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Abstract of the Dissertation

Distributed Estimation in the Presence of Correlation

by

Zhiyuan Weng

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2014

We study the problem of distributed estimation, where a group
of nodes are required to cooperate with each other to estimate some
parameter of interest from noisy measurements without a fusion center.
Distributed estimation algorithms are useful in several areas, including
wireless sensor networks, where robustness, scalability, flexibility, and low
power consumption are desirable. In this dissertation, we mainly focus on
the cases where the node measurements are correlated. First, we consider
the problem of fusing multiple estimates from different nodes. Cases
of both known and unknown correlation are investigated. A Bayesian
approach and a convex optimization approach are proposed. Second,
we study the sequential estimation problem where all the nodes in the
network cooperate to estimate a static parameter recursively, and where
the correlation between measurements from different nodes are known. We
propose an efficient distributed algorithm and prove that it is optimal in the
sense that the ratio of the variance of the proposed estimator to that of the
centralized estimator approaches one in the long run. Last, we study the
belief consensus problem in the networks. Instead of estimating a scalar or
a vector, we are interested in the beliefs of nodes, which are represented as
probability densities. The Chi-square information is used as the criterion
to determine the optimal values of the weighting coefficients in the fusion of
densities. We also prove that the optimization problem of minimizing the
Chi-square information with respect to the weighting coefficients is convex,
and therefore can be solved efficiently by existing methods.
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Notation

A � B A−B is a positive semidefinite matrix
A � B A−B is a positive definite matrix
A ≥ B A−B is element-wise nonnegative
A > B A−B is element-wise positive

x ∼ p(x) random variable x is distributed according to p(x)
tr [A] trace of A
E[x] expectation of x

Cov[x] covariance of x
⊗ Kronecker product
I an identity matrix

IM an identity matrix with size M ×M
O a matrix with all entries equal to zero

Γ(·) standard gamma function
Γn(·) multivariate gamma function

N (m,C) normal distribution
WM(n,Σ) Wishart distribution

|A| determinant of A
‖x‖ Euclidean norm of x
‖A‖F Frobenius norm of A
‖A‖ sum of Euclidean norm of columns of A

N the set of natural numbers
R the set of real numbers

R+ the set of positive real numbers
S the set of symmetric matrices

S+ the set of positive definite matrices
Ni neighbors of node i

A> transpose of A
1M a M × 1 column vector with all entries equal to 1
0M a M × 1 column vector with all entries equal to 0
δi,j Kronecker delta
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Chapter 1

Introduction

1.1 Overview

In recent years, research in the area of distributed estimation has been

growing quickly due to the increasing popularity of distributed systems, like

the wireless sensor network (WSN). A WSN consists of many sensor nodes

that cooperate with each other to perform an inference or monitoring task,

where data are exchanged and shared between neighbors through wireless

communication. The objective of distributed systems is to utilize the data

at different locations to enhance their performance. With a centralized

architecture, a fusion center collects data from all the sensors to perform the

computation and processing tasks. In most cases, a decentralized approach

is preferred, because it can provide a degree of scalability, flexibility

and robustness which cannot be achieved with traditional centralized

architectures.

On the other hand, a decentralized approach comes with its

disadvantages. One important issue associated with the distributed
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processing is the information redundancy. In other words, measurements

from different sensors usually have correlation and cannot be treated and

processed as statistically independent variables. Correlation arises for

various reasons. The most common reason is the presence of correlated

noise in the measurement. Besides, if we consider the underlying parameter

of interest as a random variable, all the measurements of the parameter

becomes statistically dependent if the parameter is unknown. If the

parameter is known, then the measurements are no longer dependent.

This can be easily understood using graphical models [1]. Another more

complicated and challenging correlation appears when information is being

spread and diffused over networks. This is because each time nodes

exchange information with their neighbors, they have more information

in common with their neighbors until finally all the nodes possess the

same piece of information. As the correlation increases, it becomes

more and more difficult to extract useful information for nodes through

communication with others. In other words, it makes it difficult for nodes

to collect all the information available in the network. How to properly

diffuse the information in the network and allow the nodes to aggregate

the information is a challenging topic.

1.2 Contributions

The thrust of our work is the solutions to the problems of distributed

fusion and estimation in the presence of correlation. This is an important

topic because correlation is prevalent in most practical applications. We

consider cases with both known and unknown correlation.
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Our first contribution is in the area of information fusion. Given

multiple correlated estimates from different sensor nodes, we seek a

“good” way to combine these estimates. Two methods are proposed

to solve the problem. The first method considers the problem within

the Bayesian framework and assumes that the covariance matrix of the

concatenated estimate has a prior distribution. We then derive the

conditional distribution of the off-diagonal blocks of the covariance matrix,

which is the cross-correlation of our interest. We design a special algorithm

to sample from this distribution and then use the Monte Carlo method

to compute the minimum mean square error (MMSE) estimate for the

fusion problem. In the second method, we try to estimate the cross-

covariances rather than marginalize them. We consider two settings, one

where we do not use priors for the covariance matrices of the model and

another, where we use priors and engage the Bayesian machinery. Both

formulations turn out to require convex optimization and they can be solved

by existing techniques. When the cross-covariance estimates are obtained,

the weighting coefficients can easily be calculated so that optimal fusion

can take place.

For the second contribution, we consider distributed sequential

estimation in a network in the presence of correlated noises. Unlike the

former setting, here we assume that the correlation of the noises is known

to each node. A distributed sequential estimation algorithm is proposed.

At each iteration, a node exchanges information with its neighbors. The

node also updates the estimate with its new local observation. Further, it

is assumed that the noises have the Markov property with respect to the

network topology. A doubly stochastic matrix is employed to average the
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sufficient statistics over the network. We compare the proposed method

with the centralized one. We show that the ratio of the variances of

the two estimators approaches one. Therefore, the proposed estimator is

asymptotically efficient.

Last, we study the problem of belief consensus in the networks. At

the beginning, each node has an initial belief based on its observations.

Unlike traditional problems where the beliefs are scalars or vectors, here

we assume that the beliefs are probability densities. Ideally, the nodes

should reach consensus at the density that is equal to the product of all

the initial densities in the network. The desired density can be considered

as the Bayesian posterior. However, we show that without knowledge of

the number of nodes in the network, optimal consensus cannot be achieved.

Instead, we use the weighted product of the node densities to approximate

the Bayesian posterior. We adopt the χ2 information as the criterion to

measure distance between the Bayesian posterior and the weighted product

of the densities. We prove that the optimization problem of minimizing

the χ2 information with respect to the weighting coefficients is convex and

therefore can be solved efficiently.

1.3 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we formulate

the data fusion problem. We then use two approaches to address the

problems, both of which are related to covariance estimation. The Bayesian

approach is proposed in Chapter 3 and the convex optimization method is

considered in Chapter 4. In Chapter 5, we consider distributed estimation

4



in networks. Particularly, we consider the case when the noises are zero-

mean white Gaussian noises with spatial correlation. We consider the

problem of belief consensus in Chapter 6. We conclude the dissertation

with Chapter 7.
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Chapter 2

Covariance Estimation and

Data Fusion

2.1 Introduction

In this Chapter, we formulate the fusion problem we will discuss

in Chapter 3 and Chapter 4. In many applications, the information

propagated through a sensor network is transformed to a form that provides

the estimated state of interest. For example, in distributed Kalman filtering

[2, 3, 4, 5], the information is converted into the first and second moment

statistics. With the statistics from neighbors at hand, fusing the estimates

to obtain a better estimate is expected. A serous problem arising in

such setting is the effect of redundant information [6]. The estimates

provided by different nodes have unknown cross-correlations. This is

particularly true for networks with unknown topological structure. Pieces

of information from two nodes cannot be simply combined by averaging and

weighted averaging unless they are independent or have a known degree of
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correlation.

Many approaches have been proposed to mitigate the problem.

Most of them fall into two categories. The first category is looking for

an optimal linear combination of estimates in terms of some criterion,

for example, weighted least squares or minimum variance [7, 8]. In

[9, 10, 11, 12], a unified model is developed for estimation and fusion

based on the best linear unbiased estimation (BLUE) or linear minimum

variance approach. The second category tries to fuse the available estimates

directly [13, 14, 15, 16, 17]. Algorithms for combining estimates of both

the first and the second moments in linear systems have been proposed.

It is a linear combination of estimates when the first two moments are

given. However, none of the above methods investigated the situation

where the covariance of each estimate is available while the cross-covariance

is unknown. Consider the following problem. Given N estimates xj for

j ∈ {1, · · · , N} of the true state vector x0 ∈ RM×1 with their covariance

matrices of the estimation error, Pj,j, we seek a fusion scheme that combines

the available information and provides an estimate x̂0 with minimum mean

square error. We denote by P0 the covariance matrix of the estimation

error of x̂0. A naive but simple method is to calculate the weighted

average, where the weighting coefficients are proportional to the degrees

of the nodes (the numbers of the neighbors of the nodes) [3]. The approach

makes sense because the higher the degree, the more information the node

collects and the better it does in estimation. A more complicated and

popular one is the Covariance Intersection (CI) [18]. It provides a general

framework for information fusion where there is a lack of knowledge about

cross-correlation between noisy measurements, and it yields consistent
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estimates between the fused local estimates. Here “consistent” means that

the resulting covariance is an upper-bound of the true covariance. The

algorithm can be expressed as

P−10 =
N∑
j=1

wjP
−1
j,j (2.1)

P−10 x̂0 =
N∑
j=1

wjP
−1
j,j xj, (2.2)

where the weighting coefficient wj ∈ [0, 1] and
∑N

j=1wj = 1 holds. Different

performance criteria can be used to decide the values of wj. Since the mean

square error is of our interests, we use the trace of P0 as the criterion. The

minimization of the trace requires iterative minimization of a nonlinear cost

function with respect to the weight coefficients wj. In order to reduce the

computational complexity, several suboptimal non-iterative algorithms for

fast Covariance Intersection have been developed [19, 20].

In [19], it was reasoned that a replacement of Pi,i by Pj,j and vice

versa must lead to correspondingly switched coefficients wi and wj and

that if tr [Pi,i]� tr [Pj,j] for j 6= i, j ∈ {1, · · · , N} one would expect to get

wi ≈ 1. Thus it was suggested to use the linear equations

tr [Pi,i]wi − tr [Pj,j]wj = 0, (i, j = 1, · · · , N) (2.3)

which leads to the solution:

wi =
1/tr [Pi,i]∑N
j=1 1/tr [Pj,j]

. (2.4)

In [20], it was pointed out that the above approximation fails to consider
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the relative orientation of the estimation error variance matrices which may

lead to a degraded performance in certain applications. Accordingly, an

improved fast Covariance Intersection algorithm was proposed which comes

with increased computational complexity while yielding better performance

in some cases and comparable results.

2.2 Problem Formulation

Consider that a node in a network hasN−1 nodes in its neighborhood.

By communication with its neighbors, it has N available measurements,

including its own. Each measurement xj for j ∈ {1, · · · , N} is an

M × 1 vector, with covariance matrices of the estimation error Pj,j. We

concatenate the N vectors and let

x =



x1

x2

...

xN


(2.5)

where x ∈ RMN×1. We assume the mean of xj is the true state x0.

Therefore, the covariance matrix of x is also the covariance matrix of the

estimation error of x. We denote by Px the covariance matrix of x.

Px =



P1,1 P1,2 · · · P1,N

P>1,2 P2,2 · · · P2,N

...
...

. . .
...

P>1,N P>2,N · · · PN,N


. (2.6)
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We start by considering linear and unbiased estimators in the form

x̂0 = W>x. (2.7)

W is the weighting coefficient matrix

W =



W>
1

W>
2

...

W>
N


(2.8)

where Wj ∈ RM×M . Since the estimate should be unbiased, we require

W1 + W2 + · · ·+ WN = I. (2.9)

Let I(N) be a NM × M matrix concatenated vertically by N identity

matrices with sizes M ×M ,

I(N) =



IM

IM
...

