DSpace Repository

Nonlinear Analyses of Functional MRI Time-Series in Brain-Based Disorders

Show simple item record

dc.contributor.advisor Mujica-Parodi, Lilianne R en_US
dc.contributor.advisor Vaska, Paul. en_US
dc.contributor.author Nedic, Sanja
dc.contributor.other Department of Biomedical Engineering. en_US
dc.date.accessioned 2018-07-09T14:03:07Z
dc.date.available 2018-07-09T14:03:07Z
dc.date.issued 2017-08-01
dc.identifier Nedic_grad.sunysb_0771E_13461.pdf en_US
dc.identifier.uri http://hdl.handle.net/11401/78354
dc.description 117 pg. en_US
dc.description.abstract Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging modality used to measure brain activity in vivo, capable of providing three-dimensional coverage of the brain at a high spatial resolution. While fMRI has advanced our understanding of the brain, it has had limited applications in medical practice due to 1) analytic approaches predominantly focused on either contrasting signal amplitudes from clearly defined conditions in simplistic task stimuli (to localize “activations”) or on computing time-course cross-correlations between pairs of brain regions to infer the strength of functional “connectivity” between them in resting-state fMRI studies, and 2) low signal-to-noise ratio/difficulty separating signal due to relevant neuronal fluctuations from signal due to noise. Consequently, research findings typically need to be averaged over many trials and subjects. On the other hand, clinical diagnostics are necessarily based upon a single subject, thus requiring high quality data and methods sensitive to abnormalities in network dynamics. To address the first issue, work presented here is driven by the hypothesis that the most sensitive biomarker of dysregulation may not be the amplitude of activation or strength of connections between two regions, but rather the complexity of the signal, reflecting the underlying (deviations in) dynamics. We introduce and apply an entropic measure of regulation and feedback (the autocorrelation function) to identify focal regions in patients with medication-resistant epilepsy. Precise localization of foci is crucial for successful surgery. To address the second issue, we introduce a new quantitative measure to accurately assess the integrity of fMRI time-series – signal fluctuation sensitivity (SFS). We show that SFS correlates with time-series integrity and that higher SFS is associated with enhanced sensitivity to detection of known local and long-range connections in resting-state (task-free) fMRI. We further show that this measure reliably identifies task-induced activations in three different tasks employing highly complex naturalistic stimuli, which still represent a challenge from the data-analysis perspective. Finally, we incorporate high quality fMRI data with machine learning to build models capable of predicting subjects’ dynamic state of mind from fMRI signals of relevant brain networks at an individual-subject level. en_US
dc.description.sponsorship This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree en_US
dc.format Monograph en_US
dc.format.medium Electronic Resource en_US
dc.format.mimetype Application/PDF en_US
dc.language.iso en_US en_US
dc.subject.lcsh Biomedical engineering en_US
dc.subject.other epilepsy en_US
dc.subject.other fMRI en_US
dc.subject.other signal fluctuation sensitivity en_US
dc.subject.other time-series analyses en_US
dc.title Nonlinear Analyses of Functional MRI Time-Series in Brain-Based Disorders en_US
dc.type Dissertation en_US
dc.contributor.committeemember Strey, Helmut en_US
dc.contributor.committeemember Wang, Jin. en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account