

ΨP x( ) i P x,( )( ) Ss P( ) i s P( ) x,( )( ),exp
s 0∈
∑+exp∼

C Q ib p1+ Q ib p2+ bsωn 1–, ,( )

xΨb p1
x( )Ψb p2

x( )e
ibs ωn 1– x,( )

.d∫
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The theory of the sl(n) Whittaker functions has a long
history. In particular, an explicit integral representation
for these functions exists [20–22]. Recent progress was
made in [23], where the integral on the right-hand side
of (25) was calculated:

(26)

We note that result (26) coincides exactly with the cor-
responding limit of three-point function (21). Unfortu-
nately, integral (26) with an arbitrary parameter of the
Fourier transform is a more complicated object, and its
analytical expression is still unknown. In the quantum
case, this integral corresponds to the semiclassical limit
of a general three-point function (with all αi being arbi-
trary). We propose to investigate the general situation in
more detail in future publications.

The authors are grateful to D. Lebedev for explana-
tion of some recent results from the theory of the Whit-
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The extreme admissible error probability at the receiving end to which the secure key distribution is possible
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C

C

Quantum cryptography, i.e., secure key distribution,
is based on the fundamental Heisenberg uncertainty
relation [1] or, more exactly, on the impossibility of
common eigenvectors of a pair of observables that cor-
respond to noncommuting Hermitian operators. Den-
sity-matrix operators are observable in quantum cryp-
tography. The density matrices 0  |u0〉  and 1 
|u1〉  are observables in quantum cryptography [2],
where a pair of nonorthogonal states ρ0 = |u0〉〈 u0| and
ρ1 = |u1〉〈 u1| is used as information states. The noncom-
mutativity of operators means the nonorthogonality of
the states |u0〉  and |u1〉  (〈u1|u0〉  ≠ 0). The second funda-
mental quantum-mechanical exclusion is the exclusion
of cloning of an a priori unknown quantum state [3].

A fundamentally important consequence of the
above exclusions for quantum cryptography is the
impossibility of measurements that enable one to reli-
ably (with unit probability) distinguish between nonor-
thogonal states. For this reason, any attempts to eaves-
drop (measure) transmitted quantum states change
these states. Therefore, the measurement statistics at
the receiving end inevitably differs from the measure-
ment statistics on unperturbed states. If quantum
mechanics enabled only detection of the eavesdropping
attempt itself, it would be useless for secure key distri-
bution. However, quantum-mechanical laws guarantee
not only the detection of the eavesdropping attempt but
also (and this is the primary interest for cryptography)
key security under the condition that changes in statis-
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tics do not exceed a certain critical value. Perturbations
of the states may evidently arise due to noise in a com-
munication channel in the absence of an eavesdropper.
In this sense, it is impossible to distinguish between the
actions of the eavesdropper and noise. It is only impor-
tant that perturbation of the states does not exceed a
certain critical value. The critical error to which the
secure key distribution is possible is an individual value
for each quantum cryptography protocol. There are two
basic quantum cryptography protocols on two nonor-
thogonal states: BB84 [1] and B92 [2]. All other proto-
cols are derivatives of these two basic protocols. The
calculation of the critical error is a nontrivial problem.
The exact error is known for the BB84 protocol. The
first strict and rather complicated proof was given in [4]
(see also [5]). More recently, this proof was simplified
in [6] using quantum codes. Such a proof has not yet
been obtained for the B92 protocol despite its concep-
tual simplicity.

Below, the proof of the security of the B92 protocol
will be outlined on the basis of the exact bounds for the
classical capacity of the quantum communication chan-
nel.

The standard protocol is as follows. Alice randomly
and equiprobably chooses 0 or 1 (with a priori proba-
bilities π0

 

 = 

 

π

 

1

 

 = 1/2) and sends 

 

|

 

u

 

0

 

〉

 

 or 

 

|

 

u

 

1

 

〉

 

, respectively,
into the communication channel. Bob conducts mea-
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surements sequentially with each state. A measurement
is described by the unity decomposition

(1)

This measurement may provide three outcomes, which
are interpreted by Bob as 0, 1, and ?. The measurement
result in the channel A0 never occurs on the |u1〉  state.
Correspondingly, the result in the A1 channel never
occurs on the |u0〉  state. The ? outcome is interpreted as
an inconclusive result, because the count in the channel
A? can occur on both |u0〉  and |u1〉  states.