IM


. (2.10)

Then (2.9) becomes

W>I(N) =I. (2.11)
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Let P0 be the covariance matrix of x̂0, which can be expressed as

P0 = W>E
[
xx>

]
W = W>PxW. (2.12)

The minimization of the mean square error is equivalent to the

minimization of tr [P0], This can be carried out by using the method of

Lagrange multipliers. Let λ be the matrix of Lagrange multipliers. Define

the Lagrangian Λ as

Λ (W) =tr
[
W>PxW

]
+ tr

[
λ
(
W>I(N) − I

)]
. (2.13)

Taking derivative with respect to W and λ and using the identities

∂ tr
(
XAX>

)
∂X

= XA + XA> (2.14)

∂ tr (AXB)

∂X
= A>B>, (2.15)

we obtain the stationary points by the following equations

2W>Px + λ>I>(N) = O (2.16)

W>I(N) = I. (2.17)

Combining all of the three equations, we obtain

W> =
(
I>(N)P

−1
x I(N)

)−1
I>(N)P

−1
x (2.18)

P0 = W>PxW =
(
I>(N)P

−1
x I(N)

)−1
. (2.19)
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By substituting (2.18) into (2.7), we have

x̂0 =
(
I>(N)P

−1
x I(N)

)−1
I>(N)P

−1
x x. (2.20)

However, in many situations we do not have information about Pi,j for

i 6= j. We develop a Bayesian approach and a convex optimization approach

in the following two chapters.
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Chapter 3

Bayesian Approach

3.1 Introduction

Our strategy to solving the problem is to put it into a Bayesian

framework. We assume that Px has a prior and that the prior is a

Wishart distribution. The Wishart distribution is a family of probability

distributions defined over symmetric, nonnegative-definite matrix-valued

random matrices. These distributions are of great importance in the

estimation of covariance matrices in multivariate statistics [21]. The

Wishart distribution is defined as follows: an M ×M random matrix A is

said to have a Wishart distribution if its probability distribution function

(pdf) is given by

p (A) =
|A|

n−M−1
2 exp

(
−1

2
tr [Σ−1A]

)
2

Mn
2 |Σ|

n
2 ΓM

(
n
2

) , (3.1)

13



where Σ is a positive definite matrix, n ≥M is the degree of freedom and

ΓM(n) is the multivariate gamma function defined as [22]

ΓM (n) =πM(M−1)/4
M∏
j=1

Γ

(
n− 1

2
(j − 1)

)
. (3.2)

We denote by WM (n,Σ) the Wishart distribution. The degree of freedom

n also plays an important role in our Bayesian framework as later we will

see. We will omit M and write simply W (n,Σ) if the size of the matrix is

obvious from the context. The Wishart distribution is closely related to the

multivariate Gaussian distribution. The pdf of the multivariate Gaussian

distribution of an M × 1 vector is

p (x) =
1

(2π)M/2 |C|1/2
exp

(
−1

2
(x−m)>C−1 (x−m)

)
, (3.3)

where m is the mean and C is the covariance matrix, denoted by N (m,C).

Suppose X is an n×M matrix, the rows of which have M -variate normal

distribution N (0,Σ). Then the M ×M random matrix A = X>X has

a Wishart distribution, i.e., W (n,Σ). This property makes it easy to

generate Wishart random matrices.

We denote by Po and Pd the off-diagonal block matrices and the

diagonal block matrices, respectively, i.e.,

Pd = {Pj,j : j ∈ {1, · · · , N}} (3.4)

Po = {Pi,j : i 6= j; i, j ∈ {1, · · · , N}} . (3.5)

In our problem, we know Pd. To fuse the data, we would like to have

14



information of Po conditioned on Pd. We express this by the conditional

p (Po|Pd) =
p (Px)

p (Pd)
. (3.6)

Since Pd is known, the weighting matrix W, and therefore x̂0 are uniquely

determined by Po as in (2.20). We think of it as a function of the matrix

variable Po and use f (Po) to denote it. Note that Po cannot be an arbitrary

matrix. Po must lie in the set Po defined by

Po = {Po : Px > 0} , (3.7)

where Px is defined in (2.6). We express the MMSE estimator by

x̂mmse =

ˆ
Po

f (Po) p (Po|Pd) dPo. (3.8)

Unfortunately, the above integral is computationally intractable.

In order to approximate the integral, we have to resort to the Monte

Carlo method. We sample K independent random matrices, P
(j)
o ∼

p (Po|Pd) for j = 1, · · · , K. Then the Monte Carlo method approximates

x̂mmse by the following expression

x̂mmse ≈
1

K

K∑
j=1

f
(
P(j)

o

)
. (3.9)

An immediate question is how we can sample from the conditional

distribution p (Po|Pd). We answer the question in the next two sections.
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3.2 Fusion for Two Nodes

In this section, we discuss the sampling method for the conditional

distribution of the off-diagonal blocks when there are two nodes. In the

case of known Po, the weight matrix W1 and W2 can be expressed as

W1 =
(
P2,2 −P>1,2

) (
P1,1 −P1,2 −P>1,2 + P2,2

)−1
(3.10)

W2 = (P1,1 −P1,2)
(
P1,1 −P1,2 −P>1,2 + P2,2

)−1
, (3.11)

which are the weights for the optimal fusion in the mean square error sense.

When we substitute (3.10) and (3.11) back into (2.7), we have

x̂0 = W1x̂1 + W2x̂2. (3.12)

=
(
P2,2 −P>1,2

) (
P1,1 −P1,2 −P>1,2 + P2,2

)−1
x̂1

+ (P1,1 −P1,2)
(
P1,1 −P1,2 −P>1,2 + P2,2

)−1
x̂2. (3.13)

Hereafter, we use the notation A to represent the large covariance matrix.

Suppose that a random matrix A is distributed according toW (n,Σ). Let

the partitions of the two positive definite matrices A and Σ be denoted by

A =

A1,1 A1,2

A>1,2 A2,2

 Σ =

Σ1,1 Σ1,2

Σ>1,2 Σ2,2

 . (3.14)

Here we assume Σ1,2 = O. Recall that a Wishart matrix variate A can

be expressed as A = X>X. X is a Gaussian random matrix, each column

of which has the multivariate normal distribution with covariance matrix

Σ. Therefore Σ1,2 = O means that the upper part of each column in

X is independent from the lower part. Our objective is to derive the
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expression for p (A1,2|A1,1,A2,2). We will need two properties of the

Wishart distribution in our derivation [21]. To make it general enough,

we assume that A1,1 is with size L1 × L1 and A2,2 is with size L2 × L2,

L1 + L2 = L.

Lemma 1 Let A and Σ be partitioned into L1 and L2 rows and columns

as shown in (3.14). If A is distributed according to WL (n,Σ), then A1,1

is distributed according to WL1 (n,Σ1,1).

Lemma 2 If Σ1,2 = O and A is distributed according to W (n,Σ), then

A1,1 and A2,2 are independently distributed.

Lemma 1 provides the marginal distributions of p (A1,1) and p (A2,2)

(they are W (n,Σ1,1) and W (n,Σ2,2), respectively). Lemma 2 maintains

that A1,1 and A2,2 are independent. Therefore, p (A1,2|A1,1,A2,2) becomes

p (A1,2|A1,1,A2,2) =
p (A)

p (A1,1,A2,2)
(3.15)

=
p (A)

p (A1,1) p (A2,2)
. (3.16)

With a little algebraic manipulation, we have

p (A1,2|A1,1,A2,2) =Z · |A|
n−L−1

2 (3.17)

=Z ·
(
|A1,1|

∣∣A2,2 −A>1,2A
−1
1,1A1,2

∣∣)n−L−1
2 (3.18)

=Z ·
(
|A1,1A2,2|

∣∣I−A−12,2A
>
1,2A

−1
1,1A1,2

∣∣)n−L−1
2 , (3.19)
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where n ≥ L, and the constant Z equals

Z =

(∏L1

i=1 Γ
(
1
2

(n+ 1− i)
)∏L2

h=1 Γ
(
1
2

(n+ 1− h)
))

∏L
j=1 Γ

(
1
2

(n+ 1− j)
) ·

1

π
L1L2

2 |A1,1|
n−L1−1

2 |A2,2|
n−L2−1

2

(3.20)

=

∏L2

i=1 Γ
(
1
2

(n+ 1− i)
)∏L

j=1+L1
Γ
(
1
2

(n+ 1− j)
) · 1

π
L1L2

2 |A1,1|
n−L1−1

2 |A2,2|
n−L2−1

2

(3.21)

=

∏L2

i=1 Γ
(
1
2

(n+ 1− i)
)∏L−L1

j=1 Γ
(
1
2

(n− L1 + 1− j)
) · 1

π
L1L2

2 |A1,1|
n−L1−1

2 |A2,2|
n−L2−1

2

(3.22)

=
ΓL2

(
n
2

)
ΓL2

(
1
2

(n− L1)
) · 1

π
L1L2

2 |A1,1|
n−L1−1

2 |A2,2|
n−L2−1

2

. (3.23)

The above distribution is the inverted matrix variate t-distribution whose

definition is as follows [23]:

Definition 1 The random matrix T ∈ RL×M is said to have an inverted

matrix variate t-distribution with parameters M ∈ RL×M , Σ ∈ RL×L,

Ω ∈ RM×M and n if its pdf is given by

p(T) =
ΓL

(
1
2

(n+M + L− 1)
)

π
ML
2 ΓL

(
1
2

(n+ L− 1)
) |Σ|−M

2 |Ω|−
L
2

∣∣I−Σ−1(T−M)Ω−1(T−M)>
∣∣n−2

2 , (3.24)

where Ω � 0, Σ � 0, n > 0 and I−Σ−1 (T−M) Ω−1 (T−M)> � 0. We

denote this by T ∼ IT L,M (n,M,Σ,Ω).

For our case in (3.19), it is not difficult to obtain that

A>1,2|A1,1,A2,2 ∼ IT L2,L1 (n− L+ 1,O,A2,2,A1,1) . (3.25)
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For sampling from the inverted matrix variate t-distribution, we use the

following lemma [23]:

Lemma 3 Let S ∼ WL (n+ L− 1, IL) and X ∼ NL,M (0, IL ⊗ IM) be

independently distributed. For M ∈ RL×M , define

T =Σ
1
2

(
S + XX>

)− 1
2 XΩ

1
2 + M, (3.26)

where S + XX> =
(
S + XX>

) 1
2

((
S + XX>

) 1
2

)>
and Σ

1
2 and Ω

1
2 are

the symmetric square roots of the positive definite matrices Σ and Ω,

respectively. Then, T ∼ IT L,M (n,M,Σ,Ω).

According to Lemma 3, the following theorem follows immediately.

Theorem 1 Let the random matrices S ∼ WL2 (n− L1, IL2) and

X ∼ NL2,L1 (0, IL2 ⊗ IL1). If

A>1,2 = (A2,2)
1
2
(
S + XX>

)− 1
2 X (A1,1)

1
2 , (3.27)

then A>1,2 ∼ p (A1,2|A1,1,A2,2).

Remark. We can see that the hyperparameter Σ in the prior

disappears in the conditional distribution as long as it is a block diagonal

matrix. On the other hand, the degree of freedom n reflects the prior belief

on the correlation between the two estimates. This can be used to exploit

the available information for improved estimation.
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3.3 Fusion for More Than Two Nodes

In this section, we consider the situation when we have three or more

nodes. For multiple nodes, the conditional distribution of the off-diagonal

submatrices is not inverted matrix variate t-distribution, and there is no

way to directly sample from it. However we can proceed as follows.

Suppose we have N nodes, each measurement is an M × 1 vector.

The covariance matrix is

A =



A1,1 A1,2 · · · A1,N

A>1,2 A2,2 · · · A2,N

...
...

. . .
...

A>1,N A>2,N · · · AN,N


, (3.28)

where Aj,j ∈ RM×M . We use Bj to denote

Bj =



A1,1 A1,2 · · · A1,j

A>1,2 A2,2 · · · A2,j

...
...

. . .
...

