DSpace Repository

On the Partition Function for CP1-Instantons on a Flat Torus

Show simple item record

dc.contributor.advisor Takhtajan, Leon en_US
dc.contributor.author Walsh, Joseph William en_US
dc.contributor.other Department of Mathematics en_US
dc.date.accessioned 2013-05-22T17:35:45Z
dc.date.accessioned 2015-04-24T14:47:36Z
dc.date.available 2013-05-22T17:35:45Z
dc.date.available 2015-04-24T14:47:36Z
dc.date.issued 2012-08-01 en_US
dc.identifier Walsh_grad.sunysb_0771E_11054 en_US
dc.identifier.uri http://hdl.handle.net/1951/59905 en_US
dc.identifier.uri http://hdl.handle.net/11401/71452 en_US
dc.description 89 pgs en_US
dc.description.abstract The partition function for the free theory of CP1-valued fields on a flat two-dimensional torus is studied. The partition function localizes to an infinite series of finite-dimensional integrals over the spaces of holomorphic and anti-holomorphic functions of fixed topological degree. The partition function measure on each of these spaces is computed explicitly, with respect to coordinates given by the zeroes and poles of the maps. Finally, the convergence properties of each of the integrals is discussed. en_US
dc.description.sponsorship This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree. en_US
dc.format Monograph en_US
dc.format.medium Electronic Resource en_US
dc.language.iso en_US en_US
dc.publisher The Graduate School, Stony Brook University: Stony Brook, NY. en_US
dc.subject.lcsh Mathematics en_US
dc.subject.other elliptic functions, instanton, partition function, torus en_US
dc.title On the Partition Function for CP1-Instantons on a Flat Torus en_US
dc.type Dissertation en_US
dc.mimetype Application/PDF en_US
dc.contributor.committeemember Grushevsky, Samuel en_US
dc.contributor.committeemember Varolin, Dror en_US
dc.contributor.committeemember Rocek, Martin en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account