According to the most general strategy, Eve chooses
a certain auxiliary state |A〉  ∈  * with sufficiently large
dimension, then accumulates the entire sequence of n
quantum states sent by Alice, sends nothing to Bob, and
connects this auxiliary state with all states:

(2)

where the  state is entangled in terms of all

 states and Eve’s initial state |A〉 . Then, without any

measurement, Eve sequentially sends  states to
Bob. Bob carries out measurement (1) with each state.
A sequence of outcomes arises in the measurement
channels A0, 1, ?. After measurements of the entire
sequence, Eve’s state is as follows:

(3)

where

(4)

Bob can obtain outcomes in the A0, 1 channels, which
are interpreted as 0 and 1, and outcomes with an incon-
clusive result A?. Outcomes with an inconclusive result
are removed by exchanging information between Bob
and Alice through the open communication channel,
through which Bob reports the position numbers at
which such a result is obtained. Having information
from the open communication channel, Eve also
removes these positions. To this end, it is sufficient to
take the partial trace over the degrees of freedom in the
state  that are associated with the numbers

I A0 A1 A?, A0+ +
I u1| 〉 u1〈 |–
1 u0 u1〈 | 〉+
-------------------------,= =

A1

I u0| 〉 u0〈 |–
1 u0 u1〈 | 〉+
-------------------------, A? I A0 A1.––= =

8 ui1
| 〉 ui2

| 〉 … uin
| 〉 A| 〉⊗⊗ ⊗( ) Φi1 i2 …in A,, ,| 〉 ,=

Φi1 i2 …in A,, ,| 〉
uik
| 〉

uik
| 〉

TrBob A jn
A jn 1–

… A j1
8 ρi1

ρi2
 ⊗({

⊗ …ρ in
A| 〉 A〈 |⊗ ) 8+

A j1
A j2

… A jn
}

=  ρi1 i2…in,
Eve j1 j2 … jn, ,( ),

ρik
uik
| 〉 uik

〈 | , jk 0 1 ?., ,= =

Φi1 i2 …in A,, ,| 〉
                                                             

jk? of positions with the ? outcome. As a result, Eve’s
state is as follows:

(5)

After Bob’s measurements and removal of outcomes
with an inconclusive result (?), the situation is as fol-
lows. Alice knows which state she has sent, Eve has the
density matrix, and Bob has the bit string

(6)

Here, it is assumed that indices are renumbered after
the removal of ? outcomes and the length of the remain-
ing string is denoted by the same symbol n as before.
Errors are present in certain positions of Bob’s string.
Discrepancy of the indices of the transmitted states and
the obtained results for certain indices ik ≠ jk arises due
to Eve-induced perturbation of states that are sent by
Alice. The probability of erroneous positions is deter-
mined by Alice and Bob through the open communica-
tion channel by reporting a random sample of positions
and their content (approximately half of n). The frac-
tion of discrepancies approximates the error probability
Q. Then, open positions are rejected. Eve also rejects
states referring to these positions in the manner dis-
cussed above.

Beginning with this point, the aim of Alice and Bob
is to obtain the secure key by correcting errors in the
unopened part of the sequence using discussions
through the open communication channel. If the error
probability is less than the critical value (Q < Qc),
which should be determined, the protocol continues;
otherwise (if Q > Qc), it is interrupted.