A>1,j A>2,j · · · Aj,j


. (3.29)

The conditional distribution becomes

p (A1,2,A1,3,A2,3, · · · ,AN−1,N |A1,1, · · · ,AN,N)

=
p(A)

p(A1,1)p(A2,2) · · · p(AN,N)
(3.30)

and there is no existing method for sampling from it. By repeatedly
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invoking Bayes chain rule, we can write the above density in this way:

p (A1,2,A1,3,A2,3, · · · ,AN−1,N |A1,1, · · · ,AN,N)

=p (A1,2|A1,1, · · · ,AN,N) p (A1,3,A2,3, · · · ,AN−1,N |A1,2,A1,1, · · · ,AN,N)

(3.31)

=p (A1,2|A1,1, · · · ,AN,N) p (A1,3,A2,3|A1,2,A1,1, · · · ,AN,N)

p (A1,4,A2,4,A3,4, · · · ,AN−1,N |A1,3,A2,3,A1,2,A1,1, · · · ,AN,N)

(3.32)

=p (A1,2|A1,1, · · · ,AN,N) p (A1,3,A2,3|A1,2,A1,1, · · · ,AN,N)

p (A1,4,A2,4,A3,4, · · · ,AN−1,N |B3,A4,4, · · · ,AN,N) (3.33)

=p (A1,2|A1,1, · · · ,AN,N)

p (A1,3,A2,3|B2,A3,3, · · · ,AN,N)

· · ·

p (A1,j,A2,j, · · · ,Aj−1,j|Bj−1,Aj,j, · · · ,AN,N)

· · ·

p (A1,N , · · · ,AN−1,N |BN−1,AN,N) . (3.34)

Note that according to Lemma 1, we can write the conditional distribution

according to

p (A1,2|A1,1, · · · ,AN,N) = p (A1,2|A1,1,A2,2) (3.35)
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or in general we have

p (A1,j,A2,j, · · · ,Aj−1,j|Bj−1,Aj,j, · · · ,AN,N) (3.36)

=p (A1,j,A2,j, · · · ,Aj−1,j|Bj−1,Aj,j) . (3.37)

Therefore, (3.34) becomes

p (A1,2|A1,1,A2,2) (3.38)

p (A1,3,A2,3|B2,A3,3) (3.39)

· · ·

p (A1,j,A2,j, · · · ,Aj−1,j|Bj−1,Aj,j) (3.40)

· · ·

p (A1,N , · · · ,AN−1,N |BN−1,AN,N) . (3.41)

Now things becomes easy for us since each factor in (3.38)-(3.41) is the

inverted matrix variate t-distribution, which can be easily sampled from.

Specifically, we can do it as follows.

According to Theorem 1, we can readily sample A1,2 according to

(3.38). Then we sample A1,3,A2,3 from (3.39). Let the random matrices

S ∼ WM (n− 2M, IM) and X ∼ NM,2M (0, IM ⊗ I2M). Let also

A>1,3

A>2,3

 =A
1
2
3,3

(
S + XX>

)− 1
2 XB

1
2
2 , (3.42)
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where

B2 =

A1,1 A1,2

A>1,2 A2,2

 . (3.43)

Then [A1,3,A2,3] ∼ p (A1,3,A2,3|B2,A3,3).

The process goes on for k − 1 times. In the jth step, we sample

A1,j+1,A2,j+1, · · · ,Aj,j+1 from (3.40). Let the random matrices S ∼

WM (n− jM, IM) and X ∼ NM,jM (0, IM ⊗ IjM). Let also



A>1,j+1

A>2,j+1

...

A>j,j+1


= A

1
2
j+1,j+1

(
S + XX>

)− 1
2 XB

1
2
j , (3.44)

then



A1,j+1

A2,j+1

...

Aj,j+1


∼p (A1,j+1,A2,j+1, · · · ,Aj,j+1|Bj,Aj+1,j+1) . (3.45)

first sample

second sample

last sample

Figure 3.1: Illustration of the sampling of the off-diagonal block matrices.

Figure 3.1 shows the steps of the sampling algorithm. Before ending
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this section, we wish to emphasize that in situations with multiple nodes,

fusing two nodes at a time using the method discussed in Section 3.2 will

not work. By ‘not work’, we mean that fusing two nodes at a time and

repeatedly doing this for multiple nodes is not equivalent to fusing multiple

nodes at a time.

3.4 Numerical Experiments

In this section, we perform numerical experiment to test our

algorithm. Suppose the true state x0 = [0, 0]>. We have N available

measurements xi for i ∈ {1, · · · , N}. The measurements have normal

distribution with covariance matrix Px. We generate Px according to

W (n, σ2I) in each run, where n = 3N . Since x0 is assumed to be zero, the

measurements are with zero mean. We carry out the experiment as follows.

For each run, we first generate Px according to the Wishart distribution

and then sample from the corresponding normal distribution to get sample

of xi. We suppose the diagonal blocks of Px are known. Then the proposed

method is used to calculate the weighting coefficients. We use 100 samples

to estimate the integral (K = 100). Finally, we compare x̂0 with x0, which

is zero, to measure the performance. We compare the proposed method

with the Covariance Intersection method and the optimal method. In the

optimal method, we simply assume we know the entire covariance matrix.

The result is averaged over 2000 instances of simulation.

Figure 3.2 shows the mean square error (MSE) performance for two

nodes and Fig. 3.3 shows the performance for three nodes. The proposed

method is roughly 10% better than the Covariance Intersection method
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Figure 3.2: MSE of the three estimators. (N = 2)

in both situations. Figure. 3.4 shows the normalized mean square error

performance, which is obtained by normalizing the MSE of the estimator

using the MSE of the optimal estimator as a measure of scale. We see

that in both situations, the proposed estimator outperforms the Covariance

Intersection. However, with the number of nodes growing, the gap between

the optimal estimator and the others becomes larger.

3.5 Discussion

In this chapter, we proposed a Bayesian approach to solve the

data fusion problem in wireless sensor network when the cross-covariance

between the estimates was not available. We first assumed that the prior of

the covariance matrix was the Wishart distribution. Because we knew the

covariance of each estimate, which was the diagonal block of the covariance

matrix, we could obtain the conditional distribution of the off-diagonal
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Figure 3.3: MSE of the three estimators. (N = 3)

block. For the case of two nodes, the conditional distribution of this block

is the inverted matrix variate t-distribution. We also showed how to sample

from this distribution. For the case of multiple nodes, the conditional

distribution becomes much more complicated and there is no direct way

to sample from it. We used the Bayes’ chain rule to decompose the

distribution into a product of several inverted matrix variate t-distribution

so that we could still sample from it. As a result, we used the Monte Carlo

method to compute the MMSE estimator. Numerical experiments showed

that the performance of our method was better than that of the Covariance

Intersection method. Another advantage of our algorithm is that under the

Bayesian framework, we can modify the hyperparameter of the prior, the

degree of freedom n, according to the available prior information, to make

the algorithm perform better in some special cases.

The curious reader may wonder why we assumed the parameter Σ of

the prior Wishart distributionW (n,Σ) to be a block diagonal matrix. The

26



Figure 3.4: Normalized MSE of the two estimators.

reason is that by doing so, the diagonal blocks of the resulting covariance

matrix are independent from each other. Otherwise, the joint distribution

of the diagonal blocks are very complicated making the derivation of the

conditional distribution of the off-diagonal blocks very difficult, if not

impossible. We can see in the numerical experiment that the Wishart

distribution with block diagonal parameter matrix Σ is still general enough

to allow for good performance. However, if we can extend Σ to a general

positive definite matrix, it would give us more freedom to manipulate the

prior according to available information. This should be the direction of

the future efforts.

The proposed method outperforms the Covariance Intersection when

we compare the MSEs. However, we need to be cautious because the two

methods use different criteria for obtaining the estimates. In some cases, it

is possible that the Covariance Intersection works better than the proposed

method. The purpose of our work is to provide an alternative to dealing

with the difficult fusion issue in wireless sensor networks.
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Chapter 4

Convex Optimization

Approach

4.1 Introduction

In the previous chapter, a Bayesian method is applied to the

covariance estimation problem. In this chapter, we introduce the convex

optimization method to solve the problem. Our strategy is to estimate

the cross-covariance first and then fuse the information from the various

sources. We consider two cases, without and with priors: if we do not

have any prior information about the covariance matrix, we can use the

maximum-entropy (ME) principle as a criterion in the search for the

optimal cross-covariance; if we have priors of the covariance matrices, we

maximize the a posteriori distributions of these matrices. The problems

in both cases can be formulated as convex optimization problems and

therefore, they can readily be solved by some well-known methods.
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4.2 Problem Model

The model considered in this chapter is a special case of the model

in Chapter 2. Suppose that the true state x0 is a random vector with zero

mean and covariance C0, and that xi is the estimate of x0 corrupted by a

zero mean noise with covariance Ci, for i ∈ {1, · · · , N}. The covariance

matrix of x, Px, which is defined in (2.6), becomes

Px =



C1 + C0 C0 · · · C0

C0 C2 + C0 · · · C0

...
...

. . .
...

C0 C0 · · · CN + C0


. (4.1)

In the fusion problem, we know the diagonal blocks of the covariance

matrix, i.e., Pi,i. Note Pi,i = Ci + C0. But we do not know Ci or C0.

We wish to have an estimate of C0 so that we can determine the weighting

coefficients for combining those xis.

4.3 The Maximum Entropy approach

In this section, for the sake of simplicity we start with the Gaussian

model and assume x0 ∼ N (0,C0) and xi|x0 ∼ N (x0,Ci). Here we do

not have the information about the priors of C0 and Ci, and we propose

to exploit the maximum-entropy principle. The rationale for using the ME

principle is discussed thoroughly in [24, 25].

The entropy is basically a functional, i.e., it maps a function f to a
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real number. It is defined as

H(f) = −
ˆ
f (y) log f (y) dy. (4.2)

Plugging (3.3) in (4.2), we obtain the entropy of the multivariate Gaussian

distribution,

H(f) =−
ˆ
y∈RM

f (y)

(
− log

(
(2π)M/2 |C|1/2

)
− 1

2
y>C−1y

)
dy (4.3)

= log
(

(2π)M/2 |C|1/2
)

+

ˆ
y∈RM

1

2
f (y) y>C−1ydy. (4.4)

Let

y = [y1, · · · , yM ]> (4.5)

D = C−1 =


c1,1 · · · c1,M

...
. . .

...

c1,M · · · cM,M


−1

=


d1,1 · · · d1,M

...
. . .

...

d1,M · · · dM,M

 . (4.6)

We have

y>C−1y =
M∑
i=1

M∑
j=1

di,jyiyj. (4.7)
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Therefore the second term in (4.4) becomes

ˆ
y∈RM

f (y) y>C−1ydy (4.8)

=

ˆ ∞
−∞
· · ·
ˆ ∞
−∞

f (y)
M∑
i=1

M∑
j=1

di,jyiyj dy1 · · · dy2 (4.9)

=
n∑

i=1

n∑
j=1

di,jci,j (4.10)

=tr [DC] (4.11)

=M. (4.12)

Thus the maximization of H (f) reduces to the maximization of log (|C|).

In order to estimate the cross-covariance, we try to maximize the

entropy of the joint distribution of x0 and xi. Specifically, we try to

maximize H (px0,x1,··· ,xN
). We have

H (px0,x1,··· ,xN
) =H (px0) +

N∑
i=1

H
(
pxi|x0

)
(4.13)

∝ log (|C0|) +
N∑
i=1

log (|Ci|) (4.14)

= log (|C0|) +
N∑
i=1

log (|Pi,i −C0|) , (4.15)

where the first equality can be found in [26]. Therefore, the entire

optimization problem can be formulated as

maximize log (|C0|) +
N∑
i=1

log (|Pi,i −C0|) (4.16)

subject to Pi,i −C0 � 0 i ∈ {1, · · · , N} (4.17)

C0 � 0, (4.18)
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where the variable is the symmetric matrix C0. The objective function

(4.16) is a convex function on the positive semidefinite cone [27]; the

constraints (4.17) and (4.18) are convex sets. Thus the optimization

problem can be easily solved by some existing well-known methods, e.g.,

the interior point method [28].

Before ending this section, we wish to emphasize that the model does

not have to be normal. In fact, it can be unknown as long as the first

and the second moments are specified. Recall that the normal distribution

has ME among all real-valued distributions with given mean and variance

[29]. That is to say, even if the model is unknown, we still obtain the same

solution if we employ the ME criterion.

4.4 The Maximum Posterior Approach

In this section, we consider the case where the priors of the unknown

covariance matrices are available. Suppose the priors of C0 and Ci are

p0 (C0) = WM (C0|L0,Σ0) and pi (Ci) = WM (Ci|Li,Σi), respectively. We

use the maximum a posteriori (MAP) distribution as a criterion, and the

optimal estimator can be written as

C0 =max arg
C�0

p0 (C)
N∏
i=1

pi (Pi,i −C) . (4.19)

If we substitute (3.1) into (4.19), we have

C0 =max arg
C�0

g (C) , (4.20)
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where g (C) is defined as

g (C) =
L0 −M − 1

2
log |C| − 1

2
tr
[
Σ−10 C

]
+

N∑
i=1

Li −M − 1

2
log |Pi,i −C|

−
N∑
i=1

1

2
tr
[
Σ−1i (Pi,i −C)

]
. (4.21)

The optimization problem can be cast as

maximize g (C) (4.22)

subject to Pi,i −C � 0 i ∈ {1, · · · , N} (4.23)

C � 0, (4.24)

where the optimization variable is the symmetric matrix C. We know

log |·| is a concave function and tr [·] is a convex function over the positive

semidefinite cone [27]. Therefore g (C) is a concave function with respect to

C. Since the constraint also specifies a convex set, the problem is a convex

optimization problem as well, which can be solved with no difficulty.

4.5 Discussion

We point out that (4.16) and (4.21) are both with the same

log (|·|) terms. In fact, (4.16) is a special case of (4.21), where the

hyperparameters Σis are infinitely large and make the terms tr
[
Σ−10 C

]
and tr

[
Σ−1i (Pi,i −C)

]
vanish for finite Pi,i and C.

To illustrate the connections further, we first associate an ellipsoid to
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each covariance matrix. The ellipsoid of A is defined as

{x ∈ RM |x>A−1x = 1}. (4.25)

For N = 2, the ellipsoid becomes an ellipse. Basically the major and minor

axes of the ellipse show how large the variances are in the directions of

the axes. The angle between the x-axis and the major axis of the ellipse

indicates how much the data from the two dimensions correlate with each

other. Figure 4.1 shows the ellipses of P1,1,P2,2 and the estimated cross-

covariances. We set N = 2 for simplicity and let

P1,1 =

 1 −0.5

−0.5 3

 , P2,2 =

3 0

0 1

 . (4.26)

The priors are C0 ∼ W2 (4, σ2
0I2), Ci ∼ W2 (4, σ2I2). The ellipses for

different matrices are shown in Figure 4.1. We can see the ellipses of C0

are inside those of C1 and C2, which makes sense since any point in the

feasible set shall make its associated ellipse in the intersection of those of

the Pi,is. Also, for larger σ2
0/σ

2 the solution ellipse becomes larger; for

smaller σ2
0/σ

2, the ellipse becomes smaller. When both σ2
0 and σ2 are

large, in this case σ2
0 = σ2 = 10, the ellipse (green) is very close to the ME

solution (red).

4.6 Simulation

We use the Gaussian model in the numerical experiment. Suppose

that the variable to be estimated is x0 and that it has distribution
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Figure 4.1: Illustration of P1,1, P2,2 and the estimated covariances.

N (m0,C0). We let m0 = 0 for the sake of simplicity. The estimates

xi have the conditional distributions N (x0,Ci) for i ∈ {1, · · · , N}. The

noise of the measurements is assumed to be independent of each other. We

can consider xi to be measurements as well as estimates, since we shall

let x̂i = xi if we make estimation only based on xi. If we concatenate

N estimates into one vector x as before, the distribution of the vector

conditioned on x0 is

x|x0 ∼N




x0

...

x0

 ,


C1 · · · O

...
. . .

...

O · · · CN


 . (4.27)

The marginal distribution of x becomes

p(x) = N (x|0,Px) , (4.28)
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Figure 4.2: Performance comparison in the case of two estimates.

where Px is defined in (4.1). The diagonal blocks Ci + C0 are known

exactly. On the other hand, neither C0 nor Ci is known.

To generate the data for our numerical experiment, we first draw C0

from its priorW2 (2,Λ1) and C1, · · · , CN fromW2 (2, σ2Λ2) independently,

where

Λ1 =

 4 −1

−1 3

 , and Λ2 =

 1 0.5

0.5 2

 . (4.29)

Then we generate the true value x0 by sampling from N (0,C0). Similarly,

we generate the measurements xi from N (x0,Ci). We set N = 2, 3. Now

we have all the data we need for testing and comparing the estimators.

For comparison, we use three other estimators, the optimal estimator

(2.20) with all the information (including C0), and the fast Covariance

Intersection method (2.4) from [19]. For each configuration, we ran 2000

tests. In the legend, we use optimal, ME, MAP, and CI to indicate
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Figure 4.3: Performance comparison in the case of three estimates.

the optimal method, the ME method, the MAP method, and the fast

Covariance Intersection method, respectively.

Figure 4.2 and Fig. 4.3 show the mean square error performance

for N = 2 and N = 3, respectively. We can see that the proposed

methods are better than the CI method in both situations. Meanwhile,

as the hyperparameters Σ0 and Σi are much different, the MAP estimator

outperforms the ME estimator thanks to its priors.

4.7 Conclusion

In this chapter, we proposed convex optimization techniques to solve

the fusion of correlated estimates with unknown correlations. Specifically,

given the diagonal block of the error covariance matrix, we cast the

problem of estimating cross-covariance as convex optimization problem

which could be readily solved by well-known methods. Two cases were
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considered: for the non-Bayesian case, we employed the maximum entropy

criterion in the search for optimal cross-covariance; for the Bayesian case,

we assumed that the priors of the unknown covariance matrices were the

Wishart distribution. We then maximized the posterior probability of

the cross-covariance. As soon as the cross-covariance was obtained, the

weighting coefficients could be determined and the distributed estimates

could be combined by a simple calculation. With numerical experiments

we demonstrated the performance of our methods.
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Chapter 5

Sequential Estimation in

Networks

5.1 Introduction

In the previous three chapters, the data fusion problem with unknown

correlation is considered. Now we turn our focus on the sequential

learning problem, where the parameter of interest is static and each

node obtains a local observation at each time slot. The objective is to

estimate the parameter in a distributed way. This problem has been

studied in [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. However, they all

use search-like methods which is far from being optimal. In [35], the

authors compare the mean-square performance of two main strategies for

distributed estimation: consensus strategies and diffusion strategies. They

claim that the diffusion leads to faster convergence and lower mean-square

deviation than consensus. Note that when the parameter of interest is

dynamic, it becomes sequential filtering problem, which is another popular
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category of distributed estimation problems. See [5, 3, 40] for example.

In this chapter, we propose an efficient estimation algorithm for the

case where the noises are correlated. This algorithm is neither diffusion nor

consensus. But it is closer to the latter. We use a doubly stochastic matrix

to combine the information from different nodes at each iteration. We

prove that our algorithm approaches the optimal centralized least square

estimator asymptotically.

5.2 Introduction and formulation

The problem is mathematically formulated as follows. The network

is represented by a graph G = (V , E), where V and E are the sets of nodes

and edges, respectively. Two nodes exchange information only if there is an

edge between them. There are N nodes in the network, namely N = |V|.

Let θ ∈ RL×1 be a static parameter vector of interest. At time instant t,

the observation at node i is modeled as

yi,t =Hi,tθ + wi,t, (5.1)

where wi,t,yi,t ∈ RM×1, Hi,t ∈ RM×L; Hi,t is the observation matrix; yi,t

is the observation; and wi,t is a Gaussian noise vector. The mean and

covariance of the noise are

E[wi,t] = 0M , (5.2)

E[wi,tw
>
j,s] = δt,sΣi,j, (5.3)
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where δt,s is the Kronecker delta function; 0M is an M -size column vector

with all of its elements being zero. Let

Ht =


H1,t

...

HN,t

 , (5.4)

yt =


y1,t

...

yN,t

 , (5.5)

wt =


w1,t

...

wN,t

 , (5.6)

and

Σ =


Σ1,1 · · · Σ1,N

...
. . .

...

ΣN,1 · · · ΣN,N

 . (5.7)

Thus, Ht ∈ RNM×L, yt ∈ RNM×1, and Σ ∈ RNM×NM . The matrix Σ

is assumed to be strictly positive definite. Then the entire model can be

expressed as

yt = Htθ + wt, (5.8)
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where wt is zero mean white Gaussian noise with covariance matrix Σ.

From all the observations received at t, the least squares estimator is [41]

θ̂t =
(
H>t Σ−1Ht

)−1
H>t Σ−1yt. (5.9)

We assume that wi,t satisfies the Markov property with respect to the

graph G, i.e., the noises of any pair of nonadjacent nodes are conditionally

independent given the remaining noise values,

p
(
wi,t,wj,t|wV\i,j

)
= p

(
wi,t|wV\i,j

)
p
(
wj,t|wV\i,j

)
for all {i, j} /∈ E , and for all t ∈ N. (5.10)

In the sequel we use K = Σ−1 and refer to it as a precision matrix. Since

wi,t is Gaussian, we have [42]

Ki,j = O for all {i, j} /∈ E , (5.11)

where Ki,j is the (i, j)th block of K and O is a matrix with zero elements

and of the same size as K. Given the observations from the beginning to

time instant t, the least squares estimate θ̃t can be expressed as

θ̃t =

(
t∑

s=1

H>s KHs

)−1 t∑
s=1

H>s Kys, (5.12)

where
∑t

s=1 H>s Kys represents the sufficient statistics of the model. Our

objective is to calculate θ̃t in a distributed way. To make the problem

well-defined, we need to make the following mild assumptions:

1. The vector sequence {wt}t∈N is bounded,
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2. The matrix sequence {Ht}t∈N is bounded, full rank and does not

converge to a rank deficit matrix.

There is work in the literature that is related to what is addressed here,

notably the running consensus [43, 44, 45, 46, 47, 48] and the distributed

diffusion [30, 31, 32, 36]. The running consensus is in fact a special case of

the proposed method. If we let L = M = 1, Hi,t = 1 and the noises be i.i.d.,

the proposed method reduces to the running consensus. We point out that

the introduction of the multidimensional time-varying observation matrices

makes the problem much complicated and the proof of efficiency nontrivial.

In the model used with the distributed diffusion method, the observation

matrix is replaced by a vector, and therefore the observation is a scalar.

However, by concatenation of the measurements from different time slots,

the models become basically the same. More important differences are that

here the noises between neighboring nodes are correlated and that we use

a doubly stochastic matrix to assign the mixing weighting coefficients. We

need such assignment to allow the distributed estimator achieve the global

optimum.

5.3 The proposed distributed estimation

algorithm

In this section, we describe how the distributed estimator works. We

assume node i has access to Hj,t for j ∈ Ni through communication at

time instant t. Ni stands for the neighbors of node i. Let Q ∈ RN×N be a
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irreducible and aperiodic doubly stochastic matrix, which satisfies

Q1N = 1N , 1>NQ = 1>N . (5.13)

Denote by Qi,j and Qt
i,j the (i, j)th entry of Q and Qt, respectively. We

note that Qi,j = 0 if nodes i and j are not connected. Such Q can be

constructed by letting Q = IN − εΞ, where Ξ is the Laplacian matrix of

the graph G; ε is a coefficient satisfying ε < 1/maxi(deg(i)), with deg(i)

denoting the degree of node i. Note that

lim
t→∞

Qt
i,j =

1

N
for i, j ∈ {1, · · · , N}. (5.14)

This is the principle we use behind the averaging of the sufficient statistics.

1 4

3

2

Figure 5.1: Information exchange at time instant t.

In the distributed algorithm, each node keeps two variables, the

matrix Di ∈ RL×L and the vector xi ∈ RL×1, which approximate∑t
s=1 H>s KHs and

∑t
s=1 H>s Kys, respectively. The method is based on
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the following formulas:

Di,t =
∑
j∈Ni

Qi,jDj,t−1 +
∑
j∈Ni

H>j,tKj,iHi,t (5.15)

=
t∑

s=1

N∑
j=1

Qt−s
i,j

∑
k∈Nj

H>k,sKk,jHj,s, (5.16)

xi,t =
∑
j∈Ni

Qi,jxj,t−1 +
∑
j∈Ni

H>j,tKj,iyi,t (5.17)

=
t∑

s=1

N∑
j=1

Qt−s
i,j

∑
k∈Nj

H>k,sKk,jyj,s, (5.18)

θ̃i,t = D−1i,t xi,t, (5.19)

and where Q0 is defined to be the identity matrix. The information a node

transmits to its neighbors includes Hi,t,Di,t and xi,t (see Fig. 5.1). We

note that the centralized estimate is given by

θ̃t =

(
t∑

s=1

H>s KHs

)−1 t∑
s=1

H>s Kys. (5.20)

The factors Di,t and xi,t in (5.19) are approximations of
∑t

s=1 H>s KHs and∑t
s=1 H>s Kys, respectively. Let Qt

(i) ∈ RNM×NM be defined by

Qt
(i) =



Qt
i,1IM O · · · O

O Qt
i,2IM · · · O

...
...