Using quantum-mechanical measurements of

( j1, j2, … jn), Eve aims to refer to Alice’s bit
string (i1, i2, … in), i.e., to separate a certain density

matrix ( j1, j2, … jn) from the set of 2n density
matrices that correspond to other index sets (i1, i2, … in)
for given indices (j1, j2, … jn). The closeness between
Eve’s density matrix and that sent by Alice is character-
ized by the fidelity

(7)

and F(|u〉 i, ρEve) = 1 iff

(8)

Tr jk1
? jk2

? … jkn
?, , ρi1 i2…in,

Eve j1 j2 … jn, ,( ){ }

=  ρi1 i2…in,
Eve j1 j2 … jn, ,( ).

nok1 …kn, no jk1
? … jkn

?,

u| 〉 i ui1
| 〉 … uin

| 〉⊗ ⊗=

ρi1 i2…in,
Eve  × j1 j2 … jn, ,( ) j1 … jn,( ),

jk ik, 0 1.,=

i1 ……in,( )

ρi1 i2…in,
Eve

ρi1 i2…in,
Eve

F u| 〉 i ρEve,( )

=  TrEve u| 〉 ii u〈 |ρi1 i2…in,
Eve j1 j2 … jn, , ,( ) u| 〉 ii u〈 |{ } 1,≤

ρi1 i2…in,
Eve j1 j2 … jn, , ,( ) u| 〉 ii u〈 | .=
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In the presence of an eavesdropping attack,

(9)

because another result would contradict the no-cloning
theorem; i.e., Eve could acquire information on nonor-
thogonal states without their perturbation. Eve’s state
after interaction cannot exactly coincide with the trans-
mitted state. To prove this statement, it is sufficient to
consider pairwise all states transmitted by Alice. Let
|u〉 i and |u〉m be a pair of such states. The join evolution
and further calculation of the trace over Bob’s variables

provide ( j1, j2, … jn) and ( j1, j2, …
jn). The scalar product of these two states of Eve is

Tr{ ( j1, j2, … jn) ( j1, j2, … jn)} ≤
|i〈u|u〉m|2; i.e., the overlapping of Eve’s states cannot
become less than overlapping of the initial states sent
by Alice. A decrease in the scalar product (an increase
in the angle) would mean an increase in the distinguish-
ability of the states as compared to the initial states. If
this increase were possible, then, using new states as
input states for a unitary transformation, one could
increase the angle between them (distinguishability)
until their complete (reliable) distinguishability, which
would contradict the theorem [2]. Thus, the initial
states sent by Alice are the best that Eve can acquire.
The maximum classical information that can be
extracted by Eve from these states is limited by the clas-
sical capacity of the quantum communication channel,
which coincides with the von Neumann entropy in this
case. A conservative estimate overestimating informa-
tion that can be acquired by Eve reduces to Eq. (8).

We now calculate the critical error Qc to which
secure key distribution between Alice and Bob is possi-
ble. We outline a proof in the Shannon limit. At this
stage, Alice and Bob have bit strings, and Bob’s error
probability is Q. Such a situation corresponds to the
binary symmetric communication channel between
Alice and Bob. Then, Alice randomly generates MAB –
1 strings according to the equiprobable distribution on
the set of all 2n bit strings of length n and places MAB

strings, along with the transmitted string (i1, i2 … in), in
an open, available handbook:

(10)

where

(11)

ρi1 i2…in,
Eve j1 j2 … jn, , ,( ) u| 〉 ii u〈 | ,≠

ρi1 i2…in,
Eve ρm1 m2…mn,

Eve

ρi1 i2…in,
Eve ρm1 m2…mn,

Eve

l1 l2 …ln, ,
r1 r2 …rn, ,
…………
i1 i2 …in, ,

k1 k2 …kn, , 
 
 
 
 
 
 
 
 

MAB 2n H Q( ) δ–[ ] ,≤=

δ 0, n ∞,

H Q( ) 1 Q Q 1 Q–( ) 1 Q–( )log+log+=
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is the capacity of the symmetric binary classical com-
munication channel.