. . .
...

O O · · · Qt
i,NIM


. (5.21)
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Then Di,t and xi,t can be expressed as

Di,t =
t∑

s=1

H>s KQt−s
(i) Hs, (5.22)

xi,t =
t∑

s=1

H>s KQt−s
(i) ys. (5.23)

Thus, (5.19) can also be written as

θ̃i,t =

(
t∑

s=1

H>s KQt−s
(i) Hs

)−1 t∑
s=1

H>s KQt−s
(i) ys. (5.24)

It has been proved that this estimator is unbiased [49]. The main theorem

in this section is that the proposed method has the same asymptotic

performance as the centralized one, which can be formally expressed as

lim
t→∞

tr
[
Cov

[
θ̃i,t

]]
tr
[
Cov

[
θ̃t

]] = 1. (5.25)

We prove the main theorem in the appendix.

5.4 Simulation

In this section, we test the algorithms in a network with 20 nodes.

The topology is shown in Fig. 5.2. We let θ = [1,−1]. All the entries in

H are i.i.d. Gaussian variables, and ε = 0.1. K is generated by summing

a group of Wishart random matrices that correspond to the cliques in

the graph. Figure 5.3 shows the mean square error performance of an

implementation for the setting. We can see that the performance of the

proposed method approaches the centralized estimator after 300 iterations.
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Figure 5.4 shows the averaged results of 500 runs. The performance of the

proposed estimator converges quickly to the centralized estimator.

Figure 5.2: Topology of the network.

5.5 Conclusion

In this chapter, we proposed a distributed sequential algorithm for

the case that the noises are correlated. We assumed that the noises had

the conditional independence property, i.e., given the noise values of the

neighbors of a node, the noise at the node was independent of other noises

in the network. We showed that the proposed algorithm was asymptotically

equivalent to the centralized algorithm, regardless of the actual values of

observation, as long as they were bounded. Since the centralized estimator

(5.12) is an efficient estimator [41], the proposed estimator therefore

asymptotically approaches the Cramér-Rao bound. The simulations justify

the statement.
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Figure 5.3: Performance of a sample run.
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Figure 5.4: Averaged performance over 500 instances.
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Chapter 6

Belief Consensus

6.1 Introduction

In this chapter, we study the belief consensus problem. In consensus

estimation, a node in the network performs global estimation tasks through

iterative information exchange with its neighbors and update its own state

based on the received information. Most consensus problems that have been

studied fall into several basic categories. The original consensus problems

study how a group of nodes, each with a piece of belief, reach agreement

by local information exchange. One of the earliest work on consensus

problems is [50], where consensus for discrete distribution is studied. In

[51] and [52], convex optimization techniques are used to accelerate the

convergence. In [53], consensus problems in dynamic network with time-

delays are investigated. In [54], asymmetric interaction mechanism with

time-varying weights are introduced to increase the convergence rate of the

consensus. In [55], the authors try to find the mixing matrix that leads

to the highest convergence rate. In [56], efforts are put in the search for
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structures that accelerate the convergence. An optimal control scheme for

achieving consensus is proposed in [57]. In [58], the authors investigate

a broadcasting-based gossiping algorithm to compute the average of the

initial measurements of the nodes. In [59], the authors examine the problem

of designing weights when the network is subject to random link failures

and switching topology. In [60], consensus is used to solve the distributed

total least squares problem.

In this chapter, we consider the consensus of continuous densities

in the Bayesian framework. Ideally, we would like the nodes to reach

consensus at the density equal to the product of all the belief densities

of the nodes because if we assume a noninformative prior, the product of

all the initial densities is just the unnormalized Bayesian posterior. We

show that the Bayesian posterior is not achievable without the knowledge

of the network size. To approximate the Bayesian posterior, we employ the

weighted product of the densities. We use the χ2 information metric as the

criterion to choose the weighting coefficients in the fusion of the continuous

densities. The method is general for all probability distributions. We

then confine ourselves to Gaussian cases and show that the χ2 information

function is convex with respect to the weighting coefficients. Very few works

consider the consensus of continuous densities. In [61], the authors cast

the problem in a Bayesian framework and adopt an information-theoretic

approach to data fusion by using the Kullback-Leibler average of the density

functions. Here, not only the criteria, but also the way we formulate the

problems are different.

The chapter is organized as follows. The problem is formulated

in Section 6.2. In Section 6.3, we introduce the proposed method. In

50



Section 6.4, we give some insight into the proposed method. We present

experimental results in Section 6.5, and conclude in Section 6.6 . Proofs

are left to the appendix.

6.2 Problem Formulation

Consider a network with N nodes. Each node has an initial belief

about an unknown parameter of interest x. In traditional consensus

problems, the initial belief is usually a point estimate and we fuse them

using the criteria like maximum likelihood or minimum mean square error.

In this chapter, we assume that each node has a belief in the form of a

continuous density instead of a point estimate. In such cases, those criteria

used in point estimation are no longer applicable. Therefore, we propose

the use of χ2 information as the criterion and formulate the problem as

follows.

Let the belief of node i be pi (x). Ideally, with all the beliefs of N

nodes, the best belief we can have about x is the Bayesian posterior

pc (x) =

∏
i pi (x)´

x

∏
i pi (x) dx

(6.1)

with the assumption of a noninformative prior. Taking logarithm of both

sides, we have

log pc (x) =
∑
i

log pi (x)− log

ˆ
x

∏
i

pi (x) dx. (6.2)

Note that the second term is a normalizing constant and its value depends

on the first term. If we know the value of N , we can first try to achieve
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consensus at the average, i.e., 1
N

log pc (x), and then multiply the average

by N . To make the consensus converge at the average, we can simply use

a doubly stochastic matrix where each row corresponds to the weighting

coefficients a node assigns to its neighbors. Without knowing N , this

approach is not possible.

In this work, we use the weighted product of the densities to

approximate the Bayesian posterior. The weighted product of the densities

is expressed as

pd (x) =

∏
i p

wi
i (x)´

x

∏
i p

wi
i (x) dx

(6.3)

where
∑

iwi = 1. The symbol wi is the exponent of pi (x). This form

is also referred to as generalized fusion in [62]. The discussion so far

is general for any probability density functions. However, for general

continuous densities, the computation of (6.3) is not tractable, unless the

function is parametric. Hereafter, we confine ourselves to the Gaussian

cases. We assume the initial belief of each node is a Gaussian density

with mean mi and covariance Ci, denoted by N (x|mi,Ci). We note that

given N Gaussian densities N (x|mi,Ci) for i ∈ {1, · · ·N}, the product∏N
i=1N (x|mi,Ci) is still a Gaussian. Denote byN (x|mc,Cc) the Bayesian

posterior, i.e.,

N (x|mc,Cc) =
1

Zc

N∏
i=1

N (x|mi,Ci) , (6.4)

where Zc is the normalizing coefficient. Then the mean mc and the
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covariance matrix Cc can be easily derived [63]:

Cc =

(
N∑
i=1

C−1i

)−1
, (6.5)

mc = Cc

(
N∑
i=1

C−1i mi

)
. (6.6)

Likewise, the product (6.3) is also a Gaussian density function. Let

N (x|md,Cd) denote the weighted product of the densities,

N (x|md,Cd) =
1

Zd

N∏
i=1

Nwi (x|mi,Ci) (6.7)

with

N∑
i=1

wi = 1, wi ≥ 0, (6.8)

we will have

Cd =

(
N∑
i=1

wiC
−1
i

)−1
(6.9)

md =

(
N∑
i=1

wiC
−1
i

)−1( N∑
i=1

wiC
−1
i mi

)
. (6.10)

The inverse of the covariance matrix is called the precision matrix, denoted

by K. Thus we have

Kc =
N∑
i=1

Ki, (6.11)

mc =

(
N∑
i=1

Ki

)−1( N∑
i=1

Kimi

)
(6.12)
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and

Kd =
N∑
i=1

wiKi (6.13)

md =

(
N∑
i=1

wiKi

)−1 N∑
i=1

wiKimi. (6.14)

6.3 Consensus optimization

In the previous section, we have introduced the equations (6.13) and

(6.14) for belief fusion in the Gaussian cases. However, the weighting

coefficients, wi, are yet to be chosen. In this section, we discuss the methods

for determining the values of the weighting coefficients. First, we revisit

the famous Covariance Intersection algorithm. Then we discuss how we use

the χ2 information as a criterion to determine the weighting coefficients.

6.3.1 Covariance Intersection

We have discussed the Covariance Intersection (CI) in Section 2.1.

The objective of the Covariance Intersection was to obtain a consistent

estimate of the covariance matrix when multiple random variables were

linearly combined without knowing the correlation. CI selects the value of

wi such that the determinant or trace of Cd is minimized. In [62], it has

been pointed out that the criterion used in CI is equivalent to minimizing

the Shannon information of the fused function with the assumption that the

fusion functions are Gaussian. The optimization problem can be expressed
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as

minimize −
ˆ
x

pd (x) log (pd (x)) dx (6.15)

subject to
N∑
i=1

wi = 1 (6.16)

wi ≥ 0, (6.17)

where wi for i = 1, · · · , N are the variables.

6.3.2 χ2 information metric

To approximate the Bayesian posterior (6.1) by the weighted product

of the densities (6.3), we must first have a criterion to measure the difference

between two densities. Here we adopt the χ2 information as the metric.

We seek the weighting coefficients wi such that the χ2 information [64]

between the Bayesian posterior and the weighted product of the densities

is minimized. The χ2 information between density p and q is defined as

χ2 (p||q) =

ˆ
p2 (x)

q (x)
dx− 1. (6.18)

Note that like the Kullback–Leibler divergence, it is not a symmetric

measure of the difference between two densities. However, in our case,

we put pc (x) first and use χ2 (pc (x)|pd (x)) instead of χ2 (pd (x)|pc (x)).

The reason is that for Gaussian pc (x) and pd (x), p2c (x) /pd (x) will still

be Gaussian as long as the covariance matrix
(
2C−1c −C−1d

)−1
is positive

definite. According to the definition of Cd and Cc in (6.13) and (6.11),

respectively, it is easy to check that
(
2C−1c −C−1d

)−1
is positive definite

but
(
2C−1d −C−1c

)−1
is not. In other words, p2c (x) /pd (x) is Gaussian but
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p2d (x) /pc (x) is not.

Formally, we try to minimize

χ2 (pc (x) ||pd (x)) (6.19)

with respect to wi under the constraint
∑N

i=1wi = 1. The χ2 information

can be derived as

χ2 (N (mc,Cc) ||N (md,Cd)) =T2 exp (T1)− 1, (6.20)

where

T1 =− 1

2
(mc −md)

>
(

Cc

2
−Cd

)−1
(mc −md) (6.21)

T2 =

√
|Cd|
|Cc|

√∣∣∣(2C−1c −C−1d

)−1∣∣∣. (6.22)

The optimization problem becomes

minimize χ2 (N (mc,Cc) ||N (md,Cd)) (6.23)

subject to
N∑
i=1

wi = 1 (6.24)

wi ≥ 0, (6.25)

where wi are the variables. In the appendix, we show that the objective

function is convex.
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6.3.3 Application in the network

Our assumption is that the total number of nodes in the network is

unknown and each node is only able to communicate with its neighbors.

This means the optimization of weighting coefficients can only be performed

locally. We specify some additional notations: wj,i means the weighting

coefficient node j assign to the belief from node i; let pj,c (x) be the local

Bayesian posterior

pj,c (x) =

∏
i∈Nj

pi (x)´
x

∏
i∈Nj

pi (x) dx
, (6.26)

and pj,d (x) the local weighted product of the densities

pj,d (x) =

∏
i∈Nj

p
wj,i

i (x)´
x

∏
i∈Nj

p
wj,i

i (x) dx
. (6.27)

At each iteration node j optimizes the following problem

minimize χ2 (pj,c (x) ||pj,d (x)) (6.28)

subject to
∑
i∈Nj

wj,i = 1 (6.29)

wj,i > 0. (6.30)

6.4 Analysis

In this section, we provide further insight into the objective function

of the optimization problem. We consider two extreme cases and compare

them with the case of uniform weighting coefficients. By uniform we mean

the weighting coefficients are all equal to 1
N

. We consider the first extreme
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case where Ci = C0 for all i. Then we have

C−1c =NC−10 (6.31)

C−1d =C−10 (6.32)

mc =
1

N

∑
i

mi (6.33)

md =
∑
i

wimi. (6.34)

We can see that in this case T2 does not depend on wi. To maximize the

χ2 information, we only need to look at T1,

T1 =− 1

2
(mc −md)

>
(

Cc

2
−Cd

)−1
(mc −md) (6.35)

=
1

2
(mc −md)

>
(

C0 −
C0

2N

)−1
(mc −md) (6.36)

=
N

2N − 1
(mc −md)

>C−10 (mc −md) . (6.37)

Since C0 is positive definite and T1 is a quadratic form, T1 achieves

minimum when mc = md. This happens when wi = 1
N

for all i, which

reduces to the uniform approach.