If MAB ≤ 2n[H(Q) – δ], Bob chooses the correct string
(i1, i2, … in) among the set of MAB strings with unit
probability according to the direct coding theorem for
the binary classical communication channel. Bob has to
compare all MAB strings with his string and to choose a
string that is closest to his string in the Hamming dis-
tance sense (i.e., these two strings have discrepancies in
the minimum number of positions) [7, 8]. After that,
Alice and Bob have the same bit strings with unit prob-
ability; i.e., the probability of erroneous decoding over
all codewords

(12)

tends to zero as n  ∞ and when MAB ≤ 2n[H(Q) – δ].
We now discuss Eve’s actions. Owing to open dis-

posal of the set of codewords (10) in the handbook by
Alice, Eve knows that a string of quantum states

 ⊗   ⊗   that corresponds to one of the
index sets (a1, a2, …, an) generated by Alice in (10) can
be sent. Eve has to separate the only correct string |ui〉
in the set of MAB code strings sent by Alice. According
to the direct coding theorem for the classical capacity of
the quantum communication channel [9] (see also
[10]), the probability of correct decoding (distinguish-
ing) is equal to unity (Eve can know the correct string)

if the number of codewords is MEve ≤ , where

 is the classical capacity of the quantum communi-
cation channel, which is in our case given by the
expression

(13)

According to the recently proven theorem of the so-
called strong converse to the quantum channel coding
theorem for [11], if the number of codewords is MEve >

, the probability of correct decoding (separat-
ing the necessary string) is equal to zero. More exactly,
the probability of correct decoding tends to zero and,
correspondingly, the probability of error tends to unity
as

(14)

where α( (ε)) is a certain function.
This statement means that, under the condition

MAB > MEve, Eve cannot know the bit string of Alice and
Bob. At the same time, Bob can correct Eve-induced
errors in his string with unit probability and has the bit

Pe n MAB,( ) MAB 1–( )2 n H Q( ) δ–[ ]–<
< ε n MAB,( ) 0

ua1
| 〉 ua2

| 〉 uan
| 〉

2
n C ε( ) δ–[ ]

C( )

C ε( ) 1 ε–
2

----------- 
  1 ε–

2
----------- 

 log–=

–
1 ε+

2
----------- 

  1 ε+
2

----------- 
  , εlog u0 u1〈 | 〉 .=

2
n C ε( ) δ–[ ]

Pe n MEve,( ) 1 2 nα C ε( )( )– 1,–>

C
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string identical to that of Alice, which is unknown to
Eve. This string is the common secure key for Alice and
Bob. Thus, the critical error to which secure key distri-
bution is possible is determined from the condition

(15)

where Qc is expressed only in terms of fundamental
quantities and takes into account all possible attacks by
Eve on the transmitted key. Under condition (15), quan-
tum cryptography guarantees the security of the key,
even if Eve has large quantum memory and can conduct
collective measurements (in fact, experimentally real-
ize the projection on linked (entangled) states).

The above argument concerning the generation of
the secure key for Q < Qc is unconstructive, because it
involves the concept of the Shannon random coding
and requires an exponentially large set of codewords.
Random coding ensures the maximum key length; i.e.,
errors at Bob’s end are corrected most efficiently. All
other constructively realizable methods for correcting
errors provide a shorter final secure key. However, effi-
ciency in the sense of the key length is not as important
for quantum cryptography as the guaranteed security of
the final key. Security formally means that the mutual
information between legitimate users and Eve, who has
a particular bit string, is exponentially small in any pre-
chosen security parameter. After compression (random
caching) of the key, the final secure key arises, and Eve
has infinitely small information on this key. This cir-
cumstance is guaranteed by the strict mathematical pri-
vacy amplification theorem [12].

Let x ∈  X be a random variable with the distribution
PX(x) and R(X) be the second-order Renyi entropy
given by the expression

(16)

where Pc(X) is the collision probability, i.e., the proba-
bility that the random variable has the same value in
two sequential tests. Similar relations are valid for con-
ditional distributions

(17)

The following relations between the Shannon entropy
H(X) and Renyi entropy R(X) are important for further
calculation of Eve’s mutual information on the key:

(18)

Let g ∈  G be a random variable with uniform distribu-
tion over the set of universal second-order cache func-

C ε( ) H Qc( ),=

R X( ) Pc X( ), Pc X( )log– PX
2

x( ),
x X∈
∑= =

R X Y( ) PY y( )R X Y y=( ).
y Y∈
∑–=

R X( ) H X( ), H X( )≤ PX x( ) PX x( ),log
x X∈
∑–=

R X Y( ) H X Y( ).≤
tions G [13], g: X = {0, 1}n  {0, 1}r and K = G(x).
In this case,

(19)

where H(K|G) = H(G(X)|G) is the mean conditional
Shannon entropy. Here, the cache function is a random
variable.

In the application to quantum-cryptography prob-
lems, the following consequence of the theorem is
important. Let a joint probability distribution PXY exist
that is generally unknown. Here, X = {0, 1}n is the set
of bit strings that are identical for legitimate users Alice
and Bob after error corrections, and Y = {0, 1}c is Eve’s
set of bit strings. If the Renyi entropy is R(X|Y = y) = c
and Alice and Bob choose cache values of their (identi-
cal) strings K = G(X) as the secure key, so that the cache
function from {0, 1}n  {0, 1}r is randomly and
equiprobably chosen from G, then

(20)

i.e., Eve’s information on the key is exponentially small
in the parameter c – r. The conditional Renyi entropy
R(X|Y = y) is expressed in terms of conditional proba-
bilities PX |Y(X = x |Y = y) after error correction in the key.
The conditional probability PX |Y(X = x |Y = y) is the
probability that this particular bit sequence of Eve Y =
y originates from a certain bit string X = x of Alice and
Bob.

Eve’s mutual information on the secure key is given
by the expression

(21)

where s is the security parameter that is chosen by the
legitimate users. If a string with length n remains after
the error correction, the length of the remaining key is
equal to

(22)

which determines the key compression degree after the
error correction. The Shannon entropy H(K) is the
entropy of a uniformly distributed random variable on
the set of the final keys K = {0, 1}r, where uniformity is
ensured by the universality of the cache function.

The problem now reduces to the determination of
the bound for conditional Renyi entropy (17). We will
express this fundamental bound in terms of another
fundamental quantity—the classical capacity of the
quantum communication channel [9].

H K G( ) R K G( ) r≥ ≥

– 1 2r R X( )–+( )log r
2r R x( )–

2( )ln
----------------,–≥

H K G Y y=,( ) R K G Y y=,( )≥

≥ r 1 2r c–+( ) r
2r c–

2( )ln
-------------;–≥log–

I K ; GY( ) H K( ) H K GY( ) 2 s–

2( )ln
-------------,≤–=

H K( ) r,=

r c s,–=
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If error-correction procedures such as Binary [14] or
Cascade with rejection of erroneous bits [15] are used,
all participants of the protocol after the error correction
are in the situation

(23)

Here, n is the length of the remaining string after the
error correction. Alice and Bob have the identical bit
strings, and there is a one-to-one correspondence
between states  that are sent by Alice and Bob’s bits

ik  . Eve has the density matrix of quantum
states from which she has to obtain a bit string by
means of measurements. According to the conservative
estimate in favor of Eve, Eve’s density matrix is closest
to the sequence of quantum states transmitted by Alice

if (i1, i2, … in) =  ⊗   ⊗  … ⊗  , where

 =  (in essence, the argument is similar to the
above argument when deriving Eqs. (7)–(9)).

Eve aims to determine the index set y = ( j1, j2, … jn)
by means of quantum-mechanical measurements. The
number of decoding regions (set of indices y) that can
be decoded by Eve with zero error probability for large

n does not exceed . The number of codewords
that are present in each decoding region and, corre-
spondingly, are decoded into one codeword, which is

the index set y = ( j1, j2, … jn), is equal to 2n/ . Fur-

ther, measurements with  outcomes are described
by the unity decomposition

(24)

where Xy are measuring operators fixed to the decoding
region y. The conditional probability that Alice has sent
the state sequence ρx =  ⊗   ⊗  … ⊗   (x = (i1, i2,
… in)) and that Eve obtains the result y = ( j1, j2, … jn)
is equal to

(25)