Next we consider the second extreme case when mi = m0 for all i. For

the sake of simplicity, we only consider the scalar case. In the scalar case,

we assume the mean and variance of node i are m0 and σ2
i , respectively.

The centralized variances and means become

σ2
c =

(
N∑
i=1

1

σ2
i

)−1
(6.38)

mc =σ2
c

(
N∑
i=1

m0

σ2
i

)
= m0 (6.39)
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and the decentralized ones are

σ2
d =

(
N∑
i=1

wi

σ2
i

)−1
(6.40)

md =σ2
d

(
m0

N∑
i=1

wi

σ2
i

)
= m0. (6.41)

Because mc = md, T1 becomes constant and we only need to look at T2.

T2 =

√
σ2
d

σ2
c

√(
2

σ2
c

− 1

σ2
d

)−1
(6.42)

=
1

σ2
c

√
1

σ2
d

(
2

σ2
c

− 1

σ2
d

) (6.43)

=
1

σ2
c

√∑N
i=1

wi

σ2
i

∑N
i=1

2− wi

σ2
i

. (6.44)

In order to minimize T2 with respect to wi, we only need to investigate the

part in the square root. Suppose

f (wi) =
N∑
i=1

wi

σ2
i

N∑
i=1

2− wi

σ2
i

. (6.45)

Our problem becomes

maximizef (wi) (6.46)

subject to
N∑
i=1

wi = 1 (6.47)

wi ≥ 0. (6.48)

Because we intend to analyze the problem instead of solving it, we ignore

the second constraint. The reason will be clear later. To find the minimum
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value of f (wi), we use the method of Lagrange multipliers. The Lagrangian

becomes

L (wi, λ) =f (wi) + λ

(∑
i

wi − 1

)
. (6.49)

Take derivative of L (wi, λ) with respect to wi, and we have

∂L (wi, λ)

∂wj

=
1

σ2
j

(
N∑
i=1

2− wi

σ2
i

)
− 1

σ2
j

(
N∑
i=1

wi

σ2
i

)
− λ (6.50)

for all j. In order that the derivative be equal to 0 for all j, we must have

N∑
i=1

2− wi

σ2
i

=
N∑
i=1

wi

σ2
i

. (6.51)

Substitute (6.51) into f (wi) = 0. We have

(
N∑
i=1

wi
1

σ2
i

)2

=0 (6.52)

which leads to

N∑
i=1

wi
1

σ2
i

=0. (6.53)

To make (6.53) equal to zero, at least one wi has to be zero. But recall that

wi should all be nonnegative. This tells us that there is no extreme point

in the simplex defined by (6.47) and (6.48). Moreover, we can conclude

that the optimal value must lie on the boundary of the simplex, that is at

least one wi is zero. This makes the problem reduce to N − 1 dimensions.

With the same reasoning, we can reduce the problem to two dimensions,

and it is easy to see that the wi with the smaller σ2
i wins. We can conclude
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that the solution to the optimization problem in (6.46) is wj = 1 with the

assumption that σ2
j is the smallest variance and wi = 0 for i 6= j. Although

this analysis is for scalar cases only, it provides intuitive insight for fusion

with close mean values.

In summary, when the covariances from different nodes are equal, the

proposed method reduces to the method of uniform weighting coefficients.

For scalar cases, when all the nodes share the same mean value, the optimal

value of the weighting coefficients lies on a vertex of the simplex, i.e., only

the wj with the smallest σ2
j is equal to one, the other coefficients are zero.

For vector cases, the solution becomes complicated but it more or less

follows a similar pattern, which works like the minimum operator.

6.5 Numerical Experiment

In this section, we provide numerical experiments to show the

performance of the proposed methods. The experiment is carried out as

follows. In a network, each node has an initial belief. At each iteration, a

node collects the beliefs from its neighbors and fuses the beliefs according

to (6.11)-(6.14). The weighting coefficients wi used in the fusion are

determined by solving the optimization problem expressed in (6.23). In

other words, we use local optimal value to approximate the global Bayesian

posterior. As we have mentioned before, the reason is that we do not know

the number of nodes in the network. The initial belief of each node is

generated as follows. The mean values are generated according to a zero-

mean multivariate normal distribution with covariance being an identity

matrix. The covariance matrices are generated according to a Wishart
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distribution with degree 4 and identity scale matrix. We average the

performance over 500 instances of simulation for each experiment. We

compare the proposed method with the Covariance Intersection and the

uniform weighting method. In the uniform weighting method, each node

assigns equal weighting coefficients to its neighbors and itself. To evaluate

the performance, we examine the normalized average χ2 information

between the global Bayesian posterior and the local weighted product of

the densities. We denote the average χ2 information between the belief of

each node and the global Bayesian posterior at time t by

1

N

N∑
j=1

χ2
t (pc (x) ||pj,d (x)) . (6.54)

Then we normalize (6.54) by the χ2 information at the beginning.

Therefore, the normalized average χ2 information can be expressed as

∑N
j=1 χ

2
t (pc (x) ||pj,d (x))∑N

j=1 χ
2
0 (pc (x) ||pj,d (x))

.

Besides, we also look at the normalized MSE of the mean and covariance

values. Suppose pc (x) is N (mc,Cc) and the local belief pj,d (x) at time

t is N (mj,d (t) ,Cj,d (t)). Then the normalized MSE of the mean and

covariance values can be expressed as

∑N
j=1 ‖mj,d (t)−mc‖2∑N
j=1 ‖mj,d (0)−mc‖2

and

∑N
j=1 ‖Cj,d (t)−Cc‖2∑N
j=1 ‖Cj,d (0)−Cc‖2

,
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20 nodes

Figure 6.1: Topology of the first experiment.
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Figure 6.2: Comparison of the normalized χ2 information.

respectively.

In the first experiment, the topology is a line as shown in Fig. 6.1.

Each node is only able to talk to its immediate neighbors. Figure 6.2 shows

the average normalized χ2 information between the belief of each node and

the global Bayesian posterior. Figure 6.3 shows the MSE of the mean values

versus the iterations. Figure 6.4 shows the MSE of the covariance matrices

versus the iterations.

In the second experiment, we change the topology to be a 5 by 5 grid
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Figure 6.3: Comparison of the normalized MSE of the mean values.
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Figure 6.4: Comparison of the normalized MSE of the covariance matrices.
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Figure 6.5: The topology of the network in the second experiment.

as shown in Fig. 6.5. Each node is only able to talk to its immediate right,

left, upper and lower neighbors. Figure 6.6 shows the χ2 information versus

the iterations. Figure 6.7 shows the MSE of the mean values versus the

iterations. Figure 6.8 shows the MSE of the covariance matrices versus the

iterations.

In both experiments, we can see that the proposed method

outperforms the others in the χ2 information and the MSE of covariance

matrices. But the uniform weighting method beats the other methods in

MSE of the mean values. This is not surprising because in the fusion

process, the fused mean value is a linear combination of the mean values

from different nodes. Uniform strategy will not differ too much as the

point defined by the weighting coefficients is near the center in the solution

domain. On the other hand, the fusion of the covariance matrix is not

linear. The proposed method puts more weight on the covariance matrix

in the optimization.
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Figure 6.6: Comparison of the normalized χ2 information.
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Figure 6.7: Comparison of the normalized MSE of the mean values.
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Figure 6.8: Comparison of the normalized MSE of the covariance matrices.

6.6 Conclusion

In this chapter, we proposed a new approach for belief consensus.

Unlike traditional consensus, where nodes reach a consensus of point

estimate, we considered the consensus of probability densities. Ideally the

consensus algorithm should converge at the Bayesian posterior probability

density given all the information available over the network. In the case

where the nodes do not know the size of the network, this is not achievable.

We proposed the use of the weighted product of the belief densities to

approximate the Bayesian posterior. We confined ourselves in cases where

the beliefs were Gaussian densities. We adopted the χ2 information metric

as the criterion for belief consensus. The criterion was used for choosing

values of the weighting coefficients in the fusion. We proved that the

optimization of the weighting coefficients was a convex problem under

the χ2 information metric. We studied the performance in the numerical
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experiments. It was shown that the proposed method outperforms others

in the comparison of the χ2 information.
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Chapter 7

Conclusion

Distributed estimation and fusion is a popular topic in WSNs and

has been applied in various areas including monitoring, surveillance and

target tracking. The key challenge is to design algorithms that allow nodes

in the network to cooperate with each other in an efficient way so that

the information obtained by every single node can be spread all over the

network. This becomes even more challenging when the measurements are

correlated.

In this dissertation, we proposed several methods to handle the cases

where correlation was present. In Chapter 2, we introduced the problem of

fusing multiple correlated estimates with unknown correlation. In Chapter

3, the Bayesian approach was proposed in which we assumed the entire

matrix was a Wishart random matrix. Since the values of the diagonal

blocks were known, we could obtain the conditional distribution of those

off-diagonal blocks in the covariance matrix. The conditional distribution

was shown to be inverted matrix-variate t-distribution. Then Monte Carlo

method was used to marginalize with respect to the off-diagonal blocks to
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obtain the MMSE estimate. In Chapter 4, we studied the same problem

with slightly different assumptions. We assumed the covariance matrix

had a special structure. Besides, instead of marginalizing with respect to

the off-diagonal blocks, we sought the optimal values under two criteria by

using convex optimization techniques.

We considered the problem of distributed estimation in the networks

in Chapter 5. The correlation was assumed known and had the Markov

property. We proposed an efficient algorithm that asymptotically achieves

the same performance as the centralized method.

In Chapter 6, we considered the belief consensus problem. We

assumed each node had an initial belief represented as a probability density.

The objective was that the network reaches consensus at the density of the

Bayesian posterior, i.e., the product of all the initial densities. However,

with the assumption that the number of the nodes was unknown, it was

not possible to achieve the Bayesian posterior through consensus. An

approximation of the Bayesian posterior by the weighted product of the

densities was proposed. We adopted the χ2 information as the criterion

to measure the distance between the Bayesian posterior and the weighted

product. Besides, we proved that the optimization problem of minimizing

the χ2 information with respect to the weighting coefficients was convex.

There are many directions to continue this work. In Chapter 5,

we assumed that the correlation of noises was known. Without this

assumption, the nodes can still perform the estimation by simply ignoring

the correlation. It would be interesting to quantify how much information

is lost in this process of learning. Alternatively, the nodes can jointly

estimate the parameter and the correlation. How well can the joint
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estimation improve the aggregation of information is worth of investigation.