Since Alice equiprobably sends states in each message,
PX(x) = 1/2n. Then,

(26)

u| 〉 i ui1
| 〉 … uin

| 〉⊗ ⊗=

ρi1 i2…in,
Eve  × i1 i2 …in, ,( ) i1 …in,( ), ik 0 1.,=

i1 ……in,( )

uik
| 〉

     uik
| 〉

ρi1 i2…in,
Eve ρi1

ρi2
ρin

ρik
uik
| 〉 uik

〈 |

2nC ε( )

2nC ε( )

2nC ε( )

I Xy, y Y∈
y Y∈
∑ 0 1,{ } t, t nC ε( ),= = =

ρi1
ρi2

ρin

PX Y X x Y y==( ) Tr ρx Xy{ } .=

PX Y X Y y=( )

=  PX x( )PX Y X x Y y==( )
x Xy∈
∑

=  
1

2n
----- PX Y X x Y y==( )

x Xy∈
∑ 2nC ε( )

2n
-------------.=
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Here, 

 

X

 

y

 

 is the set of words that have been sent by Alice
and are decoded in Eve’s measurements to the same
codeword—the index set 

 

y

 

 = (

 

j

 

1
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2

 

, … 

 

j

 

n

 

).
Let us discuss the key compression degree (see

details in [12–16]). Let Alice and Bob choose an 

 

r

 

-bit
string 

 

K

 

 = 

 

G

 

(

 

X

 

) compressed by the random universal
cache function 

 

G

 

: 

 

X

 

 = {0, 1}

 

n

 

  

 

K

 

 = {0, 1}

 

r

 

 as the
secure key. If 

 

r

 

 is taken as 
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 = 

 

n

 

 – 

 

t

 

 – 

 

s

 

 = 

 

n

 

(1 – (

 

ε

 

)) –

 

s

 

, where 

 

s

 

 is the security parameter, Eve’s mutual infor-
mation on the key is

(27)

In this case, the collision probability and conditional
Renyi entropy are given by the expressions

(28)

Roughly speaking, the conditional Renyi entropy is the
number of bits per string that are not known to Eve with
unit probability. Eve knows no more than 

 

n

 

(

 

ε

 

) bits
per string with unit probability. This number is equal to
the string length multiplied by the classical capacity of
the quantum communication channel. Correspond-
ingly, she does not know 

 

n

 

(1 – (

 

ε

 

)) bits with unit
probability, and this number of bits from the string after
caching can be used as the secure key.

The overlapping of states (their distinguishability
degree) 

 

〈

 

u

 

0

 

|

 

u

 

1

 

〉

 

 is chosen by the legitimate users at the
beginning of the protocol and is assumed to be known
to all participants. This value is independent of the
observed error probability 

 

Q

 

. In this sense, there is no
optimum overlapping degree. We emphasize that an
increase in the overlapping degree leads to an increase
in the number of outcomes with an inconclusive result
at the receiving end that are rejected, and this procedure
reduces the key generation rate.

Thus, the B92 protocol ensures the key security if
the error observed at the receiving end does not exceed
the critical value determined by Eq. (15). This result
takes into account all possible attacks by Eve on the dis-
tributed key, including those using large quantum mem-
ory and the capability of Eve to perform collective mea-
surements simultaneously over the entire transmitted
sequence (so-called projection on entangled or linked
states in terms of [9]). The critical error is independent
of the parameters of a particular attack and is expressed
only in terms of the overlapping degree 

 

ε

 

 = 

 

|〈

 

u

 

1

 

|

 

u

 

0

 

〉|

 

 of
the information states and the fundamental functions of
classical and quantum information theories. The latter
functions are the transmission capacity 

 

H

 

(

 

Q

 

) of a
binary classical communication channel and classical
capacity (ε) of a binary quantum communication
channel. The key compression degree after the error

C
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correction is also expressed only in terms of the classi-
cal capacity (ε) of the quantum communication chan-
nel.

In conclusion, we note that, if Eve can conduct only
individual measurements over a state in each message,
the critical error to which secure key distribution is pos-
sible is determined by the so-called classical capacity
of the quantum channel per shot [9], which is equal to

(29)

and, always, C1(ε) < (ε). In this case, C1(ε) substi-

tutes for (ε) in Eq. (28) for the key compression
degree.
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