In Chapter 6, the χ2 information metric was used. There are other criteria

to measure the distance between two densities, for example, the Kullback-

Leibler divergence. It would be interesting to quantitatively compare the

performance of the nodes of these two criteria. Finally, notice that we

used the weighted product, which was also called the general fusion, for

the belief consensus. This was in fact a compromise we made to avoid the

shrinkage of the densities in the consensus. Consequently we could not

achieve the Bayesian posterior but had to approximate it. Whether the

Bayesian posterior can be achieved in a network where the nodes know

nothing about the topology is still an open question. The pursuing of

this objective definitely requires the learning of the topology through belief

exchange. This is perhaps the most interesting and challenging direction

to extend this work.
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Appendices

The proof of the main theorem:

In this section, we prove that the distributed estimator, (5.24), is

efficient. Denote by g (A,B) the matrix-variate function

g (A,B) =tr
[
A−1B

(
A>
)−1]

. (7.1)

We define the following notation:

Ft =
t∑

s=1

H>s KQt−s
(i) Hs (7.2)

Gt =
t∑

s=1

H>s KQt−s
(i) K−1Qt−s

(i) KHs (7.3)

Xt,s =Qt−s
(i) −

1

N
I. (7.4)

Then the covariance of the distributed estimator can be expressed as

Cov
[
θ̃i,t

]
= E

[(
θ̃i,t − θ

)(
θ̃i,t − θ

)>]
= F−1t Gt

(
F>t
)−1

. (7.5)
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The covariance of the centralized estimate (5.20) is

Cov
[
θ̃t

]
=

(
t∑

s=1

H>s KHs

)−1
. (7.6)

Formally, we need to prove

lim
t→∞

tr
[
Cov

[
θ̃i,t

]]
tr
[
Cov

[
θ̃t

]] = 1. (7.7)

The first step of the proof is to decompose both Gt and Ft into two parts

using the identity Qt−s
(i) = 1

N
I + Qt−s

(i) −
1
N

I. We have

Gt =
t∑

s=1

H>s K

(
1

N
I + Xt,s

)
K−1

(
1

N
I + Xt,s

)
KHs (7.8)

=
1

N2

t∑
s=1

H>s KHs +
1

N

t∑
s=1

H>s Xt,sKHs

+
1

N

t∑
s=1

H>s KXt,sHs +
t∑

s=1

H>s KXt,sK
−1Xt,sKHs (7.9)

and

Ft =
1

N

t∑
q=1

H>q KHq +
t∑

q=1

H>q KXt,sHq. (7.10)

Then (7.7) becomes

tr
[
Cov

[
θ̃i,t

]]/
tr
[
Cov

[
θ̃t

]]
=
g
(
A1 + A2,

1
N

A1 + B1 + B2

)
1
N

tr
[
A−11

] (7.11)

=
g
(
A1 + A2,

1
N

A1

)
1
N

tr
[
A−11

] (7.12)

+
g (A1 + A2,B1 + B2)

1
N

tr
[
A−11

] , (7.13)
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where

A1 =
1

N

t∑
s=1

H>s KHs, (7.14)

A2 =
t∑

s=1

H>s KXt,sHs, (7.15)

B1 =
1

N

t∑
s=1

H>s Xt,sKHs +
1

N

t∑
s=1

H>s KXt,sHs, (7.16)

B2 =
t∑

s=1

H>s KXt,sK
−1Xt,sKHs. (7.17)

We shall prove (7.12) approaches 1 and (7.13) approaches 0 as t grows.

The main principle we use is the squeeze theorem in calculus. Basically, we

look for the upper and lower bounds for both terms and prove they have

the limit we want. Before we start, we prepare three lemmas for use later:

Lemma 4
∑t

s=1 |Xt,s| is bounded as t approaches infinity.

Proof : Since Q is symmetric, it can be decomposed as Q = UΛU>

where U is an orthonormal matrix and Λ is a diagonal matrix with

eigenvalues being the diagonal entries. Therefore Qt = UΛtU>. Denote

by ui,j the (i, j)th entry of U, and by λl the lth smallest eigenvalue of Q.

Then we have Qt−s
i,j =

∑N
l=1 uj,lui,lλ

t−s
l . Because Q is an irreducible and

aperiodic doubly stochastic matrix, we know that one of the eigenvalues is

1 with the corresponding eigenvector being (1/
√
N)1N , and the rest of the

eigenvalues being strictly less than 1 in magnitude. Let λN = 1; we have
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ui,Nuj,Nλ
t−s
N = 1

N
and

t∑
s=1

∣∣∣∣Qt−s
i,j −

1

N

∣∣∣∣ =
t∑

s=1

∣∣∣∣∣
N−1∑
l=1

uj,lui,lλ
t−s
l

∣∣∣∣∣ (7.18)

≤
t∑

s=1

N−1∑
l=1

|uj,lui,l|
∣∣λt−sl

∣∣ (7.19)

=
N−1∑
l=1

|uj,lui,l|
1− |λl|t

1− |λl|
. (7.20)

As the absolute values of {λ}N−1l=1 are all strictly smaller than 1, (7.20) is

bounded. �

Lemma 5 A2 is bounded as t grows.

Proof : Let hi,j (s) be the (i, j)th entry of Hs, ki,j, that of K, ai,j, that of

A2. Let xi (t, s) be the ith diagonal entry of Xt,s. Then we have

ai,j =
t∑

s=1

x1 (t, s)h1,j (s)
MN∑
l=1

hl,i (s) kl,1 + · · ·

+
t∑

s=1

xMN (t, s)hMN,j (s)
MN∑
l=1

hl,i (s) kl,MN . (7.21)

We show that each term in the above expression is bounded. Consider the

first term: Because Hs is bounded, we can always find a constant c such

that −c ≤ h1,j (s)
∑MN

l=1 hl,i (s) kl,1 ≤ c for all s. Therefore, the first term

(say tm1) can be upper-bounded as

tm1 ≤
t∑

s=1

|x1 (t, s)|

∣∣∣∣∣h1,j (s)
MN∑
l=1

hl,i (s) kl,1

∣∣∣∣∣ ≤ c

t∑
s=1

|x1 (t, s)| (7.22)

and lower-bounded by −c
∑t

s=1 |x1 (t, s)|. According to Lemma 4, both the

upper and lower bounds are bounded. Therefore, ai,j and A2 are bounded.
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Lemma 6 Let f : R → R be continuous, if f (x) is monotone increasing

(decreasing), so is tr [f (A)] on S [65]. Here increasing means that if

At � As, then tr [f (At)] > tr [f (As)] (tr [f (At)] < tr [f (As)]).

In the next two subsections, we prove (7.12) approaches 1 and (7.13)

approaches 0 as t grows.

The limit of the first term, (7.12)

Define

f1 (x) =
g
(
xI + A2,

1
N
xI
)

1
N

tr
[
(xI)−1

] . (7.23)

We first show f1(x) is monotone. The function f1(x) can be simplified to

f1 (x) =
1

L
tr

[(
I +

A2

x

)−1(
I +

A>2
x

)−1]
. (7.24)

According to the definition of matrix inversion, each entry in
(
I + A2

x

)−1
is a

rational function of x. Also addition, multiplication and division of rational

functions are still rational functions. Therefore f1 (x) is a rational function.

So is the derivative of f1 (x), f ′1 (x). Since the orders of the polynomials

are bounded, there exist a finite number of zeros and poles. Thus, there

must exist a constant xL such that f ′1 (x) becomes positive or negative when

x > xL. This says f1 (x) becomes monotonic when x > xL. Whether it is

decreasing or increasing depends on the value of A2. So is the constant xL.

Without loss of generality, we assume f1(x) is increasing for x > xL. We
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define Hd and HD to be full-rank matrices such that

H>d KHd � H>s KHs � H>DKHD (7.25)

for all s. Then by Lemma 6 we have

g
(

t
N

H>d KHd + A2,
t

N2 H
>
d KHd

)
1
N

tr
[(

t
N

H>d KHd

)−1] (7.26)

≤
g
(
A1 + A2,

1
N

A1

)
1
N

tr
[
(A1)

−1] (7.27)

≤
g
(

t
N

H>DKHD + A2,
t

N2 H
>
DKHD

)
1
N

tr
[(

t
N

H>DKHD

)−1] (7.28)

for sufficiently large t. Because the limits of (7.26) and (7.28) are 1,

according to the squeeze theorem, (7.12) also goes to 1 as t approaches

infinity. The same result follows if f1(x) is decreasing.

The limit of the second term, (7.13)

In this subsection, we still use the squeeze theorem and follow a similar

strategy. We need to show that the limit of (7.13) is zero. First, we replace

B1 + B2 with xI and write the denominator as a function of x:

f2 (x) = g (A1 + A2, xI) . (7.29)

Obviously f2 (A) is increasing on S. Define the function

Zs,t =
1

N
H>s Xt,sKHs +

1

N
H>s KXt,sHs

+ H>s KXt,sK
−1Xt,sKHs. (7.30)
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Then we let HB and Hb be matrices such that

Zb,t � Zs,t �ZB,t (7.31)

and

Zb,t � O �ZB,t (7.32)

for all s and t. Note that the last expression implies that Zb,t is negative

semidefinite and ZB,t is positive semidefinite. By (5.13) and the definition

of Xt,s in (7.4), we can see that Xt,s is a diagonal matrix with both positive

and negative entries. This makes it possible to find such HB and Hb that

satisfy (7.31) and (7.32). Due to the monotone property of f2, we have

g
(
A1 + A2,

∑t
s=1 Zb,t

)
1
N

tr
[
A−11

] (7.33)

≤g (A1 + A2,B1 + B2)
1
N

tr
[
A−11

] (7.34)

≤
g
(
A1 + A2,

∑t
s=1 ZB,t

)
1
N

tr
[
A−11

] . (7.35)

Next we prove that the limits of both the left side (7.33) and the right

side (7.35) are zero as t approaches infinity. To find the limit of (7.35), we

define the function f3 (x) as

f3 (x) = g

(
x,

t∑
s=1

ZB,t

)
. (7.36)
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Note that it is decreasing on R+. According to Lemma 6, f3 (A) =

g
(
A,
∑t

s=1 ZB,t

)
is decreasing on S+. Let Ha be a matrix such that

O � H>a KHa �H>s KHs (7.37)

for all s. Also let HA be a matrix such that

H>s KHs �H>AKHA (7.38)

for all s. By enlarging the numerator and reducing the denominator of

(7.35), we have

g
(
A1 + A2,

∑t
s=1 ZB,t

)
1
N

tr
[
A−11

] (7.39)

≤
g
(

t
N

H>a KHa + A2,
∑t

s=1 ZB,t

)
1
N

tr
[(

t
N

H>AKHA

)−1] (7.40)

=

1

t2
g
(

1
N

H>a KHa + A2,
∑t

s=1 ZB,t

)
1

t
tr
[(

H>AKHA

)−1] . (7.41)

Since
∑t

s=1 ZB,t and A2 are bounded, according to Lemma 6 we can see

that the limit of (7.35) is zero. Similarly we can show that (7.33) is lower-

bounded by an expression the limit of which is also zero. This completes

the proof of the main theorem.
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Derivation of (6.20)

The multivariate normal distribution of a N -dimensional random

vector x with mean m and precision matrix K is defined as

N
(
x|m,K−1

)
=

1√
(2π)N |K−1|

exp

(
−1

2
(x−m)>K (x−m)

)
. (7.42)

Let p (x) be N (x|mc,K
−1
c ) and q (x) be N

(
x|md,K

−1
d

)
. Then we have

p2 (x)

q (x)
=

√
(2π)K

∣∣K−1d

∣∣
(2π)K |K−1c |

exp (Z1) (7.43)

where

Z1 =− 1

2
(x−mc)

> 2Kc (x−mc)

+
1

2
(x−md)

>Kd (x−md) . (7.44)

We further rearrange the terms in Z1 as follows:

Z1 =− 1

2

(
x>2Kcx− x>Kdx

)
+

1

2

(
2x>2Kcmc − 2x>Kdmd

)
− 1

2

(
m>c 2Kcmc −m>d Kdmd

)
(7.45)

=Z2 + Z3 (7.46)
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where

Z2 =− 1

2

(
x− (2Kc −Kd)

−1 (2Kcmc −Kdmd)
)>

× (2Kc −Kd)

×
(
x− (2Kc −Kd)

−1 (2Kcmc −Kdmd)
)

(7.47)

and

Z3 =
1

2
(2Kcmc −Kdmd)

>

× (2Kc −Kd)
−1

× (2Kcmc −Kdmd)

− 1

2

(
m>c 2Kcmc −m>d Kdmd

)
(7.48)

=− 1

2
(mc −md)

>
(

1

2
K−1c −K−1d

)−1
(mc −md) . (7.49)

According to a property of multivariate normal distribution, as long as

2Kc −Kd is positive definite, we have

ˆ
exp (Z2) dx =

√
(2π)K ·

√∣∣(2Kc −Kd)
−1∣∣. (7.50)
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Therefore,
´ p2(x)

q(x)
dx becomes

ˆ
p2 (x)

q (x)
dx

=

√
(2π)K

∣∣K−1d

∣∣
(2π)K |K−1c |

·
√

(2π)K ·
√∣∣(2Kc −Kd)

−1∣∣
· exp

(
−1

2
(mc −md)

>
(

1

2
K−1c −K−1d

)−1
(mc −md)

)
(7.51)

=

√∣∣K−1d

∣∣
|K−1c |

·
√∣∣(2Kc −Kd)

−1∣∣
· exp

(
−1

2
(mc −md)

>
(

1

2
K−1c −K−1d

)−1
(mc −md)

)
. (7.52)

Proof of the convexity of (6.23).

A function f : Rn → R is said to be convex if the domain of f is a

convex set and for all x, y in the domain, and θ with 0 ≤ θ ≤ 1, we have

f (θx + (1− θ) y) ≤θf (x) + (1− θ) f (y) . (7.53)

Also a function is convex if and only if it is convex when restricted to any

line that intersects its domain. This property is useful for us to check the

convexity of a function. In our case, the variables are wi for i ∈ {1, · · · , N}

and the domain is a simplex defined by

N∑
i=1

wi =1 (7.54)

wi ≥0. (7.55)
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Those lines can be expressed as

x1 =w1 + tv1 (7.56)

...

xN =wN + tvN (7.57)

where
∑N

i=1 vi = 0 and all the wis lie in the simplex defined in (7.54) and

(7.55); t is a real number. To check the convexity of the function on this

line, we examine the second derivative of the function with respect to t.

Let

mw =
∑
i

wiKi (mc −mi) (7.58)

mv =
∑
i

viKi (mc −mi) (7.59)

mw+vt =
∑
i

(wi + tvi) Ki (mc −mi) (7.60)

Kw =
∑
i

wiKi (7.61)

Kv =
∑
i

viKi (7.62)

Kw+vt =
∑
i

(wi + tvi) Ki. (7.63)

and define f (t) and h (t) as

f (t) =
1√

Kw+tv

·
√∣∣(2Kc −Kw+tv)

−1∣∣ (7.64)

h (t) = exp

(
−1

2
(mc −mw+tv)

>

(
1

2
K−1c −K−1w+tv

)−1
(mc −mw+tv)

)
. (7.65)
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We replace wi with wi + tvi, then (6.23) becomes

χ2 (Nd||Nc) = |Kc|f (t) exph (t)− 1. (7.66)

Since |Kc| is a constant factor we omit it in the following derivation for the

sake of simplicity. We show that the second order derivative of f (t) exph (t)

is nonnegative. We denote by f ′ and f ′′ the first order and the second order

derivatives of f (t), respectively. The first order derivative of f (t) exph (t)

can be derived as

∂f (t) exph (t)

∂t
=f ′ exph+ fh′ exph. (7.67)

and then the second derivative can be derived as

∂2 (f (t) exph (t))

∂t2
=f ′′ exph+ f ′h′ exph

+ f ′h′ exph+ f (h′)
2

exph+ fh′′ exph (7.68)

=
(
f ′′ + f ′h′ + f ′h′ + f (h′)

2
+ fh′′

)
exph (7.69)

=
(
f ′′ + 2f ′h′ + f (h′)

2
+ fh′′

)
exph (7.70)

=

(
f ′′ + f

(
h′ +

f ′

f

)2

− (f ′)2

f
+ fh′′

)
exph. (7.71)

We are going to prove that (7.71) is nonnegative when t = 0. We note

that the second term in the parentheses is in square form and therefore

nonnegative. The second factor exph (t) is always positive. In order to

prove (7.71) is nonnegative, it suffices to show that f ′′ − (f ′)2 /f and h′′

are nonnegative.
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The proof that f ′′ − (f ′)2 /f is nonnegative

First, we define

A =C−1d

(
2C−1c −C−1d

)
. (7.72)

=Kd (2Kc −Kd) . (7.73)

According to (7.72), we have

f (t) =
1√
|A|

. (7.74)

We first obtain the first and the second derivatives of A:

∂A

∂t
=
∑
i

viKi

(
2Kc −

∑
i

(wi + tvi) Ki

)

−
∑
i

(wi + tvi) Ki

(∑
i

viKi

)
(7.75)

∂2A

(∂t)2
=
∑
i

viKi

(
−
∑
i

viKi

)
−
∑
i

viKi

(∑
i

viKi

)
(7.76)

=− 2

(∑
i

viKi

)2

(7.77)

=− 2K2
v. (7.78)

Set t = 0,
∂A

∂t
becomes
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∂A

∂t
=
∑
i

viKi

(
2Kc −

∑
i

wiKi

)

−
∑
i

wiKi

(∑
i

viKi

)
(7.79)

=Kv (2Kc −Kd)−KdKv. (7.80)

The first order and the second order derivatives of f become

∂f

∂t
=− 1

2
|A|−

3
2
∂ |A|
∂t

(7.81)

∂2f

(∂t)2
=− 1

2
|A|−

3
2
∂2 |A|
(∂t)2

+
3

4
|A|−

5
2

(
∂ |A|
∂t

)2

(7.82)

where

∂ |A|
∂t

= |A| tr
[
A−1

∂A

∂t

]
(7.83)

∂2 |A|
(∂t)2

= |A| tr
[
A−1

∂2A

(∂t)2

]
+ |A| tr

[
A−1

∂A

∂t

]
tr

[
A−1

∂A

∂t

]
− |A| tr

[(
A−1

∂A

∂t

)(
A−1

∂A

∂t

)]
. (7.84)

Using (7.80) and (7.78), we have

∂ |A|
∂t

= |A| tr
[
A−1 (Kv (2Kc −Kd)−KdKv)

]
(7.85)
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and

∂2 |A|
(∂t)2

= |A| tr
[
−A−12K2

v

]
+ |A| tr

[
A−1 (Kv (2K0 −Kd)−KdKv)

]2
− |A| tr

[(
A−1 (Kv (2Kc −Kd)−KdKv)

)2]
. (7.86)

Therefore

f ′′ − (f ′)2

f
=− 1

2
|A|−

3
2
∂2 |A|
(∂t)2

+
3

4
|A|−

5
2

(
∂ |A|
∂t

)2

−

(
1

2
|A|−

3
2
∂ |A|
∂t

)2

|A|−
1
2

(7.87)

=− 1

2
|A|−

3
2
∂2 |A|
(∂t)2

+
1

2
|A|−

5
2

(
∂ |A|
∂t

)2

(7.88)

=
1

2
|A|−

1
2 tr
[
A−12K2

v

+
(
A−1 (2KcKv −KvKw −KwKv)

)2]
. (7.89)

We consider the trace and define g (·) as:

g (2Kc −Kd) =tr
[
2 (Kd (2Kc −Kd))

−1 KvKv

]
+ tr

[
(Kd (2Kc −Kd))

−2

(2KcKv −KvKd −KdKv)
2] . (7.90)

Replace 2Kc −Kd with xI, we have
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g (x) =tr
[
2x−1K−1d KvKv

]
+ tr

[
x−2K−1d (xKv −KdKv) K−1d (xKv −KdKv)

]
(7.91)

=tr
[
2x−1K−1d KvKv + K−1d KvK

−1
d Kv

]
+ tr

[
−x−1K−1d KvKv

−x−1KvK
−1
d Kv + x−2KvKv

]
(7.92)

=tr
[
K−1d KvK

−1
d Kv + x−2KvKv

]
. (7.93)

It is easy to see that g (x) is decreasing with x. According to Lemma 6, if

xI � 2Kc −Kd, then g (x) ≤ g (2Kc −Kd). We let x goes to infinity

lim
x→∞

g (x) =tr
[
K−1d KvK

−1
d Kv

]
. (7.94)

We then show that tr
[
K−1d KvK

−1
d Kv

]
is positive. We note that Kd is a

positive definite matrix and Kv is a symmetric matrix. According to [66,

Theorem 7.6.3], K−1d Kv is a diagonalizable matrix, all of whose eigenvalues

are real. Let

K−1d Kv =P−1DP (7.95)

where P is an invertible matrix and D is a diagonal matrix whose entries

are real. Therefore

(
K−1d Kv

)2
=P−1D2P. (7.96)
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We have

tr
[(

K−1d Kv

)2]
=tr

[
D2
]
. (7.97)

Thus we have shown that g (x) is a decreasing function and it approaches

a nonnegative number as x grows. Therefore, by Lemma (6) the trace in

(7.89) is also positive. We complete the proof of the nonnegativeness of

f ′′ − (f ′)2 /f .

The proof that h′′ is nonnegative

In order to show that h′′ is nonnegative, we show that h′′ can be

rearranged into quadratic form. First, we rewrite T1 as

T1 =− 1

2
(mc −md)

>
(

1

2
K−1c −K−1d

)−1
(mc −md) (7.98)

=− 1

2

(∑
i

wiKimc −
∑
i

wiKimi

)>
(

1

2
KdK

−1
c Kd −Kd

)−1
(∑

i

wiKimc −
∑
i

wiKimi

)
(7.99)

=− 1

2

(∑
i

wiKi (mc −mi)

)>
(

1

2
KdK

−1
c Kd −Kd

)−1(∑
i

wiKi (mc −mi)

)
(7.100)

=− 1

2
m>w

(
1

2
KdK

−1
c Kd −Kd

)−1
mw. (7.101)
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Replace wi with wi + tvi, we obtain the expression of h (t):

h (t) =− 1

2
m>w+tv

(
1

2
Kw+tvK

−1
c Kw+tv −Kw+tv

)−1
mw+tv. (7.102)

The first order derivative is

∂h

∂t
=−m>v

(
1

2
Kw+tvK

−1
c Kw+tv −Kw+tv

)−1
mw+tv

+
1

2
m>w+tv

(
1

2
Kw+tvK

−1
c Kw+tv −Kw+tv

)−1
(

1

2
KvK

−1
c Kw+tv +

1

2
Kw+tvK

−1
c Kv −Kv

)
(

1

2
Kw+tvK

−1
c Kw+tv −Kw+tv

)−1
mw+tv. (7.103)

Let

F (Kw+tv) =Kw+tv
1

2
K−1c Kw+tv −Kw+tv (7.104)

G (Kw+tv) =
1

2
KvK

−1
c Kw+tv +

1

2
Kw+tvK

−1
c Kv −Kv. (7.105)

The second order derivative becomes
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∂2h

∂t2
=−m>v (F (Kw+tv))

−1 mw+tv

+ m>v (F (Kw+tv))
−1 G (Kw+tv) (F (Kw+tv))

−1 mw+tv

+
1

2
m>v (F (Kw+tv))

−1 G (Kw+tv) (F (Kw+tv))
−1 mw+tv

− 1

2
m>w+tv (F (Kw+tv))

−1 G (Kw+tv) (F (Kw+tv))
−1

G (Kw+tv) (F (Kw+tv))
−1 mw+tv

+
1

2
m>w+tv (F (Kw+tv))

−1
(

1

2
KvK

−1
c Kv +

1

2
KvK

−1
c Kv

)
(F (Kw+tv))

−1 mw+tv

− 1

2
m>w+tv (F (Kw+tv))

−1 G (Kw+tv) (F (Kw+tv))
−1

G (Kw+tv) (F (Kw+tv))
−1 mw+tv

+
1

2
m>w+tv (F (Kw+tv))

−1 G (Kw+tv) (F (Kw+tv))
−1 mv. (7.106)

Let t = 0 and rearrange the terms, we have

∂2h

∂t2

∣∣∣∣
t=0

=−m>v (F (Kw))−1 mv

+ 2m>v (F (Kw))−1 G (Kw) (F (Kw))−1 mw

−m>w (F (Kw))−1 G (Kw) (F (Kw))−1

G (Kw) (F (Kw))−1 mw

+
1

2
m>w (F (Kw))−1

(
KvK

−1
c Kv

)
(F (Kw))−1 mw. (7.107)
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Since KvK
−1
c Kv is a positive definite matrix, the last term is positive. Thus

we have

∂2h

∂t2

∣∣∣∣
t=0

≥−m>v (F (Kw))−1 mv

+ 2m>v (F (Kw))−1 G (Kw) (F (Kw))−1 mw

−m>w (F (Kw))−1 G (Kw) (F (Kw))−1

G (Kw) (F (Kw))−1 mw (7.108)

=−
(
m>v −m>w (F (Kw))−1 G (Kw)

)
(F (Kw))−1(

m>v −m>w (F (Kw))−1 G (Kw)
)>
. (7.109)

This is a quadratic form. Because (F (Kw))−1 is a negative definite matrix,

(7.109) is positive. Therefore we have twenty nodes that work on the

∂2h

∂t2
≥0. (7.110)

This completes the proof. �
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